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Abstract

We study the appearance of a novel phenomenon for coupled identical bursters:

synchronized bursts where there are changes of spike synchrony within each burst.

The examples we study are for normal form elliptic bursters where there is a peri-

odic slow passage through a Bautin (codimension two degenerate Andronov-Hopf)

bifurcation. This burster has a subcritical Andronov-Hopf bifurcation at the onset

of repetitive spiking while the end of burst occurs via a fold limit cycle bifurca-

tion. We study synchronization behavior of two Bautin-type elliptic bursters for

a linear direct coupling scheme as well as demonstrating its presence in an ap-

proximation of gap-junction and synaptic coupling. We also find similar behaviour

in system consisted of three and four Bautin-type elliptic bursters. We note that

higher order terms in the normal form that do not affect the behavior of a single

burster can be responsible for changes in synchrony pattern; more precisely, we

find within-burst synchrony changes associated with a turning point in the spon-

taneous spiking frequency (frequency transition). We also find multiple synchrony

changes in similar system by incorporating multiple frequency transitions. To ex-

plain the phenomenon we considered a burst-synchronized constrained model and

a bifurcation analysis of the this reduced model shows the existence of the observed

within-burst synchrony states.

Within-burst synchrony change is also found in the system of mutually delay-

coupled two Bautin-type elliptic bursters with a constant delay. The similar phe-

nomenon is shown to exist in the mutually-coupled conductance-based Morris-Lecar

neuronal system with an additional slow variable generating elliptic bursting.

We also find within-burst synchrony change in linearly coupled FitzHugh-Rinzel
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elliptic bursting system where the synchrony change occurs via a period doubling

bifurcation. A bifurcation analysis of a burst-synchronized constrained system

identifies the periodic doubling bifurcation in this case.

We show emergence of spontaneous burst synchrony cluster in the system of

three Hindmarsh-Rose square-wave bursters with nonlinear coupling. The system

is found to change between the available cluster states depending on the stimu-

lus. Lyapunov exponents of the burst synchrony states are computed from the

corresponding variational system to probe the stability of the states. Numerical

simulation also shows existence of burst synchrony cluster in the larger network of

such system.



Acknowledgements

I would like to thank all of those who made my PhD achievable and enjoyable. First

of all, I would like to thank my supervisor Peter Ashwin for his continued support

and guidance throughout my PhD. His expertise, sincerity and encouragement

over the last three years have profusely benefited both my intellect and character.

I would also like to thank my second supervisor Stuart Towley who extended his

sincere support whenever I sought his help.

I am grateful to my mother and my family for their love, affection and under-

standing during my degree and especially during the period of writing up; their

unconditional support helped me a lot to focus on my writing up.

I truly appreciate the support of my colleagues at the Mathematics Research

Institute; special thanks to Gabor Orosz, Erzgraber Hartmut, Sebastian Wieczorek,

Matthew Turner and Renato Vitolo for their help and good gestures on innumerable

occasions. I would like to say thanks to my friends for encouragement, company

and countless good times I had had with them, special thanks to Carlos Martinez

and Jonathan Moore for patiently proof reading my manuscript. I would also like

to acknowledge the help and support of Professor Tassilo Keupper and Svitlana

Popovych of Mathematical Institute of University of Cologne for their hospitality

and very fruitful discussions on my research during my stay in Cologne, Germany.

Finally, I would like to thank University of Exeter for awarding me Exeter Research

Scholarships to pursue the PhD degree.

4



Contents

Acknowledgements 3

Contents 4

List of Figures 9

List of Tables 21

1 Introduction to neuronal bursters 22

1.1 Ionic mechanism of bursting . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Mathematical mechanism . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 The Plant model . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.2 The Chay-Keizer model . . . . . . . . . . . . . . . . . . . . 28

1.3 Mathematical properties and analysis of bursting models . . . . . . 30

1.3.1 Hysteresis loop . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.2 Geometric singular perturbation method . . . . . . . . . . . 32

1.4 Rinzel’s classification of bursting oscillations . . . . . . . . . . . . . 37

1.4.1 Square wave bursting . . . . . . . . . . . . . . . . . . . . . . 38

1.4.2 Parabolic bursting . . . . . . . . . . . . . . . . . . . . . . . 39

1.4.3 Elliptic bursting . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Burst dynamics 44

2.1 Topological classification . . . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Minimal bursting models . . . . . . . . . . . . . . . . . . . . . . . . 51

5



CONTENTS 6

2.2.1 Canonical models for bursters . . . . . . . . . . . . . . . . . 52

2.2.2 Normal form . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2.3 Topological normal forms for bifurcations . . . . . . . . . . . 56

2.3 The Bautin bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3.1 Bautin elliptic burster . . . . . . . . . . . . . . . . . . . . . 58

2.4 Delayed bursting: slow passage effect . . . . . . . . . . . . . . . . . 67

3 Coupled neuronal bursters 69

3.1 The leech heart interneuron model . . . . . . . . . . . . . . . . . . 69

3.2 Synchronization of coupled bursters . . . . . . . . . . . . . . . . . . 74

3.2.1 Burst synchronization . . . . . . . . . . . . . . . . . . . . . 74

3.3 Spike synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Coupled Bautin bursters . . . . . . . . . . . . . . . . . . . . . . . . 79

3.5 The model for coupled Bautin bursters . . . . . . . . . . . . . . . . 80

3.5.1 Burst and spike synchronization for two coupled bursters . . 84

4 Analysis of within-burst synchrony changes 88

4.1 A burst-synchronized constrained model . . . . . . . . . . . . . . . 88

4.1.1 Two coupled bursters in polar coordinates . . . . . . . . . . 89

4.1.2 Stability analysis of the burst constrained system . . . . . . 90

4.1.3 Synchrony bifurcations of the fast subsystem . . . . . . . . . 94

4.2 Understanding within-burst synchrony changes from the constrained

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2.1 Effects of noise on within-burst synchrony changes . . . . . . 100

4.2.2 Examples with biologically-motivated coupling . . . . . . . . 102

5 Within-burst cascade of synchrony changes 105

5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Single compartment elliptic burster . . . . . . . . . . . . . . 106

5.1.2 Model for coupled elliptic bursters . . . . . . . . . . . . . . . 106

5.2 Cascades with two synchrony changes . . . . . . . . . . . . . . . . . 107

5.2.1 Simulation of two within-burst synchrony changes . . . . . . 107



CONTENTS 7

5.2.2 The burst-synchronized constrained model . . . . . . . . . . 110

5.2.3 Synchrony bifurcation of the fast subsystem . . . . . . . . . 111

5.2.4 Stability analysis of the burst-synchronized constrained system114

5.2.5 Case κ1 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.6 Case κ1 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 Cascades with multiple synchrony changes . . . . . . . . . . . . . . 116

5.3.1 Two coupled bursters . . . . . . . . . . . . . . . . . . . . . . 117

5.3.2 Cascades with varying number of synchrony changes . . . . 119

5.3.3 Bifurcation of the fast subsystem with cascades . . . . . . . 120

5.4 Further cascades of synchrony changes . . . . . . . . . . . . . . . . 121

5.5 Synchrony changes with more general Ω . . . . . . . . . . . . . . . 123

6 Within-burst synchrony changes in higher dimensions 126

6.1 Three-coupled elliptic bursters system . . . . . . . . . . . . . . . . . 126

6.2 Synchrony bifurcation for fast subsystem of three-Bautin burster

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Four-coupled Bautin elliptic burster system . . . . . . . . . . . . . . 136

7 Delay induced within-burst synchrony changes 139

7.1 Basics of delay differential equations . . . . . . . . . . . . . . . . . 140

7.2 Mutually delay-coupled Bautin bursters . . . . . . . . . . . . . . . . 142

7.2.1 Within-burst synchrony changes via delay coupling . . . . . 143

7.2.2 Within-burst cascade of synchrony changes via delay coupling 144

7.3 Conductance-based bursting model . . . . . . . . . . . . . . . . . . 145

7.3.1 Mutually delay-coupled conductance-based bursting model . 147

7.3.2 Within-burst synchrony changes in conductance-based model 148

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8 Within-burst period doubling 152

8.1 FitzHugh-Rinzel elliptic burster model . . . . . . . . . . . . . . . . 152

8.2 Coupled FitzHugh-Rinzel System . . . . . . . . . . . . . . . . . . . 155

8.2.1 Within-burst bifurcation in two coupled FHR bursters . . . 155



CONTENTS 8

8.2.2 Bifurcation analysis of the fast subsystem of two coupled

FHR burster . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9 Synchrony properties of the Hindmarsh-Rose neurons 159

9.1 The Hindmarsh-Rose model . . . . . . . . . . . . . . . . . . . . . . 160

9.2 Coupling Hindmarsh-Rose bursters . . . . . . . . . . . . . . . . . . 163

9.3 Burst synchrony clusters in 3-coupled HMR burster . . . . . . . . . 164

9.4 Example of burst cluster in larger network of Hindmarsh-Rose bursters

and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10 Conclusion 171

10.1 Summary of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

10.2 Biological implication . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.3 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174



List of Figures

1.1 Neuronal bursting examples (from [56]). . . . . . . . . . . . . . . . . . 23

1.2 Hysteresis loop generating bursting rhythm governed by the system (1.1).

The broken arrows show trajectory of the dynamics. The solid arrows

show the direction of the vector field. . . . . . . . . . . . . . . . . . . 31

1.3 Schematic bifurcation diagram for the Chay-Keizer model depicting the

z-shaped fast subsystem in cV -plane. Stable and unstable steady state

solutions are shown with solid and dash-dotted lines, respectively. The

bold solid lines show the maxima and minima of the periodic branch. . . 36

1.4 Examples of types of bursting oscillations (from [93]): (top) square-

wave bursting, (middle) elliptic bursting and (bottom) parabolic bursting.

Here the vertical axis shows the voltage of the oscillations. . . . . . . . 37

2.1 Bifurcations at the onset and offset of bursting oscillations. . . . . . . . 45

2.2 Topological classification of generic fast-slow bursters having two-dimensional

fast (spiking) subsystem (from [56]). . . . . . . . . . . . . . . . . . . . 48

2.3 The elliptic bursting pattern generated by the system (2.13). The time

series plots the real part of z (solid line) and the corresponding slow

variable u (broken line). The parameters are a = 0.8, ω = 3 and η = 0.1. 59

2.4 The parabolic shape of the function y = u + βx − x2. The intercept, u,

on the y-axis and the tangent, β, at x = 0 are also shown. . . . . . . . . 62

9



LIST OF FIGURES 10

2.5 The dynamics of the equilibria governed by (2.15) and (2.16) as u is

changed from negative to positive while keeping β constant and positive.

In the panels (a) and (b), y against x = r2 is shown, while in (c) and (d),

r′ = ry is shown against r2. . . . . . . . . . . . . . . . . . . . . . . . 63

2.6 The dynamics of the equilibria governed by (2.15) and (2.16) as β is

changed from β > βcrit (a.c) to β < βcrit. In the panel (a) and (b), dy-

namics of xy are shown, and in (c) and (d) the corresponding phasespaces

are displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.7 The curve of β =
√

4u (FLC) in uβ-plane. This curve shows the locality

of the fold (saddle-node) bifurcation of limit cycles in the co-dimension

plane. Sub- and supercritical Andronov-Hopf bifurcation and Bautin

bifucation are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.1 The leech nervous system with 21 ganglia (from [64]). . . . . . . . . . . 70

3.2 Sketch of the leech heartbeat rhythm-generating network. . . . . . . . . 71

3.3 (A) shows a simultaneous intracellular recordings of the elemental os-

cillator consisting of left and right heart interneuron indicated by (L,3)

and (R,3), respectively, in ganglion 3. (B) shows extracellular recordings

from three left heart interneurons indicated as (L,2), (L,3) and (L,4);

Note that the cells (L,3) and (L,4) fire approximately inphase and both

of these cells fire approximately antiphase with cell (L,2) (from [74, 80]). 71

3.4 A half-centre oscillator. The filled circles at the end of the links indicate

inhibitory connection. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Distinguishing burst and spike synchronization in two coupled FitzHugh-

Rinzel bursters (8.2). In both cases the system is burst synchronized, but

(left) the excitatory coupling renders inphase spikes and (right) inhibitory

gives antiphase spikes. . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Example of (middle) transition of spikes from inphase synchronization to

asynchronization towards the end of the burst in coupled Morris-Lecar

square-wave bursters with an additional slow variable (from [59]). . . . . 78



LIST OF FIGURES 11

3.7 Schematic bifurcation diagram for z for the fast subsystem of (3.8) on

varying u. SFP denotes the stable fixed point, UFP unstable fixed point,

SPO stable periodic orbit and UPO unstable periodic orbit. It is clearly

seen that at u = 0, the system undergoes subcritical Andronov-Hopf

bifurcation, while saddle node bifurcation of limit cycles occur at u = −1. 82

3.8 Dynamics of a single compartment Bautin Burster governed by (3.8) and

(3.11). In panel (a), the timeseries of Re(z) is shown with solid line and

the corresponding slow variable, u, with dashed line.The parameters for

the simulation are ω = 3, a = 0.8, η = 0.1, σ = 4, and rm = 1.35. The

arrows in (d) indicates the direction of change of the slow variable, u . . 83

3.9 Within-burst synchrony change from stable inphase to stable antiphase

states for two coupled bursters. The dashed box shows the activity pat-

tern of one burst and the burst repeats periodically and within-burst

synchrony change repeats during each burst. This result is obtained from

simulation of (3.4), (3.5) and (3.6) for n = 2, and parameters κ1 = 0.001,

κ2 = 0.2, σ = 3, η = 0.005, rm = 1.35, ω = 0.01. Noise of amplitude 10−5

was added to the fast subsystem. In this figure, the two coupled bursters

are burst synchronized and the spikes become inphase at the beginning

of the burst, but changes to antiphase near the middle of the burst. The

inset in the topmost panel shows the region of the transition. Note that

the initial transient and sudden change in the synchrony pattern along

the burst profile are observable from d12, where d12 = 0 indicates inphase

synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.10 Within-burst synchrony change from stable antiphase to stable inphase

states. The governing system and details as in figure 3.9 except κ2 =

−0.2. The inset in the topmost panel shows the transition in detail. In

the last panel, the bump in d12 signifies the antiphase synchronization

of the spikes within the synchronized burst. The corresponding slowly

changing variables, u1 and u2, are shown in the middle panel with solid

and dotted lines, respectively. . . . . . . . . . . . . . . . . . . . . . . 87



LIST OF FIGURES 12

4.1 Bifurcation of the fast dynamics for the coupled constrained system (4.3),

plotting R2
d against u (see (4.6)) and parameters as in figure 3.9. The

branches Pin and Panti are the inphase and antiphase periodic branches of

the system. The steady state branch is denoted by SS. Solid and dashed

parts of the branches denote the stable and unstable solutions, respec-

tively. uin and uanti are bifurcations giving loss of stability of the inphase

and antiphase periodic orbits respectively, while uH is the Andronov-Hopf

bifurcation of SS. The dashed loop indicates how the slow dynamics gen-

erates periodic bursts. Note the switching of the trajectory from inphase

to antiphase along the periodic branches implies a within-burst synchrony

change. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Bifurcation diagram of φ against u for the burst-synchronized constrained

system (4.3), where u is a parameter that slowly decreases during each

burst as shown by the arrow. The parameters are ω = 3, σ = 3, rm =

1.35, and different κ1 and κ2 as indicated in the panels from (a) to (d).

Note (a) corresponds to the parameters in figure 3.9 and 4.1 and (c) to

that in figure 3.10. The solid lines represent stable solutions, while the

unstable solutions are shown with dash-dotted lines. . . . . . . . . . . . 95

4.3 Two parameter bifurcation diagram of σ against u for the fast subsystem

of (4.3). The other parameters are fixed at κ1 = 0.001, κ2 = 0.2, and

rm = 1.35. There are stable inphase oscillations in region b,c, and stable

antiphase oscillations in region a,b. . . . . . . . . . . . . . . . . . . . 96

4.4 Two parameter bifurcation diagram of rm against u, for system and pa-

rameters as in figure 4.3 and σ = 3. There are stable inphase oscillations

in the region b,c, and stable antiphase oscillations in the region a,b. . . . 97

4.5 Bifurcation diagram of κ1 against u for system and parameters as in

figure 4.2(a,b) with κ2 = 0.2. There are stable inphase oscillations in the

region b,c, and antiphase in the region a,b. . . . . . . . . . . . . . . . 97



LIST OF FIGURES 13

4.6 Two parameter bifurcation diagram of κ1 against u for system and pa-

rameters as in figure 4.2(c,d) κ2 = −0.2. There are stable antiphase

oscillations in the region a,b, and inphase in the region b,c. . . . . . . . 98

4.7 Two parameter bifurcation diagram of κ2 against u for system and pa-

rameters as in figure 4.2(a,b) with κ1 = 0.001. There are stable inphase

oscillations in the region b,c, and antiphase in the region a,b. . . . . . . 99

4.8 Bifurcation diagram as in figure 4.7 but κ1 = −0.001. There are stable

inphase oscillations in the region b,c, and antiphase in the region a,b. . . 99

4.9 Noise dependent bifurcation delays both at onset of burst from Andronov-

Hopf bifurcation point at uH and within-burst synchrony change at uin

for two coupled bursters (3.4, 3.5, 3.6). The trajectories for the four indi-

cated amplitudes of added noise with same initial conditions and param-

eters as in figure 3.9 with u = u1+u2

2 are superimposed on the bifurcation

diagram 4.1. The dashed arrows show the direction of trajectory during a

periodic bursts. Note the delays reduce with increasing noise amplitude;

this is a typical slow passage effect. . . . . . . . . . . . . . . . . . . . 101

4.10 Within-burst synchrony change from stable inphase to stable antiphase

states for two coupled bursters governed by the system (3.4, 3.5) and

‘gap-junction’ coupling (4.22). This pattern repeats during each burst.

The parameters are σ = 5, κ1 = −0.001, κ2 = 0.2, rm = 1.35, ω = 0.001

and η = 0.005. A low amplitude noise of order 10−6 is added to the

components of the fast subsystem. . . . . . . . . . . . . . . . . . . . . 103

4.11 Within-burst synchrony change from stable inphase to stable antiphase

states for two coupled bursters governed by the system (3.4, 3.5) and

‘nonlinear synaptic’ coupling (4.23). This pattern repeats during each

burst. The parameters are σ = 5, κ1 = −0.001, κ2 = 0.2, rm = 1.35,

ω = 0.003 and η = 0.005. . . . . . . . . . . . . . . . . . . . . . . . . . 103



LIST OF FIGURES 14

5.1 Within-burst cascade of synchrony changes from stable antiphase to sta-

ble inphase to again stable antiphase states for two coupled elliptic bursters.

Activity pattern of one burst (shown in box) has been blown up in (a);

within-burst cascade of synchrony changes repeats during each burst and

the burst repeats periodically (b). Note that the two coupled bursters

are burst synchronized (b) and the spikes become antiphase at the begin-

ning of the burst, then changes to inphase around the middle and again

changes to antiphase towards the end of the burst (a). These transitions

are also observable from d12 (c). These within-burst synchrony changes

are characterized by two transitions described by (5.8). . . . . . . . . . 108

5.2 Within-burst cascade of synchrony changes from stable inphase to stable

antiphase and back to stable inphase states. The governing system and

details are as in Figure 5.1 except for κ1 = 0.008, κ2 = −0.1. . . . . . . 109

5.3 Bifurcation diagram of φ against u for the burst-synchronized constrained

system (5.12), where u is a parameter that slowly decreases during each

burst. The parameters are σ = 8, rp = 1.2, rq = 1.4, κ1 = −0.008 and

κ2 = 0.1. The solid lines represent stable solutions, while the unstable

solutions are shown with dash-dotted lines. The arrow, running from right

to left, shows the direction of the change of u during the active phase

of the burst. Note this bifurcation diagram agrees with the synchrony

changes observed in Figure 5.1. . . . . . . . . . . . . . . . . . . . . . 112

5.4 Bifurcation diagram of φ against u for the burst-synchronized constrained

system (5.12) with parameters σ = 8, rp = 1.2, rq = 1.4, κ1 = 0.008 and

κ2 = −0.1. The solid lines represent stable solutions, while the unstable

solutions are shown with dash-dotted lines. The arrow, running from

right to left, shows the direction of the change of u. Note this bifurcation

diagram agrees with the synchrony changes observed in Figure 5.2. . . . 113



LIST OF FIGURES 15

5.5 Simulation of the system (5.21) showing two examples with different cou-

pling parameters of within-burst cascade of synchrony changes. Only one

burst in each example has been amplified for better observation. The

burst pattern repeats with time. Each of these simulations has been

obtained after a run of 106 steps to get rid of all transients. Note the

cascade changes from inphase to antiphase spikes along the burst profile

as depicted by d12 (thick line) and the spike activities, x1 and x2, of the

two bursters shown with solid and dashed lines, respectively. Note the

different order in which the synchrony patterns change from inphase to

antiphase and vice versa in (a) and (b). . . . . . . . . . . . . . . . . . 118

5.6 Simulation of the system (5.21) for different k. Note the increasing

number of synchrony changes in the within-burst cascades of synchrony

changes as k is increased from (a) to (c). Only one burst is chosen for

better depiction, and the pattern repeats with time. The time series of

corresponding d12 is superimposed in bold line; d12 = 0 indicates inphase

spikes while d12 6= 0 indicates antiphase. . . . . . . . . . . . . . . . . . 119

5.7 Bifurcation diagram of φ against u for the burst-synchronized constrained

system (5.22), where u is a parameter that slowly decreases during each

burst (shown with arrow). The parameters are κ1 = 0.001, κ2 = 0.1,

ω = 10−6, σ = 7, η = 0.005, and k = 13. The solid lines represent stable

solutions, while the unstable solutions are shown with dash-dotted lines.

Indeed this bifurcation diagram agrees with the cascades of synchrony

changes observed in Figure 5.5(a). . . . . . . . . . . . . . . . . . . . . 120

5.8 Simulation of the system two coupled Bautin elliptic bursters governed

by the system (5.6) and (5.7) but with Ω for each burster defined by

(5.23). The activity patterns for different values of k are shown. Note

the increasing number of synchrony changes as k is increased from (a) to

(d). Only one burst is shown and the pattern repeats each burst. The

superimposed solid line indicates corresponding time series of d12. . . . . 122



LIST OF FIGURES 16

6.1 Within-burst synchrony changes in three Bautin elliptic bursters governed

by (6.2). Here within-burst synchrony changes from stable inphase to sta-

ble antiphase. The dashed box shows the activity pattern of one burst,

the burst repeats periodically and the within-burst synchrony change ap-

pears during each burst. The parameters of the simulation are ω = 0.1,

rm = 1.35, σ = 5, κ1 = 0.001, κ2 = 0.2. Noise of amplitude 10−5 was

added to the fast subsystem of each burster. In the figure, the three

bursters are burst synchronized (middle) and the spikes in the bursts are

inphase at the beginning of the burst but change to antiphase near the

middle of the burst. The activities, x1, x2, x3, of the three different

bursters are shown in solid, dashed and dotted lines, respectively. The

inset shows the region of transition. The bottom panel shows the corre-

sponding pattern of d12, d13 and d23 implying spike synchrony behaviour. 128

6.2 Another example of within-burst synchrony changes for three-Bautin el-

liptic bursters. The parameters and details of this simulation are same as

those of Figure 6.1 except κ1 = −0.001, κ2 = −0.2. For this different cou-

pling we can see the spikes are antiphase to each other at the beginning

but changes to inphase past the frequency transition point at rm = 1.35

along the burst profile. . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Bifurcation diagram of φ12 (defined in (6.5)) against u for three coupled

bursters. The parameters are κ1 = 0.001, κ2 = 0.2, σ = 5 and rm = 1.35.

Here, S(U)FP=stable (unstable) fixed point, S(U)P=stable (unstable)

period and HB=Andronov-Hopf bifurcation point. uin and uanti, the

inphase and antiphase bifurcation points, respectively, are shown with

arrows. The big arrow on top shows the direction of change of u. The

branches C1 and C2 are unstable solutions where spikes from two bursters

are synchronized while those from the third are not. The solid (dash-

dotted) lines represent (unstable) stable solutions. . . . . . . . . . . . . 130



LIST OF FIGURES 17

6.4 The phase-space dynamics in the φ12φ13-space of branches C1 and C2 of

bifurcation diagram 6.3. The (un)filled circles indicate (un)stable nodes

in the phase-space (after [6]). . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Global bifurcation of the three-bautin burster system. One dynamically

invariant triangle is shown. The local behaviour near inphase solution

(one of the vertices) is shown in figure 6.3. The middle triangle shows

the dynamics at the bifurcation point (figure 6.3(b)) and the right triangle

shows the emergent periodic orbit via global connection [6]. . . . . . . . 134

6.6 Within-burst synchrony changes for four-coupled Bautin elliptic burster

system. The governing system for the simulation is same as Figures 6.1

and 6.2. The parameters of the simulation: κ1 = 0.001, κ2 = 0.2, σ = 5,

η = 0.005, rm = 1.35, ω = 0.0001. Noise of amplitude of order 10−5 was

added to all fast subsystems. Bottom panel shows the activities, xj, of

the four bursters; the four bursters are burst synchronized. The insets

(a)-(c) show different blown-up sections of the spiking patterns inside

the synchronized bursts. It is clear the spikes start off inphase (a) then

change in region (b) to an asynchronous pattern (c). . . . . . . . . . . . 136

6.7 The timeseries of dij (6.3) for four-coupled elliptic burster system. The

dij’s correspond to the single snap of the synchronized burst of the four

cells shown in Figure 6.6. Here the spikes start off inphase (zero dij ’s)

but changes to asynchronous patterns with each other. Note the bumps

are irregular in the profile (nonzero dij ’s) which indicate some drift of

asynchronous patterns between the spikes of two bursters. . . . . . . . . 137

7.1 Sketch of the time evolution of a trajectory in phase space for delay

differential equation (from [36]). . . . . . . . . . . . . . . . . . . . . . 140

7.2 Cartoon of two mutually delay-coupled burster cells. . . . . . . . . . . 142

7.3 Within burst synchrony changes in the system of two mutually delay-

coupled system governed by (7.5) and (7.6) for j = 1, 2. The parameters

are ε = 0.05, ω = 0.001, σ = 3, τ = 2, rm = 1.35 and η = 0.004. Low

amplitude noise of order 10−6 is added to the fast subsystem of each system.143



LIST OF FIGURES 18

7.4 Within burst cascades of synchrony changes in the system of two mutually

delay-coupled system governed by (7.5) and (7.7) with (a) k = 2 and (b)

k = 4. The other parameters are ε = 0.05, ω = 0.001, σ = 3, τ = 1,

and η = 0.002. Low amplitude noise of order 10−6 is added to the fast

subsystems of the bursters. . . . . . . . . . . . . . . . . . . . . . . . . 145

7.5 Elliptic bursting pattern generated by the system 7.8, 7.9. The param-

eters are gca = 4.4, gk = 8, gl = 2, vk = −84, vl = −60, vca = 120,

I = 120, gkca = 0.75, Φ = 1.2, ε = 0.04, and µ = 0.016667. . . . . . . . . 146

7.6 Cartoon of two mutually delay-coupled bursters of the conductance-based

system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.7 Within-burst synchrony changes in two coupled elliptic bursters governed

by conductance-based system (7.10) and (7.11) for n = 2. In (a), the top

panel shows a blown-up bursting activity patterns for two cells superim-

posed to show synchronization behaviour while the middle panel shows

the section of superimposed bursting patterns generated by the two cou-

pled bursters. The bottom panel shows time series of the corresponding

slow variables. It is obvious that the bursters are burst synchronized

while the spikes undergo within-burst synchrony changes – the spikes are

antiphase at the beginning of the burst but change inphase towards the

end. In (b), time series of d12 (7.12) corresponding to the synchronized

burst shown in the top panel of (a) showing the synchrony change. . . . 149

8.1 Bursting pattern generated by the FHR model (8.1). The parameters

for the simulation are I = 0.3125, a = 0.7, b = 0.8, d = 1, δ = 0.08,

µ = 0.0001, and in (a) c = −0.775 and (b) c = −0.9. The corresponding

slow variable, y, is shown at the bottom of each panel. . . . . . . . . . 153

8.2 Bifurcation diagram of the FHR system (8.1). The periodic trajectory is

superimposed to show the dynamics of the system as the slow variable,

y, varies. The parameters are I = 0.3125, a = 0.7, b = 0.8, c = −0.9,

d = 1, δ = 0.08, and µ = 0.0001. . . . . . . . . . . . . . . . . . . . . . 153



LIST OF FIGURES 19

8.3 Within-burst synchrony change in a pair of FHR burster governed by

(8.2) with n = 2. In (a), the bottom panel shows the bursting activity

pattern from both FHR neurons and the top shows the details of the

fast spiking within a single burst activity from both cells. The bursters

generate synchronized bursts but the spikes are inphase at the beginning

and then get asynchronized via a period doubling bifurcation. (b) shows

the timeseries of d12 corresponding to the burst in the top panel of (a).

The parameters are I = 0.3125, a = 0.7, b = 0.8, c = −0.775, d = 1,

δ = 0.08, κ1 = 0.001, κ2 = 0.2 and µ = 0.00002. A low amplitude noise

of order 10−7 is added to the components of the fast subsystem. . . . . 156

8.4 Bifurcation diagram of the fast subsystem obtained by continuation of

periodic branch of v1 for the burst-synchronized constraint y1 = y2 = y.

The parameters are same the as in Figure 8.3. Here only the upper or

maxima of the periodic branch is shown. The stable periodic solutions

are shown by solid line while the unstable solutions are shown by dashed

line. Note the diagram for periodic branch of v2 will be same because

of symmetry. The corresponding periodic trajectories of fast variables

v1 (thin solid line) and v2 (thin dashed line) of the full system (8.2)

are superimposed to show the spike synchrony change, with y = y1+y2

2 .

Here the synchrony change occurs via a period doubling bifurcation (PD).

Other bifurcation points are shown by BP. Note the bifurcation delay in

the dynamics indicated by the arrow. . . . . . . . . . . . . . . . . . . 157

9.1 The bursting pattern generated by Hindmarsh-Rose system (9.1). The

burst patterns are shown in (a) and the corresponding slow variable z is

in (b). The parameters are a = 1, b = 3, c = 1, d = 5, I = 2, x0 = −1.6,

r = 0.001 and s = 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.2 The 3D phase space structure of Hindmarsh-Rose system (9.1) in the

bursting region. Details are as in Figure 9.1. . . . . . . . . . . . . . . . 160



LIST OF FIGURES 20

9.3 The bifurcation diagram of the Hindmarsh-Rose system (9.1). The burst-

ing trajectory is superimposed on the bifurcation diagram to show the

bursting solutions in the phase space. The stable steady state (SSS) so-

lutions are shown with thin solid line while unstable steady state (USS)

solutions are shown by dash-dotted line. SP indicates the stable periodic

branch of the solution. The solid arrow shows the direction of the burst-

ing trajectory in the phase space. Note the bifurcation delay at the onset

and offset of the burst indicated by the broken arrows. F and H indicate

the ‘fold’ and homoclinic bifurcations, respectively. . . . . . . . . . . . 162

9.4 Array diagrams demonstrating (2, 1) (top) and (1, 2) (bottom) burst syn-

chrony cluster states governed by the Hindmarsh-Rose system (9.3) and

(9.4) for two different initial conditions with m = 3 and n = 3, I = 3.0 and

κp = κ = −0.001 where p = 1, · · · ,m. The initial conditions for three

cells: (top) (0.1, 0, 0), (0.15, 0, 0), (0.2, 0, 0) and (bottom) (−0.1, 0, 0),

(0.15, 0, 0), (0.2, 0, 0). See text for details. . . . . . . . . . . . . . . . . 165

9.5 Changing of the burst synchrony cluster states with input for three-HMR

neurons governed by the system (9.3) and (9.4) with n = 3. The initial

conditions in all cases are (0.1, 0, 0), (0.15, 0, 0) and (0.2, 0, 0). The input

current I has been increased from (a)-(i), keeping the range of the input

in the bursting regime: (a) I = 1.8, (b) I = 1.9, (c) I = 2.0, (d) I = 2.2,

(e) I = 2.7, (f) I = 2.9, (g) I = 3.0, (h) I = 3.1, and (i) I = 3.2 . . . . . 166

9.6 Spike synchrony properties in burst synchrony clusters of the three-coupled

HMR system (9.3) and (9.4)with n = 3 with different input current I:

(a) I = 1.9, (b) I = 2.5, (c) I = 3.0, (d) I = 3.1. The small boxes en-

close spikes from synchronized bursts to signify spike synchrony patterns.

Note in (a) the spikes are not exactly synchronized as in the other cases

illustrated in (b), (c), and (d). (a) and (c) show (2, 1) burst synchrony

cluster while full burst synchrony pattern can be seen in (b) and (d). . . 168

9.7 The array diagram showing spontaneous burst synchrony cluster in eight-

HMR burster system. See text for details. . . . . . . . . . . . . . . . . 169



List of Tables

4.1 Comparison of the bifurcation points, rin, ranti, uin and uanti, ob-

tained from simulations of system (4.3) and those from equations

(4.18, 4.19, 4.20, 4.21) for κ1 = 0, κ2 = 0.2, σ = 3 and rm = 1.35. . . 98

4.2 Comparison of the bifurcation points as in table 4.1 except κ2 = −0.2. 99

21



Chapter 1

Introduction to neuronal bursters

During neuronal bursting, the slow currents drive the fast subsystem through bi-

furcations of equilibria and limit cycles which generate an activity pattern con-

sisted of a relatively slow rhythmic alternation between an active phase of rapid

spiking and a quiescent phase without spiking. Bursting is a multiple time scale

phenomenon. To understand the dynamics of bursting, it is assumed that the

fast and slow currents of the bursting cells have different time scales. Bursting

is exhibited by a wide range of nerve and endocrine cells, including pancreatic

β-cells [8, 20, 21, 11], respiratory pacemaker neurons in the pre-Botzinger com-

plex [16], dopaminergic neurons of the mammalian midbrain [2], thalamic relay

cells [72, 25], stomatogastric ganglion neurons in lobster[47], Aplysia abdominal

ganglion neuron R15 [39, 63, 71, 86, 112], some mesencephalic V neurons in brain-

stem, and pyramidal neurons in the neocortex [113]. It is known that respiratory

neurons in pre-Botzinger complex fire rhythmic bursts that controls animal respi-

ration cycle and pancreatic β-cells fire rhythmic bursts that control the secretion

of insulin. Moreover, many investigators have found and studied cases of intrin-

sic bursters like cat primary visual cortical neurons [79], cortical neuron in anes-

thetized cat [117], thalamic reticular neuron [111], cat thalamocortical neuron [72]

and trigeminal interneuron from rat brain stem [76]. Besides, many spiking neu-

rons can exhibit bursting if manipulated pharmacologically. If stimulated with a

long pulse of DC current, mostly pyramidal neurons in layer 5 fire an initial burst

22
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Figure 1.1: Neuronal bursting examples (from [56]).

of spikes followed by shorter bursts, and then tonic spikes [22]. Purkinji cells in

cerebellar slices fire tonically but when synaptic input is blocked they can switch

to bursting [123]. Thalamocortical neurons can fire bursts if inhibited and then

released from inhibition [72]. Some pyramidal neurons in CA1 region of hippocam-

pus fire high frequency bursts in response to injected pulses of current [113]. Some

cortical interneurons show bursting in response to pulses if DC current [69].

1.1 Ionic mechanism of bursting

Bursting patterns are generated by a cooperative biophysical mechanism involving

ionic conductances. What modulates the fast repetitive spiking once it is initiated is

the slow intrinsic membrane currents. Typically, the slow currents build up during

continuous spiking, hyperpolarize the cell and result in the termination of the spike

train. While the cell is quiescent, the currents slowly decay, the cell recovers, and

it is ready to fire another burst. So, generation of bursting involves two stages:
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first to do with the initiation of sustained spiking and secondly the termination of

the sustained spiking temporarily until the next burst. Biophysically, to stop the

burst, spiking activity should either activate an outward current, e.g., persistent

K+ current, or inactivate an inward current, e.g., transient Ca2+ current. Such

action can be either voltage-gated or Ca2+-gated. Hence, there are at least four

different ionic mechanisms of modulation of fast spiking by slow currents to produce

bursting [56]. They are discussed in brief below:

• Voltage-gated slow activation of an outward K+ current. An example of

such current is M-current. Repetitive spiking slowly activates the outward

current, which eventually terminates the spiking activity. While at rest, the

outward current slowly deactivates, thus initiates another burst. As docu-

mented in vitro, neocortical pyramidal neurons exhibiting chattering activity

have voltage-gated K+ M-current [121] and a slow dynamics of a voltage-

gated K+ current is also seen in pre-Botzinger complex [16].

• Voltage-gated inactivation of inward Ca2+ transient T-current or inactivation

of the h-current. Repetitive spiking slowly inactivates the inward current, and

makes the neuron stop spiking eventually. While at rest, the inward current

slowly deinactivates and depolarizes the membrane potential to initiate a new

burst. Examples of this mechanism is found in the thalamic relay neurons [25,

72] and thalamic reticular neurons [26].

• Ca2+-gated slow activation of the outward Ca2+-dependent K+ current. Cal-

cium entry and build up during repetitive spiking slowly activate the outward

current and as a result the neuron stops spiking. Then the intracellular Ca2+

ions are removed, the Ca2+-gated outward current deactivates, and the neu-

ron is ready to fire a new burst. Neurons in hippocampal CA3 [118], subicu-

lum bursters [108], midbrain dopaminergic neurons [2], and anterior bursters

in lobster stomatogastric ganglion [47] have Ca2+-gated K+ currents.

• Ca2+-gated slow inactivation of inward high threshold Ca2+ currents, such as

L-current. Entry of calcium during repetitive spiking leads to slow inactiva-
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tion of Ca2+-channels. As a result, neuron cannot sustain repetitive spiking.

During quiescent state, the intracellular Ca2+ ion are removed, and the neu-

ron is ready to start a new burst. Aplysia abdominal ganglion R15 neurons

have an L-current [39, 63, 71, 86, 112], Moreover, midbrain dopaminergic neu-

rons [2] and anterior bursting neurons in lobster stomatogastric ganglion [47]

both contain Ca2+-gated L-currents.

In addition, bursting can result from the somatic-dendritic interplay. Somatic

spikes excites the dendritic tree resulting in a delayed spike which in return evokes

another somatic spike, which results in another dendritic spike, and so forth. The

burst stops when a somatic spikes falls into the refractory period of the dendritic

spike failing to evoke dendritic response [29].

1.2 Mathematical mechanism

Most mathematical models of bursters may be written in the multiple time scale

form as

ẋ = f(x, u)

u̇ = ηg(x, u),







(1.1)

where vector x ∈ Rp describes fast variables responsible for spiking. It includes the

membrane potential, activation and inactivation gating variables for fast currents,

and so on. The dot implies differentiation with respect to time t. The vector u ∈ R
q

describes relatively slow variables that modulate fast spiking. It includes gating

variables of slow K+ current, an intracellular concentration of Ca2+ ions, etc. The

small parameter η represents the ratio of time scales between fast spiking and slow

modulation. Typically, it is assumed that η ≪ 1, and f and g in the system (1.1)

are typical Hodgkin-Huxley-type functions describing the kinetics of the currents

involved in the biophysical dynamics.

Mathematically, to transform a biophysical neuronal model capable of sustained

spiking train into a finite burst of spikes, it suffices to add a slow resonant current

or gating variable describing inactivation of an inward current or activation of

an outward current that modulates the spiking via a slow negative feedback. As
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realistic neuronal examples of the system (1.1) we briefly review two early models

of bursters based on the ionic conductances in the cell.

1.2.1 The Plant model

The Plant model [84, 85, 86, 87] is one of the first conductance-based mathemat-

ical models developed to explain the mechanism underlying bursting oscillations

observed in the membrane potential of the R15 pacemaker neuron from the abdom-

inal ganglion of the mollusk Aplysia [39, 63, 71, 112]. The model involves sodium

and calcium currents with instantaneous activation, a passive leak current and a

Ca2+-activated outward K current. The current balanced form of the Plant model

may be written as

CmV̇ = −gIm
3
∞(V )h(V − VI)− gT x(V − VI)− gKn4(V − VK)

+ gK[Ca]
[Ca]

0.5 + [Ca]
(V − VK)− gK(V − VL),











(1.2)

where V is the membrane potential (mV), t is the time (ms), Cm is the membrane

capacitance (fF), gi’s are maximum ion conductances (mmho/cm2), Vi’s are Nernst

reversal potentials (mV), m∞(V ) is the instantaneous activation function for fast

inward current, x and n are dimensionless activation variables, h is a dimensionless

inactivation variable, and [Ca] is the dimensionless intracellular concentration.

The equations for the activation and inactivation variables are

ḣ =
h∞(V )− h

τh(V )

ṅ =
n∞(V )− n

τn(V )

ẋ =
x∞(V )− x

τx(V )
,



































(1.3)

here τi’s are the relaxation times with i = h, n, x, and the equation for the intra-

cellular calcium concentration is

˙[Ca] = ρ (Kcx(VCa − V )− [Ca]) . (1.4)
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The steady state activation and inactivation functions are

ω∞(V ) =
αω(V )

αω(V ) + βω(V )
for ω = m, h, n

τ∞(V ) =
12.5

αω(V ) + βω(V )
for ω = h, n

x∞(V ) =
1

exp(−0.15(V + 50)) + 1
,































(1.5)

with

αm(V ) = 0.1
50− Vs

exp((50− Vs)/10)− 1

βm(V ) = 4 exp((25− Vs)/18)

αh(V ) = 0.007 exp((25− Vs)/20)

βh(V ) =
1

exp((55− Vs)/10) + 1

αn(V ) = 0.01
55− Vs

exp((55− Vs)/10)− 1

βn(V ) = 0.125 exp((45− Vs)/80)

Vs =
127

105
V +

8265

105
.



























































































(1.6)

The parameters are Cm = 1µF/cm2, gI = 4.0mmho/cm2, gT = 0.01mmho/cm2,

gL = 0.003mmho/cm2, VI = 30mV , VK = −75mV , VL = −40mV , VCa = 140mV ,

ρ = 0.0003ms−1, Kc = 0.0085mV −1, and τx = 235ms. Plant obtained from simu-

lation of the model bursting pattern as observed in the Aplysia R15 cell. Electro-

physiologically, the bursting is generated by the interplay of the fast inward sodium

and calcium currents with instantaneous activation. The second and fourth ion cur-

rents in the equation (1.2) operate on much slower time scales. Here the second

current is an inward current with slow activation, and the fourth current is an out-

ward current carried by potassium ions, sensitive to slow buildup of intracellular

calcium ions. One experimental observation was that when poison tetrodotoxin of

the puffer fish is applied to membrane of the R15 cell, the burst action potentials

disappear and an underlying slow periodic membrane oscillation emerges. In the

Plant balance equation (1.2), the second current is the tetrodotoxin-resistant in-

ward current with slow activation. The model can produce the slow oscillations in

the membrane in the presence of tetrodotoxin with gI = 0.
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1.2.2 The Chay-Keizer model

The Chay-Keizer model [21, 8, 20, 11] is one of the earliest bursting models devel-

oped to explain the bursting mechanism of the insulin secreting pancreatic β-cell.

This model is based on the idea of negative feedback by cytosolic Ca2+ as a driving

mechanism for bursting for pancreatic β-cells. The cytosolic Ca2+, according to

the Chay-Keizer model, acts on a Ca2+-activated K+ channel. The Ca2+ feedback

hypothesis has emerged successful since then in many areas of cellular Ca2+ mecha-

nism including sequestration and release by the endoplasmic reticulum, and exotic

effects on metabolism, including mitochondrial respiration and glycolytic oscilla-

tions [23]. We present a modification of the Morris-Lecar model [73] incoporating

the cytosolic Ca2+ dynamics in the spirit of the Chay-Keizer model discussed by

Richard Bertram and Arthur Sherman in [23]. The balance equation of the pan-

creatic β-cell may be written as

CmV̇ = −
(

ICa + IK + IK(Ca) + IK(ATP )

)

, (1.7)

where Cm is the membrane capacitance of the cell, V is membrane potential, ICa is

an inward Ca2+ current, IK is an outward K+ current of the delayed rectifier type,

IK(Ca) is a Ca2+-activated K+ current and IK(ATP ) is an adenosine triphosphate

(ATP)-sensitive K+ current. The dynamics of the activation variables, n, for IK

is given by

ṅ = λ
(n∞(V )− n)

τn

, (1.8)

where n∞(V ) is the IK activation equilibrium function, τn is the activation time

constant, and λ is a parameter which may be used to speed up or slow down time

scale of the variable n.

The Chay-Keizer model is based on the hypothesis of Atwater [8] that bursting

in the β-cell is due to the slow rise and fall of the cytosolic Ca2+ concentration, c,

acting on K(Ca) (Ca2+-activated K) channels. Increasing c increases the outward

K(Ca) current. The dynamics of the cytosolic Ca2+ concentration, c, is expressed

in the following differential equation

ċ = −fcyt(αICa + Kpmcac), (1.9)
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where fcyt is the fraction of cytosolic Ca2+ that is not bound to buffers, the term

in the parenthesis, −(αICa + Kpmcac), describes the Ca2+ flux across the plasma

membrane where parameter α converts current to flux, and Kpmca indicates the

pump rate. The Ca2+ influx is through Ca2+ channels and the efflux is through

Ca2+ pumps (Ca2+ APTases). The additional equations of the system are

ICa = gCam∞(V )(V − VCa)

IK = gKn(V − VK)

IK(Ca) = gK(Ca)
c3

c3 + K3
D

(V − VK)

IK(ATP ) = gK(ATP )(V − VK)

m∞(V ) = (1 + exp((vm − V )/sm)−1

n∞(V ) = (1 + exp((vn − V )/sn)−1 .



































































(1.10)

This three variable (V , n, c)-model is able to reproduce the bursting activity of

the pancreatic β-cell. The parameters are gCa = 1000pS, gK = 2700pS, gK(Ca) =

400pS, gK(ATP ) = 180pS (1S(Siemens) = 1mho), VCa = 25mV , VK = −75mV ,

Cm = 5300fF , λ = 1, τm = 20ms, KD = 0.4µM , vn = −16mV , vm = −20mV ,

sn = 2mV , sm = 12mV , and fcyt = 0.00025. Obviously, as fcyt is very small, the

dynamics of the cytosolic Ca2+ concentration is very slow in comparison to that

of V and n. This interplay of the slow-fast dynamics of the governing variables

of the system generates bursting. The concentration, c, rises during the active or

oscillatory phase, Ca2+ channels are mostly open to help accumulation of Ca2+

in the cell. Because of the very large effective time scale c rises very slowly. The

rise in c activates K(Ca) current. Eventually, c rises to a large enough value to

terminate the active phase of spiking. Now that the system has entered the silent

or steady state phase, the Ca2+ channels close. As a result, hyperpolarizing K(Ca)

current is shut off. Eventually the cell again returns to spiking active phase and

thus activity pattern results in bursting.
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1.3 Mathematical properties and analysis of burst-

ing models

It may be observed from above discussion of the mathematical models for bursting

of Aplysia R15 cell and pancreatic β-cell that the system of equations generat-

ing bursting is higher dimensional and the dynamics involve multiple time scale

properties. The phase space of the bursting models is at least three-dimensional.

The fast subsystem oscillates between stable periodic (spiking) state and stable

steady (quiescent) state as the slow subsystem varies in bursting. This implies

the existence of hysteresis loop in the periodic bursting or a bistability of spiking

and resting states. Multiscale and multidimensionality make the bursting models

very challenging to analyze mathematically even for a single compartment system.

The task gets harder or even impossible in case of coupled bursters system, only

numerical simulation may be carried out to study such system.

Typically, bursting is viewed within the context of system with multiple time

scale from perspective of singular perturbation theory. Most work has focused on

the ‘slow motion’ of the system during quiescent and active portion of the bursting

cycle. During these epochs, the system state is described by attractors that evolve

on the slow time scale. The transition between quiescent and active states can be

classified by bifurcations of the fast subsystem. Among the very first attempts to

understand the mathematical mechanism underlying bursting, Rinzel and Lee [92]

decomposed the Plant model into a fast and a slow subsystem based on the singu-

lar limit of an infinite separation of time scales, the slow variables of the system

remain fixed on the fast time scale and become parameters in the fast subsystem.

Moreover, using singular perturbation method, Rinzel and Lee [92] showed that

the mechanism underlying bursting models for R15 differs from the mechanism in

models of bursting for the pancreatic β-cells. This analytical observation is an

impetus for a description of formal classification schemes of bursters and reduction

to simpler models. In what follows in this chapter, we discuss the hysteresis loop

of bursts and the bifurcation scenarios of the fast subsystem that emerge from a
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Figure 1.2: Hysteresis loop generating bursting rhythm governed by the system (1.1).

The broken arrows show trajectory of the dynamics. The solid arrows show the direction

of the vector field.

singular perturbation analysis. This eventually leads our review to the topological

classification scheme and reduced canonical modeling of the bursters.

1.3.1 Hysteresis loop

Sustained bursting activity of the multiple time scale system (1.1) corresponds to

periodic activity of the slow subsystem. There could be two fundamentally different

ways the slow subsystem oscillates depending on the dimension or number of the

slow variable. If the slow variable is one-dimensional, then there must be co-

existence of the equilibrium and limit cycle attractors of the fast subsystem, that

is, there is a bistability of resting and spiking states. So the slow variable oscillates

via a hysteresis loop. Let us consider system (1.1) with p = 1 and q = 1, we note

that when the fast variable x is in spiking state, the slow variable, governed by

the equation u̇ = ηg(x, u), is pushed toward the quiescence or resting state, and

spiking abruptly stops which corresponds to a bifurcation of the fast subsystem

(see Figure 1.2). Again, when the fast variable is quiescent, the slow variable is

pushed toward the spiking state and after a while spiking abruptly starts via a

bifurcation of the fast subsystem. Such a hysteresis loop bursting can also occur

where the slow variable is multidimensional. In this case, the vector field pushes
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the slow variable, u, outside the top (spiking) area, whereas the vector field on

the bottom (resting) area pushes u outside the resting area. As a result, the slow

variable visits the spiking and resting areas periodically, and the model generates

bursting.

Another interesting phenomenon corresponding to hysteresis is burst excitabil-

ity [59, 56]: a neuron with quiescent excitable dynamics responses to perturbations

by generating not a single spike but bursting. An example of this is the neurons in

the hippocampus which produce bursting in response to a brief stimuli [113].

1.3.2 Geometric singular perturbation method

Models for bursting involve variables that evolve on different time scales. The exis-

tence of different time scales naturally leads to models containing small parameters.

Geometric singular perturbation theory [103, 93] provides a powerful technique for

analyzing these models. The theory gives a systematic way to reduce systems with

parameters to lower dimensional reduced systems that are more easily analyzable.

In this section, to begin with, we illustrate how this method works with a simple

example and later discuss more complicated models.

In the system (1.1) (we consider p = q = 1 for clarity) η is the small, singular

perturbation parameter. We assume that x-nullcline governed by f(x, u) = 0 is

a cubic shaped curve and the u-nullcline governed by g(x, u) = 0 is a monotone

increasing curve that intersects the cubic at a single fixed point that lies along

the middle branch of the z-shaped cubic at a single fixed point lies along the

middle branch of the z-shaped cubic nullcline (see Figure 1.2). We also need to

assume ẋ > 0(< 0) right (left) the cubic x-nullcline and u̇ > 0(< 0) left (right)

the u-nullcline. Using the Poincare-Bendixson theorem, one can prove that system

(1.1) has a limit cycle for all η sufficiently small [93]. Moreover, the limit cycle

approaches a singular limit cycle as η → 0. The bottom branch of the cubic

nullcline that corresponds to the quiescent phase of an action potential. Another

singular solution lies along the upper branch of the cubic nullcline that corresponds

to the active phase of the action potential. The jump up to the active phase occurs
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at the left knee of the cubic and the jump down to the quiescent phase occurs at

the right knee of the cubic.

The system (1.1) is referred to as a singular perturbation problem because the

structure of (1.1) with η > 0 is very different than the structure of solutions of

(1.1) with η = 0. If we set η = 0, then (1.1) reduces to the ‘fast subsystem’

ẋ = f(x, u)

u̇ = 0.







(1.11)

Note u is a constant along every solution of (1.11); that is every trajectory is vertical

in xu-space. The fixed point set is the entire cubic shaped curve, f(x, y) = 0. This

is very different from (1.1) with η > 0 in which there is only one fixed point and

u is not a constant along all other solutions. The reduced system (1.11) gives a

good approximation of solutions away from the cubic x-nullcline. In particular, it

determines the evolution of the jump up and jump down portions of the singular

solution governed by ẋ = f(x, u), which correspond to the onset and offset of

spikes, respectively. The first equation of the reduced system (1.11) is called the

‘fast subsystem’. In order to determine the behaviour of solutions near the cubic

nullcline, that is, during the active and quiescent phases, we introduce the slow

time scale τ = ηt. In terms of this slow time scale, the system (1.11) transform to

ηx′ = f(x, u)

u′ = g(x, u),







(1.12)

where ′ = d/dτ . Now by setting η = 0, we obtain the reduced system

0 = f(x, u)

u′ = g(x, u).







(1.13)

The first equation in the system (1.13) implies that its solution lies along the cubic

nullcline. The second equation in (1.13) determines the evolution of the solution

along the nullcline. Note if we write the active (top) and quiescent (bottom)

branches of the z-shaped nullcline (Figure 1.2) as x = Fa(u) and x = Fq(u),

respectively, then the second equation in (1.13) may be written as

u′ = g(Fi(u), u), (1.14)
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where i = a, q.

Note each piece of the singular solution is determined by a single, differential

equation. The active and quiescent phases correspond to the solution of (1.14).

This equation is called ‘slow subsystem’. Thus, using the existence of small param-

eters, singular periodic solution are constructed. Each piece of the singular solution

satisfies a reduced system of equations (1.11) and (1.13). Thus, geometric singular

perturbation method reduces higher dimensional dynamical systems with multiple

time scales or small parameters to low dimensional fast subsystem and slow sub-

system. This decomposition of the dynamics into fast and slow counterparts is also

known as dissection method in theoretical neuroscience.

To analyze bursters in the spirit of geometric singular perturbation method, it

is assumed that η = 0 in the burster model governed by the system like (1.1), so

that the fast and slow systems can be treated separately. This dissection method

for neuronal bursting was pioneered by Rinzel [89, 92]. His study showed that

many important aspects of bursting behaviour can be understood via phase portrait

analysis of the fast subsystem, ẋ = f(x, u), with x ∈ Rp, treating u ∈ Rq as a vector

of slowly changing bifurcation parameters. The fast subsystem can be resting (but

excitable), bistable, or spiking depending on the value of u, bursting occurs when

u visits the spiking and quiescent areas periodically. Now we will dwell briefly on

the dissection of the Plant model and Chay-Keizer model for pancreatic β-cell to

understand the dynamical mechanism underlying bursting.

Dissection of the Plant model

Rinzel and Lee [92] analyzed the Plant model (1.2)–(1.6) by decomposing it into a

fast and slow subsystem based on the separation of time scales on which the ion

currents operate. As we saw, the fast subsystem of the Plant model consists of

the equations for membrane potential V , and (in)activation variables h and n, and

the slow subsystem consists of the equations for the activation variable x and the

intracellular calcium concentration [Ca]. In the geometric singular perturbation

approach, the slow variable x is held constant and the other slow variable [Ca]
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used as the bifurcation parameter. By varying [Ca] slowly, the key feature of the

fast subsystem of the Plant model obtained is that its bifurcation diagram contains

a branch of steady states corresponding to the quiescent periods between bursts

and a branch of periodic solutions corresponding to the action potentials within

bursts. These two branches are connected via a saddle-node on invariant circle

(SNIC) bifurcation. Bursting is obtained from an oscillation in the slow system

that periodically moves the [Ca] back and forth across the SNIC bifurcation, from

the branch of steady states to the branch of periodic solutions, and vice versa.

An interesting feature of the model observed from the dissection is that since the

transition between the active and quiescent phases of bursting involves passing

through a SNIC bifurcation, which is associated with a limit cycle with infinite

period, the spike frequency is low at the beginning of the burst, then increases,

and then decreases again towards the end of the burst. This successful dissection

of the Plant model by Rinzel and Lee contributed to a deep understanding of

the mechanism underlying bursting dynamics and popularization of the geometric

perturbation method in the analysis of neuronal bursters.

Dissection of the Chay-Keizer model

The Chay-Keizer model (1.7)–(1.10) describes the bursting dynamics of the pan-

creatic β-cells. The fast subsystem of the model consists of equations (1.7) and

(1.8), with fast variables V and n. The calcium concentration, c, is the single slow

variable. In the singular perturbation limit, c, is treated as a parameter of the fast

subsystem. In the cV -phase plane, the bifurcation diagram of the fast subsystem

is z-shaped (see Figure 1.3). This is called the slow manifold or z-curve on which

V and n are at steady state.The c-nullcline has the property ċ < 0 below and

ċ > 0 above. There are three branches of z-shaped V -nullcline: the lower branch

corresponds to the stable steady state of the fast subsystem which joins to the mid-

dle branch of unstable saddle point at the knee of the z-curve via a saddle-node

(SN) bifurcation. The middle saddle point branch ends at a second SN bifurcation

with the third and upper branch of the V -nullcline of unstable equilibria. The
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Figure 1.3: Schematic bifurcation diagram for the Chay-Keizer model depicting the z-

shaped fast subsystem in cV -plane. Stable and unstable steady state solutions are shown

with solid and dash-dotted lines, respectively. The bold solid lines show the maxima and

minima of the periodic branch.

branch of upper unstable equilibria continues for lower values of c, and eventually

goes through a supercritical Andronov-Hopf bifurcation. Beyond this the branch

is stable. A branch of stable periodic solutions emerges from the Andronov-Hopf

bifurcation. Each of these periodic solutions represents a continuous train of action

potentials. The periodic branch terminates at a homoclinic bifurcation, where the

limit cycle connects the saddle point forming an infinite-period homoclinic orbit.

A bistability occurs for all values of c between the first SN and the homoclinic

bifurcation shown by the box in Figure 1.3. The bistability of the fast subsystem

is apparently a crucial feature of bursting in general, without it there would be

no bursting. During the quiescent phase, the burst trajectory rides along the bot-

tom branch of the z-shaped V -nullcline traveling to the left since it is below the

c-nullcline (ċ < 0). When the trajectory reaches the SN bifurcation it moves to the

periodic branch, since the limit cycle is now the only remaining attractor. At this

point the trajectory travels rightward since it is above the c-nullcline and ċ > 0.

The active phase ends when the trajectory reaches the homoclinic bifurcation. This

completes one cycle of bursting. Thus, slow-fast dissection of the model unravels

the underlying mechanism of bursting.
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Figure 1.4: Examples of types of bursting oscillations (from [93]): (top) square-wave

bursting, (middle) elliptic bursting and (bottom) parabolic bursting. Here the vertical

axis shows the voltage of the oscillations.

1.4 Rinzel’s classification of bursting oscillations

Dissection of the Plant model for Aplysia R15 cell and the Chay-Keizer model for

pancreatic β-cell shows quite clearly that thebursting dynamics of two systems are

qualitatively very different. The dissection method to analyze the bursting models

culminated into different classification schemes of bursters by many investigators

such as Rinzel [92], Bertram et al. [11], de Vries [24], Izhikevich [56, 58, 59], and

Golubitsky [40]. In this section we review three classes of bursting oscillations

proposed by Rinzel in [92]: square-wave bursting, elliptic bursting and parabolic

bursting. This classification is based on the qualitative properties of burst activity

like voltage amplitude profile and interspike frequency. Each class of bursting is

governed by a system of the form (1.1) and different classes of bursting oscillations

follow from geometric assumptions concerning the set of fixed points and periodic

solutions of the fast subsystem. Some assumptions can usually be verified for a

specific system by using numerical software [93].
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1.4.1 Square wave bursting

Square-wave bursting is exhibited by pancreatic β-cells and the Chay-Keizer model

can reproduce this burst pattern for electric activity. This oscillatory pattern is

referred to as square-wave bursting due to the ‘box-shaped’ amplitude profile for

the voltage or action potential. There are some phenomenological, polynomial

models like Hindmarsh-Rose [50, 48, 49, 100], Pernarowski [83] and G. de Vries

et al. [24] models. It is also ubiquitous in many systems like Alexander-Cai [1],

Wang [120, 119] and Chay-Cook [11] models. Moreover, square-wave bursting also

arises in recent models for respiratory CPG (central pattern generator) neurons and

models for pattern generation based on synaptic depression [93]. Mathematically,

square-wave bursting requires three-dimensional systems and in the discussion of

the Chay-Keizer model we observe the square-wave bursting arises from the system

containing two-dimensional (V , n) fast subsystem (1.7,1.8) and one-dimensional (c)

slow subsystem (1.9). Besides, square-wave bursting can also be generated by sys-

tem with two slow variables. Analysis of models with two slow variables which

exhibit this type of bursting is discussed in [104]. Typically, the dynamical mech-

anism underlying square-wave bursting is that the rest state disappears via fold

bifurcation, and the periodic spiking disappears via saddle-homoclinic orbit bifur-

cation. A crucial ingredient for square-wave bursting is bistability as there is a

coexistence of attractors. This allows for a hysteresis loop between a lower branch

of stable fixed points and upper branch of stable limit cycles. Terman [93] studied

the dynamical aspects of fold and homoclinic bifurcations of square-wave bursting

comprehensively and showed that this burster could have a Smale horseshoe struc-

ture leading to chaotic dynamics. Rinzel and Ermentrout [91] give the following

system of equations which generate square-wave bursting:

v̇ = −(gcam∞(v)(v − vca) + gkw(v − vk)

gl(v − vl) + gkcaz(y)(v − vk)) + I

ẇ = 20Φ (w∞(v)− w) /τ(v)

ẏ = 20ε (−µgcam∞(v)(v − vca)− y) ,



































(1.15)
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where gca = 4, gk = 8, gl = 2, vk = −84, vl = −60, vca = 120, I = 45, gkca = 0.25,

Φ = 0.23, ε = 0.005, and µ = 0.02. In addition, the nonlinear functions are

m∞(v) = 0.5 (1 + tanh((v + 1.2)/18))

w∞(v) = 0.5 (1 + tanh((v − 12)/17.8))

z(y) = y/(1 + y)

τ(v) = cosh ((v − 12)/34.8).



































(1.16)

1.4.2 Parabolic bursting

Parabolic bursting is found in the Aplysia R15 neuron [39, 63, 71, 112] and its

mathematical model is due to Plant reviewed earlier. The bifurcation signature

of this type of bursting is that the transition from quiescent state to repetitive

spiking and back occurs via a saddle-node on invariant circle (SNIC) bifurcation.

Since SNIC bifurcation is associated with a limit cycle of infinite period, the in-

terspike interval is longer at both the beginning and end of each burst; typically,

the frequency of emerging and terminating spiking may be shown to behave as
√

λ, where λ is the distance to the bifurcation [93]. It accounts for the parabolic

shape of the interspike period of fast oscillations which is the motivation behind

the name parabolic bursting. Unlike square-wave bursting, parabolic bursting can

be achieved in a system with at least two slow variables and it does not arise

from a hysteresis phenomenon. Regarding the mathematical structure of parabolic

bursters note the Plant model for Aplysia R15 neuron contains three-dimensional

(V hn)-fast subsystem and two-dimensional x[Ca]-slow subsystem. Rigorous re-

sults related to parabolic bursting are given by Kopell and Ermentrout in [35], C.

Soto-Trevin et al. in [107] and Hoppensteadt and Izhikevich in [51]. The following

equations [91], produce parabolic bursting:

v̇ = − (ica(v) + ik(v) + il(v) + ikca(v, c) + icas(v, s)) + I

ẇ = Φ (w∞(v)− w) /τw(v)

ċ = ε (−µgcam∞(v)(v − vca)− c)

ṡ = ε (s∞(v)− s) /τs,



































(1.17)
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with

ica(v) = gcam∞(v)(v − vca)

ik(v) = gkw(v − vk)

il(v) = gl(v − vl)

ikca(v, c) = gkcaz(c)(v − vk)

icas(v, s) = gcass(v − vca),



















































(1.18)

and the nonlinear functions are given by

m∞(v) = 0.5 (1 + tanh((v + 1.2)/18))

w∞(v) = 0.5 (1 + tanh((v − 12)/17))

τ∞ = cosh ((v − 12)/34)

z(c) = c/(1 + c)

sinf = 0.5 (1 + tanh((v − 12)/24)) .



















































(1.19)

The constants are gca = 4, gk = 8, gl = 2, vk = −84, vl = −60, vca = 120, I = 65,

gkca = 1, Φ = 1.333, ε = 0.002, µ = 0.025, τs = 0.05, and gcas = 1.

1.4.3 Elliptic bursting

Elliptic bursting is the last of the three basic types of bursting oscillations iden-

tified by Rinzel in [92]. It is referred to as ‘elliptic’ in the literature because

the profile of oscillation of the membrane potential resembles an ellipse. Elliptic

bursting arises in the models for thalamic neurons [27], rodent trigeminal neu-

rons [76], and 40 Hz oscillations [120]. It is also exhibited by the FitzHugh-

Rinzel [38, 90, 61, 53, 56, 61, 59, 89], Rush-Rinzel [94], Chay-Cook [11], Wu-

Baer [124], and Pernarowski polynomial [83] models. Both square-wave and el-

liptic bursting depend on bistability and hysteresis because there is a coexistence

of resting and spiking states and such bursting usually occurs via a hysteresis loop

with only one slow variable. An important difference between there two types of

bursting is how the active phase terminates. Square-wave bursting ends at a homo-

clinic bifurcation, therefore the period of oscillations increases at the end of each

burst. Whereas in elliptic bursting the quiescent state loses stability via subcritical
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Andronov-Hopf bifurcation, and the periodic limit cycle attractor corresponding

to the active state disappears via a saddle-node of periodic orbits or fold limit cy-

cle bifurcation. Hoppensteadt and Izhikevich [51] showed that elliptic bursting is

also possible even if the branch of periodic orbits of fast subsystem originate at a

supercritical Andronov-Hopf bifurcation. A prominent feature of elliptic bursting

shares with systems of fast-slow oscillations involving Andronov-Hopf bifurcation

is that the transition from resting (quiescent) state to active (spiking) state does

not occur immediately at the moment the resting state becomes unstable. The fast

subsystem remains at the unstable equilibrium for quite some time before it jumps

rather abruptly to a spiking state. This delayed transition is known as the slow

passage effect. In Section 2.4 we discuss briefly the slow passage effect with its

implications in bursting. To end the discussion of elliptic bursting, we reproduce

the following system of equations which produce elliptic bursting [91]:

v̇ = −(gcam∞(v)(v − vca) + gkw(v − vk)

gl(v − vl) + gkcaz(y)(v − vk)) + I

ẇ = Φ (w∞(v)− w) /τ(v)

ẏ = ε (−µgcam∞(v)(v − vca)− y) ,



































(1.20)

with

m∞(v) = 0.5 (1 + tanh((v + 1.2)/18))

w∞(v) = 0.5 (1 + tanh((v − 2)/30))

z(y) = y/(1 + y)

τ(v) = cosh ((v − 2)/60),



































(1.21)

where gca = 4.4, gk = 8, gl = 2, vk = −84, vl = −60, vca = 120, I = 120,

gkca = 0.75, Φ = 1.2, ε = 0.04, and µ = 0.016667.

Note this classification scheme is neither exhaustive nor completely accurate.

The naming of classes of bursters depending on the profile of oscillations can get

very confusing and subjective. Also labeling the types by numbers as proposed

in [11] may prove daunting as well. Yet these preliminary and basic classification

schemes make way to more general classification scheme. One such attempt is

topological classification we discuss in the following chapter. This classification
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schemes takes into account the unique bifurcation features underlying the individ-

ual bursting mechanism and the insights from this even leads to the development

of minimal models to help treat bursting more analytically.

1.5 Outline of thesis

In this section we briefly summarize the framework of the thesis. The biological

examples of bursting neurons are already discussed in this chapter. We also dis-

cussed the mathematical properties and models to describe the bursting behaviour

of neurons. A classification scheme based on the bursting profile was also pre-

sented. In Chapter 2 we discuss a more general classification scheme based on the

distinctive dynamical properties of neuronal bursting. This classification is impor-

tant as this led to the development of the minimal or reduced models for bursting.

After some basic discussion on the minimal models we introduce the Bautin elliptic

burster model. Our study in thesis is primarily based around the Bautin elliptic

burster model with some critical generalizations. We continue our review of burst-

ing neurons to Chapter 3 extending the discussion to coupled bursting systems.

In this chapter we discuss a biological example of bursting network related to the

rhythmogenesis of the leech heartbeat. After we discuss the synchronization dy-

namics particular to the bursting systems along with the underlying mechanisms.

This discussion is necessary for understanding the peculiarities of coupled bursting

systems especially the synchrony changes involving the fast dynamics. Then we

present a modified model of a Bautin elliptic burster and present some simulation

results demonstrating the synchrony changes in the fast dynamics for two coupled

Bautin bursters.

A detailed investigation of the reported phenomenon ‘within-burst synchrony

changes’ is carried out in Chapter 4, where the full system for two coupled Bautin

bursters with direct linear coupling is reduced to a system of a burst-synchronized

constrained model and bifurcation analysis is performed to capture the phenomenon.

A theoretical analysis is also carried out to support the observations. Effects of

low amplitude noise added to the fast subsystem are also studied. After this, we
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consider some examples of more general biologically-motivated coupling producing

similar effect in the two coupled bursters.

A cascade of synchrony changes is produced within a synchronized burst for

a two coupled Bautin bursters with various modifications to the Bautin burster

model in Chapter 5. Bifurcation analysis for such systems is also carried out for

corresponding reduced burst-synchronized constrained models. In Chapter 6 the

study is extended to higher dimensional systems. Here we present and discuss

simulation results of within-burst synchrony changes involving systems of three

and four coupled Bautin elliptic bursters.

Within-burst synchrony changes is subject to further study in Chapter 7, where

we show simulation results for two coupled Bautin burster producing within-burst

synchrony changes property with mutually constant delay coupling. Following this

we study a particular example of conductance based biological elliptic burster and

show such biological bursters also demonstrate within-burst synchrony changes

with mutually delay coupling. Another mechanism generating within-burst syn-

chrony changes in the coupled elliptic bursters is discussed in Chapter 8 in the

context of coupled FitzHugh-Rinzel elliptic burster model where an example of a

within-burst synchrony change is shown to accompany periodic doubling of the fast

subsystem.

In Chapter 9 we study the coupled Hindmarsh-Rose model for square-wave

bursting, where the coupled Hindmarsh-Rose neurons with a nonlinear coupling

demonstrate clustering properties involving burst synchronization. We analyze

the stability of the cluster states by determining the Lyapunov exponents of the

corresponding ‘variational’ system for coupled Hindmarsh-Rose neurons about the

cluster states. Finally, in Chapter 10 we draw the thesis to a conclusion with

broader implications of our research and discuss possible future directions.



Chapter 2

Burst dynamics

In the previous chapter we briefly reviewed some examples of biological bursters and

the basic mathematical properties of general bursting models. We also discussed

the Rinzel’s classification scheme for the bursters. In this chapter we continue to a

classification of bursters by Izhikevich based on the distinctive topology associated

with different bursting pattern. This classification makes way to a development

of minimal models for bursters which we discuss briefly in the chapter. Next

we examine a particular example of bursting model known as the Bautin elliptic

burster. We discuss the dynamics of a single compartment Bautin elliptic burster

and the mechanisms underlying the generation of such bursting.

2.1 Topological classification

Bursting oscillations of neurons have been found to depend more on the type of

bifurcations that the fast subsystem undergoes as the slow variable changes rather

than on the activity of any specific ionic current in the governing neuronal sys-

tem [90]. This observation motivated the development of a topological classification

for bursters based on the bifurcation properties of the fast variable. This classifi-

cation scheme is due to the seminal work of Izhikevich and Hoppensteadt [58, 56].

For a comprehensive discussion of the classification scheme, we refer to [59]. In

this section, we briefly discuss this classification scheme using the definitions and

44
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Figure 2.1: Bifurcations at the onset and offset of bursting oscillations.

nomenclature as used by the authors of the scheme. Firstly, in this classifica-

tion, bursters are distinguished qualitatively according to their topological types,

and there are two important bifurcations of the fast subsystem that determine the

topological type:

• Resting to spiking: bifurcation of an equilibrium attractor that results in

transition from resting to repetitive spiking.

• Spiking to resting: bifurcation of a limit cycle attractor that results in tran-

sition from spiking to resting.

A complete topological classification of bursters based on these two bifurcations is

provided by Izhikevich [59], who identified 120 different topological types. In this

review, we limit our discussion to only ‘planar point-cycle’ codimension-1 bursters.

A burster is planar when its fast subsystem is two-dimensional, and point-cycle

bursting referred to the slow-fast dynamics characterized by a stable equilibrium

as its resting state and a stable limit cycle as its spiking state and a stable limit

cycle as its spiking state. Note that bifurcations of codimension-1 need only one

parameter and are more encountered in natural systems. Moreover, having a two-

dimensional fast subsystem imposes severe restrictions on possible codimension-1

bifurcations of the resting and spiking states. In particular, there are only four
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codimension-1 bifurcations of an equilibrium that lead to loss of its stability or its

disappearance [65], they are:

• Saddle-node (fold) bifurcation: A stable and an unstable equilibrium coa-

lesce and annihilate each other. The solution leaves a neighbourhood of the

equilibria.

• Saddle-node on invariant circle (SNIC) bifurcation: It is similar to a fold

bifurcation with an additional condition that it occurs on an invariant cir-

cle. Typically, the invariant circle consists of two trajectories connecting the

node and the saddle. As the saddle and node coalesce, the small trajectory

shrinks and the larger connecting trajectory becomes a homoclinic invariant

circle, i.e., originating and terminating at the same point. When the point

disappears, the circle becomes a limit cycle. Such a bifurcation results in an

oscillation having very large period.

• Supercritical Andronov-Hopf bifurcation: The resting state (equilibrium)

loses stability via an Andronov-Hopf bifurcation. The loss of stability is

accompanied by the appearance of a stable limit cycle, which is why this is

referred to as a supercritical bifurcation.

• Subcritical Andronov-Hopf bifurcation: If a stable equilibrium in the phase

space of a system is surrounded by an unstable cycle, then the subcritical

Andronov-Hopf bifurcation results when the unstable cycle shrinks to the

stable equilibrium and makes it lose stability.

Similarly, there are only four codimension-1 bifurcations of a stable periodic

orbit in which the fast variable goes from being active (spiking) state to a resting

state (equilibrium) [65], they are:

• Saddle-node on invariant circle (SNIC) bifurcation: A stable limit cycle can

disappear via SNIC bifurcation. A stable limit cycle disappears because there

is a saddle-node bifurcation that breaks the cycle and gives birth to a pair

of equilibria - stable node and unstable saddle. After the bifurcation, the
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limit cycle becomes an invariant cycle consisting of a union of two connecting

trajectories, namely, saddle-to-node and node-to-saddle. At this bifurcation,

the period of oscillation becomes infinite as saddle-node equilibrium appears

on the circle.

• Saddle homoclinic orbit bifurcation: The stable periodic orbit or the cycle

becomes a homoclinic orbit to saddle equilibrium with infinite period. Note

both the saddle homoclinic orbit bifurcation and the SNIC bifurcation involve

an equilibrium and a large amplitude homoclinic trajectory that becomes a

limit cycle or a stable orbit. The key difference is that equilibrium is a saddle

in the saddle homoclinic orbit bifurcation and a saddle-node in the SNIC

bifurcation. The saddle equilibrium persists as the bifurcation parameter

changes, whereas the saddle-node disappears or bifurcates into two points

depending on the direction of change of the bifurcation parameter.

• Supercritical Andronov-Hopf bifurcation: A stable limit cycle shrinks to a

point via supercritical Andronov-Hopf bifurcation. As a result, the amplitude

of the limit cycle attractor vanishes, and the cycle becomes a stable equilibria.

Note, the disappearance of the stable limit cycle is due to the direction of the

change in bifurcation parameter is opposite to that results in the appearance

of a stable periodic orbit from the equilibrium.

• Fold (saddle-node of) limit cycle bifurcation: In this bifurcation, the stable

periodic orbit is approached by an unstable one, they coalesce and annihilate

each other. At the point of annihilation, there is a periodic orbit, but it

is neither stable nor unstable. More precisely, it is stable from the side

corresponding to the stable cycle, and unstable from the other side. This

periodic orbit is referred to as a fold limit cycle, and is analogous to the fold

(saddle-node) equilibrium. Note when a limit cycle attractor undergoes a fold

limit cycle bifurcation, its radius undergoes saddle-node (fold-equilibrium)

bifurcation.
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Figure 2.2: Topological classification of generic fast-slow bursters having two-

dimensional fast (spiking) subsystem (from [56]).

Note any combination of a bifurcation from equilibrium and of a bifurcation

from a periodic orbit attractor results in a distinct topological type of burster.

Hence, there are 16 such planar point-cycle codimension-1 bursters. The naming

of different types of bursters in this scheme is straight forward. The bursters are

named according to the types of the bifurcations of the resting and spiking states.

To keep the names short, bifurcations with longer names are referred with shorter

terms, e.g., saddle-node on invariant circle (SNIC) bifurcation is referred to as only

‘circle’, super(sub)critical Andronov-Hopf bifurcation as ‘super(sub)Hopf’, the fold

limit cycle bifurcation as ‘fold cycle’, and the saddle homoclinic as ‘homoclinic’.

According to this nomenclature, a ‘fold/homoclinic’ type burster means the tran-

sition from rest to spiking in this burster occurs via a fold bifurcation and the

transition from spiking to rest occurs via a homoclinic bifurcation. The classical

three basic types of bursters discussed earlier may be put under the topological

classification based on the bifurcations in their dynamics:

• Square-wave bursting is of ‘fold/homoclinic’ type, because the rest state dis-

appears via a fold bifurcation, and the periodic spiking disappears via a saddle
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homoclinic orbit bifurcation.

• In parabolic bursting, the equilibrium corresponding to the resting state dis-

appears via a saddle-node on invariant circle (SNIC) bifurcation, and the

limit cycle attractor corresponding to the spiking state disappears via an-

other SNIC bifurcation, so the burster is of the ‘circle/circle’ type.

• Elliptic bursting is ‘subHopf/fold cycle’ type as the resting state loses stability

via subcritical Andronov-Hopf bifurcation, and the spiking state disappears

via fold limit cycle bifurcation.

One bold aspect of this model is that although not all the types of bursters from

this classification scheme have been found in nature, yet the scheme predicts them.

We would like to stress that the topological classification of bursters is defined for

mathematical models of the slow-fast system of form (1.1) assuming the ratio of

time scale, η, is sufficiently small. If a bursting neuron can be described accurately

by a model having a slow-fast form like (1.1), then its topological type can be

determined just by applying the singular perturbation method, i.e., by freezing

the slow subsystem and finding bifurcations of the fast subsystem on treating u

as a parameter. Unfortunately, not all neurons can be described adequately by

such models, and so the classification scheme renders inadequate in such case. A

typical example of the classification failure is the model of bursting of the sensory

processing neuron in weakly electric fish, known as the ‘Ghostbursting’ [29], in

which η > 0.1.

Finally to add to this discussion of the topological classification scheme, math-

ematical studies of bursters revealed that different topological types have different

neurocomputational properties [59, 56]:

• Bursters that involve fold, subcritical Andronov-Hopf, saddle homoclinic or-

bit, and fold limit cycle bifurcations have coexistence of resting and spiking

states, and hence exhibit bistability. It implies that all ‘fold/f’ and ‘sub-

Hopf/f’ exhibit bistability, at least before the onset of a burst, where ‘f’ de-

notes any appropriate bifurcation of the spiking state. Similarly, ‘i/homoclinic’
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and ‘i/fold cycle’ bursters also exhibit bistability, at least at the end of a burst,

where ‘i’ denotes appropriate bifurcation of the equilibrium or resting state.

An obvious consequence of bistability is that an appropriate stimulus can

switch the system from resting to spiking and back. The input does not even

have to be excitatory [59].

• Bursters that involve Andronov-Hopf bifurcation in the quiescent state, so

belonging to ‘Hopf/f’ and ‘subHopf/f’ types, act as resonator, i.e., they are

sensitive to the frequency content of the synaptic input. Such a burster

exhibits damped ‘subthreshold’ oscillations of the membrane potential. If it

prefers a certain resonant frequency of the input train that is equal to a low

order multiple of its eigenfrequency. Increasing the frequency of the input

may delay or even terminates its response.

• In contrast, bursters of type ‘fold/f’ and ‘circle/f’ act as integrators, i.e.,

they prefer high-frequency inputs, the higher the frequency, sooner the tran-

sition to the spiking state. These types of bursters do not have subthreshold

oscillations. Integrators can easily encode information about the intensity

of stimulation into their mean firing rate. Moreover, integrators distinguish

between weak excitatory and inhibitory inputs, unlike resonators.

• Bursters belonging to types ‘Hopf/Hopf’ and ‘subHopf/fold cycle’ bursting

show the slow passage effect. The slow passage effect can be shortened sig-

nificantly by noise or weak input from other bursters.

• Bursters of type ‘fold/f’, ‘fold cycle/f’, and ‘homoclinic/f’ bursting may have

a so-called ‘canard’ periodic solution [4], i.e., the fast variable stays near

the unstable state for some time before jumping to the limit cycle attractor.

The fast variable near the unstable branch is highly susceptible to small

perturbation including these coming from other bursters. An excitable spike

can make it fire, whereas an inhibitory spike can delay the onset of spiking

even further.



CHAPTER 2. BURST DYNAMICS 51

Thus, different bursters can communicate, synchronize, and process informa-

tion differently. However, a pair of distinct bursters can have identical neurocom-

putional properties [59].

2.2 Minimal bursting models

In this section we discuss development and mathematical analysis of bursting sys-

tem with reduced or minimal models. Firstly, to understand what is a minimal

model of a neuronal system, we may take the following example [56]: let us con-

sider a conductance-based model capable of exhibiting periodic spiking, that is ,

having a limit cycle attractor. Let us completely remove a current or a gating

variable, then see if the reduced model has a limit cycle attractor, at least for some

values of parameters. If it does, we remove one gating variable or current, and

proceed until we arrive at a model that satisfies the two properties: (a) it has a

limit cycle attractor, at least for some values of parameters; (b) if one removes any

more current or gating variable,the model has only equilibrium attractors for any

value of parameters, i.e., no spiking activity. Such a model is referred to as a being

minimal or irreducible for spiking. Thus, minimal models can exhibit periodic ac-

tivity, even if it is of small amplitude, but their reductions cannot. Note according

to this definition, any space-clamped conductance-based model of a neuron either

is a minimal model or could be reduced to a minimal model or models by remov-

ing gating variables. So it is obvious that some well known conductance-based

models form a partially ordered set. For example, the chain of neuronal models

Morris-Lecar (ICa + IK) → Hodgkin-Huxley (INa,t + IK) → Butera-Rinzel-Smith

(INa,t + IK + IK,slow) is obtained by adding a conductance or gating variable to one

model to get the next one. So, following this idea of minimal models, a bursting

model is minimal if removal of any current or gating variable eliminates the ability

to burst.

One way to build a slow-fast minimal model for bursting is to take a minimal

model for spiking, which consists of an amplifying gate and a resonant gate, and

add another slow resonant gate, which result in a system of form (1.1). Note that
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both the Plant model and the Chay-Keizer model discussed in Chapter 1 belong

to minimal models of bursting. Minimal models are appealing because they are

relatively simple, each individual variable has an established electrophysiological

meaning, and its role in dynamics can easily be identified. It may be shown that

many minimal models have subsystems that can be reduced to planar system, which

is amenable to analysis using geometrical phase plane methods [56]. So, thinking

in terms of minimal models, one can understand what is essential for spiking and

bursting and what is not. In the following we briefly discuss the canonical model ap-

proach to bursters developed by Hoppensteadt and Izhikevich [51, 59, 56] followed

by an in depth review of a reduced model known as Bautin elliptic burster [61].

We study the Bautin system in this thesis in order to understand the synchrony

dynamics of coupled bursters.

2.2.1 Canonical models for bursters

In theoretical studies of human brain, it is essential to study families of models

instead of one model. It is not possible to know precisely the parameters describing

dynamics of a neuron; even if all ionic channels expressed by the neuron are known,

the parameters describing their kinetics are usually obtained via averaging over

many neurons, there are measurement errors, the parameters change slowly, and

so on. Besides, the results can depend on particulars of the underlying model and

various models of the same brain structure could produce different results. So, it is

more reasonable, from theoretical neuroscience point of view, to consider families

of neuronal models having a common property, e.g., the family of all integrators,

the family of all resonators, or the family of ‘fold/homoclinic’ bursters, and so on.

In fact the canonical model approach is to do with the study behaviour of the

entire family of neuronal models if no information about most of its members is

known. In another words, a model is canonical for a family of there is a piecewise

continuous change of variables that transforms any model from the family into

this one. The change of variables does not have to be invertible, so the canonical

model is usually lower-dimensional, simple and tractable, yet it would also mean
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that we might lose information in return for generality. Nevertheless, it retains

many important features of the family, e.g., if the canonical model has multiple

attractors, then each member of the family has multiple attractors, likewise if a

canonical model has a periodic solution, then each member has at least a periodic

solution along with possible quasi-periodic or chaotic solutions, and similarly if the

canonical model can burst, so can the each member of the family, and so on. The

advantage of this approach is we can study general neurocomputational properties

that are shared by all members of the family because all such members can be

put into the canonical form by a suitable change of variables. Moreover, it is not

actually needed to determine the change of variables, it suffice to prove that such

a change of variables exists for the family [51]. In fact, the approach of employing

a simplifying change of variables is not new to applications in the life sciences, an

example of this can be found in Thom’s use of normal form and universal unfolding

theories [42].

Now we provide a mathematical description of the canonical models after [51].

Suppose the brain dynamics can be described by a system of differential equations

of the form

ẋ = f(x), (2.1)

with x ∈ X, where X is the space of appropriate variables and f is some function.

This system (2.1) could be taken as the mathematical model of the brain if its

correct space and function are known. Unfortunately, not much known about the

system. The standard approach to this problem is to invent a simpler dynamical

system, say,

ẋ = f1(x), (2.2)

with x ∈ X1. This presumably mimics or illustrates some feature of the brain.

But the major drawbacks with (2.2) are that these models do not quite reflect

the reality, and the results obtained for them could depend on the model and its

function. To cope with this drawbacks we may incorporate more and more data

like more ions, channels, and pumps in a neuron’s membrane into the model to
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lead to another yet more complicated dynamical system, say

ẋ = f2(x), (2.3)

with x ∈ X2 and this is apparently more complex than the first earlier one, yet

does not reflect all peculiarities of the brain. Thus, the process of refinement is

unending. It produces a family of dynamical systems F = fk|k = 1, 2, · · ·; and

instead of studying each member of F , one may adopt the following approach: let

there be a dynamical system

ẏ = g(y), (2.4)

such that any member of F can be converted to this system by a continuous

change of variables, so that h : X → Y , such that if x(t) is a solution of (2.1), then

y(t) = h(x(t)) is a solution of (2.4). In this case, (2.4) is a factor of (2.1). When h

is a homeomorphism (continuous with continuous inverse), dynamical system (2.1)

and (2.4) are topologically equivariant. Hence, the dynamical system (2.4) is a

canonical model for the family F of dynamical systems if for every member fk ∈ F

there is a continuous ‘observation’ hk : Xk → Y such that solutions of ẋ = fk(x) are

mapped to the solutions of (2.4). Studying the canonical models provide us with

information about the behaviour of every member of the family F . We refer to [51]

for more detailed discussion on the mathematical aspects of canonical modeling.

A simple example of a canonical model is the phase model θ̇ = 1 with θ ∈ S,

which is a global canonical model for the family of nonlinear oscillators having ex-

ponentially stable limit cycle attractors [56]. Also, consider the following canonical

models for bursting:

• Under fairly general conditions any slow wave ‘circle/circle’ type or parabolic

burster can be transformed to the Ermentrout-Kopell canonical model [34,

35]:

θ̇ = 1− cos θ + (1 + cos θ)r(Φ)

Φ̇ = ω,







(2.5)

where θ, Φ ∈ S1 are phase variables, indicating the autonomous oscillation

of the fast and slow subsystems, respectively, ω ≈ 0 is the frequency of the
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slow oscillation, and r : S1 → R is a periodic function, like r(Φ) = cos Φ,

that depends on the particulars of the burster, and changes sign and slowly

drives the fast neuron in (2.5) back and forth through the bifurcation. When

r(Φ) < 0 the cell is quiescent, and when r(Φ) > 0, it fires periodically.

• Another example of a canonical model belongs to the type called ‘fold/homoclinic’

or classically square-wave bursters. Under fairly general conditions on the

dynamics of the slow subsystem, the burster can be transformed into the

following canonical model [59]:

ϑ̇ = 1− cos ϑ + (1 + cosϑ)u

u̇ = µu,







(2.6)

where, ϑ ∈ S
1 and µ is a small parameter. In (2.6), each spike resets to a and

decreases u by a constant b, i.e., ϑ→ a and u(t)→ u(t)− b as soon as ϑ = π.

The canonical model exhibits square-wave bursting for any 0 < a < π, any

b > 0 and sufficiently small µ.

After a successful canonical model for parabolic burster [34, 35] by Ermentrout

and Kopell, Hoppenstedt and Izhikevich went on to derive the canonical model for

elliptic burster [59], also known as Bautin burster. In this ‘subHopf/fold cycle’ type

bursting, when the two bifurcations occur for nearby values of the slow variable,

the fast subsystem is near a Bautin bifurcation. A powerful method of deriving

canonical models is based on normal form theory, and it is known that the canonical

model for a system near an equilibrium is the topological normal form at the

equilibrium [65]. Such a canonical model is local, but it can be extended to describe

global dynamics [56].

2.2.2 Normal form

Let a smooth dynamical system be

ẋ = f(x), (2.7)

with x = (x1, · · · , xm) ∈ Rm, for which x = 0 is an equilibrium; that is f(0) = 0.

Let λ1, · · · , λm be the eigenvalues of the Jacobian matrix L = Df at x = 0. For
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simplicity, let the eigenvalues be distinct, so that L is diagonal. Each integer-valued

relation of the form

λi = n1λ1 + · · ·+ nmλm, (2.8)

where n1, · · · , nm are non-negative integers and
∑

nj ≥ 2, is called a resonance.

With each resonance we can associate a resonant monomial vix
n1

1 · · ·xnm
m , where

vi ∈ Rm is the ith eigenvector of L corresponding to λi. The Poincare-Dulac

theorem [3] asserts that there is a near identity change of variables x = y + P (y),

with P (y) = 0, DP (0) = 0, that transforms the dynamical system (2.7) to

ẏ = Ly + W (y), (2.9)

where the nonlinear vector function W consists of only resonant monomials. Such

a system is called a normal form. In particular, if there are no resonances, then the

dynamical system can be transformed to its linearization ẏ = Ly. It is possible to

find a change of variables that removes all nonresonant monomials and transforms

the nonlinear system into a simple fom [51] – a property desirable for mathematical

modeling of the neurons.

2.2.3 Topological normal forms for bifurcations

Topological normal forms provide general bifurcation diagrams for local bifurca-

tions of equilibria and fixed points, i.e., near bifurcation boundaries in the param-

eter space and corresponding critical orbits in the phase space [65]. This is one of

the central notions in bifurcation theory. Sometimes it is possible to construct a

simple polynomial system

ξ̇ = g(ξ, β; σ), (2.10)

with ξ ∈ Rn, β ∈ Rk, σ ∈ Rl, which is a polynomial in ξi and has an equilibrium at

β = 0 satisfying k bifurcation conditions determining a codimension-k bifurcation

of this equilibrium, meaning the minimum number of free parameters required to

meet a codimension-k bifurcation in a parameter dependent system is exactly equal

to k. Here σ is a vector of the coefficients, σi, i = 1, 2, · · · , l, of the polynomials
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involved in (2.10). Together with (2.10) let us consider a system

ẋ = f(x, α), (2.11)

with x ∈ Rn, and α ∈ Rk, having at α = 0 an equilibrium x = 0. System (2.10) is

called a topological normal form for the bifurcation if any ‘generic’ system (2.11)

with the equilibrium x = 0 satisfying the same bifurcation conditions at α = 0

is locally topologically equivalent near the origin to (2.10) for some values of the

coefficient σi. Here, a system like (2.10) is refered to as generic system because the

system satisfies a finite number of genericity conditions. Typically, these conditions

have the form of inequalities: Ni(f) 6= 0, i = 1, 2, · · · , s, where each Ni is some

algebraic function of certain partial derivative of f(x, α) with respect to x and α

evaluated at (x, α) = (0, 0). A detailed discussion of the topological normal forms

of different codimension bifurcation can be found in [65]. In this review we only

explore the Bautin bifurcation relevant to our research.

2.3 The Bautin bifurcation

The Bautin bifurcation is also known as a generalized or degenerate Andronov-

Hopf bifurcation. Bautin bifurcation is a bifurcation of an equilibrium in a two-

parameter family of autonomous ordinary differential equations at which the critical

equilibrium has a pair of purely imaginary eigenvalues and the first Lyapunov co-

efficient for the Andronov-Hopf bifurcation vanishes. So, Bautin bifurcation has

codimension-2. The bifurcation point separates branches of sub- and supercritical

Andronov-Hopf bifurcations in the parameter plane, and for nearby parameter val-

ues, the system has two limit cycles which collide and disappear via a saddle-node

bifurcation of periodic orbits. Mathematically, let us consider an autonomous sys-

tem as (2.11) with x ∈ Rn and α ∈ R2, and smooth f . Suppose, for all sufficiently

small α, the system has an equilibrium at x = 0, and its Jacobian matrix has

one pair of complex eigenvalues: λ1,2(α) = µ(α) ± iω(α),such that µ(0) = 0 and

ω(0) = ω0 > 0, and the first Lyapunov coefficient for Andronov-Hopf bifurcation

is zero. So, the bifurcation is characterized two bifurcation conditions. Generi-
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cally, α = 0 is the origin in the parameter plane of two branches of Andronov-Hopf

bifurcation curve corresponding to the sub- and supercritical cases, and a curve

of saddle-node bifurcations of periodic orbits, where two limit cycles collide and

disappear. Moreover, this bifurcation is nondegenerate and no other bifurcation

occur in a small fixed neighbourhood of x = 0 for parameter values sufficiently

close to α = 0. In this neighbourhood, the system has at most one equilibrium

and two limit cycles [3, 65, 42]. Bautin bifurcation can be observed in many neural

models, for example, in the Wilson-Cowan oscillator [12].

Any dynamical system at the Bautin bifurcation can be transformed by a suit-

able continuous change of variables into its topological normal form [59, 56, 61],

namely,

ż = (l0 + iΩ)z + l1z|z|2 + l2z|z|4, (2.12)

where z ∈ C is a complex variable, Ω > 0 is the imaginary part of the complex-

conjugate eigenvalue at the Bautin point, and l0, l1, and l2 are real parameters. l1

and l2 are called first and second Lyapunov coefficients, respectively. The Bautin

bifurcation occurs when l0 = l1 = 0 but l2 6= 0. When l2 < 0(l2 > 0), the

Bautin bifurcation is said to be supercritical (subcritical) and the limit cycle is

stable (unstable). Note (2.12) undergoes Andronov-Hopf bifurcation for l0 = 0,

which is supercritical (subcritical) for l1 < 0 (l1 > 0). Moreover, if l1 > 0, then

(2.12) undergoes fold limit cycle or saddle-node bifurcation of periodic orbits when

l21 − 4l0l2 = 0. Both Andronov-Hopf and fold limit cycle bifurcations occur simul-

taneously at the Bautin point l0 = l1 = 0. In any case, variable z exhibits damped

on sustained oscillations with Ω > 0.

2.3.1 Bautin elliptic burster

We present an elliptic bursting model which was called Bautin elliptic burster

by Izhikevich[61, 51]. This model which we will present shortly in the following

obtained by fixing l2 in the equation 2.12, so it does not imply unfolding.

Theorem 2.3.1. [65](Topological normal form for Bautin bifurcation) Any generic
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Figure 2.3: The elliptic bursting pattern generated by the system (2.13). The time series

plots the real part of z (solid line) and the corresponding slow variable u (broken line).

The parameters are a = 0.8, ω = 3 and η = 0.1.

planar two-parameter system

ẋ = f(x, α),

having at α = 0 an equilibrium x = 0 that exhibits the Bautin bifurcation, is lo-

cally topologically equivalent near the origin to one of the following complex normal

forms:

ż = (β1 + i)z + 2z|z|2 ± z|z|4.

Theorem 2.3.2. [61, 51] Consider ẋ = f(x, y) and ẏ = µg(x, y) , x ∈ Rm and

y ∈ Rk, having a fast subsystem in an ε-neighbourhood of the Bautin bifurcation

point. There is a continuous change of variables that transform all such systems

into the canonical model

z′ = (u + iω)z + 2z|z|2 − z|z|4 + O(ε
1

4 )

u′ = η(a− |z|2) + O(ε
1

4 ), (2.13)

where ′ = d
dτ

, τ = O(ε)t is slow time, z ∈ C and u ∈ R are new fast and slow

variables, respectively, and a, ω ∈ R and η = O(µ/ε3/2) are parameters.

Non-zero values of z(t) corresponds to periodic spiking of the fast variable x(t)

with amplitude of order ε1/4|z| and ω is the interspike frequency of the system. At
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the Bautin point the eigenvalues of the fast subsystem ẋ = f(x, y) are ±iω. The

canonical model (2.13) exhibits bursting when η ≪ 1 and 0 < a < 1. Tonic spiking

sets in for a > 1. The co-efficient 2 in the term 2z|z|2 ensures that fast subsystem

undergoes Andronov-Hopf and fold limit cycle bifurcations for u = 0 and u = −1,

respectively. The particulars of f and g do not affect the form of the canonical

model but affect only the radius of parameter η and a. Figure 2.3 demonstrates

the elliptic bursting pattern generated by the system (2.13).

The canonical model (2.13) may be written as

r′ = ur + 2r3 − r5

θ′ = ω

u′ = η(a− r2).























(2.14)

It is obtained by substituting z = reiθ. The phase θ satisfies θ′ = ω, r = |z|
denotes the amplitude of oscillation of the fast variable. Non-trivial r 6= 0 equilibria

of this system correspond to limit cycles of the canonical model, which look like

periodic spiking with frequency ω. The non-trivial equilibria of the system (2.14)

are (r0, u0) = (
√

a, a2 − 2a) for all η.

It should be noted that the system (2.14) consists of three differential equations,

two of which are dependent and on with θ-variable is independent. θ̇ = ω, gives

just rotation of trajectory, while the equations for r and u offer the interesting

dynamical behaviours. Now we will discuss the dynamics of the equlibria of the

normal form given by equation (2.14). At the equilibria: r′ = 0, and u′ = 0, which

yields

r(u + 2r2 − r4) = 0,

and r = ±√a.

The non-trivial equilibrium at (r0, u0) = (
√

a, a2− 2a). We will discuss the role

of the parameters of the system (2.13) by considering more a general form. In what

follows, we consider the fast dynamics (or r-dynamics) of the system by setting the

slow variable u constant, r′ = f(r, u, β) and u = constant, where β is the second

parameter as the coefficient of the cubic term of the system (2.13). Note that,

β = 2 in the Izhikevich’s canonical model (2.13). To obtain the fast subsystem, we
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assume η = 0, i.e., we have frozen the slow dynamics, and the evolution of the fast

subsystem is just followed in varying u and β scenario. Hence, the equation for r

(fast subsystem) may be written as

r′ = r(u + βr2 − r4). (2.15)

In order to follow the dynamics of the non-trivial equilibria of the equation (2.15),

we write

y = u + βx− x2, (2.16)

where r2 = x. So, only the positive roots of x are of interest here. The curve of

the function (2.16) is a parabola concave downward. In the system described by

equation (2.13), the negative sign in the |z|4z term signifies similar behaviour. It

is obvious that u gives the point of intersection of the parabola with the y-axis

(x = 0), and changing u shifts the parabola along the y-direction. The slope of the

tangent line of this parabola at the point x = 0, dy/dx|x=0 = β is shown in the

Figure 2.4. The geometry of this equation (2.16) provides a simple means to discern

the phase portrait of the fast subsystem for r described by equation (2.15). It is

obvious that the function r′ = r(u + βr2 − r4) is just y = u + βx − x2 multiplied

by a non-negative number r. This means that if graph of y = u + βx − x2 is

positive (negative), the graph of r′ = r(u + βr2 − r4) is also positive (negative).

Hence, the phase portrait of the dynamics in r′r2-plane may be implied from the

graphical behaviour of the dynamics sketched in xy- plane. Now let us consider a

case where β > 0 and u varies from negative to positive. This situation captures

the dynamics of the Bautin elliptic burster. Other situations for different β and u

are also admissible and give different dynamics.

The dynamics in the xy-plane and r′r2-plane are shown in the Figure 2.5. Here β

is held constant to a positive value, so the function y = u+βx−x2 has positive slope

at x = 0. To begin with, we vary u from positive to negative. So, when u > 0 as

shown in the Figure 2.5a, along the y-axis there is a positive intercept of an amount

u, and a crossing through abscissa which implies the existence of an equilibrium of

the dynamics. More precisely, in the codimension-2 case, these y-intercept and x-

intersection points Figure 2.5b correspond to an unstable equilibrium and a stable
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Figure 2.4: The parabolic shape of the function y = u + βx− x2. The intercept, u, on

the y-axis and the tangent, β, at x = 0 are also shown.
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Figure 2.5: The dynamics of the equilibria governed by (2.15) and (2.16) as u is changed

from negative to positive while keeping β constant and positive. In the panels (a) and

(b), y against x = r2 is shown, while in (c) and (d), r′ = ry is shown against r2.
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Figure 2.6: The dynamics of the equilibria governed by (2.15) and (2.16) as β is changed

from β > βcrit (a.c) to β < βcrit. In the panel (a) and (b), dynamics of xy are shown,

and in (c) and (d) the corresponding phasespaces are displayed.

limit cycle with nonzero r, respectively.

Now, as u decreases, the graph of the function y = u + βx − x2 shifts down-

ward, and at u = 0, another point of y = 0 occurs. This shows the emergence of

a bifurcation point, where we see an unstable equilibrium in the case of u > 0 be-

comes stable, and two other intersections in x-axis represent two limit cycles: one

stable and another one unstable. In Figure 2.5c, this case is displayed at u < 0,

and Figure 2.5d shows the dynamics in r′r2-plane. This may be interpreted as a

subcritical Andronov-Hopf bifurcation.

Interesting dynamics may be observed if β is decreased. With decreasing β the

slope of the function y = u+βx−x2 flattens, and the two equilibria move closer. At

a certain critical value of β(= βcrit) the two equilibria, corresponding to two stable

an unstable limit cycles, coalesce, and for β > βcrit the limit cycles disappears

following the annihilation of the equilibria leaving only one stable equilibrium.
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This bifurcation scenario is known as saddle-node bifurcation of limit cycles (see

Figure 2.6). In order to find the line of the saddle-node bifurcation of the limit

cycles, we determine the non-trivial solution of equation (2.14), which yields

r2
1,2 =

1

2
(β ±

√

β2 + 4u).

During fold (saddle-node) bifurcation of limit cycles, both stable and unstable limit

cycles coalesce which implies

β2 + 4u = 0

⇒ β = ±
√
−4u, (2.17)

and r2
1,2 = β

2
. Since, r2

1,2 must be positive, β > 0, so the saddle-node bifurcation of

limit cycles takes place at the upper left gradient of the uβ-plane. The bifurcation

line this plane is parabolic trajectory given by equation (2.17) as shown in the

figure (2.7). β > 0 implies β =
√

4u with u < 0. So, as u is decreased from positive

to negative value (Figure 2.7), it hits on the curve of the saddle-node bifurcation

of limit cycles in the upper-left quadrant and the systems settles to a stable fixed

point.

In the case of the system (2.13), the value for β is chosen to be 2, so it follows

from equation (2.17) that u = −1. Hence, the onset of the repetitive firing takes

place via a sub-critical Andronov-Hopf bifurcation at u = 0, while the steady state

is reached via saddle-node bifurcation of limit cycles at u = −1, for the system

(2.13). Figure 2.7 demonstrates the bifurcation points leading to the bursting

pattern governed by the system (2.13). One important feature of the system (2.13)

as can be seen in its polar version (2.14) that the frequency of the periodic spiking

is independent of the amplitude (‘isochronous’) and is a constant; in the following

chapter we present a ‘non-isochronous’ form of the Bautin bursting model where

the frequency of the spike depends on the amplitude of the fast oscillations.



CHAPTER 2. BURST DYNAMICS 66

Figure 2.7: The curve of β =
√

4u (FLC) in uβ-plane. This curve shows the locality

of the fold (saddle-node) bifurcation of limit cycles in the co-dimension plane. Sub- and

supercritical Andronov-Hopf bifurcation and Bautin bifucation are shown.
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2.4 Delayed bursting: slow passage effect

A prominent feature of ‘subHopf/fold cycle’ type or elliptic bursting, as we men-

tioned earlier, is that the transition from resting to spiking does not occur at the

bifurcation of the equilibrium state, rather the fast subsystem remains at the un-

stable equilibrium for quite some time before jumping to the spiking state. This

phenomenon is known as slow passage effect, or ramp effect, or memory effect,

or delayed loss of stability [56, 59]. It is ubiquitous in simulations of smooth dy-

namical systems near subcritical or supercritical Andronov-Hopf bifurcations. This

phenomenon was discovered by Fenichel [37] Shishkova [101]. The mechanism of

slow passage effect or delayed loss of stability is following: the state of the system

is attracted to the stable focus before the bifurcation. Even though the focus loses

stability at the bifurcation, the state is infinitesimally close to the equilibrium, so

it can take a long time to diverge from there. The longer it takes to converge to

the equilibrium , longer it takes to diverge from it, hence the noticeable delay. In

slow-fast bursting such as (1.1) involving Andronov-Hopf bifurcation of the fast

subsystem, solutions stay close to the equilibrium or quiescent state as the O(η)-

slow variable passes through a threshold where linear stability is lost. Subsequently,

after a substantial O(1) delay, solutions jump away from the equilibrium. This ef-

fect has been studied by many authors [95, 114, 115, 116, 77, 78, 61]. The delay in

slow passage through an Andronov-Hopf bifurcation is generically more significant

for systems that are analytic in complex time, as shown by Shiskova [101] and

Neishtadt [77, 78]. When a system can be reduced to a homogeneous system, the

delay can be attributed to a simple contraction of solutions, but in general, more

conditions are required for a delay. Moreover, the amount of delay is determined

by many factors, such as nearby singularities, if external forcing is present, and the

difference between intrinsic and forcing frequencies [116]. Baer et al. [95] observed

that the delay is greater if the initial point is further from the bifurcation point.

They also derived a new stability condition by perturbation method for small η,

which is
∫ τ

0
Re[λ(s)]ds < 0, where τ is the time of the slowly varying solution with

respect to the fast time t, and λ denotes the eigenvalue of the largest real part.
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The authors showed that the integral condition implies a memory effect and it

applies over a robust parameter range in which the time scale of the characteris-

tic frequency is O(1) associated with Andronov-Hopf bifurcation. The importance

of this integral condition for predicting the delay was also reported for bursting

solutions [95].

This delay is sensitive to small amplitude noise and to periodic environmen-

tal perturbations of near resonant frequency. When noise is added, numerical

computations and asymptotic methods [116] suggest that the amount of delay is

significantly reduced or even advanced (‘advanced loss of stability’) because noise

perturbs the trajectory to escape the attractor earlier than it does. These results

clarify why delay is not always observed in experiments of biological neurons which

always contain noise, despite the fact that it is often present in simulations. In

Chapter 5 we dwell on the presence of a slow passage effect and the effect of noise

in the context of coupled Bautin burster system.



Chapter 3

Coupled neuronal bursters

In this chapter we discuss biology and dynamics of coupled-burster systems. Mul-

tiplicity of time scale and multidimensionality are at the origin of complexities

in coupled-burster systems, which results in many interesting types of synchrony

dynamics. Typical to the slow-fast rhythms of the bursters, the synchrony be-

haviour possess two aspects: ‘burst synchronization’ and ‘spike synchronization’

corresponding to synchronization of slow and fast subsystem dynamics, respec-

tively. What follows in the discussion of this chapter is a brief review of a biological

model of the leech heart interneurons which show bursting rhythms with interesting

synchrony behaviour which underlies the generation and control of the heartbeat

rhythm of the leech. Following this biological example we discuss the burst and

spike synchrony types of coupled bursters and their underlying mechanisms. Next

we discuss a more particular example of coupled bursting system involving Bautin

elliptic bursters with non-isochronous phase dynamics and show a novel synchrony

dynamics involving the fast subsystem for two coupled Bautin bursters.

3.1 The leech heart interneuron model

A well studied example of a functional network of neurons that generates bursting

is the leech heart interneuron circuit. In the leech, blood is propelled through the

circulatory system to all of leech’s individual body segments by the rhythmic con-

69
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Figure 3.1: The leech nervous system with 21 ganglia (from [64]).

strictions of two lateral heart tubes. Figure 3.1 shows a sketch of the nervous system

of a leech. The timing and coordination of these constrictions are controlled by a

central pattern generator [74, 80]. Central pattern generators (CPGs) are neuronal

networks that can endogenously (without rhythmic sensory or central input) pro-

duce rhythmic patterned outputs; these networks underlie the production of most

rhythmic motor patterns [68, 109]. The leech heart CPG comprises a network of

seven bilateral pairs of segmental heart interneurons. The CPG produces rhythmic

activity at about 0.1 Hz that paces segmental heart motor neurons, which in turn

drive the two hearts. This network can be divided into two subsets [74, 80, 68]:

• The rhythm generator: produces the pattern’s basic rhythm.

• The pattern generator: generates the actual motor pattern in response to

driving input from the rhythm generator.

The rhythm generator circuit contains four pairs of heart interneurons. Figure 3.2

shows a schematic diagram of the rhythm generator circuit and the synaptic con-

nectivity among the neurons. The synaptic connections among the interneurons

and from the interneurons to the motor neurons are inhibitory. It is clear from Fig-

ure 3.2 that the network consists of four bilaterally symmetrical neuron pairs. The

right and left ‘3’ and ‘4’ neurons inhibit each other, and on each side ‘1’ and ‘2’ are

reciprocally inhibitory with neurons ‘3’ and ‘4’, the network thus forms a ring of re-

ciprocally inhibitory neuron pairs. This four pairs of heart interneurons control the

timing of the network and the timing oscillation is dominated by the activity of the

‘3’ and ‘4’ neurons of the network. Figure 3.3(A) shows simultaneous intracellular

recordings from right and left neurons ‘3’ indicated as (R,3) and (L,3), respectively.
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Figure 3.2: Sketch of the leech heartbeat rhythm-generating network.

Figure 3.3: (A) shows a simultaneous intracellular recordings of the elemental oscillator

consisting of left and right heart interneuron indicated by (L,3) and (R,3), respectively, in

ganglion 3. (B) shows extracellular recordings from three left heart interneurons indicated

as (L,2), (L,3) and (L,4); Note that the cells (L,3) and (L,4) fire approximately inphase

and both of these cells fire approximately antiphase with cell (L,2) (from [74, 80]).

It is apparent that they rhythmically fire bursts of action potentials precisely out

of phase (antiphase). The recordings in Figure 3.3 (B) shows that neurons ‘3’ and

‘4’ on the right ((L,3) and (L,4), respectively) fire approximately inphase to an

experimental error and both of these neurons fire approximately out of phase with

left neuron ‘2’ (indicated as (L,2)). According to [74, 80] further recordings show

(not shown here) that the ‘3’ and ‘4’ neurons on one side fire inphase bursts with

the ‘1’ and ‘2’ neurons on the other side. The network thus produces a two-phase

rhythm. When released from synaptic inhibition, these neurons exhibit tonic firing

but do not show bursting activity [62].
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Key to understanding rhythm generation in the leech heart interneuron network

is the concept of a half-centre oscillator. In small circuit of coupled spiking neurons,

such as two mutually inhibitory oscillators, alternating bursting can appear, known

as a half-centre oscillator, suggested by Brown [13]. In this network, while one cell

fires, the other is inhibited, then they switch roles, and so on. Activity within a

half-centre oscillator consists of alternating bursts of action potentials and quiescent

intervals. Half-centre oscillators are thought to be building blocks of CPGs in the

pyloric network of the lobster stomatogastric ganglion, fictive motor patterns and

swimming patterns of many vertebrates and invertebrates [67]. Figure 3.4 shows

a sketch of a half-centre network consisted of two cells. To explain the alternation

patterns of burst and quiescent of the neurons, Wang, Rinzel [122] and Skinner [102]

suggested four mechanisms of release and escape:

• In intrinsic release, the active cell stops spiking, terminates inhibition and

allows the inhibited cell to fire.

• In intrinsic escape mechanism, the inhibited cell recovers, starts to fire and

shuts off the active cell.

• In synaptic release mechanism, the inhibition weakens and allows the inhib-

ited cell to fire.

• In synaptic escape mechanism, the inhibited cell depolarizes above a certain

threshold and starts to inhibit the active cell.

Note all four mechanisms assume that in addition to fast variables responsible for

spiking, there are slow variables responsible for termination of spiking, recovery or

synaptic depression (weakening of the inhibition). Thus, the circuit is a slow-fast

system.

In the leech heart, the rhythm generator circuit containing neuron pairs ‘3’

and ‘4’ are half-centre oscillators (Figure 3.2) and because of their reciprocally

inhibitory synapses the pairs ‘3’ and ‘4’ neurons produce bursting oscillations.

particularly, the mechanism of oscillation for reciprocally inhibitory neuron pair

‘4’ shown Figure 3.2 may be explained as following: say the right neuron fires
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Cell 1 Cell 2

Figure 3.4: A half-centre oscillator. The filled circles at the end of the links indicate

inhibitory connection.

and thus inhibits the left neuron, but also induces a slow depolarization in it, and

eventually the left neuron reaches spike threshold and begins to fire. Firing in the

left neuron inhibits and stops the right neuron from firing, but again also induces a

slow depolarization in it. The right neuron therefore eventually begins to fire and

the cycle repeats. The rhythmogenesis in the leech heartbeat rhythm generator

arises from the interplay of these ‘elemental’ half-centre oscillators, which may be

described as following: each neuron pair of the neurons ‘3’ and ‘4’ forms a functional

half-centre in which two neuron burst in antiphase. Neurons ‘1’ and 2’ reciprocally

inhibit the ipsilateral ‘3’ and ‘4’ neurons, and hence the only stable mode of bursting

for the neurons of one side is for the ‘3’ and ‘4’ neurons burst together and inphase

with neurons ‘1’ and ‘2’; this results in the entire network having the activity shown

in Figure 3.3. The neurons ‘3’ and ‘4’ half-centre oscillators form the rhythmic heart

of the network, and ‘1’ and ‘2’ neurons coordinate the activity of these two half-

centre oscillator [68]. This process is now understood on the conductance level of

the neurons [80]. The leech heart interneuron model shows the rhythm generated by

burst synchrony dynamics which control the heart beat. This review is important

as a motivation to study the synchrony properties of the bursters. In this thesis

we focus mostly on the synchrony behaviour of the fast spikes and we address the

burst synchrony behaviour in Chapter 9 for a particular neuronal bursting model.

In the following section we discuss the aspects and dynamics of synchronization of

coupled-burster systems.
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Figure 3.5: Distinguishing burst and spike synchronization in two coupled FitzHugh-

Rinzel bursters (8.2). In both cases the system is burst synchronized, but (left) the

excitatory coupling renders inphase spikes and (right) inhibitory gives antiphase spikes.

3.2 Synchronization of coupled bursters

Before we study the example of coupled Bautin elliptic bursters, we discuss briefly

some general aspects of synchrony dynamics systems of coupled bursters. There

are two rhythmic processes associated with bursting, one is repetitive spiking (fast

activity) and repetitive bursting (slow modulation). Therefore, there could be

at least two different regimes of synchronization — synchronization of individual

spikes and synchronization of bursts. Note that one of them does not imply the

other and there is an additional regime where both types of synchronization occur

simultaneously. It has been observed that whether a pair of bursters could syn-

chronize depends on the burster types [60]. In the following we discuss the spike

and burst synchronization of coupled bursters and the mechanism leading to such

synchronization.

3.2.1 Burst synchronization

The mechanism of stable burst synchronization dynamics of bursters can be un-

derstood from an example of two planar point-cycle burster: one is in the active
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(spiking) state and the other still in the quiescent state. If the active burster

makes the quiescent burster jump from the quiescent state prematurely, then the

pair may exhibit burst synchronization. If it prolongs the quiescent state, then

the inphase burst synchronization cannot be stable, but other regimes such as

antiphase burst synchronization may be stable [59]. Dynamics of burst synchro-

nization of weakly coupled bursters is similar in some aspects to that of strongly

coupled relaxation oscillators [52]. Analyses of coupled bursters show that there

are two mechanisms leading to burst synchronization. One is fast threshold modu-

lation (FTM) [56, 59, 61] and the other is the destruction of the slow passage effect.

Also, stable burst synchronization depends on whether the quiescent burster is an

integrator or a resonator; for example, if a bursting neuron is a resonator, then

both excitation and inhibition may lead to burst synchronization [56, 59]. In the

followings we briefly discuss the outlined mechanisms leading to burst synchroniza-

tion and burst synchrony behaviour of bursting neurons depending on particular

neurocomputational properties.

Fast threshold modulation

The mechanism by which one cell fires, and thereby causes the other cell to fire, is

referred to as fast threshold modulation (FTM). It was first discussed in the con-

text of strongly coupled relaxation oscillator in [105, 106]. Burst synchronization

with threshold modulation was discussed in [59, 93]. A simple enumeration of the

mechanism is: let there be two ‘fold/homoclinic’ or square-wave bursters labeled

as A and B, respectively. Burster A is slightly ahead of burster B, so that A starts

the spiking phase while B is still resting. If the synaptic connections between the

bursters are excitatory, firing A causes B to jump to the spiking state prematurely,

because according to FTM the rate of change of slow variable before the jump is

less than that after the jump. This premature jumping of B to follow A shortens

the time difference between the bursters. In addition, the evoked burst of B is

shorter, which also speeds up the synchronization, this results in stable burst syn-

chronization. In contrast, when the connections are inhibitory, firing A delays the
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transition of B to the spiking state, thereby increasing the time difference between

the bursts and desynchronizing the bursters. This illustrates the principle of ‘exci-

tation means synchronization’ and ‘inhibition means desynchronization’, which is

discussed in [93] for the square-wave burster.

Burst synchronization via slow passage effect

To understand how burst synchronization can be achieved via a slow passage ef-

fect, we consider an example: let there be two coupled ‘subHopf/fold cycle’-type

bursters, labeled as A and B, respectively. Note that bursters of this topological

type have a slow passage effect at the on-set and off-set of the burst. Now, suppose

A is slightly ahead of B, i.e., they have essentially different values of slow variables.

Let by the time A starts to fire B is well in the zone of the slow passage effect. Since

the slow passage effect is sensitive to perturbation and it can be shortened signif-

icantly by weak input from other bursters, firing A destroys the effect and elicits

an almost instantaneous response from burster B. Thus, instantaneous burst syn-

chronization occurs between the bursters. This mechanism leads to instantaneous

inphase burst synchronization of the bursters even when they have essentially dif-

ferent spike frequencies. In [61] a discussion of instantaneous burst synchronization

via slow passage effect can be found involving coupled Bautin elliptic bursters.

Burst synchronization and neurocomputational properties of bursters

The mechanism of burst synchronization depends on the topological types of burst-

ing, more specifically it depends on whether the resting state is an integrator or

a resonator. If a point-cycle bursting occurs via ‘fold/f’ hysteresis loop, then the

burster acts as an integrator: while the slow variable is near the bifurcation value,

the fast variable is ready to jump up in response to incoming pulses from the ac-

tive burster. Similar behaviour can be seen in the bursting of ‘circle/f’ or ‘Hopf/f’

type. In any case the jump shortens the quiescent phase and eventually synchro-

nization follows from the rule ‘excitation means synchronization’ and ‘inhibition

means desynchronization’. Similarly, if point-cycle bursting occurs via ‘subHopf/f’
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hysteresis loop, then the burster acts as a resonator in the quiescent state. Such

a burster exhibits damped subthreshold oscillations of the membrane potential. If

the frequency of the incoming pulses is resonant with the frequency of the sub-

threshold oscillation, then both excitation and inhibition may evoke premature

spiking, this may result in stable inphase burst synchronization. If the input pulse

is not resonant, the quiescent state is not affected.

3.3 Spike synchronization

Spike synchronization involves the fast time scale. So, the intuitive approach to

study spike synchronization of bursters is to neglect the slow variable dynamics. To

illustrate the method mathematically, let us consider two bursting neurons coupled

weakly through their fast variables:

ẋi = f(xi, ui) + Ki(xi, xj , ε) (3.1)

u̇i = ηg(xi, ui), (3.2)

with i 6= j, and i, j = 1, 2. Ki represents the coupling with ε as coupling strength.

To study synchronization of individual spikes within the burst, consider η = 0 in

order to freeze the slow subsystem (3.2), and consider the fast subsystem (3.1)

describing weakly coupled oscillator characterized by small ε. When ui ≈ uj, the

fast variables oscillates with approximately equal period, so (3.1) can be reduced

to the phase model:

θ̇ = εH(θj − θi, ui), (3.3)

with ui = constant which parameterizes the form of the connection function. For

example, during ‘circle/Hopf’ burst, the function is transformed from H(X) =

sin2 X or 1 − cos X at the beginning of the burst to H(X) = sin X at the end of

the burst [56], changing ui slowly one can study when spike synchronization appears

and when it disppears during the burst. A necessary condition for synchronization

for two weakly coupled oscillators is that they have nearly equal frequencies [61].



CHAPTER 3. COUPLED NEURONAL BURSTERS 78

Figure 3.6: Example of (middle) transition of spikes from inphase synchronization

to asynchronization towards the end of the burst in coupled Morris-Lecar square-wave

bursters with an additional slow variable (from [59]).

The ‘nearness’ depends on the strength of coupling. Thus, synchronization of indi-

vidual spikes within a single burst depends crucially on the interspike frequencies,

which may vary substantially during a burst. Indeed, a small perturbation of the

slow variable may result in large perturbations of the interspike frequency, hence

such a burster would be unlikely to exhibit spike synchronization unless the cou-

pling is strong [56]. Spike synchronization may occur during the entire duration

of a burst, or during the initial or the final stage of the burst as observed in [59].

Spike synchronization during the initial stage of the burst usually does not occur

between ‘circle/f’ bursters because the interspike frequency changes substantially

during the initial stage and small deviation in the value of the slow variables may

lead to drastic variance in the frequencies. The other types of burster tend to have

regular spiking during the initial stage of a burst. Therefore, they could exhibit

spike synchronization. However, convergence to the synchronized state takes as

many as O(1/ε) spikes, and can be longer than the entire initial stage [59]. Sim-

ilarly, ‘i/circle’ type bursters do not usually exhibit spike synchronization during
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the final stage of the burst. In Figure 3.6 an example of coupled ‘fold/homoclinic’

(square wave) bursters is shown where the last few spikes were shown to desynchro-

nize as the sudden drop in the interspike frequency occurs during the last few spikes.

In what follows we explore similar “within burst synchrony changes” behaviour in

a particular example of coupled Bautin elliptic bursters with nonisochronicity, i.e.,

where the instantaneous frequency of the spikes undergoes transition during the

burst.

3.4 Coupled Bautin bursters

Elliptic bursting in a neuronal system is a type of recurrent alternation between

active phases (large amplitude oscillations) and quiescent phases (small amplitude

oscillations). This kind of rhythmic pattern can be found in rodent trigeminal

neurons [76], thalamic relay and reticularis neurons [25, 27], the primary afferent

neurons in the brain stem circuits [81], and neurons in many other areas of the

brain. It is clearly of interest for neuronal population information encoding and

transmission where several bursters fire within a population. Patterns of synchrony

of elliptic bursters may also be helpful in understanding firing patterns in more

general types of burster [23, 41, 56, 90].

In a previous study of the synchronization of elliptic bursters, Izhikevich ex-

amined a pair of coupled ‘normal form’ elliptic bursters [61] characterized by slow

passage through a Bautin (codimension two Andronov-Hopf) bifurcation. In that

study, burst (slow activity pattern) synchronization between the bursters was found

to be easily achievable, whereas spike (fast activity pattern) synchronization was

harder to achieve. Other studies include [30] who have examined nonlinearly cou-

pled Bautin bifurcations, though not in a bursting setting and [59, 34, 96] who

have looked at various aspects of burst and spike synchronization for a variety of

coupled burster models.

In this section we study the potential that spike synchronization for coupled

Bautin-type elliptic bursters show more complicated phase (spiking) dynamics.

We show that higher order terms that are not important in the normal form of a
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single burster can be responsible for nontrivial phase dynamics in coupled bursters

even for linear coupling. In particular, we observe and explain coexistence of and

transitions between inphase and antiphase spiking within a single burst for two and

more coupled bursters. This sheds light onto possible dynamical patterns of spike

synchronization for coupled bursters in neuronal systems.

We discuss a normal form for coupled Bautin-type elliptic bursters and focus

on burst and spike synchronization in a system of n identical coupled bursters with

zj ∈ C, uj ∈ R and j = 1, · · · , n given by

żj = (uj + iω) zj + Bzj |zj |2 + Czj |zj|4 + Kj

u̇j = η(a− |zj|)2,







(3.4)

where ω, a, η ∈ R and B = Br + iBi, C = Cr + iCi ∈ C are fixed parameters, Kj

represents coupling. We assume Br > 0 and Cr < 0, and set

B = 2 + iζ = 2 + i
σr2

m

2
, C = −1 + iγ = −1− i

σ

4
. (3.5)

We assume that the coupling term is

Kj = (κ1 + iκ2)

n
∑

k=1

cjkzk, (3.6)

where κ1, κ2 ∈ R are constant coupling parameters and cjk a constant connectivity

matrix. For convenience here we take cjk = 1 for j 6= k, cjj = 0; i.e. all-to-

all coupling. Biologically, although there are no rigorous reductions of specific

bursters to this model, one can think of z = x + iy as a fast variable x that is

analogous membrane voltage, y that is analogous to the fast current, and a slow

variable u analogous to a slow adaptation current for a neuronal burster.

3.5 The model for coupled Bautin bursters

Bursting is a multiple time scale phenomenon. In bursting, the fast dynamics of

repetitive spiking is modulated by a slow dynamics of recurrent alternation between

active and quiescent states. As explained in [56] one may obtain bursting from a

variety of dynamical mechanisms; here we focus on bursters (3.4, 3.5, 3.6) with
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bursting behaviour associated with a Bautin bifurcation (Section 2.3); we briefly

review the single burster dynamics. After this we discuss the spike and burst

synchronization for two coupled bursters.

Suppose we have a Bautin bifurcation, namely a codimension two Andronov-

Hopf bifurcation where the criticality changes on varying an additional parameter.

Then as discussed in Section 2.3 there is a normal form that is locally topologically

equivalent to the bifurcation, and the equation 2.12 may be recast as following for

z = x + iy ∈ C

ż = Az + Bz|z|2 + Cz|z|4 + O(|z|6), (3.7)

where A = Ar + iAi; B, and C are real coefficients. One can verify that an

Andronov-Hopf bifurcation occurs as Ar passes through 0 and a change of criticality

occurs where B also passes through zero. The fourth order term is needed to

determine the criticality at the degenerate point B = 0. We consider a more

general ordinary differential equation where B and C are complex; we write B and

C as in (3.5). It can be shown that ζ, γ and O(|z|6) terms do not affect the local

branching dynamics of the system (3.7). We will however argue that ζ and γ may

influence the synchrony for two or more coupled elliptic bursters.

From (3.7) we obtain bursting dynamics [59, 61, 56] by coupling the system to

a slow variable u ∈ R that is the Andronov-Hopf parameter for the Bautin normal

form, such that for z small u increases, while for z large u decreases:

ż = (u + iω)z + (2 + iζ)z|z|2 + (−1 + iγ)z|z|4

u̇ = η(a− |z|2).







(3.8)

Note that η ≪ 1 is the ratio of the fast to slow time scales. The system (3.8)

exhibits bursting for 0 < a < 1 while tonic spiking sets in for a > 1.

In polar form, z = reiθ, (3.8) becomes

ṙ = ur + 2r3 − r5

θ̇ = ω + ζr2 + γr4

u̇ = η(a− r2).























(3.9)

In these coordinates it is clear that the fast subsystem undergoes an Andronov-

Hopf bifurcation at u = 0 and a limit cycle fold bifurcation (a saddle-node of
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Re(Z)

Im(Z)

Figure 3.7: Schematic bifurcation diagram for z for the fast subsystem of (3.8) on varying

u. SFP denotes the stable fixed point, UFP unstable fixed point, SPO stable periodic

orbit and UPO unstable periodic orbit. It is clearly seen that at u = 0, the system

undergoes subcritical Andronov-Hopf bifurcation, while saddle node bifurcation of limit

cycles occur at u = −1.

limit cycles) at u = −1. At the saddle-node bifurcation of limit cycles, stable

and unstable limit cycles coalesce. A bifurcation sketch for the system (3.8) is

shown in the Figure 3.7. It is clear from this figure that periodic firing appears

at a subcritical Andronov-Hopf bifurcation at u = 0 with the emergence of a limit

cycle. Likewise the steady state is reached via a saddle-node bifurcation of limit

cycles at u = −1, where the stable limit cycle (solid line) meets the unstable limit

cycle (dashed line) and eventually cancel each other at u = −1.

Note that during bursts, if ζ, γ 6= 0 the limit cycles are ‘non-isochronous’;

there is a change in frequency of the fast oscillation during the bursts. As this

non-isochronicity does not affect the r or u dynamics, and hence the branching

behaviour, it is not important for single bursters. The phase dynamics in (3.9)

depends on amplitude r:

θ̇ = Ω(r) = ω + ζr2 + γr4. (3.10)

The non-trivial periodic orbits of the system (3.9) are (r0, u0) = (
√

a, a2 − 2a)

for η = 0. Non-trivial periodic orbits, r 6= 0 correspond to periodic orbits of (3.8)



CHAPTER 3. COUPLED NEURONAL BURSTERS 83

100 125 150 175 200 225
t

-2

-1

0

1

2

R
e(

z)
,  

u

-2 -1 0 1 2
Re(z)

-2

-1

0

1

2

Im
(z

)

-1.5 -1 -0.5 0 0.5 1 1.5
u

-1.5

-1

-0.5

0

0.5

1

1.5

R
e(

z)

-0.9 -0.6 -0.3 0 0.3 0.6 0.9
u

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
r

(a) (c)

(b) (d)

Figure 3.8: Dynamics of a single compartment Bautin Burster governed by (3.8) and

(3.11). In panel (a), the timeseries of Re(z) is shown with solid line and the corresponding

slow variable, u, with dashed line.The parameters for the simulation are ω = 3, a = 0.8,

η = 0.1, σ = 4, and rm = 1.35. The arrows in (d) indicates the direction of change of the

slow variable, u .
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with periodic spiking. The dynamics of the (3.8) is summarized in figure 3.8 for

parameters ω = 3, η = 0.1, a = 0.8, α = 2, β = −1, ζ = 0, and γ = 0. Observe the

slow passage effect [95] apparent from Figure 3.8; although the stability calculation

shows the Andronov-Hopf bifurcation occurs at u = 0, but simulation shows a

delayed bifurcation [95].

Note that we use parameters in (3.5) such that

ζ =
σr2

m

2
, γ = −σ

4
, (3.11)

meaning that
dΩ

dr
= σr(r2

m − r2). (3.12)

From this it is clear that there is a turning point of Ω(r) at r = rm. The parameter

σ can be interpreted as the magnitude of non-isochronicity for the phase dynamics.

We consider direct linear coupling for the system (3.8) via the fast variables z

to give a coupled system of the form (3.4, 3.6) with coupling parameters κ1 and

κ2, in Section 4.2.2 we considered other types of coupling. The coefficients cjk for

the coupling term of (3.4) are the connectivity matrix; here we assume all-to-all

coupling, namely

cjk =







1 if j 6= k

0 otherwise .

This form of coupling is analogous to the electrical (gap junction) coupling

between synapses with phase shift expressed by the argument of κ1 + iκ2. Positive

κ1 corresponds to excitatory coupling, while negative κ1 corresponds to inhibitory

coupling.

3.5.1 Burst and spike synchronization for two coupled bursters

We numerically investigate the dynamics of a pair of coupled elliptic bursters gov-

erned by the system (3.4). Burst synchronization between the cells can be easily

achieved for a wide range of parameter values with this system. In case of κ2 = 0

and κ1 > 0 (excitatory coupling), this generally generates inphase bursts, while
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Figure 3.9: Within-burst synchrony change from stable inphase to stable antiphase

states for two coupled bursters. The dashed box shows the activity pattern of one burst

and the burst repeats periodically and within-burst synchrony change repeats during

each burst. This result is obtained from simulation of (3.4), (3.5) and (3.6) for n = 2,

and parameters κ1 = 0.001, κ2 = 0.2, σ = 3, η = 0.005, rm = 1.35, ω = 0.01. Noise of

amplitude 10−5 was added to the fast subsystem. In this figure, the two coupled bursters

are burst synchronized and the spikes become inphase at the beginning of the burst,

but changes to antiphase near the middle of the burst. The inset in the topmost panel

shows the region of the transition. Note that the initial transient and sudden change

in the synchrony pattern along the burst profile are observable from d12, where d12 = 0

indicates inphase synchronization.

antiphase bursts result from inhibitory coupling.1

There is a spontaneous ‘within-burst synchrony change’ observable within fig-

1We write the system (3.4) using z1 = x1 + iy1 and z2 = x2 + iy2 for the purposes of numerical

simulation. All the simulations were done with the interactive package XPPAUT [33]. For

integrations, the built-in adaptive Runge-Kutta integrator was used, and results were checked

using the adaptive Dormand-Prince integrator.
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ure 3.9. The top panel shows x1 and x2. All transients were allowed to decay

and the displayed pattern is repeated within each burst. A detail of the middle of

the burst is shown in the top-right inset. The corresponding slow variables of the

system, u1 and u2, are shown in the middle panel. The distinguishing solid and

dashed traces correspond to the activity patterns of the two cells, respectively. The

bottom shows the Euclidean distance

d12 =
√

(x1 − x2)2 + (y1 − y2)2 + (u1 − u2)2

between the two systems to show the presence (d12 = 0) or absence (d12 > 0) of

synchrony. The values of the parameters used in the simulation are κ1 = 0.001,

κ2 = 0.2, σ = 3, η = 0.005, rm = 1.35, ω = 0.01. Wiener noise of amplitude 10−5

was added to the fast variables (see Section 4.2.1 for a discussion of the effect of

noise).

The spikes are inphase at the beginning of the burst, but change to antiphase

within the burst. The inset shows the region of this transition. This transition

region may be shifted along the burst profile on changing rm. Larger values of

rm shift this transition towards the beginning of the burst with larger amplitude

spikes, and vice versa. This change in the synchrony pattern along the burst profile

is also captured by d12.

We present another example of within-burst synchrony change for different pa-

rameter values in figure 3.10, where spikes of the two coupled cells start antiphase

and change to inphase during the burst. The parameters for this are κ1 = 0.001,

κ2 = −0.2, η = 0.05, σ = 3, and rm = 1.35. As before, low amplitude noise of order

10−5 was added to fast variables. The inset in the first panel shows the region of

the transition. In the last panel, d12 indicates that the burst is initially antiphase,

and as it returns to d12 = 0 there is a transition to inphase synchronization of the

within-burst spikes of the two cells. The corresponding slowly changing current

variables, u1 and u2, are shown in the middle panel. The overlapped solid and

dashed lines imply the inphase burst synchronization of the coupled system.
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Figure 3.10: Within-burst synchrony change from stable antiphase to stable inphase

states. The governing system and details as in figure 3.9 except κ2 = −0.2. The inset

in the topmost panel shows the transition in detail. In the last panel, the bump in d12

signifies the antiphase synchronization of the spikes within the synchronized burst. The

corresponding slowly changing variables, u1 and u2, are shown in the middle panel with

solid and dotted lines, respectively.



Chapter 4

Analysis of within-burst

synchrony changes

In Section 5.1 of the previous chapter we reported ‘within-burst synchrony changes’

for two directly coupled Bautin bursters governed by the system (3.4, 3.5, 3.6),

where the fast spikes undergo spontaneous synchrony changes over a burst period.

The analysis of the phenomenon is the goal of this chapter, which is done with

a reduced model obtained by forcing the the fast subsystem of the both bursters

with same slow variable. We also examine effect of low amplitude noise added to

the fast subsystem on the synchrony dynamics. After we study the coupled system

incorporating more general biologically-motivated coupling with a aim to observe

similar effect.

4.1 A burst-synchronized constrained model

Although it is possible to find within-burst synchrony changes within (3.4, 3.5,

3.6), it is hard to explain their existence analytically from the full model. To

overcome this, we reduce the coupled system to a constrained problem where we

assume burst synchronization, followed by a slow-fast decomposition. Using this

we can explain how non-isochronicity and linear coupling can lead to within-burst

synchrony changes.

88
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4.1.1 Two coupled bursters in polar coordinates

Writing (3.4, 3.5, 3.6) in polar coordinates zj = rje
iθj for n = 2 gives the system

ṙ1 = u1r1 + 2r3
1 − r5

1 + r2(κ1 cos(θ2 − θ1)− κ2 sin(θ2 − θ1))

θ̇1 = ω +
1

2
σr2

mr2
1 −

1

4
σr4

1 +
r2

r1
(κ1 sin(θ2 − θ1) + κ2 cos(θ2 − θ1))

u̇1 = η(a− r2
1)

ṙ2 = u2r2 + 2r3
2 − r5

2 + r1(κ1 cos(θ1 − θ2)− κ2 sin(θ1 − θ2))

θ̇2 = ω +
1

2
σr2

mr2
2 −

1

4
σr4

2 +
r1

r2

(κ1 sin(θ1 − θ2) + κ2 cos(θ1 − θ2))

u̇2 = η(a− r2
2).







































































(4.1)

We constrain the system to exact burst synchronization by replacing the equa-

tions for u̇1 and u̇2 by

u(t) = u1(t) = u2(t)

u̇ = u̇1 = u̇2 = η

(

a− 1

2
(|z1|2 + |z2|2)

)

.











(4.2)

Thus, the system (4.1) may be written with constraint (4.2) and φ = θ1− θ2 as

ṙ1 = ur1 + 2r3
1 − r5

1 + κ1r2 cos φ + κ2r2 sin φ

ṙ2 = ur2 + 2r3
2 − r5

2 + κ1r1 cos φ− κ2r1 sin φ

φ̇ =
1

2
σr2

m(r2
1 − r2

2)−
1

4
σ(r4

1 − r4
2)

− κ1

(

r2
1 + r2

2

r1r2

)

sin φ− κ2

(

r2
1 − r2

2

r1r2

)

cos φ

u̇ = η

(

a− 1

2
(r2

1 + r2
2)

)

.



























































(4.3)

As we are interested in synchrony changes, we define longitudinal and transverse

coordinates

rl = (r1 + r2)/2

rt = (r1 − r2)/2.







(4.4)
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The system (4.1) reduces to the four dimensional system

ṙl = url + 2r3
l + 6rlr

2
t − r5

l − 10r3
l r

2
t − 5rlr

4
t

+ κ1rl cos φ− κ2rt sin φ

ṙt = urt + 6r2
l rt + 2r3

t − 5r4
l rt − 10r2

l r
3
t − r5

t

− κ1rt cos φ + κ2rl sin φ

φ̇ = 2σr2
mrlrt − 2σrlrt(r

2
l + r2

t )

− 2κ1
(r2

l + r2
t )

r2
l − r2

t

sin φ− 4κ2
rlrt

r2
l − r2

t

cos φ

u̇ = η(a− (r2
l + r2

t )).


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(4.5)

Here, (rl, rt, φ) govern the fast dynamics, and u governs the slow dynamics. The

system (4.5) is a reduced four-dimensional realization of the full system (4.1) for a

pair of coupled elliptic bursters. Figure 4.1 shows a bifurcation diagram for the fast

subsystem of (4.3) on varying u. The dashed loop indicates how a periodic burst

including a within-burst synchrony change can occur: we define an observable R2
d

by

R2
d = r2

1 + r2
2 +

1

4
r1r2 cos φ. (4.6)

Note that Rd is such that Rd = 9
4
r if the oscillations are inphase and Rd = 7

4
r if

they are antiphase, and r1 = r2 = r. It is also symmetric under interchange of the

bursters. In [98] antiphase, asymmetric or quasiperiodic spike synchrony patterns

have been reported from a system of two of gap-junction-coupled pancreatic β-cells.

They attributed this to bifurcations on the periodic branches of the fast subsystem

for a similarly burst constrained system.

4.1.2 Stability analysis of the burst constrained system

In this section, we carry out a linear stability analysis of the fast sub-system of

(4.5) about inphase and antiphase states with rt = 0 and rl = r, which means both

cells are burst synchronized and r1 = r2 = r. In the analysis, we assume the slow

variable u is a constant of the system by setting the time scale ratio, η = 0, as a
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Figure 4.1: Bifurcation of the fast dynamics for the coupled constrained system (4.3),

plotting R2
d against u (see (4.6)) and parameters as in figure 3.9. The branches Pin and

Panti are the inphase and antiphase periodic branches of the system. The steady state

branch is denoted by SS. Solid and dashed parts of the branches denote the stable and

unstable solutions, respectively. uin and uanti are bifurcations giving loss of stability of

the inphase and antiphase periodic orbits respectively, while uH is the Andronov-Hopf

bifurcation of SS. The dashed loop indicates how the slow dynamics generates periodic

bursts. Note the switching of the trajectory from inphase to antiphase along the periodic

branches implies a within-burst synchrony change.
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singularly perturbed parameter. The dynamics, as a result, is only governed by the

fast spiking activity. For rt = 0 and η = 0 we write rl = r as the stable nontrivial

solution of (4.5) in the appropriate subspace

ṙl = (u + 2κ1 cos φ)rl + 2r3
l − r5

l (4.7)

corresponding to bursting behaviour. Note that for small |κ1|, this will have a

solution close to the single burster case.

If we consider the fast subsystem of (4.5) with u between -1 and +1 then one

can verify the existence of two solutions

• Inphase where rt = φ = 0, rl = r,

• Antiphase where rt = 0, φ = π, rl = r,

where r > 0 is a solution of

u = r4 − 2r2 − 2κ1 cos φ. (4.8)

The Jacobian for the fast subsystem at the inphase solution is block diagonal

with one single real eigenvalue and a block

Jin =





u + 6r2 − 5r4 − κ1 κ2r

2σr2
mr − 2σr3 − 4κ2

r
−2κ1



 . (4.9)

Likewise, the Jacobian for the fast system at the antiphase solution is also block

diagonal with a single real eigenvalue and a block

Janti =





u + 6r2 − 5r4 + κ1 −κ2r

2σr2
mr − 2σr3 + 4κ2

r
2κ1



 . (4.10)

Note that the off-diagonal entries of the Jacobian matrices (4.9) and (4.10) depend

on the imaginary part of the coupling coefficient, κ2, and other system parameters.

The real eigenvalues can be assumed negative because of stability of the solution

of (4.7).

The eigenvalues of (4.9) can be determined by examining the trace

tr(Jin) = u + 6r2 − 5r4 − 3κ1 (4.11)
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and the determinant

det(Jin) = −2(u + 6r2 − 5r4)κ1 − 2σr2(r2
m − r2)κ2 + 2κ2

1 + 4κ2
2. (4.12)

Similarly, we can understand their antiphase counterparts from (4.10) by examining

tr(Janti) = u + 6r2 − 5r4 + 3κ1 (4.13)

and

det(Janti) = 2(u + 6r2 − 5r4)κ1 + 2σr2(r2
m − r2)κ2 + 2κ2

1 + 4κ2
2. (4.14)

For simplicity, we consider a special case when κ1 = 0 and |κ2| ≪ 1. In such

a case, it may easily be seen that both tr(Jin) and tr(Janti) in (4.11) and (4.13),

respectively, are negative, as stability of the periodic solution of (4.7) means that

u + 6r2 − 5r4 < 0. So, from (4.11) and (4.13), tr(Jin) < 0, and tr(Janti) < 0.

For this weak coupling, it is also evident that
(

tr(Jin(anti))
)2

> 4det(Jin(anti)).

Hence, the system will have a stable node for det(Jin(anti)) > 0 and a saddle for

det(Jin(anti)) < 0.

To explain the within-burst synchrony change observed in figures 3.9 and 3.10,

we write (4.12) and (4.14) to first order in κ2, we approximate κ1 = 0 and consider

small κ2 > 0, gives

det(Jin) = −2σr2(r2
m − r2)κ2 + O(κ2

2) (4.15)

and

det(Janti) = 2σr2(r2
m − r2)κ2 + O(κ2

2). (4.16)

From equation (5.15), if r > rm + O(κ2), then det(Jin) > 0. Together with

the condition tr(Jin) < 0, this implies that the inphase solution is stable, whereas

(4.16) implies that the antiphase solution is unstable for r < rm + O(κ2). We may

derive approximate expressions for r(= rl) where the bifurcations take place. We

denote the bifurcation value for amplitude of the inphase solution by rin, and the

amplitude of the antiphase solution by ranti. Note that rin may be obtained by

equating det(Jin) to zero in the equation (4.12) with κ1 = 0 giving

det(Jin) = −κ2(2σr2
in − 2σr2

inr
2
m − 4κ2) = 0. (4.17)



CHAPTER 4. ANALYSIS OF WITHIN-BURST SYNCHRONY CHANGES 94

Now solving (4.17) gives

rin = rm(1− κ2

σr4
m

) + O(κ2
2). (4.18)

Likewise, from equation (4.14), the bifurcation point, ranti, may be obtained as

ranti = rm(1 +
κ2

σr4
m

) + O(κ2
2). (4.19)

Note that r depends on u via (4.8). So, the corresponding bifurcation points for

in(anti)phase oscillations can be derived from (4.18, 4.19) and (4.8) for the special

case κ1 = 0 as

uin = r2
m(r2

m − 2) +
4κ2

σr2
m

(1− r2
m) + O(κ2

2), (4.20)

and

uanti = r2
m(r2

m − 2)− 4κ2

σr2
m

(1− r2
m) + O(κ2

2). (4.21)

Note that a more general analysis of these bifurcation points for non-zero κ1 and

κ2 can be undertaken by examining roots of (4.12, 4.14).

4.1.3 Synchrony bifurcations of the fast subsystem

We now extend the numerical bifurcation analyses of the fast subsystem (4.3) from

figure 4.1 by taking η as the singular perturbation parameter to take the fast system

through single bursts and to compare with the asymptotic results found for κ1 = 0.

We present in figure 4.2 bifurcations of bursting solutions of (4.3) projected

onto the phase difference, φ, as u is varied. The solid line represents the stable

periodic solutions, while the unstable solutions are shown with dash-dotted lines.

The arrow, running from right to left, shows the direction of the change of u.

What figure 4.2(a) shows is a burst that begins with stable inphase solution, and

till almost half way through the burst, the inphase solution remains stable and

then the antiphase solutions gain stability. The coupling coefficients in this results

are κ1 = 0.001 and κ2 = 0.2. The other parameter values are σ = 3, ω = 3, and

rm = 1.35. This behaviour agrees with the simulation result shown in the figure 3.9

and figure 4.1, both obtained for the same parameters. Similarly, figure 4.2(c)

explains what is found in the simulation in figure 3.10. Here, the burst starts off
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Figure 4.2: Bifurcation diagram of φ against u for the burst-synchronized constrained

system (4.3), where u is a parameter that slowly decreases during each burst as shown

by the arrow. The parameters are ω = 3, σ = 3, rm = 1.35, and different κ1 and κ2

as indicated in the panels from (a) to (d). Note (a) corresponds to the parameters in

figure 3.9 and 4.1 and (c) to that in figure 3.10. The solid lines represent stable solutions,

while the unstable solutions are shown with dash-dotted lines.
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Figure 4.3: Two parameter bifurcation diagram of σ against u for the fast subsystem of

(4.3). The other parameters are fixed at κ1 = 0.001, κ2 = 0.2, and rm = 1.35. There are

stable inphase oscillations in region b,c, and stable antiphase oscillations in region a,b.

in stable antiphase and changes to stable inphase. Figure 4.2(b) and (d) show the

results with κ1 = −0.001 but different κ2. An interesting observation is the presence

of the bistable region around the middle of the burst separating the stable inphase

and antiphase solutions. This region occurs near the transition point (rm = 1.35)

along the burst profile as predicted in the analysis in the previous section. These

bifurcations show the robust coexistence of the inphase and antiphase synchrony

patterns of the within burst spikes for a range of u, and within-burst synchrony

changes of the coupled bursting system (3.4).

Figure 4.3 shows a two-parameter bifurcation diagram in the uσ plane. As

σ increases, the bistable region is seen to get narrower, in agreement with (4.18,

4.19). Likewise, figure 4.4 is obtained from parameters: κ1 = 0.001, κ2 = 0.2, and

σ = 3. This figure shows how the position of the bistable region ‘b’ changes on

varying rm.

The role of the coupling parameter κ1 is shown in figures 4.5 and 4.6 for two

values of κ2. The parameters in figure 4.5 are κ2 = 0.2, σ = 3, and rm = 1.35

and the behaviour is similar to figure 4.2(a) and (b). It is interesting to note that

within-burst synchrony changes appear even for weak inhibitory coupling (κ1 <

0). Moreover, stronger inhibitory values of κ1 would mean only antiphase spike

synchronization. Similarly, figure 4.6 demonstrates similar dynamics to figure 4.2(c)
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Figure 4.4: Two parameter bifurcation diagram of rm against u, for system and param-

eters as in figure 4.3 and σ = 3. There are stable inphase oscillations in the region b,c,

and stable antiphase oscillations in the region a,b.
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Figure 4.5: Bifurcation diagram of κ1 against u for system and parameters as in fig-

ure 4.2(a,b) with κ2 = 0.2. There are stable inphase oscillations in the region b,c, and

antiphase in the region a,b.
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Figure 4.6: Two parameter bifurcation diagram of κ1 against u for system and parame-

ters as in figure 4.2(c,d) κ2 = −0.2. There are stable antiphase oscillations in the region

a,b, and inphase in the region b,c.

Table 4.1: Comparison of the bifurcation points, rin, ranti, uin and uanti, obtained

from simulations of system (4.3) and those from equations (4.18, 4.19, 4.20, 4.21)

for κ1 = 0, κ2 = 0.2, σ = 3 and rm = 1.35.

rin ranti uin uanti

From system (4.3) (figure 4.5) 1.3210 1.376 -0.4433 -0.2027

From equations (4.18, 4.19, 4.20, 4.21) 1.3229 1.3771 -0.4438 -0.2032

and (d). Figure 4.6 has parameters as those in figure 4.5 except κ2 = −0.2. The

excursion of the bistable region ‘b’ above the dotted horizontal line indicates the

appearance of within-burst synchrony changes for weak excitatory values, κ1 > 0.

Stronger κ1 results in inphase spike synchronization.

Tables 4.1 and 4.2 show the comparison of the inphase and antiphase bifurcation

points, rin, uin and ranti, uanti, for κ1 = 0 and two values of κ2 calculated from

(4.18, 4.20) and (4.19, 4.21), respectively, with those from simulations of systems

(4.3). Note that the bifurcation points obtained from (4.3) and the approximate

(4.18, 4.19, 4.20, 4.21) agree very well.

Figures 4.7 and 4.8 portray bifurcation diagram in uκ2-space for two values κ1.

These figures show the role of κ2 in spike synchronization. Figure 4.7 uses the

parameters: κ1 = 0.001, σ = 3, rm = 1.35. For negative and weak positive values
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Table 4.2: Comparison of the bifurcation points as in table 4.1 except κ2 = −0.2.

rin ranti uin uanti

From system (4.3) (figure 4.6) 1.376 1.321 -0.2027 -0.4433

From equations (4.18, 4.19, 4.20, 4.21) 1.377 1.3229 -0.2032 -0.4438
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Figure 4.7: Two parameter bifurcation diagram of κ2 against u for system and param-

eters as in figure 4.2(a,b) with κ1 = 0.001. There are stable inphase oscillations in the

region b,c, and antiphase in the region a,b.
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Figure 4.8: Bifurcation diagram as in figure 4.7 but κ1 = −0.001. There are stable

inphase oscillations in the region b,c, and antiphase in the region a,b.
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of κ2 (region c) only stable inphase solutions are present. It may be observed that

the bistable region b narrows down with decreasing κ2 without intersecting the

bifurcation branches and the within-burst synchrony change move to the left or

towards the end of the burst. In the simulation of the full system within-burst

synchrony changes were not observed for smaller values of κ2 in order of that of κ1,

more precisely we did not observe within-burst synchrony changes for κ2 < 0.05

and that is because the within-burst synchrony changes move more to the burst

offset point preventing the synchrony changes in practice. Figure 4.8 shows the

bifurcation diagram for κ1 = −0.001. As before a,b are regions of stable antiphase,

and b,c the stable inphase solutions. It may be observed that for negative and weak

positive values of κ2 (region a), one can see only stable antiphase synchronization

of spikes in the burst.

4.2 Understanding within-burst synchrony changes

from the constrained system

Recall from figure 4.1 that the constrained system can be used to explain periodic

bursting with a within-burst synchrony change in coupled bursters. In this section

we examine the effect of noise, the extension to three bursters and to more general

couplings.

4.2.1 Effects of noise on within-burst synchrony changes

We include in this section a discussion of the influence of noise on the phenomenon

of within-burst synchrony changes for coupled elliptic bursters. Noise was added

to the fast subsystems of the governing system for two coupled bursters (3.4, 3.5,

3.6). We considered Wiener noise W which in the XPPAUT incorporated as ‘func-

tions’ that return scaled white noise [33]. hey are held xed for t to t + dt during

an integration. At each time step, they are then changed and their value is a nor-

mally distributed random number with zero mean and unit variance. The program

scales them by the appropriate time step as well. Their purpose is so that one can
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Figure 4.9: Noise dependent bifurcation delays both at onset of burst from Andronov-

Hopf bifurcation point at uH and within-burst synchrony change at uin for two coupled

bursters (3.4, 3.5, 3.6). The trajectories for the four indicated amplitudes of added

noise with same initial conditions and parameters as in figure 3.9 with u = u1+u2

2 are

superimposed on the bifurcation diagram 4.1. The dashed arrows show the direction

of trajectory during a periodic bursts. Note the delays reduce with increasing noise

amplitude; this is a typical slow passage effect.
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use methods other than Euler for solving noisy problems. In our simulation we

considered the noise term as δW where δ is a small amplitude. It is well known

that bursters are significantly affected by the presence of noise, even if it is low

amplitude, because of slow passage effects. In particular the Andronov-Hopf bifur-

cation at the onset of each burst is delayed by a time approximately proportional

to the logarithm of the noise level [116, 95, 77, 78]. This effect can be understood

as a delay in leaving the neighbourhood of the quiescent equilibrium state after

it has gone unstable (i.e. where the slow variable passes through the Andronov-

Hopf bifurcation point shown in figure 3.8(d)); larger amplitude noise generates

the required fluctuation sooner.

However, there is an additional effect: within-burst synchrony change also ex-

hibits a slow passage effect (a delayed pitchfork bifurcation at loss of synchrony).

Figure 4.9 exhibits evidence of both slow passage effects; there are delays corre-

sponding to transitions to bursting and synchrony change (uH and uin, respec-

tively), depending on noise amplitude δ. On increasing noise above 10−2 (not

shown) the synchrony change is no longer apparent because there are large fluc-

tuations in the amplitude and phase difference within burst caused by the noise.

Moreover, if the noise level is too small, the delay to the within-burst synchrony

change may become longer than the length of the burst. Indeed, the system without

noise may become ‘stuck’ in an inphase solution for the whole burst.

4.2.2 Examples with biologically-motivated coupling

We now demonstrate that within-burst synchrony changes may also emerge in sys-

tems of coupled Bautin bursters with more biologically motivated coupling schemes:

this includes gap-junction coupling, i.e., a linear diffusive coupling, and nonlinear

synaptic coupling as discussed in [30, 96] in the context of the Bautin normal form.

Firstly, we consider gap-junction coupling Kj in (3.4) as

Kj = (κ1 + iκ2)

n
∑

k=1

cjk(zk − zj), (4.22)
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Figure 4.10: Within-burst synchrony change from stable inphase to stable antiphase

states for two coupled bursters governed by the system (3.4, 3.5) and ‘gap-junction’

coupling (4.22). This pattern repeats during each burst. The parameters are σ = 5,

κ1 = −0.001, κ2 = 0.2, rm = 1.35, ω = 0.001 and η = 0.005. A low amplitude noise of

order 10−6 is added to the components of the fast subsystem.
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Figure 4.11: Within-burst synchrony change from stable inphase to stable antiphase

states for two coupled bursters governed by the system (3.4, 3.5) and ‘nonlinear synaptic’

coupling (4.23). This pattern repeats during each burst. The parameters are σ = 5,

κ1 = −0.001, κ2 = 0.2, rm = 1.35, ω = 0.003 and η = 0.005.
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with j 6= k but still a complex coefficient as in [30, 96]. Figure 4.10 demonstrates a

simulation of (3.4, 3.5) for two coupled Bautin bursters with gap-junction coupling

(4.22). It is apparent from this figure that the system undergoes within-burst

synchrony changes from inphase to antiphase. Secondly, we consider cubic coupling

between the bursters as an approximation to nonlinear synaptic coupling [30]:

Kj = (κ1 + iκ2)
n

∑

k=1

cjkz
2
kzk. (4.23)

Figure 4.11 shows the simulation of (3.4, 3.5) with nonlinear coupling (4.23) for

two coupled bursters. As in the direct and gap-junction coupling cases, the system

undergoes within-burst synchrony changes from inphase to antiphase. We have

not done a detailed analysis of burst constrained systems with gap-junction and

nonlinear synaptic coupling, but this should be possible as in Section 4.1. The

simulations presented here show in particular that direct coupling is not necessary

for within-burst synchrony changes in coupled Bautin bursters. Moreover, it is

obvious that inclusion of biologically motivated coupling types (4.22, 4.23) do not

pose any additional mathematical complexity. It is obvious that the extra term

zj in the gap-junction coupling (4.22) merely shifts the bifurcation points uin and

uanti and similar mathematical analysis may be carried out for these coupling cases.

The examples we have studied are clearest for ‘long’ bursts where there are

many oscillations within a burst. Similar effects are also present in shorter bursts,

but are harder to observe because the changes in synchrony must occur over a small

number of spikes to be observable. Moreover, burst length is inversely proportional

to the slow time scale η, so the clearest within-burst synchrony changes are observed

for sufficiently small η. Also note that eigenvalues for the fast subsystem (4.9, 4.10)

depend on the coupling strength but not on η, so apart from bifurcation delay we

expect no constraint between η, κ1 and κ2 other than all being small enough.



Chapter 5

Within-burst cascade of

synchrony changes

In the previous chapter we analyzed the within-burst synchrony change property

of two coupled elliptic bursters governed by (3.8) with nonisochronicity given by

(3.10, 3.11, 3.12). The synchrony change is associated with the turning point in in-

stantaneous frequency (frequency transition) within a burst. So, it is intuitive that

if non-isochronous term in the fast subsystem accommodates multiple frequency

transitions, then this should cause a sequence of synchrony changes within a cou-

pled system of elliptic bursters. In this chapter we show that multiple frequency

transitions can cause multiple synchrony changes. We call the latter within burst

cascades of synchrony changes. Here we explore both numerically and analytically

examples of within-burst cascade synchrony changes in coupled elliptic bursters, by

having an appropriate modification to our model and we restrict our investigation

to two elliptic bursters with direct coupling between them.

5.1 The model

To begin with, we present a model for a single elliptic burster with a specified

frequency transition of fast spikes at two points within one burst period and then

we present an example of two elliptic bursters with direct coupling.

105
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5.1.1 Single compartment elliptic burster

We modify the original system(3.8) by incorporating additional frequency transi-

tions. The normal form for single compartment Bautin elliptic burster may be

written separating the complex terms in the fast subsystem as

ż = uz + 2z|z|2 − z|z|4 + iΩz

u̇ = η(a− |z|2)







(5.1)

and

Ω = ω + ω0|z|2 + ω1|z|4 + ω2|z|6. (5.2)

Here ω is the frequency of the fast spiking as before and ω0, ω1, ω3 ∈ R. We assume,

dΩ

dr
= σr(r2 − r2

p)(r
2 − r2

q )

= σ
(

r5 − (r2
p + r2

q )r
3 + r2

pr
2
qr

)

.











(5.3)

So,

Ω = ω +
1

2
σr2

pr
2
qr

2 − 1

4
σ(r2

p + r2
q)r

4 +
1

6
σr6

= ω +
1

2
σr2

pr
2
q |z|2 −

1

4
σ(r2

p + r2
q)|z|4 +

1

6
σ|z|6.











(5.4)

Comparing (5.2) and (5.4) we obtain

ω0 =
1

2
σr2

pr
2
q

ω1 = −1

4
σ(r2

p + r2
q)

ω2 =
1

6
σ.



























(5.5)

Here, rp, rq ∈ R signify the position of frequency transitions along the burst profile,

and we assume rp < rq < r with z = x + iy, r =
√

x2 + y2.

5.1.2 Model for coupled elliptic bursters

The general model for elliptic bursters directly coupled with all-to-all may be writ-

ten as

żj = ujzj + 2zj|zj |2 − zj |zj|4 + iΩjzj + Kj

u̇j = η(a− |zj |2),







(5.6)
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Where

Ωj = ω +
1

2
σr2

pr
2
q |zj|2 −

1

4
σ(r2

p + r2
q)|zj |4 +

1

6
σ|zj|6

Kj = (κ1 + iκ2)

n
∑

k=1

cjkzk.



















(5.7)

We set cjk = 1 implying all-to-all coupling between the bursters and j, k = 1, · · · , n,

where n is the number of bursting cells.

5.2 Cascades with two synchrony changes

In this section we explore the within-burst synchrony changes for two coupled el-

liptic bursters where each of the burster dynamics is governed by (5.1, 5.4) and the

coupled system by (5.6, 5.7). The frequency changes at rp and rq are expected to

cause a double within-burst synchrony changes associated with rp and rq, respec-

tively. The Euclidean of (5.6, 5.7) for n = 2 may be written as

ẋj = (ujxj − ωyj) + (2xj −
σr2

pr
2
q

2
yj)(x

2
j + y2

j ) + (−xj +
σ(r2

p + r2
q)

4
yj)(x

2
j + y2

j )
2

− σ

6
yj(x

2
j + y2

j )
3 + κ1xk − κ2yk

ẏj = (ωxj + ujyj) + (
σr2

pr
2
q

2
xj + 2yj)(x

2
j + y2

j ) + (−yj −
σ(r2

p + r2
q)

4
xj)(x

2
j + y2

j )
2

+
σ

6
xj(x

2
j + y2

j )
3 + κ2xk + κ1yk

u̇j = η(a− x2
j − y2
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(5.8)

Here, j, k = 1, 2, and j 6= k.

5.2.1 Simulation of two within-burst synchrony changes

We numerically investigate the dynamics of two coupled elliptic bursters governed

by the system (5.8). Burst synchronization between the cells can easily be achieved

for a wide range of parameter values with this system. With excitatory coupling this

generally generates inphase bursts, while antiphase bursts result from inhibitory

coupling. There are spontaneous within-burst cascades of synchrony changes ob-

servable in Figure 5.1. Panel (b) shows the periodic bursts with the fast variables x1
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Figure 5.1: Within-burst cascade of synchrony changes from stable antiphase to stable

inphase to again stable antiphase states for two coupled elliptic bursters. Activity pattern

of one burst (shown in box) has been blown up in (a); within-burst cascade of synchrony

changes repeats during each burst and the burst repeats periodically (b). Note that the

two coupled bursters are burst synchronized (b) and the spikes become antiphase at the

beginning of the burst, then changes to inphase around the middle and again changes to

antiphase towards the end of the burst (a). These transitions are also observable from d12

(c). These within-burst synchrony changes are characterized by two transitions described

by (5.8).
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Figure 5.2: Within-burst cascade of synchrony changes from stable inphase to stable

antiphase and back to stable inphase states. The governing system and details are as in

Figure 5.1 except for κ1 = 0.008, κ2 = −0.1.

and x2. All transients were allowed to decay. One burst is blown up in the panel (a)

showing the synchronization and transitions. The distinguishing solid and dashed

traces correspond to the two bursting activity patterns,, respectively. The panel (c)

shows the Euclidean distance d12 =
√

(x1 − x2)2 + (y1 − y2)2 + (u1 − u2)2 between

the two bursters to the presence (d12 = 0) or absence (d12 > 0) of synchroniza-

tion. The simulations were done with XPPAUT [33]. For integrations, the built-in

adaptive Runge-Kutta integrator was used. The parameters in the simulation are

σ = 8, κ1 = −0.008, κ2 = 0.1, rp = 1.2, and rq = 1.4. Independent Wiener noise

of amplitude 10−6 was added to the fast variables. The spikes are antiphase at

the beginning of the burst, until the frequency transition in the fast spiking occurs

at rq = 1.4 where they change to inphase. Then the spikes again change to an-

tiphase caused by the frequency transition at rp = 1.2. Consequently, we observe

within-burst cascades of synchrony changes and this is also obvious from d12.

We present another example in Figure 5.2 of within-burst cascades of synchrony

changes for the system (5.8) but with different parameter values. The parameter

values are same as those in Figure 5.1 except for the coupling strengths: κ1 = 0.008,
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κ2 = −0.1. Noise of amplitude 10−6 was also added to the fast subsystems of the

bursters. The panel (a) shows the synchrony patterns of the two bursters illus-

trated by the corresponding fast variables x1 and x2. The bursts are synchronized

throughout (b) but the spikes are inphase at the beginning of the burst, until the

frequency transition at rq = 1.4 where they change to antiphase. Then the spikes

again change back to inphase due to the frequency transition at rp = 1.2. These

examples demonstrate that the within-burst cascades of synchrony changes can

appear as a pair of frequency changes involving the fast spiking of the bursts.

5.2.2 The burst-synchronized constrained model

In this section, we carry out similar basic analysis of the within-burst cascades of

synchrony changes as in Chapter 4. We do this by considering a burst-synchronized

constrained system for (5.6) and (5.7). Generally, the burst-synchronized con-

strained system for coupled n-Bautin burster may be written as

żj = ujzj + 2zj|zj |2 − zj |zj|4 + iΩjzj + Kj

u̇ = η(a− 1

n

n
∑

j=1

|zj|2)















(5.9)

with the constraint u1 = u2 = · · · = u so that the system is put to exact burst

synchronization by the constraint and here j = 1, · · · , n. We write the burst-

synchronized constrained system (5.9) in polar coordinates using transformation

zj = rje
iθj for n = 2 as

ṙ1 = u1r1 + 2r3
1 − r5

1 + r2 (κ1 cos(θ2 − θ1)− κ2 sin(θ2 − θ1))

θ̇1 = ω +
1

2
σr2

pr
2
qr

2
1 −

1

4
σ(r2

p + r2
q)r

4
1 +

1

6
σr6

+
r2

r1
(κ1 sin(θ2 − θ1) + κ2 cos(θ2 − θ1))

ṙ2 = u2r2 + 2r3
2 − r5

2 + r1 (κ1 cos(θ1 − θ2)− κ2 sin(θ1 − θ2))

θ̇2 = ω +
1

2
σr2

pr
2
qr

2
2 −

1

4
σ(r2

p + r2
q)r

4
2 +

1

6
σr6

+
r1

r2

(κ1 sin(θ1 − θ2) + κ2 cos(θ1 − θ2))

u̇ = η

(

a− 1

2
(r2

1 + r2
2)

)

.
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(5.10)
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As we are interested in synchrony changes, we define longitudinal and transverse

coordinates

rl = (r1 + r2)/2

rt = (r1 − r2)/2

φ = θ1 − θ2.


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(5.11)

Thus, the system (5.10), with transformations (5.11), reduces to

ṙl = url + 2r3
l + 6rlr

2
t − r5

l − 10r3
l r

2
t − 5rlr

4
t + κ1rl cos φ− κ2rt sin φ

ṙt = urt + 6r2
l rt + 2r3

t − 5r4
l rt − 10r2

l r
3
t − r5

t − κ1rt cos φ + κ2rl sin φ

φ̇ = 2σr2
pr

2
qrlrt − 2σ(r2

p + r2
q)rlrt(r

2
l + r2

t ) +
2

3
rlrt(3r

4
l + 10r2

l r
2
t + 3r4

t )

− 2κ1
(r2

l + r2
t )

r2
l − r2

t

sin φ− 4κ2
rlrt

r2
l − r2

t

cos φ

u̇ = η
(

a− (r2
l + r2

t )
)

.
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(5.12)

Note the system (5.12) is same as (4.5) except the phase dynamics of the former

contains the non-isochronicity associated with the a pair of frequency transitions of

the fast spiking characterized by rp and rq resulting in two synchrony changes. In

(5.12), (rl, rt, φ) govern the fast dynamics, and u governs the slow dynamics. This

system can be used to understand the spike synchrony behaviour of the coupled

system by the analysis of the fast subsystem via singular perturbation method [93].

5.2.3 Synchrony bifurcation of the fast subsystem

We carry out a numerical bifurcation analysis of the fast subsystem of (5.12) by

taking η as the singular perturbation parameter to understand the within-burst cas-

cades of synchrony changes observed in Figures 5.1, 5.2. We present in Figure 5.3

bifurcations of a bursting solution of (5.10) projected onto the phase difference, φ,

as u is varied. The solid lines represent the stable periodic solutions, while the un-

stable solutions are shown with dash-dotted lines. The arrow, running from right

to left, shows the direction of change of u. What Figure 5.3 shows is a burst that

begins with stable inphase solution, and then antiphase solutions gain stability

via a bifurcation and again the antiphase solutions lose stability to stable inphase
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Figure 5.3: Bifurcation diagram of φ against u for the burst-synchronized constrained

system (5.12), where u is a parameter that slowly decreases during each burst. The

parameters are σ = 8, rp = 1.2, rq = 1.4, κ1 = −0.008 and κ2 = 0.1. The solid lines

represent stable solutions, while the unstable solutions are shown with dash-dotted lines.

The arrow, running from right to left, shows the direction of the change of u during

the active phase of the burst. Note this bifurcation diagram agrees with the synchrony

changes observed in Figure 5.1.
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Figure 5.4: Bifurcation diagram of φ against u for the burst-synchronized constrained

system (5.12) with parameters σ = 8, rp = 1.2, rq = 1.4, κ1 = 0.008 and κ2 = −0.1.

The solid lines represent stable solutions, while the unstable solutions are shown with

dash-dotted lines. The arrow, running from right to left, shows the direction of the

change of u. Note this bifurcation diagram agrees with the synchrony changes observed

in Figure 5.2.

solutions. So, this bifurcation diagram implies the presence of multiple bifurca-

tions on the periodic orbit of the bursting solutions associated with inphase and

antiphase synchrony patterns. Note the presence of bistable regions between the

bifurcations of antiphase and inphase solutions as also observed in Figure 4.2. The

parameters in this result are σ = 8, rp = 1.2, rq = 1.4, κ1 = −0.008 and κ2 = 0.1.

This behaviour agrees with the simulation result shown in Figure 5.1. Similarly,

Figure 5.4 agrees with what is observed in the simulation in Figure 5.2. Here burst

starts of stable inphase, then changes to stable antiphase and again changes back

to stable inphase. The parameter values in this result are σ = 8, rp = 1.2, rq = 1.4,

κ1 = 0.008 and κ2 = −0.1. Hence, both bifurcation diagrams (Figures 5.3, 5.4)

from the burst-synchronized constrained system (5.12) demonstrate the effect of

within-burst cascade of synchrony changes associated with the a pair frequency

transitions in the fast spiking dynamics.
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5.2.4 Stability analysis of the burst-synchronized constrained

system

In this section, we carry out a linear stability analysis similar to Section 4.1 of the

fast subsystem of (5.12) about inphase and antiphase states with rt = 0 and rl = r,

which means both cells are burst synchronized with r1 = r2 = r. In this analysis,

we assume that the slow variable u is a constant of the system by setting the time

scale ratio, η = 0. The dynamics, as a result, is only governed by the fast spiking

activity. For rt = 0 and η = 0 we write rl = r as the stable nontrivial solution of

(5.12) in the appropriate subspace (4.7) corresponding to bursting behaviour. Note

that for small |κ1| there will be a solution close to the single burster case. For the

fast subsystem of (5.12) with u between -1 and +1, one can verify the existence of

two solutions

• Inphase where rt = φ = 0, rl = r,

• Antiphase where rt = 0, φ = π, rl = r,

where r > 0 is the solution of (4.8).

The Jacobian for the fast system at the inphase solution is block diagonal with

a single real eigenvalue and a block

Jin =





u + 6r2 − 5r4 − κ1 κ2r

2σr2
pr

2
qr − 2σ(r2

p + r2
q)r

3 + 2r5 − 4κ2

r
−2κ1



 . (5.13)

Note that the off-diagonal entries of the Jacobian matrices (5.13) depend on the

imaginary part of the coupling coefficient, κ2, and other system parameters. The

real eigenvalues can be assumed negative because of stability of the solution of

(4.7). The eigenvalues of the equation (5.13) can be determined by examining the

trace of the matrix (5.13) which is same as (4.11) and the determinant

det(Jin) = −2(u + 6r2 − 5r4)κ1 − 2σr2(r2
p − r2)(r2

q − r2)κ2 + 2κ2
1 + 4κ2

2. (5.14)

5.2.5 Case κ1 = 0

We consider the special case when κ1 = 0, and |κ2| ≪ 1. In such a case, it may

easily be seen that tr(Jin) in (4.11) is negative, as stability of the periodic solution
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of (4.7) means that u + 6r2 − 5r4 < 0. So, from (4.11), tr(Jin) < 0. For this weak

coupling, it is also evident that
(

tr(Jin)
)2

> 4det(Jin). Hence, the system will have

a stable node for det(Jin) > 0 and a saddle for det(Jin) < 0.

To explain the within-burst synchrony changes observed in Figures 5.1 and 5.2,

we may write the determinant of the matrix (5.13) to first order in κ2 (small κ2 > 0)

by setting κ1 = 0 as

det(Jin) = −2σr2(r2
p − r2)(r2

q − r2)κ2 + O(κ2
2). (5.15)

From equation (5.15), there are three scenarios of possible solutions:

• Unstable inphase for r < rp + O(κ2), rq + O(κ2), implying det(Jin) < 0 and

tr(Jin) < 0;

• stable inphase for rp + O(κ2) < r < rq + O(κ2), implying det(Jin) > 0 and

tr(Jin) < 0;

• unstable inphase for r > rp + O(κ2), rq + O(κ2), implying det(Jin) < 0 and

tr(Jin) < 0.

We may calculate approximate values of r where the bifurcations take place by

equating det(Jin) to zero. Thus, from equation (5.14) with κ1 = 0 we obtain

det(Jin) = −κ2

(

−σr2(r2
p − r2)(r2

q − r2)− 2κ2

)

= r6 − (r2
p + r2

q)r
4 + r2

pr
2
qr

2 − 2κ2

σ

= 0.
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(5.16)

Now for simplicity we assume rP = r2
p + r2

q , rQ = r2
pr

2
q , k2 = 2κ2

σ
, and r2 = x. So,

equation (5.16) reduces to

x3 − rP x2 + rQx− k2 = 0. (5.17)

For given values of κ2, rp, rq and σ, equation (5.17) can be solved to obtain the

r bifurcation points numerically to an order O(κ2
2), and the corresponding slow

variables, u’s, may be obtained from (4.8). Analytical expressions for bifurcation

points in this case will be harder to obtain as Equation (5.17) is a general cubic

expression.
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5.2.6 Case κ1 6= 0

In this section we carry out a qualitative analysis for stability of the inphase solu-

tion. We may write the trace of (5.13) as

tr(Jin) = u + 6r2 − 5r4 − 3κ1 = −|T |, (5.18)

so (5.14) may be written to the first order in κ1 and κ2 with small κ1 < 0, and

small κ2 > 0 as

det(Jin) = 2|T |κ1 − 2σr2(r2
p − r2)(r2

q − r2)κ2 + O(κ2
1, κ

2
2). (5.19)

It is clear that the term 2|T |κ1 is negative because of negative κ1 as per as-

sumption in (5.19). So, as before for r < (rp + O(κ2), rq + O(κ2)), det(Jin) < 0,

and with tr(Jin) < 0 this means the inphase solution is unstable. But as r

grows to rp + O(κ2) < r < rq + O(κ2), we observe 2|T |κ1 must be smaller than

−2σr2(r2
p − r2)(r2

q − r2)κ2 to have a bifurcation so that inphase solution may be-

come stable with det(Jin) > 0 and tr(Jin) < 0. This implies κ1 must be very small

for such dynamics. Again, as r grows further to r > rp + O(κ2), rq + O(κ2), we

obtain det(Jin) < 0 and tr(Jin) < 0, so the inphase solution becomes unstable. For

nonzero κ1 and κ2 one such example is the simulation Figure 5.1 with κ1 = −0.008

and κ2 = 0.1 where the bursts starts off stable antiphase (unstable inphase) and

changes to stable inphase and again antiphase (inphase) becomes stable (unstable)

towards the end.

5.3 Cascades with multiple synchrony changes

We observe the within-burst cascades of synchrony changes resulting from multi-

ple frequency transitions in the fast spiking of the elliptic bursters irrespective of

coupling types (Section 4.2.2). In this section, we develop a Bautin elliptic burster

model by considering a transcendental non-isochronicity. Under this modification

each Bautin elliptic burster dynamics is governed by the system (5.1) with Ω de-

fined as

Ω = ω + σ sin(k|z|2). (5.20)
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Here, k, σ ∈ R are parameters. Obviously, Ω in the form (5.20) implies multiple

frequency transitions in the fast spiking dynamics of the burst governed by (5.1)

and the value of k would affect the number of such frequency transitions; a higher k

indicates more number of frequency transitions and this is expected to cause more

cascades in the within-burst synchrony changes. In what follows in the section we

attempt to obtain more cascades by simulating the system (5.1) with the transcen-

dental Ω (5.20) in two all-to-all directly coupled Bautin elliptic bursters (similar to

the coupling in (5.7)).

5.3.1 Two coupled bursters

In this section, we study two directly coupled Bautin bursters, each of which is

governed by the system (5.1) and (5.20). The Euclidean of (5.1) together with

(5.20) for two coupled system may be written as

ẋj = (ujxj − ωyj) + 2xj(x
2
j + y2

j )− xj(x
2
j + y2

j )
2 − σyj sin

(

k(x2
j + y2

j )
)

+ κ1xk − κ2yk

ẏj = (ωxj + ujyj) + 2yj(x
2
j + y2

j )− yj(x
2
j + y2

j )
2 + σxj sin

(

k(x2
j + y2

j )
)

+ κ2xk + κ1yk

u̇j = η(a− x2
j − y2

j ).
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(5.21)

Here, j, k = 1, 2, and j 6= k.

Figure 5.5 illustrates the within-burst cascade of synchrony changes in the cou-

pled system (5.21) where the cascades contain more than two synchrony changes

as observed before in Figures 5.1 and 5.2. The parameters for both Figures 5.5(a)

and (b) are ω = 10−6, σ = 7, η = 0.005; the parameter k = 13. Here only one

burst period is shown in each case and this pattern repeats. Here the activity

of the two bursts, x1, x2, are superimposed and it is obvious that the bursts are

synchronized. The simulation was conducted in XPPAUT [33] with Runge-Kutta

integrator. In Figure 5.5(a), the coupling co-efficients are κ1 = 0.001 and κ2 = 0.1.

Here we observe that the synchronized bursts begin with inphase spikes and then

spike synchronization changes to antiphase and then to inphase , then to antiphase
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Figure 5.5: Simulation of the system (5.21) showing two examples with different coupling

parameters of within-burst cascade of synchrony changes. Only one burst in each example

has been amplified for better observation. The burst pattern repeats with time. Each of

these simulations has been obtained after a run of 106 steps to get rid of all transients.

Note the cascade changes from inphase to antiphase spikes along the burst profile as

depicted by d12 (thick line) and the spike activities, x1 and x2, of the two bursters shown

with solid and dashed lines, respectively. Note the different order in which the synchrony

patterns change from inphase to antiphase and vice versa in (a) and (b).
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Figure 5.6: Simulation of the system (5.21) for different k. Note the increasing number

of synchrony changes in the within-burst cascades of synchrony changes as k is increased

from (a) to (c). Only one burst is chosen for better depiction, and the pattern repeats

with time. The time series of corresponding d12 is superimposed in bold line; d12 = 0

indicates inphase spikes while d12 6= 0 indicates antiphase.

and finally to inphase at the end of the bursts. So, this is an illustration of within-

burst cascade of synchrony changes involving more than two synchrony changes.

Likewise, Figure 5.5(b) shows another simulation with κ1 = −0.001 and κ2 = −0.1

illustrating similar within-burst cascade of synchrony changes behaviour, but with

an opposite order in the synchrony pattern to the earlier one. In both cases, d12

with zero and nonzero values indicates inphase and antiphase spike synchronization,

respectively.

5.3.2 Cascades with varying number of synchrony changes

The increased number of synchrony changes or cascades in Figure 5.5 in the within-

burst synchrony changes were obtained by considering a transcendental Ω defined

in (5.20) with a high k = 13. In Figure 5.6, we give results of simulation for two
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Figure 5.7: Bifurcation diagram of φ against u for the burst-synchronized constrained

system (5.22), where u is a parameter that slowly decreases during each burst (shown

with arrow). The parameters are κ1 = 0.001, κ2 = 0.1, ω = 10−6, σ = 7, η = 0.005,

and k = 13. The solid lines represent stable solutions, while the unstable solutions are

shown with dash-dotted lines. Indeed this bifurcation diagram agrees with the cascades

of synchrony changes observed in Figure 5.5(a).

coupled Bautin bursters governed by (5.21) with varying k. The parameters in all

the realizations are κ1 = 0.001, κ2 = 0.1, ω = 0.001, σ = 8, and η = 0.001, and low

amplitude noise of order 10−6 was added to the fast subsystems. It is obvious from

the figure that an increasing number of synchrony changes follows on increasing

the value of k. In Figure 5.6(a) and (b) we observe single and double synchrony

changes, respectively. We obtained such behaviour previously with algebraic Ω in

Section 5.2. In fact, the transcendental form for Ω in (5.1) offers a more general

non-isochronous expression.

5.3.3 Bifurcation of the fast subsystem with cascades

A similar bifurcation analysis of the fast subsystem of the burst-synchronized con-

strained system for coupled Bautin bursters can be done to understand the be-

haviour of such cascade of synchrony changes. In this case as before, by deriving

a burst synchronized model of Bautin burster given by (5.1) and (5.20), one can
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obtain a similar system as (5.12) and the fast subsystem can be analyzed to give

a bifurcation diagram of φ against u. By following the above procedure and in-

corporating transformation as (5.11) we obtain the following burst-synchronized

constrained model for system with transcendental non-isochronicity:

ṙl = ulrl + utrt + 2r3
l + 6rlr

2
t − r5

l − 10r3
l r

2
t − 5rlr

4
t + κ1rl cos φ− κ2rt sin φ

ṙt = ulrt + utrl + 6r2
l rt + 2r3

t − 5r4
l rt − 10r2

l r
3
t − r5

t − κ1rt cos φ + κ2rl sin φ

φ̇ = σ sin
(

k(rl + rt)
2
)

− σ sin
(

k(rl − rt)
2
)

− 2κ1
(r2

l + r2
t )

r2
l − r2

t

sin φ− 4κ2
rlrt

r2
l − r2

t

cos φ

u̇l = η
(

a− (r2
l + r2

t )
)

.
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(5.22)

Figure 5.7 shows one such diagram of bifurcation analysis for such system. The

parameters of the analysis are as in Figure 5.5(a). Here, the solid line represents

stable periodic solutions of the burst-synchronized constrained system with Ω in

the form (5.1) and the dash-dotted line represents unstable solutions. In this figure

the multiple cascades representing synchrony changes between stable inphase and

stable antiphase can clearly be observed, and this behaviour is same as found in

Figure 5.5(a).

5.4 Further cascades of synchrony changes

We observe that by introducing even higher order amplitude dependence in Ω than

that in (5.20) such as

Ω = ω + σ sin(k|z|4), (5.23)

even higher number of within-burst synchrony changes may be obtained. One such

example is illustrated in the simulation in Figure 5.8. This simulation is based

on the directly coupled system of Bautin bursters governed by system (5.6) with

Ω defined as (5.23) for each burster. The parameters for all the realizations are

κ1 = 0.001, κ2 = 0.1, ω = 0.001, σ = 5, and η = 0.001. Low amplitude noises

of order 10−6 are added to the fast subsystems. The values of k is varied from

panel (a) to (d) as indicated. It is obvious that the number of synchrony changes
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Figure 5.8: Simulation of the system two coupled Bautin elliptic bursters governed by

the system (5.6) and (5.7) but with Ω for each burster defined by (5.23). The activity

patterns for different values of k are shown. Note the increasing number of synchrony

changes as k is increased from (a) to (d). Only one burst is shown and the pattern repeats

each burst. The superimposed solid line indicates corresponding time series of d12.
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in this system increases dramatically with increasing k. Note at higher values of

k > 9, the spike synchrony patterns develop irregular behaviour (shown in the

corresponding traces of d12) which eventually become highly irregular and lead to

burst desynchronization between the coupled bursters. So, these results confirm

the possibility of within-burst cascades of synchrony changes for robustly coupled

Bautin elliptic bursters.

5.5 Synchrony changes with more general Ω

In this section we carry out an analysis of the within-burst synchrony changes for

two coupled elliptic bursters involving more general nonisochronicity, i.e, Ω(|z|2).
We consider the coupled system (5.6) where Ωj(|zj |2) is an amplitude dependent

arbitrary function and the coupling is defined by Kj in the equation (5.7). For

n = 2, the burst synchronized constrained system for two coupled burster system

with Ωj(|zj|2) may be written in polar its counterpart as following

ṙ1 = u1r1 + 2r3
1 − r5

1 + r2 (κ1 cos(θ2 − θ1)− κ2 sin(θ2 − θ1))

θ̇1 = ω + Ω(r2
1) +

r2

r1
(κ1 sin(θ2 − θ1) + κ2 cos(θ2 − θ1))

ṙ2 = u2r2 + 2r3
2 − r5

2 + r1 (κ1 cos(θ1 − θ2)− κ2 sin(θ1 − θ2))

θ̇2 = ω + Ω(r2
2) +

r1

r2

(κ1 sin(θ1 − θ2) + κ2 cos(θ1 − θ2))

u̇ = η

(

a− 1

2
(r2

1 + r2
2)

)

.
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(5.24)

Note that the nonisochronous terms in the above system are in general form.

Now applying transformation (5.11) on system (5.24), we obtain

ṙl = url + 2r3
l + 6rlr

2
t − r5

l − 10r3
l r

2
t − 5rlr

4
t + κ1rl cos φ− κ2rt sin φ

ṙt = urt + 6r2
l rt + 2r3

t − 5r4
l rt − 10r2

l r
3
t − r5

t − κ1rt cos φ + κ2rl sin φ

φ̇ = Ω
(

(rl + rt)
2
)

− Ω
(

(rl − rt)
2
)

− 2κ1
(r2

l + r2
t )

r2
l − r2

t

sin φ− 4κ2
rlrt

r2
l − r2

t

cos φ

u̇ = η
(

a− (r2
l + r2

t )
)

.
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(5.25)

Now we analyze the stability of the fast subsystem of (5.25) as before by considering

slow-fast decomposition by setting η = 0. Thereafter the Jacobian for the fast
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subsystem of (5.25) at the inphase solution (rt = φ = 0, rl = r) is a block diagonal

with a single real eigenvalue and a block

Jin =





u + 6r2 − 5r4 − κ1 κ2r

4rΩ′ − 4κ2

r
−2κ1



 (5.26)

where Ω′ = ∂Ω
∂r

. The eigenvalues of (5.30) can be determined by examining the

trace and the determinant of the matrix. The determinant of (5.30) is

det(Jin) = −2κ1(u + 6r2 − 5r4)− 4κ2Ω
′r2 + 2κ2

1 + 4κ2
2. (5.27)

For simplicity we consider as before the special case when κ1 = 0 and κ2 ≪ 1.

As observed before tr(Jin) is negative because of the stable periodic solution of

the system and for weak coupling (tr(Jin))2 > 4det(Jin). In order to explain the

within-burst synchrony changes, we may write (5.27) to first order in κ2 and by

setting κ1 = 0 as

det(Jin) = −4Ω′r2κ2 + O(κ2
2). (5.28)

It is obvious from (5.28), the change in sign of det(Jin) and consequently the

synchrony changes and their stability depends on that of Ω′; the system will have

stable node for det(Jin) > 0 and saddle for det(Jin) < 0. Moreover, the approximate

values of r where the bifurcation take place can be determined by solving det(Jin) =

0, or

Ω′r2
inκ2 − κ2

2 = 0. (5.29)

Similarly for antiphase solutions where rt = 0, φ = π and tl = r, similar analysis

yields

Janti =





u + 6r2 − 5r4 − κ1 −κ2r

4rΩ′ + 4κ2

r
−2κ1



 (5.30)

and the determinant

det(Janti) = −2κ1(u + 6r2 − 5r4) + 4κ2Ω
′r2 − 2κ2

1 − 4κ2
2. (5.31)

Again for the special case κ1 = 0 and κ2 ≪ 1

det(Jin) = 4Ω′r2κ2 + O(κ2
2). (5.32)
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here the change in stability of the solutions depends on the sign of Ω′ and the

bifurcation values of r can be found by solving

Ω′r2
inκ2 + κ2

2 = 0 (5.33)

Hence, a similar analysis for within-burst synchrony changes can be done for

more general Ω(|z|2) and it is obvious that the change in stability of inphase and

antiphase solutions depens on sign of Ω′ as was shown with especial cases in the

previous sections.



Chapter 6

Within-burst synchrony changes

in higher dimensions

In Chapters 3, 4 and 5 we explored within-burst synchrony changes for a system of

coupled Bautin bursters consisting of two cells for different isochronous conditions.

In this chapter we briefly investigate within-burst synchrony changes for a system of

higher dimension. Particularly we study a coupled system of three Bautin bursters.

In this study we consider the non-isochronous case where the fast spikes undergo

frequency transition characterized by the parameter rm as in (3.12) along the burst

period. We consider all-to-all direct linear coupling as in Section 3.4. We also

investigate the phenomenon for a system of four Bautin elliptic bursters.

6.1 Three-coupled elliptic bursters system

In order to demonstrate within-burst synchrony changes in a three-coupled elliptic

burster system, we use the model (5.6) with

Ωj = ω +
1

2
σr2

mr2
j −

1

6
σr4

j (6.1)

where j = 1, · · · , n, where n is the number of bursting cells. The fast spikes in

the bursters therefore have one frequency transition characterized by position rm

along the burst profile. In fact this is what was studied in Chapters 3 and 4 for

two coupled Bautin elliptic bursters. Now, the Euclidean of the governing system

126
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may be written as

ẋj = (ujxj − ωyj) + (2xj −
σr2

mr2
j

2
yj)(x

2
j + y2

j )

+ (−xj +
σr2

m

4
yj)(x

2
j + y2

j )
2 +

∑

k 6=j

(κ1xk − κ2yk)

ẏj = (ωxj + ujyj) + (
σr2

m

2
xj + 2yj)(x

2
j + y2

j )

+ (−yj −
σr2

m

4
xj)(x

2
j + y2

j )
2 +

∑

k 6=j

(κ2xk + κ1yk)

u̇j = η(a− x2
j − y2

j )
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(6.2)

where j, k = 1, 2, 3.

It is obvious from Figures 6.1 and 6.2 that system of three elliptic bursters

can demonstrate within-burst synchrony changes behaviour similar to two-elliptic

burster system (Figures 3.9 and 3.10).

Figure 6.1 shows the simulation of the system (6.2) with parameters ω = 0.1,

rm = 1.35, σ = 5, κ1 = 0.001, κ2 = 0.2. In addition, noise of amplitude 10−5

was added to the fast subsystem of each burster. The simulation was done with

XPPAUT [33] with adaptive Runge-Kutta integrator. This simulation shows the

similar spontaneous within-burst synchrony changes in this even higher dimensional

system. The three bursts are synchronized and the fast spiking oscillations are

inphase at the beginning within the burst, but change to antiphase as the frequency

of the fast spiking shifts (6.1). The idea of antiphase in the case of three bursters is

characterized by a phase shift of 2π
3

relative to each other. The inset in the top panel

shows a detail of the activity patterns, x1, x2, and x3, where the transition takes

place. The middle panel shows the corresponding slow variables, u1, u2 and u3,

whose synchrony implies burst synchronization of the dynamics. The third panel

shows plots of d12, d13, and d23 that must be zero for inphase synchronization,

where

dij =
√

(xi − xj)2 + (yi − yj)2 + (ui − uj)2, (6.3)

with i, j = 1, 2, 3.

Secondly, Figure 6.2 shows similar within-burst synchrony changes for three-

burster system. The governing system and parameters of this simulation are same
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Figure 6.1: Within-burst synchrony changes in three Bautin elliptic bursters governed

by (6.2). Here within-burst synchrony changes from stable inphase to stable antiphase.

The dashed box shows the activity pattern of one burst, the burst repeats periodically

and the within-burst synchrony change appears during each burst. The parameters of the

simulation are ω = 0.1, rm = 1.35, σ = 5, κ1 = 0.001, κ2 = 0.2. Noise of amplitude 10−5

was added to the fast subsystem of each burster. In the figure, the three bursters are

burst synchronized (middle) and the spikes in the bursts are inphase at the beginning of

the burst but change to antiphase near the middle of the burst. The activities, x1, x2, x3,

of the three different bursters are shown in solid, dashed and dotted lines, respectively.

The inset shows the region of transition. The bottom panel shows the corresponding

pattern of d12, d13 and d23 implying spike synchrony behaviour.
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Figure 6.2: Another example of within-burst synchrony changes for three-Bautin elliptic

bursters. The parameters and details of this simulation are same as those of Figure 6.1

except κ1 = −0.001, κ2 = −0.2. For this different coupling we can see the spikes are

antiphase to each other at the beginning but changes to inphase past the frequency

transition point at rm = 1.35 along the burst profile.

as those for Figure 6.1 except κ1 = −0.001, κ2 = −0.2. This causes the spike

oscillations in the synchronized bursts to have antiphase synchronization at the

beginning which soon changes to inphase past the frequency shift towards the end

of the burst. Hence, these examples establish the within-burst synchrony changes

in the higher-dimensional system of coupled Bautin elliptic bursters.

6.2 Synchrony bifurcation for fast subsystem of

three-Bautin burster system

In this section we carry out bifurcation analysis of the fast subsystem of (6.2) for

three-Bautin burster system by continuing the transverse phase variables of the

oscillations. This is done by studying a burst-synchronized constrained model for

the dynamics. In the polar coordinate the system (3.12) for n = 3 may be recast

as
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Figure 6.3: Bifurcation diagram of φ12 (defined in (6.5)) against u for three cou-

pled bursters. The parameters are κ1 = 0.001, κ2 = 0.2, σ = 5 and rm = 1.35.

Here, S(U)FP=stable (unstable) fixed point, S(U)P=stable (unstable) period and

HB=Andronov-Hopf bifurcation point. uin and uanti, the inphase and antiphase bi-

furcation points, respectively, are shown with arrows. The big arrow on top shows the

direction of change of u. The branches C1 and C2 are unstable solutions where spikes

from two bursters are synchronized while those from the third are not. The solid (dash-

dotted) lines represent (unstable) stable solutions.
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ṙ1 = u1r1 + 2r3
1 − r5

1 + κ1(r2 cos φ12 + r3 cos φ13)

+ κ2(r2 sin φ12 + r3 sin φ13)

θ̇1 = ω +
1

2
σr2

mr2
1 −

1

4
σr4

1 − κ1

(

r2

r1
sin φ12 +

r3

r1
sin φ13

)

+ κ2

(

r2

r1

cos φ12 +
r3

r1

cos φ13

)

u̇1 = η(a− r2
1)

ṙ2 = u2r2 + 2r3
2 − r5

2 + κ1(r1 cos φ12 + r3 cos(φ12 − φ13))

− κ2(r1 sin φ12 + r3 sin (φ12 − φ13))

θ̇2 = ω +
1

2
σr2

mr2
2 −

1

4
σr4

2 + κ1

(

r1

r2

sin φ12 +
r3

r2

sin(φ12 − φ13)

)

+ κ2

(

r1

r2
cos φ12 +

r3

r2
cos (φ12 − φ13)

)

u̇2 = η(a− r2
2)

ṙ3 = u3r3 + 2r3
3 − r5

3 + κ1(r1 cos φ13 + r2 cos(φ12 − φ13))

− κ2(r1 sin φ13 − r2 sin (φ12 − φ13))

θ̇3 = ω +
1

2
σr2

mr2
3 −

1

4
σr4

3 + κ1

(

r1

r3
sin φ13 +

r2

r3
sin(φ13 − φ12)

)

+ κ2

(

r1

r3
cos φ13 +

r2

r3
cos (φ13 − φ12)

)

u̇3 = η(a− r2
3).























































































































































































































(6.4)

Now defining transverse phase variables φ12 and φ13 as

φ12 = θ1 + θ2

φ13 = θ1 − θ3,







(6.5)

and letting u1 = u2 = u3 = u, we obtain the reduced burst-synchronized model:
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ṙ1 = ur1 + 2r3
1 − r5

1 + κ1(r2 cos φ12 + r3 cos φ13)

+ κ2(r2 sin φ12 + r3 sin φ13)
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(6.6)

Note in this system φ23 was eliminated using the symmetry φ23 = θ2 − θ3 =

θ2−θ1+θ1−θ3 = φ13−φ12. Figure 6.3 shows the bifurcation diagram of φ12 against

u. The stable inphase solutions at the beginning and stable antiphase solutions at

the end of the burst can be seen. Note the Andronov-Hopf bifurcation point (HB)

on the antiphase solution curve generates stable periodic (SP) orbit which in reality

can not be viewed in the simulation as the system ‘sticks’ to this stable inphase

solution branch even after passing an inphase bifurcation point (uin) and thus the

stable periodic branch is not observed. One interesting feature of this bifurcation

is the two additional branches labeled C1 and C2. These imply the other possible

solutions of the system which include two spike oscillations are synchronized while

the third one is not synchronized with them. Note both C1 and C2 are unstable and

symmetric. Figure 6.5 depicts the phase-space dynamics of one of these branches

and note the dynamics will be similar for other branch due to symmetry. The insets



CHAPTER 6. WITHIN-BURST SYNCHRONY CHANGES IN HIGHER DIMENSIONS133

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
u

φ 12
Inphase u

in

C1

C2

φ12

φ13

φ12

φ13

φ12

φ13

(a)

(b)

(c)

Bifurcation 

Figure 6.4: The phase-space dynamics in the φ12φ13-space of branches C1 and C2 of

bifurcation diagram 6.3. The (un)filled circles indicate (un)stable nodes in the phase-

space (after [6]).

(a)–(c) illustrates the phase-space diagram as the system transverses bifurcation

point. It is clear that these unstable branches are amenable to continuation as

there are stable directions exist when φ12 6= 0 and φ13 6= 0. An interesting global

bifurcation scenerio is shown in the figure 6.5. One dynamically invariant triangle

is shown and at the bifurcation point there is a connection in the lattice between

adjacent inphase solutions. The local behavour near an inphase solution (one of

the vertices) is shown in figure 6.5. We can clearly observe in the right triangle the

emergence of the periodic orbit created by the global connection [6]).

It is difficult to do a complete stability analysis for synchrony dynamics for

three-Bautin burster system. Nevertheless, a simple analysis may be done based

on the reduced model (6.6). We present a outline of calculating the bifurcation

point, particularly the inphase bifurcation point in the spirit of Chapter 5 where

similar calculation was conducted in details for two Bautin bursters. In order to
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Figure 6.5: Global bifurcation of the three-bautin burster system. One dynamically

invariant triangle is shown. The local behaviour near inphase solution (one of the ver-

tices) is shown in figure 6.3. The middle triangle shows the dynamics at the bifurcation

point (figure 6.3(b)) and the right triangle shows the emergent periodic orbit via global

connection [6].

do the analysis, we firstly consider the following changes in the radial coordinates:

r1 = rl +
2

3
(r12 + r13)

r2 = rl −
2

3
(2r12 − r13)

r3 = rl +
2

3
(r12 − 2r13)



























(6.7)

here, rl = r1+r2+r3

3
, r12 = r1−r2

2
, and r13 = r1−r3

2
. Now, incorporating the change

in coordinates (6.7) together with changed phase variables (6.5) we may obtain a

system of burst-synchronized constrained system. The system may be written in

the following functional form

ṙl = f1(rl, r12, r13, φ12, φ13)

ṙ12 = f2(rl, r12, r13, φ12, φ13)

ṙ13 = f3(rl, r12, r13, φ12, φ13)

φ̇12 = f4(rl, r12, r13, φ12, φ13)

φ̇13 = f5(rl, r12, r13, φ12, φ13)

u̇ = ηg(rl, r12, r13, φ12, φ13).































































(6.8)

Here, fk and g are the vector fields. Now in order to investigate the fast dynamics of

the system we consider η as a singular perturbation parameter so that u = constant

in the dynamics and the dynamics is only governed by the fast spiking activity.

For, r12 = 0 and r13 = 0, we write rl = r as the stable nontrial solution of (6.8) in
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appropriate subspace given by (4.7) corresponding to bursting behaviour. In this

analysis we only consider the inphase solution which implies r12 = r13 = φ12 =

φ13 = 0 and rl = r, where r > 0 is a solution of (4.8). As for the Jacobian for the

fast subsystem we consider the following block

J =

















∂f2

∂r12

∂f2

∂r13

∂f2

∂φ12

∂f2

∂φ13

∂f3

∂r12

∂f3

∂r13

∂f3

∂φ12

∂f3

∂φ13

∂f4

∂r12

∂f4

∂r13

∂f4

∂φ12

∂f4

∂φ13

∂f5

∂r12

∂f5

∂r13

∂f5

∂φ12

∂f5

∂φ13

















. (6.9)

Thus, the Jacobian at the inphase solution is block diagonal with one single real

eigenvalue and a block (6.9):

Jin =

















2u + 12r2 − 10r4 − 2κ1 0 3κ2r 0

0 2u + 12r2 − 10r4 − 2κ1 0 3κ2r

2σr2
m − 2σr3 − 6κ2

r 0 −3κ1 0

0 2σr2
m − 2σr3 − 6κ2

r 0 −3κ1

















. (6.10)

The real eigenvalues can assumed negative because of the solution of (4.7). Note

stability of this fast subsystem may be investigated by determining the determinant

of (6.10) and bifurcation information can be found by equating the determinant

with zero. The determinant of (6.10) is

det(Jin) = 36
(

−κ1u− (6κ1 + κ2σr2
m)r2 + (5κ1 + κ2σ)r4 + κ2

1 + 3κ2
2

)2
. (6.11)

Together with (4.8), det(Jin) = 0 or

−κ1u− (6κ1 + κ2σr2
m)r2 + (5κ1 + κ2σ)r4 + κ2

1 + 3κ2
2 = 0. (6.12)

may give bifurcation value for amplitude or rin and corresponding bifurcation value

for slow variable or uin (Figure 6.3) with appropriate approximation similar to

Section 4.1. We present analytical expressions for rin and uin for a special case

κ1 = 0. Solving (6.12) with κ1 = 0 gives

rin = rm(1− 3κ2

2σr4
m

) + O(κ2
2). (6.13)
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Figure 6.6: Within-burst synchrony changes for four-coupled Bautin elliptic burster

system. The governing system for the simulation is same as Figures 6.1 and 6.2. The

parameters of the simulation: κ1 = 0.001, κ2 = 0.2, σ = 5, η = 0.005, rm = 1.35, ω =

0.0001. Noise of amplitude of order 10−5 was added to all fast subsystems. Bottom panel

shows the activities, xj , of the four bursters; the four bursters are burst synchronized.

The insets (a)-(c) show different blown-up sections of the spiking patterns inside the

synchronized bursts. It is clear the spikes start off inphase (a) then change in region (b)

to an asynchronous pattern (c).

Because r depends on u via (4.8), the corresponding bifurcation points for inphase

oscillations can be derived from (4.18) and (4.8) for the special case κ1 = 0 as

uin =
1

2
r2
m(r2

m − 4) +
3κ2

σr2
m

(2− r2
m) + O(κ2

2), (6.14)

Note that a more general analysis of these bifurcation points for non-zero κ1 and

κ2 can be undertaken by examining roots of (6.12).

6.3 Four-coupled Bautin elliptic burster system

In this section we investigate within burst synchrony changes numerically for a

system comprised with four Bautin bursters. The governing system is similar to

(3.12) with non-isochronous condition (6.1) for j = 1, 2, 3, 4. Figure 6.6 illustrates
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Figure 6.7: The timeseries of dij (6.3) for four-coupled elliptic burster system. The

dij ’s correspond to the single snap of the synchronized burst of the four cells shown in

Figure 6.6. Here the spikes start off inphase (zero dij’s) but changes to asynchronous

patterns with each other. Note the bumps are irregular in the profile (nonzero dij’s)

which indicate some drift of asynchronous patterns between the spikes of two bursters.

the result of simulation for four-coupled Bautin burster system. The bottom panel

shows a selected burst pattern where activities of the four bursters are superim-

posed like previous similar illustrations; the pattern repeats with bursts. The

parameters are κ1 = 0.001, κ2 = 0.2, σ = 5, η = 0.005, rm = 1.35, ω = 0.0001

and noise of amplitude of order 10−5 was added to the fast subsystems of each

burster. The simulation was done with XPPAUT [33] with Runge-Kutta inte-

grator. The different synchrony patterns involving the fast oscillation within the

burst can be seen in the blown up sections of the bursts from (a) to (c). Panel (a)

shows the synchrony pattern at the beginning of the burst, (b) shows the transition

and (c) shows the changed synchrony pattern. It is clear that the spikes are in-

phase to begin with but changes to asynchronous patterns towards the end. Note

in the asynchronous patterns the spikes are not antiphase to each other, rather

more complicated locked patterns emerge. Figure 6.7 shows dij’s of the oscillations

corresponding to the burst in Figure 6.6. The inphase synchrony is obvious, but

there are irregular bumps of nonzero dij’s implying irregular synchrony patterns

between the spikes. In the higher dimensional system as this, presumably, within-

burst synchrony changes may involve complicated synchrony behaviour including
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regular, quasiperiodic or irregular spike synchronization depending on the system

parameters and initial condition.



Chapter 7

Delay induced within-burst

synchrony changes

We showed in Chapters 2 and 5 that systems of coupled Bautin burster can demon-

strate within-burst synchrony changes in more biological type coupling like gap-

junction and synaptic. Note in all cases the coupling strength involves a real part

κ1 and an imaginary part κ2; biologically the role of the imaginary part of the cou-

pling κ2 is not clear. In order to get closer to more biologically realistic coupling

we investigate a system of bursters mutually coupled with a fixed delay and we

look for the similar burst and spike synchrony dynamics. This is biologically more

relevant in the sense that propagation delay in neuronal systems is unavoidable

and arises from various spatial, temporal and chemical properties. For references

of delay in neuronal systems we refer to [10, 125, 126, 17, 18, 14, 15, 97, 43, 44, 19],

where effects of delay have been studied for coupled neuronal systems and their

dynamical properties. These studies particularly focus on the intrinsic dynamics

and synchronization of the interacting tonic spiking cells with delayed coupling.

The aim of this chapter is to present a mutually delay-coupled Bautin burster

system and establish within-burst synchrony changes for a simple system containing

two bursters. Later we study a pair of coupled conductance-based model of elliptic

burster and find similar behaviour.

139
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Figure 7.1: Sketch of the time evolution of a trajectory in phase space for delay differ-

ential equation (from [36]).

7.1 Basics of delay differential equations

It would be useful to recall some basic facts of delay differential equations (DDEs)

before we study a coupled Bautin elliptic burster system involving delayed coupling.

Generally, if the state of dynamical systems is known at a certain time t, then the

future evolution is uniquely determined, i.e., the future course of evolution of a

dynamical system depends on the initial conditions and dynamics can be described

by differential equations. The initial condition is a point in the phase space of the

system. However, the situation is different for systems with delay. In general form,

a system with fixed delay can be written as

dx(t)

dt
= F (x(t), x(t− τ), p) , (7.1)

where x ∈ Rn, the n-dimensional phase space, p ∈ Rm, the parameter space, the

function F : R
n × R

n × R
m → R

n is differentiable, τ ∈ R is a single fixed delay.

In this case unlike ordinary differential equation, the initial condition consists of a

function segment on the interval [t − τ, t], which implies a system described by a

DDE like (7.1) the time evolution in phase space does not only depend on the state

at time t but also on the state at time t − τ in the past. We refer to [28, 46, 110]

for a good exposition of DDEs and their mathematical properties. The phase

space of ordinary differential equation are finite-dimensional, for example, system

(6.2) for three-coupled Bautin burster has nine-dimensional phase space. But the
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phase space of the DDEs is infinite-dimensional space continuous C of the interval

[−τ, 0] and a point q ∈ C is a function q : [−τ, 0] → Rn. The right hand side of

(7.1) defines the time evolution of the system uniquely and gives rise to an time

evolution operator φt : C ∈ C → C which maps a function q(t) at time t onto

function q(t + t′) at the later time t + t′. This evolution is sketched in Figure 7.1.

A steady state for DDEs is point for which q0(t) = x0 for all time t ∈ [−τ, 0],

where x0 ∈ Rn for some fixed values p′ ∈ Rm of the parameters, so that F (q0, q0, p
′) =

0 and φt(q0) = q0 for all t > 0. The stability of q0 can be determined by computing

the root of the ‘characteristic equation’ which obtained by linearizing (7.1) around

the steady state point q0:

DF (q0, p
′)q = A1(q0, p

′)q(t) + A2(q0, p
′)q(t− τ). (7.2)

This generalized Jacobian of the DDE consists of two matrices.

A1(q0, p
′) =

(

∂F (x(t), x(t− τ), p)

∂x(t)

)

(x0,x0,p′)

A2(q0, p
′) =

(

∂F (x(t), x(t− τ), p)

∂x(t − τ)

)

(x0,x0,p′)

.



















(7.3)

Finally, the stability of the steady state of DDE (7.1) is given by roots of the

characteristic equation det (∆(q0, p
′, λ)) with ∆ is the n× n matrix

∆(q0, p
′, λ) = λI − A1(q0, p

′)− A2(q0, p
′)e−λτ , (7.4)

where I is the identity matrix. Obviously, the characteristic equation det (∆(q0, p
′, λ))

is of transcendental nature and therefore has infinitely many eigenvalues. However,

they are discrete and there are typically only a finite number of unstable eigen-

values with Re[λ] > 0 [28]. For steady states the stability changes when these

eigenvalues cross the imaginary axis in the complex plane. Consequently, there are

two bifurcation situations can be noted: a saddle-node (fold) bifurcation where a

single real eigenvalue goes through zero, and Andronov-Hopf bifurcation where a

pair of complex conjugate eigenvalues move through the imaginary axis. Moreover,

in projection onto the phase space Rn a periodic orbit Γ of the DDE (7.1) is closed

curve q(t) = q(t + T ), where T > 0 is the period of the orbit and Γ is such that



CHAPTER 7. DELAY INDUCED WITHIN-BURST SYNCHRONY CHANGES 142

Cell 1 Cell 2

z
1
(t), u

1
(t) z

2
(t), u

2
(t)

z
1
(t-  )

z
2
(t-  )

τ

τ

ε

ε

Figure 7.2: Cartoon of two mutually delay-coupled burster cells.

φT (q) = q for all q ∈ Γ. The stability of a periodic orbit Γ is given by its Floquet

multipliers. There are three different bifurcation relating to the stability changes

of periodic orbits [28]: a saddle-node of limit cycle bifurcation, where a single real

Floquet multiplier goes through +1, a period doubling bifurcation, where a sin-

gle Floquet multiplier goes through −1, and a torus (Neimark-Sacker) bifurcation

where a pair of complex conjugate Floquet multipliers goes through the unit circle.

Generally, the bifurcation analyses of DDEs like (7.1) involves solving transcen-

dental equations, the respective conditions for steady states and periodic solutions

must be solved along with the respective bifurcation condition. Numerical pack-

ages such as XPPAUT [33] can simulate DDEs like (7.1), but to follow branches

of equilibria and periodic solutions of DDEs as parameters changed, the numer-

ical continuation package DDE-BIFTOOL [32] is needed. DDE-BIFTOOL can

compute stability information along solution branches and locate bifurcations.

In this chapter we only use XPPAUT in order to study a system of mutually

delay-coupled Bautin burster with the aim of exploring numerically within-burst

synchrony change behaviour in such systems.

7.2 Mutually delay-coupled Bautin bursters

We present a model of coupled Bautin elliptic bursters with a fixed delay in the

coupling. The general form for n-burster system may be written as

żj = ujzj + 2zj |zj|2 − zj |zj |4 + bzj |zj |6 + iΩjzj + ε

n
∑

k=1

cjkzk(t− τ)

u̇j = η(a− |zj|2).















(7.5)
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Figure 7.3: Within burst synchrony changes in the system of two mutually delay-coupled

system governed by (7.5) and (7.6) for j = 1, 2. The parameters are ε = 0.05, ω = 0.001,

σ = 3, τ = 2, rm = 1.35 and η = 0.004. Low amplitude noise of order 10−6 is added to

the fast subsystem of each system.

Here, τ ∈ R is the fixed delay and ε ∈ R represents the coupling strength. Here we

study a simple direct coupling case and j = 1, · · · , n. cjk represents the connectivity

matrix and in our study we consider all-to-all coupling, so cjk = 1 and also we

exclude any self-coupling, so cjj = 0. A sketch of the system for two mutually

delay-coupled bursters is shown in the figure 7.2. Note that interacting cells elicit

a response into the other cell after delay characterized by τ . and also in (7.5)

the coupling coefficient is real and so more realistic biologically. In the following

we present simulation results of the system (7.5) for two mutually delay-coupled

Bautin burster by considering different functions for (Ω).

7.2.1 Within-burst synchrony changes via delay coupling

We summarize the simulation results for two-coupled Bautin burster governed by

system (7.5) with Ω for each burster given by

Ω = ω +
1

2
σr2

m|z|2 −
1

4
σ|z|4. (7.6)
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This implies that the fast spiking dynamics undergo a frequency transition charac-

terized by rm. Figure 7.3 summarizes the key observation. Here one burst pattern

for each burster is shown superimposed and plotted for x1 and x2 of (7.5), where

zj = xj + iyj. The corresponding d12 pattern is also shown. Within-burst syn-

chrony changes can be observed very clearly. The inset shows a blown-up section

around the transition region indicated by the box. The pattern clearly shows that

the spikes are inphase (flat d12 = 0) at the beginning of the burst and changes to

antiphase (bumpy d12 6= 0) towards the end of the burst period. This pattern is

repeated in all bursts. The parameters in this simulation are ε = 0.05, ω = 0.001,

σ = 3, τ = 2, rm = 1.35 and η = 0.004. Moreover, low amplitude noise was added

to the fast subsystem of each cell. This simulation shows the presence of within-

burst synchrony changes behaviour in the coupled Bautin system with delay as

found in ‘instantaneous’ coupling dynamics (Figures 3.9 and 3.10) where coupling

coefficient has a complex part.

7.2.2 Within-burst cascade of synchrony changes via delay

coupling

In this section we extend our study of mutually delay-coupled Bautin burster sys-

tem to more complex Ω. We consider a transcendental form for Ω given by

Ω = ω + σ sin(k|z|2). (7.7)

So, with (7.7) the system (7.5) incorporates multiple frequency transitions in the

fast spiking dynamics. The simulation result has been summarized in Figure 7.4

for two different k. The figures show superimposed one burst (x1 and x2) pattern of

the coupled bursters and the synchrony changes are demonstrated by corresponding

d12. In (a) the spikes are inphase implied by flat or zero d12 and this changes to

antiphase implied by non-zero d12. In (b) we observe cascades of spike synchrony

changes. Clearly, the spikes are antiphase to begin with and changes to inphase and

then again to antiphase for a higher value of k. Clearly this behaviour agrees with

the observations in Chapter 5 for instantaneous coupling with complex coupling
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Figure 7.4: Within burst cascades of synchrony changes in the system of two mutually

delay-coupled system governed by (7.5) and (7.7) with (a) k = 2 and (b) k = 4. The

other parameters are ε = 0.05, ω = 0.001, σ = 3, τ = 1, and η = 0.002. Low amplitude

noise of order 10−6 is added to the fast subsystems of the bursters.

coefficients.

7.3 Conductance-based bursting model

Given the existence of spontaneous within-burst synchrony changes in the model

of coupled Bautin elliptic burster with delay coupling, we in this section explore

similar behaviour in conductance-based model with biological coupling scheme in

presence of delay. The model we study is a Morris-Lecar neuronal model [73] with

an additional slow variable; the model has a calcium and potassium current. In

addition, there are leak current and potassium-gated calcium current present in

the system. In the bursting version of the model calcium current is considered as

a slow varying current. The dynamics of the model is governed by the following

dynamical system
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Figure 7.5: Elliptic bursting pattern generated by the system 7.8, 7.9. The parameters

are gca = 4.4, gk = 8, gl = 2, vk = −84, vl = −60, vca = 120, I = 120, gkca = 0.75,

Φ = 1.2, ε = 0.04, and µ = 0.016667.

v̇ = −(gcam∞(v)(v − vca) + gkw(v − vk)

+ gl(v − vl) + gkcaz(y)(v − vk)) + I

ẇ = Φ (w∞(v)− w) /τ(v)

ẏ = ε (−µgcam∞(v)(v − vca)− y) .



































(7.8)

The kinetics of the system are described by the following functions

m∞(v) = 0.5 (1 + tanh((v + 1.2)/18))

w∞(v) = 0.5 (1 + tanh((v − 2)/30))

z(y) = y/(1 + y)

τ(v) = cosh ((v − 2)/60).



































(7.9)

Here, (v, w) constitutes the fast subsystem and the y is the slow variable. Bi-

ologically v represents the action potential given in mV; w and y are the gating

variables. As to the parameters of the system: gca, gk, gl and gkca are conductances

of calcium, potassium, leak and potassium-gated calcium currents, respectively;

vca, vk, vl and vkca are the reverse calcium, potassium, leak and potassium-gated

calcium reverse potentials, respectively; I is the input current; Φ and µ are other

parameters. The slowness of the gating variable y is characterized by small ε. Fig-
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Figure 7.6: Cartoon of two mutually delay-coupled bursters of the conductance-based

system.

ure 7.5 demonstrates the time series of action potential of the system (7.8) with

kinetics (7.9). The parameters in this simulation are gca = 4.4, gk = 8, gl = 2,

vk = −84, vl = −60, vca = 120, I = 120, gkca = 0.75, Φ = 1.2, ε = 0.04, and

µ = 0.016667. This figure shows elliptic bursting patterns. Note burst patterns

have spikes in the active phase whose amplitude change along on burst period and

the passive phase has low amplitude subtreshold activity. By reducing the time

scale ratio ε of fast activity to slow activity the length of the burst consequently

the number of spikes in the burst can be increased and vice versa.

7.3.1 Mutually delay-coupled conductance-based bursting

model

We present a system of coupled elliptic burst generating conductance-based neurons

each of which is governed by the model (7.8) and (7.9). We consider a gap-junction

coupling between the interacting system via the voltage variable. Additionally, we

incorporate a delay in the coupling so that a response is elicited in a receiving

neuron after a certain delay quantified by τ ∈ R. The full conductance-based

mathematical model for n-burster system is the following

v̇j = −(gcam∞(vj)(vj − vca) + gkw(vj − vk) + gl(vj − vl)

+ gkcaz(y)(vj − vk)) + I + κ
∑

k 6=j

cjk(vk(t− τ)− vj)

ẇj = Φ (w∞(vj)− wj) /τ(vj)

ẏj = ε (−µgcam∞(vj)(vj − vca)− yj)


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(7.10)
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and the corresponding kinetics are

m∞(vj) = 0.5 (1 + tanh((vj + 1.2)/18))

w∞(vj) = 0.5 (1 + tanh((vj − 2)/30))

z(yj) = yj/(1 + yj)

τ(vj) = cosh ((vj − 2)/60).
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(7.11)

Here, j, k = 1, · · · , n and j 6= k. We consider cjk = 1 and exclude any self-coupling

(cjj = 0). Figure 7.6 shows a sketch of a pair of elliptic bursters governed by

(7.10) and (7.11) with n = 2. Here, κ represents the coupling strength between the

neurons and τ is the amount of delay in the coupling.

7.3.2 Within-burst synchrony changes in conductance-based

model

Figure 7.7 shows a simulation of system (7.10) and (7.11) for a pair of mutually

delay-coupled bursters. The simulation was conducted in the package XPPAUT [33]

and the integration was done with Runge-Kutta integrators. As to the numerics

the integration was done with a step size 0.01. All transients were removed by

considering a long simulation. In the figure, it is clear that there is a spontaneous

within-burst synchrony change in the fast dynamics of the system. The spikes in

the burst from the two bursts are antiphase at the beginning but undergo a change

to inphase (top panel of (a)). The activity patterns of action potentials, v1 and v2,

from two neurons are shown with distinguishing solid and dashed lines in the middle

panel of (a), respectively. The corresponding time series of the slow variables, y1

and y2, in the bottom panel of (a) show the bursts are fully synchronized. A

random low amplitude noise of order 10−5 was added to the voltage variables of

each neuron. (b) illustrates time series of d12 corresponding to the pattern shown

in the top panel of Figure 7.7; here Euclidean metric d12 is defined as

d12 =
√

(v1 − v2)2 + (w1 − w2)2 + (y1 − y2)2. (7.12)

The spike synchrony patterns and change can easily be observed in this figure.

The system parameters of the simulation are gca = 4.4, gk = 8, gl = 2, vk = −84,
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Figure 7.7: Within-burst synchrony changes in two coupled elliptic bursters governed

by conductance-based system (7.10) and (7.11) for n = 2. In (a), the top panel shows a

blown-up bursting activity patterns for two cells superimposed to show synchronization

behaviour while the middle panel shows the section of superimposed bursting patterns

generated by the two coupled bursters. The bottom panel shows time series of the

corresponding slow variables. It is obvious that the bursters are burst synchronized

while the spikes undergo within-burst synchrony changes – the spikes are antiphase at

the beginning of the burst but change inphase towards the end. In (b), time series of d12

(7.12) corresponding to the synchronized burst shown in the top panel of (a) showing the

synchrony change.
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vl = −60, vca = 120, I = 120, gkca = 0.75, Φ = 1.2, ε = 0.002 and µ = 0.016667.

The coupling strength κ = 0.01 and the delay is τ = 1.

7.4 Discussion

Our study confirms the presence of spontaneous within-burst synchrony changes

induced by delay in both the reduced model of Bautin elliptic burster and the

conductance-based Morris-Lecar elliptic bursting neuronal model with one addi-

tional slow variable. We observe a critical dependence of within-burst synchrony

changes on the delay: within-burst synchrony changes were only observed for

small delay, more precisely smaller than the interspike difference, longer delay

causes disappearance of within-burst synchrony changes and eventually causes

burst asynchronization. We did not observe within-burst synchrony changes for

inhibitory coupling, i.e., when κ < 0. Also note in case of mutually delay-coupled

conductance-based system (Figure 7.7) the antiphase and inphase patterns are

more vivid in the subthreshold oscillation while the transition in the active phase

appears to take place gradually over a number of oscillations indicating a bifurca-

tion delay. We would like to add that in further simulation the conductance-based

elliptic bursters we observed transients synchrony patterns demonstrating within-

burst cascades of synchrony changes and more irregular spike synchrony behaviour

with varying coupling strength. As relevant to this study we would like to re-

fer [9] where the authors reported the observation of delay induced ‘phase flipping’

from zero (inphase) to π (antiphase) in the time-delay-coupled oscillators and they

showed this ‘phase-flip’ bifurcation is accompanied by a discontinuous change in

the frequency of the synchronized oscillator. In their study the authors studied an

Andronov-Hopf normal form model for limit cycle oscillator.

We have not identified the bifurcations along the simulation summarized in

Figure 7.7, this analysis is beyond the scope of investigation of the thesis. We have

mentioned earlier the mutually delay-coupled systems have infinite-dimensional

phase space which renders the analyses of the system very demanding, but a bi-

furcation analysis of the DDE systems as (7.5) and (7.10) may be done with the
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suitable numerical package DDE-BIFTOOL [32]. We hope to pursue further in-

vestigation of the bifurcation of the fast subsystem of the mutually delay-coupled

systems studied above in order to understand within-burst synchrony changes in

such systems and their peculiarities.

To conclude the discussion we would like to note that the mutually-delayed

coupling considered in the system (7.5) is equivalent to the complex coupling (e.g.

system 3.6) studied earlier in the thesis. A periodic orbit for a complex system

that is of the form

p(t) = r0e
itω, (7.13)

the delay p(t−τ) and the complex multiple p(t)e−iτω are clearly equal. This means

there is a qualitative similarity to coupling with a complex coeifficient (κ1+iκ2)p(t)

and to delay coupling with a real coefficient Kp(t−τ), namely if we take Ke−iτω =

cos ω− i sin ω = κ1 + iκ2. So, the delay coupling considered in this chapter is infact

is equivalent to multiplication by a complex term. However, note that the phase

shift depends on the period of the signal, so this argument may not hold for large

variation of the delay and eventually the phase shift.



Chapter 8

Within-burst period doubling

In this chapter we briefly investigate within-burst synchrony changes in a mathe-

matical model of an idealized nerve membrane model generating elliptic bursting

which was formulated by FitzHugh and Rinzel in 1976 and studied extensively

in [38, 90, 61, 53, 56, 61, 59, 89]. Here we study a pair of coupled FitzHugh-

Rinzel (FHR) bursters and report appearance of spontaneous within-burst syn-

chrony change which involves a period doubling bifurcation in contrast to bifurca-

tions in observed in Chapters 3–7. In addition to numerical results we present a

bifurcation analysis of the fast subsystem to explain this bifurcation.

8.1 FitzHugh-Rinzel elliptic burster model

The evolution of the FitzHugh-Rinzel (FHR) model is governed by the differential

equations

v̇ = v − v3

3
− w + y + I,

ẇ = δ(a + v − bw),

ẏ = µ(c− v − dy).






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







(8.1)

Here v ∈ R and w ∈ R constitute the fast subsystem and y ∈ R constitutes the

slow subsystem. The system (8.1) has two-dimensional fast subsystem and one-

dimensional slow subsystem. Here, I, a, b, c, d, δ, and µ are the parameters of the

system. The bursting occurs for µ ≪ 1. Figure 8.1 shows the bursting activity of

152
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Figure 8.1: Bursting pattern generated by the FHR model (8.1). The parameters for

the simulation are I = 0.3125, a = 0.7, b = 0.8, d = 1, δ = 0.08, µ = 0.0001, and in

(a) c = −0.775 and (b) c = −0.9. The corresponding slow variable, y, is shown at the

bottom of each panel.

Figure 8.2: Bifurcation diagram of the FHR system (8.1). The periodic trajectory is

superimposed to show the dynamics of the system as the slow variable, y, varies. The

parameters are I = 0.3125, a = 0.7, b = 0.8, c = −0.9, d = 1, δ = 0.08, and µ = 0.0001.
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the model (8.1) for c = −0.775 (a) and c = −0.9 (b); the other parameters in the

simulation are I = 0.3125, a = 0.7, b = 0.8, d = 1, δ = 0.08, and µ = 0.0001.The

panel (a) demonstrates one important feature of the FitzHugh-Rinzel burster is

that the attraction to the unique equilibrium is relatively weak. So, the dynamics

of the model yields apparent irregularity of bursting. Rinzel pointed out that this

may be due to premature reentry into the active phase or even slow passage effect.

Panel (b) demonstrates regular elliptic bursting patterns. In both simulations the

elliptic bursting possess subthreshold oscillations in addition to large amplitude

active phase. It has been pointed out in [82] that the elliptic bursting in FHR has

subthreshold oscillations and large amplitude oscillations in active phase with two

different frequencies, and their significance in information transfer is discussed.

Figure 8.2 is the bifurcation diagram revealing the main characteristics of ellip-

tic bursting oscillations generated by (8.1). This figure depicts the two-dimensional

projection of the corresponding attractor in the phase space together with a bifur-

cation diagram obtained according to the slow-fast decomposition method (Sec-

tion 1.3). By virtue of the slow-fast decomposition method the fast changing vari-

able v of the system is extracted using the slow changing variable y as a bifurcation

parameter. The bifurcation analysis was carried out in XPPAUT [33]. It can be

observed that the transition to repetitive spiking occurs via a subcritical Andronov-

Hopf bifurcation (HB) and the transition to the quiescent state occurs via a fold

limit cycle bifurcation; the characteristic bifurcation structure of elliptic bursting

oscillations as discussed in Section 2.1. The stable and unstable steady state so-

lutions of the system are shown with thin solid and dash-dotted line, respectively;

the stable periodic (SP) and unstable periodic (UP) solutions are shown by bold

solid and dashed line, respectively. In the following we present a coupled system

of FHR bursters and explore the within-burst synchrony changes in a pair of such

bursters.
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8.2 Coupled FitzHugh-Rinzel System

We consider n-coupled FHR bursters as following

v̇j = vj −
v3

j

3
− wj + yj + I +

∑

k 6=j

cjk(κ1vk + κ2wk),

ẇj = δ(a + vj − bwj),

ẏj = µ(c− vj − dyj).































(8.2)

Here j, k = 1, 2, .., n; cjk is the connectivity matrix. In our study we consider

cjk = 1 and cjj = 0; κ1, κ2 ∈ R are the coupling strengths. Note we consider a

linear direct coupling in the voltage variable vj of the fast subsystem which also

involves coupling of the second fast variable to vj . Burst and spike synchronization

properties of coupled FHR bursters have been studied in [61], and in the following

we use a pair of FHR bursters governed by the system (8.2) to explore within burst

synchrony changes for a burst-synchronized constrained condition.

8.2.1 Within-burst bifurcation in two coupled FHR bursters

We study a pair of coupled FHR burster governed by the system (8.2) with n = 2.

Figure 8.3 shows the simulation of such system. The simulation was carried out

in XPPAUT with Runge-Kutta integrator. The parameters are The parameters

are I = 0.3125, a = 0.7, b = 0.8, c = −0.775, d = 1, δ = 0.08, κ1 = 0.001,

κ2 = 0.2 and µ = 0.00002. A low amplitude noise of order 10−7 is added to the

components of the fast subsystem. This simulation clearly illustrates the presence

of spontaneous within-burst synchrony changes in the coupled FHR system. This

is further depicted in the time series of d12 where

d12 =
√

(v1 − v2)2 + (w1 − w2)2 + (y1 − y2)2. (8.3)

It can be observed that the spikes are inphase to begin with in the synchronized

bursts generated by the system, but get asynchronized via a period doubling bi-

furcation, this is different from the bifurcation leading to spike synchrony changes

observed in the previously studied systems in this thesis. This period doubling is
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Figure 8.3: Within-burst synchrony change in a pair of FHR burster governed by (8.2)

with n = 2. In (a), the bottom panel shows the bursting activity pattern from both FHR

neurons and the top shows the details of the fast spiking within a single burst activity

from both cells. The bursters generate synchronized bursts but the spikes are inphase at

the beginning and then get asynchronized via a period doubling bifurcation. (b) shows

the timeseries of d12 corresponding to the burst in the top panel of (a). The parameters

are I = 0.3125, a = 0.7, b = 0.8, c = −0.775, d = 1, δ = 0.08, κ1 = 0.001, κ2 = 0.2 and

µ = 0.00002. A low amplitude noise of order 10−7 is added to the components of the fast

subsystem.
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Figure 8.4: Bifurcation diagram of the fast subsystem obtained by continuation of pe-

riodic branch of v1 for the burst-synchronized constraint y1 = y2 = y. The parameters

are same the as in Figure 8.3. Here only the upper or maxima of the periodic branch

is shown. The stable periodic solutions are shown by solid line while the unstable solu-

tions are shown by dashed line. Note the diagram for periodic branch of v2 will be same

because of symmetry. The corresponding periodic trajectories of fast variables v1 (thin

solid line) and v2 (thin dashed line) of the full system (8.2) are superimposed to show

the spike synchrony change, with y = y1+y2

2 . Here the synchrony change occurs via a

period doubling bifurcation (PD). Other bifurcation points are shown by BP. Note the

bifurcation delay in the dynamics indicated by the arrow.

observed from the alternating spikes in the asynchronous part of the burst. Another

interesting feature of this within-burst synchrony changes is the amplitude changes

as occur after the within-burst bifurcation. It can be observed that the amplitude

of the active phase of the burst gets a little larger following the period doubling

bifurcation resulting in asynchronous spikes within the synchronized bursts.

8.2.2 Bifurcation analysis of the fast subsystem of two cou-

pled FHR burster

A bifurcation analysis of the fast subsystem of (8.2) with n = 2 may be done by

considering a burst-synchronized constrained model. By virtue of this reduction
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approach we may consider y1 = y2 = y, so that the system is subject to one slow

forcing. Considering µ as a singular perturbation parameter the fast dynamics can

be investigated as discussed in Section 1.3. Figure 8.4 is obtained by following

this method. This figure depicts a bifurcation diagram obtained by continuing the

periodic branch of v1. The bifurcation analysis was carried out in XPPAUT. Here

only the maxima of the period is shown along with the projection of corresponding

periodic trajectory of both v1 and v2 obtained from the system (8.2) for n = 2 and

considering y = y1+y2

2
. The parameters of this result are same as in Figure 8.3.

It is obvious that the periodic branch undergoes a period doubling bifurcation

that results in the observed synchrony changes. The burst for the coupled sys-

tem goes on for a range of y going from about 0.092 to 0.075 and inphase tonic

spiking loses stability at about 0.0866 via a period doubling bifurcation, shown as

PD. This diagram shows the amplitude variation as observed in the simulation in

Figure 8.3. Note there are two other bifurcation points (BP) along the branches.

One interesting feature observed is the delayed bifurcation in this system shown

by arrow. The synchrony changes appear to take place later than the theoretical

value. Note at the end of the burst we observe further bifurcation (left BP) and

the dynamics gives way to more complicated scenario which is presumably due to

the fast timescales in the systems.

This study confirms the existence of within-burst synchrony change brought

forth by a different bifurcation mechanism in the case of coupled FHR elliptic

bursters. Note that the observed period doubling bifurcation feature was not

present in the more idealized Bautin elliptic burster studied in Chapters 3–7.



Chapter 9

Synchrony properties of the

Hindmarsh-Rose neurons

I0n this chapter we study the burst synchrony properties of a mathematical burst-

ing model known as Hindmarsh-Rose (HMR) model. In Chapter 3 we saw the

rhythm generator of the leech heart interneuron can show interesting burst syn-

chrony patterns where neurons from one side fire inphase burst while neurons from

either side fire antiphase bursts; this generates rhythmic activity at about 0.1 Hz

that paces leech heart neurons which in turn drives the heart beat. This pattern

has been a subject of mathematical investigation by many authors recently, partic-

ularly we refer to [99] where a three-cell network of conductance-based model was

studied to capture and understand such leech heart interneuron burst synchrony

pattern. In this chapter we pursue a more mathematical interest in the rhythmic-

ity involving burst synchronization generated by a network of three-HMR burster

coupled with a cubic nonlinear coupling. The system demonstrates spontaneous

cluster burst synchrony patterns where two cells fire inphase bursts while the third

remains antiphase; we refer to this behaviour as ‘burst synchrony cluster’. We also

observe switching between available cluster states depending on the input parame-

ter of the system. We also demonstrate an example of emergence of more complex

spontaneous burst synchrony cluster in network of high-dimensional HMR system.

159
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Figure 9.1: The bursting pattern generated by Hindmarsh-Rose system (9.1). The burst

patterns are shown in (a) and the corresponding slow variable z is in (b). The parameters

are a = 1, b = 3, c = 1, d = 5, I = 2, x0 = −1.6, r = 0.001 and s = 4.

Figure 9.2: The 3D phase space structure of Hindmarsh-Rose system (9.1) in the bursting

region. Details are as in Figure 9.1.

9.1 The Hindmarsh-Rose model

The Hindmarsh-Rose neuronal bursting model [50, 48, 49, 100] is given by differ-

ential equations:

ẋ = y − ax3 + bx2 − z + I

ẏ = c− dx2 − y (9.1)

ż = r(s(x− x0)− z)
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Here the notations for the state variables (x, y, z) and other parameters are used as

in [50]. Evidently the Hindmarsh-Rose system (9.1) generates slow-fast oscillations;

the first two equations govern spiking while the third equation with a slow time

scale r accounts for the bursting and adaptation. The value of r is usually assumed

very small (r ≪ 1) in order to separate the fast xy-subsystem from the slow z-

subsystem. The other parameters of the system are interpreted as following: I

is the input current injected into the cell, the qualitative aspects of the system

are governed by the parameter b, such as bursting or spiking can be induced by

changing it. x0 is the resting potential of the system and s tunes the adaptation of

the system so that the small s (values around one) yields fast spiking behaviour.

In case of bursting, decreasing time scale r can result in increasing number of

spikes per burst. Figure 9.1 demonstrates the bursting pattern generated by the

Hindmarsh-Rose system (9.1); panel (a) shows the square-wave bursting pattens

and panel (b) shows the timeseries of the corresponding slow variable z. A 3-

dimensional phase space realization for the Hindmarsh-Rose bursters is shown in

Figure 9.2.

The small time scale parameter r allows the usual adiabatic approach to study-

ing the fast subsystem with the slow variable as a parameter. Figure 9.3 is the

bifurcation diagram of the system (9.1) obtained by applying slow-fast decomposi-

tion method (Section 1.3). The stable and unstable steady states are indicated by

SSS (thin solid) and USS (dash-dotted) lines, respectively; SP indicates the stable

periodic solutions: the upper branch is the maxima and the lower branch the min-

ima of the solutions. The corresponding two-dimensional ‘hedgehog’ trajectory of

the bursting solution is superimposed to show its position in the phase space and

the solid arrows around it shows the direction of the evolution of the trajectory in

the phase space. This bifurcation diagram is obtained with XPPAUT [33]. Note

the onset of the burst occurs via a ‘fold’ bifurcation (indicated by ‘F’) and the offset

of the burst occurs via a homoclinic (‘H’) bifurcation. One interesting feature is

the existence of bifurcation delay in both onset and offset of the burst and they

are indicated by broken arrows. Because of the homoclinic bifurcation at the offset



CHAPTER 9. SYNCHRONY PROPERTIES OF THE HINDMARSH-ROSE NEURONS162

1 1.5 2 2.5 3
z 

-2

-1

0

1

2
x 

SSS

SP

USS

F

H

Bifurcation delay

Figure 9.3: The bifurcation diagram of the Hindmarsh-Rose system (9.1). The bursting

trajectory is superimposed on the bifurcation diagram to show the bursting solutions in

the phase space. The stable steady state (SSS) solutions are shown with thin solid line

while unstable steady state (USS) solutions are shown by dash-dotted line. SP indicates

the stable periodic branch of the solution. The solid arrow shows the direction of the

bursting trajectory in the phase space. Note the bifurcation delay at the onset and offset

of the burst indicated by the broken arrows. F and H indicate the ‘fold’ and homoclinic

bifurcations, respectively.
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of the burst where the system changes from spiking to quiescent state, the period

of the spikes at the end of the burst get infinite which is reflected in the increased

interspiking spacing in the spikes towards the end of the burst (see Figure 9.1(a)).

9.2 Coupling Hindmarsh-Rose bursters

The general form for n-Hindmarsh-Rose cell with voltage-dependent coupling may

be written as

ẋj = yj − ax3
j + bx2

j − zj + I + Gk(x1, x2, · · · , xn)

ẏj = c− dx2
j − yj (9.2)

żj = r(s(xj − x0)− zj)

where Gk(x1, · · · , xn) represents the dimensionless current flowing into the jth

cell when all voltages are as specified. In neural systems it is reasonable to look

at pairwise coupling only, where the current is a sum of the currents for each

connection, in which case we have

ẋj = yj − ax3
j + bx2

j − zj + I +

n
∑

k=1

h(xj , xk)

ẏj = c− dx2
j − yj (9.3)

żj = r(s(xj − x0)− zj).

In this study we consider an arbitrary polynomial coupling function h(xj , xk) dif-

ference of the action potential which is given as

h(xj , xk) =
m

∑

p=1

cjkκp(xk − xj)
p (9.4)

with the coefficients κp representing the coupling strength of order p where p =

1, · · · , m; cjk is the connectivity matrix. The coupling given by Equation (9.4)

may be considered as an approximation of the nonlinear synaptic coupling and

the lowest order with p = 1 reduces it to linear diffusive electric coupling. In

this study we consider cjk = 1 and cjj = 0 implying all-to-all coupling and no

self-coupling, respectively, and we truncate the coupling polynomial up to cubic
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terms, i.e., m = 3; in this chapter we only study the system with cubic polynomial

coupling function. Additionally as regards to the coupling strength we consider

κ1 = κ2 = · · · = κ for simplicity.

9.3 Burst synchrony clusters in 3-coupled HMR

burster

In this section we present results of simulation of a coupled system consisting

of mutually inhibitory three HMR neurons (n = 3) governed by the equations

(9.3) and (9.4). All the coupling coefficients are same given by κp = κ where

p = 1, · · · , m. Figure 9.4 summarizes the simulation results for the study in the

form of array diagrams. In the arrays the intensity of the voltage variables x1,

x2 and x3 have been encoded in colour spectrum. The far right red part of the

spectrum indicates the higher values for the voltage variables, consequently the red

lines in the array imply the burst activity while the yellow part of the array implies

the quiescent activity of the burst where the voltage variables have relatively lower

values. The vertical line of the array shows the time with increasing downward and

the three bursters shown along the horizontal line which should equally divide the

horizontal line. These diagrams were obtained from the simulation of the coupled

system in XPPAUT [33]. The diagrams were obtained from similar system but with

different initial conditions. The parameters for both realizations are a = 1, b = 3,

c = 1, d = 5, x0 = −1.6, r = 0.001 and s = 4; for both the input parameter I = 3.0

and the coupling strength κ = −0.001. It can be observed that the bursters start

of inphase and then separate into two burst synchrony clusters: (top) (2, 1) cluster

state where the first two cells fire synchronous bursts while the third burst gets

antiphase, (bottom) (1, 2) cluster state where the first cell fires antiphase bursts to

the second and third cells and this is symmetric to the result shown in top. We

observe from extensive simulation that this spontaneous burst synchrony cluster

are harder to obtain in the system with linear coupling. Additionally, excitatory

coupling or κ > 0 results in inphase bursts.
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Figure 9.4: Array diagrams demonstrating (2, 1) (top) and (1, 2) (bottom) burst syn-

chrony cluster states governed by the Hindmarsh-Rose system (9.3) and (9.4) for two

different initial conditions with m = 3 and n = 3, I = 3.0 and κp = κ = −0.001 where

p = 1, · · · ,m. The initial conditions for three cells: (top) (0.1, 0, 0), (0.15, 0, 0), (0.2, 0, 0)

and (bottom) (−0.1, 0, 0), (0.15, 0, 0), (0.2, 0, 0). See text for details.



CHAPTER 9. SYNCHRONY PROPERTIES OF THE HINDMARSH-ROSE NEURONS166

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 3

-2
-1
0
1
2

x 3

-2
-1
0
1
2

x 3

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 3

-2
-1
0
1
2

x 3

-2
-1
0
1
2

x 3

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 1

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 2

-2
-1
0
1
2

x 2

0 500 1000 1500 2000

t

-2
-1
0
1
2

x 3

0 500 1000 1500 2000

t

-2
-1
0
1
2

x 3

0 500 1000 1500 2000

t

-2
-1
0
1
2

x 3

(a)

(d)

(g)

(b) (c)

(e) (f)

(h) (i)

Figure 9.5: Changing of the burst synchrony cluster states with input for three-HMR

neurons governed by the system (9.3) and (9.4) with n = 3. The initial conditions in

all cases are (0.1, 0, 0), (0.15, 0, 0) and (0.2, 0, 0). The input current I has been increased

from (a)-(i), keeping the range of the input in the bursting regime: (a) I = 1.8, (b)

I = 1.9, (c) I = 2.0, (d) I = 2.2, (e) I = 2.7, (f) I = 2.9, (g) I = 3.0, (h) I = 3.1, and (i)

I = 3.2 .
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Figure 9.5 shows the changing of burst synchrony cluster states for three HMR

neurons governed by the system (9.3) and (9.4) with n = 3 depending on input

I. For all cases the initial conditions are same; the system parameters are same

and they are as in Figure 9.1 for each cell and the coupling strength κ = −0.001.

The input current has been increased from (a) to (i). The burst activity pattern

from each cell is shown with the voltage variables x1, x2 and x3. It is clear that

the burst synchrony cluster changes as the input current is changed. The boxes

enclose the bursts which are synchronized. In panel (a) the bursts from the cell are

synchronized for I = 1.8 while the bursts arrange into a (2, 1) cluster for I = 1.9

shown in panel (b); in panel (i) we observe the bursts get desynchronized for I = 3.2

and evolve as rotating waves. One interesting feature is that the spike number in

the bursts increases with input I.

One interesting features of the spontaneous burst synchrony clusters is that

the spikes within the synchronized bursts are not necessarily inphase. Figure 9.6

shows the spike synchrony patterns for four different input for three-HMR burster

system. The system and details are as in Figure 9.5. All the realizations have same

initial conditions: (0.1, 0, 0), (0.15, 0, 0) and (0.2, 0, 0). The system is subjected

to different input currents from (a) to (d). In panel (a) the cells fire bursts and

arrange in a (2, 1) burst synchrony cluster. But a rather careful observation shows

that the spikes are not synchronized (see the boxes). The other panels show burst

synchrony clusters with full synchronized spikes.

9.4 Example of burst cluster in larger network of

Hindmarsh-Rose bursters and discussion

In this section we explore the burst synchrony cluster for larger system of coupled

HMR burster. We consider mutually inhibitory coupled eight-HMR neurons gov-

erned by the system (9.3) and (9.4) with n = 8. Figure 9.7 shows the result of

the simulation in array diagram. The red part of the spectrum implies the higher

values of action potential or voltage variables, so the red strips represent the burst
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Figure 9.6: Spike synchrony properties in burst synchrony clusters of the three-coupled

HMR system (9.3) and (9.4)with n = 3 with different input current I: (a) I = 1.9, (b)

I = 2.5, (c) I = 3.0, (d) I = 3.1. The small boxes enclose spikes from synchronized bursts

to signify spike synchrony patterns. Note in (a) the spikes are not exactly synchronized as

in the other cases illustrated in (b), (c), and (d). (a) and (c) show (2, 1) burst synchrony

cluster while full burst synchrony pattern can be seen in (b) and (d).
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Figure 9.7: The array diagram showing spontaneous burst synchrony cluster in eight-

HMR burster system. See text for details.

active phase while the yellow strips represent the quiescent phase. The horizon-

tal axis of the array diagram represents time which increases downwards and the

vertical axis is segmented in eight parts each representing a cell. The parameters

of the simulation are a = 1, b = 3, c = 1, d = 5, I = 3, x0 = −1.6, r = 0.001

and s = 4; the coupling coefficient κp = κ = −0.001 where p = 1, · · · , 8. In this

case all transients have been removed by running the system for a long time. It

is clear from the diagram that the system yields burst synchrony clusters similar

to smaller system demonstrated in Figure 9.4. It is obvious that starting from left

the first, fifth and seventh cells form one burst synchrony cluster, second, sixth and

eighth cells form another burst synchrony cluster, while third and fourth cell form

the third burst synchrony cluster.

This study confirms the burst synchrony cluster behaviour in the coupled Hindmarsh-

Rose bursting neurons. This study was carried out over a small number of param-

eter values and we expect to see wide variety of other behaviour [99]. Note this

burst synchrony cluster emerges in the system with mutually inhibitory coupling;
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excitatory coupling results in inphase burst synchrony behaviour. Additionally,

it is relatively easy to find burst synchrony clustering for the chosen nonlinear

coupling scheme. Burst synchrony clusters are harder to achieve in systems with

linear coupling. This spontaneous burst synchrony clustering in the network of

HMR bursters suggests further investigations in the area of pattern generation in

the biological systems will be of interest (such as leech heart interneurons [74, 80]).



Chapter 10

Conclusion

Finally we present a summary of the key results of the thesis, discuss some biological

implications of the findings and present a potential outlook to future research.

10.1 Summary of thesis

We study the spike synchrony dynamics of coupled elliptic bursters and find that

repeated within-burst synchrony changes are possible even for a simple normal form

model, as long as terms that break isochronicity of the normal form are included.

We observe that within-burst synchrony changes are stable and robust to changes in

parameters. However, for identical bursters these within-burst changes are robust,

and therefore easy to observe in the presence of noise. Moreover, figure 4.9 shows

that increasing noise reduces the slow passage effect of both bifurcation points,

i.e., the onset of bursting and the within-burst synchrony changes. We study a

linear direct coupling scheme as well as demonstrating the presence of within-burst

synchrony changes in an approximation of gap-junction and synaptic coupling

By reduction to fast-slow dynamics for the constrained burst-synchronized con-

strained model we analyze the appearance of the within-burst synchrony change

for two oscillators, and the influence of various system parameters. In particular we

find that a turning point in the instantaneous frequency Ω can be associated with

the observed within-burst synchrony changes, analogous to bifurcations observed

171
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in systems of coupled weakly dissipative oscillators [5]. Moreover, we can find

the approximate location of the transition between stable inphase and antiphase

oscillations from bifurcation analysis of a reduced system.

We extend our investigation to a system with three and four coupled Bautin

bursters and find within-burst synchrony changes in these systems. Particularly,

in the three-Bautin burster system the synchrony change occurs via a Andronov-

Hopf bifurcation and in Figure 6.3 we present the solution trajectories. A rather

more complicated synchrony change scenario is found in the numerical analysis for

the four-Bautin burster system. We also observe within-burst cascade of synchrony

changes attributed to multiple frequency transitions. A bifurcation analysis of such

system reveals the similar bifurcation structure underlying the observed cascades

of synchrony changes.

We explore numerically a mutually-delay coupled Bautin burster system with a

constant delay and find spontaneous within-burst synchrony changes depending on

the delay. We also explore an example of conductance-based Morris-Lecar bursting

model with mutually delay coupling and find presence of within-burst synchrony

changes.

Spontaneous within-burst synchrony change is also observed in coupled FitzHugh-

Rinzel elliptic bursting model. We study a pair of FHR neurons with linear

coupling. A numerical analysis shows the synchrony change occurs via a period

doubling in contrast to other observed bifurcations in the within-burst synchrony

changes reported earlier in the thesis. A path continuation of the period of a peri-

odic orbit of a corresponding burst-synchronized constrained model demonstrates

the period doubling leading to within-burst synchrony changes in this case.

Finally, we observe emergence of spontaneous burst synchrony clusters in the

coupled Hindmarsh-Rose bursting system with cubic coupling. Simulation for the

three-HMR burster system shows that the bursting neurons organize into separate

burst synchrony clusters. We observe similar burst synchrony dynamics in the

network of larger HMR bursting neurons. We study a variational system about

the clustered solution for three-HMR system to approximate the largest Lyapunov
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exponent of the synchrony states and this offers some qualitative insights into the

stability of the burst synchrony cluster.

10.2 Biological implication

For larger populations of oscillators we expect there can be not just transitions

between inphase and antiphase during bursts, but also spontaneous changes in

clustering, leading to robust but sensitive phase dynamics [7, 88] and we believe this

study gives some insight into the range of synchrony dynamics of coupled bursters

in general. In particular, Section 4.2 shows that direct coupling is not necessary

for within-burst synchrony changes. Better understanding of spike synchronization

in more general coupled burster networks may lead to better understanding of

potentially important new mechanisms for information processing and transmission

by coupled neuronal bursters. This is discussed for example in [31, 54] where it

is suggested that information transmission may occur via resonance between burst

frequency and subthreshold oscillations.

Biologically, one functional significance of generating bursting as opposed to a

single spike is that bursts are needed to increase the reliability of communication

between neurons. It is understood that bursts with specific resonant interspike

frequencies are more likely to cause a postsynaptic cell to fire [66]. This frequency

preference between the interacting neurons in communication suggests that the

same burst could resonate for some synapses or cells and not resonate for some

others, depending on their natural resonance frequencies. In other words, the

transmission of signals from pre to postsynaptic cell is most effective when the

presynaptic cell fires a burst of action potentials with a specific resonant interspike

frequency. By using bursts with different interspike frequencies, the presynaptic

cell can selectively affect some postsynaptic targets, but not others. Such selective

communication can be achieved on the time scale of tens of milliseconds without

involving long term synaptic modification [31, 54]. The biological examples of

selective communication between neurons based on the resonant frequency has

been found in the recordings from rat somatosensory cortex [70]. It has been
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shown in [75, 45] that a pair of neurons with similar resonant frequency, input

from one burst elicits response in the other. Thus, changing the within burst or

interspike frequency, a presynaptic cell can selectively affect some post synaptic

cell but not others [31, 54].

Although bursts are usually considered as stereotypical spike train with con-

stant frequency throughout the burst period, in reality the exact interspike fre-

quency can vary within a burst. It depends on the presynaptic neuron and on

the action of neuromodulators. In the conductance-based neuronal models, the

instantaneous interspike frequency has been found generally to depend on the am-

plitude of oscillation [31, 54]. It is found in Hodgkin-Huxley model that greater the

amplitude, the greater the interval between two successive maxima of oscillation,

i.e., the interspike distance decreases. In such case, the optimal input to elicit

response to such neuron is a burst of action potentials with adapting frequency

or particularly a burst which accommodates decreasing frequency to resonate with

the target neuron. Simulations of biological synaptic models in [75] have confirmed

similar phenomenon: adapting rather than purely periodic bursts with constant

spikes are optimal for neuronal communication. Given this effect about neuronal

information transduction and communication between the bursting neurons in the

biological system depending on the resonance between input and target frequencies,

and also on the adaptive interspike frequency in the bursts, Bautin elliptic bursting

model with non-isochronous behaviour reflect this scenario of adaptive interspike

frequency. So, the burst synchronization and within-burst synchrony behaviour

may be very significant in understanding the information contents and processing

in the network of bursting neurons.

10.3 Future research

We extended our investigation of a pair of coupled Bautin elliptic bursters to three

and four coupled Bautin elliptic bursters in Chapter 6 to explore within-burst

synchrony changes, yet mathematical analysis to determine the bifurcation points

was carried out only in case of the spike synchrony change from inphase to an-
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tiphase in Section 6.2. We would like to analyze the case when the within-burst

spike synchrony changes from antiphase to inphase as shown in Figure 6.2. An-

other interesting thing would be to look into is the withinburst synchrony changes

via supercritical bifurcation unlike the cases (Figures 4.2, 5.4, 6.3, 8.4) where all

observed changes with different models in this thesis are subcritical .

In our study we only focus on the elliptic bursting systems, but there are ev-

idences that within-burst synchrony changes may well be present in other types

of bursters (see for example Figure 3.6). Also the parabolic bursters presumably

may show rich within-burst synchrony changes as the frequency of the fast spikes

vary in these system (see Section 1.4). Moreover, the examples we studied in this

thesis are all symmetric systems, and we would like to extend our investigation to

asymmetric systems.

Although we found within-burst synchrony changes numerically in the mutually

delay-coupled systems in Chapter 7, we could not carry out a bifurcation analysis

because this would require tool like DDE-BIFTOOL [32] . In the near future we

would like to employ this tool to carry out bifurcation analysis of this governing

mutually-delay coupled DDE’s. Moreover, we would like to explore more both nu-

merically and analytically the phenomenon of spontaneous burst synchrony clusters

in the example of Hindmarsh-Rose bursting neurons.

We would like to further explore the minimal model proposed by Izhikevich [55,

56] to look for within-burst synchrony change behaviour. The benefit in this model

is its simplicity in implementation and analysis. The model is given as

v̇ = I + v2 − u if v ≥ 1, then

u̇ = a(bv − u) v ←− c, u←− u + d







(10.1)

This system has only four dimensionless parameters and depending on the values

of a and b, it can be an integrator or a resonator burster [56]. This model is

also suitable in large-scale networks neurons [57]. We hope finding within-burst

synchrony change in this model will give way to more analytical treatment and

applications in larger network system.
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