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Abstract

The terahertz frequency range is a relatively unstudied region of the electromagnetic

spectrum. However with the emergence of numerous applications for terahertz light

in diverse areas such as security scanning, biological imaging, gas spectroscopy and

astrophysics there has been considerable recent growth in the volume of research

activity in this area. The studies presented in this thesis aim to introduce the

physics of surface plasmons to the terahertz frequency range, and on the way to

use some of the unique capabilities of terahertz spectroscopy to try and find new

information about fundamental surface-plasmon based electromagnetic structures.

Four distinct experiments are described in this work, all of them underpinned

by the technique of terahertz time-domain spectroscopy (Chapter 2). This is a

very powerful and adaptable spectroscopic method which allows us to measure the

electric field of pulsed terahertz radiation as a function of time. This in turn allows

us to directly extract both phase and amplitude of the terahertz light as a function

of frequency, over a broad frequency range. Furthermore, this method of terahertz

spectroscopy can be combined with photoexcitation pulses of visible/NIR light which

can be used to make dynamic changes to the properties of materials in the terahertz

beam.

The first experiment reported (Chapter 3) measures the propagation of coupled

surface plasmons in a resonant slit cavity. We use terahertz time-domain spec-

troscopy to determine the characteristics of the cavity resonances in a semiconductor

slit near the surface plasma frequency of the material, where we are able to mea-

sure very large red-shifts in the frequency of the cavity resonance. By considering

the phase information which can be extracted directly from time-resolved terahertz

measurements we are able to link the behaviour of the resonances to the propagation

characteristics of the surface plasmon modes inside the slits.

The second experiment (Chapter 4) is a more direct measurement of surface

plasmons, propagated over the surface of a semiconductor wafer. We show that the

electric field of the surface plasmon is confined to a subwavelength region around

the surface, and that the confined field is useful for spectroscopy of very thin layers

above the surface. We are able to measure films with thickness less than 1/600
th

of

the wavelength of the terahertz light.

v



After these two experiments with confined semiconductor surface plasmons we

move on to a pair of experiments looking at terahertz surface modes mediating the

transmission of light through holes in metal films. In the initial experiment (Chapter

5) we use the time-domain data from terahertz spectroscopy to determine the role

that surface mode lifetime plays in modifying the amplitude and width of Extraor-

dinary Optical Transmission (EOT) resonances, which arise from the periodicity of

a hole-array lattice. By changing the temperature of the lossy dielectric semicon-

ductor substrate we are able to modify the surface mode lifetime, and link this to

the resonant transmission characteristics.

In Chapter 6 we extend the hole array EOT experiment by making dynamic

changes to the propagation of the surface mode which mediates the transmission.

This is achieved by photo-exciting the semiconductor substrate inside the holes and

forming a thin layer of material with high charge carrier density on the surface.

Interaction of the surface mode with the photoexcited region quenches the resonant

transmission. We show that by changing the hole size so that the surface-mode

mediated transmission pathway predominates in the spectrum it is possible to use

optical pulses to modulate the transmission of terahertz radiation with very high

efficiency.

In the conclusions (Chapter 7) we link together some of the insights and infer-

ences which can be drawn from the above results, as well as evaluating the efficacy

of the experimental and simulation methodology.



Definitions

Abbreviations
• SPP / SP: Surface Plasmon Polariton / Surface Plasmon

• THz-TDS: Terahertz Time-Domain Spectroscopy

• FEM: Finite Element Model

• EOT: Extraordinary Optical Transmission

• FP: Fabry-Pérot

Symbols
Other symbols are used in the text, but the following are assumed throughout.

• t : Time

• ω : Angular frequency

• ν : Frequency

• λ : Wavelength

• k : Wave-vector

• kSP : Surface plasmon wave-vector

• LSP : Surface plasmon decay length

• E : Electric field

• H : Magnetic field

• c : Speed of light in vacuum
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Wavelength ranges
At various points a range of wavelengths is referred to by a name; although these names
are often loosely defined, in this thesis they fit in to the ranges below.

• Radio (RF): λ > 0.1m

• Microwave, Gigahertz (GHz): 0.1m > λ > 1mm

• Terahertz (THz): 1mm > λ > 30µm

• Infrared (IR): 10µm > λ > 750nm

• Near-Infrared (NIR): 1.5µm > λ > 750nm

• Optical: 3µm > λ > 350nm

• Visible (Vis): 700nm > λ > 380nm

• Ultraviolet (UV): λ < 380nm
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