
University of Exeter

Department of Computer Science

Evolution of Robotic Behaviour Using

Gene Expression Programming

Jonathan Mwaura

December 2011

Submitted by Jonathan Mwaura, to the University of Exeter as a thesis for the degree of

Doctor of Philosophy in Computer Science , December 2011.

This thesis is available for Library use on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identi-

fied and that no material has previously been submitted and approved for the award of a

degree by this or any other University.

(signature) ...

1

Publications

Some of the material in chapter 2 has been published in:

Mwaura, J. and Keedwell, E. (2009). Adative Gene Expression Programming Us-

ing a Simple Feedback Heuristic In Proceedings of the Artificial Intelligence and

Simulation of Behaviour(AISB2009), Endiburgh, April 2009.

Some of the material in chapter 3 has been published in:

Mwaura, J. and Keedwell, E. (2010). Evolution of Robotic Behaviours Using Gene

Expression Programming. In Proceedings of the Congress on Evolutionary Compu-

tation (CEC2010), Barcelona, 19th-23rd July 2010.

Some of the material in chapter 4 has been published in:

Mwaura, J. and Keedwell, E. (2011). Evolving modularity in robot behaviour using

gene expression programming. Proceedings of: Towards Autonomous Robotic Sys-

tems - 12th Annual Conference (TAROS 2011), Sheffield, UK, August 31 - Septem-

ber 2, 2011.

2

Acknowledgements

I would like to thank my supervisor, Dr. Ed Keedwell, for his help and support throughout

my studies. I highly appreciate your precise criticism, timely advise and a genuine interest

in my welfare throughout my studies as well as during my stay in England.

I would like to acknowledge my mother, Elizabeth Njeri Mwaura (deceased), for her con-

viction and insistence that education would lead to a bright future. You were right on the

point. Similarly, I would like to thank Mr. John Gathinji Mucheru (my primary school

teacher) and Mrs. Ann Njuguna (high school teacher) for it is only through them that

I was able to access both high school and university education. Today I am educated

because of their goodwill, support, encouragement and self sacrifice.

I would like to offer my gratitudes to Dr. Abel Nyamapfene and Dr. Richard Fredlund

for their encouragement and friendship as well as helping with the proof reading.

I would also like to thank my siblings, Esther, Patrick and Margaret Mwaura for their

unwavering love, friendship and encouragement. Special gratitudes goes particularly to

Esther Mwaura for her humour and optimism. It has kept me going.

I would also like to offer my gratitudes to Susan Munene-Karuthui for her friendship,

encouragements and unrelenting support before and during my research work.

Finally, I would like to offer my heartfelt gratitudes to Miss. Tutti Kandukira for her

friendship, continuous encouragement and for listening to my ideas even when she did not

exactly understand my research.

3

Abstract

The main objective in automatic robot controller development is to devise mechanisms

whereby robot controllers can be developed with less reliance on human developers. One

such mechanism is the use of evolutionary algorithms (EAs) to automatically develop

robot controllers and occasionally, robot morphology. This area of research is referred

to as evolutionary robotics (ER). Through the use of evolutionary techniques such as

genetic algorithms (GAs) and genetic programming (GP), ER has shown to be a promising

approach through which robust robot controllers can be developed

The standard ER techniques use monolithic evolution to evolve robot behaviour: mono-

lithic evolution involves the use of one chromosome to code for an entire target behaviour.

In complex problems, monolithic evolution has been shown to suffer from bootstrap prob-

lems; that is, a lack of improvement in fitness due to randomness in the solution set

[103, 105, 100, 90]. Thus, approaches to dividing the tasks, such that the main be-

haviours emerge from the interaction of these simple tasks with the robot environment

have been devised. These techniques include the subsumption architecture in behaviour

based robotics, incremental learning and more recently the layered learning approach

[55, 103, 56, 105, 136, 95]. These new techniques enable ER to develop complex con-

trollers for autonomous robots.

Work presented in this thesis extends the field of evolutionary robotics by introducing Gene

Expression Programming (GEP) to the ER field. GEP is a newly developed evolutionary

algorithm akin to GA and GP, which has shown great promise in optimisation problems.

The presented research shows through experimentation that the unique formulation of

GEP genes is sufficient for robot controller representation and development. The obtained

results show that GEP is a plausible technique for ER problems. Additionally, it is shown

that controllers evolved using GEP algorithm are able to adapt when introduced to new

environments.

Further, the capabilities of GEP chromosomes to code for more than one gene have been

utilised to show that GEP can be used to evolve manually sub-divided robot behaviours.

Additionally, this thesis extends the GEP algorithm by proposing two new evolutionary

techniques named multigenic GEP with Linker Evolution (mgGEP-LE) and multigenic

GEP with a Regulator Gene (mgGEP-RG). The results obtained from the proposed al-

gorithms show that the new techniques can be used to automatically evolve modularity

in robot behaviour. This ability to automate the process of behaviour sub-division and

optimisation in a modular chromosome is unique to the GEP formulations discussed, and

is an important advance in the development of machines that are able to evolve stratified

behavioural architectures with little human intervention.

4

Contents

1 Introduction 15

1.1 Research questions, aims, and claims . 17

1.1.1 Research questions . 17

1.1.2 Aims . 17

1.1.3 Claims . 18

1.2 Thesis overview . 18

2 Autonomous Robotics: Design and Control 20

2.1 Robot control system . 21

2.2 Robot control approaches . 22

2.2.1 Hierarchical/Deliberative paradigm 22

2.2.2 Reactive paradigm . 23

2.2.3 Hybrid deliberative/reactive paradigm 26

2.2.4 Learning robot control . 29

2.2.5 Evolutionary robotics . 31

2.3 Evolutionary algorithms . 31

2.3.1 Evolutionary algorithm model . 31

2.3.2 Components of evolutionary algorithms 32

2.3.3 Genetic Algorithms . 35

2.3.4 Genetic programming . 35

2.3.5 Gene expression programming . 38

2.4 Evolutionary robotics . 47

2.4.1 Evolving neural networks . 48

2.4.2 Evolving control programs . 52

2.4.3 Evolving intelligent behaviours using GEP 54

2.4.4 Evolution platform . 55

2.5 Improving evolutionary robotics . 57

2.5.1 Incremental evolution . 57

2.5.2 Layered learning . 59

2.5.3 Co-evolution . 59

2.6 Conclusions . 60

3 Evolving Behaviours using GEP 63

3.1 Obstacle avoidance with straight line navigation 64

3.1.1 Related work . 64

3.2 Using GEP to evolve an obstacle avoidance behaviour 65

3.2.1 Robot and environment implementation 66

5

3.2.2 Algorithm parameters . 67

3.2.3 Experimental results . 69

3.3 Adaptation to new environments . 75

3.3.1 Effect of training and testing controllers in similar environments . . 76

3.3.2 Effect of training controllers in simple environment and testing in a

complex environment . 77

3.3.3 Testing generalisation using the last population 79

3.4 Sensor based velocity control . 81

3.4.1 Experimental results . 82

3.5 Evolving monolithic controllers using multigenic GEP 85

3.5.1 Experimental results . 85

3.6 Conclusion . 94

4 Using Multigenic GEP in Robot Behaviour Sub-division 96

4.1 Modular architectures in ER . 97

4.2 Linking functions in multigenic GEP . 98

4.3 Evolution of a wall following behaviour . 98

4.3.1 Program implementation . 100

4.3.2 Fitness function . 100

4.3.3 Parameter settings and algorithm parameters 101

4.3.4 Algorithm primitives . 102

4.3.5 Experimental results . 102

4.3.6 Discussion . 108

4.4 Evolving in a 3D world model . 109

4.4.1 Experimental set up . 109

4.4.2 Fitness function . 111

4.4.3 Experimental results . 112

4.5 Effect of behaviour coordination mechanism 116

4.5.1 Experimental set up . 117

4.5.2 Experimental results . 119

4.5.3 Discussion . 122

4.6 Conclusion . 125

5 Evolving Modularity in Robot Behaviour 127

5.1 Multigenic GEP with Linker Evolution . 128

5.1.1 Motivation . 129

5.1.2 Experimental set up . 129

5.1.3 Results and Discussion . 131

5.2 Multigenic GEP with a regulatory gene . 133

5.2.1 Implementation . 134

5.2.2 Experimental set up . 135

5.2.3 Results and Discussion . 136

5.3 Algorithm performance analysis . 140

5.3.1 Performance comparison . 141

5.3.2 Statistical significance . 146

6

5.3.3 Solution convergence . 149

5.3.4 Controller performance . 152

5.3.5 Mutation effect . 164

5.3.6 Discussion . 166

5.4 Evolving in 3D environments . 167

5.4.1 Experimental set up . 168

5.4.2 Results and Discussion . 169

5.5 Conclusion . 173

6 Conclusions and Further Work 175

6.1 GEP for automatic development of robot controllers 175

6.2 GEP for automatic development of modular robot controllers 176

6.3 Further work . 179

6.3.1 Simulator to on-board evolution . 179

6.3.2 RoboCup . 179

6.3.3 Complex robots . 180

Bibliography 181

7

List of Tables

3.1 Terminal set and sensor positions . 66

3.2 General algorithm parameter settings . 68

3.3 Adaptation test: algorithm parameter settings 76

3.4 Phenotype lengths in the last generation controllers 80

3.5 Statistical comparison of the performance in the training and test environment 80

3.6 Sensor based velocity control: Parameter settings 82

3.7 mgGEP-multiple out: Parameter settings 86

3.8 Mann-Whitney U test between mgGEP-multiple out and ugGEP perfor-

mances . 93

4.1 Success predicate . 101

4.2 Parameter settings . 101

4.3 Comparison of average evaluations of the GP, ugGEP and mgGEP 103

4.4 3D experiments: Algorithm parameter settings 111

4.5 Robot foraging behaviour: Algorithm parameter settings 119

5.1 mgGEP-LE: Algorithm parameter settings 129

5.2 mgGEP-RG: Algorithm parameter settings 135

5.3 Algorithm parameter settings . 141

5.4 mgGEP vs ugGEP . 146

5.5 mgGEP-LE vs ugGEP . 147

5.6 mgGEP-RG vs ugGEP . 147

5.7 mgGEP vs mgGEP-LE . 147

5.8 mgGEP vs mgGEP-RG . 147

5.9 mgGEP-RG vs mgGEP-LE . 148

5.10 Analysing the linking set . 159

5.11 Mutation effect on GEP algorithms . 164

5.12 Algorithm parameter settings . 169

8

List of Figures

2.1 Hierachical model . 23

2.2 Reactive model . 24

2.3 Hybrid deliberative/reactive model . 27

2.4 Example of uniform crossover . 34

2.5 GP representation of a problem . 36

2.6 Flowchart of a GEP algorithm . 39

2.7 GEP chromosome, phenotype/expression tree (ET) and resulting coding

and non-coding regions . 41

2.8 sub-ETs in a multigenic chromosome . 42

2.9 Expression Tree (ET) for a multigenic GEP 42

2.10 Biological structure of a Gene Regulation Network. 43

2.11 An example of IS Transposition. The | marks the end of head region. 45

2.12 An example of RIS Transposition. The | marks the end of head region. . . . 45

2.13 An example of Gene Transposition. The | marks the end of head region. . . 46

2.14 Evolutionary robotics methodology . 48

3.1 Training and test environments . 67

3.2 Example of a potential robot avoidance controller using terminals and func-

tions as reported on Table 3.1. 68

3.3 Progression of the median fitness of the best individual and the median of

the population mean fitness over the generations 70

3.4 Evolved obstacle avoidance controller with parameters listed on Table 3.2.

The controller was evolved in environment test 2 as shown in Figure 3.1 . . 70

3.5 Success rate with varying chromosome length. 72

3.6 Variation of success rate with number of generations. A comparison using

different chromosome lengths is shown . 73

3.7 Progression of best individuals in the population over the number of gener-

ations using different chromosome lengths. 74

3.8 A comparison of the average population mean fitness across different chro-

mosome lengths. 75

3.9 Comparison of frequencies with different phenotypical lengths when con-

trollers are tested in similar environments 77

3.10 Comparison of frequencies of different controller lengths when tested in

complex environment . 78

3.11 Performance of all the final generation controllers in the 20 GEP runs in

training environment and the resultant performance in test environment . . 79

9

3.12 Progression of the average mean fitness in the population as achieved using

ugGEP and ugGEP with sensor based velocity control. 83

3.13 Obstacle avoidance controller evolved using ugGEP with sensor based ve-

locity control. 84

3.14 Comparison of performance of best individuals in new environments. 84

3.16 Comparison of success rate over generations as achieved using ugGEP,

ugGEP with sensor based velocity control and with multiple output gene. . 86

3.15 Comparison of success rates achieved using ugGEP, ugGEP with sensor

based velocity control and with mgGEP multiple out. 87

3.17 Progression of best individual in the population as achieved using ugGEP,

ugGEP with sensor based velocity control and with multiple output gene

in environment test 2. 88

3.18 Progression of the mean population mean fitness as achieved using ugGEP,

ugGEP with sensor based velocity control and mgGEP with multiple output

gene in environment test 2. 89

3.19 Progression of best individual in the population as achieved using ugGEP

and mgGEP with multiple output. 90

3.20 Mean of the population mean fitness in the population as achieved using

ugGEP, ugGEP with sensor based velocity control and mgGEP with mul-

tiple output. 91

3.21 Comparison of performance of best individuals in new environments. 92

3.22 Comparison of performance of best individuals in new environments. 93

4.1 A behaviour modularity model . 97

4.2 mgGEP behaviour sub-division using 2 genes and a linking function 98

4.3 Five different room types used in the experiment. These room types have

been adapted from Lazarus and Hu [78]. 99

4.4 Comparison of ugGEP and mgGEP success rates across the five different

room types. 104

4.5 Progression of the average fitness of the best individual in the population

as achieved through ugGEP and mgGEP in the different room types. 105

4.6 Progression of the average population mean fitness as achieved through

ugGEP and mgGEP in the different room types 106

4.7 An example of a controller generated using ugGEP while solving room type

4. 107

4.8 Simplified version of figure 4.7 . 107

4.9 Example of mgGEP controller evolved while solving room type 4 108

4.10 Robot environments as set up in simbad simulator 110

4.11 Comparison of ugGEP and mgGEP success rates across the five different

room types. 112

4.12 Progression of success rates with number of generations using ugGEP and

mgGEP in the four room types. 113

4.13 Progression of the average fitness of the best individual in the population

as achieved through ugGEP and mgGEP in the different room types. 114

10

4.14 Progression of the average population mean fitness as achieved through

ugGEP and mgGEP in the different room types 115

4.15 Progression of standard fitness with number of generations. 116

4.16 Robot world used in the foraging experiments. The round objects represents

“food sources” that the robot picks to improve its energy while navigating. 117

4.17 A behaviour coordination model that relies on robot proximity to obstacles

in order to choose a robot task. 120

4.18 Progression of the mean of the best individual in the population, and the

average of the population mean fitness over generations as achieved through

ugGEP and mgGEP (OA priority). 121

4.19 A behaviour coordination model that relies on robots energy level in order

to select a robot task. 121

4.20 A behaviour coordination model that uses robots energy to determine be-

haviour selection. In this case sub-behaviour selection is determined via

cascading priorities. 122

4.21 Progression of the mean fitness of the best individual in the population over

generations. 123

4.22 Progression of average performance of the population over generations, with

different behaviour coordination mechanisms. 124

5.1 Mean fitness of the best individuals along 200 generations for the population

of mgGEP-LE and mgGEP chromosomes. 131

5.2 Mean of the population mean fitness as achieved through mgGEP and

mgGEP-LE in the different room types. 132

5.3 mgGEP-RG implementation model. The output of the regulatory gene is a

symbol that is then used for decision making 134

5.4 Comparison of success rates achieved in the four different room types using

standard mgGEP, mgGEP-LE and mgGEP-RG algorithms. 136

5.5 Comparison of best individual performances in the population as achieved

through standard mgGEP and mgGEP-RG in the different room types. . . 137

5.6 Comparison of progression of average fitness of the population as achieved

through mgGEP and mgGEP-RG in the different room types. 138

5.7 an example of a controller evolved using mgGEP-RG 139

5.8 Comparison of success rates achieved using ugGEP, standard mgGEP, mgGEP-

LE and mgGEP-RG algorithms. 142

5.9 Progression of the mean fitness of the best individual in the population as

achieved through ugGEP, standard mgGEP, mgGEP-LE and mgGEP-RG

in the different room types. 143

5.10 Progression of the mean of the population mean fitness as achieved through

ugGEP, mgGEP, mgGEP-LE and mgGEP-RG in the different room types. 144

5.11 Progression of the median of the population mean fitness as achieved through

ugGEP, mgGEP, mgGEP-LE and mgGEP-RG in the different room types. 145

11

5.12 P values generated using mann whitney two tailed test. The values are

generated from 50 observations in each generation. Each curve shows the

comparison with a different algorithms. A summary of all the parameters

used in this experiment is shown on Table 5.3. 149

5.13 Q1, Q2 and Q3 values of the best individual in the population as achieved

by ugGEP and mgGEP algorithms, plotted every generation. 150

5.14 Q1, Q2 and Q3 values of the best individual in the population as achieved

by mgGEP and mgGEP-LE algorithms, plotted every generation 151

5.15 Q1, Q2 and Q3 values of the best individual in the population as achieved

by mgGEP and mgGEP-RG algorithms, plotted every generation 152

5.16 An example of a multi-controller evolved using standard mgGEP 153

5.17 An example of a multi-controller evolved using mgGEP-LE. 155

5.18 A multi-controller evolved using mgGEP-LE 156

5.19 An evolved mgGEP-LE controller that replicates the behaviour of a con-

troller evolved using mgGEP . 157

5.20 Example of a multi-controller evolved using mgGEP-LE 158

5.21 An example of a multi-controller evolved using mgGEP-RG. 160

5.22 Example of a novel multi-controller evolved using mgGEP-RG 161

5.23 A strategy used by mgGEP-RG to solve wall following problem in room 5. . 162

5.24 A novel mgGEP-RG controller evolved to solve wall following problem in

room 5 . 163

5.25 Mutation effect on ugGEP, mgGEP, mgGEP-LE and mgGEP-RG individuals165

5.26 Average performance of the best individual in the population across rooms

2-5 evolved using mgGEP, mgGEP-LE and mgGEP-RG. 170

5.27 Average performance of the best individual in the population evolved using

mgGEP-RG and different variations of mgGEP-LE algorithm. 171

5.28 Comparison of progression of the fitness of the best individual fitness in the

population as achieved through mgGEP, mgGEP-RG and mgGEP-LE in

the different room types. 172

5.29 Progression of the best individual in the population as achieved through

mgGEP, mgGEP(L) and mgGEP-RG in room 2 and 4. 173

5.30 Progression of success rates with number of generations using mgGEP,

mgGEP(L) and mgGEP-RG. 173

12

Acronyms

Acronym Meaning

AI Artificial Intelligence
ADF Automatically Defined Functions
ANN Artificial Neural Network
ARL Adaptive Representation through Learning
AuRA Autonomous Robot Architecture
BBR Behaviour Based Robotics
BPGEP Backtracking Parallel Gene Expression Programming
CGP Cartesian Genetic Programming
CTRNN Continuous Time Recurrent Neural Network
EA Evolutionary Algorithms
EANN Evolving Artificial Neural Networks
EC Evolutionary Computation
EP Evolutionary Programming
ER Evolutionary Robotics
ES Evolution Strategies
ET Expression Tree
FFNN Feed Forward Neural Network
FLC Fuzzy Logic Control
GA Genetic Algorithms
GEP Gene Expression Programming
GP Genetic Programming
GRNN Global Recurrent Neural Network
HGP Hierarchical Genetic Programming
IAS Intelligent Autonomous Systems
IFLTE If Less Than or Equal to
IS Insertion Sequence Transposition
LGP Linear Genetic Programming
LISP LISt Processing
LRNN Local Recurrent Neural Network
MA Module Acquisition
MEP Multi Expression Programming
mgGEP Multigenic Gene Expression Programming
mgGEP (L) Multigenic Gene Expression Programming

(checking left sensor)
mgGEP - multiple out Multigenic Gene Expression Programming

with multiple output

13

Acronym Meaning

mgGEP (OA Priority) Multigenic Gene Expression Programming

(with Obstacle Avoidance as Priority behaviour)

mgGEP-LE Multigenic Gene Expression Programming

with Linker Evolution

mgGEP-RG Multigenic Gene Expression Programming

with Regulator Gene

ORF Open Reading Frame

RIS Root Insertion Sequence

SFX Sensor Fusion Effects

S-R Stimulus-Response

TGP Traceless Genetic Programming

ugGEP Unigenic Gene Expression Programming

14

1 Introduction

Intelligent autonomous systems (IAS)1 are designed “to do the right thing at the right

time”2 as well as to exhibit “intelligent” behaviour. Autonomous robots are used to

assist human beings in dangerous tasks such as detecting and removing land mines, risk

assessments in such areas as nuclear plants, performing domestic tasks such as vacuum

cleaning as well as helping elderly persons. These tasks require the robots not only to

be autonomous but also good decision makers. There are a lot of studies that have been

carried out on how to develop these robots [74, 105]. The research is normally two fold: (a)

development of robot morphology or body [84] and (b) development of the robot controller

[105, 104]. The design and development of robot controllers involves the implementation of

control routines that support flexible task execution and effective action planning. Hand-

coding these control routines takes a lot of programmers’ time and cannot be guaranteed

to generate a robust control system that is able to help the robot adapt easily when

confronted by new circumstances in the environment.

To solve the problems related with manual hand-coding of robot control systems, there

have been various mechanisms to develop robot control systems automatically. Chief

among these techniques is the nascent field of evolutionary robotics (ER). Briefly, ER

is a technique to automate the design of robot controllers and sometimes morphology

using evolutionary computation techniques. Evolutionary computation (EC) is a branch

of artificial intelligence that involves the use of neo-Darwinian evolution techniques such

as selection, mutation and crossover to solve optimisation problems. EC techniques are

largely referred to as evolutionary algorithms (EAs) and include evolution strategies (ES),

evolutionary programming (EP), genetic algorithms (GA), genetic programming (GP)

and gene expression programming (GEP). In this thesis, GA, GP and GEP algorithms

are described.

There are two common approaches used to evolve robot controllers, the first is to optimise

a neural-based controller including the weights, learning rates and architecture using GAs

[105], and secondly, the evolution of symbolic computer programs using GP [75]. The two

approaches have shown great versatility in generating robot controllers for such tasks as

obstacle avoidance, maze exploration, food foraging and homing behaviours. The most

common evolutionary approach used in ER is monolithic evolution; that is, evolution of

robot controllers using one gene or module to represent the entire target behaviour. For

instance, in a robotic task such as foraging, only one gene is used to evolve the entire

behaviour complete with its constituent tasks such as obstacle avoidance, exploration and

food location [105, 56, 60]. Although this evolutionary approach has been utilised to evolve

1a glossary of acronyms can be found on page 13
2http://www.ias.uwe.ac.uk/

15

robot controllers with satisfactory results, the approach may not evolve optimum solutions

when presented with complicated problems. This in turn may lead to scaling up problems

in evolutionary robotics, that is situations where the evolved controllers do not have suffi-

cient capability to solve the problem [105, 49, 136, 37]. There are various mechanisms that

have been proposed to counter scaling up problems associated with monolithic evolution.

Among these techniques is incremental evolution [105, 5], where the targeted behaviour

is subdivided by the experimenter and then solved sequentially. The underlying problem

with this mechanism is that once a controller is evolved, there is no way of distinguishing

which part of the controller solves the problem. Also, the mechanism requires numerous

changes of fitness and reconfiguration of the problem set up. Another mechanism that has

been proposed is layered learning [117, 61], in this technique, the targeted behaviour is

divided into simpler tasks and each task solved until a targeted fitness is achieved. Once

this is done, the next sub task is evolved and so on. This technique is better than in-

cremental evolution because each particular task has its own sub-controller and therefore

it is easy to distinguish what part of the controller solves which task. Additionally this

mechanism means that the controller is modular and therefore replicates the well known

subsumption architecture [136]. However layered learning requires the use of multiple ob-

jective fitness which means that it is computationally expensive. Moreover, since learning

on each module is stopped when a particular fitness is achieved, the robot is highly likely

to have a hindered performance when new situations are encountered.

This thesis introduces GEP to the field of evolutionary robotics, by presenting a study on

evolving robot controllers using the GEP algorithm. GEP is a new and more biologically

plausible EA that incorporates the simplicity of GAs as well as the capability of GP [38, 93].

The main difference between GEP and its predecessors, GA and GP, resides in how the

individuals are represented. In GEP the individuals are encoded as linear strings of fixed

length (similar to GAs) which are later translated to non-linear entities of different sizes

and shape (similar to GP individuals). The initial linear fixed length structure is known

as the genotype and the ramified structure, derived from the translation of genotype is

known as the phenotype. GEP is therefore said to be a genotype/phenotype algorithm.

Another difference between GEP and its predecessors is in the genetic operations used.

Similarly to GA and GP, GEP uses mutation and recombination for genetic operation.

However, GEP incorporates additional genetic operations; gene recombination, insertion

sequence transposition, root insertion transposition and gene transposition. The use of

more genetic operators than GA and GP is likely to create a population of highly diverse

individuals which in turn, may lead to reduced local minima problems. Another important

aspect which this thesis addresses in detail is that GEP chromosomes can be composed of

more than one gene of equal length; these chromosomes are referred to as multigenic GEP

(mgGEP) chromosomes. These multigenic chromosomes can be utilised in two different

ways. Firstly, in problems with multiple outputs, each gene or sub-expression tree (after

gene translation) evolves its respective output. Secondly, in problems that require one

output, the various genes interact with one another forming a more complex chromosome

or controller. For instance, in robot problems involving more than one task, each task can

be evolved using one gene and a special linking function used to enable interaction within

the different tasks. This means that GEP chromosomes can be utilised to evolve modular

16

controllers similar to subsumption architecture. Since these modular structures are part

of a whole chromosome, there is a concurrent evolution of different modules of behaviour,

leading to robust controllers.

This thesis utilises GEP algorithm to evolve robot controllers using both monolithic and

modular approaches. The thesis shows that GEP is not only a suitable algorithm for

evolving mechanisms for robot control but also it is more biologically plausible than both

GAs and GP. Also, this thesis extends the current implementation of multigenic GEP

by proposing two more bio-inspired multigenic GEP variants to be used for evolution of

modular controllers. From our investigation, this is the first time that GEP has been used

in evolving robotic controllers. The thesis is an attempt to address the research questions

and claims as discussed in the next section.

1.1 Research questions, aims, and claims

This section outlines the research questions, aims and claims that drive this thesis.

1.1.1 Research questions

• How can GEP be best utilised to evolve robot controllers?

• What are the effects of using controllers, evolved using GEP, in new environments?

• How can the linking functions used in multiple gene chromosomes in GEP be utilised

to provide behaviour modularity?

• What are the possibilities of using GEP technique to generate more biologically

plausible methods for ER problems?

1.1.2 Aims

• To explore the capability of GEP in evolving robot controllers. In particular to

investigate whether GEP is a viable EA technique to be used in ER.

• To investigate the robustness of controllers evolved using GEP, when tested in new

environments.

• To investigate the effect of manual behaviour sub-division using multiple genes

evolved using GEP. In addition, to investigate whether a particular sub-behaviour

position in the model affects how the whole controller solves a problem.

• To investigate whether multiple gene chromosomes implemented using GEP can

be used to automatically evolve behaviour modularity. In particular, to study the

effect of evolving the behaviour coordination mechanism or linking function in GEP

and also to study the effect of using a regulatory gene to determine sub-behaviour

activation and inhibition.

17

1.1.3 Claims

• GEP, a more biologically plausible EA technique than GA and GP, is a suitable

mechanism for evolving robust robot control programs. In addition, GEP is the

only EA technique which can be implemented using more than one gene. These

multiple genes can be utilised to provide controllers in robotic problems requiring

multiple output as well as provide mechanisms to evolve modular architectures.

• Modular robot control architectures implemented using GEP, can be used to develop

better robot controllers than those evolved using a monolithic GEP implementation.

• Linking functions used in multiple gene chromosomes in GEP can be used as be-

haviour coordinators in modular robot behaviour implementations. In addition,

this linking functions can be evolved in essence providing automatic behaviour sub-

division. Moreover, one of the genes in the chromosome can be utilised as a regula-

tory gene to provide gene inhibition and activation control within the chromosome,

similar to the process in natural biology.

1.2 Thesis overview

Chapter 2 presents the necessary background in robotics control. In this chapter, var-

ious control methods are reviewed starting from classical artificial intelligence (classical

AI) control methods, behaviour based control techniques and hybrid control. The discus-

sion then proceeds to adaptive control methods such as fuzzy control and robot learning,

followed by a brief review of evolutionary robotics. The survey then proceeds to evolu-

tionary computation algorithms where genetic algorithms (GA) and genetic programming

(GP) are briefly discussed. This is then followed by a detailed review of gene expression

programming (GEP); an evolutionary computation method that is preceded by both GA

and GP. Techniques to evolve robot controllers are then discussed starting with evolution

of artificial neural network based controls and evolution of computer programs. Mecha-

nisms to improve the basic evolutionary robotics methodology and various platforms for

evolution of robot behaviours are then commented upon.

Chapter 3 presents mechanism to evolve a robot behaviour using GEP. The first section

of this chapter is largely based on [94]. However, the rest of the chapter explores new

mechanism to evolve robot behaviour. A robot obstacle avoidance behaviour is presented

and results discussed. The aim of the chapter is to show the capabilities of GEP in

evolving robot behaviour and the abilities of evolved behaviours to adapt when introduced

to new environments. Using the same examples, a mechanism to evolve a multiple output

controller is discussed and results presented. Through this new technique, it is shown

that multiple output controllers offer more capability in adaptation when compared to

standard monolithic structures developed using GA and GP.

Modular control architecture such as subsumption architecture, incremental evolution and

layered learning have been shown to outperform monolithic controllers [55, 105, 136]. Work

18

presented in Chapter 4 utilises multigenic GEP structures to evolve modular controllers

for a robot. The obtained results show that GEP chromosomes that utilise multiple genes

(mgGEP) can be used to evolve a global modular behaviour. This work is an extension of

work presented by the author in [95]. In the presented experiments, each sub-behaviour

is evolved using one gene and the overall structure is linked together using a pre-selected

linking function. In this chapter, a wall following behaviour is implemented and the results

show that mgGEP controllers are more robust than unigenic GEP (ugGEP) structures.

Additionally, it is shown through a robot foraging behaviour that how the linking function

is implemented to activate or inhibit execution of any of the sub-behaviours (genes) is of

critical importance as it affects the overall performance of the evolved control program.

Chapter 5 extends the work carried out in Chapter 4 by investigating a mechanism that

can be used to automatically regulate which gene/sub-behaviour is to be activated or in-

hibited during the control process. This chapter, introduces two main methods. Firstly,

the standard multigenic GEP algorithm is modified by including an extra parameter set,

that is, a linking set. In standard multigenic GEP a linker is normally specified a priori,

however, in the proposed new mechanism, a linking function set (Linking Set) is provided

together with the function and terminal sets. Therefore, individuals in a population are

linked up using different linking functions. The linking functions also go through the evo-

lution mechanism and as thus this new mechanism is named “multigenic gene expression

with linker evolution” (mgGEP-LE). The results achieved using mgGEP-LE are compared

to results from standard mgGEP and a conclusion drawn. Secondly, we explore new mech-

anisms where the sub-behaviour selection is determined by use of an extra gene. The GEP

mechanism, as the name implies, is not only based on evolution but also the process of

gene translation. Following this, we use the gene analogy to evolve a control structure

where a regulatory gene is used to activate or inhibit the execution of the rest of the genes

in the chromosome. This mechanism is named “multigenic gene expression programming

with regulatory gene” (mgGEP-RG). This is a novel technique as behaviours evolved are

as a result of not just the evolution mechanism but also the regulatory gene whose role

is to activate and inhibit control. The evolution of this type of controller can be used

to solve the problem of behaviour coordination that affects such modular structures as

subsumption architecture and layered learning techniques [92, 142].

Finally, Chapter 6 discusses the contribution of the thesis to the field of robot control,

discusses future work that can be carried out using standard GEP and the newly proposed

mechanisms.

19

2 Autonomous Robotics: Design and

Control

A robotic system is a machine that senses its environment by using sensors, “behaves

autonomously” by processing received signals from the sensors to determine its next action

and lastly acts by use of its actuators [92, 30]. Robot actuators are devices that provide

a mechanism to activate process control equipment in a robot. The most common robot

actuators are electrical motors. It is the work of actuator devices to convert energy to

actions or behaviours by using robot effectors such as robotic arms, robot wheels or legs

in case of a humanoid robot. Robot sensors come in different varieties depending on the

intended function; infra red sensors, sonars and stereo vision are used for range detection,

robot bumpers and touch sensors make the robot aware that it has come into contact with

an external body, such as obstacles, while cameras provide visual information about the

state of the environment. An autonomous system refers to a system that is capable of

operating in the real world without any external control over a length of time [92, 124].

Biological organisms are good examples of autonomous systems. They live and adapt

in dynamic environments, maintain their internal structures, automatically repair when

damaged, gather information regarding their environment and exhibit behaviours that

make them suitable to live in the environment they are in. These behaviours include

locomotion, foraging, mating and escaping from predators.

Autonomous robots are machines that can perform desired tasks in unstructured and

sometimes chaotic environments without explicit human control [49]. Many types of robots

have some degree of autonomy and different robots can be autonomous in different ways. A

fully autonomous robot must have the ability to gather information about its environment

by the use of sensors, be able to process received signals in order to make decisions, be

entirely mobile or have some of its part mobile (in the case of a robotic arm) and should

be able to avoid situations that can harm people or itself.

Robot autonomy is particularly desirable in fields such as military applications [73, 114].

Examples of operations where the military has utilised robotics include transportation

of military supplies, ammunition and war casualties 1. In addition, robots have also

been used by the military in warfare2. In nuclear technologies, autonomous robots are

1Examples of robots used for this purpose include autonomous platform demonstrator (APD) which is
an unmanned ground vehicle. Details can be found on; http://www.rec.ri.cmu.edu/projects/apd/,
iRobot’s Warrior that can carry up to 70kg payloads , Squad Mission Support Systems(SMSS) which is
an unmanned ground vehicle,details can be found on; http://www.time.com/time/nation/article/
0,8599,1884169,00.html

2Armed robots are robots that are used to fire missiles, for instance, the General Atomics MQ-1 Predator
which is an unmanned aerial vehicle used primarily by the US army to fire Hellfire anti-armor missile.
Details can be found on http://www.airforce-technology.com/projects/predator/

20

desirable due to the risks involved if exposing personnel to the environment; an example

is the iRobot’s Warrior and packbots that are being used in the nuclear emergency in

Fukushima in Japan3. Autonomous aerial vehicles have also been used increasingly for

space exploration. These robots include planetary flybot probes such as voyager 1 and

2 4. In health care, autonomous robots have been used for transportation, for instance

Speciminder and RoboCourier 5 are used to transport payloads of up to 50 pounds in

hospitals. Additionally, semi autonomous robots are being used to assist surgeons in

surgical procedures [140, 35]. Autonomous robots are also used in agriculture [12], search

and rescue [16], home [129], mining [145, 129] and waste management. An important

area of robotics research is to enable an autonomous robot to adapt to its environment

as well as learn new capabilities like adjusting strategies for accomplishing its task(s) or

adapting to changing surroundings. For any particular robot to accomplish any of the

tasks discussed here, a robot control systems is required. The design and development

of robot controllers involves implementation of control routines that support flexible task

execution and effective action planning.

2.1 Robot control system

Robot control refers to the process of enabling a robot to make decisions, given some

inputs. The robot control system or controller refers to the robots “brain” or the com-

ponent that handles robot control. The controller could be a pre-programmed hardware

microcontroller processor which is used to store information about the robot and its en-

vironment and to store and execute programs which operate the robot. Alternatively,

it could be software programs that determine what the robot does when presented with

different scenarios in its environment.

The control system contains programs, data algorithms, logic analysis and other processing

activities which enable the robot to perform the required tasks. Additionally, the control

system requires a set of rules to be able to analyse presented data in terms of signals

received from sensors and internal feedback structures. The result generated from the

processor directs the actuators to carry out some action.

To control robots to perform behaviours autonomously a number of tasks have to be

addressed. These include:

[a] Selection of robot movement control mechanisms; e.g. kinematics, dynamics and

odometer calculations.

3The Japanese earthquake and nuclear emergency started on 11th March 2011, where a great level of
damage occurred and three nuclear reactors at the Fukushima nuclear plant were damaged. The effects
of the reactors meltdown led to high risks of radiation exposure. Robots are thus being used in the
cleaning up exercise and to investigate radiation levels inside the reactors http://spectrum.ieee.org/
static/japans-earthquake-and-nuclear-emergency

4Voyager 1 and 2 are spacecraft sent to space by NASA in 1977 to explore the solar system, the initial
mission was to Jupiter and Saturn but the mission has now been extended to cover Sun’s outermost
edge. There is also hope that they may be picked by intelligent extraterrestrials and communicate
information about earth. Further reading can be found on http://voyager.jpl.nasa.gov/mission/

5Speciminder and RoboCourier are developed by swisslog health solutions (http://www.swisslog.com/)

21

[b] Selection of robot sensors; whether active or passive proximity sensors.

[c] Selection of robot’s low-level control of actuators; this will help determine the action

a robot executes in a given scenario.

[d] Selection of robot control architectures; this could be either traditional planning

architectures, behaviour-based control architectures or hybrid architectures.

Autonomous robots are programmed to understand their environment and take indepen-

dent action based on the knowledge they possess. Some autonomous robots may have

memory and are able to “learn” from their past encounters. This means they can identify

a situation, process actions which have produced successful/unsuccessful results and mod-

ify their behaviour to optimize success. This activity takes place in the robot controller.

Due to the unstructured nature of the environments in which autonomous robots are em-

ployed, the robot controllers cannot always be programmed to execute predefined actions

because it is hard to predict in advance the changes that might occur in the environment

and the required robot sensorimotor transformations. In addition, the environment might

contain dynamic characteristics that require the robot to modify its behaviour in order to

fulfil the required task. Moreover, robot systems in dynamic environments have to deal

with :

[a] Sensor noise and uncertainty; sensor readings could be imprecise and unreliable.

[b] Environment uncertainty; various aspects of the environment cannot be observed.

Also the environment is initially unknown to the robot or may have certain dynamic

characteristics that may require rapid real time modifications of the robot behaviour.

[c] Action uncertainty; actions taken could fail and also actions may have a non-

deterministic outcome.

It is for this reason that researchers in robotics have been looking at different novel methods

to prepare controllers for autonomous robots. The next section will describe different

approaches to robotic control.

2.2 Robot control approaches

This section highlights different approaches that are utilised to control an autonomous

robot.

2.2.1 Hierarchical/Deliberative paradigm

Minsky [88] argued that when faced by a problem, an intelligent agent would build an

abstract model of its world. Once the model is built, the agent would explore solutions

within the internal model of the environment and finally attempt a solution in the real

world when the best strategy is devised. This is now what is referred to as a classi-

cal artificial intelligence (AI) approach or the deliberative control architecture. In this

22

paradigm, the robot operates in a top-down fashion with a lot of emphasis on planning.

The paradigm is geared towards replicating human-like intelligence in solving a problem

[92]. In this approach, the robot senses the environment and creates an internal world

model, next, the robot reasons about the consequence of various actions to be taken within

the environment. Once the best strategy is formulated, the robot executes it. Thus, the

control process goes through a sequence of sensing (SENSE), model update, planning steps

(PLAN) and execution (ACT). The key components in this paradigm are functions: i.e.

perception, learning and planning. The Hierarchical paradigm,as shown by figure 2.1, has

a horizontal decomposition with SENSE, PLAN and ACTION as distinctive components

enabling robot action.

Figure 2.1: Hierachical model

There are various advantages associated with this approach. Firstly, the intelligent agent

reasons about contingencies, that is, in every step the robot checks the internal world

model and then uses the inbuilt control routine to make a decision on what action to

execute. Therefore, the robot is unlikely to execute destructive actions such as high

speed collisions. Secondly, the robot computes solutions to a particular task hence the

solutions arrived at are the best achievable in the solution pool. Finally, this approach

is good at achieving goal directed strategies, thus, it is successful in robot planning and

search oriented techniques. The approach however has the following drawbacks: The

solutions tend to be fragile in the presence of uncertainty, requires frequent re-planning,

react relatively slowly to changes and unexpected occurrences and finally the fusing of

all sensing into a global map supplemented with a knowledge base means that expert

knowledge of the operating environment needs to be known a priori. Also this approach

suffers from the frame problem (i.e. the problem of finding an accurate representation

form that is able to ensure that an unstructured world is sufficiently represented)[118].

Thus, the approach is not sufficiently robust to address rapid changes to the environment

as well as to model an unstructured environment where an autonomous robot needs to

operate. For a comprehensive review of hierarchical paradigm, see [118, 92]

2.2.2 Reactive paradigm

The major drawbacks related to the hierarchical paradigm as discussed above, were slow

reaction speed due to re-planning after every step and weak solutions in the face of un-

certainty. It is impossible to create a knowledge base or an inference engine covering all

angles in a non-structured environment. Due to this, there was a need to approach the

problem of implementing robotic behaviours and investigating artificial intelligence dif-

ferently. Reactive behaviour arose to address the problems with classical AI, particularly

23

the reliance on representation and symbols. Brooks [17] argued that the representation

was the wrong building block particularly when implementing a large intelligent system.

Brooks also noted that explicit representations and the building of a world model was

prohibitive when examining simple level intelligence. The world, according to Brooks, is

its own best model. In the reactive paradigm, the artificial agent senses the world through

its sensors and reacts immediately using its motors. There is therefore no need for the

planning phase as the agent does not create an internal model. Figure 2.2 shows the model

of the reactive paradigm.

Figure 2.2: Reactive model

The reactive paradigm draws its inspiration from biological intelligence, particularly from

the field of ethology (study of animal behaviour). In this approach, behaviour is the fun-

damental building block for intelligence, this is different from classical AI where functions

are the basis for intelligence. Due to the use of behaviour as basis for intelligence, the

reactive paradigm is also known as behaviour based robotics (BBR).

What is a behaviour?

A behaviour can be described as a mapping of sensory inputs to a set of motor activities

which are used to accomplish a particular task [92]. The schema theory defines a behaviour

as a schema composed of both motor and perceptual schemas [92]. The perceptual schema

represent the template for sensing while the motor schema represents the template for

motor activity. Thus in BBR, the “PLAN” component is removed. Behaviours in animals

can be divided into three categories;

[a] Reflexive behaviours - These are stimulus-response behaviours (S-R). In this case

the stimulus (an incentive that evokes action) is directly connected to the response.

For example, if something is directed towards the eye, the eye lid closes immediately.

[b] Reactive behaviours - These are learned behaviours that are then committed to

memory e.g. changing a gear while driving, riding a bicycle among others.

[c] Conscious behaviours - These are deliberate, planned behaviours e.g. planning a

journey.

In BBR, the concentration is on reflexive behaviours where a stimulus is effected by the

sensors and the response enacted by the motors. Reflexive behaviours are further divided

into: (a) Reflexes: in this category, the response time is directly proportional to the

intensity or the duration of the stimulus, for instance, a robot could turn right when the

front sensor faces an obstacle. (b) Taxes: in this case, the response is to move towards

24

a particular orientation such as, move towards the light or if hungry (stimulus) look for

food (response). (c) Fixed-action patterns: in this case the response time is longer than

intensity of stimulus, for example, when a robot is faced by a certain situation such as a

low battery and fleeing from predators. These categories of reflexive behaviours can be

implemented on one robot consecutively [92]; that is, all the categories of the reflexive

behaviours can be implemented on one autonomous robot. As can be seen in this section,

in BBR the term reactive behaviour is used to mean animal reflexive behaviours.

In BBR, the robot is provided with a repertoire of simple behaviours. The behaviours

are implemented in a vertical decomposition with lower layers/modules being the prim-

itive survival behaviours (e.g. charge battery, evade obstacles etc.) and higher layers as

goal accomplishing behaviours e.g. map building. The global behaviour emerges due to

the interaction of these simple behaviours with the environment [17, 18]. An interlinking

method is used to determine how the repertoire of these simple behaviours form the global

behaviour. The BBR approach is a trial and error method with the designer building the

set of simple behaviours to achieve a desired emergent behaviour. The designer has to

explicitly program rules and design control structures that include knowledge concerning

how the behaviour organization is achieved [142, 144]. The behaviours are built step by

step with increasing complexity, that is, once a lower behaviour is designed and imple-

mented the designer can then move to a new behaviour until all behaviours have been

implemented.

An important issue in BBR and ethology is behaviour coordination or action selection [117,

142]. This refers to the process of determining which behaviour to activate at a particular

moment in time. In BBR, methods of behaviour coordination have been categorised based

on the method used in behaviour selection. Two major categories have been identified: (a)

Arbitration methods; these are competitive based methods where the dominant behaviour

affects the motor output. The selection of which behaviour is dominant is determined by

the sensor readings and the internal state of the robot at a given time. (b) Cooperative

methods; in these methods the different behaviours contribute towards a single motor

action. In BBR, various architectures have been suggested in order to deal with behaviour

organisation. These architectures include subsumption and potential fields methods [4,

92, 18].

For a comprehensive reading on BBR, please see [4, 92].

Subsumption architecture

The subsumption architecture is an arbitrative method of organising behaviour [142]. In

this approach, the robot controller is divided into layers, where each layer is a human

designed piece of hardware or software. Each layer works independently with higher

layers subsuming and inhibiting the lower layers. Lower layers are used for simpler or

default behaviours and the complex behaviours are left for the higher layers [18]. The

behavioural modules operate concurrently and independently with potential behaviour

conflicts being resolved in a winner-takes all format where the higher layer is always the

25

winner. A particular task is achieved by selecting the appropriate behaviour which then

triggers the lower layers below it. Since the robot does not have to build a world model,

the subsumption architecture solves the frame problem in classical AI.

Mataric [83] has used the subsumption architecture to program a controller that helps a

robot to follow walls of an irregular room. In this work, the wall following behaviour was

divided into four tasks, stroll (wander), avoid (avoiding obstacles), align (align robot to

the wall avoiding collision) and correct (if going out of boundary). When the subsumption

architecture is employed in BBR as used by Mataric, each behavioural layer is normally

programmed by a human designer and embedded directly on the robot processor. Moussi

and Madrid [91] have also used the subsumption architecture to enable a robot to evade

obstacles and explore the environment while searching for a target.

Potential fields methodology

The Potential Fields approach employs vectors to represent behaviours or motor action

[92]. Behaviour coordination is achieved by a cooperative method where the vector summa-

tion is used to combine different behaviours in order to produce an emergent behaviour.

The method is also referred to as motor schemas [4] as the concentration is based on

providing a motor schema or action template. A vector is described as a mathematical

construct that has a magnitude (size or velocity) and direction. This can be represented

as a tuple (m,d) where m is magnitude and d is the direction. A potential field is created

using an array of vectors, this is referred to as a region or space. In robotics, the potential

field is a 2D world representation (i.e. a grid environment) with each element of the array

representing a square in the x,y robotic environment. In the representation, perceived

objects in the environment exert a force comparable to a gravitational or magnetic field

in the surrounding space. When a robot is placed in the environment, the implemented

sensors perceive the environment while the motor action is guided by the force exerted to

the robot by the environment. For example, an obstacle placed in the space will repel the

robot while a particular goal or taxes may attract the robot.

The reactive/BBR technique has been the dominant technique in designing robot control

systems. This has been motivated by fast reaction to changes and absence of requirement

for planning and re-planning. Moreover, a world model does not need to be built; the world

as posited by Brooks [18] is its best model. Nevertheless, it is also difficult to anticipate in

advance what effect combinations of different behaviours will have, it is difficult to create

a large repertoire of behaviours to cover all angles in an unstructured environment and

there is a requirement for continuous redesign to include control systems for new tasks.

2.2.3 Hybrid deliberative/reactive paradigm

As can be seen above, the reactive paradigm eliminates planning and does not involve

reasoning about the state of the robot in relation to the world it acts upon. Although

this brings faster response times for the robot and eliminates the high cost of real-time

26

reasoning, it means that the robot cannot tackle path planning problems, monitor its

performance in the environment nor build maps. This, ideally, means that the robot

cannot learn or plan as it operates in the environment. The question, raised by Murphy

[92] is whether the robot can be made intelligent enough to determine the best behaviour

in a given situation and perform behaviour control over time. It is this type of question

and the need to bring back planning and deliberation that led to the hybridisation of the

deliberative and the reactive paradigms.

The hybrid system incorporates PLAN, then SENSE-ACT sequence in modelling the robot

behaviour (see figure 2.3). The planning phase is decoupled from real time execution and

involves building a world model and reasoning offline. Once this is done, the robot then

turns to the reactor portion which incorporates sense-act as discussed in the reactive

paradigm above. The behaviour (SENSE-ACT) would go on until the plan is completed.

Figure 2.3: Hybrid deliberative/reactive model

The architectural components associated with the hybrid systems are thus; a deliberative

layer, a reactive layer and a middle layer [110]. The reactive layer is behaviour based

which means that the subsystem consists of a repertoire of behaviours that the robot

can accomplish. Each of these behaviours represent a tight coupling from the sensors

to motors. Modules in the reactive layers are stateless and they carry out calculations

on raw data in near real-time for safety considerations. The deliberative layer handles

planning, localization, reasoning and interactions with human operators. Modules in the

deliberative layer are; a mission planner, which interacts with the human operator by

receiving necessary commands, a cartographer module that is responsible for creating,

storing and maintaining spatial information and techniques for accessing data. In addition,

the resource manager module allocates resources to behaviours, for instance, if a robot

has different range detection sensors, the resource manager may allocate the set of sensors

that is sufficient for the tasks. The middle layer, also called the sequencer or supervisory

layer, interlinks the deliberative and reactive layers. The sequencer generates the set of

behaviours to use in order to accomplish a given task and determines the sequence and

activation condition.

The behaviours created in a hybrid system are reflexive, innate and learned. This is more

biologically plausible than those in the reactive paradigm which are only reflexive. There

are different architectures implemented using the hybrid paradigm, these are divided into

three main categories as discussed below:

27

Managerial architectures

The managerial architectures divides the deliberative part of the hybrid paradigm into

layers depending on the level of abstraction required by that layer, for instance, a mission

planning layer is less abstract than a path planning layer and hence the mission planning

can control the path planning. The division is thus; the high level layers carry out the

high level planning, this is passed to intermediate layers that may refine the plan and

lastly this is passed to the reactive layers where the actual execution is carried out. This

means that deliberative modules occupy the higher layers and the plans made are sent

to reactive modules which are at the low level. Each module attempts to carry its tasks,

identify the problems and solve them and if it cannot solve the problem, it seeks help from

a layer above it, due to this, layers are said to fail upwards. Similarly to the subsumption

architecture, a higher layer can only modify the layer below it.

Autonomous Robot Architecture (AuRA) [4] is an example of the managerial style archi-

tecture. This architecture was developed by Arkin [3] and is the oldest hybrid architecture.

It has a deliberative layer consisting of a planner and a spatial reasoner (cartographer).

The middle layer comprises a homoeostatic control, that influences which behaviours to

execute by monitoring internal conditions of the robot and reporting to both higher level

planning mechanisms and motor schemas [4]. This then leads to dynamic replanning

particularly in environment with changing conditions. The reactive layer is composed of

sensor and motor sub-systems which generate behaviours. Each behaviour is monitored

by the schema controller and is associated with a perceptual schema which provides the

stimuli for the behaviour. The Sensor Fusion Effects (SFX) architecture [92] started as

an extension of the AuRA. The initial idea was to add modules that would specify how

perception, sensor fusion and sensor failures would be handled. However, with time, the

architecture has re-organised the deliberative and reactive layers, though the architecture

remains closely related to AuRA.

State-Hierarchy architectures

State-hierarchy architectures use the state of a robot in relation to its environment at

a particular moment in time in order to differentiate between deliberative and reactive

layers. The robot states are divided into three layers: Past, Present and Future. With

state hierarchy, just as in managerial style discussed above, the organization is broken

down into layers with each layer having functions that carry out the required tasks. In

addition, the higher layers can access the output of the lower layers as well as modify

them.

An example of the State-Hierarchy architecture is the 3 Tiered Architecture [53]. As

the name suggest, this architecture comprises three layers. The deliberative layer utilises

past, present and future states to produce a plan for the sequencer or respond to sequencer

requests. This layer runs as a separate thread on a separate processor and acts on time

consuming computations. The sequencer layer interlinks the deliberative and the reactive

layers. This layer utilises the past and present states when interpreting a plan, in order

28

to select which behaviours to activate and respond to a situation. The layer does not

search into future states to decide actions. The reactive layer or the controller depends

on the current state to execute the behaviour library presented to it. This layer acts fast,

operates in real time and avoids internal states. The State-Hierarchy architecture has been

used primarily by NASA for controlling planetary rovers, underwater vehicles and robot

assistants for astronauts [92].

Model-Oriented architectures

The State-Hierarchy and managerial architectures are a direct extension of the reactive

paradigm and thus operate on a bottom-up structure and emphasise behaviour as the core

intelligent building block. The model-oriented architecture on the other hand is driven

by the hierarchical paradigm. It has a top-down structure with symbolic manipulation

around a global world model. The global world model supplies perception or sensing to the

behaviours, this is unlike the State-Hierarchy and managerial structures where a global

model is built in parallel.

Hybrid control techniques integrate the advantages of deliberative techniques, e.g. permit-

ting goal based behaviours, and enriches this with reactive advantages such as fast reaction

speeds. In addition to this, the complexity in planning is reduced [4, 92]. Nevertheless, the

behaviours interactions have to be well modelled, also the choice of modelled behaviours

limits what the robot can do. As a result, this technique is prohibited by the fact that it

is very hard to model behaviours to cover all situations in an unstructured environment.

2.2.4 Learning robot control

The reactive and hybrid systems discussed above focus on building robust control architec-

tures that address local uncertainties. In new environments or where new and previously

unknown tasks needs to be accomplished, these approaches may not be adequate to solve

a problem. In ever-changing environments, adaptation is key in order to generate suitable

behaviour. Robot learning involves the use of a learning mechanism to acquire and to

modify control strategies. In this approach, a robot control system (usually an artificial

neural network controller [10, 72]) undergoes training using incomplete data and is then

allowed to exploit the learned behaviour in new environments [105]. The controller can

learn how to map sensory inputs to motor actions or the learning can be used to form new

modules of the controller. There have been numerous machine learning techniques used

to achieve this, the most popular of which are described below.

Reinforcement learning

Reinforcement learning is a special case of supervised6 learning where the exact desired

output is unknown. The learning is based on a global evaluation of the network response

6Supervised learning is based on direct comparison between the actual output and the desired correct
output

29

after certain input is inserted and the output received [9, 132, 128]. In artificial agent

learning, reinforcement learning enables an agent/robot to learn from interacting with

its environment. In this framework, an agent uses its sensors to perceive the state of its

environment and the motors/actions to change its state and that of its world in order to

accomplish a set goal [33]. The robot acquires a reward for accomplishing the goal or a

sub goal and is penalized for failure. The robot uses an existing control model that has

been extended to include a learning mechanism or a control that integrates a learning

mechanism can be built from scratch.

Fuzzy control

Fuzzy control or fuzzy logic control (FLC) is a closed-loop control system based on fuzzy

logic: “a mathematical formalization of vague, ambiguous, imprecise, noisy, or missing

input information” [111]. The system uses fuzzy logic to create rule-bases. These rules

have the premise (IF) and the consequent (Then), for example: If speed is low Then press

the accelerator. The antecedent (i.e speed is low) describes the state of the system and

is used to activate a rule. The consequent (i.e press the accelerator) defines the action

to be taken [49]. The values, such as speed in the example above is referred to as a

linguistic variable. The uncertainty of the linguistic variable (such as “speed is low”) is

represented using fuzzy sets, i.e. a set whose boundaries between elements overlap. For

instance, there are various speed values that can be defined as low, meaning, different

values can be members of more than one fuzzy set. The membership of a value, such as

speed, to a fuzzy set can also be defined by establishing a membership function, which

is a function that maps a particular linguistic variable to a particular fuzzy set(s). A

fuzzy control system is comprised of four components [111, 113]. Firstly, a rule-base or

a knowledge base, this supplies the rest of the components with necessary information

such as rules and membership functions. Secondly, an inference engine which is a decision

making component. Thirdly, a fuzzification interface that converts controller inputs to

fuzzy sets. Finally, a defuzzification interface that “interprets” the fuzzy sets to a format

understandable by the process.

FLC has been used to develop a controller for a wall following and obstacle avoidance

mobile robot [113]. Additionally, Floreano et al. [49] have used a fuzzy system to train

a robotic neural network controller to learn the tasks of obstacle avoidance and wall

following. In Gu and Hu [58] and Gu et al. [59], a genetic algorithm was used to optimise

membership parameters for a fuzzy logic controller. Their approach was then tested

in the robot football domain, where ball chasing and position reaching behaviours were

implemented.

A major constraint with fuzzy control is choosing rules and membership functions. In

addition, a database for the fuzzy set and an inference engine (decision making component)

needs to be implemented [49].

30

2.2.5 Evolutionary robotics

Evolutionary robotics (ER) is a technique that employs evolutionary algorithms (EAs) to

automatically create control systems for autonomous robots and occasionally the physical

robot system (i.e. morphology) [84]. These controllers are either neural based with optimi-

sation achieved through the use of an evolutionary algorithm (EA) or symbolic programs

evolved using a range of evolutionary approaches [105, 142, 60, 143]. There have been

numerous robotic behaviours that have been investigated using ER, these include photo

axis [26], locomotion and obstacle avoidance [105], soccer playing [81], wall following [78],

homing behaviour [45], path planning [71, 125] among others. Programming or evolving

one program requires time and careful planning in order to ensure all interlinking function

or tasks work correctly so as to generate the correct behaviour.

ER involves the automatic creation of the robot controllers and it could also be used as

a learning mechanism to train robot control systems. This offers a great advantage to

the designer as the main requirement is to set the required parameters describing the

attributes of required behaviour and designing a fitness function that guides the process

of evolution. The use of a population of controllers means that this system offers parallel

development which could save time, i.e. a population of controllers means that a lot of

behaviours are developed simultaneously and checked for the most suitable one. This is a

better approach than behaviour based system where a trial and error method of designing

a system, then testing and redesigning is used. ER can be carried out in simulation or

on real robots. A detailed review of ER techniques and how evolutionary algorithms are

formulated for controller development is outlined in Section 2.4.

In the next section, evolutionary algorithms and techniques are explored, the field of

evolutionary robotics is then described in more detail and a discussion of the various

mechanisms to evolve robots follows.

2.3 Evolutionary algorithms

Evolutionary Algorithms (EAs) are population based stochastic algorithms that mimic

natural evolution. They include Evolution Strategies (ES) [11], Evolutionary Program-

ming (EP) [51], Genetic Algorithms (GA) [89, 54], Genetic Programming (GP) [74], and

more recently Gene Expression Programming (GEP) [38]. This section discusses the fun-

damentals of EAs, GAs, GP and finally GEP.

2.3.1 Evolutionary algorithm model

The general methodology used by a population based EA to solve a problem is as follows:

Step 1: Create an initial population of solutions P (0):= (P1 (0),.., Pn (0)).

Step 2: Compute the fitness, f (Pi (t)), of each individual, Pi (t), of the current population

P (t). Pi (t) refers to an individual i in population P(t). t is the number of

31

generations.

Step 3: Select a parent organism(s) by applying a selection method and/or replication.

Step 4: Apply genetic operations on the parent individuals to create offspring P (t + 1)

that make up the next generation (generational) or replace individuals in the current

population (steady state)

Step 5: Go to step 2; if maximum fitness has been achieved or maximum generation

attained exit algorithm else go to step 3.

2.3.2 Components of evolutionary algorithms

Encoding techniques

An encoding scheme is a mechanism of specifying how the task at hand is encoded as an

EA individual 7. An encoding scheme can also be defined as a method of representing

various required traits of phenotype (observable characteristics of an organism) by the

genotype (genetic instructions, also referred to as a chromosome). For instance, when

evolving a robot obstacle avoidance behaviour, the encoding attributes may include, robot

sensors, motors and a function that help translate sensor readings to specific motor actions.

Encoding techniques are very important in EAs as they represent the solution required;

good encoding techniques are therefore more likely to lead the algorithm towards the

correct solution [64]. If an inadequate encoding scheme is selected, the search space is

most likely to converge prematurely, exhibit unrequired characteristics and prevent the

evolution of a feasible solution [23].

Fitness function

The fitness function or objective function is an evaluation mechanism to determine the

performance of an individual within a population P(t) on a given task. The fitness func-

tion is a mathematical function that calculates how the specific genetic trait represented

by the individual controller performs in the search space or fitness landscape. A fitness

function defines the task that needs to be achieved by the algorithm but not how the algo-

rithm accomplishes it. The function guides evolution towards achieving the set objectives.

For instance in evolutionary robotics, a controller can be rewarded for accomplishing the

whole task (for instance following a wall) or for accomplishing sub-tasks such as obstacle

avoidance (if the main task is wall following). Once the evaluation is done, the individual

within the population is assigned a quantifiable fitness value, i.e. a measure of its perfor-

mance. The decision on what fitness function to use depends on the problem that needs

to be solved. Thus, a fitness function is normally formulated to suit a specific problem.

7The EA individual is also referred to as a genome, a chromosome, an organism or a decision vector. In
evolutionary robotics, the individual is referred to as a robot controller. These terms have been used
interchangeably in this thesis

32

In EAs, the fitness assignment can be accomplished in two main ways [133]: (a) propor-

tional fitness assignment - in this case the absolute fitness, as evaluated in a task, is

assigned to the individuals. (b) Rank-based fitness assignment - in this technique,

once the objective fitness is calculated, the individuals are then sorted according to their

measured objective values. Once sorted, a fitness value is assigned to each individual

depending on its position in the individuals rank.

There is a range of evolutionary approaches that are used to solve optimisation problems

with two or more objective functions [76]. These EA approaches are referred to as multi-

objective evolutionary algorithms (MOEAs) and are capable of processing multiple fitness

functions. However, their implementation and functionality is outside the scope of this

thesis and therefore they will not be considered further.

A detailed survey of fitness functions used in evolutionary robotics can be found in [99].

Selection

This operation helps to determine which individuals within a population P(t) will be cho-

sen for reproduction; that is, to create a new solution or offspring. In natural selection,

Darwin proposes that the best individuals should survive and hence create offspring [31].

To determine which individuals are chosen, a fitness function (a mechanism to measure

performance) is devised depending on the problem at hand and the individuals fitness

values are computed and assigned. The selection operator selects parent organisms ran-

domly: Therefore, to ensure that the selection is biased towards the best solutions, there

have been various selection mechanisms proposed. These selection mechanisms include:

Roulette wheel selection : in this selection scheme, the population or individuals are

mapped to contiguous segments of a line or a wheel, such that each individual’s slice is

proportionate in size to its fitness value. Once this is done, a random number is generated

and the individual whose segment spans the random number is selected. The process is

repeated until the required number of parents is selected. The mechanism is analogous

to a roulette wheel with each slice representing an individual [89]. Individuals with high

fitness values have a better chance of being selected for reproduction. This technique is

also known as stochastic sampling with replacement [7].

Tournament selection : this is one of the most often used techniques in selection. In

this case a certain number of individuals from the total population is selected at random

and compared. This is called a tournament size or pool, whereby, the individual with the

highest fitness value is selected from the pool and the process limited to select the next

parent. Once the two individuals are selected they are used for the reproduction of the

offspring. Large tournament sizes increase the selection pressure and lead to selection of

only fairly convergent individuals, this can lead to faster convergence of the solution, with

the attendant risk of premature convergence.

Since rank-based fitness is based on a position within the ranked population and not

on raw fitness values, the probability of having one individual or a group of individuals

33

dominating the selection is eliminated. This also helps overcome scaling problems related

to proportional fitness assignments. Scaling problems refers to local minima where high

selection pressure has caused the search space to narrow down very quickly and stagnation

in the case where there is low selection pressure. The technique provides a uniform scaling

across the population and controls selection pressure effectively [7].

Genetic operations

In order for the EAs to create diversity within a population, the following genetic operators

are normally used to varying degrees for different algorithm variants.

Replication : in this technique, once selection is performed, the individuals with higher

fitness values are copied to the next generation without modification. The effect is that

good individuals (with high fitness values) have a higher probability to be chosen and

copied to the next generation than weaker individuals. However, this technique does not

contribute to genetic diversity.

Mutation: in the process of evolution, it has long been discovered that variation of

the genetic material is key to the adaptation of the population [31]. The same ideal is

used in artificial evolution. A probability of mutation is normally chosen and a random

bit/allele selected for mutation. High probability of mutation is often destructive to the

individuals, thus, when performing mutation, a low probability is preferred. Mutation is

a key operator used in genetic algorithms and most evolutionary algorithms [89].

Crossover : this involves transfer of materials from one parent individual to another akin

to sexual reproduction in higher animals. Crossover can be implemented as a single point

crossover, where only one point is randomly selected and genetic materials transferred

from that point to the end of the individual, or it can be multi-point crossover. There

are various forms of multi-point crossover, the most common being two point and uniform

crossover. In two point crossover, a start and end points are randomly selected and the

genetic materials between this two points swapped from one parent gene to the other.

Uniform crossover, on the other hand, uses a fixed mixing ratio between the two parent

organisms. For instance, if the mixing ratio is 0.5, then the resulting offspring will have

50% of the genetic materials from one parent and the rest from the other parents (Figure

2.4 shows an example of uniform crossover where the mixing ratio is 0.5).

Figure 2.4: Example of uniform crossover

34

Elitism

When creating a new population by selection, crossover and mutation, there is a reasonable

chance that the best individual can be lost. Elitism involves copying the best individual

(or a few best individuals) to the new population. This ensures that best individuals are

not lost during the process of evolution. Elitism can very rapidly increase the performance

of EA, because it prevents the loss of the best found solution(s).

2.3.3 Genetic Algorithms

Genetic Algorithms (GAs) [89, 54] are a very popular EA technique. In this algorithm, the

individuals in a population are fixed length linear structures. The main encoding scheme

used in a GA is binary values. However, integers, floating points as well as symbols have

also been used [85, 126]. In a GA, the individuals encode a solution to the problem being

investigated. Thus the parameters that need to be provided to the algorithm must be part

of the solution. The main genetic operator used in GA is mutation with a low probability,

however, most often a crossover is implemented usually with a high probability. A GA

follows the basic algorithm described above and incorporates the discussed components as

set up by the designer.

2.3.4 Genetic programming

Genetic Programming (GP) [74] involves evolving computer programs to solve a problem

or mathematical functions. Note that GA involves evolving solutions to solve a specific

problem. A GP follows a similar algorithm to a GA, however GP individuals are ram-

ified structures representing a computer program. The following section discusses a GP

encoding and evolution operators.

GP encoding

The canonical GP uses tree like structures as individuals. This structure incorporates

nodes which can either be functions or terminals. In tree or graph terminology, a function

is a node on which other nodes can be connected to while a terminal is a leaf node (that

is, terminal nodes are connected to function nodes and cannot have other nodes connected

below them). Functions will either be arithmetic, boolean, conditional or logic while

terminals may be real values, integers or symbols. Terminals provide the GP with values

while functions provide the capability to either compute or connect the terminals. For

instance, when evolving robot behaviour, sensor inputs and motor actions will form the

terminals, while conditions that map the sensors to motor actions form the functions.

Figure 2.5 shows an example of a GP structure.

The standard GP often uses crossover as the main genetic modification operator. This is

unlike GA which, as previously mentioned, often uses mutation operator and crossover.

The argument is that since GP individuals contains building blocks, given crossover, the

35

Figure 2.5: GP representation of a problem

system should be able to combine ‘good’ building blocks to form more fit individuals and

that small building blocks combine to form large better building blocks [74]. The problem

associated with the use of crossover only, is that it leads to premature convergence and

there is technically nothing new being added to the population apart from elements from

the existing individuals [40].

GP variants

Since the introduction of GP, there have been many variants that have been proposed.

The main aims for the introduction of these variants are: “simpler implementation, higher

speed, smaller memory requirements and the capability to work with particular hardware

architectures” [109]. This section presents a brief description of common GP variants.

Linear GP

Linear Genetic Programming (LGP) represents the computer programs or individuals as

linear variable length sequence of simple instructions [15, 116, 109]. The instructions in

LGP may represent actual machine code (bits and ones) and be directly executed by the

CPU or they can be interpreted instructions programmed using an imperative language

such as C/C++. These instructions operate on one or two indexed variables, v, which are

also referred to as registers/ memory locations. The result of an operation is placed into

a destination register. An example of an instruction would be : v3 = v1 + v2 (that is,

an instruction operating on two registers). There is thus no distinction between terminals

and functions as is common in standard GP.

LGP uses both mutation and crossover to introduce diversity to the initial population.

However, these operations have to operate within instructions boundaries. The mutation

operator can operate as a micro mutator where an operator of an instruction is changed

or it can act as a macro mutator where an instruction is deleted or inserted. The crossover

on the other hand, swaps continuous sequence of instructions.

36

Multi expression programming

Multi Expression Programming (MEP) [1, 107, 109] is a GP variant that uses linear string

of genes to form its individuals. The genes in an MEP individual are formed using sub

strings of variable lengths. A gene encodes either a terminal or a function. If a gene

is formed using a function, then the gene also encodes pointers towards the function

arguments. These pointers are indices or positions of other genes and they must be lower

than the position of the calling gene. When initialising the MEP individual, the first gene

always contains a terminal so as to ensure that the programs are syntactically correct. In

any given problem, the function set, terminal set and the number of genes per chromosome

is given. The number of genes remains constant during the evolutionary run and is thus

used to calculate the length of the chromosome as shown by Equation 2.1.

Length = (n+ 1) ∗ (NumberOfGenes− 1) + 1 (2.1)

where n represents the number of arguments of the function with the highest arity and

NumberOfGenes represents the number of genes. A description on how this formula is

derived can be found on [107, 109].

Each of the encoding genes in a chromosome is used to independently evolve a solution to

the problem. The overall chromosome fitness is usually defined as the fitness of the best

gene in the chromosome. This is unlike standard GP, where only one gene is evolved to

provide solution to the problem.

MEP uses crossover (one point, two point and uniform) and mutation to introduce di-

versity. The crossover works by exchanging materials from the selected parents. The

mutation operates by mutation of the genes to either a terminal or function. However,

care has to be taken to ensure that the first gene is always a terminal.

Cartesian genetic programming

Cartesian Genetic Programming (CGP) [1, 87, 109] uses graph structures to represent

individuals. This is unlike standard GP where tree structures are used. The main argu-

ment for using this algorithm is that unlike tree structures, graph structures can be used

to encode more complex problems [109]. In this algorithm, the graph nodes are repre-

sented in a cartesian coordinate. Each node contains a function symbol and pointers to

the function arguments. Each node has an output which can be used as an input by a

different node. The CGP chromosomes are represented as arrays of integer values. Thus,

the functions are provided with an integer label and the strings are encoded by reading

the graph columns top-down and writing the inputs nodes first, followed by the function

label for each node. The genetic operators, mutation and crossover, are used to modify

the gene and to introduce diversity. The mutation can change a node function, a node

input or even the connections in a gene.

Cartesian Genetic programming is similar in operation to Parallel Distributed Genetic

Programming (PDGP) [116]. However in PDGP, the genetic operations work directly on

the graph unlike in CGP where it works on the linear genome.

37

Traceless genetic programming

The main difference between Traceless Genetic Programming (TGP) [1, 108] and the

standard GP is that TGP does not explicitly store the evolved chromosomes. Instead,

the TGP individuals stores only the fitness value(s) achieved so far. For instance when

solving a symbolic regression problem with m fitness cases, the TGP individual will be:

(f1, f2, f3 ... fm−1, fm), where fi is a fitness value for the ith fitness case. Behind this

fitness values is a tree expression (similar to standard GP), however the TGP does not

store the chromosome.

There are two genetic operators used with TGP. These are: (a) Crossover: In this genetic

operation, a function operator is selected together with a number of parent chromosomes.

The number of selected parent chromosomes has to be equal to the arity of the selected

function. The crossover operation is completed by joining the selected parent chromosomes

using the selected function. (b) Insertion: This operation is used to introduce diversity by

introducing a new simple expression to the population.

In summary, as the described GP variants show, there have been many techniques pro-

posed to improve the standard GP. These variants represent GP individuals either as fixed

length linear strings, variable length and even graphs. Other GP mechanisms that have

been introduced include Grammatical Evolution [1, 109], Stack-Based GP [109] as well as

Probabilistic Genetic Programming [116]. The similarity with these algorithms is that the

aim is to evolve computer programs with minimum overheads. A survey of various GP

variants can be found in [1, 109, 116].

2.3.5 Gene expression programming

Gene Expression programming (GEP) [38], like GP, is an EA that is used for creation of

computer programs. However, this algorithm differs from GP due to the representation

of its individuals and the additional genetic variation operators that are used. In this

algorithm the encoding scheme used is one of linear strings of fixed length (analogous to

GA), which are later expressed as tree like structures similar to GP individuals 8. Due

to the use of tree like structures to represent GEP phenotypes, most literature in the

evolutionary computation field present GEP as a GP variant [1, 109]. However, the GEP

algorithm combines the simplicity of GA and the abilities of GP, and can be said to be

a generalization of both techniques. The main advantage that it has over GP is that

the expense of managing a tree structure (parse trees in GP) and ensuring correctness of

programs is eliminated.

In GEP, the genotype is subjected to modification by means of mutation, transposition,

root transposition, gene recombination, and one and two-point recombination as discussed

in section 2.3.5. The genotype encodes expression trees which are the object of selection.

It is this creation of separate entities with distinct functions that allows the algorithm

to perform with high efficiency that is shown to surpass existing evolutionary algorithms

8In GEP, the fixed length linear strings are referred to as individual/organism/genome/chromosome or
the genotype. The tree like structure, however are known as the phenotype or expression tree (ET)

38

[41] in particular tasks. Figure 2.6 shows the flowchart of GEP algorithm. The flowchart

describes the implementation of a generational GEP algorithm as used in all the exper-

iments described in this thesis. As shown by the flowchart, the process begins with the

random generation of the chromosomes of the initial population. The chromosomes are

then expressed and the fitness of each individual is evaluated. The individuals are then

selected according to fitness to reproduce with modification, producing offsprings with new

traits. The individuals of this new generation are then subjected to the same evolutionary

process: that is, expression of the genotype, selection, and reproduction with modification.

The process is repeated for a certain number of generations or until a solution has been

found.

Figure 2.6: Flowchart of a GEP algorithm

39

GEP individuals

The individual of a GEP algorithm is made up of one or more genes 9. A gene is a symbolic

string composed of a head and a tail section. The head contains symbols that represent

both functions, F, and the terminals, T. The tail section only contains terminals. Thus,

there are two different alphabets in the two different regions of the gene.

In any given problem, the terminal set, function set and the length of the head, h is given.

The length of the tail is a function of the length of head and the number, n, which denotes

the number of arguments of the function, f, with the most arguments i.e. maximum arity

of a function in the function set, F.

Equation 2.2 shows the formula used to calculate the length of the tail for any given GEP

gene.

t = h(n− 1) + 1 (2.2)

Example: given the terminal set [a, b, c] and function set [*,+] and h=4 , the highest

arity is 2 , i.e. both multiplication and addition can only take two arguments, we then

formulate the tail length as shown below:

t=h (n-1) +1=5.

Thus the total number of arguments will be 9. An example of the expression formed with

these parameters is as follows:

+*ab|2abc2

The vertical line indicates the beginning of the tail.

Once the genotype is formed as shown in the example above, it is then expressed/translated

into the phenotype/expression tree (ET). This is done by placing the first function in the

gene at the root of ET and then attaching as many branches as the arity of a function may

allow. The formulation is complete when all functions have terminals attached to them

and thus all branches end with terminals. Figure 2.7 shows the chromosome, the resulting

phenotype after translation and the delineation between the materials used to form the

phenotype and those that are not used.

The GEP tree is referred to as an Expression Tree (ET) or the phenotype. Reading from

left to right, top to bottom, the expression: +*ab2 is derived. This is referred to as an

open reading frame (ORF) or Karva (K) expression [38]. The ORF or K-expression is the

region of the genome that is used to evaluate the fitness value of the gene. The genome

elements, downstream from the ORF, form the non-coding region of the genome and it is

this region that gives GEP its robustness in solving a problem (Please see figure 2.7, coding

& non-coding regions, shown in the genotype above in bold). The GEP ORFs are similar

9In GA and GP, the individual/chromosome/genome/organism is composed of one gene. Therefore, in
GA/GP literature, gene is used interchangeably with individual/chromosome/genome/organism. In
GEP, however, the individual/chromosome/genome/organism can be made up of more than one gene,
thus, extra care is taken when using the words

40

Figure 2.7: GEP chromosome, phenotype/expression tree (ET) and resulting coding and
non-coding regions

in nature to the same elements in biology, the only difference is that in biology the ORF

has non coding elements upstream and downstream while in GEP, the non coding region

is only downstream [38]. During a GEP run, the genome undergoes the genetic operation

while the phenotype (ET) undergoes the selection. Thus the genome is maintained as a

fixed length string while the ETs can change in size and shape.

Multigenic chromosomes

In natural biology, a collection of genes forms a chromosome. Similarly, in GEP, a chro-

mosome/genome with more than one gene can be formed. A GEP chromosome with more

than one gene is referred to as multigenic GEP (mgGEP) chromosome. The genes combine

to form a chromosome using a specified function known as a linker. For instance, they

may be added together and hence the genes will appear as a concatenated single string of

symbols [38]. The chromosome thus formed, has multiple ORFs each coding for a sub-ET.

The advantage derived from such a structure is that each different sub-ET is a separate

program and a part of the more complex whole ET. The sub-ET can be used in problems

with multiple outputs to evolve a separate part of a problem, and selected depending on

its individual fitness. Alternatively the different sub-ETs could be used as part of a more

complex ET and selected based on the fitness of the whole ET.

For instance, if the following genes are given as part of a genome:

+*xy|xy32y

-/x*|yy23x

*-x3|xxy23

The following chromosome can be formed: +*xy|xy32y -/x*|yy23x *-x3|xxy23.

41

| indicates the beginning of the head and tail portions of the genes. The above genes,

individually forms the sub-ETs and ORF shown by Figure 2.8. If the addition function

(+) is used as a linking function, figure 2.8 can then form the ET as shown in figure 2.9

Figure 2.8: sub-ETs in a multigenic chromosome

Figure 2.9: Expression Tree (ET) for a multigenic GEP

As observed, the GEP chromosomes can be formed by a simple chromosome with one

gene, here on referred to as unigenic GEP (ugGEP), or it can be formed by multiple genes

- multigenic GEP (mgGEP) with multiple ORFs. GEP can be used to encode simple

problems using the unigenic structures or more complex problems using the mgGEP.

42

Gene Regulation in GEP

In natural organisms, the regulation of gene expression is achieved through genetic regu-

latory systems structured by networks between the genes, RNA, proteins and other cell

molecules. The connection topology and interactions between these cell components forms

an action-reaction chain that is referred to as a Gene Regulation Network (GRN). Thus,

in systems biology, a GRN refers to the organisation of an interlinked set of genes in a

cell, and how their interactions influence how member genes are transcribed into mRNA

[20, 57]. The interaction within this set of genes is achieved indirectly through their RNA

and protein expression products. Alternatively, the interaction can be achieved through

other substances in the cell [121, 34, 82]. In natural organisms, once the genes are tran-

scribed into mRNA, the mRNA is then translated into a protein or set of proteins [27].

These proteins can either be structural and hence utilised to give particular structural

properties to a cell, or it could be an enzyme (that is, a chemical catalyst which is used to

enable/speed up particular reactions within a cell). Conversely, these proteins products

could be used primarily to activate or inhibit the transcription of other genes by binding to

the promoter region at the start of the genes [121, 122]. Those proteins whose primarily

role is regulation of gene activities are referred to as transcription factors [121, 27]. A

simplified example of how gene regulation occurs in a biological organisms is shown by

Figure 2.10.

Figure 2.10: Biological structure of a Gene Regulation Network. Genes regulate each oth-
ers activity through regulatory networks. Gene transcription into mRNA is
influenced by transcription factors, themselves products of other genes. In ad-
dition, post-translational modifications lead to proteins with modified. This
figure and description has been reproduced from [123].

The multigenic GEP (mgGEP) chromosome is inspired by the workings of the biological

cell. Similar to a biological cell, the mgGEP chromosome is made up of multiple genes.

These genes, as described earlier (Section 2.3.5), are usually interlinked using a linking

function. In the standard GEP algorithm, the linking function is provided before the start

of an evolutionary run and provides the mechanism for gene interactions. Additionally,

when a logical or a conditional linking function is used, the conditions specifies when a

particular gene in mgGEP chromosome will be expressed. Consequently, similar to GRN

in systems biology, the linking function acts as a gene regulator or a transcription factor.

Thus, roughly speaking, mgGEP chromosome with a linking function represents a GRN

model, albeit in a very simplified way. This thesis shows how these linking functions

43

can be evolved together with the rest of genome. Additionally, the thesis proposes new

techniques where one gene in a multigenic set can be used to evolve the conditions under

which gene regulation should occur (see Chapter 5).

Mathematical and computational models of GRNs have been developed in order to analyse

and predict how biological GRNs behave. Some of these modelling techniques in GRNs in-

clude: Boolean Networks [82], Coupled Ordinary Differential Equations (ODEs), Bayesian

Networks, Graphical Gaussian Models, Stochastic and Process Calculi. A comprehensive

discussion of these techniques can be found in [34].

GEP evolution Operators

Like all the other evolutionary algorithms, GEP utilises various genetic operations to create

diversity within the population. In comparison to its predecessors GEP offers additional

genetic operators as discussed below.

Mutation : as highlighted earlier, mutation involves randomly changing symbols in a

chromosome. When performing mutation in GEP, elements in the head region can be

changed to either a function or a terminal, while at the tail, terminals can only be changed

into terminals. This way the structural organization of chromosomes is maintained and all

the new chromosomes produced by mutation are structurally correct programs. Mutation

is by far the single most important genetic operator and populations undergoing mutation

display non-homogenizing dynamics [40, 41].

Transposition and insertion sequence elements : the transposon of GEP are ele-

ments of the chromosome that can be copied from one section of the chromosome and be

transferred to a different section [38]. Three types of transposition are implemented:

Insertion sequence transposition (IS) : in this transposition operator, any sequence of

alleles (fragments or symbols that form the gene) in the chromosome can be selected as an

IS element, therefore, these elements are randomly selected throughout the chromosome.

A copy of the transposon is made and inserted at any position in the head region, except

the first position, pushing downstream the remaining elements in the head region. This

means that the gene loses as many elements at the end of the head region as the displacing

elements. The earlier implementation described in [38] has the transposition operator

randomly selecting the chromosome, the start of the IS element, the target site and the

length of the transposon. However, the IS described in [41] removes the requirement for

the transposition length and incorporates the start and termination points instead, this

makes sense as the knowledge of the two points nullifies the need for the length to be

known. Figure 2.11 shows an example of how insertion sequence transposition occurs.

The multi-gene chromosome shown previous has been used.

Root insertion sequence transposition (RIS) : the elements required for this transpo-

sition need to start with a function, as a result, the first element or the entire transposon

has to be selected from the head section of a gene. To select the first element of the

transposon, a point is randomly chosen in the head section and the head section scanned

44

Figure 2.11: An example of IS Transposition. The | marks the end of head region.

downstream until a function is found [38]. This function becomes the start of the RIS

element, if no function is found, it does nothing. The RIS operator randomly chooses the

chromosome, the gene to be modified, the start of the RIS element, and its length. The

RIS described in [41] is slightly modified as the operator does not choose the length, only

the start and terminal points are chosen. During RIS transposition, the whole head shifts

to accommodate the RIS element, losing at the same time, the last symbols of the head

(actually as many as the transpose length). Figure 2.12 shows an example of how root

insertion sequence transposition occurs. The multi-gene chromosome shown previous has

been used.

Figure 2.12: An example of RIS Transposition. The | marks the end of head region.

Gene transposition : this operation involves interchanging the positions of various genes

in the chromosome. The transposon, i.e. the selected gene, is deleted at the place of origin

and placed as the first gene of the chromosome pushing other genes downstream. Since

the selected transposon is deleted at the place of origin, the size of the chromosome is

maintained. In multigenic chromosomes joined by a linking function such as addition, this

operator contributes nothing to the adaptation. Nonetheless, when expression trees are

linked by a non- commutative function the order of the genes is important. In this case,

the gene transposition operator works as a global mutation operator. The power of the

gene transposition is seen when used in conjunction with recombination as it allows the

duplication of genes, which plays an important role in evolution, and also allows a more

generalized shuffling of genes or smaller building blocks [38, 40]. Figure 2.13 shows an

example of how gene transposition occurs. The multi-gene chromosome shown previous

has been used.

45

Figure 2.13: An example of Gene Transposition. The | marks the end of head region.

It is important to note that transposition does not affect the tail of the gene, only the

head region, which is an important area as this determines the coding region of the gene.

Recombination : this can be one-point (the chromosomes are split in two and the

corresponding sections are swapped) or two-point (chromosomes are split in three and the

middle portion is swapped) or gene (one entire gene is swapped between chromosomes).

Recombination whether 1 point, 2 point, or gene recombination is the least powerful of

all GEP operators and populations undergoing recombination alone display homogenizing

dynamics. For it to be useful it should be used in conjunction with the other operators.

A detailed description of GEP with examples on how the operators are used can be found

on [42, 38].

GEP applications

The capabilities of the GEP algorithm have been demonstrated in solving various prob-

lems. Firstly, GEP has been used in function finding problems such as symbolic regression

and sequence induction [38, 93]. Secondly, GEP has been used in time series prediction

and logical synthesis [42]. Thirdly, the generation of emergent behaviours by evolving cel-

lular automata rules for the density classification problem has been investigated. In this

problem, GEP has been seen to outperform GP by four orders of magnitude [38]. GEP

has also been used in boolean concept learning where the results obtained were compared

to GP solutions and it was found that GEP is faster and more efficient in solving the

problem [38, 42].

Other problems that GEP has been tested on, include but not limited to, sentence ranking

functions for text summarization, event selection in high energy physics [134] and more

recently on an automatic plan design [77] 10. This thesis investigates and describes how

GEP and novel variants thereof can be used to evolve efficient control programs for a

robot.

The next section discusses how evolutionary algorithms are utilised in robotics research

for automatic development of robot controllers. The section extends the brief introduction

10A bibliography of research carried out using GEP can be found on http://www.

gene-expression-programming.com/GEPBiblio.asp

46

given in Section 2.2.5. Additionally, a discussion on how artificial neural networks (ANNs)

and EAs are utilised in evolutionary Robotics (ER) is outlined.

2.4 Evolutionary robotics

As previously mentioned, evolutionary robotics (ER), is a mechanism to automatically

generate robot controllers [105] and sometimes robot morphology [84] using artificial evo-

lution techniques. The subject of evolution in ER, can be computer programs [74] or

elements of a neural network such as synaptic weights, learning rules [105] or whole net-

work architectures [149]. The ER process, just like an EA, starts with an initial population

of individuals or computer programs. The individuals encode a set of synaptic weights

which are then fed to a neural network controlling a robot, or a computer program that

defines how the robot needs to act given a set of sensor readings. If the aim is to evolve a

robot morphology, the controller encodes attributes needed in a physical robot. Once the

controllers are initialised with the required parameters, the robot is set to act freely in the

environment while its fitness is evaluated. The process of artificial evolution is then started

by selecting two individuals using a previously chosen selection method. The individuals

are allowed to reproduce by undergoing mutation, recombination and transposition. In a

steady state algorithm, the offspring fitness is evaluated and they are either passed on to

the next generation by replacing them with individuals with a lower fitness, or are dis-

carded. In a generational algorithm, the offspring are used to construct a new population

for the next generation. This process continues for a set number of generations or until

a controller which satisfies the set performance criteria is met. Figure 2.14 shows the

steps towards evolving a robotic controller using a generational algorithm. The process

starts with the random generation of the chromosomes of the initial population (robot

controllers). These chromosomes are then expressed and the fitness of each individual

is evaluated in a robotic environment (that is, the controllers are tested for the target

behaviours and their performance recorded). The individuals are then selected according

to fitness to reproduce with modification, producing offsprings with new traits. The indi-

viduals of this new generation are then subjected to the same evolutionary process: that

is, expression of the genotype, selection, and reproduction with modification. The process

is repeated for a certain number of generations or until a solution has been found. All

experiments described in this thesis have been carried out using a generational algorithm.

47

Figure 2.14: Evolutionary robotics methodology

This section focusses on how to evolve robot behaviours in ER. Two approaches are dis-

cussed: firstly evolving neural networks and secondly evolving computer programs. This

section also discusses the various evolution platforms utilised in ER experiments.

2.4.1 Evolving neural networks

Artificial neural networks (ANN) are simplified models of the central nervous system. They

are networks of highly interconnected neural computing elements that have the ability

to respond to input stimuli and to learn to adapt to the environment. The architecture

borrows the parallel nature possessed by the biological neurons to model computer systems.

An ANN consists of a set of processing elements, also known as neurons or nodes, which

are interconnected. It can be described as a directed graph in which each node i performs

a transfer function fi of the form:

yi = fi(
n∑
i=j

wi,jxj − θi) (2.3)

Where yi is the output of the node i, xj is the jth input to the node, and wi,j is the

48

connection weight between nodes i and j. θi is the threshold (or bias) of the node. Usually,

fi is non-linear, such as Heaviside, Sigmoid, or Gaussian function, n is the number of nodes.

See [112, 149, 131, 102, 62].

The school of thought supporting the use of EAs to evolve neural networks argues that

learning and evolution are the two fundamental forms of adaptation in intelligent natural

systems and hence the great interest in combining the two. This particular class of study

is known as Evolving Artificial Neural Networks (EANNs) [149] or neuroevolution [86,

136, 50]. The use of ANNs in tandem with EAs is normally justified by the following

issues: ANNs are able to relate the input to the required outputs; in that case they can be

used in predictions using historical data. They have also shown to be able to generalize

between samples, in the way humans do [105], they also show ‘graceful degradation’ which

means that removing one or more units results in reduced performance, not complete

failure. They have also shown to be tolerant to noise in the data. Another advantage is

that the use of the parallel nature of the neural networks and high speed computers could

lead to very good results in solving problems [102, 62]. EAs are used to either evolve the

architecture of the ANN, or to evolve weights, learning parameters or both as detailed

below. For a detailed review on ANNs, please see [36, 102, 70, 62].

Weights and learning parameters

The primary way of learning in ANN is to adjust the weights using a set learning rule.

When using EA for weights and learning parameters, the weights are directly encoded to

the genotype either as a string of real values or string of binary values [146, 149, 105].

The main aim on evolving ANN weights is to find near optimal weights that can be used

with a fixed ANN architecture to solve a given problem. Since most robot controllers are

neural based, GAs have been used extensively to evolve suitable weights.

Floreano and Mondada [46] used a GA to evolve the weights and thresholds (activation

function values) for a real robot controlled by a simple recurrent neural network. Their

GA was encoded with real values denoting the weights and thresholds, each individual

was in turn decoded to the corresponding neural network whose inputs was the robot

sensors and the output unit set the velocity of the wheels. The evolved neural network

guided the robot to accomplish obstacle avoidance and a homing behaviour successfully.

Neruda and Slusny [101] have used a GA to evolve obstacle avoidance and maze following

behaviours for a neural controlled robot. In their work, the GA encoded the weights.

GAs have also been used to encode weights and activation function values in [141] where

shooting and path planning behaviours are evolved. Nelson et al. [97, 98] has evolved

the weights of a recurrent neural networks to evolve navigation and maze exploration

behaviours. The experiment is carried out in simulation and later transferred to a colony

of 8 real robots. In [135] a (1+1)-evolution strategy is used to evolve the synaptic weights

and thresholds for subsumption like neural controller. Bajaj and Marcelo [5] used a GA to

evolve the synaptic weights for a single layer recurrent neural networks. Their work uses

an incremental evolution to evolve an obstacle avoidance behaviour which is then modified

to a wall following one.

49

Architectures

The architecture of an ANN is made up by the weight connections and the transfer func-

tions of each node in the network. Thus, a good network architecture is crucial to the

success of solving a problem [149]. A key issue in evolving neural network architectures

is to make a decision on how the architecture shall be encoded into a GA chromosome.

Encoding techniques as mentioned in section 2.3.2 refers to the strategy utilised to rep-

resent a specific task (such as a network structure) as an EA chromosome (also called a

genotype). The following two main encoding strategies have been identified.

• Direct encoding: This refers to an encoding strategy where all parameters that

define an ANN architecture are encoded to an EA chromosome [89, 149, 21]. These

parameters include the weight values, number of nodes, connectivities and activation

function. In this strategy the connection topology is represented as a N × N matrix

where each entry encodes the type of connection from the “from node” to the “to

node” [89]. Once the matrix is formed it is then translated to a GA chromosome

by placing the matrix rows in a sequence. A fitness function is then selected and

various evolutionary parameters set before the evolutionary run. To compute the

fitness, the chromosomes are decoded back to the connectivity matrix and used to

form the neural network [89, 149]. The fine tuning of the weights is done by applying

a learning algorithm to the decoded network and the weights are trained using, for

instance, back propagation [149, 105].

In comparison to GEP, direct encoding is a strategy to encode an ANN as a GA geno-

type while GEP is an EA similar, in concept, to a GA. The concept of direct mapping

between genotype and phenotype is nevertheless similar in both direct encoding and

GEP. Additionally, GEP as an algorithm can utilise direct encoding mechanism to

form the genotype of a particular problem. Nevertheless, in direct encoding, utilised

in ANNs, the entire genotype is utilised to form the phenotype while in GEP only the

open reading frame (ORF) is utilised to form the phenotype. Additionally, the di-

rect encoding strategy is only utilised to encode an ANN as a GA chromosome while

GEP represents any particular problem using a genotype/phenotype representation.

• Indirect encoding: This strategy involves encoding only the most important pa-

rameters of an architecture [89, 149]. Thus, the memory requirements for indirect

encoding scheme is less than than of direct encoding. Due to the limitation of size,

the method is faster but often with sub-optimal results [149]. In most implemen-

tations, the neural networks are encoded as grammars and the GA is then used to

evolve the grammars [89]. The fitness of the developed networks is then tested after a

network is evolved from the grammar. That is, the grammar represents the genotype

while the phenotype is the network derived from the decoded grammar. A grammar

is this context refers to a set of rules utilised to encode a network structure.

Similar to the direct encoding above, indirect encoding is similar to GEP in the

division of genotype and phenotype. Also, GEP utilises string symbols to represent

an attribute of a problem as a genotype. These string symbols, which include func-

50

tions and terminals, are used to represent a set of rules on how a problem should

be solved. Thus, a GEP algorithm can utilises an indirect encoding mechanism to

encode a problem as a GEP genotype. However, unlike GEP, all materials in the

ANN indirect encoding genotype, are used to form the phenotype.

There is a considerable interest in evolving ANN architectures [149]. For instance, Capi

and Doya [22] used a GA to evolve the architectures of a neural network. In their work,

three types of architectures were explored. Firstly, a feed forward neural network (FFNN)

was evolved where the GA chromosome encoded weight connections and the number of

hidden units. Secondly, a global-recurrent neural network (GRNN) where the weight

connections, initial weight values and number of hidden units were encoded into the chro-

mosome. Thirdly a local-recurrent neural network (LRNN) where the genome encoded the

weight connections, thresholds, initial values, memory neurons, interconnection between

memory units and the number of hidden and memory units. In this work, a sequential

navigation task requiring a robot to move to two rewarding sites was investigated. Results

generated show that modularly organised recurrent networks, in this case the LRNN, are

better than fully connected recurrent networks. The synaptic weights, threshold values

and time constant for a continuous time recurrent neural networks (CTRNN) were evolved

in [13] using a GA. The authors show that reinforcement learning like abilities can be gen-

erated using a CTRNN on a set of T-maze and double T-maze navigation tasks. Learning

in this work is achieved from internal dynamics without modifying the synaptic strengths.

GAs have also been used to evolve neural network architectures in e.g. [61, 60, 28, 29, 67,

105, 137, 138].

Learning rules

The evolution of connection weights and network architectures deal with the components

of the ANN. The evolution of the learning rate or weight updating rule on the other hand,

has to deal with the training of the neural network and hence generates the dynamic

behaviour displayed by the ANN [149]. The evolution of learning parameters such as the

ones used in a back propagation or Hebbian rules can be described as a method of evolving

rules, however these techniques tends to be more optimised towards the architecture of the

ANN rather than learning [105]. If there is little knowledge regarding the type of ANN

architecture that is being used in a problem, designing an optimal learning rule becomes

very hard [149]. It is thus recommended to develop an automatic method to adapt the

learning rule to the architecture and the problem being investigated. EAs are suited to

evolve learning rules or the learning parameters as they can discover unique parameters

that lead to robust adaptability of ANN [130].

Floreano and Urzelai [48] used a GA to encode and evolve different sets of learning rules.

In their work the plain Hebbian learning rule is divided into rules that strengthen the

connection proportionally to correlated activation and rules that weaken the connection

if the activations do not correlate. The success of evolving these rules, instead of using

static ones, is shown by evolving a behaviour where a robot is required to stay near a

51

light source. Stanley et al. [130] evolved the same rules developed by Floreano and Urzelai

[48], however, in their work the Hebbian rule was not divided to separate rules, instead a

single learning rule that combined excitatory and inhibitory characteristics was evolved.

The success was shown through a food foraging behaviour. Radi and Poli [120], used GP

to evolve a general learning rule that works like a standard back propagation rule whereas

[24] has evolved a global learning rule similar to a delta rule.

Other researchers [47, 139] have used GA to encode and evolve learning rules. A compre-

hensive survey can be found in [149].

2.4.2 Evolving control programs

EA variants such as GP and GEP are used to evolve computer programs. Unlike a GA,

they do not encode solutions to a specific problem, instead they are used to evolve a

computer program to solve a problem. Due to this capability, GP has been used to evolve

robot control programs. GP, as previously detailed, uses functions and terminal sets. In

ER, the function set is used to encode conditionals (such as IF), logical operators (e.g.

AND, OR) and equality/inequality conditions (such as =, >, ≤, ≥). The terminals are

used to encode robot sensors and motor actions. The GP algorithm is then used to evolve

a control program that maps the sensors to specific motor functions.

Koza [74] was the first to evolve robotic behaviour using GP. In his work, GP was used to

evolve a subsumption architecture that helped a robot develop wall following behaviours in

an irregularly shaped room. The terminals used in GP corresponded to the robot sensors

and a few additional terminals such as the edge and the minimum safe distance. The

functions used include move forward (MF), move backward (MB), Turn Right (TR), Turn

Left (TL) and two additional functions, one being connective and the other conditional.

The fitness function used gave value to a robot touching some 56 tiles placed along the

perimeter of the room [74]. The work used a population size of 1000, the evolution

operators used were reproduction with 10% probability and a 90% crossover rate. The

crossover points also had a probability of 90% for functions and 10% for terminals. The

GP was allowed to run for 101 generations and the stopping criteria was either finding

an individual that hit all the 56 tiles or all the 101 generations were met. At the 57th

generation, an individual was able to achieve the maximum fitness function by hitting all

the 56 tiles.

Lazarus and Hu [78] used GP to evolve a wall following behaviour. The main difference

between this and Koza’s work can be described in terms of the evolution operators used;

in this work only crossover was used and the selection criteria is tournament selection.

The stopping criterion was met when 100 generations or the maximum fitness value was

achieved. This work shall be discussed in depth in a later chapter as this is the basis for

comparison with GEP.

GP was used in [79] to evolve a robot controller for a set of goal-keeper behaviours for

the simulation league of the Robocup competition. Their work investigates the conditions

needed to be met for an evolved goal-keeper agent to perform adequately in a defensive

52

situation. The work involves the optimisation of multiple objectives and uses five fitness

measures for the evolution. Their work uses a very high probability of crossover which as

discussed earlier does not add much variation in the population. The probability of the

mutation used, though low, may not have been adequate for the small population of the

individuals used. Due to this, the results achieved shows that convergence was reached at

two thirds of the fitness range, meaning that though a good set of behaviours were evolved

they are still short of optimum fitness by quite a large margin.

In [148, 14], GP was used successfully to co-evolve robot controllers for three Khepera

robots, that simulated escape behaviour from a room during emergency. In this work,

GP used a different sub-population for each robot. A migration policy was maintained

among the sub-populations so as to allow exchange of good problem solving individuals.

This is an example of a mechanism to improve the ER methodology using cooperative

co-evolution.

Different variations of GP have also been used to solve robotic problems. For instance,

Nordin and Banzhaf [106] used a linear GP to evolve an obstacle avoidance behaviour.

Pilat and Oppacher [115] used a similar linear GP to evolve obstacle avoidance, wall

following and light seeking behaviours. In their work, comparisons are made using a tree

based GP and a hierarchical GP, that is, a GP that uses additional structures to enable

modularity. Here adaptive representation through learning (ARL), module acquisition

(MA) and automatically defined functions (ADF) were implemented on the linear GP.

Results showed that linear GP with ARL outperformed module acquisition HGP, ADF and

tree-based GP. Compared to GEP, ARL is costly to implement as it extends the standard

GP by the introduction of parameterised functions, these functions are then stored in

a global library to be accessible to all organisms [115]. In GEP, however, functions are

chosen as a set and it is very easy to generate valid organisms. Additionally, the sub-ETs

can be used as ADFs [43] and encode a self contained structure, with the added advantage

that this ADF undergoes normal genetic variations without destroying their structure. In

GP, care has to be taken when performing crossover in order to preserve the structure of

valid ADFs [74, 115].

GP has been used in [71, 147] to evolve robot path planning behaviours. The task of path

planning assumes the existence or creation of a map. Thus, given a start point and end

point, the robot needs to check a map in order to plan a path to reach the destination. GP

and the mechanisms that evolve computer programs, translate sensors to motor functions

and therefore, need to incorporate a map in order to evolve articulate path planners.

The view taken in this thesis is that mechanisms used in GP for path planning cannot

specifically be termed as path planning as they have not used maps, the robot uses reaction

to obstacles and a properly designed fitness function to find its path to the goal. GA, on

the other hand, has been used to encode a path and the task given to the algorithm is

to optimize the solutions in order to arrive at; firstly a correct solution that moves a

robot from start point A to end point B, and secondly, to optimise the shortest path.

Examples where GA has been used in this domain can be found in [2, 19, 126, 63, 96].

Other examples where GP has been used in evolving behaviours can be found in [69, 80].

53

In summary, the use of standard GP in evolutionary computation and in ER can suffer from

early convergence and the need to maintain the correct tree structure after every operation.

The use of replication, though essential in maintaining best performing organisms, does

not contribute towards variation in the population. There is also the issue of the expense

of managing the tree depth, for example, Koza [75] tried to limit the depth to 4 in order

to be able to compensate on the computer time spent. In [78, 79] the tree depth has been

maintained to a depth of 10. The limitation of the depth of the ramified structure (tree in

LISP), although necessary to reduce computation overhead and to avoid bloating, means

that the program is limited in terms of functionality. Therefore, although the algorithm

is able to come up with the desired programs, it is constrained to a certain degree and the

terminals and functions has to be chosen carefully in order to get the desired outcome.

This, however, does not correspond to the ideas of natural evolution where no measures are

taken towards regulating evolution. A good system should be able to ensure the validity

of evolved organisms automatically. In GEP the tree depth is determined by the head size

and the functions being used. There is no need to maintain or regulate the depth of the

tree as the non-coding region ensures that evolved tree structures are always correct after

every operation.

2.4.3 Evolving intelligent behaviours using GEP

To the best of our knowledge, GEP has not yet been used in ER. However, GEP or a

variation of GEP has been used to evolve or help intelligent agents in decision making.

Backtracking Parallel Gene Expression Programming (BPGEP) has been used to solve a

robot path planning problem [119]. In this work, the genotype is divided into two chromo-

somes, one representing the functions and the other the terminals. The functions have a

one to one mapping with terminals, implying that the functions have unary arity. The only

genetic operators used are one and two point crossover and mutation. Chromosomes are

said to evolve separately but simultaneously, hence the parallel nature of the algorithm.

Despite the reference to GEP in the name of this algorithm, its operation is different to

the execution of standard GEP as presented here. As previously described, the separa-

tion of terminals and functions is distinctive of GEP to other evolutionary computation

algorithms. It is difficult to determine how these parallel chromosomes are converted to

phenotypic trees in the standard manner. Finally, the operations performed on those

chromosomes are restricted to the standard EA methods of crossover and mutation and

do not incorporate the additional methods described in standard GEP.

Laszlo [77] has evolved an automatic plan design using GEP. The work is based on the

classical agent-environment interaction (classical AI approach). As previously discussed,

in classical AI, an agent evaluates the best decision by computing the current state to the

final state after the decision has been taken. The agent starts by sampling the environment

and creating an internal model of the environment. Next, the agent generates all possible

actions and computes the resulting final state. Finally, the agent modifies its state once the

action with the best final state is devised. In the redefined classical agent-environment

interaction proposed by Laszlo [77], the agent senses the global reality first and then

54

computes an internal representation of the environment, this is known as a local reality.

Since there is only one interpretation of the global environment by the agent, there can

only be one local reality (internal model). However, many global realities can result in a

similar internal model, the agent is thus permitted to form fantasies or alternative global

realities. The agent then produces a population of condition-action chains (controllers or

agent doubles [77]) which are evaluated using the fantasies. This condition-action chain

forms a GEP chromosome. A chromosome is made up of perceptive actions (activate a

different action if a given condition of the local reality occurs), cognitive actions (evoke

certain actions if a given condition occurs in the global environment) and modifying actions

(modify the agent’s state). The GEP chromosome undergoes the normal genetic operations

to find the best overall solution. The best condition-action chain, is one that has the best

average performance in all fantasies. This approach was tested using two artificial agents

test problems: the wumpus world and table world. In both cases good results have been

recorded.

The concept proposed by Laszlo [77] uses GEP to extend the classical agent-environment

interaction paradigm. The population of conditional-actions are generated by the agent

in its interaction with the environment. Additionally, the agent constructs the fitness

function after creating an internal model. Fitness of a condition action is assigned after

computing its ‘goodness’ in the final state of the internal model. It is thus clear that

although GEP is used to guide the process, it is only used partially with a view to only

helping to optimize the chromosomes generated. The agents behaviour, just as in classical

AI, is deliberative rather than reactive. Also worth noting is that a new population is

generated in every newly created local reality, therefore, there is a very high computation

cost in solving the problem. In comparison to Laszlo [77], this thesis seeks to explore how

GEP can be used as the sole mechanism to evolve controllers for autonomous robots.

2.4.4 Evolution platform

This section highlights various platforms utilised while evolving controllers for an au-

tonomous robot.

On-board evolution

On-board evolution refers to the process of carrying out evolutionary robotics on physically

situated robots [104]. This is advantageous as the robot encounters the real world first

hand. The world as noted by [17] is its own best model and hence the robot evolves not

only the required behaviour but also strategies to deal with noise in the environment.

However, the experimenter has to deal with various issues. Firstly, evolutionary runs take

a very long time to complete: When evolution is carried out on a physical robot the

program transfer and evaluations of the robot in the environment have to be done in real-

time, this can raise a time overhead during the run. Secondly, energy supply to the robot

needs to be sufficient during the run. This means that if the program is being transferred

on a serial cable to the robot with power derived from a nearby power source or charging

55

station, the robot environment cannot be made to be very big in order to allow the robot

to move back and forth to the power station [105]. Thirdly, the design of a fitness function

requires the environment to be factored in as different encounters within the environment

may be beneficial to the overall behaviour but they might be hard to predict prior to the

run. Finally, some controllers (particularly in early generations) may produce behaviours,

such as high speed collisions [105], that can damage the robot.

Evolving in simulation

Evolving with simulation involves carrying out the evolution using a simulated robot in

a simulated world. The advantages with this is that it greatly reduces the computation

time required for the evolutionary run, no energy supply is required for the robot, there is

no need to worry about initial controllers destroying the robot and finally, since the robot

environment is already known the design of fitness function is much easier. Simulated

evolution, however, poses the challenge of transferring the learned behaviour to a physical

robot. Since, no simulator can effectively model the dynamics of the real world due to noise

in the environment and possibilities of new scenarios emerging, the evolved controller may

fail to work or may exhibit behaviours that are not required. Nevertheless, there have been

experiments conducted in simulations that exhibited required behaviours when validated

on real robots [105]. This means that, with carefully designed simulators, transfer to a

real robot can be easily accomplished.

Different types of robotic simulators with different capabilities and functions exists. Khep-

era11 and Evosim simulators are 2D robot simulators developed for testing evolutionary

robotics algorithms easily and fast either before testing the controllers on real robots or

with the aim of analysing results of various algorithms with no particular need for on-board

testing or implementations. Webots12 simulator is a powerful 3D simulation package used

to model, program and simulate mobile robots. The package provides various 3D robotic

worlds that a developer can use by just developing the controllers for the robots, specify-

ing the controllers and testing within the simulator. In addition, the simulator offers the

capability to create different robotic worlds, different variety of robots and the capability

to program the controllers. Webots incorporates most robot platforms including Khepera,

Nao, Aibo, e-puck and Koala among others. In addition, the software offers the capability

to port the controller to the physical robot. Simbad13 is a 3D multi-robots Java simu-

lator that enables the designer to write controllers, modify the environment and use the

available sensors or build new ones. It is simple to use for studying situated AI, evolu-

tionary robotics and machine learning. The simulator offers a test kit for AI algorithms

for autonomous agents. An introduction to Simbad can be found on [66]. Another widely

11The original Khepera GP simulator was designed by K-Team (http://www.k-team.com/) and run on
Linux systems using C/C++ for development, This original version can be found on http://diwww.

epfl.ch/lami/team/michel/khep-sim/. A windows based Khepera simulator can be found on http:

//www.pilat.org/khepgpsim/index.html
12The Webots simulator is a commercial software developed by K-Team and can be found at http:

//www.k-team.com/
13This is a free robot simulator found on http://simbad.sourceforge.net under GNU General Public

License

56

used simulator is Player/Stage/Gazebo14. Player is a network server for robot control and

it provides a simple interface to robotic sensors and actuators over the Internet Protocol

(IP) network. Player acts as a link between the robot (actuators and sensors) and the

control program written by the developer. The control programs can thus be written in

any language as long as they support a TCP (Transmission Control Protocol) socket. It

is designed to support any number of clients at the same time. Gazebo and Stage are

multi robot simulators for outdoor 3D environments; they have various capabilities such

as simulation of standard robot sensors, sonar, scanning laser range-finders, GPS (Global

Positioning System) and IMU (Inertial Measurement Unit), monocular and stereo cam-

eras. Player/Stage/Gazebo is therefore a package incorporating Gazebo and Stage as the

simulator and Player acting as a link to the physical robot. 3D simulators provide a better

world model than 2D and therefore the simulated robots require to have vision capabilities

and object proximity sensors.

Most experiments conducted in ER using either of the mentioned evolution platforms,

utilise the standard EA technique [105]. The standard EA technique utilises one EA

genome to encode an entire robotic problem. However, this mechanism is susceptible to

various problems such as local minima. The following section discusses various techniques

that can be utilised to improve the basic ER methodology.

2.5 Improving evolutionary robotics

The basic evolutionary methodology, also known as monolithic evolution, uses one module

to map all the sensors of an agent to the actuators. The advantage with this technique

is that there is no need for the designer to identify the sub-behaviours of the target

behaviour nor how these sub-behaviours interact. Nevertheless, the technique has several

shortcomings, they include: a) Local minima - this is an equilibrium point where there is

no more increase in fitness yet the problem has not been solved. b) Bootstrap problems

- this is a situation where there is no improvement of fitness due to randomness of the

solution set [103, 105, 100, 90]. In this case there is no solution that can start off the

evolutionary process and hence the problem cannot be solved.

There have been various mechanisms devised to improve the basic ER method. Some of

these techniques such as incremental and layered learning solves the problem by dividing

the task into a set of simpler tasks. Thus, they employ modularity analogous to subsump-

tion architecture to solve evolutionary robotic problems. Multi-robot techniques such as

co-evolution uses multiple robots. In this section, the mechanisms to improve the basic

ER methodology are discussed.

2.5.1 Incremental evolution

Incremental evolution is a behaviour organisation method without explicit behaviour ar-

bitration [142]. The approach involves the alteration of the environment in which the

14The Player/Stage/Gazebo package is provided freely on http://playerstage.sourceforge.net/

57

evolution takes place, as well as the fitness function. The evolution is a step by step

process, starting by evolution of a basic behaviour and then progressing to more complex

behaviour while changing the environment and the fitness function. The technique starts

by dividing the required behaviour into simpler sub-behaviours. The controllers are then

allowed to solve the sub-behaviours sequentially with increasing complexity. For instance

if the behaviour targeted is wall following, the behaviour is divided into obstacle avoid-

ance and navigation with wall proximity. The controllers are then allowed to evolve an

obstacle avoidance behaviour until a set fitness level is achieved. Once this is is accom-

plished, the fitness function and the robot environment is changed and the controllers used

to evolve navigation with wall proximity behaviours. Gomez and Miikulainen [55] have

utilised incremental evolution to evolve a predator-prey behaviour, they also show that

this behaviour could not be generated using direct evolution.

Bajaj and Marcelo [5] used an incremental approach to evolve a robotic controller that

enables a Khepera robot to explore an environment while avoiding obstacles. The con-

verged organisms are then introduced to a more complex environment and later on fine

tuned to generate a wall following behaviour. In this work, a single layer neural network

architecture is used with the weights optimized using a genetic algorithm. Their work

draws largely from [46] where the floating point number representation is used in the

chromosomes. The experiment is carried out in three stages on increasing complexity. In

the first phase, obstacle avoidance behaviour is investigated. A rectangular environment is

provided with an obstacle in the middle, the robot is encouraged to explore this environ-

ment without colliding with the obstacle. An obstacle avoidance fitness function is used.

After the first phase, the surviving individuals are then taken to the next stage where

a more complex environment is used. In the third stage where wall following behaviour

is investigated, individuals from the last generation in stage 2 are used; a new fitness

function is used. Good results were reported in obstacle avoidance stage and this carried

on to the second stage where increasing complexity is used. However, in the third stage,

though some good results were achieved, individuals taken from stage two appeared to

“forget” obstacle avoidance behaviour they had achieved earlier whereas individual taken

from stage one learnt how to follow the walls.

Whereas the incremental approach has been shown to evolve suitable behaviours, the step

by step process employed means that the process is computationally expensive. More-

over, there is only one module used to solve the problem and its therefore impossible

to distinguish which part of the genotype accomplishes which problem. Nevertheless, as

reported by [138, 5, 55], this approach has been shown to outperform a monolithic ER

implementation.

This thesis outlines a different style of improving the basic ER approach by use of mod-

ules to specify behaviour. The approach is different to incremental learning in that the

behaviour is divided into layers which are solved concurrently.

58

2.5.2 Layered learning

Layered evolution, like incremental evolution, uses multiple fitness functions during the

evolution. The difference is that the layered approach combines incremental and modu-

larized evolution (evolution where more than one neural network is used) with elements

of subsumption architecture, to achieve robot behaviour. The controller is thus a sub-

sumption styled controller where each layer is an evolutionary neural network (ENN). The

neural network layers are evolved in sequence so that the lowest layers are evolved first,

after a desired fitness is achieved, then another layer is added on top [117, 136]. Once a

set fitness is achieved, its development is stopped and the cycle repeated until the required

number of layers is achieved. Work presented in [25], investigated the use of genetic algo-

rithms, the Nelder-Mead technique and policy gradient methods in the evolution of layers

in a layered learning approach. In their work they tried to learn optimal parameters for

basic routines, with behaviours and strategy selection for a robot involved in the robocup

soccer competition. In [44] a layered approach has been used in parameter fine-tuning in

order to evolve a grasping behaviour. Layered learning has also been used in [58, 59].

Whereas the layered learning divides the required behaviours into sub-behaviours, their de-

velopment is stopped once a set fitness level is achieved, this means that if the autonomous

agent encounters a new situation, its performance may be hindered. In addition, this algo-

rithm requires multiple fitnesses to guide the evolution: Since evolutionary computation in

general and evolutionary robotics in particular takes a long time to run, additional fitness

evaluations add computing overhead during the run.

This thesis focuses on developing a modular based evolutionary robotics algorithm that

requires only one fitness function and where each module continuously learns during the

course of evolution. This is particularly desirable as it mimics natural biology where

organism’s functionality evolves concurrently.

2.5.3 Co-evolution

Co-evolution refers to the simultaneous evolution of more than one population. Co-

evolution could be cooperative where two or more populations of the same species evolves

together to solve a particular problem [14, 148]. Alternatively, it could be competitive

where two or more populations of different species are evolved together with coupled fit-

ness. Both techniques improve the basic ER methodology in different ways.

In cooperative co-evolution, the task(s) to be solved is the same for all the organisms

[8]. Each robot/autonomous agent uses a different population but of the same species.

The benefits of this technique is that migration of individuals across the populations is

allowed with the hope that better solutions can be moved across the populations. This,

in turn, helps to progress the evolution and can potentially prevent local minima. This

technique is similar in nature to the implementation of island models [127] in evolutionary

computation.

In competitive evolution, two or more populations of different species are used, e.g. preda-

59

tor and prey. The idea is that as one species evolves, it creates an increasing challenge to

the other species requiring more complex solutions to be evolved. At the start of the evo-

lution, the behaviours displayed are generally poor, however, as the evolution progresses,

one species evolves a better strategy to evade the other species. This, in turn, leads the

competing species to evolve a better strategy. The cycle is repeated as evolution pro-

gresses, eventually producing an evolutionary “arms race” [105]. The controllers’ evolved

using competitive co-evolution exhibit more general behaviours as they have encountered

different generations of the competing species requiring them to have different strategies in

different situations. Moreover, the changing search space driven by the changes occurring

in the competing species could prevent local minima.

Although co-evolution is very interesting and has shown to drive evolution to better results,

it is beyond the scope of this thesis, hence, it shall not be considered further. Literature

on robot co-evolution can be found on [104] and a discussion in natural co-evolution can

be found on [32, 31].

2.6 Conclusions

Developing a suitable control system for an autonomous robot, to carry out tasks in un-

structured environments, is a challenging and difficult task. The control development

approaches described in the first section show positive results in various aspects of con-

trol development, while at the same time shows shortcomings in different areas. Systems

that use deliberative techniques (hierarchical paradigm) require the engineer to create a

large database of different scenarios that a robot might find itself in. However, it is very

difficult to know in advance the changes that might occur in a dynamic environment. As

mentioned previously, these approaches are not suitable for systems that work in unstruc-

tured environments. Although purely reactive techniques are more successful than purely

deliberative ones, they require the designer to implement all the behaviours required in

carrying out the tasks that the robot may be needed to perform. Since the design and

implementation of these behaviours occur before the deployment of the robot to the envi-

ronment, it is not known in advance what changing circumstances the robot might need

to undergo, as well as other sub-tasks that might arise when the robot is executing its

main task. Another shortcoming of this method is that since motor schemas are imple-

mented as a mapping from the perception schema, tasks that require the robot to plan in

advance or build a strategy cannot be implemented. Moreover, creating a large repertoire

of behaviours to cover all angles is a daunting task. Hybrid techniques present a better

approach, however, the engineer is confronted with the task of designing a planning com-

ponent that directs which behaviour to execute. Furthermore, the engineer is required to

design a set of necessary behaviours. The approach has the advantages of deliberative and

reactive techniques but carries their shortcomings as well. Approaches that use reactive

techniques and combines learning mechanisms have been more successful in implementing

control systems; this illustrates the benefits that arise from combining the two approaches.

On the other hand, the complexity of designing a robotic behaviour and training the robot

control to handle various situations in an unstructured environment persists. The use of

60

evolutionary robotics gives an alternative in designing robot controllers by enabling au-

tomatic programming. In this technique, the designers’ work is restricted to providing a

fitness function and algorithmic parameters (characteristics of required behaviour and EA

parameters). ER techniques can be used to train a pre-specified neural network controller,

design and train a neural controller or the controller can be a computer program. It has

also been shown that evolution of a robot morphology is possible [105, 84].

Research in ER where genetic algorithms are utilised, involves the evolution of a neural

network robot controller. Since GAs encode solutions to a problem, they are adequately

suited to encode parameters such as weights, threshold values and parameters describing

whole network architectures. The use of GA and ANN, employs both evolution and learn-

ing and generally leads to very good results. Although ANN can be seen to aid with the

controller learning, the evolution is also affected by local minima problems. It is important

to highlight that a GA encodes and evolves solutions to the problem being investigated;

on the other hand, GP and GEP evolve a computer program or a strategy to solve the

problem. From this view, a GA without hybridization with neural networks, cannot be

used in problems where changes in environment are imminent. Robotic environments are

dynamic in nature and even where the environment is static, the robot needs to take in-

puts from the environment, process the inputs and give out an output as an action that

affects both the robot and the environment. GP and GEP are more suited to deal with

these kind of problems.

Research carried out using GP requires the programmer to constrain the tree depth in

order to avoid creation of non valid trees as well as to avoid bloating. This is quite

cumbersome and the work will be seen to have a human influence. Additionally, GP can

suffer from local minima problems because of the use of very high probability of crossover

and very low probability of mutation.

As previously stated, GEP has not previously been used in the problem of ER to the best

our knowledge. However, this new approach looks very promising due to these facts: firstly,

GEP unlike GP can easily be modelled as the operators work on the linear chromosomes,

analogous to GA, which makes it easy to perform genetic operations on the chromosome

at the same time maintaining the validity of the organisms. Secondly, GEP encompasses

several evolution operators and it can be said to be more ‘nature inspired’. Operators like

transposition and mutation are key evolution operators that can lead to very good results.

Thirdly, multigenic chromosomes can be utilised either to evolve one behaviour with two

or more genes effectively contributing to the overall emergent behaviour or using two or

more genes to evolve different tasks forming one global behaviour. This capability can be

utilised in developing complex behaviours with genes solving simple sub-behaviours. This

is comparable to solving multiple problems simultaneously.

Most robotic implementations require the use of multiple behaviours in order to accomplish

a particular task. Therefore, robot controllers require the capability to solve more than

one task. As discussed earlier, the capability to solve more than one task can easily

be accomplished using modular controllers. As described in section 2.3.5, GEP offers

the capability to encode multigenic chromosomes (mgGEP). This thesis shows that these

61

multigenic chromosomes can be utilised to encode modular robot controllers. Additionally,

the mgGEP approach is extended further to show that behaviour sub-division as well as

coordination can be evolved using GEP. This is an important advance not only in robotic

control but also in optimisation problems.

The rest of this thesis describes the experiments carried out in evolving robotic behaviours

using GEP. The experiments carried out in Chapter 3 addresses the first two research

questions posed in section 1.1.1. Additionally the chapter provides support for the first

claim in section 1.1.3. In the reported experiments ugGEP chromosomes are utilised to

evolve obstacle avoidance behaviours. Additionally, multiple output GEP chromosomes

(mgGEP-multiple out) are utilised to evolve obstacle avoidance behaviours. The evolved

obstacle avoidance controllers are then tested in new environments. Results achieved in

these experiments are analysed and a comparison made to determine which technique is

more robust. Following the results achieved in Chapter 3, Chapter 4 utilises mgGEP

chromosomes to solve a robotic wall following problem as well as a food foraging problem.

The experiments reported in Chapter 4 show how GEP can be utilised to evolve a modular

controller by utilising the linking function to provide behaviour arbitration. Chapter 4

thus provides an answer to the third research question as well as support for the second

research claim. Following the gene regulation discussion on section 2.3.5, Chapter 5 shows

how the mgGEP linking functions can be evolved with the rest of the GEP genome.

In addition, Chapter 5 shows that a gene in a multigenic set can be utilised to evolve

conditions under which gene regulation in a mgGEP chromosome is achieved. Chapter

5 thus extends the standard GEP algorithm by evolving mechanism for gene regulation.

Additionally, Chapter 5 contributes an answer to the fourth research question as well as

provide support for the third research claim. Finally, Chapter 6 draws a conclusion on the

research experiments reported in this thesis and highlights the plans for further work.

62

3 Evolving Behaviours using GEP

This chapter describes the evolution of robot behaviours using gene expression program-

ming (GEP). The main aim of the described experiments is to explore the capability of

unigenic GEP chromosomes (ugGEP) and multiple genes GEP chromosomes (mgGEP)

in evolving monolithic controllers. Monolithic or standard evolution is an evolutionary

mechanism used by genetic algorithms (GA) and genetic programming (GP) to evolve

one-dimensional controllers that solves a given problem without sub-division. The ugGEP

chromosome works in a similar way and is similar in structure to GP, in contrast mgGEP

is a new mechanism of evolving solutions to problems using more than one gene in a chro-

mosome. This chapter seeks to explore the capabilities of ugGEP and mgGEP in evolving

monolithic controllers as is common in the evolutionary robotics domain.

An autonomous robot should be able to explore its environment without colliding with

obstacles and causing harm to itself or people. As described in the previous chapter, there

are many studies that have been conducted on developing obstacle avoidance behaviours

using GAs and GP [74, 105, 106, 115]. Generally, hand-coding these behaviours takes a

lot of programmer’s time and cannot be guaranteed to generate a robust behaviour that

is able to generalise easily when confronted by new circumstances in the environment.

Evolutionary Robotics (ER), however, using a population of control programs has been

shown to generate behaviours that are more robust than human coded ones [75, 60, 61, 46,

105, 45]. Furthermore, these evolved behaviours have been shown to adapt successfully in

new environments [105].

In this chapter, a navigation and obstacle avoidance behaviour is implemented and evolved

using GEP. In addition, the evolved controllers are tested for adaptation into new envi-

ronments. Their performance is evaluated and compared to the fitness in the training

environments. The rest of the chapter is divided as follows: Firstly, an introduction of

the obstacle avoidance problem and related work is presented. Secondly, an implementa-

tion of obstacle avoidance behaviour using ugGEP is presented and a discussion follows.

Thirdly, the evolved controllers are tested in previously unseen environments and their

performance evaluated. Fourthly, mechanisms of evolving monolithic controllers using

ugGEP algorithm that utilises the sensor readings to determine robot wheel velocity, is

discussed and an example shown. Fifthly, techniques to evolve monolithic controllers using

mgGEP is discussed and an example shown. Finally, a discussion of the viability of GEP

in evolutionary robotics follows and a conclusion is drawn.

63

3.1 Obstacle avoidance with straight line navigation

Straight line navigation with obstacle avoidance is a basic behaviour that an autonomous

robotic system needs to display. In the absence of this behaviour the robot may not

be able to navigate its environment without human control, and hence cannot be truly

autonomous. As a result, straight line navigation with obstacle avoidance is used as a test

case in robotic behaviour as additional behaviours cannot be implemented if the robot

cannot move. In this task a robot is placed in an environment with some obstacles and

it is required to travel the longest possible distance without colliding with the obstacles,

where obstacles can be static or dynamic. The robot uses infra-red sensors or stereo vision

to determine its distance from an obstacle and uses its motors and wheels to move around.

The task of navigation and obstacle avoidance requires a suitable mapping between the

sensors and motors. The actions taken by the robot in accomplishing the task, requires

the robot to act given certain sensory information. The behaviour thus requires reactivity

to obstacles as stimuli. Though simple in nature, this task requires the robot to perceive

different sensory situations and determine what action to take. In an unstructured envi-

ronment, it is not possible to list all different situations that a robot might encounter and

develop a suitable motor action for. Evolutionary algorithms (EA) are suitable for a task

like this due to their use of a population of programs or solutions (in the case of GA).

With EA, the population of different programs or individuals are optimized in order to

generate the best program (controller) to control the robot.

3.1.1 Related work

There have been a number of studies conducted involving the evolution of navigation and

obstacle avoidance behaviours. The work reported in this chapter is closely related to the

obstacle avoidance behaviour experiments in Pilat and Oppacher [115], where the authors

investigated the performance of various hierarchical GPs in evolving obstacle avoidance

behaviour. The set of GP variations tested included adaptive representation through

learning (ARL) GP, module acquisition (MA), automatically defined functions (ADFs)

GP, tree-based GP and linear genome GP. In all the GP implementations investigated,

the computer programs (individuals) used the function-set constituting the arithmetic

operators ADD, SUBTRACT, MULTIPLY, shift right (SLR), shift left (SLL) and the

logical operators, AND, OR, XOR. The terminal set was made up of variables denoting

the robotic infra-red sensors (s0–s7). The tournament selection was used with a selection

pool of 7 and a two point crossover was used for the modification of solutions. The

environment used was an irregular 70cm × 90cm room with multiple angles which acted

as dead ends. Additionally, an obstacle was also placed in the middle of the room. In this

work and in Nordin and Banzhaf [106] the obstacle avoidance problem was solved as a

symbolic regression problem where the fitness used to guide the system during evolution

was a summation of the expected values versus the actual values generated by the robot.

Thus, the following function was targeted:

64

f(s1, s2, s3, s4, s5, s6, s7, s8) = (m1,m2) (3.1)

Where si represents the set of sensors and mi represents the set of motors.

The function thus modelled a simple stimulus-response behaviour of the robot. Motor

speeds in this case were generated directly from the sensors and thus from the interaction

with the environment. The fitness function used is as shown by Equation 3.2.

fitness = α(| m1 | + | m2 | − | m1 −m2 |)− β
8∑
i=1

si (3.2)

The mi refers to motor values (in the range -10 to 10) and si refers to proximity sensors

values (in the range 0-1023). α and β are coefficients whose values were set to 10 and

1 respectively (see [115] for explanation with reference to values used). The first part of

the fitness formula encourages the robot to move in a straight line while the second part

penalised the robot for object proximity.

Work presented in this chapter is related to [115] though we do not optimize the behaviour

as a symbolic regression problem. Instead the fitness formula that we use awards explo-

rations to new areas and penalties for hitting obstacles. Nevertheless, the output of the

GEP algorithms generate the motor behaviours in a similar way to the representation

discussed above. As previously discussed, the work presented in [115] uses hierarchical

GP (HGP) to solve obstacle avoidance behaviour. The results reported showed that ARL

HGP outperforms MA HGP, ADFs GP, linear GP and tree-based GP. Compared to GEP,

ARL is costly to implement due to the fact that it extends the standard GP by the in-

troduction of parameterised functions. These functions are then stored in a global library

to be accessible to all organisms. In GEP however, functions are chosen as a set and it is

very easy therefore to generate valid organisms.

Additional examples of work involving the evolution of straight line navigation and obstacle

avoidance can be found on [105].

3.2 Using GEP to evolve an obstacle avoidance behaviour

As previously mentioned, the main aim of these experiments was to investigate the via-

bility of GEP in evolving simple robotic behaviours. To start with, an obstacle avoidance

behaviour was investigated. Obstacle avoidance requires the development of suitable map-

ping from sensory data to motor actions, thus describing behaviour. The task is that of

minimizing the values of the infra-red sensors while the robot performs exploratory be-

haviour.

This section outlines the required implementation and algorithm set-up and lastly presents

the experimental results.

65

3.2.1 Robot and environment implementation

In this experiment, the simbad simulator1[66] was used to simulate the robot and its envi-

ronment. The simulator is used in background mode to avoid rendering the environments

during the course of the run.

In all experiments where the Simbad simulator is utilised, the simulated robot is made up

of a cylindrical body with a radius of 0.3 metres and a height of 0.5 metres. The robot

mass is given as 50 kilograms. Additionally, the robot uses eight infra-red sensors placed

0.25 radians apart along the perimeter of the top of the robot. The robot movement is

achieved using a simulated pair of wheels (left and right). Two methods are offered by

simbad simulator to control the robot movements. These are:

[a] default kinematic: In this kinematic model, the robot movements are controlled

by specifying rotational and translational velocities. Rotational velocity, given in

radians per second, specifies the amount of rotation that a robot should undergo

while translational velocity, given in meters per second, specifies the speed of linear

motion.

[b] differential drive kinematic: In this kinematic model, the left and right wheel

velocities are controlled independent of each other. The difference of the left and

right wheel velocity produce an angular/rotational velocity while an equal output

gives a linear velocity.

In the initial experiment, the robot movements were controlled using the default kinematic.

The robots translation velocity was set manually to 2.0m/s for forward movement and

−2.0m/s for reverse movement. Therefore, the robot can move forward or back with

aforesaid translation velocity and can also turn on its axis based on angles in Table 3.1.

The robot uses 8 sensors, i.e. Front (F), Front right (FR), Front left (FL), left (L), Right

(R), Back (B), Back right (BR), and Back left (BL), placed on specific angles as shown

in Table 3.1. The robot sensors return a value between 0.0m and 1.5m. A value of 0.0m

means that the robot is adjacent to the wall, whereas a value of 1.5m means that the robot

is a minimum of 1.5m away from the obstacle. The aim is thus to evolve a mechanism to

map various sensor readings to specific motor functions.

Table 3.1: Terminal set and sensor positions

Symbol Represents(Terminal) Represents(Motor) Sensor position
(Radians)

F Front Sensor Move Forward at 2.0m/s 0

B Back Sensor Move Back at −2.0m/s π

L Left Sensor Turn Left π
2

R Right Sensor Turn Right 3π
2

FR Front Right Sensor Turn Front Right 7π
4

BR Back Right Sensor Turn Back Right 5π
4

FL Front Left Sensor Turn Front Left 1π
4

BL Back Left Sensor Turn Back Left 3π
4

1Free download of simbad simulator can be found on http://simbad.sourceforge.net/

66

To perform the required experiments, four types of environments were used: two training

environments and two test environments as shown by Figure 3.1. Training environment 1

is set up using a 10m× 10m box with one square obstacle within it. Test environment 1

is a 15m× 15m box with a U shaped obstacle covering most of the space (see Figure 3.1

Test environment 1). Training environment 2 is a 12m× 12m box while Test environment

2 is a 20m× 20m box with a more complex array of obstacles as shown in Figure 3.1.

Training environment 1 Test environment 1

Training environment 2 Test environment 2

Figure 3.1: Training and test environments

3.2.2 Algorithm parameters

The algorithm uses the following attributes to describe the terminal and function sets.

Function set

Only one function operator was used in these experiments : IFLTE (‘If Less Than or Equal

to’). This is a condition function which takes four arguments, w, x, y and z. The function

performs a comparison on the evaluation of the first two sub-trees (less than or equal to

(≤)) and then executes the third sub tree if the comparison is true, or the fourth sub-tree

67

if the comparison is false. Figure 3.2 shows an example of a controller consisting of this

function only.

Terminal set

Table 3.1 shows the terminal sets used in the experiment. The terminals represent different

meaning depending on which part of the tree they are positioned in. As previously stated,

the sensor terminals return a floating point value in the range of 0.0m and 1.5m to the

algorithm. The symbols when executed on the right hand side of the tree produce a

locomotive action while the left hand side returns the specified sensor readings. The motor

terminals; L, R, BR, BL, FR, FL turns the robot with the number of radians shown on

Table 3.1 while F moves the robot forward and B moves the robot back, i.e. the algorithm

is set up such that similar alphabets are used for the sensor and motor functions, where

the left part of the IF statement is the premise and the right hand side is the consequent.

Figure 3.2: Example of a potential robot avoidance controller using terminals and functions
as reported on Table 3.1.

Genetic operators and algorithm parameter values

All the GEP operators are used in the experiment with the probabilities set as per Table

3.2

Table 3.2: General algorithm parameter settings

Parameters GEP setting

Maximum generations 100

Population size 50

No. of genes 1

Head size 4

Functions(IFLTE) 1

Terminals(see Table 3.1) 8

Mutation probability 2/chromosome size2

1-Point Recombination Probability 0.7

2-Point Recombination Probability 0.2

IS Transposition probability 0.1

RIS Transposition probability 0.1

No. of randomly seeded runs 20

68

As described in section 2.3.5, GEP uses seven genetic operators. These operators are;

mutation, 1-point recombination, 2-point recombination and gene recombination, inser-

tion sequence, root insertion sequence and gene transposition. However, the experiments

discussed in this section focus on evolving behaviours using unigenic GEP. This algorithm

does not use gene recombination and gene transposition due to the fact that they are

meaningless for single gene chromosomes, and hence are not implemented. The values of

genetic operators probabilities, shown on Table 3.2 above, are derived from work carried

out by the author in [93]. In the reported work, a simple feedback heuristic was utilised to

adapt genetic probabilities depending on how well a certain value contributed towards the

solution to a problem. In the achieved results the values used here were shown to generate

the best performances. Similarly, these values generated best performances when utilised

in [94, 38].

The algorithm is generational and uses replication to pass the best organism in the previous

generation. Roulette wheel selection is used to select parent organisms.

Fitness function

The fitness is calculated as the summation of all new coordinates that a robot visits less

any collisions. The robot is also penalised for remaining stationary. The following fitness

function is used.

fitness = (
n∑
i=1

pi(xi, zi))− C − S (3.3)

Where pi(xi, zi)= 1 whenever (xi, zi) has not previously been visited and 0 otherwise. In

the experiment, the number of robot steps, n, is set to 1000 and the collision penalty, C,

is set to 25. The stationary penalty, S, is set to 50 and is only applied if the robot does

not move from initial starting point.

Fitness is awarded for every time-step and the maximum fitness is thus set to 1000. Lowest

fitness is −50 which means that the robot did not move from the initial starting point.

3.2.3 Experimental results

In the initial experiment, the ugGEP was run using a chromosome with a head size h=4.

A population of 50 individuals was run for 100 generations and the algorithm evaluated

over 20 randomly seeded replications. The rest of the parameters were set as shown on

Table 3.2. The experiment was carried out using environment test 2 (see Figure 3.1) as

the simulated robot environment. Each individual controller was allowed a maximum of

50 virtual time seconds (1000 simulation steps) to control the robot. The results for this

experiment are shown by Figures 3.3 and 3.4

2The chromosome size refers to the total number of string symbols in the chromosome. This is given by
summation of tail and head lengths, see Equation 2.2

69

Figure 3.3: Progression of the median fitness of the best individual and the median of the
population mean fitness over the generations. The median of the population
mean fitness was computed from the population mean fitness achieved in each
generation in all the 20 randomly seeded runs. Similarly, the best individual
average performance is derived from the 20 randomly seeded runs. In each
evolutionary run, a population of 50 organisms was evolved for 100 genera-
tions and the population mean and best individual fitness recorded in each
generation. The rest of the parameters are as shown on Table 3.2.

Figure 3.4: Evolved obstacle avoidance controller with parameters listed on Table 3.2. The
controller was evolved in environment test 2 as shown in Figure 3.1

Figure 3.3 shows the progression of the median population mean fitness and the median

fitness of the best individual in the population, along the generations. Additionally, Figure

3.4 shows an example of the tree structure of a single obstacle avoidance controller evolved

in this experiment.

To control the robot using the controller shown in Figure 3.4, the robot starts by checking

70

obstacle proximity on the left hand side. If an obstacle is detected, the robot then checks

obstacle proximity on the back-right area (the area between the right and back sensors). If

there are obstacles on the back-right area, a comparison between the back-right and front

sensor readings is done. If the front sensor reading is lower than the back-right sensor,

the robot moves forward otherwise the robot makes a 45 degree rotation towards the right

hand side; that is, FR. Alternatively, if there is no obstacle on the left hand side and robot

is close to obstacles on the back-left area, a comparison between the back-left and front

sensor readings is done. If the front sensor reading is lower than the back-left sensor, the

robot moves forward, otherwise the robot makes a 45 degree rotation, towards the right

hand side, to avoid obstacles. This control shows that the controller solves the problem in

a logical manner, similar to a human approach. The described controller shows that GEP

is a plausible technique to be used in ER applications.

As observed in Figure 3.3, the ugGEP evolves solves the obstacle avoidance problem within

15-20 generations. Nevertheless, the median of the population mean fitness shows that in

general the rest of the individuals in the population are moving very slowly towards the

maximum fitness. To better understand this, additional experiments were carried out in

order to investigate whether the length of the chromosome affects the performance of the

algorithm in solving the problem. The next section describes these experiments and the

obtained results.

Effect of head sizes to the success of controllers in training environment

The goal in this experiment was to test the effect of varying the head size and hence

the genotype length of the chromosome. A population of 50 individuals was run for 100

generations and the algorithm performance evaluated over 20 replications. The default

kinematic was used to control the robot movements. The translational velocity was set at

2.0m/s if front movement F was returned or −2.0m/s if back movement B was returned.

Each individual controller in a population was allowed a maximum of 50 virtual time

seconds (1000 simulation steps) to control the robot. The robot was then returned to

the start point and the next controller evaluation carried out. The remaining parameters

were as shown in Table 3.2. These experiments were conducted using test environment 2

(Figure 3.1).

71

Figure 3.5: Success rate with varying chromosome length. Success rate refers to the num-
ber of runs which achieved maximum fitness (1000 steps) out of the 20 ran-
domly seeded evolutionary runs conducted. In each evolutionary run, a popu-
lation of 50 organisms was evolved for 100 generations and the best individual
performance recorded in each evolutionary run. The rest of the parameters
are as shown on Table 3.2.

72

Figure 3.6: Variation of success rate with number of generations. A comparison using dif-
ferent chromosome lengths is shown. Success rate refers to the number of runs
which achieved maximum fitness (1000 steps) out of the 20 randomly seeded
evolutionary runs conducted. In each evolutionary run, a population of 50 or-
ganisms was evolved for 100 generations and the best individual performance
recorded in each evolutionary run. The rest of the parameters are as shown
on Table 3.2.

73

Figure 3.7: Progression of best individuals in the population over the number of genera-
tions using different chromosome lengths. Each individual curve represents the
best performing evolutionary run out of the 20 randomly seeded runs. In each
evolutionary run, a population of 50 organisms was evolved for 100 generations
and the best individual performance recorded in each evolutionary run. The
rest of the ugGEP parameters are as shown on Table 3.2.

Figure 3.5 shows the variation of success rate of organisms with chromosome length (de-

termined as a percentage of those individuals that achieved the maximum fitness). Figure

3.6 shows variation of success rate with the number of generations. In addition, Figures

3.7 and 3.8 show the progression of the best individual in a population and the average

fitness of the population over the number of generations respectively.

The comparison of success rates, Figure 3.5, shows that there is at least a 75% likelihood

of evolving an obstacle avoidance behaviour with any of the presented chromosome lengths

using the ugGEP algorithm. However, it does not show the overall performance of the

algorithm in solving the problem during the course of the run. Moreover, it is very hard

to determine the best chromosome length using this analysis. Figure 3.6 is possibly a

better analysis as it shows the speed, in terms of generations, that the algorithm finds

successful individuals. In this analysis, chromosomes with shorter phenotypes appear to

achieve better success rates in early generations. However, after more generations the

performance of the shorter chromosomes is improved upon by the longer chromosomes.

This is to be expected as the longer chromosomes have a large search space and therefore

requires a longer evolutionary run to generate a solution.

Figure 3.7 shows that the performance of best individual evolved using longer chromosomes

was better than for the controllers evolved using shorter chromosomes. Additionally, Fig-

ure 3.8 shows that in terms of average fitness within the population, longer chromosomes

74

Figure 3.8: A comparison of the average population mean fitness across different chromo-
some lengths. The average of the population mean fitness was computed from
the population mean fitness achieved in each generation in all the 20 randomly
seeded algorithms. In each evolutionary run, a population of 50 organisms was
evolved for 100 generations and the population mean fitness recorded in each
generation. The rest of the parameters are as shown on Table 3.2.

perform better overall than shorter chromosomes. The performance of the longer chro-

mosome in this problem, is likely to be as a result of an increase in diversity created by

additional materials in the longer individuals. In GEP, since it is the coding region that

determines the performance of the chromosome, genetic operators that act on the head

region influence the overall individual performance greatly. There are five genetic opera-

tors acting on the chromosome (see Table 3.2). All these operators, apart from mutation,

create diversity by shuffling elements of the individuals in the population. Mutation on

the other hand, can occur in both head and tail regions. Chromosomes with a longer head

length (that is, longer chromosomes) have a lower probability of mutation occurring at

the root of the chromosome, hence reducing any negative effect associated with mutation

and preserving better performing individuals in the process.

3.3 Adaptation to new environments

As shown in Figure 3.3, the algorithm is able to generate controllers which explore for 1000

simulation steps with no collisions within 15 − 20 generations. Therefore, the following

experiments concentrate on the ability of these controllers to generalise to a new environ-

ment and to discover whether the length of the phenotype of the controller has an effect on

this ability. In effect, the aim of the experiment is to investigate the principle of Occam’s

75

razor; that is, if two theories fit the problem, then the simpler theory is better [6]. In

the experiments reported here, Occam’s razor is tested using ontological simplicity; that

is, whether the most parsimonious controllers that have been evolved, adapts best when

introduced to previously unseen environments. Table 3.3 shows the specific parameters

that were used in all the adaptation experiments. The rest of the algorithm parameters

are as shown on Table 3.2.

Table 3.3: Adaptation test: algorithm parameter settings

Parameters GEP setting

Maximum generations 100

Population size 200

The default kinematic was used to control the robot movements. The translational velocity

was set at 0.8m/s for forward movement or −0.8m/s for reverse movements. The slow

robot speed was used in the experiment to ensure that the robot had enough time to

react to sensor readings as well as to learn more about the environment. In the first two

experiments reported below, the best unique controllers (fitness = 1000), were selected in

the course of a GEP run and recorded. These best controllers were then tested in a new

environment and their performance recorded. The resulting fitnesses were grouped into

50’s and the midpoints versus their percentage frequency compared.

3.3.1 Effect of training and testing controllers in similar environments

The goal in this experiment was to determine whether the length of a controller affects

its performance when the training and test environments are similar. Training and test

environment 2 (shown in Figure 3.1) were used as the training and test environments

respectively. The environments shown above have similar layouts and differ only in size

and number of obstacles (training environment 2 is 12m × 12m while test environment

2 is 20m × 20m). The aim is to check how well the controllers generalise in the new

environment and compare the effects of different phenotype lengths. The head size, h, of

the chromosome was given as 4 and hence, using Equation 2.2, the maximum phenotype

length, L, can be calculated as :

L = hn+ 1 (3.4)

All viable chromosomes should have the root allele as a function. Thus, plausible chromo-

somes are made up of either 1, 2, 3 or 4 IFLTE functions. Since there is only one function

used in the experiment, then substituting h in equation 3.4 with the number of functions

in a chromosome, the plausible phenotype lengths are 5, 9, 13 and 17. The remaining

parameters were as detailed in section 3.2.2. The results are shown in Figure 3.9.

76

Figure 3.9: Comparison of frequencies with different phenotypical lengths when controllers
are tested in similar environments

The results presented in Figure 3.9 show that controllers with length 9 had better overall

performance in the test environment than those with lengths 5 and 13. The results also

show that controllers with length 5 performed as well as those with length 13. Additionally,

no controllers with length 17 were evolved. It is difficult to determine from these results

whether shorter phenotypes adapt better than longer phenotypes when placed in a new

environment. Since the training and test environments have similar layouts, it is likely

that the controllers performance is equivalent in both environments. This is because the

controllers are already trained on how to solve the problem and therefore any challenge

presented in the new environment is likely to have been encoutered before. Subsequently,

more experiments were required in order to investigate whether GEP controllers support

Occam’s razor.

3.3.2 Effect of training controllers in simple environment and testing in

a complex environment

The goal in this experiment was to determine whether the length of a controller affects

its performance when tested in a new and more complex environment. This experiment

is similar to the one discussed in the previous section, with the exception that Figure

3.1 (training environment 1) was used as the training environment and Figure 3.1 (test

environment 1) as the test environment. Results are shown by Figure 3.9.

Figure 3.10 shows that adaptation to a new environment has a direct correlation with

77

Figure 3.10: Comparison of frequencies of different controller lengths when tested in com-
plex environment

the controller lengths. As observed, when introduced in a new environment, controllers

with lengths 5 and 9 performed better than those with lengths 13 and 17. Across the

first three quartiles, controllers with long phenotypes had high frequencies, this means

that majority of these controllers did not perform very well in the new environment.

The shorter controllers had low frequencies indicating that majority of these controllers

performed better. At the upper quartile length 5 and length 9 appear to be dominant

followed by controllers with lengths 13 and 17.

Longer phenotypes contain more building blocks and may also have redundancy built

into them. These additional materials may contribute positively or negatively to the test

performance, depending on the problem at hand. If the problem is significantly small, a

longer phenotype could lead to low performance, this can potentially explain the perfor-

mance of controllers with lengths 13 and 17. On the other hand, shorter phenotypes are

parsimonious and contain only the necessary materials to solve a given problem. Although

compact genomes are not always efficient in solving a problem [38], this experiment shows

that more compact genomes adapt better when introduced in a new environment than

longer phenotypes. This shows that GEP controllers support the principle of Occam’s

razor.

78

3.3.3 Testing generalisation using the last population

The goal of the experiment reported in this section was to investigate the generalization

capability of all the controllers in the final population of a GEP run. The GEP was run

using the parameters shown on Tables 3.3 and 3.2. The experiment set up was as reported

in section 3.2.2. In the experiment, the final population of a GEP run was introduced to the

test environment and the controllers performance in this new environment evaluated. The

simple training environment, Figure 3.1 (training environment 1) was used for training

and test environment 1 was used for testing. A comparison of performance in the test

environment with respect to the training environment was then carried out. The results

of the experiment is as shown by Figure 3.11 and Tables 3.4 and 3.5.

Figure 3.11: Performance of all the final generation controllers in the 20 GEP runs in
training environment and the resultant performance in test environment. The
fourth order polynomial regression line shows that there is a linear association
of the performance in the training and test environment up to a fitness of
approximately 650.

Figure 3.11 shows the performance of the final generation controllers in the test envi-

ronment. The calculated correlation coefficient between train and test fitness was 0.77.

A fourth order polynomial regression line, drawn on the scatter graph, shows the linear

association of the performance in the training and test environment. Additionally, the

calculated R2 value suggests that 63% of the variability of the data could be explained

by the linear regression. The calculated correlation and R2 value suggests that fitness

achieved during the training affects the test fitness. Also it can be seen from the graph

that there are a large number of controllers that did not perform well in the training set

but performed well in the test environment. This means that we possibly do not need to

79

have highly converged controllers in the training fitness, this is to be expected as a fit-

ness of 1000 on the simple environment will not necessarily translate to the more complex

environment.

Table 3.4: Phenotype lengths in the last generation controllers

Phenotype Average number of Success rate as % of
Length controllers in the last controllers with fitness ≥ 950

population in the test environment

5 93 27
9 74 18
13 18 6
17 3 0

Table 3.4 compares the average number of controllers in both training and test environ-

ments based on their phenotype lengths. As reported previously, the GEP algorithm was

run 20 times. The presented values are therefore averaged from the 20 runs. The results

suggest that the last population in a run had a higher number of controllers with shorter

phenotypes than longer ones. In fact, there is an inversely proportional relationship be-

tween length of phenotype and the number of controllers. Similarly, the results suggest

that controllers with shorter phenotypes had a higher percentage of controllers with a

fitness ≥ 950 in the test environment. These results concur with results shown in section

3.3.2 where shorter phenotypes outperformed the longer ones.

Table 3.5: Statistical comparison of the performance in the training and test environment

Phenotype Mean of the Std Dev. of Mean of the Std Dev. of Correlation
Length last pop. the last pop. last pop. the last pop. between

in Training in Training in Test in Test train and
environment environment environment environment test fitness

5 574.30 458.96 439.59 403.91 0.74
9 420.46 345.766 421.30 384.57 0.77
13 200.33 165.97 324.99 294.76 0.76
17 123.18 47.43 278.02 182.09 0.77

The descriptive statistics shown by Table 3.5 suggests that there is a relationship between

the length of the phenotype and their performance in both training and test environments.

The results suggests that controllers with shorter phenotypes performed best in both the

training and test environments. Additionally, the results suggests that controllers with

longer phenotypes had an improved overall average fitness in the test environment. The

improved average fitness shown by the controllers with longer phenotypes is likely to have

been as a result of the redundancy in the long phenotypes as well as the fact that these

controllers were fewer than those with shorter phenotypes. The large standard deviation

shown by the fitness of controllers with short phenotypes suggests that there was a large

diversity in the number of controllers with lengths 5, followed by 9 and decreasing with

increase in phenotype length. Thus, the standard deviation suggest an inverse proportion

between diversity of controllers with phenotype lengths. This diversity is to be expected as

there are different ways of forming a controller with a shorter length while there is restricted

ways to form long controllers. The statistics also show a good correlation between the

80

performance in training and test environments. This as discussed previously, suggests the

performance in the training environment affected the performance in the test environment.

The generalization results described in section 3.3.2 and 3.3.3 suggests that shorter phe-

notypes were more robust at adapting to the new environment. However, the experiment

is simple and thus conclusive results can possibly be derived when investigation is carried

out in a more complex environment. Nevertheless, in this type of experiment, the ugGEP

phenotypes support the Occam’s razor principle.

3.4 Sensor based velocity control

In Section 3.2 above, the default kinematic model (discussed in Section 3.2.1) was used

to control the robot movements. Subsequently, the robot’s translational velocity was

manually set to 2.0m/s for forward movement (motor terminal, F) and −2.0m/s for

reverse movement (motor terminal, B). Similarly, in section 3.3 the wheel’s translational

velocity was set to 0.8m/s for forward movement and−0.8m/s for reverse movement. In all

the previous experiments, the angular or rotation velocity was not set, however, the robot

could turn based on the radians as reported in Table 3.2 above. This mechanism, though

successful in solving the robot problem as shown above, does not cater for situations when

the robot may need to reduce or increase speed given different environmental conditions.

For instance, a robot may need to slow down when close to obstacles and move at top

speed when there are no obstacles in the vicinity.

This section focusses on an experiment carried out to investigate the effect of evolving

controllers that sets the velocity of a robot based on the infra-red sensor readings. The

proposed controller is similar to controllers developed using neural networks 3; that is,

the controller takes the sensors readings as inputs and translates them to a motor output.

However, the proposed model is simpler and contains only one output that effects robot

motor controls.

In the described experimentation, the default kinematic model was used to control the

robot movements. The output of the evolved GEP controller was used to set the robots

translational or rotational velocity. As previously discussed, when a GEP controller is

executed the output is one terminal symbol. In the experiment, the output of the controller

was used to set the translational velocity (in m/s) with the Front or Back sensor readings

if F or B terminals were returned. Similarly, the rotation velocity in radians per second

(rad/s) was set to any of the other sensor readings depending on the terminal returned by

the controller output (see Table 3.2 for the sensor positions). This means that the rotation

angles could be small or large depending on the returned sensor reading and the robot

accelerates or decelerates given the Front or Back sensor readings. In this case, the robot

learns how and when to turn and the required speed. This is a more natural mechanism

of control. In this experiment, therefore, the robot learns the mapping between specific

3Similarity with neural-based controllers is only based on the sensors generating input data and this input
being translated to motor output. Most neural based controllers have a multiple output depending on
the number of motors/wheels (see [105])

81

sensors to various translational and rotational velocities.

3.4.1 Experimental results

To conduct the experiments using the technique described in this section, the algorithm

parameters shown on Table 3.6 were used. All the other parameters were set as shown on

Table 3.2.

Table 3.6: Sensor based velocity control: Parameter settings

Parameters GEP setting

Maximum generations 100

Population size 200

Head size 8

Two experiments were conducted as described below.

Experiment 1 : Sensor based control

The aim of the first experiment was to test the viability of this technique in evolving robust

controllers that would guide a robot to explore a simulated environment while avoiding

obstacles. In this experiment, the robotic sensors were set to return a value between 0.0m

and 2.0m. This meant that the robots maximum speed was set at 2.0m/s, similar to the

experiments reported in Section 3.2.3 above. Similarly, the experiment was conducted

using test environment 2 (Figure 3.1) as the simulated robot environment. Figures 3.15,

3.16, 3.17 and 3.18 show the achieved results.

From the results (Figures 3.17) the algorithm was able to evolve a suitable controller

within 25 generations and the average performance population was better than when

standard ugGEP was used (see Figure 3.18). This means that in general, the algorithm

evolved better controllers than ugGEP and with a fewer number of generations. This can

be attributed to the use of sensors to determine speed and rotation-angles particularly

when close to obstacles. However, Figure 3.15 and 3.16, shows that when compared to

standard ugGEP this mechanism had less success in evolving controllers that achieved

maximum fitness (it was observed that most controllers had a high fitness (> 900)).

This is likely attributed to numerous turning (at slight angles) where points were not

awarded. Nevertheless, these results show that this technique is a viable mechanism to

evolve controllers that require close interactions with the environment in order to function.

Experiment 2 : Adaptation in new environments

In the second experiment, the controllers were tested for robustness in adapting to new

environments. In this experiment all the algorithm parameters were set as per Section

3.2.2 above. The robot sensors were set to return a value between 0.0m and 2.0m, giving

a maximum speed of 2.0m/s for the robot. Similarly, the standard ugGEP was set such

82

that the robot always moved at 2.0m/s. Training environment 2 (see Figure 3.1) was used

for the training phase while test environment 2 (Figure 3.1) was used in the testing phase.

The obtained results is as shown by Figures 3.12, 3.13 and 3.14.

Figure 3.12: Progression of the average mean fitness in the population as achieved us-
ing ugGEP and ugGEP with sensor based velocity control. The average of
the population mean fitness was computed from the population mean fitness
achieved in each generation in all the 20 randomly seeded algorithms. In each
evolutionary run, a population of 200 organisms was evolved for 100 genera-
tions and the population mean fitness recorded in each generation. The rest
of the parameters are as shown on Table 3.2.

Figure 3.12 shows that in terms of average fitness, the ugGEP with sensor based velocity

control started off faster and continued to perform better than the standard ugGEP. The

likely explanations with regard to the initial ‘surge’ is that; since the robot turns only

slightly and the speed near the obstacles is lower, it is less likely to collide with obstacles

than when controlled by standard ugGEP controllers. Initial controllers, thus, performed

better than their standard ugGEP controllers and as can be seen the trend continued on

throughout the ensuing generations. This is similar to the observations made in Figure

3.18.

83

Figure 3.13: Obstacle avoidance controller evolved using ugGEP with sensor based velocity
control. The algorithm was set up using parameters listed on Table 3.2. The
controller was evolved in training environment 2 as shown in Figure 3.1.

Figure 3.13 shows a controller evolved using the ugGEP with sensor based velocity control.

This controller shows that robot continued to move forward by checking the right and back

left sensors and turned left if an obstacle was detected by forward and right sensors. This

examples shows that evolved controllers approximated the type of controller that a human

designer would program to control a robot.

Figure 3.14: Comparison of performance of best individuals in new environments. The
comparison is based on velocity based sensor control (ugGEP-sensor) and
standard motor action ugGEP discussed above. In each algorithm, the evo-
lutionary run was conducted using a population of 200 organisms evolved for
100 generations. The rest of the parameters are as shown on Table 3.2.

Figure 3.14 shows a comparison on the performance of best individuals evolved in training

84

environment 2 using ugGEP and ugGEP with sensor based velocity control. The results

suggest that controllers that evolved the mechanism to accelerate and decelerate as well

as rotate the robot, also performed satisfactorily when placed in new environments .

3.5 Evolving monolithic controllers using multigenic GEP

The previous sections outlined how to use ugGEP to evolve monolithic robot controllers.

In this section, experiments were carried out with the aim of investigating how the mul-

tiple genes in GEP (mgGEP) can be utilised to evolve monolithic robot controllers that

produce multiple output. The previous chapter mentions that the GEP organism can

be constructed by the spatial organisation of different sub-ETs [38]. This means that

GEP can be used to evolve controllers that provide multiple outputs yet are still part

of the same organism. The evolved controllers (or partial controllers) are independent

entities that work together to accomplish the set objectives. In the experiments reported

in this section, GEP is utilised to evolve two sub-ETs that work together to evolve an

obstacle avoidance controller. The output of the ETs control the velocity of the robot.

The conducted experiments used a differential drive kinematic model to control the robot

movements; that is, the left and right wheel velocities were controlled independent of

each other during the course of the simulation. The robot, thus, had to establish a link

between linear and angular velocity in order to accomplish exploration and obstacle avoid-

ance tasks. The output of the first sub-ET controls the velocity of the left wheel while the

output of the second sub-ET control the right wheel. The difference of the two outputs in

terms of sensor readings produce an angular velocity while an equal output gives a linear

velocity. The two genes are part of the whole mgGEP chromosome and are thus evolved

as such. Note that there is no linking function provided for the genes and that every gene

has an independent contribution to the overall robot behaviour. The fitness achieved is

for the collective performance. In this the robot is required to evolve a strategy to control

its velocity and to avoid obstacles. The output of each sub-ET is the sensor reading of

that particular terminal as shown in Table 3.1.

The task of coordinating the wheel speeds is non-trivial since if one gene does not evolve

a good solution or if it always returns a zero, the robot will continue rotating in the

same place. The robot also has to achieve maximum speed when far from obstacles and

decelerate when near obstacles, as well as evolving the mechanism to start turning when

obstacles are encountered.

3.5.1 Experimental results

The experiments were carried out using a population of 200 organisms and run for 100

generations with head size h set to 4. The total length of the whole organism was therefore

34 alleles. The algorithm was evaluated over 20 randomly seeded runs. Each controller in

the population was allowed to control the robot for 50 virtual seconds. Gene transposition

and gene recombination was used with 0.1 probability for each operation. Table 3.7 shows

85

a summary of the parameter settings. The rest of the parameters were set as defined in

Table 3.2. In all the experiments the robot sensors were set to return a value between

0.0m and 2.0m. Hence, the maximum speed that the robot could move at was 2.0m/s

(unless otherwise specified). Two experiments were conducted as described below.

Table 3.7: mgGEP-multiple out: Parameter settings

Parameters ugGEP ugGEP-Sensor mgGEP-multiple out

Maximum generations 100 100 100

Population size 200 200 200

Head size 8 8 4

No. of genes 1 1 2

Gene transposition probability 0.0 0.0 0.1

Gene recombination probability 0.0 0.0 0.1

Experiment 1: Evolving a multiple output controller

The aim of the first experiment, in this section, was to test the viability of the multiple

output GEP to control the robot. The obstacle avoidance problem was used as a test case

to test the technique. In the first experiment, environment test 2 (Figure 3.1) was used.

The obtained results are as shown in Figures 3.16, 3.15, 3.17 and 3.18

Figure 3.16: Comparison of success rate over generations as achieved using ugGEP, ugGEP
with sensor based velocity control and with multiple output gene. Success rate
refers to the number of runs which achieved maximum fitness (1000 steps) out
of the 20 randomly seeded evolutionary runs conducted. In each evolutionary
run, a population of 200 organisms was evolved for 100 generations using the
parameters shown on Tables 3.2 and 3.7.

86

Figure 3.15: Comparison of success rates achieved using ugGEP, ugGEP with sensor based
velocity control and with mgGEP multiple out. These success rates are shown
over different number of chromosome lengths run using the aforesaid algo-
rithms. Success rate refers to the number of runs which achieved maximum
fitness (1000 steps) out of the 20 randomly seeded evolutionary runs con-
ducted. In each evolutionary run, a population of 200 organisms was evolved
for 100 generations using the parameters shown on Tables 3.2 and 3.7.

As observed in this experiment, the mgGEP with multiple output performs better that

standard ugGEP and ugGEP with sensor based velocity control. Figure 3.16 shows that

in all the different chromosome lengths tried the mgGEP-multiple output did not only

have a better success rate but also evolved successful individuals much more quickly than

the ugGEP approaches. Overall, the ugGEP with sensor based velocity control had a

lower success rate in this task. During the experiments, it was observed that ugGEP with

sensor based velocity control, had a majority of controllers achieving a fitness just slightly

lower than the maximum fitness possibly because of losing points as the robot turned and

therefore, though the general performance was better than standard ugGEP, the success

rate was not as good. Figures 3.15 and 3.16 shows that there is a greater probability of

evolving successful controllers using the mgGEP technique.

87

Figure 3.17: Progression of best individual in the population as achieved using ugGEP,
ugGEP with sensor based velocity control and with multiple output gene in
environment test 2. Each individual curve represents the best performing
evolutionary run out of the 20 randomly seeded runs. In each evolutionary
run, a population of 200 organisms was evolved for 100 generations and the
best individual performance recorded in each evolutionary run. The rest of
the ugGEP parameters are as shown on Tables 3.2 and 3.7.

88

Figure 3.18: Progression of the mean population mean fitness as achieved using ugGEP,
ugGEP with sensor based velocity control and mgGEP with multiple output
gene in environment test 2. The mean of the population mean fitness was
computed from the population mean fitness achieved in each generation in all
the 20 randomly seeded algorithms. In each evolutionary run, a population
of 200 organisms was evolved for 100 generations and the population mean
fitness recorded in each generation. The rest of the parameters are as shown
on Table 3.2.

Figure 3.17 shows that mgGEP algorithm used approximately 5−10 generations to evolve

an individual that solved the problem. Additionally, Figure 3.18 shows that the mgGEP

had a better overall average performance than the standard ugGEP and ugGEP with

sensor based velocity control. The average performance across the entire population also

shows continuous learning with number of generations. The nature of the environment

used was such that there were a lot of open spaces, (see test environment test 2 in Figure

3.1 above), this suggests that the mgGEP-multiple output learns how to navigate this en-

vironment better given that it is able to move at a maximum speed in the open spaces and

slower near obstacles. Slowing near obstacles also means that the robot can easily avoid

obstacles. This idea of accelerating and decelerating also explains the good performance

shown by ugGEP with sensor based velocity control.

Experiment 2: Adaptation in new environments

In the second experiment, the controllers were tested for robustness in adapting to new

environments. The experiments were conducted using similar parameter settings as re-

ported in section 3.5.1. Training environment 1 (see Figure 3.1) was used for the training

89

phase while test environment 1 (Figure 3.1) was used in the testing phase. The results for

this experiment are shown by Figures 3.19, 3.20, 3.21 and Table 3.8

Figure 3.19: Progression of best individual in the population as achieved using ugGEP
and mgGEP with multiple output. Each individual curve represents the best
performing evolutionary run out of the 20 randomly seeded runs. In this
experiment, the robot was trained in training environment 1 and tested on
environment test 1. In each evolutionary run, a population of 200 organisms
was evolved for 100 generations and the best individual performance recorded
in each evolutionary run. The rest of the parameters are as shown on Table
3.2.

Figure 3.19 shows that on average, mgGEP with multiple output and the standard ugGEP

evolved the best individual in less than 10 generations. In addition, mgGEP was quicker

in evolving better controllers than the ugGEP approach. Given the nature of the envi-

ronment, the task targeted is that of circumnavigating around the obstacle. As a result,

the mgGEP controllers needed to learn a mechanism of attaining good angular velocity

in order to turn and navigate the environment. It is also important to note that the be-

haviour emerges from the interaction of the individual controllers and the environment.

This problem is thus not a simple task. The performance of mgGEP with multiple output

shows that GEP has a great potential of evolving self organising mechanism needed for

robot control.

The progression of average fitness over generations (Figure 3.20) shows that the mgGEP

controllers performed equally as well as the ugGEP approach.

When the best solutions were introduced into new environments, it was noted that in

general all the solutions from the different algorithms did not perform very well. It is also

90

Figure 3.20: Mean of the population mean fitness in the population as achieved using
ugGEP, ugGEP with sensor based velocity control and mgGEP with multi-
ple output. The mean of the population mean fitness was computed from the
population mean fitness achieved in each generation in all the 20 randomly
seeded algorithms. In this experiment, the robot was trained in training en-
vironment 1 and tested on environment test 1. In each evolutionary run, a
population of 200 organisms was evolved for 100 generations and the popu-
lation mean fitness recorded in each generation. The rest of the parameters
are as shown on Table 3.2.

important to note that the robot solves an obstacle avoidance problem in the training

environment (Figure 3.1, training environment 1) while it is tested to perform a wall

following task when introduced to the new environment (Figure 3.1, test environment 1).

Results shown by Figure 3.21 suggests that controllers evolved using mgGEP-multiple

output performed slightly better in the new environment than controllers evolved using

standard ugGEP. Additionally, calculated mean fitness value in the new environment was

175.84 for mgGEP-multiple output and 132.26 for the standard ugGEP. This slight increase

in performance can possibly be attributed to the reliance on the environment to determine

linear and angular velocities dynamically. This shows that in problems requiring multiple

output, the mgGEP mechanism can be used to evolve suitable solutions.

Another important factor that was realised during the experiment is that the robots speed

in the training environment is of significant importance in determining how the robot

performs in the test environment. To investigate this, the experiment discussed above was

repeated with varying speed. For the standard ugGEP controllers, the robots translational

velocity was set to 0.8m/s for forward movement and −0.8m/s for reverse movement. In

the mgGEP-multiple output and ugGEP with sensor based velocity control, the robot

91

Figure 3.21: Comparison of performance of best individuals in new environments. The
comparison is based on standard motor action ugGEP discussed above and
the mgGEP multiple output. In all the algorithms, the evolutionary run
was conducted using the parameters shown on Tables 3.7 and 3.2. In this
experiment, the robot was trained in training environment 1 and tested on
environment test 1. The robot translational velocity was set to 2.0m/s for
standard ugGEP and mgGEP.

sensors were set to return a value between 0.0m and 1.5m translating this to a linear

velocity between 0.0m/s and 1.5m/s. These speeds are slightly lower than maximum

speed set at 2.0m/s discussed above. Figure 3.22 shows the results achieved.

92

Figure 3.22: Comparison of performance of best individuals in new environments. The
comparison is based on standard motor action ugGEP discussed above and
the multiple output mgGEP. In all the algorithms, the evolutionary run was
conducted using the parameters shown on Tables 3.7 and 3.2. In this ex-
periment, the robot was trained in training environment 1 and tested on
environment test 1. The robot translational velocity was set to 0.8m/s for
standard ugGEP and mgGEP.

Figure 3.22 shows that controllers trained using standard ugGEP with the translational

velocity set at 0.8m/s were more robust in new environments than controllers evolved

using ugGEP with sensor based velocity control and the mgGEP with multiple output.

Controllers using the latter two approaches had the speed ranging between 0.01m/s and

1.5m/s. This shows speed plays an important part in determining the generalising capa-

bility of the algorithm. This effect is possibly attributed to the idea that lower speeds give

the robot enough time to learn the environment and evolve an obstacle avoidance strategy.

As a result, mechanisms like mgGEP-multiple output that can set speed automatically

might be better positioned in evolving more robust controllers.

Statistical comparison

Table 3.8: Mann-Whitney U test between mgGEP-multiple out and ugGEP performances

Z values P1 P2 Signi. Level

ugGEP 3.16 0.0004 0.0008 2%
ugGEP (sensor based control) 5.4 < 0.0001 < 0.0001 2%

Table 3.8 shows the results of a Mann-Whitney U test between the mgGEP-multiple output

93

and the two ugGEP approaches on the mean of best individuals’ fitness. In an evolutionary

algorithm, it is not always possible to say with certainty how many generations are required

to solve a specific problem. Thus, to make sure that the Mann-Whitney U test results

were not skewed, the mean of best individual fitness in each generation in the evolutionary

run were used in the test sample. Since the algorithms were run 20 times, 20 sample

values were used in the Mann-Whitney U test. The default hypothesis, (H0, for both

the one tailed and two tailed tests is that there is “no difference in the performance of

the presented algorithms in the obstacle avoidance problem”. The alternative hypothesis,

(HA, for the two tailed test (P2) is that “there is a difference in performance between the

mgGEP-multiple output and the ugGEP approaches” while the alternative hypothesis for

the one tailed test (P1) is that “mgGEP-multiple output performs better than ugGEP

approach in the obstacle avoidance problem”. The P2 values suggests that the alternative

hypothesis is correct and that the statistical significance is beyond 2%. Additionally, the

P1 values suggest that the one tailed alternative hypothesis is correct and the statistical

significance is beyond 2%. The results of the significance suggests that, in this problem,

mgGEP-multiple output is better than the ugGEP approaches.

3.6 Conclusion

This chapter has introduced techniques of evolving robotic behaviours using GEP. The aim

was two fold. Firstly, to investigate the performance of unigenic GEP (ugGEP) structures

in a robot task and secondly, to investigate the performance of the more complex multigenic

GEP (mgGEP) with multiple output. The performance of these algorithms in training and

test environments was recorded and analysed. The results generated and the discussion

that follows shows that the presented algorithms were successful in solving the problem.

Moreover, when introduced into new environments, the trained controllers were robust

enough to navigate the environment successfully. The results demonstrate that GEP is a

suitable algorithm that can be used in evolutionary robotics to develop controllers with

an ability to adapt to new environments.

Results in Figure 3.8 shows that the choice of a head size (chromosome length) affects

the performance of the controller and the algorithm. As can be seen longer chromosomes

(larger head sizes) tend to produce better controllers. A similar observation was seen when

the mgGEP with multiple output was used (see Figure 3.15). In simple environments and

simple problems these longer chromosomes tend to have redundancy built into them.

These redundancies built into the genome provide more diversity in the structure of the

phenotype. As shown in Figures 3.10, 3.9 and Tables 3.5 and 3.4, GEP tries to build

simple parsimonious solutions depending on the size of the search space. Thus for a

simple problem as presented here, shorter phenotypes are robust enough to adapt to new

environments. The evolution of these simple parsimonious solutions is definitely easier

and computationally cheaper than using GP where the depth has to be chosen in advance

and regularly checked in order to avoid creating non-valid organisms.

As reported earlier, evolutionary robotics does not require human influence in generating

94

robotic behaviour. In the discussed experiments, only the attributes of behaviour such

as sensor and motor terminals were supplied in addition to a conditional function. The

fitness function awarded the robot for continuous movement and penalised the robot for

hitting obstacles. The fitness function, therefore, exploited the information derived from

the sensory information. The result was a robust behaviour that adapted when introduced

to new environments. It is also clear that generating these behaviours manually would

take a long time to implement all the conditions that the robot would need to tackle. In

fact when manual hand coding is preferred, the robot environment needs to be known a

priori in order to develop robust controllers.

Evolving behaviours using GEP has various advantages as compared to previous techniques

mentioned in the previous chapter. For instance, in canonical GP [115, 106, 78] the depth

of the tree has to be set so as to prevent the generation of non-valid individuals, however,

in GEP there is no possibility of generating non-valid individuals. GEP regulates itself to

definite phenotypical lengths that are always valid controllers. Setting the head size to 4

will only give a maximum depth of 4 from which a set of 4 different valid controllers can

be achieved. For simple problems like obstacle avoidance, shorter phenotypes appear to

be robust in both training and test environments.

GEP capabilities extend beyond the ugGEP structures. As shown in the experimentation

above, GEP can be used to evolve multigenic chromosomes that can be used to solve

problems requiring multiple output. In this scenario, the presented problem shows that

mgGEP-multiple out was more successful in solving the problem and was also more robust

in the new environment. This is of significance as there are various problems, particularly

in robot control, where multiple output is required. In addition to this mechanism, multi-

genic GEP structures can be modelled such that a linking function is used to co-join them.

This linking function can be used to form a concatenated chromosome where the sub-ETs

contribute to the overall performance. Alternatively, if each sub-ET in a mgGEP codes

for a certain unique function or module, then the linking function can be used as a func-

tion selection mechanism to determine which function or module to select next. The next

chapter investigates mechanism of evolving mgGEP using a linking function as an action

selection mechanism.

95

4 Using Multigenic GEP in Robot

Behaviour Sub-division

In the previous chapter, the capability of unigenic GEP (ugGEP) in solving robotic prob-

lems was shown using an obstacle avoidance behaviour. Additionally, the capability

of GEP to combine multiple genes (mgGEP) to generate multiple open reading frames

(ORFs) whose outputs can be used to solve a problem requiring multiple outputs, was

discussed and an example implemented. The ensuing results showed that the multiple

output GEP (mgGEP multiple output) was more robust and evolved better structures

than the monolithic ugGEP approach. It was also discussed that the mgGEP ORFs can

be linked together to form a concatenated ORF that can be used to effect control on a

robot. The mgGEP structures are unique to GEP and they can be used to evolve multiple

output controllers as shown in the previous chapter, or the multiple genes could be linked

together using a pre-selected linking function (for instance logical or mathematical func-

tions) and then evolved simultaneously as modules. In this case, the linking function acts

as a behaviour organiser and selects which gene/controller to execute in order to effect

motor control at each specific time.

Many approaches to AI in robotics use a multi-layered approach to determine levels of

behaviour from basic operations to goal-directed behaviour, the most well-known of which

is the subsumption architecture. In this chapter, the multigenic gene expression program-

ming (mgGEP) is used to evolve multiple genes corresponding to a layered architecture.

Results are presented on a number of wall following tasks using ugGEP and mgGEP.

Comparison is made with the similar behaviour evolved using standard genetic program-

ming (GP). In addition to the wall following behaviour, a robot foraging behaviour is

implemented with the aim of investigating whether the position of a specific module (sub-

expression tree (ET)) in the overall ET is of importance when coding for a problem.

The rest of the chapter is organised as follows: Firstly, a discussion of modular archi-

tectures in ER is presented. Secondly, the linking mechanisms in a standard mgGEP

are discussed. Thirdly, a robot wall following problem is presented and results in a 2D

structure discussed. Fourthly, a similar problem is presented in a 3D world model and

experimental results discussed. Fifthly, a robot foraging behaviour is presented and results

discussed. Finally, a conclusion regarding the work presented is drawn.

96

4.1 Modular architectures in ER

In Chapter 2, mechanisms used to improve the basic ER algorithm were discussed. Among

these mechanisms, is the process of ‘divide and conquer’ where the required behaviour

is divided into simpler tasks. As previously discussed, there are two main techniques

employed. Firstly, incremental evolution; this involves dividing the problem into different

simple tasks and then evolving a controller to solve the problem sequentially. In this case,

the controller is evolved to solve one task, then the objective function is fine-tuned and the

controller re-evolved in this new task. For instance, in a wall following problem, a robot

controller could be evolved for an obstacle avoidance task, then once a certain fitness is

achieved, the objective function is fine-tuned to suit a wall following behaviour. There is

thus only one genome that has undergone various evolutionary runs to learn the required

behaviour. Secondly, layered learning; this approach is closely related to subsumption

architecture. In this approach, the targeted behaviour is divided into various tasks, then

the controller is evolved in different modules sequentially (see Figure 4.1 below for a

sub-division model). For instance in the wall following behaviour mentioned above, the

controller would have two modules; obstacle avoidance and navigation with wall proximity.

The obstacle avoidance behaviour module would be evolved first and once the robot learns

to navigate without obstacles, learning within this module would be stopped and the

evolution of the second module started. After these modules are generated, an action

selection or behaviour organising mechanism is then selected and used to coordinate the

interaction of behaviours. The overall behaviour is thus emergent (that is, the global

behaviour is as a result of the robot interacting with the environment and the interaction

of the sub-behaviours).

Figure 4.1: A behaviour modularity model

As previously discussed, the two approaches have been shown to generate better con-

trollers than the canonical ER mechanism [55, 105, 136, 142]. However, there are various

shortcomings with this approaches. For instance, with incremental evolution there is only

one uni-dimensional controller, it is therefore impossible to say with confidence which be-

haviour a particular controller is displaying, as the actual controller is not divided into

various modules [5]. Although layered learning provides functionality to sub-divide be-

haviours into various modules, learning in a particular module is stopped when the task

is learnt. This means that there is a high likelihood that if the robot encounters a new

scenario, it may need to re-learn how to solve the first task. In addition, layered and in-

cremental evolution approaches use multiple fitness functions in order to achieve learning,

this can lead to an increase in computational overhead.

97

As previously discussed, multigenic GEP (mgGEP) is a technique where multiple genes

can be evolved together either as independent modules with each set output directed to a

particular problem, or, they can be used as parts of one entire open reading frame (ORF)

where coordination among the genes is achieved using a pre-defined linking function. For

instance in figure 4.1 each of the sub-behaviours could be evolved as genes in an mgGEP set

up. This chapter focusses on how the mgGEP approach can be used to successfully evolve

control structures where the behaviour has manually been sub-divided by a designer.

4.2 Linking functions in multigenic GEP

In mgGEP, a linking function is pre-defined by the designer before the start of an evo-

lutionary run. As discussed earlier, this linking function defines how the genes interact

with each other to evolve the targeted behaviour. In effect, the linking function acts as a

behaviour organiser and thus allows the activation or inhibition of a particular gene (each

gene specifies a particular sub-behaviour). For instance in figure 4.1, the ‘action-selection’

box can be replaced with a linking function such as IF, AND, OR, XOR among others.

Given a certain linking function and multiple genes it is thus possible to set the linking

function such that each of the genes is targeted towards accomplishing a certain objective.

The overall behaviour is achieved by the interaction of these genes with each other as

defined by the linking function and the robot environment. Figure 4.2 shows an example

of how mgGEP can be used with a linking function to evolve a modular architecture.

Figure 4.2: mgGEP behaviour sub-division using 2 genes and a linking function

4.3 Evolution of a wall following behaviour

The main aims of the following experiments were firstly to compare GEP and GP in

solving a wall following problem with increasing complexity, and secondly to determine

whether the mgGEP can be used to evolve a layered controller architecture.

The experimentation replicates that of Lazarus and Hu [78] where a robot wall following

behaviour was presented. In their work, Lazarus and Hu [78] investigated the capabilities of

GP in evolving wall following behaviours in environments of increasing complexity. Their

98

experiments involved a robot moving in five room types where each room is a 16m× 16m

cell map (see Figure 4.3). The room types progress from the simple room 1 with an

extrusion added in each subsequent room to add complexity. The outer cells represent the

walls of the room. The robot was allowed to move in any empty cell and was awarded

a fitness point for moving in the inner cells adjacent to the walls. The experiment was

conducted on five different room types as shown by figure 4.3.

Figure 4.3: Five different room types used in the experiment. These room types have been
adapted from Lazarus and Hu [78].

Lazarus and Hu [78] used eight sensors to help the robot detect any obstacles. The GP

terminals and functions were defined as follows:

Terminal set: divided into two:

Sensor terminals: n, ne, nw, s, sw, se, w, e - in their work a sensor terminal returned a 0

if no obstacle was observed and 1 if there was an obstacle in the vicinity.

Action terminals: Move North, Move South, Move East and Move West. These terminals

did not return any values to the calling program, however they altered the position of the

robot and their execution caused the program to terminate. The robot ‘hopped’ from one

cell to the other given the action terminal.

Function set: The function set consisted of the following:

• If (x, y, z) = y if x=1, z otherwise

• And(x, y) =0 if x =0 else y

• Or (x, y) =1 if x=1, else y

• Not(x) =0 if x=1, else 1

To run the algorithm the ramped half and half method was used to create and initialize

the initial population. Ramped half and half method is a chromosome (trees in GP)

generation method where half of the trees are generated randomly with no tree exceeding

99

the set maximum depth (i.e. grow method) and the other half is produced with all the

trees with equal depth (i.e. full method) [74]). A population of 1000 organisms was used

with maximum generations set to 100. The maximum nodes created per each organism

was set to 100 while the depth of the tree was set to 10. Tournament selection was used and

the only genetic variation operator was crossover. The algorithm forced the evaluation

of the program to terminate when an action terminal was executed for the first time.

Further calls to the same action terminal were ignored. Though being affected by local

minima problems, results achieved showed that GP was able to evolve the wall following

behaviour. Approximate average evaluations achieved across the five room types are as

presented in Table 4.3.

4.3.1 Program implementation

In the work reported in this chapter, a 2D Java simulator was implemented to simulate the

robot and its environment. Figure 4.3 shows the rooms that were used in the experiments.

The robot was allowed to move into any empty cell and detected any obstacle adjacent

to its cell location. The sensor terminals returned a 0 when there was no obstacle located

at the particular sensor location around the robot, and 1 if there was an obstacle. In the

implementation discussed here, the ugGEP and mgGEP algorithms were allowed to evolve

a strategy to solve the problem and only terminated when the total number of allowed

steps were exhausted. The robot state was set to collision when the intended movement

would have led to the robot moving into an occupied cell (i.e. wall), when this was detected

the robot earned a collision penalty and then stopped to move until the next step. In all

the experiments carried out, the robot was allowed 100 steps in the environment. The

robot was penalized for any wandering behaviour that did not award it any fitness points.

To make sure that the algorithm evolved exploration capability, a high penalty was set if

no movement was recorded in the first ten steps and the program terminated. Following

the settings used by Lazarus and Hu [78], each robot controller was tested by starting the

robot at 10 different starting points. The total fitness achieved was thus the sum of fitness

achieved in each of the 10 start points.

4.3.2 Fitness function

The fitness was calculated as the summation of all new squares, next to the wall that a

robot visited. The robot was penalised for moving into squares that were far away from

the wall and also if any collision occurred.

fj = (
m∑
i=1

pi(xi, yi))− C −Wp

fitness =
n∑
j=1

fj

(4.1)

100

Where fj is the fitness value achieved when a start point (xj , yj) is used as the initial robot

position. In the experiment, the total number of start points, n, was set to 10. Thus, the

overall organism fitness is given by the summation of all fitness values, fj , achieved from

j = 1 to the total number of points, j = n = 10. The fitness point, pi(xi, yi)= 1 whenever

(xi, yi) has not previously been visited and 0 otherwise. The location (xi, yi) is a cell

adjacent to the wall. The total number of cells next to the wall, m, is adjusted before a

run depending on which room type being used in the experiment. See Table 4.1 for the

maximum number of cells next to the wall. The collision penalty C, was set to 5 and

the wandering penalty, Wp, was set to 10. The collision penalty was incurred when the

intended movement would have led to the robot moving into an occupied cell (i.e. wall)

whereas a wandering penalty was incurred when the robot visited any empty cells that

were not adjacent to the wall. Table 4.1 shows the success predicates; maximum fitness

achievable for each room.

Table 4.1: Success predicate

Room Type Optimal result

1 60× 10 = 600

2 64× 10 = 640

3 68× 10 = 680

4 72× 10 = 720

5 76× 10 = 760

4.3.3 Parameter settings and algorithm parameters

Table 4.2: Parameter settings

Parameters ugGEP mgGEP

Maximum generations 200 200

Population 500 500

No. of Genes 1 2

Head size 16 8

Parent organisms 2 2

Mutation 0.041 0.041

One Point Recombination 0.7 0.7

Two Point Recombination 0.2 0.2

Gene Recombination 0.0 0.1

Insertion Sequence Transposition 0.1 0.1

Root Insertion Sequence Transposition 0.1 0.1

Gene Transposition 0.0 0.1

Selection range 5% 5%

Functions(If, And, Or, Not) 4 4

Terminals(8 sensors, 4 motors) 12 12

No. of starting points 10 10

No. of randomly seeded runs 50 50

Table 4.2 shows the algorithm parameters, population size, number of generations in a run

and the probabilities of each of the genetic operations used by the algorithm. As previously

mentioned, each controller in the population was tested from 10 starting points and the

101

fitness evaluated using Equation 4.1. The maximum fitness for each room is as shown by

Table 4.1. In all the experiments, 50 randomly seeded algorithm runs were conducted. An

evolutionary run terminated when the total number of generations was reached.

4.3.4 Algorithm primitives

The wall following problems presented in this chapter used the following terminals and

function sets. The terminal set was categorised to either robot sensors or motor/action

terminals.

Robot sensors: Following the representation described in [78], the robot was imple-

mented with eight sensors described as (front (F), front right (FR), front left (FL), back

(B), back left (BL), back right (BR), right (R), and left (L)).

Action terminals: There were four types of movements that the robot could achieve.

This were; Move Forward (MF), Move Back (MB), Move Right (MR) and Move Left(ML).

These action terminals moved the robot one cell step in either direction.

Functions set: The function set consisted of: And (A), Or, Not (N), If - as defined in

section 4.3.

In addition to the aforesaid functions, the algorithm was also set such that, if the left

branch of the tree (first argument to a function) was an action/motor terminal, then the

function would return that particular action terminal.

4.3.5 Experimental results

Two experiments were conducted in this section:

• TEST 1: In the first experiment, the ugGEP algorithm was used to evolve the

wall following behaviour using parameter settings as defined on Table 4.2 (Test 1).

The main aim of this experiment was to compare the performance of a monolithic

(ugGEP) algorithm to that of a GP.

• TEST 2: The second experiment involved the use of multiple genes (mgGEP) chro-

mosomes to evolve the wall following problem. The main aim of this experiment

was firstly to investigate how a modular algorithm (mgGEP) would scale to the wall

following problem and secondly to compare the performance of a modular algorithm

to that of a monolithic GEP (ugGEP) and GP. As shown on Table 4.2, the mgGEP

was implemented using 2 genes each with a head size = 8 while the ugGEP had the

head size = 16. This meant that the chromosomes were of equal length and differed

only in the number of genes used. A logical IF was used as the linker with three

arguments. The first argument was the FRONT sensor F, and the second argument

was the first gene and third argument was the second gene. The linker decides which

of the two genes effects motors control by checking the sensor reading of the front

sensor. If Front sensor returns 0, that is no obstacle in the adjacent cell, then gene

102

one effects the robot’s motor control, however if F = 1, meaning an obstacle is de-

tected then gene 2 effects motor control. The rest of the parameters are as described

in Table 4.2 above.

The next section describes the obtained results.

Comparison with GP

Table 4.3: Comparison of average evaluations of the GP, ugGEP and mgGEP

Room type 1 2 3 4 5

GP1 3000 90000 20050 50000 14000

ugGEP 500 30616 19871 19425 15825

mgGEP 500 27611 21652 18809 19885

Table 4.3 shows the mean fitness evaluations performed in all the runs to solve the wall

following problem using ugGEP and mgGEP algorithms, alongside the results of the GP

algorithm reported in [78]. The best results are shown in bold. It is clear from Table 4.3

that in general, GEP evolves successful controllers (with fitness as shown on Table 4.1)

with fewer evaluations than GP. The ugGEP and mgGEP algorithms outperform the GP

with large margins across rooms, 1, 2, and 4. The performance is very close in room type

3 and GP performs slightly better in room type 5.

The ugGEP and mgGEP chromosomes are made up of fewer total number of alleles than

the GP. As mentioned previously, the GP’s total number of alleles was set to 100 while

the ugGEP and mgGEP’s total number of alleles was set to 49 and 50 alleles respectively.

Therefore, in this particular problem, the obtained results suggests that the GEP algo-

rithms are capable of both outperforming (as shown by performances in rooms 1, 2 and

4) and approximating (as shown by performances in rooms 3 and 5) the GP performance,

using approximately half the number of alleles. Also, the number of evaluations required

to achieve success is much more consistent using the GEP runs. In the GP case, rooms

3 and 5 appears to have been solved with fewer generations whereas 50, 000 and 90, 000

evaluations are required for rooms 2 and 4. In the experiments reported here, the GEP

results have been computed from the mean of all successful runs (those that achieved the

set optimum fitness) over 50 random seeds, thus, these results give a clearer picture on

how the GEP performs. It is also important to note that all genetic operations as describe

in table 4.2 above were used compared to the GP where only crossover was used.

Performance comparison: ugGEP versus mgGEP

Table 4.3 shows that the ugGEP and mgGEP algorithms outperformed the GP in the wall

following problem. These results suggest that in this problem domain, the GEP algorithms

are a suitable alternative to GP. The ugGEP algorithm appears to have evolved solutions

1The GP results shown here are approximate values derived from [78]. Experiments described in this
chapter do not duplicate the GP experiments conducted by Lazarus and Hu [78], however, the GEP
experiments replicates the environments, algorithm settings, fitness function and chromosome repre-
sentations as used in the GP.

103

to the problem using fewer evaluations than mgGEP in room type 3 and 5. However, the

mgGEP used fewer evaluations than ugGEP in room 2 and 4. Both algorithms evolved a

successful controller for room type 1 after only one generation (500 evaluations). Therefore,

in these experiments, the obtained results suggests that ugGEP and mgGEP algorithms

require almost an equal number of evaluations to evolve a successful solution. This is

the likely outcome since the ugGEP and mgGEP chromosomes were of equal lengths.

However, results above only focus on the successful controllers (those with a maximum

fitness as defined on Table 4.1) and not the overall performance of the best individual in

the population. This section thus presents further performance comparisons and analysis

for ugGEP and mgGEP algorithms. Since both ugGEP and mgGEP solved room 1 after

only one generation, further analysis on results based on this room shall not be considered.

Figure 4.4: Comparison of ugGEP and mgGEP success rates across the five different room
types. The success rate refers to the percentage of the total number of runs
where the target fitness was achieved. Each evolutionary run had a population
of 500 organisms and lasted for 200 generations. In all the experiments, 50
randomly seeded algorithm runs were conducted. The rest of the parameters
are as shown on Table 4.2.

Figure 4.4 shows the percentage of actual number of runs out of the 50 runs that success-

fully solved the problem. The result shows that mgGEP algorithm was more successful

than ugGEP in room types 2, 3, 5 while both algorithms had equal success rates in rooms

1 and 4. These results suggests that there was a high likelihood of obtaining a success-

ful controller while using mgGEP, although both algorithms may have required an equal

number of evaluations to solve the problem. The good performance shown by mgGEP is

likely to have been as a result of using behaviour sub-division mechanisms to solve the

104

problem. The obtained result suggests that the use of modular controllers as implemented

through mgGEP is likely to lead to more robust controllers than monolithic controllers

evolved using ugGEP.

Best individual performance

The results presented in Figure 4.5 shows the mean of the best controller fitness in every

generation across all the 50 runs. These graphs presents a clear picture of the performance

of the best individual evolved by GEP as the run progressed.

Figure 4.5: Progression of the average fitness of the best individual in the population
as achieved through ugGEP and mgGEP in the different room types. The
average fitness has been computed from the best individual fitness achieved in
each generation in all the 50 randomly seeded algorithms. In each evolutionary
run, a population of 500 organisms was evolved for 200 generations and the
best individual fitness recorded in each generation. The rest of the parameters
are as shown on Table 4.2.

The results show that the best individual evolved using mgGEP had higher fitness on

average than those evolved using ugGEP, in every generation across all the room types.

Additionally, the mgGEP algorithm evolved the best individual in the population quicker

than ugGEP.

105

Average population fitness

Figure 4.6 shows the progression of average fitness of the population as achieved by ugGEP

and mgGEP. Across all the room types mgGEP achieved better average fitness compared

to the ugGEP.

Figure 4.6: Progression of the average population mean fitness as achieved through ugGEP
and mgGEP in the different room types. The average population mean fitness
was computed from the population mean fitness achieved in each generation in
all the 50 randomly seeded algorithms. In each evolutionary run, a population
of 500 organisms was evolved for 200 generations and the population mean
fitness recorded in each generation. The rest of the parameters are as shown
on Table 4.2.

The results shown by Figures 4.5 and 4.6 suggests that modular controllers evolved using

mgGEP achieved a better performance than those evolved using ugGEP, across all room

types. The success of the modular controllers is likely to have been due to the evolution

of specialised modules to solve the wall following problem. Since controllers evolved using

ugGEP had to solve the entire problem using only one gene, they are likely to have

been more general and hence less robust. Below we investigate the evolved controllers to

demonstrate the improvements possible in the mgGEP controllers.

106

Evaluating the genome

Figure 4.7: An example of a controller generated using ugGEP while solving room type 4.

Figure 4.8: Simplified version of figure 4.7

The full ugGEP controller, Figure 4.7, shows that a lot of redundancy was required by

ugGEP to solve the problem. Due to its modularity, the mgGEP controller is able to

achieve the same behaviour with many fewer nodes in the tree (15 as opposed to 31 for

the unigenic controller). This explains the largely superior performance of the mgGEP

controller in the number of evaluations required to optimise the rooms. Detailed analysis

107

Figure 4.9: Example of mgGEP controller evolved while solving room type 4

done by simplifying the controller (see figure 4.8) shows that the ugGEP algorithm divided

the problem into two branches, the left hand side tackled wall following problem and the

right hand side obstacle avoidance. This is akin to evolving subsumption architecture.

In the mgGEP phenotype shown by Figure 4.9, the second gene has been evolved to

turn the robot right whenever the forward sensor detects an obstacle, this means that

the second gene guides the robot to evolve obstacle avoidance behaviour. The first gene

enables the robot to follow the wall paying attention to only left and back left sensors

which are required in order for the robot to navigate around the extrusions in the rooms.

This shows that mgGEP evolved the controller into two modules, each independent but

whose interaction with the environment resulted to the wall following behaviour.

4.3.6 Discussion

Two main theories could be used to explain the success of mgGEP algorithm in this prob-

lem. Firstly, the increased diversity in its chromosome due to gene transposition and gene

recombination; these two operators when used in conjunction have a great transforming

power in the solution set [38]. Secondly, and perhaps most importantly mgGEP divides the

task into its two constituent elements, obstacle avoidance and wall following. This division

of tasks into separate modules has been a feature of many successful robotic controller sys-

tems and the unique formulation of mgGEP allows each element of the task to be evolved

separately whilst solving the global problem. As previously reported, many approaches

to AI robotics use modular architectures such as incremental learning [142, 55, 5, 46],

layered learning [117, 136] and subsumption architecture [83], to determine levels of be-

haviour. The results shown here suggests that mgGEP algorithm is a powerful approach

that can be used to evolve modular robot controllers that have a predetermined action

108

selection (behaviour coordination) mechanism. In comparison to the existing approaches,

the mgGEP algorithm offers continuous learning during the training stage as well as a

more biologically plausible approach to evolution.

4.4 Evolving in a 3D world model

Following the performance improvements achieved using ugGEP and mgGEP algorithms

in a 2D discrete model, the experiments were extended to a 3D model using the simbad

simulator 2 [66]. Experiments in a 3D world model are important because its easier to

model the real world. Additionally, noise can be added during the simulation in order to

evolve more robust controllers. In the 3D simulator used in this experiment, the robot

sensors report distance away from obstacles within a set range (in this case its set to

0.0m and 1.5m), this means that the sensors are not constrained to return a false/true

evaluation. Additionally, to solve the wall following problem, the robot has to maintain

close proximity to the walls whilst avoiding a collision with them.

4.4.1 Experimental set up

Previously, it was reported that controllers for room type 1 were easily evolved as the

structure is simple in nature since it has no extrusions. Following this, the 3D experiments

focussed on rooms type 2-5. Similar to the 2D environments, the 3D rooms were 16m×16m

with extrusions as shown by Figure 4.10.

The robot movements were controlled using the default kinematic model describe in section

3.2.1. Subsequently, the translational velocity was set at 2.0m/s for forward movement (

F terminal) and −2.0m/s for reverse movement (B terminal). Similar to the settings

used by the standard ugGEP in the previous chapter, the angular or rotation velocity was

not set. However, depending on the terminal returned by the algorithm, the robot rotated

based on the radians as reported in Table 3.1. In the experimentations reported here, the

robot used eight infra-red sensors and eight wheel motor actions as shown on Table 3.1.

Thus, the robot actions and its perception of the world is similar to the set up in the

obstacle avoidance problem discussed in Chapter 3. Due to the change of environments

(from 2D discrete environments to 3D environments) and use of robot sensors that return

a range of values between 0.0m and 1.5m, three float constants (0.1, 0.2, 0.3) were added

to the terminal set to ensure that the algorithm had the capability to evolve viable and

successful controllers. An ‘If Less Than or Equal to’ (IFLTE), function was used as a

sole conditional function in the function set. As shown, in Chapter 3, the combination

of the reported terminal set and IFLTE function is robust enough to steer the robot and

generate behaviours using a very short phenotype. Following this, the ugGEP was set up

with head size, h, set to 8 whereas each gene in the mgGEP had the head size set to 4,

the chromosomes were thus equal in length. For each algorithm investigated, 20 randomly

seeded algorithms runs were conducted for each of the rooms. The rest of the algorithm

2http://simbad.sourceforge.net/

109

Room 2 Room 3

Room 4 Room 5

Figure 4.10: Robot environments as set up in simbad simulator

parameters, including the number of generations and size of population, were set up as

shown by Table 4.4 below.

110

Algorithm parameter settings

Table 4.4: 3D experiments: Algorithm parameter settings

Parameters ugGEP mgGEP

Maximum generations 200 200

Population 500 500

No of Genes 1 2

Head size 8 4

Parent organisms 2 2

Mutation probability 0.061 0.061

1-Point Recombination probability 0.7 0.7

2-Point Recombination probability 0.2 0.2

Gene Recombination probability 0.0 0.1

IS Transposition probability 0.1 0.1

RIS Transposition probability 0.1 0.1

Gene Transposition probability 0.0 0.1

Selection range 5% 5%

Functions(IFTLE) 4 4

Terminals(8 sensors/motors, 3 float values) 11 11

No. of starting points 10 10

No. of randomly seeded runs 20 20

4.4.2 Fitness function

In these experiments, the wandering penalty term as reported in section 4.3.2 was removed

from the fitness function. Instead, the robot was allowed to move in the environment for 50

simulation seconds during which fitness points were awarded for visiting new coordinates

within 1 metre from the wall. The robot is also penalised for stagnation (when odometer

reading is 0.0 for a duration of 5 simulation seconds) and for hitting obstacles; in the both

cases the robot is penalised and the algorithm stopped. The fitness function is as shown

in Equation 4.2.

fj = (

m∑
i=1

pi(xi, zi))− C − S

fitness =

n∑
j=1

fj

(4.2)

Where fj is the fitness value achieved when a start point (xj , zj) is used as the initial robot

position. In the experiment, the total number of start points, n, was set to 10. Thus, the

overall organism fitness is given by the summation of all fitness values, fj , achieved from

j = 1 to the total number of points, j = n = 10. The fitness point, pi(xi, zi)= 1 whenever

111

(xi, zi) has not previously been visited and 0 otherwise. The location (xi, zi) has to be

less than 0.5 metres away from the wall for a point to be earned. The total number of

locations where a fitness point can be earned, m, is adjusted before a run depending on

which room type being used in the experiment. See Table 4.1 for the maximum number

of cells next to the wall. The collision penalty C, was set to 5 and the stagnation penalty,

S, was set to 10. Table 4.1 shows the success predicates; maximum fitness achievable for

each room.

4.4.3 Experimental results

Figure 4.11: Comparison of ugGEP and mgGEP success rates across the five different
room types. The success rate refers to the percentage of the total number
of runs where the target fitness was achieved. Each evolutionary run had
a population of 500 organisms and lasted for 200 generations. In all the
experiments, 20 randomly seeded algorithm runs were conducted. The rest
of the parameters are as shown on Table 4.4.

The results shown by figure 4.11 strengthens the conclusions reported in section 4.3.5

above: In this problem domain, the mgGEP algorithm is a better technique than ugGEP

algorithm. In all the four room types under investigation, there was at least 90% success

rate by the mgGEP compared to the 40% achieved by ugGEP. As reported earlier, the

mgGEP algorithm evolves the problem in two modules, that is, wall following and obstacle

avoidance. The obtained results suggests that behaviour sub-division gives mgGEP con-

trollers a competitive edge, compared to the monolithic structures evolved using ugGEP.

112

Figure 4.12: Progression of success rates with number of generations using ugGEP and
mgGEP in the four room types. The success rate refers to the percentage of
the total number of runs where the target fitness was achieved. In each evo-
lutionary run, a population of 500 organisms was evolved for 200 generations.
In all the experiments, 20 randomly seeded algorithm runs were conducted.
The rest of the parameters are as shown on Table 4.4.

The comparison of success rates shown by Figure 4.12 suggests that mgGEP algorithm

evolved an optimal controller on the first generation across the four room types. The

ugGEP on the other hand took between 5−10 generations to evolve an optimal controller.

The progression also shows that the ugGEP takes a longer time than mgGEP to evolve

optimal controllers. Additionally it was observed that all the evolved controllers, solved

the problem when they were introduced in rooms other than the one they were evolved

in. This strengthens the conclusions in the previous chapter regarding the adaptation

capabilities for controllers evolved using GEP.

113

Figure 4.13: Progression of the average fitness of the best individual in the population
as achieved through ugGEP and mgGEP in the different room types. The
average fitness has been computed from the best individual fitness achieved
in each generation in all the 20 randomly seeded algorithms. In each evolu-
tionary run, a population of 500 organisms was evolved for 200 generations
and the best individual fitness recorded in each generation. The rest of the
parameters are as shown on Table 4.4.

Figure 4.13 shows that the mgGEP algorithm was quicker in evolving the best individual

than the ugGEP. In addition, it was observed that the evolved best individual (at the

end of a generation run) was either optimal or near-optimal solution. The ugGEP on the

other hand is slower and overall the achieved best individual does not solve the problem

fully. The division of the task, particularly having a module that focuses on how close

the robot moves to the wall means that it is easy for the robot to pick up fitness points

without having to concentrate on obstacle avoidance.

The average performance of the population, Figure 4.14, shows that on average mgGEP

outperformed ugGEP across all the room types. The good performance can be attributed

to the behaviour sub-division as well as genetic operations. As shown by Figure 4.14, the

progression of average performance is less stable in ugGEP across the four rooms. This

may have been brought about by negative genetic operations in a previous generation,

a situation that appears not to affect the mgGEP controllers. As reported earlier any

negative effect that may affect a gene after an operation, is shared amongst the two

genes in mgGEP. This “sharing” of negative effects means that the performance is more

114

Figure 4.14: Progression of the average population mean fitness as achieved through
ugGEP and mgGEP in the different room types. The average population
mean fitness was computed from the population mean fitness achieved in
each generation in all the 20 randomly seeded algorithms. In each evolu-
tionary run, a population of 500 organisms was evolved for 200 generations
and the population mean fitness recorded in each generation. The rest of the
parameters are as shown on Table 4.4.

stable than in ugGEP. Additionally, diversity created by use of gene recombination and

transposition is likely to have led to the success of the mgGEP algorithm.

115

Figure 4.15: Progression of standard fitness with number of generations. The standard
fitness is derived from the difference of the target fitness in each room and
the averaged fitness of the best individual in each generation. A low standard
fitness means that the algorithm is converging towards the target fitness. In
this experiment, a population of 500 organisms was evolved for 200 genera-
tions and the fitness of the best individual recorded in each generation. A
total of 20 randomly seeded evolutionary runs were conducted as shown on
Table 4.4.

In carrying out this experiment, Lazarus and Hu [78] aimed to investigate the performance

of GP with increasing complexity. In their results, they concluded that the GP was not

affected by the complexity since it was hard to determine a pattern on the performance.

Similarly, as shown by Figure 4.15, it was hard to determine a particular pattern on how

the ugGEP and mgGEP algorithms solved the problem. For instance, up to the 80th

generation, mgGEP appears to solve room 2 easily, followed by room 3 and progression on

to room 5, however room 4 is by then solved completely, the performance surpassing the

performance in room 3. For the ugGEP case, there is no pattern that can be determined

at all. This suggests that both GEP controllers are not affected by increase in complexity

of the environment.

4.5 Effect of behaviour coordination mechanism

The previous sections focussed on dividing the global behaviour to simpler tasks and then

evolving the sub-controllers simultaneously in order to solve the problem. The achieved

results suggests that this mechanism is better than monolithic evolution and has more

advantages vis-a-viz other divide and conquer techniques such as incremental evolution.

In this section, we raise the question: “Does the position of sub-controller in the overall

controller matter?”. More specifically, the aim is to investigate the effect of action selection

mechanism or behaviour coordination strategy in the performance of a controller.

To attempt an answer to this question, a robot foraging behaviour was evolved using

both ugGEP and mgGEP algorithms. The robot was required to navigate around the

environment looking for “food sources” placed in various locations within the robot world

116

(see figure 4.16).

Figure 4.16: Robot world used in the foraging experiments. The round objects represents
“food sources” that the robot picks to improve its energy while navigating.

The next sections outline the implementation and experimental set-up, presents the exper-

imental results and lastly a discussion of the relevance of the obtained results to modular

robot control architectures.

4.5.1 Experimental set up

Implementation

In the experiments reported here, the robot moves within the environment looking for food

sources placed in various locations in the environment. The simbad simulator, introduced

in sections 2.4.4 and 3.2.1, was used to simulate the robot and its environment. Simbad’s

default kinematic model was used to control the robot movements. Subsequently, the

wheels translational velocity was set at 2.0m/s for forward movement and −2.0m/s for

reverse movement.

The robot was set to alter its position and orientation using 8 motor functions and per-

ceived its environment using 8 infra-red sensors to measure obstacle proximity (the set

up for motors and sensors is as reported on Table 3.1). The robot was also equipped

with a virtual battery, whose energy output enabled the robot to act on the environment.

Additionally, the robot was provided with a “food detector” sensor to enable the robot

detect the food sources. The food detector sensor was set to be always “ON”; this means

that the robot was always active to pick up any food source once detected. Once the robot

detected a food source, the robot’s energy was increased and the food source was removed

117

from the environment. In addition, the robot lost some amount of energy every time the

controller effected motor control. Thus, the robot had to minimize energy lost yet at the

same time maximise time spent in the environment. To do this, the robot increased its

battery level if a food source was found and continued to lose energy for every timestep

spent in the environment. The global behaviour can thus be divided into three sub-tasks;

obstacle avoidance, exploration and foraging (that is, searching for food source to improve

the robots energy).

At the start of every experiment the robot battery level was set to 1. The robot incurred

a loss of 0.001 on its battery level each time the controller was executed to effect motor

control on the robot. The initial energy level means that the robot could execute 1000

steps if no collisions occurred and if it did not stagnate. For every food source found,

the robots battery level was increased by 0.2. The robot’s maximum life span in the

environment was set to 150 virtual seconds or 3000 steps: The inter step delay in simbad

is 0.05s (please see [65]).

Algorithm set up

The algorithm was implemented using the same function and terminal sets as describe in

section 3.2.2. However, an addition energy terminal “E” was provided: this terminal when

executed returned the robot’s battery level. Thus, the algorithm used 1 function and 9

terminals.

In all the described experiments, the mgGEP algorithm was implemented using three

genes. Each gene was executed to solve a particular task depending on the behaviour

coordination mechanism utilised. In the mgGEP algorithm, each gene had the head size,

h, set to 4. Thus, using Equation 2.2 the total gene length was 17 alleles and therefore the

mgGEP chromosome length was 51 alleles. Since the mgGEP genes were formed using a

head size = 4, the ugGEP algorithm was implemented using a head size = 12 resulting to

a length of 49 alleles. This is the closest chromosome length to the 51 alleles in mgGEP,

since using a head size = 13 would result to a chromosome length of 53 alleles.

In all the experiments, a population of 100 chromosomes was run for 200 generations.

To ensure that the overall results were not affected by random occurrences, 20 randomly

seeded algorithm runs were conducted for each experiment. Table 4.5 provides a summary

of the utilised parameters.

118

Table 4.5: Robot foraging behaviour: Algorithm parameter settings

Parameters ugGEP mgGEP

Maximum generations 200 200

Population 100 100

No. of genes 1 3

Head size 12 4

Parent organisms 2 2

Mutation probability 0.041 0.041

1-Point Recombination probability 0.7 0.7

2-Point Recombination probability 0.2 0.2

Gene Recombination probability 0.0 0.1

IS Transposition probability 0.1 0.1

RIS Transposition probability 0.1 0.1

Gene Transposition probability 0.0 0.1

Selection range 5% 5%

Functions(IFLTE) 1 1

Terminals(R, L, F, B, FR, FL, BR, BL, E3) 9 9

No. of randomly seeded runs 20 20

The fitness function shown by Equation 3.3 was utilised in the experiments reported here.

This fitness awarded the robot 1 point for visiting unique positions in the environment and

penalised the robot 25 points for hitting obstacles and 50 if the robot did not move for the

first 5 virtual seconds. In addition to the penalties, the controller execution terminated if

the robot did not move with 5 virtual seconds and if a collision occurred. The maximum

fitness was set to 3000 corresponding to the maximum life span of the robot.

4.5.2 Experimental results

The mgGEP algorithm was used in three experiments to determine the effect of a particular

sub-controller position to the overall performance of the whole controller. A comparison

of the results of the ugGEP algorithm and the various action selection mechanism was

then conducted.

Experiment I

In the first experiment, the mgGEP algorithm was implemented using sub-behaviour

model shown by Figure 4.17. This model was referred to as mgGEP with obstacle avoid-

ance as a priority behaviour: mgGEP (OA priority) because the root IF statement con-

siders obstacle avoidance the dominant behaviour.

3Please see section 3.2.2 on how the sensors and motor terminals are implemented. E terminal refers to

the robot battery.

119

Figure 4.17: A behaviour coordination model that relies on robot proximity to obstacles
in order to choose a robot task.

In this behaviour coordination mechanism, the first gene (gene1) was executed if the

robot was within 0.5m of an obstacle, the second gene was executed if the robots energy

fell within 0.5 and the last gene was executed when the above two conditions did not

exist. Figure 4.18 shows a comparison of the performance of mgGEP (OA priority) and

the ugGEP algorithm in evolving suitable controllers for a foraging robot.

Experiment II

The second experiment employed the sub-division model shown by Figure 4.19. In this

context, the robot’s energy was set as the priority concern for the robot; that is, the robot

checked the energy before it decided which actions (in terms of genes) to execute. This

model was referred as mgGEP with energy level as a priority concern: mgGEP (Energy

priority).

With this approach, if the robot’s energy fell within 0.5, gene 1 would continuously be ex-

ecuted. However, If the energy was above 0.5, then the robot would check its proximity to

obstacles before deciding whether to execute gene 2 or gene 3. Results for this experiment

as compared to the first experiment is shown by Figures 4.21 and 4.22.

Experiment III

The third experiment, implemented the behaviour sub-division model shown by Figure

4.20. This model implemented a cascading order of priorities in order to choose a task to

execute. The model was referred as mgGEP with cascaded priorities: mgGEP (Cascaded

priorities).

This behaviour coordination model is similar to mgGEP (Energy priority); that is, the

120

Best individual performance Population average performance

Figure 4.18: Progression of the mean of the best individual in the population, and the
average of the population mean fitness over generations as achieved through
ugGEP and mgGEP (OA priority). The average population mean fitness was
computed from the population mean fitness achieved in each generation in
all the 20 randomly seeded runs. Similarly, the mean of the best individual
fitness was derived from the 20 randomly seeded runs. In each evolutionary
run, a population of 500 organisms was evolved for 200 generations and the
population mean and best individual fitness recorded in each generation. The
rest of the parameters are as shown on Table 4.5.

Figure 4.19: A behaviour coordination model that relies on robots energy level in order to
select a robot task.

robot’s energy was set as the priority concern for the robot. However, in mgGEP (Cascaded

priorities) when the robot’s energy was within 0.5, then the robot would check its proximity

to obstacles before deciding whether to execute gene 1 or gene 2. Gene 3 was continuously

executed if the robot’s energy was above 0.5. The results achieved is as shown by figure

121

Figure 4.20: A behaviour coordination model that uses robots energy to determine be-
haviour selection. In this case sub-behaviour selection is determined via cas-
cading priorities.

4.21 and 4.22.

4.5.3 Discussion

Similar to the results obtained in sections 4.4 and 4.3, Figure 4.18 shows that the mgGEP

mechanism outperformed the ugGEP algorithm in solving the foraging behaviour prob-

lem. The performance of the mgGEP algorithm is likely to have resulted from the use of

behaviour sub-division in solving the problem. The evolved modular controller has the

potential to evolve various techniques to solve a problem. For instance, when the robot

is close to an obstacle, the obstacle avoidance sub-controller (gene 1) can either turn the

robot right, left or to any of the other radians as shown in Table 3.1. Similarly gene 2

and gene 3 have numerous ways to steer the robot. This evolution of specialised modules

is likely to lead to a more robust controller than general controllers evolved using ugGEP.

Additionally, any negative effects that might be incurred when root transposition, inser-

tion sequence transposition as well as mutation are executed are going to have less impact

in the mgGEP than they would have in ugGEP. For instance, in the case of the 3 genes

chromosome above, there is only a 1/3 × 0.1 probability of root or insertion sequence

transposition occurring in the genome, while the probability is 0.1 in the ugGEP.

Figures 4.21 and 4.22 show that the progression of the best individual in the population

with the number of generations, is much quicker in mgGEP (OA priority) than it is when

the robots energy level determines behaviour coordination (that is mgGEP(Energy prior-

ity) and mgGEP(Cascaded priorities)). This high performance by mgGEP (OA priority)

can be attributed to a good behaviour coordination mechanism that utilised all the genes

in the chromosomes fully to solve the problem. In the implementation reported here,

obstacle avoidance is an important behaviour as the robot incurs a high penalty 25 for

122

Figure 4.21: Progression of the mean fitness of the best individual in the population over
generations as achieved using ugGEP algorithm as well as mgGEP with differ-
ent behaviour coordination mechanisms. The average fitness has been com-
puted from the best individual fitness achieved in each generation in all the
20 randomly seeded algorithms. In each evolutionary run, a population of
100 organisms was evolved for 200 generations and the best individual fitness
recorded in each generation. The rest of the parameters are as shown on
Table 4.5.

hitting an obstacle and the controller execution is terminated. In mgGEP (OA priority),

obstacle avoidance is set as the primitive behaviour; this means that the first gene (gene

1) is specialized for obstacle avoidance tasks only. In absence of obstacles the robot then

checks the energy before making a decision whether to look for food sources (gene 2) or

to continue maximizing its exploration in the environment (gene 3). This behaviour ar-

rangement is likely to lead to a robust controller with specialised modules, hence the high

performance.

Results shown by Figure 4.21 shows that mgGEP (Energy priority) performed the worst

in this task. The low performance can be attributed to various factors. Firstly, in mgGEP

(Energy priority), when the robot’s energy falls below 0.5, the first gene is executed con-

tinuously; this means that this gene has to evolve mechanisms for exploration, obstacle

avoidance and foraging in as much the same way the ugGEP does. This is disadvantageous

to the whole controller as the functions or sub-behaviours of the other two genes have to

be duplicated. Secondly, when the energy is below 0.5 the robot is expected to start

looking for food sources in order to increase its energy level. However, the energy level

continues to fall as the controller is not specialised for energy sourcing. Results shown by

123

Figure 4.22: Progression of average performance of the population over generations as
achieved using ugGEP algorithm as well as mgGEP with different behaviour
coordination mechanisms. The average population mean fitness was com-
puted from the population mean fitness achieved in each generation in all the
20 randomly seeded algorithms. The rest of the parameters are as shown on
Table 4.5.

Figure 4.22 shows that mgGEP (Energy priority) was outperformed by the other mgGEP

algorithm and only performed slightly better than ugGEP. The low performance in the

overall populations are likely to be attributed to similar reasons as the low performance of

the best individual (Figure 4.21). In comparison to the ugGEP, the results suggest that

with an increased number of generations, the ugGEP is likely to perform as well as the

mgGEP (Energy priority). In conclusion, the low performance of the mgGEP (Energy

priority) is caused by the use of a behaviour coordination strategy that does not utilise

all the three genes fully.

The mgGEP (Cascaded priorities) outperforms both ugGEP and mgGEP (Energy prior-

ity), however its outperformed by mgGEP (OA priority). The performance for this be-

haviour coordination mechanism can be explained using similar observations as reported

above. In the mgGEP (Cascaded priorities) coordination model, the action selection mech-

anism uses the robot’s energy level to determine task selection. If energy is below 0.5 and

the robot’s proximity to obstacles is below 0.5 then gene 1 is executed. This means that

a vital behaviour such as obstacle avoidance is only executed when the energy is low, this

means that gene 1 does not solve the obstacle avoidance problem completely. Neverthe-

less, gene 2 is likely to specialise to a foraging behaviour. Gene 3, on the other hand

124

is required to evolve the dual tasks of obstacle avoidance and exploration. Since gene

3 is executed when the energy is higher than 0.5, this gene is likely to evolve the dual

sub-behaviour capabilities as they are closely related. The mechanisms utilised by this

coordination model is thus more specialised that mgGEP (Energy priority) and hence as

the results show, it outperforms it in this task. However, in comparison to mgGEP (OA

priority) this mechanism is more generalised.

As shown by the results and the above discussion, the difference in performance of these

behaviour coordination mechanism is affected by the action selection mechanisms used.

This shows that the position of a sub-controller in an overall modular control architecture

is of great importance to the overall performance of a modular controller.

4.6 Conclusion

In this chapter the performance of GEP in evolving mechanisms to sub-divide and coordi-

nate sub-behaviours was investigated. Two behaviours, wall following and foraging, were

implemented and results discussed. The obtained results show that unigenic GEP is able

to evolve the two behaviours. Also, it was shown that ugGEP performs better in the wall

following behaviour than standard GP as presented by Lazarus and Hu [78]. In addition to

this, the mgGEP algorithm was used to solve the wall following problem. Multiple genes

evolved by GEP performed better than both GP and ugGEP. A further analysis to the

controllers evolved using the mgGEP, reveals that one gene was evolved to solve the obsta-

cle avoidance problem while the other gene evolved straight line navigation with proximity

to the walls (wall following). Similarly, the mgGEP algorithm outperformed ugGEP algo-

rithm in the food foraging problem. The conclusions made from both experiments shows

that mgGEP chromosomes have an advantage over the single chromosome used in ugGEP.

The mgGEP is shown to evolve specialised modules while ugGEP evolves a more general

purpose controller. The capability of GEP to code the chromosome into multiple genes

shows that mgGEP can be used to evolve modularity in evolutionary robotic problems.

The technique evolved is one of manually dividing the problem and then allowing each

gene to solve specific tasks. The overall behaviour then emerges due to the interaction

of the two genomes and the environment. This can be extended to various mathematical

and robotic problems with promising results.

An important observation made in behaviour sub-division is that the behaviour coordina-

tion and organising mechanisms utilised, can affect the ability of a modulator controller

to solve a problem successfully. Results obtained through the foraging behaviour showed

that some action selection mechanisms were more successful than others. As reported in

Chapter 2, action selection or behaviour coordination is an important issue both in animal

behaviour and in robotics. In the literature, the proposed behaviour coordination mech-

anisms are either competitive or arbitrative (please see [117, 142] for an overview). The

manual mechanism implemented in this chapter using mgGEP is arbitrative in nature, i.e.

dominant behaviour determines which gene effects motor control (for instance presence of

an obstacle). This mechanism as described here (mgGEP OA priority), though successful,

125

requires the designer to specify exactly how the behaviour is sub-divided. The outcome is

therefore a product of the designers intelligence. As shown in the conducted experiments,

this process requires the designer to be very careful in designing the behaviour coordina-

tion mechanism as a particular error may affect the evolution process and might make it

hard for the algorithm to evolve the targeted behaviour. The questions that remain are

firstly whether there exists a mechanism to coordinate behaviours for an optimal effect and

secondly whether there exists any guidelines to be followed by a designer when evolving a

particular behaviour in order to produce optimal controllers.

Techniques that can be used to generate behaviour sub-division and coordination auto-

matically, are likely to reduce the need for human expertise in behaviour sub-division and

coordination. Moreover, such techniques are likely to lead to development of more robust

controllers than those developed using human expertise; the human developer may not al-

ways know all the various attributes in unstructured environments. Additionally, this may

lead to substantial reduction in the development time: Architectures such as subsumption

architecture and layered learning require one behaviour to be developed and tested be-

fore other behaviours can be implemented, this leads to an increase in development time.

Since EAs encode a population of controllers, given the right parameters, they have shown

great capabilities in evolving robot controllers (see [105, 45, 94] as well as results presented

Chapter 3 and this chapter). However, for successful evolution of behaviour sub-division,

an evolutionary algorithm that can be divided into modules is required. As shown by

the experimentation presented in this chapter, mgGEP algorithm provides the capability

to successfully formulate behaviour sub-division, unlike GAs and GP. The next chapter

explores the potential for this behaviour sub-division and action selection mechanism to

be evolved automatically using the mgGEP approach.

126

5 Evolving Modularity in Robot

Behaviour

In the previous chapter, using multigenic GEP (mgGEP) in robot behaviour sub-division,

it was shown that a unigenic GEP (ugGEP) outperformed genetic programming (GP)

in solving a robot wall following problem. It was further shown that the mgGEP ap-

proach outperformed ugGEP. The approach used by the mgGEP was that of manual

behaviour sub-division; therefore, the success achieved by mgGEP was partially due to

human expertise in creating modularity. Analysing the evolved chromosomes, it was ob-

served that mgGEP divided the problem at hand into various subtasks; essentially evolv-

ing a subsumption like architecture. Using a robot foraging behaviour, it was observed

that behaviour coordination mechanisms can affect the ability of a modular controller to

solve a problem successful. This finding is in line with most research in this area (see

[18, 4, 117, 92, 92, 142]). As a result, there is a need to develop mechanisms to automat-

ically formulate behaviour sub-division as well as behaviour coordination. As discussed

in section 4.6, automatic behaviour sub-division and coordination would likely reduce the

need for human expertise, lower development time as well as lead to more robust robot

controllers.

This chapter is aimed at introducing new evolutionary techniques that can be utilised to

automatically evolve behaviour modularity using variants of the mgGEP algorithm. Two

main ideas are introduced. Firstly, the mgGEP algorithm is extended by introducing an

additional set of alphabets; that is, in addition to the function and terminal set, a new set

made up of linking functions is introduced. In this technique, the linking function (linker)

is evolved with the rest of the mgGEP genome. This removes the need for the human

designer to specify the exact linking function to use in a particular mgGEP chromosome.

This new technique is referred as multigenic GEP with linker evolution (mgGEP-LE).

Secondly, the mgGEP idea is extended by evolving a regulatory gene as part of the GEP

chromosome, the regulatory gene, just as in systems biology, determines which of the

genes in the chromosome to express and therefore how the controller solves the problem.

This new technique is referred as multigenic GEP with regulatory gene (mgGEP-RG).

These proposed algorithms are implemented for the wall following problem, discussed in

the previous chapter, and their results compared to that of ugGEP and mgGEP.

The rest of the chapter is divided as follows; firstly, the mgGEP-LE algorithm is introduced

and implemented for a wall following problem using the 2D environment. Secondly, the

mgGEP-RG is introduced and implemented for the wall following problem using the 2D

environment. Thirdly, the results of these new algorithms are compared to that of ugGEP

and mgGEP and a discussion follows. Fourthly, the two techniques are implemented

127

in a robot following problem in a 3D world model and their results compared to that

of mgGEP. Finally a conclusion on the suitability of these methods in development of

modular controllers is drawn.

5.1 Multigenic GEP with Linker Evolution

The standard mgGEP algorithm reported in Chapter 4, evolves multiple genes linked

together using a specialised function called a linker [38, 42, 95]. In standard mgGEP, the

designer selects the linking function before the evolutionary run. This linking function

is then used by all chromosomes in a population. As described previously, the function

of the linker is important for the overall performance of the modular controller since it

regulates which genes are expressed under which circumstances. This linking function is

thus supplied with a condition on which decisions to express or inhibit a gene are contained.

For instance, in the wall following problem described in Chapter 4, the condition supplied

for the IF linker was the output of the front sensor. As the obtained results show, this

algorithm works better than the monolithic ugGEP algorithm. Since the linking function

and conditions can affect the ability of a controller to solve a problem successfully, the

designer has to choose carefully what linking function and condition to implement for a

given problem. However, the designer does not always know how the evolved controllers

will try to solve the problem and the various scenarios the robot may encounter. Thus,

it is possible that there could be various other linking functions that may be suited to

the problem and that may improve the overall performance of the algorithm. This means

that providing a set of linking functions to the algorithms may potentially lead to a better

performance. Additionally, this removes the pressure of choosing a specific linking function

from the designer; the designer can select suitable linking functions and provide these to

the algorithm for the evolutionary process to generate the best controllers with the best

linking function.

The proposed multigenic GEP with Linker Evolution (mgGEP-LE) technique is similar

in implementation to the standard mgGEP. However, instead of supplying the algorithm

with one pre-determined linking function, the mgGEP-LE is supplied with a Linking set

comprising all the linking function that the designer thinks can be used to regulate the

genes. All the linking functions have a pre-set condition that allow the particular linker

to regulate activation or repression of gene activity. Therefore, different chromosomes in

a population use different linking functions for gene regulation. To generate the popu-

lation of organisms using the mgGEP-LE algorithm, three alphabetic sets are provided:

Function set, Terminal set and a Linking set. The linking function in a particular

chromosome is subjected to evolution operations along with the rest of the genome: Due

to the nature of the GEP algorithm, the implementation reported here allows the linker to

only undergo mutation and one or two point recombination as the more complex operators

are not required.

128

5.1.1 Motivation

The motivation behind this new algorithm is to reduce human influence in the overall

evolutionary process. Additionally, the algorithm is aimed at enabling the automatic

development of modular controllers through the evolutionary process.

By focussing on creating a set of linking functions, the algorithm reduces the overall hu-

man influence as the controllers evolved are not based on a particular linking function.

The human input is thus limited to selecting candidate linking functions, similar to the

formulation of candidate terminals and functions. Additionally, since the evolved chromo-

somes are not based on a particular linker then the technique can be said to automatically

evolve modularity with reduced human input.

5.1.2 Experimental set up

In the experiment reported in this section, the mgGEP-LE algorithm was implemented

to evolve controllers for a wall following robot as described in section 4.3. The results of

the experiments were compared to the standard mgGEP performance. The algorithm was

implemented using the parameters, function and terminal set as described in section 4.3

and Table 5.1.

Table 5.1: mgGEP-LE: Algorithm parameter settings

Parameters mgGEP mgGEP-LE

Maximum generations 200 200

Population 500 500

No. of Genes 2 2

Head size 8 8

Parent organisms 2 2

Mutation probability 0.041 0.041

1-Point Recombination probability 0.7 0.7

2-Point Recombination probability 0.2 0.2

Gene Recombination probability 0.1 0.1

IS Transposition probability 0.1 0.1

RIS Transposition probability 0.1 0.1

Gene Transposition probability 0.1 0.1

Selection range 5% 5%

Function set(If, And, Or, Not) 4 4

Linking set(If, And, Or) − 3

Terminal set(8 sensors, 4 motors) 12 12

No. of start points 10 10

No. of randomly seeded runs 50 50

The linking function set used in the mgGEP-LE algorithm comprised of AND, OR and

IF functions. The mode of operation for the linking functions is defined as follows:

129

• IF linker : this linker was implemented as per the standard mgGEP scenario in the

previous chapter; that is, If front sensor returns 1 (close to obstacle) then express

gene 1 else express gene 2.

• OR linker : this linker checks the results of the expression of the first gene; if the

result is a movement terminal or if there is an obstacle (i.e. if expression of the first

gene returns a 1), then the first gene effects motor control else the second gene is

expressed.

• AND linker: this linker checks the results of the first gene and executes the first

gene if the results are a movement terminal or if there is no obstacle (i.e. if expression

of the first gene returns a 0), else second gene is expressed.

Similar to the mgGEP experiment described in section 4.3, 50 randomly seeded algorithm

runs were carried out. The population was made up of 500 organisms and each run lasted

for 200 generations. The performance of the evolved controllers were evaluated using

Equation 4.1. Table 5.1 shows a summary of all the parameters utilised in the experiment.

130

5.1.3 Results and Discussion

Figure 5.1: Average fitness of the best individuals along 200 generations for the popula-
tion of mgGEP-LE and mgGEP chromosomes. The mean fitness has been
computed from the best individual fitness achieved in each generation in all
the 50 randomly seeded algorithms. In each evolutionary run, a population of
500 organisms was evolved for 200 generations and the best individual fitness
recorded in each generation. The rest of the parameters are as shown on Table
5.1.

Figure 5.1 shows that the mean fitness of the best individual evolved using mgGEP-LE

algorithm was higher than mgGEP in rooms 3, 4 and 5. However the mean fitness of

the best mgGEP-LE individual was outperformed by mgGEP in room 2. The mean

fitness of the population mean fitness as shown by Figure 5.2, shows that chromosomes

in both algorithms are increasing in fitness over the generations. In general, the results

suggest that the controllers evolved using mgGEP-LE performed better in this problem

domain than the mgGEP. Since both chromosomes have the same structure and are of

equal lengths, the improved performance shown by mgGEP-LE could be attributed to an

increase in diversity due to the addition of evolvable linking function.

131

Figure 5.2: Mean of the population mean fitness as achieved through mgGEP and mgGEP-
LE in the different room types. The mean of the population mean fitness was
computed from the population mean fitness achieved in each generation in all
the 50 randomly seeded algorithms. In each evolutionary run, a population
of 500 organisms was evolved for 200 generations and the population mean
fitness recorded in each generation. The rest of the parameters are as shown
on Table 5.1.

As mentioned in section 5.1.2 above, the IF linker works similarly to the standard mgGEP,

however, the OR and AND linking functions cause the first gene to be used as a regula-

tory gene. The first gene is thus used to evolve the condition for gene coordination. In

the mgGEP-LE described here, the use of the first gene for regulation may not be very

beneficial as the first gene functions as both regulatory and structural gene, thus it is not

specialised to a particular task. This lack of specialisation may lead to low performance

and could potentially explain the performance of best individual in rooms 2 as well as the

average performance of the population in rooms 2 and 3 (see Figure 5.2). Nevertheless,

the fitness of the best individual in rooms 3, 4 and 5 as well as average fitness of the pop-

ulation in rooms 4 and 5, shows that mgGEP-LE is able to approximate the performance

of the standard mgGEP. This original and novel technique is not only easy to implement

but can be used in various applications where linking or action selection mechanisms are

132

not always known.

5.2 Multigenic GEP with a regulatory gene

The average best individual performance obtained using mgGEP-LE (Figure 5.1), showed

only a slight increase in the performance of the GEP. Consequently, a new technique was

implemented with the main aim of investigating whether results achieved above could be

improved further.

As in natural biology, a mgGEP chromosome can be compared to the interaction within

a cell; the extent to which a gene is expressed (converted into protein) is dependent on

many factors within the cell including the activity of other genes within the cell. Therefore

the cell is able to switch the transcription of a specific gene or a group of genes on or off.

Additionally, the cell is able to identify environmental conditions in which the activation

or repression of transcription of a particular gene or a group of genes will be required. A

cell is able to do this by using one or a group of genes in a multigenic set to regulate the

activation or repression of expression of the other genes [57]. Also, in natural biology, the

nature of organisms means that a regulatory gene undergoes evolution just like the rest of

the chromosome [42]. In standard mgGEP, as described in Section 2.3.5 and Chapter 4,

gene regulation (activation and repression of expression of genes) is accomplished using a

linking function (Linker).

The multigenic GEP with a regulatory gene (mgGEP-RG) is a new evolutionary technique,

proposed here for the first time, that seeks to extend mgGEP algorithm by incorporating

a self-regulatory mechanism. Similarly to mgGEP, the proposed technique uses multiple

genes of equal lengths to form a chromosome and a pre-determined linking function to

determine control. In mgGEP, the pre-determined linking function contains a pre-set

decision making criteria that allows it to regulate the activation or repression of a gene in

the given set of genes. However, in the proposed technique, an extra gene referred to as a

regulatory gene influences how genes are expressed (selected for activation) by providing

a condition to the linking function. Thus, similar to natural biology, the regulatory gene

provides the conditions under which a particular gene or group of genes should be activated

or repressed. The regulatory gene is therefore a part of the chromosome but it is not

involved in the direct control of the robot actions. Figure 5.3 shows an example of the

proposed model.

The regulatory gene is equal in length to the rest of the genes in the chromosome and is

formed like any other GEP gene; with head and tail regions and using the provided set of

functions and terminals. In the proposed implementation, the regulatory gene is placed

as the first gene in the chromosome, though it could be placed in any position with the

gene set. As part of the chromosome, the regulatory gene undergoes all genetic operations

like the rest of the genes. Note that the regulatory gene can change during the course of

evolution particularly if a gene transposition occurs.

133

Figure 5.3: mgGEP-RG implementation model. The output of the regulatory gene is a
symbol that is then used for decision making

5.2.1 Implementation

In this experiment, 3 genes each with a head size, h = 8, were used to form the mgGEP-RG

chromosome. The genes are linked using an IF linker that uses the output of the first gene

to decide which of the remaining two genes will be expressed to effect robot motor control.

Thus the first gene acts as a regulatory gene. The rest of the genes which effectively control

the robot actions are referred to as structural genes. In the implementation reported in

this section, the first structural gene (second gene in the chromosome) was activated if

the output of the regulatory gene was a motor action terminal while the second structural

gene (third gene in the chromosome) was activated if the output of the regulatory gene

was a sensor terminal. The algorithm is therefore symbol based. Algorithm 1 shows how

the mgGEP-RG was implemented for this problem.

Algorithm 1 using mgGEP-RG in the wall following problem

Require: regulatory gene ⇒ gene1
Require: Structural genes ⇒ gene2, gene3
Require: Motor Terminals⇒ MF, ML, MB, MR
Require: Sensor Terminals⇒F, FR, FL, B, BR, BL, L, R

determineController← Translate (gene1)
{The variable “determineController” is the string symbol output from the translation of
the regulatory gene}
if determineController ⊂ Motor Terminals then

motorEffectControl ← Execute (gene2)
{ The variable “motorEffectControl” gets the output of the execution of a structural
gene and convert it to a robotic action}

else
motorEffectControl ← Execute (gene3)

end if

134

5.2.2 Experimental set up

Table 5.2: mgGEP-RG: Algorithm parameter settings

Parameters mgGEP mgGEP-RG

Maximum generations 200 200

Population 500 500

No. of Genes 2 3

Head size 8 8

Parent organisms 2 2

Mutation probability 0.041 0.027

1-Point Recombination probability 0.7 0.7

2-Point Recombination probability 0.2 0.2

Gene Recombination probability 0.1 0.1

IS Transposition probability 0.1 0.1

RIS Transposition probability 0.1 0.1

Gene Transposition probability 0.1 0.1

Selection range 5% 5%

Function set(If, And, Or, Not) 4 4

Linking set(If, And, Or) − 3

Terminal set(8 sensors, 4 motors) 12 12

No. of start points 10 10

No. of randomly seeded runs 50 50

Table 5.2 , shows the algorithm parameters, population size, number of generations in a run

and the probabilities of each of the genetic operations used by the algorithm. As shown on

the table, 3 genes were used in this experimentation. Also, similar to the experimentations

in section 4.3, each controller in the population was tested from 10 starting points and

the fitness evaluated using Equation 4.1. The maximum fitness for each room is as shown

by Table 4.1. In all the experiments, 50 randomly seeded algorithm runs were conducted.

An evolutionary run terminated when the total number of generations was reached.

135

5.2.3 Results and Discussion

Figure 5.4: Comparison of success rates achieved in the four different room types using
standard mgGEP, mgGEP-LE and mgGEP-RG algorithms. The success rate
refers to the percentage of the total number of runs where the target fitness was
achieved. Each evolutionary run had a population of 500 organisms and lasted
for 200 generations. In all the experiments, 50 randomly seeded algorithm runs
were conducted.

Figure 5.4 shows that standard mgGEP was more successful in room 2 than both mgGEP-

LE and mgGEP-RG algorithms. In room 3, the mgGEP-RG had a better success rate

than standard mgGEP while mgGEP-LE had the lowest success rate. In room 4, the

mgGEP-RG had equal success rate with mgGEP-LE while standard mgGEP had the

lowest success rate. All the three algorithms had equal success rates in room 5. Thus

in general, these three algorithms appear to have solved the problem with almost equal

success with mgGEP-RG appearing to be slightly better. This performance suggests that

the new algorithms, mgGEP-RG and mgGEP-LE, evolve controllers that approximate the

performance of mgGEP algorithm which, as previously mentioned, uses human expertise

for sub-behaviour sub-division. Of importance is that the behaviour sub-division, the posi-

tion of particular modules and behaviour selection mechanism is developed automatically

in mgGEP-RG and mgGEP-LE. This offers better capability for the robot as well as less

work for the designer.

136

Figure 5.5: Comparison of best individual performances in the population as achieved
through standard mgGEP and mgGEP-RG in the different room types. The
mean fitness has been computed from the best individual fitness achieved in
each generation in all the 50 randomly seeded algorithms. In each evolutionary
run, a population of 500 organisms was evolved for 200 generations and the
best individual fitness recorded in each generation. The rest of the parameters
are as shown on Table 5.2.

137

Figure 5.6: Comparison of progression of average fitness of the population as achieved
through mgGEP and mgGEP-RG in the different room types. The average of
the population mean fitness was computed from the population mean fitness
achieved in each generation in all the 50 randomly seeded algorithms. In
each evolutionary run, a population of 500 organisms was evolved for 200
generations and the population mean fitness recorded in each generation. The
rest of the parameters are as shown on Table 5.2.

Figures 5.5, 5.6 shows the comparison of the performance between standard mgGEP and

mgGEP with a regulatory gene (mgGEP-RG). The results shown by figure 5.5 suggests

that the performance of mgGEP-RG was slightly better than standard mgGEP in rooms

3 and 4, slightly lower in room 5 and was outperformed in room 2. There could be various

contributing factor to the slight success in rooms 3 and 4: Firstly, all the three genes

in the chromosome have a head size h=8, this means that the mgGEP is only 2/3rds as

long as the mgGEP-RG, the increase in the genome size, increases the search space and

diversity. This increase is good for the search and could lead to the somewhat better

performance as shown above. However, the increase in the search space could also lead

to an increase in the computing time. Since the mgGEP-RG is longer in length than the

mgGEP the number of generations used in the experiment may not be sufficient to enable

the mgGEP-RG to converge, this could potentially explain the mgGEP-RG performance

138

in rooms 2 and 5. Additionally, in all the rooms the fitness of the best individual does

not seem to converge near the optimal fitness. This means that both techniques require

longer generation runs in order to solve the problem fully.

The IF linker used in the standard mgGEP, decides which gene to express based on

the value of the front sensor. Since the robot is always facing forward, the mgGEP

chromosomes learns easily to use the first gene for obstacle avoidance and use the second

gene for the wall following. Therefore, as suggested by the results, the search is faster and

yields good performance. In essence the standard mgGEP uses problem specific human

expertise to determine the behaviour sub-division. The mgGEP-RG on the other hand

is required to evolve the behaviour sub-division mechanism during the evolutionary run.

As previously described, the mgGEP-RG has to express the first gene and use its output

to determine which of the two genes to express. The output of the first gene could be

either a movement terminal which lead to the third gene being expressed or it could be

a sensor terminal leading to the expression of the second gene. Thus, the mgGEP-RG

algorithm has the added task of learning which of the eight sensors is more significant to

the problem. Therefore, the algorithm is actually trying to solve three tasks, one of finding

a sensor that contribute effectively towards the solution of the general problem, i.e. wall

following, and then subdividing the actual problems to the task of obstacle avoidance and

exploration with wall proximity.

Figure 5.7: an example of a controller evolved using mgGEP-RG

Figure 5.7 shows an example of a controller evolved using mgGEP-RG. Although the

shown controller was evolved using room 2 (figure 4.3), it adapts successfully in all the

other rooms. Across the entire range of controllers evolved successfully, it was observed

that the first gene (regulatory gene) evolved a structure that selects between a sensor and

a movement action. The genome above shows that the regulatory gene selected the front

sensor and the move back action. The expression of regulatory gene output a symbol

139

which is used by the linking function to determine which of the two structural genes to

effect motor control. Structural gene 2 effects robot motor control when the output of the

regulatory gene is a sensor, while structural gene 1 is executed when the output of the

regulatory gene is a move action, MB, which is only possible if the front sensor outputs a

1 (i.e. obstacle ahead). When structural gene 2 is expressed, it checks the right sensor and

then the robot can either turn right or left, thus avoiding the obstacle ahead. Note that

the MF terminal (in structural gene 2) will never be executed as the regulatory gene will

only allow structural gene 2 to be expressed when there is an obstacle ahead. Structural

gene 1 is expressed when the regulatory gene outputs the MB terminal, again it can be

observed that structural gene 1 guides the robot to move forward, it also checks the sensors

on both the left and right directions, this is critical in guiding the robot on the extrusions

as the front sensor cannot be used for this and keeps the robot effectively near the walls.

Thus the evolved chromosome not only evolves the best sensor to use in obstacle avoidance

(e.g. checking the existence of an obstacle ahead and modifying behaviour accordingly)

but also the obstacle avoidance behaviour and straight-line motion with wall proximity.

In this approach, only one fitness function has been used (Equation 4.1). The fitness

function encourages exploration near the wall as well as discouraging wandering and col-

lision. The fitness function is utilised by the whole organism and called once, this lowers

computation time and awards the robot for the dual behaviours of obstacle avoidance

and exploration with wall proximity. This is unlike incremental evolution and layered

learning approaches where unique fitness evaluation is required for behaviours in the set.

Also, no additional time is taken to evolve separate behaviour or a layer. Since the major

concern is the overall behaviour, the specification for lower behaviours is not taken into

consideration; this means there is a global outlook in providing attributes to the desired

behaviour.

5.3 Algorithm performance analysis

Results presented in figures 5.1 and 5.2 suggest that the mgGEP-LE algorithm performed

slightly better than the mgGEP algorithm. Additionally, the results shown in figures 5.5

and 5.6 suggest that the mgGEP-RG algorithm performs equally as well as the mgGEP.

These results suggest that these mgGEP variants are capable of evolving mechanisms to

change the way a genome is expressed to solve a problem.

In this section an analysis is carried out to determine whether the reported results can be

improved further by extending the generational run. The performances of these algorithms

is then compared to that of standard mgGEP and ugGEP. Additionally, a test of statiscal

significance is carried using the Mann-Whitney U test and the level of significance between

the results obtained by different algorithms compared. Similarly, a solution convergence

test is carried out to determine how fast these algorithms converge to the target fitness.

Further, a description of controllers evolved using the mgGEP, mgGEP-LE and mgGEP-

RG is presented. Finally, the effect of mutation operation on the performances of the

mgGEP-LE and mgGEP-RG is analysed and compared to that of the mgGEP and ugGEP.

140

A discussion of the suitability of these algorithms in ER is then presented.

5.3.1 Performance comparison

The results presented in the previous sections suggest that mgGEP-RG and mgGEP-LE

may have required longer generation runs in order to solve the wall following problem fully.

Subsequently, the experiments reported in the previous sections were repeated using sim-

ilar settings and parameters but with longer generation runs, in this case 500 generations

were used. A summary of the parameters used in this experiments is as shown on Table

5.3 below.

Table 5.3: Algorithm parameter settings

Parameters ugGEP mgGEP mgGEP-LE mgGEP-RG

Maximum generations 500 500 500 500

Population 500 500 500 500

No. of Genes 1 2 2 3

Head size 16 8 8 8

Parent organisms 2 2 2 2

Mutation probability 0.041 0.041 0.041 0.027

1-Point Recombination probability 0.7 0.7 0.7 0.7

2-Point Recombination probability 0.2 0.2 0.2 0.2

Gene Recombination probability 0.0 0.1 0.1 0.1

IS Transposition probability 0.1 0.1 0.1 0.1

RIS Transposition probability 0.1 0.1 0.1 0.1

Gene Transposition probability 0.0 0.1 0.1 0.1

Selection range 5% 5% 5% 5%

Function set(If, And, Or, Not) 4 4 4 4

Linking set(If, And, Or) − − 3 −
Terminal set(8 sensors, 4 motors) 12 12 12 12

No. of starting points 10 10 10 10

No. of randomly seeded runs 50 50 50 50

The mgGEP-RG and mgGEP-LE experimental results were compared to the performances

of ugGEP and mgGEP algorithms under similar settings. The results achieved in these

experimentations were used to analyse the performance of the algorithms in solving the

wall following problem.

141

Figure 5.8: Comparison of success rates achieved using ugGEP, standard mgGEP, mgGEP-
LE and mgGEP-RG algorithms. The success rate refers to the percentage of
the total number of runs where the target fitness was achieved. Each evolu-
tionary run had a population of 500 organisms and lasted for 500 generations.
In all the experiments, 50 randomly seeded algorithm runs were conducted.
The rest of the algorithm parameters are as shown on Table 5.3.

142

Figure 5.9: Progression of the mean fitness of the best individual in the population as
achieved through ugGEP, standard mgGEP, mgGEP-LE and mgGEP-RG in
the different room types. The mean fitness has been computed from the best
individual fitness achieved in each generation in all the 50 randomly seeded al-
gorithms. In each evolutionary run, a population of 500 organisms was evolved
for 500 generations and the best individual fitness recorded in each generation.
The rest of the parameters are as shown on Table 5.3.

143

Figure 5.10: Progression of the mean of the population mean fitness as achieved through
ugGEP, mgGEP, mgGEP-LE and mgGEP-RG in the different room types.
The mean of the population mean fitness was computed from the popula-
tion mean fitness achieved in each generation in all the 50 randomly seeded
algorithms. The rest of the parameters are as shown on Table 5.3.

144

Figure 5.11: Progression of the median of the population mean fitness as achieved through
ugGEP, mgGEP, mgGEP-LE and mgGEP-RG in the different room types.
The median of the population mean fitness was computed from the popula-
tion mean fitness achieved in each generation in all the 50 randomly seeded
algorithms. The rest of the parameters are as shown on Table 5.3.

Figures 5.8, 5.9, 5.10 and 5.11 show the results of the ugGEP, mgGEP, mgGEP-LE and

mgGEP-RG algorithms with an increased number of generations. As shown by the results,

increasing the number of generations leads to an improvement in performance of the

ugGEP, mgGEP, mgGEP-LE and mgGEP-RG results. Additionally the results suggest

that mgGEP-LE and mgGEP-RG algorithms are able to approximate the performance of

mgGEP where as previously mentioned, human expertise has been utilised. The success

rates shown by figure 5.8 suggests that mgGEP, mgGEP-LE and mgGEP-RG algorithms

achieved almost equal success rates in solving the wall following problem as described

here. However, the mgGEP-RG appears to perform slightly better followed by standard

mgGEP and then mgGEP-LE. These results suggest that given longer durations to evolve

a solution, the mgGEP-RG and mgGEP-LE are able to approximate human designed

modular architectures such as mgGEP.

Similar to the mean population mean fitness shown by Figure 5.10, the medians of the

145

population means shown by Figure 5.11 suggest that the mgGEP had a an overall bet-

ter performance across all the rooms. The results also show that both mgGEP-LE and

mgGEP-RG performed as well as the mgGEP in most of the rooms. These results suggest

that these two new algorithms are able to approximate the mgGEP, where human exper-

tise was utilised. The ugGEP did not perform as well as the modular controllers. The

low ugGEP performance is likely to be as a result of lack of specialisation in the chromo-

some. Across all the rooms, the median population mean fitness values (Figure 5.11) are

larger than the average population mean fitness values. The larger median values suggest

that the bulk of the achieved mean fitness values lie to the right of the mean and have a

negative skew. This suggests that in all the presented algorithms, the GEP performance

generates a good result.

5.3.2 Statistical significance

Results shown in the previous sections suggested that there was an improved performance

when modular algorithms were used to solve the wall following problem. In this section

a Mann-Whitney U statistical test is carried out to determine whether there is any sta-

tistical significance between the different algorithms. Since the overall objective of an

evolutionary algorithm is to find an optimal solution when an algorithm terminates, in

order to carry out a Mann-Whitney U test, the average best individual fitness in an entire

run was used. Thus, in each algorithm there were 50 independent observations resulting

from the 50 randomly seeded runs carried out in the experiment. The null hypothe-

sis H0 was: “No difference in test algorithms” while the alternative hypothesis HA was:

“There is a difference in the test algorithms”. Tables 5.4, 5.5 and 5.6 show the result of

Mann-Whitney U test performed using ugGEP algorithm and each of the modular GEP

algorithms. Additionally, tables 5.7, 5.8 and 5.9 show the comparison of the different

modular algorithms.

Table 5.4: mgGEP vs ugGEP

z Value P2 Value Significant at:

Room 2 4.71 < 0.0001 2%

Room 3 2.85 0.0044 2%

Room 4 2.08 0.0375 5%

Room 5 1.77 0.0767 10%

Table 5.4 shows that using a two tailed Mann-Whitney U test, there is statistical sig-

nificance between the ugGEP algorithm and the mgGEP algorithm. The third column

shows the level of significance. A one tailed test with the alternative hypothesis HA that

mgGEP is better than ugGEP, shows that there was statistical significance across all the

rooms. These results strengthens the conclusion arrived in the previous chapter where it

was shown that mgGEP outperforms ugGEP.

Table 5.5 shows that there is a statistical significance between ugGEP and mgGEP-LE

algorithms. As discussed earlier, mgGEP-LE algorithm uses an additional function set,

referred as a linking set, where the functions used to link the genes in a chromosomes

146

Table 5.5: mgGEP-LE vs ugGEP

z Value P2 Value Significant at:

Room 2 3.82 < 0.0001 2%

Room 3 2.93 0.0034 2%

Room 4 1.93 0.0536 10%

Room 5 1.95 0.0512 10%

are randomly picked at the beginning of the run. The linking functions are subjected

to genetic operations and thus evolve together with the result of the genome. Thus, the

algorithm evolves various mechanisms on how the genes should be linked depending on

the selected linking function. The results shown here suggest that this new and dynamic

linking technique, reported for the first time in this chapter, is a better mechanism to

evolve solutions than the monolithic algorithm.

Table 5.6: mgGEP-RG vs ugGEP

z Value P2 Value Significant at:

Room 2 2.95 0.0032 2%

Room 3 2.23 0.0257 5%

Room 4 2.06 0.0394 5%

Room 5 1.75 0.0801 10%

Table 5.4 shows that using a two tailed Mann-Whitney U test, there is statistical signif-

icance between mgGEP-RG and the ugGEP algorithms. Unlike standard mgGEP and

mgGEP-LE, the mgGEP-RG and ugGEP algorithms starts with no particular strategy

on how the problem should be solved. The two algorithms are thus similar at the begin-

ning as they have to evolve a strategy on how the problem should be solved. Thus, the

statistical significance shown by table 5.6 strengthens the conclusion that modular mech-

anisms to solving a problem outperform monolithic ones. Additionally, the results suggest

that mgGEP-RG algorithm, reported in this chapter for the first time, is a competitive

technique that can be utilised in solving robotic problems.

Table 5.7: mgGEP vs mgGEP-LE

z Value P2 Value Significant at:

Room 2 1.93 0.0536 10%

Room 3 0.84 0.4009 H0

Room 4 0.16 0.8729 H0

Room 5 0.14 0.8887 H0

Table 5.8: mgGEP vs mgGEP-RG

z Value P2 Value Significant at:

Room 2 0.23 0.8181 H0

Room 3 0.22 0.8259 H0

Room 4 0.07 0.9442 H0

Room 5 0.27 0.7872 H0

Tables 5.7, 5.8 and 5.9 show that, overall, there is no statistical significance between the

three described modular approaches. In this case, the null hypothesis (H0) was accepted.

147

Table 5.9: mgGEP-RG vs mgGEP-LE

z Value P2 Value Significant at:

Room 2 1.44 0.1499 H0

Room 3 0.78 0.4354 H0

Room 4 0.0 1 H0

Room 5 0.37 0.7114 H0

Results in table 5.7 shows that the there was some level of significance in the performances

of the standard mgGEP and mgGEP-LE in room 2. This statistical significance, though

only at 10% level, can potentially be explained by the fact that the implementation of

AND and OR linking functions could have lowered the overall algorithm performance, as

describe in section 5.1.2. The lack of statistical significance in the rest of the rooms is to

be expected since mgGEP-LE shares many characteristics with the standard mgGEP

Results in table 5.8 shows that the mgGEP-RG is not significantly different from standard

mgGEP. Since mgGEP-RG has to evolve the entire mechanism to sub-divide behaviour,

these results are of great significance as it shows that when presented with a problem

requiring a modular approach, a developer does not necessarily need to think of a strategy

to sub-divide the problem. The results shows that the algorithm is able to evolve suit-

able techniques that match techniques used by a human designed behaviour sub-division

strategy. Table 5.9 also strengthens the claim that with no particular suggestions on how

to solve a problem, a developer can use an algorithm such as mgGEP-RG to solve the

problem with equally good success as mechanisms requiring human input.

Figure 5.12 shows a comparison of P values calculated using a Mann-Whitney U test on

best individual fitness in each generation. The values that have been used to calculate the

Mann-Whitney U test were generated from the 50 identical runs on each algorithm. Since

the major interest is to show how the algorithms compared to each other statistically, only

results from room 2 have been used. However, as shown in tables 5.4, 5.5, 5.6, 5.7, 5.8

and 5.9 the results correlate in all the rooms. The smaller the p value the less probable

the experimental results is due to chance. Smaller p values also mean that there is a

statistical significance between the tested algorithms. As shown by Figure 5.12 there was

statistical significance between ugGEP and mgGEP in every generation. Similarly there

was statistical signicance in the results achieved using ugGEP and mgGEP-LE algorithm

across all generations, However the p values are not as small as with standard mgGEP.

This is likely because mgGEP-LE uses some functions in the linking set which may not

have scaled to the problem leading to lower performance than standard mgGEP. The com-

parison of statistical significance between ugGEP and mgGEP-RG algorithm shows that

up to about the tenth generation, the null hypothesis (H0) had to be accepted. This effect

is because at the beginning the results are still largely random, however as the evolution

progresses the mgGEP-RG utilises its modular structure to develop a better strategy than

ugGEP and hence the statistical significance changes. The rest of the graph shows that

there was statistical significance in the early generations between mgGEP and mgGEP-LE

algorithms as well as mgGEP and mgGEP-RG algorithm. These results suggest that at

the beginning the more superior standard mgGEP outperforms the new modular mecha-

148

Figure 5.12: P values generated using mann whitney two tailed test. The values are gen-
erated from 50 observations in each generation. Each curve shows the com-
parison with a different algorithms. A summary of all the parameters used
in this experiment is shown on Table 5.3.

nisms. However as the evolution continues the performance of the standard mgGEP is not

significantly different from that of the new algorithms. The overall results suggest that

modular algorithms perform better than monolithic algorithm particularly in this prob-

lem domain. In addition, the proposed “self-organising” modular algorithms, mgGEP-LE

and mgGEP-RG, are suitable mechanisms that can be utilised to evolve modular robot

behaviours.

5.3.3 Solution convergence

In this section, the 25th (Q1) and 75th (Q3) percentile fitness values were calculated from

the fitness of the best individuals evolved by the different GEP algorithms. These values

were then plotted alongside the median fitness in each generation. The median, Q1 and

Q3 values were calculated from the best individual fitness values achieved by each of the

50 randomly seeded run in each generation. The aim of this analysis is to determine how

quickly the controllers evolved by the different algorithms converge to the target fitness

and to measure the fitness variability.

In all the figures shown below, the top dotted line represents Q3 values while bottom

dotted lines represent Q1 values. Q2 (Median) values are represented by the solid line.

149

Figure 5.13: Q1, Q2 and Q3 values of the best individual in the population as achieved
by ugGEP and mgGEP algorithms, plotted every generation. These values
relate to experiment carried out in room 2 using the ugGEP and mgGEP
algorithm parameters shown on Table 5.3. In both algorithms, the top dotted
line represents Q3 values while bottom dotted lines represent Q1 values. Q2
(Median) values are represented by the solid line.

Figure 5.13 shows that within 15− 20 generations at least 25% of the mgGEP algorithm

runs had evolved a controller that achieved the fitness set for room 2. Also, within 70 −
80 generations the interquartile range was zero. Also, the results show that a median

fitness corresponding to the target fitness was achieved within 40 generations. In the

ugGEP algorithm, a median fitness corresponding to target fitness was achieved after

200 generations. Additionally, the interquartile range was still very large at the 500th

generation. Thus, the obtained results show that mgGEP algorithm converged quickly

while there was still high diversity in ugGEP controllers at the end of the run. Since

all the individuals are of the same length, their performance can possibly be attributed

to the chromosome structure. In the ugGEP case, there is only one gene forming the

chromosome. The evolved controller, referred to as a monolithic controller, solves the

entire problem. Additionally, the low convergence in ugGEP algorithm could potentially

be caused by genetic operations such as mutation. As shown in section 5.3.5, destructive

mutation effects are likely to affect the monolithic controllers more than the modular

controllers.

150

Figure 5.14: Q1, Q2 and Q3 values of the best individual in the population as achieved by
mgGEP and mgGEP-LE algorithms, plotted every generation. These values
relate to experiment carried out in room 2 using the mgGEP and mgGEP-LE
algorithm parameters shown on Table 5.3. In both algorithms, the top dotted
line represents Q3 values while bottom dotted lines represent Q1 values. Q2
(Median) values are represented by the solid line.

Figure 5.14 shows that a median fitness corresponding to the target fitness was achieved

within 50−60 generations using the mgGEP-LE algorithm. Additionally, within 35 gener-

ations at least 25% of the algorithm runs had evolved a controller that achieved the fitness

set for room 2. Also, within 200 generations the interquartile range was reduced to zero.

Thus the obtained results show that the mgGEP-LE controllers are able to approximate

the performance of the mgGEP albeit using longer generation runs. This results can be

explained by the fact that mgGEP-LE is similar in many ways to the standard mgGEP.

Similar to the standard mgGEP, the results shown by Figure 5.15 shows that within

15− 20 generations, 25% of the mgGEP-RG algorithm runs had evolved a controller that

achieved the fitness set for room 2. Additionally, within 30 generations, a median fitness

corresponding to the target fitness was achieved. These results suggest that mgGEP-

RG approximated and outperformed the performance of the standard mgGEP algorithm.

However, as discussed in the previous section, Figure 5.15 shows that mgGEP-RG required

longer generations run in order to converge. Thus, the interquartile range was reduced to

zero within 150 generations. The slow convergence rate in mgGEP-RG and mgGEP-LE

can be attributed to the increase in search space attributed to genetic operations in the

151

Figure 5.15: Q1, Q2 and Q3 values of the best individual in the population as achieved by
mgGEP and mgGEP-RG algorithms, plotted every generation. These values
relate to experiment carried out in room 2 using the mgGEP and mgGEP-RG
algorithm parameters shown on Table 5.3. In both algorithms, the top dotted
line represents Q3 values while bottom dotted lines represent Q1 values. Q2
(Median) values are represented by the solid line.

linking set for mgGEP-LE and the addition of a regulatory gene in case of mgGEP-RG.

5.3.4 Controller performance

This section shows various controllers evolved through mgGEP, mgGEP-LE and mgGEP-

RG algorithms. The controllers were evolved in the 2D discrete environment (figure 4.3)

with controllers as defined in section 4.3.4. All the controllers presented here solved the

wall following problem in room 5 completely; thus, they all achieved the maximum fitness

for room 5 (see Table 4.1 for success predicate). The functions; AND is represented by A

while NOT function is represented by N. The translation of the controllers to expression

trees (ET) is completed by starting from the controller root node, and moving from left

to right, top to bottom.

In all the graphs, the top part shows the coding region of the genes which forms the

controller while the expression tree (ET), shows the decoded controller. The linker forms

the root of the controller and the bottom part shows how the overall controller solved

the problem in room 5. As discussed previously, in mgGEP and mgGEP-LE, the linker

152

decides which sub controller effects motor controller based on the conditions supplied to

the linking functions. For the mgGEP-RG, the regulatory gene provides mechanisms to

activate or inhibit either of the two genes.

Figure 5.16: An example of a multi-controller evolved using standard mgGEP. In this
example, sub controller (gene 2) is used for obstacle avoidance and gene 1 is
used for exploration and straight line navigation with wall proximity.

Figure 5.16 shows an example of a controller evolved using mgGEP algorithm to solve

the problem. As shown in the previous chapter, the algorithm had the problem manually

subdivided and therefore one gene evolved obstacle avoidance behaviour whereas the other

153

gene evolved an exploration with wall proximity.

154

Figure 5.17: An example of a multi-controller evolved using mgGEP-LE. In this example,
sub controller (gene 2) is used for obstacle avoidance and gene 1 is used for
exploration and straight line navigation with wall proximity. This controller
utilises the left sensor to enable the robot navigate around the the extrusions
and also uses the front sensor to evade obstacles. This is a novel technique
than the mgGEP example shown on Figure 5.16.

155

Figure 5.18: A multi-controller evolved using mgGEP-LE. In this example, sub controller
(gene 2) is used for obstacle avoidance and gene 1 is used for exploration and
straight line navigation with wall proximity. This approximates the standard
mgGEP as shown on Figure 5.16, by moving in opposite direction.

156

Figure 5.19: An evolved mgGEP-LE controller that replicates the behaviour of a controller
evolved using mgGEP. In this example, sub controller (gene 2) is used for ob-
stacle avoidance and gene 1 is used for exploration and straight line navigation
with wall proximity. This approximates the standard mgGEP as shown on
Figure 5.16.

157

Figure 5.20: Example of a multi-controller evolved using mgGEP-LE. In this example,
sub controller (gene 2) is used for obstacle avoidance and gene 1 is used for
exploration and straight line navigation with wall proximity. This controller
is different to controllers in Figures 5.16 and 5.19 but generates a similar
behaviour.

Figures 5.17, 5.18, 5.19 and 5.20 shows the various strategies that mgGEP-LE used to

solve the problem. From the evolved controllers it is evident that mgGEP-LE was able to

evolve mechanisms that accurately approximated the human designed strategy developed

using the standard mgGEP.

158

Table 5.10: Analysing the linking set

Linker: IF OR AND

Room 2 84% 6% 10%

Room 3 86.8% 5.3% 7.9%

Room 4 80% 15% 5%

Room 5 74.5% 10.6% 14.9%

Table 5.10 shows the percentage of the organism that used a particular linking function

in solving the problem. From the results, the IF linker outperformed both OR and AND

linkers. The IF linker, as discussed, checks the front sensor and then activates either

of the two sub-controllers. The results suggest that this particular mechanism to divide

behaviour is the best for this problem. The introduction of the other two linkers, OR and

AND, lowers the number of plausible controllers in the solution set and may lead to an

overall low success rate in the mgGEP-LE algorithm. These results further suggest that

care should be taken in selecting the linking functions, so as to choose controllers that

contribute positively to the algorithm.

159

Figure 5.21: An example of a multi-controller evolved using mgGEP-RG. This controller
utilises gene 2 for obstacle avoidance and uses gene 3 for exploration and
straight line navigation with wall proximity. Its behaviour replicates the
behaviour of the controller evolved using mgGEP-LE as shown on Figure
5.18.

160

Figure 5.22: Example of a novel multi-controller evolved using mgGEP-RG. This controller
utilises gene 2 for exploration in open areas and for navigation around the
extrusions. The controller utilises gene 3 for navigation with wall proximity
and evading obstacles detected by the front sensor.

161

Figure 5.23: A strategy used by mgGEP-RG to solve wall following problem in room 5. In
this example, the controller utilised gene 2 to perform the whole task of wall
following. The rest of the genome was utilised as pseudo gene and created
redundancy in the genome.

162

Figure 5.24: A novel mgGEP-RG controller evolved to solve wall following problem in
room 5. In this example the second gene is used for exploration and obstacle
avoidance and the third gene used to navigate around obstacles.

The mgGEP-RG used various strategies to solve the problem. In figure 5.21, the second

gene was used for obstacle avoidance and the third gene used for the exploration with

wall proximity. This controller is an approximation of controllers evolved using standard

mgGEP. The second example, Figure 5.22, the controller used gene 3 for obstacle avoidance

and exploration with wall proximity by concentrating on the use of front sensor. For

exploration in the open areas and around the extrusions the controller used gene 2. In

Figure 5.24, the controller utilised the second gene for exploration and obstacle avoidance

and the third gene was used to navigate around obstacles. From these examples, it is

evident that mgGEP-RG techniques used new and novel methods to solve the problem

which the human designer would possibly not have thought of or would be too complicated

163

to implement. In another example, shown by Figure 5.23, the algorithm used the second

gene to solve the entire problem; in this case the third gene is a pseudo gene and provides

redundancy to the chromosome. The redundancy built into an algorithm like the mgGEP-

RG is important for the evolution of more fit individuals.

5.3.5 Mutation effect

Figures 5.8, 5.9 and 5.10 show that the ugGEP performs poorly in comparison to the

mgGEP methods on this task, even with an extended period of evolution. One theory

posited for this is the potentially destructive effect mutation will have on a monolithic

chromosome. This section focusses on how mutation operations affect the performance of

the presented algorithms.

To conduct the experiment, a population of 500 organisms were evolved for 200 genera-

tions. Similar to previous experiments, the mgGEP-RG was implemented using 3 genes

while the mgGEP and mgGEP-LE were evolved using 2 genes. The rest of the parameters,

including ugGEP algorithm settings, are as reported on Table 5.3. The probability of mu-

tation, Pm, was set to at least two mutations per chromosome. Thus, for each algorithm

the probability was given as :

Pm = 2/Chromosomelength (5.1)

Similar to the experimentations in section 4.3, each controller in the population was tested

from 10 starting points and the fitness evaluated using Equation 4.1. The experiment was

carried out using the wall following room 2 (see Figure 4.3 for room types). The maximum

fitness for each room is shown in Table 4.1. In all the experiments, 10 randomly seeded

algorithm runs were conducted.

During the evolution, the fitness of an individual was recorded before and after mutation

operation. No fitness was recorded if a mutation operation did not occur. The recorded

fitness values were then used to calculate the percentage of controllers where the mutation

had a positive, negative or neutral effect. The obtained results are shown in Table 5.11

and Figure 5.25.

Table 5.11: Mutation effect on GEP algorithms

Effect ugGEP mgGEP mgGEP-LE mgGEP-RG

Positive effect(%) 2.15 1.0 0.89 1.03

Neutral effect (%) 67.58 76.38 77.47 81.61

Negative effect(%) 30.27 22.62 21.64 17.36

Mean effect −170.62 −159.28 −151.83 −113.52

Figure 5.25 and table 5.11 shows the effect of mutation when applied to ugGEP, mgGEP,

mgGEP-LE and mgGEP-RG algorithms. The results suggest that mechanisms utilising

more than one gene have a higher probability of having non-destructive mutation effect.

The largely neutral effect is brought by mutation occurring at non-coding regions of the

164

Figure 5.25: Mutation effect on ugGEP, mgGEP, mgGEP-LE and mgGEP-RG individu-
als. In each experiment, a population of 500 organisms was evolved for 200
generations. During the evolution, the fitness of an individual was recorded
before and after a mutation operation. No fitness was recorded if a muta-
tion operation did not occur. All the experiments were replicated over 10
randomly seeded runs. The rest of the parameters are as shown on Table 5.3.

gene. Additionally, neutral effects could be as a result of mutations at the coding region

that do not change the phenotype of the organism: for instance, when a terminal is mutated

to a different terminal or even when functions are mutated causing no effect in the overall

phenotype [39, 68]. These neutral effects could contribute to the overall better performance

shown by the modular GEP algorithms. A detailed discussion on neutrality in evolutionary

algorithms can be found in [52]. The mutation analysis also indicates that there is a

high probability of a mutation to be either destructive or not have any effect. The high

destructive effect in ugGEP can be attributed to the monolithic nature of the organism.

The probability of a mutation occurring in the head region is twice in ugGEP than in

standard mgGEP and mgGEP-LE, and is thrice the probability of mutation occurring in

mgGEP-RG. If a destructive mutation operation occurs in a monolithic chromosome it

would have a huge negative impact on the chromosome performance than it would have

in modular chromosomes. Similarly, if the effect is positive it is likely to have an impact

165

on the ugGEP rather than the modular chromosomes. This can potentially explain the

slightly higher positive mutation effect in ugGEP. Since the mgGEP-RG uses 3 genes,

there is a high probability of neutral effect as well as low probability for positive and

negative effect. In an algorithm such as GA where every allele in a chromosome is a part

of the overall solution, mutation effects could have a huge effect on the solution. However,

as shown here, since GEP chromosomes have coding and non-coding regions, mutations

occurring in the non coding regions do not have any effect on the solution.

5.3.6 Discussion

In section 5.3.1, the obtained results show that the performance of the best individual

evolved using mgGEP-LE outperformed the standard mgGEP in room 4 and performed

as well as mgGEP in rooms 3 and 5. However, its performance was slightly lower than that

of mgGEP in room 2. As mentioned earlier, the performance of the mgGEP-LE in this

problem can be explained from the linking functions in the linking set. As shown by Table

5.10 and the standard mgGEP performance, the IF linker is the most effective linker. The

AND and OR linker thus lowered the mgGEP-LE overall performance compared to the

mgGEP where all the chromosomes used the IF linker. As mentioned earlier, the AND and

OR linkers use the first gene as a regulatory gene. Thus, the first gene is not specialised

for either of the available tasks or for evolving a condition. Therefore, it is likely the

use of the first gene as both structural and regulatory gene reduced the capability of the

mgGEP-LE to solve the problem.

The performance of the best individual evolved by mgGEP-RG outperforms mgGEP in

room 4 and performs equally as well as mgGEP in rooms 2 and 3. However it is slightly out-

performed in room 5. The overall average fitness of the population shows that mgGEP-RG

approximated the performance of mgGEP across rooms 3, 4 and 5 but was outperformed

in room 2. The success rates, however, show that mgGEP-RG outperformed mgGEP in

rooms 3 and 4 and was outperformed in rooms 2 and 5. Therefore, the obtained results

show that these two algorithms almost had an equal performance. This means that given

a problem that requires a modular controller, a mgGEP-RG technique is capable of gen-

erating controllers that perform equally as well as those evolved using a pre-determined

linking conditions. Since most autonomous robots are used in unstructured environments,

the developer may not always know the prevailing conditions that may require certain

motor control. Additionally, even in situations where the conditions are known, imple-

menting the controllers and conditions manually is not only tedious but also prolong the

development time. The results shown here suggests that an algorithm such as mgGEP-RG

can be utilised to develop the conditions and behaviour sub-division automatically using

evolutionary process.

The results of statistical significance test shown in section 5.3.2 shows that all three mod-

ular controllers are significantly different from the monolithic ugGEP controller. Addi-

tionally, it is shown that these modular controllers performed equally the same in this

task. These results thus strengthen the conclusion that modular controllers are better

than monolithic ones. Additionally, the results show that dynamic approach to behaviour

166

sub-division, as described by mgGEP-RG, is a plausible alternative approach to human

determined behaviour sub-division.

The results shown in sections 5.3.1, 5.3.3 shows that mgGEP-LE and mgGEP-RG tech-

niques require longer evolutionary runs in order to converge to the optimal fitness. This

is to be expected since for mgGEP-LE, the algorithm require to evolve the best linking

function as well as generate the best solution. Thus, in comparison to standard mgGEP,

mgGEP-LE is likely to require a longer evolutionary run. However, in problems where the

best linking function is unknown or where a number of candidate controllers exist then

using the mgGEP-LE algorithm would be potentially a better technique than mgGEP.

For mgGEP-RG, using a regulatory gene increases the search space, the algorithm thus

requires longer generation run to evolve a suitable regulating mechanism as well as gener-

ate a solution for the problem. In addition, most real-life situations where an autonomous

robot may be employed require different behaviour coordination strategy that a human

designer may not have anticipated. In such situations, mgGEP-RG technique can easily

be employed with satisfactory results.

Section 5.3.4 shows that both mgGEP-LE and mgGEP-RG evolved controllers which

solved the problem in similar way to those evolved using mgGEP. Additionally, Figures

5.22, 5.23 and 5.24 shows that mgGEP-RG is capable of evolving novel controllers that

than those evolved using mgGEP. The strategies devised by the evolved controllers are

both unique and complex and could not be achieved using the mgGEP or mgGEP-LE

technique. Due to the limited nature in which the conditions for the IF linker is formu-

lated, the genes in mgGEP and mgGEP-LE can only check the front sensor before effecting

motor control. However, this limitation is non existent in the mgGEP-RG as it relies on

an evolutionary process to generate the condition. Thus, the algorithm is likely to evolve

unique and innovative techniques to solve a problem.

The mutation effects described in section 5.3.5 shows that modular controllers are less

likely to be affected by destructive mutation effects. Additionally, the results show that a

large percentage of mutation operations does not alter the phenotype of the controllers.

As mentioned earlier, neutral mutation is beneficial for the evolution and may have con-

tributed to overall best performance by the modular algorithms. Also, similar to the rest

of the genes, the regulatory gene undergoes genetic operations such as mutations. Thus

any effect of a genetic operation to the chromosome is distributed across the genome. It

is therefore likely that neutral mutation was larger in mgGEP-RG since it uses a longer

chromosome than the rest of the controllers.

5.4 Evolving in 3D environments

The results reported in the previous sections suggest that mgGEP-RG and mgGEP-LE

are suitable algorithms that can be used to generate robot controllers automatically. The

results show that these two new algorithms replicated and in some environments per-

formed better that the human behaviour sub-divided mgGEP. Following this improved

performance, the experiments were extended to 3D environments. The experimentations

167

in this section replicates similar experiments reported in section 4.4. However, in the fol-

lowing experiments, the mgGEP-LE and mgGEP-RG algorithms were used to evolve the

controllers. Comparisons were made with the results achieved using the standard mgGEP

algorithm.

5.4.1 Experimental set up

As reported in section 5.1, the mgGEP-LE algorithm was provided with a linking set

comprising of IF, OR and AND functions. The IF linker is set up using similar condition

as described in section 4.4. Similar to the experiments in section 5.1, OR and AND linkers

use the output of the expression of the first gene to regulate which of the two genes to

effect motor control. In the implementation reported here, the regulation is based on

whether the output of the expression of the first gene is less or equal to 0.5.

Algorithm 2 Sub-controller selection using mgGEP-RG in the wall following problem

Require: regulatory gene ⇒ gene1
Require: Structural genes ⇒ gene2, gene3

determineController← Translate (gene1) {The variable “determineController” is the
string symbol output from the translation of the regulatory gene}
if (‘F’ ⊂ determineController) ‖ (determineController = ‘L’) ‖ (determineController =
‘0.1’) ‖ (determineController = ‘0.2’) ‖ (determineController = ‘0.3’) then

motorEffectControl ← Execute (gene2)
{ The variable “motorEffectControl” gets the output of the execution of a structural
gene and convert it to a robotic action}

else
motorEffectControl ← Execute (gene3)

end if

Algorithm 2 shows how the structural genes were selected to effect motor control. As

shown, the mgGEP-RG uses the first gene (regulatory gene) to determine which of the

other two genes (structural genes) effects motor control on the robot. The current imple-

mentation is symbol based, such that the result of translation of the regulatory gene is a

string symbol from the terminal set.

In the implementation reported here, all the variant GEP algorithms used the parameters

listed in section 4.4. However, three constants 0.4, 0.5, 0.6 were added to the terminal set

to ensure that the algorithms had sufficient capability to evolve suitable controllers. Note

that the robotic sensors returns values between 0.0m and 1.5m and hence the algorithms

require sufficient parameters to develop obstacle avoidance capability.

The GEP algorithms were run using an initial population of 500 random controllers with

each run lasting for 200 generations. To ensure that results were not due to random effects,

20 randomly seeded algorithm runs were conducted for each algorithm. Also, as earlier

reported, each controller was tested from 10 different starting points. Equation 4.2 was

used to evaluate the controllers and maximum fitness was set as reported on Table 4.1.

Table 5.12 shows a summary of the algorithm parameters used.

168

Table 5.12: Algorithm parameter settings

Parameters mgGEP mgGEP-LE mgGEP-RG

Maximum generations 500 500 500

Population 500 500 500

No. of Genes 2 2 3

Head size 4 4 4

Parent organisms 2 2 2

Mutation probability 0.041 0.041 0.027

1-Point Recombination probability 0.7 0.7 0.7

2-Point Recombination probability 0.2 0.2 0.2

Gene Recombination probability 0.1 0.1 0.1

IS Transposition probability 0.1 0.1 0.1

RIS Transposition probability 0.1 0.1 0.1

Gene Transposition probability 0.1 0.1 0.1

Selection range 5% 5% 5%

Functions(IFTLE) 1 1 1

Linking set(If, And, Or) − 3 −
Terminals(8 Sensor/Motors, 6 constants) 14 14 14

No. of starting points 10 10 10

No. of randomly seeded runs 20 20 20

5.4.2 Results and Discussion

Figure 5.26 shows average performance of the best individual in the population across

rooms 2-5. From these results, the standard mgGEP outperformed both mgGEP-LE and

mgGEP-RG. As previously mentioned, the behaviour sub-division used in the standard

mgGEP was defined a priori and can be described to approximate human intelligence.

The performance of mgGEP-LE on the other hand has been lowered by the use of some

functions in the linking set that did not scale to the presented problem. As shown by Fig-

ure 5.27, when mgGEP-LE is run using IF & AND linkers, mgGEP-LE(IF & AND),

the algorithm performance is lowered. Similarly, results obtained using the three link-

ers together, mgGEP-LE, suggests that the combination of the linkers did not provide

sufficient capabilities to solve the problem. Therefore, these results show that careful

consideration has to be undertaken before placing functions in the linking set as this has

potential to affect the performance of the algorithm.

Figure 5.28 shows that the standard mgGEP had a better performance across the four

rooms than mgGEP-LE and mgGEP-RG. As mentioned earlier, the good performance

can be attributed to the already predefined behaviour sub-division. The performance of

the mgGEP-LE can be attributed to the lack of sufficient capability to solve the problem

due to the provided linking functions as shown by figure 5.27. The mgGEP-RG had lower

performance than mgGEP and mgGEP-LE in rooms 1 and 2, outperformed mgGEP-

LE in room 4 and performed equally as well as mgGEP-LE in room 5. Since the mgGEP

169

Figure 5.26: Average performance of the best individual in the population across rooms
2-5 evolved using mgGEP, mgGEP-LE and mgGEP-RG. The top of the error
bars shows the maximum fitness that can be achieved. The average fitness has
been computed from the best individual fitness achieved in each generation in
all the 20 randomly seeded algorithms. In each evolutionary run, a population
of 500 organisms was evolved for 500 generations and the best individual
fitness recorded in each generation. The rest of the parameters are as shown
on Table 5.12.

achieved 100% success rates in room 2 and room 4 and more than 95% in rooms 3 and 5, the

progression of best individual fitness for mgGEP-RG appears to be lower in comparison.

However, as shown by figure 5.26 the overall average best fitness of the best individual

evolved using mgGEP-RG was only marginally lower than the expected fitness. Moreover,

the progression of best individual fitness for mgGEP-RG as shown by figure 5.28 appears

to be on a continuous upward curve. This upward projection suggests that the algorithm

may not have converged. The lack of convergence, as discussed in section 5.3.3, implies

that longer generational run may have been required in order to solve the problem fully.

In addition to the mgGEP, mgGEP-LE and mgGEP-RG, a different implementation of the

standard mgGEP was used. In this new implementation, the IF linker was implemented

to use the output of the left sensor to determine which of the two genes effected robot

motor control. That is, if the left sensor value is less than 0.5 then gene 1 effects motor

control otherwise the second gene effects robot motor control. Apart from the obvious

difference from the standard mgGEP, this new implementation ensured that the robot

used gene 1 when moving along side the walls and developed new capability for obstacle

avoidance. For description purposes, this new implementation is referred as mgGEP(L).

170

Figure 5.27: Average performance of the best individual in the population evolved using
mgGEP-RG and different variations of mgGEP-LE algorithm. These ex-
periments were conducted in room 2 using the parameters shown on Table
5.12. The average fitness has been computed from the best individual fit-
ness achieved in each generation in all the 20 randomly seeded algorithms.
In each evolutionary run, a population of 500 organisms was evolved for 500
generations and the best individual fitness recorded in each generation.

The performance of the new implementation was compared to the performance of the

standard mgGEP and mgGEP-RG. Additionally, the three mgGEP variants were run for

500 generations in order to test whether mgGEP-RG required longer generation runs in

order to converge. Figures 5.29, 5.30 shows the overall performance of the algorithms.

As shown by figure 5.29, the performance of mgGEP-RG improved significantly when the

number of generations in the run were increased. This performance strengthens the obser-

vations made in figure 5.28, where the low performance of mgGEP-RG was attributed to

small number of generations. The mgGEP-RG performance is also shown to outperform

mgGEP(L), this shows that if the designer does not know which of the sensors or condi-

tions to use for behaviour selection mechanism, then there is a high likelihood of developing

controllers that do not scale to the problem. The use of mgGEP-RG to evolve conditions

and develop modular controllers is thus a better technique than manual trial and error.

The results shown by Figure 5.29 suggests that the mgGEP-RG requires a longer gener-

ation run in order to converge to the target solution. Although longer evolutionary runs

increases computational and time overheads, the benefits of evolving modular architecture

outweighs the costs. For instance, if a particular new robot controller is required, it would

likely require a huge amount of time to develop using trial and error techniques such as

171

Figure 5.28: Comparison of progression of the fitness of the best individual fitness in the
population as achieved through mgGEP, mgGEP-RG and mgGEP-LE in the
different room types. The average fitness has been computed from the best
individual fitness achieved in each generation in all the 20 randomly seeded
algorithms. In each evolutionary run, a population of 500 organisms was
evolved for 500 generations and the best individual fitness recorded in each
generation. The rest of the parameters are as shown on Table 5.12.

subsumption architecture. Moreover, divide and conquer techniques such as layered learn-

ing and incremental evolution may lead to very good sub-behaviours but fail to develop the

target global behaviour. Additionally, even when viable sub-behaviours are developed, the

developer has to design a suitable behaviour coordination mechanisms. The mgGEP-RG

performance as shown in this example may require longer generations but it is capable of

developing viable controllers with near-equal success rates to human designed behaviour

sub-division strategies (see Figure 5.30 for success rates).

172

Figure 5.29: Progression of the best individual in the population as achieved through
mgGEP, mgGEP(L) and mgGEP-RG in room 2 and 4. The average fitness
has been computed from the best individual fitness achieved in each gener-
ation in all the 20 randomly seeded algorithms. In each evolutionary run,
a population of 500 organisms was evolved for 500 generations and the best
individual fitness recorded in each generation. The rest of the parameters are
as shown on Table 5.12.

Figure 5.30: Progression of success rates with number of generations using mgGEP,
mgGEP(L) and mgGEP-RG. The success rate refers to the percentage of
the total number of runs where the target fitness was achieved. Each evolu-
tionary run had a population of 500 organisms and lasted for 500 generations.
In all the experiments, 20 randomly seeded algorithm runs were conducted.
The rest of the algorithm parameters are as shown on Table 5.12.

5.5 Conclusion

This chapter introduces two new algorithms, as more biologically plausible alternatives

to the standard mgGEP as discussed in [38, 95]. The two algorithms, mgGEP-LE and

mgGEP-RG, have been implemented and used to solve a wall following problem in discrete

173

2D environments and then introduced into 3D environments where a robot wall following

was implemented. The experimental results suggests that GEP can efficiently evolve mod-

ularity by incorporating either a regulatory gene or by evolving the linker that determines

which gene to express.

The experimental results suggests that mgGEP-LE is a suitable technique to use in this

problem domain. However, as shown by the results, the performance of the algorithm is

affected by the type of linking functions in the linking set. If the available linking functions

do not scale to the problem, then the mgGEP-LE performance is affected greatly. As

such, care has to be taken before deciding which functions to include in the linking set.

Nevertheless, as shown by the experimental results, the new technique has a huge potential

in solving problems where various behaviour/action selection strategies are present but the

designer does not know which of the available strategies is the best for a particular problem.

Different linking functions, just like any function in the function set, have different arities.

The use of linking functions with different arities can be utilised to evolve chromosomes

with variable lengths. Further research could be carried out using this technique to not

only evolve robotic controllers but also solve mathematical problems such as symbolic

regression.

The mgGEP-RG technique has been shown to perform equally as well as the human

designed mgGEP. Additionally, this technique was shown to evolve controllers that the

human designer could possibly not have thought of, or that would be hard to imple-

ment. The mgGEP-RG uses a more biologically plausible technique not only to solve the

presented problems but also to evolve the conditions that determine how sub-behaviour di-

vision should occur. This technique removes the need for the designer to specify behaviour

modularity as well as design a specific behaviour/action selection strategy. However, the

results show that mgGEP-RG requires longer generational runs in order to converge to

the required solution. Given the amount of work that a designer may need to carry out

in using a trial and error technique to develop a robot controller, the experimental results

shown in this chapter suggest that the potential offered by mgGEP-RG algorithm out-

weighs the time overhead. Further work could be carried out with longer runs, such as

1000 generations, to determine the performance of mgGEP-RG.

174

6 Conclusions and Further Work

The research presented in this thesis investigates whether the capabilities of gene expres-

sion programming (GEP), as described in [38], can be extended to the field of evolutionary

robotics (ER). The conducted research utilises well known robot problems to illustrate the

capabilities of GEP in the evolutionary robotics domain. Additionally, two new evolution-

ary techniques based on multiple genes GEP (mgGEP) are introduced and implemented

for robotic tasks.

This chapter summarises the main results of the presented research and how they con-

tribute to answer the research questions posed in the introductory chapter.

6.1 GEP for automatic development of robot controllers

The research presented in Chapter 3, introduces gene expression programming (GEP) to

the exciting field of evolutionary robotics. The presented work utilises a monolithic evolu-

tion approach to investigate whether GEP is a feasible algorithm for ER problems. In the

described work, GEP is implemented to evolve obstacle avoidance behaviour in simulated

3D environments. The obtained results show that the controllers evolved using GEP were

able to solve the problem with satisfactory results. Further experiments showed that the

evolved controllers performed satisfactorily when introduced to new environments. Addi-

tionally it was shown that controllers with shorter ORFs/phenotypes adapted better in the

environment than controllers with longer phenotypes. The explanation with regard to the

performance of shorter phenotypes is that they are less likely to overfit when introduced

into a new environment.

In addition to the unigenic GEP approach, work presented in Chapter 3 show that GEP can

be implemented to evolve monolithic robot controllers using multiple genes. The obtained

results show that this novel technique of evolving two genes in parallel to control a robot,

generates more successful robot controllers than the standard monolithic approach. The

good performance shown by the multiple-output controllers is likely to have been as a

result of a “divide and conquer” approach where each gene was specialised for the control

of one robot motor. Moreover, utilising one gene for a particular motor lowered the

search space leading to quicker evolution speeds. In comparison to the unigenic approach,

the results obtained from the multiple-output GEP algorithm showed that the mgGEP-

multiple output controllers were more likely to perform well in new environment than

the unigenic GEP controllers. This, as mentioned earlier, is likely to be as a result of

specialisation within the sub-controllers/genes.

175

The capabilities of GEP as outlined by [38, 43, 93, 95] goes beyond the use of one gene

(ugGEP) to code for GEP programs. This means that GEP can be extended from a

monolithic approach towards modular evolution. Subsequently, the mechanism to use

multiple genes (mgGEP) to encode GEP programs has been implemented to evolve robot

wall following and foraging behaviours. The approach, presented in Chapter 4, is that of

manual division of the genes functionality using a linking function specifically designed for

the task. The results obtained using this approach show that modular systems evolved

better performing controllers than the monolithic ones. The results further suggest that

the capability of GEP to code for multiple genes, offers a simple yet effective approach to

develop modular robot controllers. The good performance shown by the mgGEP is likely

to be as a result of reduction in search space and the implemented “divide and conquer”

approach.

Results obtained using robot foraging behaviour, show that behaviour coordination mech-

anisms can affect the ability of a modular controller to solve a problem successfully. This

finding is in line with most research in this area [4, 18, 92, 117, 142]. Following this, two new

mechanisms; multigenic GEP with Linker Evolution (mgGEP-LE) and multigenic GEP

with Regulatory Gene (mgGEP-RG), were implemented and used for evolution of robot

controllers. The results obtained from these two approaches are shown to approximate

results from the human guided mgGEP. These results suggests that GEP not only offers

capabilities to evolve modular controllers but also a more biologically plausible approach

to implement action selection mechanisms.

In summary, the results obtained in Chapter 3 and 4 suggests that GEP algorithm is a

suitable and effective technique that can be utilised in evolutionary robotics. Additionally,

the experiments shows that GEP can be implemented either as a unigenic organism or

using multiple genes. In the presented robot problems, the obtained results show that

modular GEP controllers perform better than unigenic controllers. The modular con-

trollers offer more biologically plausible capabilities in problem solving as well as reducing

the search space through behaviour sub-division. Thus, research in Chapter 3 helps to

answer the first two research questions posed in section 1.1.1 as well as support the first

claim in section 1.1.3. Similarly, research in Chapter 4 contributes an answer to the third

research question as well as a support for the second research claim.

6.2 GEP for automatic development of modular robot

controllers

The subsumption architecture provides a mechanism for the designers of robotic controllers

to code for different behaviours within a single robot. This enables the robot to undertake

a range of behaviours from simple self-preservation (obstacle avoidance, battery charging)

through to goal directed behaviours (exploration and goal finding). Traditionally, the

delineation between behaviours has been hand-coded by human designers. As discussed

previously, work in ER utilising subsumption architecture does not precisely delineate sub-

behaviours into different modules, instead an overall emergent behaviour is evolved that

176

is made up of various tasks. Incremental learning on the other hand, evolves behaviours

incrementally with the controllers having performed well in one task, evolved further to

perform a different task. As show in [5, 55, 56], for the successful evolution of a particular

tasks, the different fitness functions used should be closely related; with fitness functions

used in lower layers being a function of the higher layers fitness functions. Again, when

the controller is analysed, the behaviour is more of an emergent behaviour rather than a

sum of separate modules. Thus, the evaluated ER implementation use only one layer and

does not model subsumption architecture in its intended form.

As reported in section 2.5.2, layered learning approaches [117, 136] involves “freezing” the

learning of the lower layers once a set fitness has been achieved. This means that the robot

stops learning any more about self-preserving behaviours and concentrates on higher layers

such as goal finding. Since an autonomous agent works in an unstructured environment,

life-time learning is important in order to continue performing efficiently. There is thus a

need for algorithms that offer concurrent multi-layer learning. To solve this problem, the

mgGEP-LE and mgGEP-RG algorithms were introduced in Chapter 5. These two algo-

rithms offers the capability to determine the division between behaviours automatically,

allowing the controller to self-organise according to the problem at hand. Analysing the

evolved robot controllers suggests that both mgGEP-LE and mgGEP-RG implements a

behaviour sub-division which would appear logical from a human perspective, e.g. division

into obstacle avoidance and exploratory behaviours. The various advantages offered by

layered learning are carried over to mgGEP-LE and mgGEP-RG algorithms as discussed

below:

• Task decomposition: Monolithic evolution (one layer with one fitness function), the

widely used evolutionary mechanism in evolutionary robotics, offers an automatic

method to generate robotic controllers. However, with a difficult task, a better way

of solving the problem would be to decompose the problem into simpler tasks and

solve them with increasing complexity. This is what incremental evolution, layered

learning and the proposed modularised evolution offers.

• Search dimensionality: By dividing the problem into different tasks, each in its

own layer, the algorithm only has to search a small space for each particular task;

unlike in incremental evolution where genome size has to be maintained as there

is no particular difference within layers, i.e. only one layer is available and fitness

function in higher layers has to include the fitness function in a lower layer. This

decrease in search dimensionality is shared with layered evolution. As shown in

Chapter 5, controllers evolved using mgGEP were much shorter than those evolved

using ugGEP.

• Automatic behaviour sub-division: The approach proposed through mgGEP-RG of-

fers a technique where behaviour sub-division can be accomplished automatically.

In incremental learning, layered evolution and the standard mgGEP, behaviour sub-

division is accomplished manually by the designer specifying which module performs

a particular task. However, in the proposed mgGEP-RG technique, a regulator gene

determines how behaviour sub-division occurs. This is of great benefit to the devel-

177

opment of robot controllers: There is no time spent evaluating the best behaviour

coordination mechanism, evolved controllers are not restricted to a particular rule

and there is high likelihood of development of robust controllers. Additionally, a

robot control program requiring a large number of modules is likely to be evolved

with more ease using mgGEP-RG than mechanisms requiring manual behaviour

sub-division.

• Symbiosis modelling: Togelius [136] argues that layered evolution can be interpreted

as a symbiotic relationship between the different behaviours. This is also true for

the mgGEP, mgGEP-LE and mgGEP-RG approaches. For the effective control of a

robot, the various sub-controllers have to co-exist and cooperate in order to achieve

the set objective, for instance the evolved avoidance behaviour has to co-exist with

exploration with wall proximity each aiding the other to achieve the overall required

behaviour.

• Biological plausibility: The GEP algorithm in general, offers a more biological plau-

sible approach to evolution than both GAs and GP. This is shown by:

Genotype to Phenotype mapping: Unlike GA and GP, GEP individuals have a

distinctive delineation of genotypes and phenotypes. Similar to natural biology, the

genotypes undergo genetic operations while the phenotypes are subject of selection.

Also, during the course of evolution the phenotypes vary in size and shape while the

genotypes remain as fixed length structures.

Open reading frames (ORF): The GEP genes contains a coding region of the genome,

known as ORF, and non-coding region. As mentioned in section 2.3.5, the only dif-

ference between the GEP ORFs and similar structures in natural biological is that

GEP ORFs have non-coding regions running only downstream while in natural biol-

ogy the ORFs have non-coding regions upstream and downstream. The non-coding

regions allow GEP phenotypes to increase or reduce their size without affecting the

length of the chromosome.

Multiple gene chromosomes: Similar to chromosomes in natural biology, the GEP

chromosomes can be formed using more than one gene. As the results show, these

multiple genes chromosomes evolves better controllers than the monolithic ones.

The mgGEP-LE and mgGEP-RG approaches offers concurrent evolution of sub-

controllers as well as a behaviour organiser. This is more biologically plausible than

a layered evolution where learning in lower behaviours is stopped when a set fitness

is achieved. Also, mechanisms utilising mgGEP-RG replicates the working of a cell

in a biological organism, albeit in a very simple way. The obtained results suggest

that these mechanisms are as effective as mechanisms utilising human expertise.

The experimental results and the subsequent discussion in Chapter 5, together with the

discussion in this section contributes an answer to the fourth research question (for research

questions, please see section 1.1.1). The use of mgGEP-LE to evolve linking functions

means that the algorithm has the capability to evolve the best behaviour coordination

mechanism available in the linking set. This is more natural than providing only one

178

behaviour coordination as is common in standard mgGEP or layered learning techniques.

However, as previously mentioned, care has to be taken to ensure that relevant linking

functions are provided in the linking set. Similarly, mgGEP-RG provides more biologically

plausible mechanisms to ER problems. By replicating the working of a biological cell, the

algorithm offers a mechanism where a developer needs to only decide on number of sub-

tasks and the algorithm generates not only the modular behaviour but also a coordination

mechanism.

The results obtained in Chapter 4 showed that a linking function could be used to co-

ordinate which of the two genes would effect motor control. Similarly, the results of

mgGEP-LE in Chapter 5 showed that these linking functions could be grouped together

in a linking set and evolved with the rest of the genome. In addition, the implementation

of the mgGEP-RG and subsequent results in Chapter 5, shows that one gene in a multi-

gene chromosome can be utilised to evolve the conditions under which gene regulation

occurs. Therefore, the algorithm implementations and results obtained in Chapters 4 and

5 supports the third research claim as listed in section 1.1.3.

6.3 Further work

This sections highlights further research work that can be conducted using the techniques

described in this thesis.

6.3.1 Simulator to on-board evolution

As mentioned above, research in this thesis was carried out in simple robot simulators. As

a result, further work would be to carry out more investigations using a robotic simulator

that offers more complex robotic capabilities such as vision, touch and communication as

well as simulator to real robot transfer capabilities. A robotic simulator that offers more

complex robot capabilities would act as a good test bed to evolve behaviours that require

many modules. Also controllers developed in such a simulator can then be tested in a

situated robot. The success of simulator to real robot transfer could be further extended

to on-board development.

6.3.2 RoboCup

RoboCup 1 is an international robot competition where teams of soccer playing robots

compete against each other. The goal is to develop a team of soccer playing humanoid

robots that will be able to win a match against the winner of the most recent World

Cup, following FIFA rules by the year 2050. Thus the research in RoboCup is multi-agent

oriented. However, in a game of soccer an individual is required to perform numerous tasks.

These include; ball kicking, ball searching, communication with team mates, identifying

opponents, running, walking, obstacle avoidance, goal saving and many more. This means

1More information regarding Robocup can be found on http://www.robocup.org/

179

that a potential control program for a soccer playing robot has to be modular in nature.

The task of developing a modular control program for a soccer playing robot is likely to

be tedious and require the developer to understand soccer rules and anticipate all the

scenarios that a robot may encounter.

The multigenic GEP with regulator gene (mgGEP-RG) algorithm, described in Chapter

5, offers the capabilities to evolve modular controllers without any human expertise. For

a soccer playing behaviour, the mgGEP-RG algorithm could offer great benefits for a de-

veloper. Firstly, the developer does not need to program particular functionalities of a

particular module, instead the developer needs to only supply sufficient number of genes

to the algorithm and an additional gene that evolves the conditions for behaviour coordi-

nation. Secondly, only one fitness function needs to be formulated; this would reduce the

time taken for behaviour evaluation. Finally, unlike other approaches where one module

is developed and then tested before another module can be developed, the mgGEP-RG

approach offers concurrent development. Thus, reducing the overall development time.

Further, the project can be extended to evolve multi-agents using co-evolution techniques.

6.3.3 Complex robots

Complex robots such as humanoids and autonomous ground vehicles require the use of

numerous sensors and actuators in order to meet their objectives. Additionally, in order

to display a certain behaviour a complex robot requires to perform multiple tasks. For

instance, a walking behaviour in a humanoid may require the robot to; bend the knee, lift

its leg, move the leg and then step on the ground. To accomplish any of the behaviours,

complex robots need to use modular controllers. The proposed mgGEP-RG technique can

be used in further work involving complex robots. As the results presented in this thesis

show, the mgGEP-RG algorithm is likely to evolve robust controllers so long as sufficient

number of genes are supplied and enough evolutionary duration.

180

Bibliography

[1] J. Abraham, N. Nedjah, and L. de Macedo Mourelle. Evolutionary Computation:

From Genetic Algorithms to Genetic Programming. In A. Abraham, N. Nedjah, and

L. de Macedo Mourelle, editors, Genetic Systems Programming, volume 13 of Studies

in Computational Intelligence, pages 1–20. Springer Berlin / Heidelberg, 2006.

[2] I. Al-Taharwa, A. Sheta, and M. Al-Weshah. A Mobile Robot Path Planning Using

Genetic Algorithm in Static Environment. J. Computer Science, 4:341–344, 2008.

[3] R. C. Arkin. Motor Schema-Based Mobile Robot Navigation. International Journal

of Robot Automation, 8:92–112, 1989.

[4] R. C. Arkin. Behavior-Based Robotics. MIT Press, Cambridge, MA, USA, 1st

edition, 1998.

[5] D. Bajaj and H. A. Marcelo. An Incremental Approach in Evolving Robot Be-

haviour. In Proceedings of the Sixth International Conference on control, Automa-

tion, Robotics and Vision. IEEE, 2000.

[6] A. Baker. Simplicity. In E. N. Zalta, editor, The Stanford Encyclo-

pedia of Philosophy. http://plato.stanford.edu/archives/sum2011/entries/

simplicity/, summer 2011 edition, 2011.

[7] J. E. Baker. Reducing Bias and Inefficiency in The Selection Algorithm. In J. J

Grefenstette, editor, Proceedings of the Second International Conference on Genetic

Algorithms and their Application, pages 14–21, Hillsdale, New Jersey, 1987.

[8] D. Baldassarre, S. Nolfi, and D. Parisi. Evolving Mobile Robots Able to Display

Collective Behaviours. J. Artificial Life, 9:255–267, 2002.

[9] A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and Sequential Decision

Making, pages 497–537. MIT Press, 1990.

[10] S. M. Best and P. T. Cox. Programming an Autonomous Robot Controller by

Demonstration Using Artificial Neural Networks. In Proceedings of the IEEE Sym-

posium on Visual Languages and Human Centric Computing, pages 157–159, 2004.

[11] H-G. Beyer and H-P. Schwefel. Evolution Strategies: A Comprehensive Introduction.

J. Natural Computing, 1:3–52, 2002.

[12] J. Billingsley, D. Oetomo, and J. Reid. Agricultural Robotics [TC Spotlight]. J.

Robotics Automation Magazine, IEEE, 16(4):16–19, 2009.

181

[13] J. Blynel and D. Floreano. Exploring the T-Maze: Evolving Learning-Like Robot

Behaviours Using CTRNNs. In Proceedings of the 2003 international conference on

Applications of evolutionary computing, pages 593–604. Springer-Verlag, 2003.

[14] M. Botros. Evolving Complex Robotic Behaviors Using Genetic Programming. In

A. Abraham, N. Nedjah, and L. de Macedo Mourelle, editors, Genetic Systems

Programming, volume 13 of Studies in Computational Intelligence, pages 173–191.

Springer Berlin / Heidelberg, 2006.

[15] M. Brameier. On Linear Genetic Programming. PhD thesis, University of Dortmund,

2004.

[16] C. Brauers, M. Dombrowski, H. Surmann, R. Worst, T. Linder, and J. Winzer. The

RescueBot - A new Variant of the VolksBot. In Proceedings of the International Con-

ference on Simulation, Modeling and Programming for Autonomous Robots, pages

296–303, 2010.

[17] R. A. Brooks. A Robust Layered Control System for a Mobile Robot. IEEE Journal

of Robotics and Automation, 2(1):14–23, 1986.

[18] R. A. Brooks. Intelligence Without Representation. J. Artificial Intelligence, 47:

139–159, 1991.

[19] H. Burchardt and R. Salomon. Implementation of Path Planning Using Genetic

Algorithms on Mobile Robots. In Proceedings of the IEEE Congress on Evolutionary

Computation, pages 1831–1836, 2006.

[20] A. Cangelosi and J.L. Elman. Gene Regulation and Biological Development in Neural

Networks: An Exploratory Model. Technical report, Institute of Psychology, CNR,

viale Marx 15, Rome, 1995.

[21] A. Cangelosi, S. Nolfi, and D. Parisi. Artificial Life Models of Neural Development.

In S. Kumar and P.J. Bentley, editors, On Growth, Form and Computers, pages

339–352. Elsevier Academic Press, 2003.

[22] G. Capi and K. Doya. Evolution of Neural Architecture Fitting Environmental

Dynamics. J. International Society for Adaptive Behaviour, 13(1):53–66, 2005.

[23] E. G. Carrano, C. M. Fonseca, R. H. C. Takahashi, L. C. A. Pimenta, and O. M.

Neto. A Preliminary Comparison of Tree Encoding Schemes for Evolutionary Algo-

rithms. In Proceedings of the IEEE International Conference on Systems, Man and

Cybernetics (SMC 2007), pages 1969–1974, 2007.

[24] D. J. Chalmers. The Evolution of Learning: An Experiment in Genetic Connec-

tionism. In D. S. Touretzky, J. Elman, T.J. Sejnowski, and G.E. Hinton, editors,

Proceedings of the 1990 Summer School on Connectionist Models, pages 81–90, San

Francisco, CA, 1990.

182

[25] A. Cherubini, F. Giannone, and L. Iocchi. Layered Learning for a Soccer Legged

Robot Helped with a 3d Simulator. In U. Visser, F. Ribeiro, T. Ohashi, and F. Del-

laert, editors, RoboCup 2007: Robot Soccer World Cup XI, pages 385–392. Springer-

Verlag, 2008.

[26] A. L. Christensen and D. Marco. Evolving an Integrated Phototaxis and Hole-

Avoidance Behavior for a Swarm-bot. In Proceedings of the 10th International Con-

ference on the Simulation and Synthesis of Living Systems (Alife X), pages 248–254.

MIT Press, 2006.

[27] S. Clancy and W. Brown. Translation:DNA to mRNA to Protein. Nature Education,

1(1), 2008.

[28] D. Cliff, P. Husbands, and I. Harvey. Explorations in Evolutionary Robotics. J.

Adaptive Behaviour, 2:73–110, 1993.

[29] D. Cliff, P. Husbands, and I. Harvey. Seeing the Light: Artificial Evolution, Real

Vision. From Animals to Animats 3, Proceedings of the 3rd International Conference

on Simulation of Adaptive Behavior, pages 392–401, 1994.

[30] A. J. Critchlow. Introduction to Robotics. MacMillan Publishing Company, New

York, 1985.

[31] R. Dawkins. The Blind Watchmaker. Penguin Books, 1986.

[32] R. Dawkins. The Greatest Show on Earth: The Evidence of Evolution. Bantam

Press, 2009.

[33] P. Dayan and Y. Niv. Reinforcement Learning: The Good, The Bad and the Ugly.

J. Current Opinion in Neurobiology, 18:185–196, 2008.

[34] H. De Jong. Modelling and Simulation of Genetic Regulatory Systems: A Literature

Review. J. Computational Biology, 9(1):67–103, 2002.

[35] E. De Momi and G. Ferrigno. Robotic and Artificial Intelligence for Keyhole Neu-

rosurgery: The ROBOCAST project, a multi-modal autonomous path planner. J.

Engineering in Medicine, 224(5):715–727, 2010.

[36] L. Fausett. Fundamentals of Neural Network. Prentice-Hall, 1994.

[37] J. A. Fernandez-Leon, G. G. Acosta, and M. A. Mayosky. Behavioral Control

Through Evolutionary Neurocontrollers for Autonomous Mobile Robot Navigation.

J. Robotics and Autonomous Systems, 57:411–419, 2009.

[38] C. Ferreira. Gene Expression Programming: A New Adaptive Algorithm for Solving

Problems. J. Complex Systems, 13(2):87–129, 2001.

[39] C. Ferreira. Genetic Representation and Genetic Neutrality in Gene Expression

Programming. J. Advances in Complex Systems, 5(4):389–408, 2002.

183

[40] C. Ferreira. Analyzing the Founder Effect in Simulated Evolutionary Processes Using

Gene Expression Programming. J. Soft Computing Systems: Design, Management

and Applications, pages 153–162, 2003.

[41] C. Ferreira. Gene Expression Programming and the Evolution of Computer Pro-

grams. J. Recent Developments in Biologically Inspired Computing, pages 82–103,

2004.

[42] C. Ferreira. Gene Expression Programming: Mathematical Modelling by an Artificial

Intelligence (2nd edition). Springer, 2006.

[43] C. Ferreira. Automatically Defined Functions in Gene Expression Programming.

In A. Abraham, N. Nedjah, and L. de Macedo Mourelle, editors, Genetic Systems

Programming, volume 13 of Studies in Computational Intelligence, pages 21–56.

Springer Berlin / Heidelberg, 2006.

[44] P. Fidelman and P. Stone. The Chin Pinch: A Case Study in Skill Learning on

a Legged Robot. In RoboCup-2006: Robot Soccer World Cup X. Springer Verlag,

2007.

[45] D. Floreano and L. Keller. Evolution of Adaptive Behaviour in Robots by Means of

Darwinian Selection. J. PLoS Biology, 8, 2010.

[46] D. Floreano and F. Mondada. Automatic Creation of an Autonomous Agent: Ge-

netic Evolution of a Neural-Network Driven Robot. In Proceedings of the Third

International Conference on Simulation of Adaptive Behavior. MIT Press-Bradford

Books, Cambridge, MA, 1994.

[47] D. Floreano and F. Mondada. Evolution of Plastic Neurocontrollers for Situated

Agents. In P. Maes, M. Mataric, J-A. Meyer, J. Pollack, and S. Wilson, editors,

From Animals to Animats 4, Proceedings of the 4th International Conference on

Simulation of Adaptive Behavior (SAB’1996), pages 402–410. MA: MIT Press, 1996.

[48] D. Floreano and J. Urzelai. Evolutionary Robots with On-line Self-Organization

and Behavioural Fitness. J. Neural Networks, 13:431–443, 2000.

[49] D. Floreano, J. Godjevac, A. Martinoli, F. Mondada, and J. D. Nicoud. Design,

Control, and Applications of Autonomous Mobile Robots. In S. G. Tzafestas, editor,

Advances in Intelligent Autonomous Agents. Kluwer Academic Publishers, 1998.

Part 2, Chapter 8, p. 159–186.

[50] D. Floreano, P. Durr, and C. Mattiussi. Neuroevolution: From Architectures to

Learning. J. Evolutionary Intelligence, 1(1):47–62, 2008.

[51] D. B. Fogel and K. Chellapilla. Revisiting Evolutionary Programming. In Proceedings

of SPIE Aerosense98, Applications and Science of Computational Intelligence, pages

2–11, 1998.

[52] E. Galván-López, R. Poli, A. Kattan, M. O’Neill, and A. Brabazon. Neutrality in

Evolutionary Algorithms...What do we know? J. Evolving Systems, 12:365–401,

2011.

184

[53] E. Gat. On Three-Layered Architectures. J. Artificial Intelligence and Mobile

Robots, pages 195–210, 1998.

[54] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley Longman Publishing Co., Inc., 1st edition, 1989.

[55] F. Gomez and R. Miikulainen. Incremental Evolution of Complex General Be-

haviour. Technical report, Technical Report AI96-248, Austin, TX: University of

Texas at Austin, 1996.

[56] F. Gomez and R. Miikulainen. Solving Non-Markovian Control Tasks with Neu-

roevolution. In Proceedings of the International Joint Conference on Artificial In-

telligence (IJCAI), 1999.

[57] A. J. F. Griffiths, J. H. Miller, D. T. Suzuki, R. C. Lewontin, and W. M. Gelbart.

An Introduction to Genetic Analysis. W. H. Freeman, New York, 7th edition, 2000.

[58] D. Gu and H. Hu. Evolving Fuzzy Logic Controllers for Sony Legged Robots. In

A. Birk, S. Coradeschi, and S. Tadokoro, editors, RoboCup 2001, LNAI 2377, pages

356–361, 2001.

[59] D. Gu, H. Hu, J. Reynolds, and E. Tsang. GA-Based Learning in Behaviour Based

Robotics. In Proceedings of the IEEE International Symposium on Computational

Intelligence in Robotics and Automation, pages 16–20, 2003.

[60] I. Harvey, P. Husbands, and D. Cliff. Issues in Evolutionary Robotics. In J-A. Meyer,

H. Roitblat, and S. Wilson, editors, Proceedings of the 3rd International Conference

on Simulation of Adaptive Behavior, volume 2, pages 73–110, 1993.

[61] I. Harvey, P. Husbands, D. Cliff, A. Thompson, and N. Jakobi. Evolutionary

Robotics: The Sussex Approach. J. Robotics and Autonomous Systems, 20:205–

224, 1997.

[62] S. Haykin. Neural Networks. Prentice-Hall, 2 edition, 1999.

[63] A. Hosseinzadeh and H. Izadkhah. Evolutionary Approach for Mobile Robot Path

Planning in Complex Environment. International Journal of Computer Science,

2010.

[64] C. Hsinghua, G. Premkumar, and C. Chao-Hsien. Genetic Algorithms for Commu-

nications Network Design - an empirical study of the factors that influence perfor-

mance. J. IEEE Transactions on Evolutionary Computation, 5(3):236–249, 2001.

[65] L. Hugues and N. Bredeche. A Quick Programming Guide for Simbad Simulator.,

August 2005. URL http://simbad.sourceforge.net/guide.php.

[66] L. Hugues and N. Bredeche. Simbad: An Autonomous Robot Simulation Package

for Education and Research. In Simulation of Adaptive Behaviour, 2007.

[67] P. Husbands, I. Harvey, D. Cliff, and G. Miller. Artificial Evolution: A New Path

for Artificial Intelligence? J. Brain and Cognition, 34(1):130–159, 1997.

185

[68] C. Igel and M. Toussaint. Neutrality and Self-Adaptation. J. Natural Computing,

2:117–132, 2003.

[69] K. Ito. Simple Robots in a Complex World: Collaborative Exploration Behavior

using Genetic Programming. In John R. Koza, editor, Genetic Algorithms and

Genetic Programming at Stanford 2003, pages 91–99. Stanford Bookstore, 2003.

[70] Gurney K. An Introduction to Neural Networks. UCL Press, 1997.

[71] S. Kent. Evolutionary Approaches to Robot Path Planning. PhD thesis, Brunel

University, 1999.

[72] H. L. Kian, K. L. Wee, and H. A. Marcelo. A Hybrid Mobile Robot Architecture

with Integrated Planning and Control. In Procedings of the Autonomous Agents and

Multi-Agent Systems (AAMAS-02), pages 219–226. ACM Press, 2002.

[73] P. E. Kladitis. How small is too small? True Microrobots and Nanorobots for

Millitary Applications in 2035. Technical report, Air commands and staff college,

Air University, 2010.

[74] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, 1992.

[75] J. R. Koza. Evolution of Subsumption Using Genetic Programming. In P. Bourgine

F. J. Varela, editor, Proceedings of the First European Conference on Artificial Life:

Towards a Practice of Autonomous Systems, pages 110–119, 1993.

[76] J. Dario Landa-Silva and Edmund K. Burke. Applications of Multi-Objective Evo-

lutionary Algorithms, Advances in Natural Computation, volume 1, pages 727–751.

World Scientific, 2004.

[77] D. K. Laszlo. Evolution of Intelligent Agents: A New Approach to Automatic

Plan Design. In Proceedings of the IFAC Workshop on Control Applications of

Optimization, pages 237–243. Elsevier, 2003.

[78] C. Lazarus and H. Hu. Using Genetic Programming to Evolve Robot Behaviours.

In Proceedings of the 3rd British Conference on Autonomous Mobile Robotics and

Autonomous Systems, 2001.

[79] C. Lazarus and H. Hu. Evolving Goalkeeper Behaviours for Simulated Soccer Com-

petition. In Proceedings of the 3rd IASTED International Conference on Artificial

Intelligence and Applications, 2003.

[80] W-P. Lee. Evolving Complex Robot Behaviors. J. Information Sciences, 121:1–25,

1999.

[81] S. Luke. Evolving Soccerbots: A Retrospective. In Proceedings of the 12th Annual

Conference of the Japanese Society for Arti Intelligence (JSAI), 1998.

[82] L.T. MacNeil and A.J.M Walhout. Gene Regulatory Networks and the Role of

Robustness and Stochasticity in the Control of Gene Expression. Genome Research,

21:645–657, 2011.

186

[83] M. J. Mataric. A Distributed Model for Mobile Robot Environment-Learning and

Navigation. Technical report, Massachusetts Institute of Technology, Cambridge,

MA, USA, 1990.

[84] C. Mautner and R. K. Belew. Evolving Robot Morphology and Control. In Proceed-

ings of the Artificial Life and Robotics (AROB), 1999.

[85] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs (2nd,

extended ed.). Springer-Verlag New York, Inc., 1994.

[86] R. Miikkulainen. Neuroevolution. J. Encyclopedia of Machine Learning, pages 716–

720, 2010.

[87] J. F. Miller and P. Thomson. Cartesian Genetic Programming. In Proceedings of the

Third European Conference on Genetic Programming (EuroGP2000), volume 1802

of LNCS, pages 121–132. Springer-Verlag, 2000.

[88] M. Minsky. Steps Toward Artificial Intelligence. In Proceedings of the Institute of

Radio Engineers, pages 8–30. Institute of Radio Engineers, New York, 1961.

[89] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, 1998.

[90] Jean-Baptiste. Mouret and Stéphane. Doncieux. Overcoming the bootstrap prob-

lem in evolutionary robotics using behavioral diversity. In Proceedings of the IEEE

Congress on Evolutionary Computation’09, pages 1161–1168, 2009.

[91] L. Moussi and M. K. Madrid. Simple Target Seek Based on Behavior. In Proceed-

ings of the 6th WSEAS International Conference on Signal Processing, Robotics and

Automation, pages 133–139, 2007.

[92] R. R. Murphy. Introduction to AI Robotics. MIT Press, Cambridge, MA, USA, 1st

edition, 2000.

[93] J. Mwaura and E. Keedwell. Adaptive Gene Expression Programming Using a Simple

Feedback Heuristic. In Proceedings of the AISB, Edinburgh, UK, 2009.

[94] J. Mwaura and E. Keedwell. Evolution of Robotic Behaviours Using Gene Expression

Programming. In Proceedings of the IEEE Congress on Evolutionary Computation

(CEC2010), pages 1–8, Barcelona, Spain, 2010.

[95] J. Mwaura and E. Keedwell. Evolving Modularity in Robot Behaviour Using Gene

Expression Programming. In R. Gross, L. Alboul, C. Melhuish, M. Witkowski,

T. J. Prescott, and J. Penders, editors, Towards Autonomous Robotic Systems -

12th Annual Conference, (TAROS 2011), August 31 - September 2, volume 6856 of

Lecture Notes in Computer Science, pages 392–393, Sheffield, UK, 2011. Springer.

[96] G. Nagib and W. Gharieb. Path Planning for a Mobile Robot Using Genetic Algo-

rithms. In Proceedings of the International Conference on Electrical, Electronic and

Computer Engineering, pages 185–189, 2004.

187

[97] A. L. Nelson, E. Grant, G. J. Barlow, and T. C. Henderson. A Colony of Robots Us-

ing Vision Sensing and Evolved Neural Controllers. In Proceedings of the IEEE/RSJ

International Conference On Intelligent Robots And Systems, volume 3, pages 2273–

2278, 2003.

[98] A. L. Nelson, E. Grant, J. M. Galeotti, and S. Rhody. Maze Exploration Be-

haviours Using an Integrated Evolutionary Robotics Environment. J. Robotics and

Autonomous Systems, 46(3):159–173, 2004.

[99] A. L. Nelson, G. J. Barlow, and L. Doitsidis. Fitness Functions in Evolutionary

Robotics: A survey and analysis. J. Robotics and Autonomous Systems, 57:345–370,

2009.

[100] A.L. Nelson and E. Grant. Developmental analysis in evolutionary robotics. In

Proceedings of the 2006 IEEE SMC Mountain Workshop on Adaptive and Learning

Systems (SMCals06), pages 201–206, 2006.

[101] R. Neruda and S. Slusny. Evolving Neural Network which Control a Robotic Agent.

In Proceedings of the IEEE Congress on Evolutionary Computationn, 2007.

[102] N. J. Nilsson. Introduction to Machine Learning: An Early Draft of a Proposed

Textbook., 1996.

[103] S. Nolfi. Evolutionary Robotics: Exploiting the full power of self organization. J.

Connection Science, 10 (3–4):167–183, 1998.

[104] S. Nolfi. Behaviour as A Complex Adaptive System: On the role of self-organization

in the development of individual and collective behaviour. J. ComplexUs, 2 (3–4):

195–203, 2006.

[105] S. Nolfi and D. Floreano. Evolutionary Robotics. The Biology, Intelligence, and

Technology of Self-organizing Machines. MIT Press, 2000.

[106] P. Nordin and W. Banzhaf. Real Time Control of a Khepera Robot Using Genetic

Programming. J. Cybernetics and Control, 26:533–561, 1997.

[107] M. Oltean. A Comparison of Several Linear Genetic Programming Techniques. J.

Complex-Systems, 14(4):285–313, 2003.

[108] M. Oltean. Solving Even-Parity Problems Using Traceless Genetic Programming. In

Proceedings of the IEEE Congress on Evolutionary Computation, pages 1813–1819,

2004.

[109] M. Oltean, C. Grosan, L. Diosan, and C. Mihăilă. Genetic Programming with Linear

Representation, A survey. International Journal on Artificial Intelligence Tools, 8:

197–238, 2008.

[110] A. Oreback and H. I. Christensten. Evaluation of Architectures for Mobile Robotics.

J. Autonomous Robots, 14:33–49, 2002.

188

[111] K. M. Passino and S. Yurkovich. Fuzzy Control. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1st edition, 1997.

[112] D.W. Patterson. Artificial Neural Networks: Theory and Applications. Prentice Hall

PTR, 1st edition, 1998.

[113] V. M. Peri and D. Simon. Fuzzy Logic Control for an Autonomous Robot. In North

American Fuzzy Information Processing Society, pages 337–342, 2005.

[114] G. M. Pierce II. Robotics: Military Applications for Special Operations Forces.

Technical report, Air commands and staff college, Air University, 2000.

[115] M. L. Pilat and F. Oppacher. Robotic Control Using Hierarchical Genetic Program-

ming. In GECCO (2), volume 3103 of Lecture Notes in Computer Science, pages

642–653. Springer, 2004.

[116] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Ge-

netic Programming. Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. With contributions by J. R. Koza.

[117] T. J. Prescott, P. Redgrave, and K. Gurney. Layered Control Architectures in Robots

and Vertebrates. J. Adaptive Behavior, 7(1):99–127, 1999.

[118] Z. W. Pylyshyn. The Robot’s Dilemma: The Frame Problem in Artificial Intelli-

gence. Ablex Publishing Corporation, 1986.

[119] S. Qiao, C. Tang, J. Peng, J. Hu, and H. Zhang. BPGEP: Robot Path Planning

Based on Backtracking Parallel-Chromosome GEP. In Proceedings of the Interna-

tional Conference on Sensing, Computing and Automation, 2006.

[120] A. Radi and R. Poli. Discovering Efficient Learning Rules for Feedforward Neural

Networks Using Genetic Programming. In A. Abraham, L. Jain, and J. Kacprzyk,

editors, Recent Advances in Intelligent Paradigms and Applications, Studies in Com-

putational Intelligence, pages 133–159. Springer Berlin / Heidelberg, 2003.

[121] T. Reil. Dynamics of Gene Expression in an Artificial Genome - Implications for

Biological and Artificial Ontogeny. In Proceedings of the 5th European Conference

on Advances in Artificial Life, ECAL ’99, pages 457–466. Springer-Verlag, 1999.

[122] T. Reil. Artificial Genomes as Models of Gene Regulation. In S. Kumar and P.J.

Bentley, editors, On Growth, Form and Computers, pages 256–277. Elsevier Aca-

demic Press, 2003.

[123] A. Réka. Boolean modeling of genetic regulatory networks. Lect. Notes Phys., 650:

459–481, 2004.

[124] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2 edition, 2003.

[125] J. A. Sauter and R. Matthews. Evolving Adaptive Pheromone Path Planning Mech-

anisms. In Proceedings of the First International Joint Conference on Autonomous

Agents and Multi-Agent Systems (AAMAS-02), pages 434–440, 2002.

189

[126] K. H. Sedighi, K. Ashenayi, T. W. Manikas, R. L. Wainwright, and H-W. Tain.

Autonomous Local-Path Planning for a Mobile Robot Using a Genetic Algorithm.

In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), 2004.

[127] Z. M. Skolicki. An Analysis of Island Models in Evolutionary Computation. In

Proceedings of the Genetic and Evolutionary Computation Conference - GECCO’05,

pages 386–389, 2005.

[128] W. D. Smart and L. P. Kaelbling. Effective Reinforcement Learning for Mobile

Robots. In Proceedings of the IEEE International Conference on Robotics and Au-

tomation, pages 3404–3410. IEEE, 2002.

[129] S. Srinivasa, D. Ferguson, C. Helfrich, D. Berenson, A. Collet, R. Diankov, G. Gal-

lagher, G. Hollinger, J. Kuffner, and M. VandeWeghe. HERB: A Home Exploring

Robotic Butler. J. Autonomous Robots, 2009.

[130] K. O. Stanley, B. D. Bryant, and R. Miikkulainen. Evolving Adaptive Neural Net-

works With and Without Adaptive Synapses. In Proceedings of the 2003 Congress

on Evolutionary Computation, 2003.

[131] W-H. Steeb. The Non-Linear Workbook (3rd Ed). World Scientific Publishing Co.

Pte, 2005.

[132] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT

press, Cambridge, MA, 1998.

[133] E-G. Talbi. Metaheuristics - From Design to Implementation. Wiley, 2009.

[134] L. Teodorescu. Gene Expression Programming Approach to Event Selection in High

Energy Physics. J. IEEE Transactions of Nuclear Science, 53(4), 2006.

[135] T. Thompson and J. Levine. Scaling-up Behaviours in EvoTanks: Applying Sub-

sumption Principles to Artificial Neural Networks. In Proceedings of the IEEE Sym-

posium on Computational Intelligence and Games, 2008.

[136] J. Togelius. Evolution of a Subsumption Architecture Neurocontroller. J. Intelligent

Fuzzy System, 15:15–20, 2004.

[137] E. Tuci, M. Quinn, and I. Harvey. An Evolutionary Ecological Approach to The

Study of Learning Behaviour Using a Robot-Based Model. J. Adaptive Behaviour,

10:201–221, 2002.

[138] J. Urzelai and D. Floreano. Incremental Evolution with Minimal Resources. In

Proceedings of the International KHEPERA Workshop, 1999.

[139] J. Urzelai and D. Floreano. Evolution of Adaptive Synapses: Robots with Fast

Adaptive Behaviour in New Environments. J. Evolutionary Computation, 9:495–

524, 2001.

[140] A. Vaccarella, E. De Momi, and P. Cerveri. IGSTK-based Application for Neuro-

surgical Robotics. J. Software Developer’s Quarterly, 2010.

190

[141] N. van Hoorn, J. Togelius, and J. Schmidhuber. Hierarchical Controller Learning in

a First-Person Shooter. In Proceedings of the IEEE Symposium on Computational

Intelligence and Games, pages 294–301, 2009.

[142] M. Wahde. Evolution Robotics: The Use of Artificial Evolution in Robotics, a

tutorial. In Proceedings of the IEEE/ESJ International Conference on Intelligent

Robots and Systems, 2004.

[143] L. Wang, C. K. Tan, and C. M. Chew. Evolutionary Robotics: From Algorithms to

Implemnetations. World Scientific Pulishing Co.Pte. Ltd, 2006.

[144] B. Webb. What Does Robotics Offer Animal Behaviour? J. Animal Behaviour, 60:

545–558, 2000.

[145] E. Weiner. Could Robots Replace Humans in Mines? http://www.npr.org/

templates/story/story.php?storyId=12637032, 2007. accessed on 8th June 2011.

[146] D. Whitley. Genetic Algorithms and Neural Networks. J. Genetic Algorithms in

Engineering and Computer Science, pages 191–201, 1995.

[147] H. Yamamoto. Robot Path Planning by Genetic Programming. J. Artificial Life

and Robotics, pages 28–32, 1998.

[148] K. Yanai and H. Iba. Multi-Agent Robot Learning by Means of Genetic Program-

ming: Solving an Escape Problem. In Proceedings of the 4th International Confer-

ence on Evolvable Systems: From Biology to Hardware, pages 192–203. Springer-

Verlag, 2001.

[149] X. Yao. Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9):1423–

1447, 1999.

191

