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Abstract 

 Conservation biologists require information on the distribution, ecology, 

behaviour and genetic diversity of endangered species in order to identify threatened 

populations, determine which mechanisms are driving populations closer to extinction, 

and design appropriate mitigating solutions. The hazel dormouse, Muscardinus 

avellanarius, is declining across much of its northern range. Dormice are detrimentally 

affected by habitat degradation, loss and fragmentation. Despite extensive studies and 

conservation work on hazel dormice, there remain many gaps in our understanding. 

This thesis aims to fill some of those gaps.  

 Hazel dormice are elusive, and therefore difficult to monitor in the wild. I 

demonstrate the utility of novel monitoring techniques for the rapid determination of 

dormouse presence, and provide algorithms for the objective verification of species 

identity from small mammal footprints. I design and utilise genetic microsatellite 

markers to investigate molecular ecology in this species. In one of the first studies of 

hazel dormouse population genetics, I describe high levels of population 

differentiation and genetic isolation across the southwest UK range. I find a powerful 

signal of reduction in genetic diversity, and an increase in differentiation between core 

and peripheral populations. I consider rival hypotheses for the mechanisms driving this 

population genetic pattern, and place the results in the context of conservation 

strategies for UK dormice. Further, I use molecular data to investigate the prevalence 

of multiple paternity in wild dormouse populations. Results contradict a recent 

estimate of very high rates of polyandry, but remain high at 50%. I investigate the 

effect of food availability on the hibernation behaviour of dormice. My findings, which 

demonstrate dormice are variable and flexible in their response to winter diet, 

increases our understanding of the trade-offs dormice must make in order to survive 

winter periods.  

 I hope that the research undertaken for this thesis will add to the 

understanding and conservation of an iconic British mammal, ultimately contributing 

to the persistence of this species. 
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Photo: David Chapman 

The Hazel dormouse Muscardinus avellanarius 

 

  "When one subtracts from life infancy (which is vegetation), sleep, 

  eating and swilling, buttoning and unbuttoning -  how much remains of 

downright existence? The summer of a dormouse." 

 Lord Byron 
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Chapter 1: General introduction 

 The following thesis is a study of the hazel dormouse, Muscardinus avellanarius 

Linnaeus, 1758, a rodent that has been identified of conservation concern, and as such 

receives legal protection. As a rare, iconic, and very endearing, resident of native UK 

woodland, the hazel dormouse receives much interest from professional ecologists 

and amateur naturalists alike. However, before embarking upon a description of hazel 

dormouse ecology and its key threats, it is appropriate to address some broader 

concepts surrounding conservation biology. Specifically: what is conservation; how can 

the concern in biodiversity preservation be justified, and how do conservationists go 

about this momentous task? A focus on UK mammals and dormice begins on page 23. 

A brief introduction to the life history of hazel dormice, details on their status, the 

threats they face and current conservation practices will then follow, focussing 

primarily on the UK. Finally, an outline of how the research within this thesis will 

further the knowledge and conservation of the hazel dormouse will be presented. 

 

What is conservation? 

 Conservation biology is considered a relatively new scientific discipline 

(McNeely 2010, Soulé 1985). However, the roots of its underlying principles originate 

from early human culture, through traditional systems developed to avoid 

overexploitation of the ecosystems on which people depend, such as centuries-old 

sustainable fishing practices and plant harvesting by indigenous peoples (Johannes 

1978, Turner et al. 2000). Many religions and spiritualities foster a respect for the 

natural environment and organisms within it (Yachkaschi & Yachkaschi 2012). 

Therefore it is difficult to pinpoint the origin of the paradigm of self-constraint in 

wildlife exploitation per se.   

 However, as human populations have expanded, urbanisation swelled and the 

reliance on technology ever increased, it is argued that many people have become 

alienated from the “natural world”, whilst simultaneously increasing pressure on the 

environment (Leopold 2004, Maxwell 2003, Pimm et al. 1995, Turner et al. 2004). It 

was with an awareness of the major impacts these anthropogenic actions were having, 
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and the realisation that humans may cause the degradation of habitats and mass 

extinctions of species, that modern day conservation biology has its foundations 

(McNeely 2010, Soulé 1985, Soulé & Wilcox 1980). Conservation biology is concerned 

with the scientific research of genetics, species, communities and ecosystems that are 

threatened by anthropogenic activities, in order to benefit and facilitate the 

persistence of biodiversity (Soulé 1985, Sutherland et al. 2009). As such, conservation 

is a goal-orientated, interdisciplinary field, necessarily linked with the social sciences, 

economic, politics and philosophy (Soulé 1985). How to balance the conflicting 

positions of pure science, policy and societal values continues to generate uncertainty 

within the discipline (Brussard et al. 2007, Noss 2007, Robinson 2006). 

 

Why conserve? 

 Despite the general acceptance that biodiversity conservation is of great 

importance, there is little agreement on exactly why this is the case (Norton 2000). 

There is no single, simple answer to this question and conservationists have proposed 

various justifications for conservation (Ehrlich & Ehrlich 1992, Hector et al. 2001). 

 Most obviously, anthropocentric arguments for nature conservation highlight 

the instrumental value of biodiversity to humans. This is realised through: the 

provision of resources such as food, materials and medicine; cultural benefits such as 

recreation, scientific interest and aesthetics; and ecosystem services, for example the 

regulation of water, atmosphere and climate, erosion control and nutrient cycling 

(Hector et al. 2001, Justus et al. 2009, Millennium Ecosystem Assessment 2003). Such 

uses can be designated an economical worth which are valued by society (Costanza et 

al. 1997). Indeed, the sustainable exploitation of natural resources for present and 

future human benefit often features highly in political agendas (e.g. United Nations 

Environment Programme 1992).  

 However, not all species, habitats and ecosystems are beneficial to humans, 

and some are even malevolent (McCauley 2006). Therefore further justification of 

biodiversity preservation per se, beyond resource use and ecosystem services, is 

required. One alternative argument often employed is the concept that species 
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richness is integral to ecosystem functioning (e.g. Hector et al. 2001, Loreau et al. 

2001, Tilman et al. 2001). The components of biodiversity have been likened to the 

parts of an aeroplane, whereby the removal of such parts leads to increasing instability 

(Nielson 1995). There is some debate over the extent to which this analogy holds true 

in complex ecosystems. For instance, a review by Schwartz et al. (2000) could not 

identify strong evidence of ecosystem functioning depending on high levels of 

biodiversity across many studies. Other authors point to the redundancy hypothesis, 

whereby certain species may be more important than others within a community. 

Therefore many species, especially rare ones, may be lost with no serious 

consequences to ecosystem functioning (Gitay et al. 1996). Contrastingly, other 

authors have presented evidence to demonstrate that less common species can 

provide significant contributions to ecosystem functioning (Lyons et al. 2005). 

Additionally, Naeem (1998) argues that species redundancy is critical to reliable 

ecosystem function. Such redundancy may provide insurance against environmental 

fluctuations, which may be of particular importance in a world with a changing climate 

(Loreau et al. 2001).  

 An additional argument is that many species may have unknown, as yet 

unrealised, benefits and that we should conserve biodiversity for future use (Faith et 

al. 2010). Linked to this is the precautionary approach, which advocates conservation 

due to general scientific uncertainty regarding ecosystem functioning, although parties 

can become suspicious of this justification if overused (Cooney 2004). It remains to be 

seen if these arguments are strong enough to influence political and economical 

drivers, which are often very myopic to long-term and uncertain factors (Ehrenfeld 

1976). Consequently, the instrumental argument for conservation is weak for many 

species which have no obvious use or easily quantifiable, value or role in ecosystem 

functioning.  

 Due to such failings, it has been argued that the instrumental standpoint is 

precarious, and it is not always shrewd or possible to rely on economical value 

(McCauley 2006). This begs the question, where does this leave the thousands, if not 

millions of species that are not easily encompassed by the preceding arguments? 

Often conservationists are able to contrive uses for species, especially particularly 

charismatic ones (Ehrenfeld 1976). However, if our aim is to develop a strong and 
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honest argument for biodiversity conservation, ideally we should develop a stance that 

incorporates all biodiversity. Consequently, this leaves us with the paradigm of nature 

for nature’s sake, in that wildlife has its own intrinsic worth, beyond that of human 

values and motives (Norton 2000).  

 Whilst this ethical stance is tempting as an all-encompassing rationalisation of 

nature preservation, in reality these arguments tend to further confound the 

discussions. Firstly, it is strongly debated whether morality should even be part of a 

scientific discipline. Noss (2007) ardently argues that it is the very passion for the 

intrinsic worth of wildlife that has driven many to become conservation biologists and, 

as such, have a responsibility to advocate for what is right for biodiversity. However, 

others contend that, as intrinsic value cannot be easily defined or compared to 

instrumental-value, it should not be involved in conservation decision making (Justus 

et al. 2009). In contrast, other advocates of instrumental-value reason that such an 

approach should include non-monetary values, such as the value of simply knowing 

that a species exists, and thus will incorporate much of what intrinsic worth describes 

(Macguire & Justus 2008). Practically, ethical values have many impediments, such as 

varying moral views and debate over the extent to which they are applicable, for 

example do ethical concerns only apply to certain species, or should they extend to all 

living beings? (Hector et al. 2001, Oksanen 1997). If the former, how do we define in 

an unbiased manner which organisms are worthy of ethical consideration? An obvious 

delineation would be only sentient beings, but this is based on our human value of 

intelligence and self-awareness, and we should consider other measures for the ethical 

rights of living things (Fox 1989). If the latter, how are any conservation decisions to be 

made, where there are endless conflicts between different species? This would likely 

lead to political, legal, conservation and emotional disarray, such as in the case of 

protected golden eagles, Aquila chrysaetos, preying on, and therefore threatening the 

survival of, endangered island foxes, Urocyon littoralis, (Courchamp et al. 2003). 

Further, ethical dilemmas occur where there are conflicts between wildlife 

conservation and human welfare (Hill 2002, McShane et al. 2011).  

 These and many other philosophical issues are highly problematic and threaten 

the use of intrinsic worth in justifying nature conservation. However, basing all 

conservation decisions on pure science and instrumental values, for want of better 
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articulation, feels instinctively wrong. Science without a soul may rigidly maintain 

objectivity, but removes the integral component of compassion from nature 

conservation. Morality may appear to have an extra-somatic origin, but in fact it is 

becoming increasingly apparent that it is a product of evolution and a necessary 

adaptation for the human species (Ruse & Wilson 1986). Further, Jepson & Canney 

(2003) view conservation as a social movement that aims to develop particular ideals 

concerning the relationship between humans and nature, with the aim of making a 

“better” world. They suggest, therefore, that conservation must retain its roots in an 

ethical basis, otherwise the discipline risks becoming alienated from the general public, 

threatening effective conservation practices. 

 It is apparent that justifying wildlife conservation is far from clear cut. Initially 

this may seem disheartening and harmful to the defence for conservation, whereby 

such conflicting arguments weaken the cause. However, aiming for an all-

encompassing panacea to nature conservation justification is most likely an 

unattainable goal (Hector et al. 2001). On reflection, that justifications can be made 

from such a variety of stances surely demonstrates how truly important biodiversity is. 

Nature is many things to many people and it is the very diversity of living beings that 

leads to a diversity of good reasons to protect it. Rather than just concerning ourselves 

with the problems of conflicting opinions, we should consider them in unison, in order 

to build a solid argument for nature conservation and implement conservation 

practices to best serve these contrasting stances. 

 

How to conserve? 

 Beyond the conflicts highlighted above, the challenges of actually implementing 

conservation are even greater. Indeed, just the initial practice of defining and 

measuring biodiversity alone is hugely complex (Purvis & Hector 2000). However, this 

is vital in order to set aims and objectives and assess outcomes of conservation 

practices (Pereira & Cooper 2006). Conservation planning has been likened to triage, 

where limited resources must be allocated in the most efficient manner. This requires 

conservationists to make decisions on which biodiversity components to prioritise, a 



23 
 

multifaceted task involving conflicts between science, politics, socio-economic, culture 

and philosophy (Bottrill et al. 2008).  

 The quantification of species’ extinction risk is often one of the primary steps in 

this process, such as the Red List of Threatened Species (International Union for 

Conservation of Nature 2011). However, the use of these lists alone to set 

conservation priorities should be executed with care. For example, concentrating on 

species with the highest extinction risk may not be the best use of limited resources, as 

it is expensive and difficult to succeed (Possingham et al. 2002). In addition to 

difficulties involved with prioritising species,  the single-species approach is limited due 

the practical impossibility of conserving all biodiversity on a species-by-species basis, 

and therefore the ecosystem approach has been advocated (Franklin 1993). Further, 

one of most embraced strategies is to focus on biodiversity hotspots, which if 

conserved would preserve the greatest species richness (Myers et al. 2000). However, 

single-species conservation strategies such as keystone species (Mills et al. 1993) and 

surrogates such as umbrella, flagship and indicator species are still widely used and can 

be successful if implemented carefully (Caro & O’Doherty 1999). It is likely that an 

effective conservation strategy should be a combination of both species and 

ecosystem-focussed practices (Lambeck 1997). 

 In response to global biodiversity loss, an international treaty, the Convention 

of Biological Diversity was formed in 1992, in order to promote the comprehensive 

protection, and sustainable and fair use, of biodiversity. Each ratifying member state is 

obliged to implement a national strategy in order to fulfil the requirements of the 

convention (United Nations Environment Programme 1992). For example within the 

UK this was implemented through Biodiversity Action Plans (BAP) for priority habitats 

and species (UKBAP 1994). However, despite some local successes, the 2010 target to 

slow the rate of biodiversity loss has generally failed and pessimism is now growing, 

with frustration at the lack of strength in the convention and fear that it has stagnated 

(Butchart et al. 2010, Harrop & Pritchard 2011, Kursar 2011).  

 Despite this, worldwide interest in conservation remains, with huge public 

membership of various conservation organisations and much conservation work being 

carried out by local, national, regional and international conversation groups (Rands et 
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al. 2010). These organisations are diverse in their methods and success in achieving set 

goals, leading to many debates on how best to conserve biodiversity. As a 

demonstration of the wide range of complex problems that face conservationists, 

dilemmas include, but are by no means limited to: the relative roles of community-

based conservation and protectionism (Berkes 2004); whether ecotourism does more 

harm than good (Krüger 2005); contrasting efficiency of direct and indirect payments 

for conservation (Ferraro & Kiss 2002); whether trade bans protect endangered 

species or encourage increased illegal trade (Rivalin et al. 2007); and the multitudinous 

problems regarding how to deal with human-wildlife conflicts (Woodroffe et al. 2005). 

 In the light of the continual reports of biodiversity loss - combined with a 

plethora of complex, moral and practical challenges, inertia of political will and 

burgeoning human population size and consumerism - it would be very easy to sink 

into cynical despondence and resign ourselves to the impending biodiversity crisis. 

However, there is still plenty that can be done to prevent biodiversity loss, although it 

will require a multitude of strategies and a shift in society’s attitude to nature. The 

alternative is a sixth mass extinction that could only be rectified by millions of years of 

evolution (Ehrlich & Pringle 2008).  

 

Terrestrial mammal conservation in the UK 

 Mammals, as charismatic animals that humans can relate to relatively easily, 

are often designated flagship species. Even so, about a quarter of the terrestrial 

mammal species are at risk of extinction and we have little data on mammal 

distribution that is essential for conservation planning (Ceballos et al. 2005). Within 

Europe - and especially Britain - there is a relatively low diversity of mammals. 

Although this is partly due to the relatively high latitude of these areas, it has 

undoubtedly been exacerbated by the extermination of many larger mammal species 

several hundred years ago (Ceballos et al. 2002). The main anthropogenic threats to 

mammals in the UK are: habitat degradation, loss and fragmentation; predation, 

competition, disease and hybridisation due to introduced species; unsympathetic 

agricultural practices; climate change; direct mortality on roads and the effects of 

pollutants and pesticides (Harris et al. 1995). 
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 However, there is still a strong mammal conservation interest in the UK. Much 

mammal research is promoted by The Mammal Society, which since its inception has 

increasingly developed its role in mammal protection and conservation, in line with 

conservation biology being recognised as a scientific discipline (Flowerdew 2004). Its 

aims are achieved through promoting mammal distribution surveys and monitoring, 

scientific and general interest publications, training, engaging the general public, 

conferences and advising on legislation and conservation planning (Flowerdew 2004). 

The Mammal Society also works in close partnership with other UK conservation 

organisations, such as the People’s Trust for Endangered Species, The Vincent Wildlife 

Trust, and governmental conservation agencies, as well as local mammal groups, to 

name just a few. Despite efforts from these many organisations, population data on 

many mammals in the UK is lacking (Harris et al. 1995). Therefore, the Tracking 

Mammals Partnership was formed, with the aim of bringing together a coordinated 

monitoring programme for mammals in the UK, using the British Trust of Ornithology 

as a model (Battersby & Greenwood 2004).  

 In 2009 a Tracking Mammals Partnership report highlighted that of the 54% of 

terrestrial mammal species it was currently monitoring, 20% were showing a decline in 

population numbers, whilst 40% were increasing. However, this latter figure includes 

non-native and invasive species, namely the grey squirrel, Sciurus carolinensis, 

common rat, Rattus norvegicus, Reeves muntjac, Muntiacus reevesi, and sika deer, 

Cervus nippon (Tracking Mammals Partnership 2009). Of the 60 non-marine mammal 

species found in the UK, 18 are designated priority Biodiversity Action Plan species, 

seven of which are bats. This is an increase from the ten species that were on the 

original BAP list produced between 1996 and 1998 (Biodiversity Reporting and 

Information Group 2007).  

 

The hazel dormouse 

 The hazel dormouse, Muscardinus avellanarius, is a member of the Gliridae 

(synonym Myoxidae), or dormouse family, within the rodentia (Daams & De Bruijn 

1995). The present nine genera and 28 species of Gliridae are distributed across 

Europe, Africa and Asia (Daams & De Bruijn 1995, Nunome et al. 2007). Gliridae are 
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one of oldest extant rodent families and its origins likely date back to the late 

Paleocene-early Eocene (Daams & De Bruijn 1995, Holden 2005, Storch & Seiffert 

2007). The family share a common origin with the Sciuridae, or squirrels, rather than 

the mouse-like, myomorphous, rodents, as may be assumed from the common name 

(Holden 2005, Kramerov et al. 1999). It is thought that the name, "dormouse", has its 

roots from the word "dormir", meaning "to sleep". This is in reference to the 

propensity of many of the species in this family for exhibiting torpid behaviour when 

energy resources cannot sustain homeothermy (Angilletta et al. 2010).  

 The hazel dormouse is the only extant member of the genus Muscardinus 

(Daams & De Bruijn 1995). Its distribution ranges across Europe and into northern Asia 

minor (Amori et al. 2008, figure 1). It is an elusive, nocturnal, arboreal species, found 

predominantly in deciduous and mixed woodland, with higher prevalence in ancient 

woodland, but also in scrub, hedgerows and coniferous forests (Bright et al. 1994, 

Eden &Eden 2001, Juškaitis 2008,). Compared to other small woodland rodents, hazel 

dormice live at low population densities, ranging from one to ten adults per hectare 

depending on habitat quality (Bright & Morris 1996, Bright et al. 2006). In contrast 

wood mice, Apodemus sylvaticus, and bank voles, Myodes glareolus, have been 

recorded at population densities of over 40 and 130 per hectare, respectively (Corbet 

& Harris 1991). 

 The dormouse lacks a caecum, and the resulting inability to digest cellulose 

means that it must sustain itself on a diet of nutritious food such as fruits, nuts, 

flowers, insects and buds (Juškaitis 2007, Richards et al. 1984). These dietary 

requirements imply that dormice must live and forage in a habitat with a high diversity 

of trees and shrubs, so that throughout the season there is a succession of food 

available (Bright et al. 2006, Richards et al. 1984). As such, dormice have adapted to 

live at forest edges and coppices with a dense, well-developed understory and canopy, 

rather than shaded high forest (Amori et al. 2008, Bright & Morris 1993, Bright et al. 

2006, Richards et al. 1984). However, they are increasingly being found in non-typical 

habitats, which is a reflection either of a more generalised habit than previously 

appreciated, or the forced use of sub-optimal habitat (Bright et al. 2006, Juškaitis 

2008).
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Figure 1. Map showing the geographical distribution of hazel dormice, Muscardinus avellanarius, in dark grey (Amori et al. 2008). 
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 As an arboreal species, hazel dormice spend the majority of their time amongst 

the vegetation, rarely venturing down to the ground, where they are generally 

reluctant to cross open spaces (Bright 1998, Bright & Morris 1991). They build 

intricate, tightly woven nests, using stripped honeysuckle bark or other suitable 

material, and then often add an outer layer of freshly picked leaves. The skilled 

craftsmanship and presence of green leaves very obviously differentiate a dormouse 

nest from those of other small mammals (Bright et al. 2006).  

 The home ranges of males are larger than that of females, and often overlap 

with two or more females (Bright & Morris 1991).The breeding season of the hazel 

dormouse extends across the majority of the active season, and both males and 

females are territorial during this period. Females will have one, or occasionally two 

litters a year, with an average of ca. 4 juveniles per litter (range 1-9) (Juškaitis 2008). 

This relatively low reproductive potential, further distinguishes hazel dormice from 

other small rodents (Bright et al. 1994). In the autumn, with the exception of those in 

the Mediterranean part of the range, dormice prepare for the hibernation period by 

accumulating fat reserves, increasing body weight by around 40% from the steady 

average weight in summer (Juškaitis 2001). It should be noted that even in the active 

season dormice will often enter a torpid state, or aestivation, when air temperature 

falls or if food availability is low, in order to conserve energy (Juškaitis 2005). During 

the hibernation period in the winter months, the timing of which varies with latitude, 

dormice abandon their lofty habitat and make shallow nests below the leaf litter on 

the ground (Bright & Morris 1994). Whilst dormice spend up to 60% of their lives in a 

torpid state, their slower life-styles are compensated by a much higher longevity that 

other small rodents, and dormice have been recorded living to at least five years in the 

wild (Bright & Morris 1996). 

 The hazel dormouse is listed on Appendix III of the Bern Convention and Annex 

IV of the EU Habitats and Species Directive. In 1996 it was listed as lowest risk/near 

threatened on the IUCN Red List, however has now been changed to of least concern 

(Amori et al. 2008). This reflects the species’ relatively common distribution across its 

range. However conservation concern remains for this species in the north-westerly 

parts of its range, such as in the UK, Netherlands, Sweden, Germany and Denmark, 

where populations are declining. This has led to the hazel dormouse being included in 
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several national Red Lists in this northern range (Amori et al. 2008, Juškaitis 2008). 

Within Britain, it is reported to have become extinct in approximately 50% of its range 

in the last 100 years, and a national decline of 19% from 1991 to 2000, and therefore is 

a Biodiversity Action Plan species (Bright et al. 2006). 

 Dormice are thought to be unlikely to persist in wood patches of less than 20 

hectares, or that are isolated by more than 1km (Bright et al. 1994). Due to the 

dormouse’s arboreal nature, poor dispersal ability and habitat specialism it is 

vulnerable to habitat loss, degradation and fragmentation (Harris et al. 1995, Bright & 

Morris 1996). Such threats may occur due to human development and land-use change 

from urbanisation, roads, agriculture and forestry (i.e. conversion of ancient woodland 

to conifer plantations) (Amori et al. 2008, Bright et al. 1994, Juškaitis 2008). The 

change in management practices of woodlands, leading to less sympathetic regimes, 

has also likely affected dormouse populations (Bright & Morris 1989). Examples 

include clear-felling, the decrease of coppicing practices and general neglect that leads 

to heavy shading and loss of the understory (Bright & Morris 1989, Bright & Morris 

1993). The dormouse is sensitive to climate, and due to its influence on productivity 

and phenology of dormouse food, the extent of torpor behaviour and climatic 

stochasticity may detrimentally affect their small populations (Bright & Morris 1996). 

Further research is required to investigate the potential effect of climate change on 

hazel dormouse populations. 

 Due to the need for conservation actions, several tools for the presence 

detection and population trend monitoring of the elusive dormouse have been 

developed. Primarily, nest boxes and nest tubes (a cheaper nest box equivalent) are 

used, whereby dormice and/or their characteristic nests are found in artificial nesting 

sites (Bright et al. 2006). Another survey method is to search for feeding remains, 

specifically gnawed hazelnuts, as different small mammals leave characteristic marks 

on these nuts, allowing identification of the species’ field sign (Bright et al. 2006). Hair 

tube surveys and nest searches are also utilised, although they have a lower detection 

rate (Capizzi et al. 2002).  

 A variety of conservation actions have been implemented in order to protect 

the hazel dormouse, which I discuss here in relation to the UK specifically. Many of 
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these conservation actions are part of the Species Recovery Programme which was set-

up in 1992 and run by now Natural England (Mitchell-Jones & White 2009). Due to 

their legal protected status, dormouse presence must be ascertained and mitigated 

for, during any development and habitat management practices that may 

detrimentally affect their populations (Bright et al. 2006). To this end, one of the major 

roles of environmental consultants is the surveying and planning for hazel dormouse 

presence (Bright et al. 2006). Mitigation actions may include ensuring habitat 

connectivity is retained between habitat patches, habitat creation, the provision of 

nest boxes (which are thought to augment scarce breeding sites), dormouse bridges 

over roads and translocation (Bright 2006, Department for Transport 2001). A 

generally successful captive breeding and reintroduction program was instigated; with 

the aim of reintroducing dormice to areas of their range where they have been 

extirpated (Mitchell-Jones & White 2009). In the UK a National Dormouse Monitoring 

Program (NDMP) was set-up in order to monitor national population trends (Bright et 

al. 2006). This program comprises of dormouse nest box schemes at woodlands across 

the UK, which are monitored by licensed volunteers at least twice a year during the 

active season of dormice (Bright et al. 2006). Several national hazelnut hunt surveys 

have also been run nationally, encouraging the general public to search for dormouse-

eaten hazelnuts in their local woodlands.  

 The NDMP and national nut hunts, in combination with other work by the 

People’s Trust for Endangered Species, The Mammal Society and local mammal groups 

have led to an extensive interest in dormice. Such monitoring and research projects 

have greatly benefitted from substantial volunteer survey effort. Concurrently, hands-

on engagement of members of the public with wildlife is a rare opportunity in British 

mammal conservation. As such the hazel dormouse, beyond requiring conservation 

actions due to anthropogenic threats, can be considered as a flagship species, and 

therefore an important species for promoting wildlife conservation in the UK. 
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Outline of thesis 

 Whilst there has been a plethora of scientific studies on hazel dormice, from 

across its range (reviewed in Juškaitis 2008), there is still much to discover regarding 

this elusive species. As such, the aims and objectives of this thesis are to make a major 

contribution to existing information, in order to facilitate continued monitoring, 

habitat management and conservation practices. Ultimately it is hoped that this will 

strengthen conservation actions that endeavour to ensure the persistence of this 

species into the future. Advantageously, ongoing progress and increased accessibility 

in technology, research techniques and analyses are providing conservation biologists 

with ever more sophisticated tools for monitoring and studying their focal species, and 

the research in this thesis is no exception. 

In brief, the aims of this thesis are: 

 Carry out a pilot study to investigate the effectiveness of alternative techniques 

to determine the presence of hazel dormice, with the aim of developing 

methods that are rapid, suitable for a range of habitat types, non-invasive and 

objective. 

 Develop a suite of hazel dormouse microsatellite markers for use in molecular 

ecology analyses, both for this thesis and for other researchers in the future. 

 Describe patterns of population genetics of hazel dormice at a regional scale. It 

is hypothesised that populations that are at the edge of the range, and more 

isolated, will demonstrate lower genetic diversity and higher genetic 

differentiation compared to those found in the core range. 

 Quantify the rate of multiple paternity in litters sampled in southwest England 

and compare results to published data, which reported a rate of multiple 

paternity in hazel dormice - amongst the highest across mammal taxa. Such a 

high rate deserves further investigation, as we hypothesise that, due to hazel 

dormouse testes size and breeding behaviour, the frequency of multiple 

paternity would not be this extreme, relative to other rodent species. 

 Investigate the effect of food availability and natural temperature fluctuations 

on the hibernation behaviour of hazel dormice. It is hypothesised that dormice 

that frequently arouse from hibernation, and hence are able to respond to food 
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availability, will reduce the extent to which they exhibit torpor where food 

availability is relatively high. This is predicted to the hypothesis that, as 

hibernation is physiologically and ecologically costly, it should be avoided if 

energetically feasible. 

 

 In Chapter 2 alternative dormouse survey techniques are piloted, namely the 

use of camera traps and footprint sampling at bait stations. Whilst the use of field signs 

such as footprints in a centuries-old technique, camera-traps are a relatively new 

technology, and until recently have mainly been used for larger mammals. Footprint 

tracking has been used in some studies for small mammals, but rarely for arboreal 

species. Therefore the aim of this research was two-fold: firstly to encourage the use 

of these survey methods for a wider range of species, in this case a small, arboreal 

mammal; and secondly to develop additional, alternative hazel dormouse monitoring 

tools. Existing dormouse survey methods have specific limitations, such as seasonal 

and habitat-type dependence that can restrict their usefulness. As such, there is room 

for methods that avoid these constraints, and provide much more rapid results. This 

would be particularly useful for surveys related to human development, in order to 

provide more rapid survey results and therefore reduce human-wildlife conflict.  

  In Chapter 3 the problem of objectively identifying collected small mammal 

footprints is addressed. Traditionally, the identification of footprints is performed by 

experts, with experience in tracking the community of species under study. This need 

for expertise and the element of subjectivity may preclude ecologists from fully 

exploiting the potential of footprint tracking. Small mammal footprints specifically are 

potentially daunting to the uninitiated and therefore a simple algorithm for the 

discrimination of hazel dormouse and sympatric wood mouse footprints has been 

developed and tested by volunteers with no tracking expertise. The methodology used 

in this study comprises Linear Discriminant Analyses, developed in the powerful and 

open-source statistical programme R. 

 Chapter 4 considers the use of molecular techniques in dormouse research. 

Such studies were once restricted to the domain of well-funded research projects that 

investigated model organisms, and as such were largely inaccessible and inappropriate 
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for conservation biology. However, as costs have reduced and more work has been 

carried out using molecular ecology techniques in wild and rare species, the field of 

conservation genetics has grown. Microsatellites, neutral and highly polymorphic 

repeat motifs, are one of the main techniques currently used in molecular ecology. The 

molecular ecology of hazel dormice has only recently begun to be investigated and 

therefore this chapter describes the isolation and characterisation of dormouse 

microsatellite markers, which not only aids further work in this thesis, but will also be 

of great use to other researchers investigating hazel dormouse molecular ecology. 

 In Chapter 5 these microsatellites are utilised to investigate the population 

genetics of hazel dormice in south-west England. This research harnesses a range of 

analyses to describe the population genetic diversity, differentiation and structure of 

dormice across the study area. These data are used to compare genetic diversity of 

populations across the sampled range, to determine if those on the edge-of-range are 

genetically less diverse and therefore potentially at higher risk of extinction. Some 

analyses, such as F-statistics date back to the early 1900s, when population genetics 

concepts were first being developed, whilst other techniques use relatively new 

analyses such as Bayesian clustering software.  

 Further, in Chapter 6 the microsatellite genotype data is used to infer multiple 

paternity in sampled dormouse litters using the powerful software programme 

COLONY. Polyandry in wild populations is a hotly-debated topic. Until relatively 

recently, the very existence of multiple mating by females was considered a rare 

event, and it was only with the advent of molecular techniques that finally it was 

revealed that it is common across a range of animal taxa. Debates continue regarding 

the proximate and ultimate causes for such phenomena. Little is known about the 

intra-specific variation in multiple paternity and what consequences this may have for 

population dynamics. 

 Chapter 7 investigates the effect of diet and natural fluctuations in 

temperature on the hibernation behaviour of dormice, using a population of captive 

dormice at Paignton Zoo. This was carried out using temperature loggers that recorded 

dormouse nest temperatures, as a proxy for dormouse body temperature. In the light 

of hazel dormouse sensitivity to climate stochasticity and their particular dietary 
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requirements, this research forms an essential component of predicting the likely 

effects of future climate change on dormouse populations. 

 Lastly, in Chapter 8 the findings of this thesis are summarised in the broader 

context of hazel dormouse ecology and conservation, the limitations of the studies are 

discussed and suggestions for further work are made. 
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Chapter 2: Take only photographs leave only footprints:  

Novel applications of non-invasive survey methods for small arboreal animals 

 

Abstract  

The development of appropriate survey techniques is essential to promote more 

effective and efficient monitoring of species of conservation concern. Here we 

demonstrate the utility of two rapid-assessment, non-invasive methods to detect 

presence of small, arboreal animals. Specifically, camera traps and footprint tracking, 

which are well-established tools for monitoring elusive larger mammals, but are rarely 

used for small species, such as rodents, or in arboreal habitats. We use the hazel 

dormouse, Muscardinus avellanarius, a rodent of conservation concern, as our focal 

species. Prevailing hazel dormouse survey methods are prolonged, seasonal and 

habitat dependent or have low detection rates, therefore alternatives would be of use 

for the great number of ecologists who survey dormice for mitigation purposes, as 

legally required for building development projects.  

In trials of both these adapted methods, over a total of 405 trapping nights, hazel 

dormice visited bait stations and were successfully detected by both camera traps and 

tracking equipment at each of two woodland study sites. Both camera trap images and 

footprints were of adequate quality to allow discrimination between two sympatric 

small mammal species (hazel dormouse and wood mouse Apodemus sylvaticus). Across 

the two sites the number of nights to first detection was 10.6 nights (range 2-21 

nights). Using Cohen’s kappa and correlation analyses, we determined that there was 

substantial agreement between camera trap and footprint tracking in the detection of 

small mammals. There was evidence, at one site, that as time since-installation 

increased, the frequency of dormice detected also increased.  

We discuss the relative merits of these methods with respect to research aims, funds, 

time available and habitat. We conclude that both of the techniques have great 

potential for use as flexible, rapid-survey methods to detect hazel dormice, as well as 

other arboreal, small mammal species. As such, they deserve further development to 

facilitate their utility by a wide range of ecologists and conservationists. 
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Introduction  

 Biological surveys and monitoring programs are essential for acquiring 

knowledge of natural systems. Objectives include identifying trends in population size 

and range, habitat modelling, habitat use studies, evaluating ecological management 

approaches and biodiversity assessment (Marsh & Trenham 2008, Tyre et al. 2003). 

Such monitoring is becoming increasingly important, due to intensifying pressures on 

natural habitats and the continued global biodiversity loss, due largely to 

anthropogenic effects (Stokstad 2010).  

 However, establishing abundance estimates in wild populations are costly in 

time and effort (Joseph et al. 2006). The urgent need for information on threatened 

species, coupled with a general lack of funds encourages the development of 

techniques that allow the economic and rapid assessment of key species, such as 

presence-absence surveys, which have lower financial and effort costs than abundance 

surveys. Additionally, more sample units can be surveyed for the same cost, yielding a 

more efficient survey design, especially for rare species (Joseph et al. 2006, Mackenzie 

& Royle 2005). There have also been important advances in statistical analyses for 

presence-absence data, particularly those that incorporate variation in detectability 

(Joseph et al. 2006, Marsh & Trenham 2008, Wintle et al. 2004). Several approaches 

have also been developed to analyse presence-only data (Pearce & Boyce 2006).  

 The wide variety of field techniques currently employed to establish species 

presence-absence vary in efficacy, accuracy, effort, cost, invasiveness and ecological 

constraints. The detection of organisms that are particularly rare, cryptic or 

inaccessible often requires specific sampling methods. Continuing innovative 

development and the adaptation of existing monitoring methods will provide a greater 

choice of survey techniques, for a wider range of species. In turn this will be of benefit 

for both wildlife conservation and human activities. For example, decisions to grant 

planning permission are often influenced by the presence of species of conservation 

concern. The more efficient assessment of the presence of such species will reduce 

fiscal and time costs to developers and lessen the prevalence of accidental loss of 

populations of endangered species. 

 Technologically advanced monitoring tools, such as remote camera traps, are 
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being increasingly utilised, as they become more accessible and affordable (Rowcliffe & 

Carbone 2008). The advantages of camera trapping include non-invasiveness, low 

surveyor time required and the provision of relatively unambiguous, permanent 

records, for species that are difficult to observe. However, equipment failure, user-

error and initial expense can be problematic (Cutler & Swann 1999, Silveira et al. 2003, 

Tobler et al. 2008). Despite the increased use of camera traps, they are still not 

meeting their potential in ecological research (Cutler & Swann 1999, Rowcliffe & 

Carbone 2008). We conducted a search of the ISI Web of Knowledge database, for the 

term “camera trap” (in the subject areas: Environmental Science, Zoology and 

Biodiversity and Conservation) and selected those concerning at least one terrestrial 

mammal species. Of the 367 citations, 91% of the studies focussed on medium/large 

species only, 6% on multi-species surveys and just 3% on small mammals (<200g) 

alone. Whilst smaller vertebrates have a reduced capture probability (Kelly 2008, 

Tobler et al. 2008), camera trapping has been shown to be feasible for small mammal 

surveying (De Bondi et al. 2010) and therefore warrants further research and 

utilization.  

 More traditional techniques, such as distance and point sampling, remain 

important monitoring methods, especially when budgets are limited, equipment 

security is of concern or a large survey effort is required. One such technique involves 

point sampling track collection. To circumvent the difficulty of finding footprints in the 

environment, animals are attracted to track collecting equipment, often utilising lure or 

bait (e.g. Connor et al. 2005, Glennon et al. 2002, King & Edgar 1977, Mayer 1957). 

Tracking stations have been used to survey many terrestrial species including rodents 

(Brown et al. 1996), insectivores (Huijser & Bergers, 2000), mustelids (Ratz 2000), and 

insects (Watts et al. 2008). Additionally, tracking tunnels have been adapted for aquatic 

mammals (Reynolds et al. 2004), but to date have rarely been employed in arboreal 

habitats (but see Carey & Witt 1991, Palma & Gurgel-Gonçalves 2007). These methods 

are relatively cheap and easy to set-up, therefore allowing a large survey effort, but 

require expertise and time for footprint identification. Recent advances in the 

statistical analysis of footprints for species and even individual identification (e.g. 

Alibhai et al. 2008, Russell et al. 2009) are providing new, objective and rapid tools for 

such analysis, which is likely to greatly increase the potential of tracking monitoring in 
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the future. 

 Our goal was to test and promote the use of camera trapping and footprint 

tracking methods for determining the presence of small, arboreal mammals, using the 

hazel dormouse, Muscardinus avellanarius as our focal species. The hazel dormouse is 

difficult to study, owing to its elusive nature, small size, low population densities and 

nocturnal, arboreal behaviour (Bright et al. 1994). As a European protected species, 

the impact of development, land-use change or habitat management upon dormice 

must be assessed and mitigated (Bright et al. 2006), often with some urgency. Current 

dormouse survey techniques are seasonal, habitat dependent and often prolonged 

(Bright et al. 2006, Chanin & Woods 2003). Nest boxes and nest tubes are the 

established tools for monitoring dormice in the UK, but the lag between their 

introduction to a habitat and uptake by dormice can be months or even years. The 

efficacy of nest boxes and tubes can vary with habitat, since they may be used 

infrequently if many natural nesting sites are available (Chanin & Woods 2003). A 

record of the animal in a nest box or tube is reliable, but is invasive and requires a 

handling licence (Bright et al. 2006). Hair tube surveys and nest searches are more 

economical, but have a low detection rate (Capizzi et al. 2002). Searches for evidence 

of dormouse feeding signs on hazelnut shells are only suitable at sites with sufficient 

fruiting hazel trees and are best carried out in the late summer to early winter (Bright 

et al. 2006). Therefore, when standard dormouse monitoring methods are used 

commercial pressures and contractual obligations, along with time and budget 

constraints, may result in conflicts between development requirements and Ecological 

Impact Assessments (Treweek 1996). There is, therefore, a pressing need for simple, 

inexpensive and accurate methods for the rapid detection of hazel dormice. 

 In light of these constraints, the hazel dormouse is an excellent species to test 

novel survey methods, in order to provide professional ecologists with alternative 

survey tools, which additionally may be applicable for other small and/or arboreal 

animals. Therefore, we test adapted camera trap and footprint tracking methods to 

detect hazel dormice at bait stations within the tree canopy. 
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Materials and Methods 

Study Sites 

 The investigation was conducted at two Cornwall Wildlife Trust reserves located 

in mid-Cornwall, UK, where dormice were known to be present from monthly checks of 

dedicated nest boxes. Cabilla (50°27’32.50”N, 4°37’49.76”W) is a site of ancient mixed 

woodland with areas of oak and hazel coppice. Red Moor (50°25’45.12”N, 

4°43’08.47”W) is a reserve of heath and grassland with areas of woodland, including 

hazel coppice. The frequency of nest box use by dormice was significantly higher at 

Cabilla than Red Moor prior to, and during, the survey year, which suggests a greater 

density of dormice at the former site (People's Trust for Endangered Species, pers. 

comm.). Therefore, initial trials of the ability of camera traps and footprint monitoring 

to detect dormouse presence were conducted at Cabilla  It should be noted however, 

that unmeasured differences in habitat, such as natural nesting site availability, may 

also account for the variation in the use of nest boxes by dormice between sites. 

 

Camera traps 

 Five Scoutguard SG550 (HCO Outdoor Products, Georgia, USA) trail camera 

traps were used in this study. These are passive infrared heat and motion triggered 

cameras with an infrared flash, which unlike a light flash are not detected by animals. 

Prior to field trials, the camera traps were piloted in a garden setting to ascertain 

whether the image quality would be sufficient to detect and discriminate between 

small mammal species. It was determined that camera traps should be placed 

approximately 1-1.5 meters from the bait, to produce a clear image large enough to 

identify small species. At this proximity the infra-red flash over exposes the image, and 

so was covered with opaque parcel tape to reduce flash intensity. Camera traps were 

set to take video footage of 20 seconds duration once triggered, with a delay of 1 

minute between triggers to conserve memory. Video was chosen over stills as the 

former allows the capture of many frames of images, increasing the chances of species 

detection and identification, which may be more problematic for small species. The 

trade-off associated with video capture is that camera trap memory cards are filled 

more rapidly, forcing more regular checks.  
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Small mammal species, specifically the hazel dormouse and wood mouse, 

Apodemus sylvaticus, were identified based on morphological features such as ear size, 

tail length, head shape and the presence of fur on the tail. We did not identify any 

other small mammal species during this study, although it is plausible that other 

species such as bank voles, Myodes glareolus, may have been captured. 

 

Tracking cages 

 We designed and built five baited tracking cages to collect small animal prints in 

the tree canopy (figure 1a-b and figure 2), using adapted 8-inch squirrel blocking cages 

(Chapelwood, Worcestershire, UK). The cage was required to prevent non-target grey 

squirrels, Sciurus carolinensis, from depleting bait and inundating tracking cards with 

footprints. A platform inside the lower half of the cage was constructed by supporting 

a piece of round rigid corrugated plastic sheeting by a framework of wire. A plastic box 

fitted tightly into a hole in the platform and its lid was covered in tracking medium, 

which comprised graphite powder mixed with sunflower oil to a viscous consistency. A 

hole in the box lid allowed small animals access to the bait inside. A replaceable square 

of white card (180gsm) with a hole that fitted around the plastic box rim was placed on 

the platform and secured in place by the box lid. Plastic sheeting was attached to the 

ceiling of the cage to protect the platform from rain. Animals small enough to fit into 

the cage are attracted to the food in the box, walk over the tracking medium and then 

leave tracks on the card when they depart. Cards are later retrieved, tracks fixed and 

replaced with new card.  

 All tracking cards with footprints were scanned by eye to identify clear prints 

with a minimum of 4 toe marks visible. These were photographed next to a precision 

scale and identified, using reference footprints as a comparison (figure 3). Dormouse 

reference footprints were collected from captive animals at Paignton Zoo. Wood mouse 

and bank vole reference footprints were collected from animals live-trapped during 

other studies. Animals were placed in a small container at one end of a tunnel which 

had a small pad of tracking medium at its entrance and was lined with tracking card. 

Animals walked over the tracking pad and through the tunnel, leaving behind tracks. 



49 
 

 

 

Figure 1. Photographs of assembled footprint tracking cage: a) Side-view of tracking 

cage; and b) view looking down on tracking cage, with cage lid removed

A 

B 
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Figure 2. A schematic diagram of a longitudinal section through the footprint tracking cage. The securing wire holds the bait box to the bottom of the 

cage. A network of supporting wires provides a frame for the platform. A hole in the lid of the bait box provides allow small mammals access to the 

bait. The tracking card is a square piece of card with a hole in the middle which fits around the bait box. The inner edge of hole in the tracking card 

fits underneath the outer rim of the box lid, which helps to hold it in place. The plastic cover protects the tracking equipment from rain damage.  
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Figure 3. Photographs of reference footprints of the hazel dormouse, fore foot (A) and hind foot (B), for comparison to wood mouse fore foot (C) and 

hind foot (D), and bank vole fore foot (E) and hind foot (F). All prints are positioned with toes at the top, the scale bars represent 0.5mm graduations. 

Note the distinctive three triangular metacarpal pads found in dormouse prints, presumably due to arboreal behaviour leading to highly adapted 

fleshy feet for gripping. In all species there are four toes on forefeet and five on hind feet.
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Study Programme 

 The field testing of baiting, camera traps and tracking equipment occurred in 

three phases, in order to investigate several questions regarding the survey of small 

arboreal mammals: 1) Were bait stations able to attract such species? 2) Were camera 

trap images sufficiently clear to identify species? 3) How soon after installation of bait 

stations, and how frequently, were small arboreal mammals detected visiting 

monitoring stations? 4) Were tracking cages collect tracks of adequate quality to allow 

discrimination between species? 5) How did the detection rates compare between 

camera traps and tracking cages? 

 At both survey sites monitoring stations were distributed within the nest box 

survey site at a minimum of 60 metres apart. A trapping night comprised a 24-hour 

monitoring session, and was defined as a “trapping night” as only camera trap footage 

recorded during dark hours, where infra-red was required, were analysed  Trapping 

sessions comprised a variable number of trapping nights, whereby the survey 

equipment was left monitoring unattended. During all phases of the study, trapping 

sessions comprised an average of 2.7 trapping nights (range one to six trapping nights. 

Bait (sunflower seeds, peanuts, apple and honeysuckle fragrance), tracking 

consumables and camera trap batteries were replenished, and camera trap footage 

and/or tracks were collected for later analysis where appropriate. 

 During phase one our objectives were to establish whether small, arboreal 

mammals would visit bait stations and investigate the ability of camera traps to provide 

sufficiently clear images to allow species discrimination. Between 8th July and 3rd 

August 2010 five monitoring stations with camera traps were installed at Cabilla. Each 

station comprised of a bait tray (a wooden frame with a mesh floor to hold bait), hung 

from tree branches approximately 2.5 meters above ground level and one camera trap 

aimed at the tray. Camera traps were secured with PythonTM adjustable locking cables 

(Masterlock, Neuilly-sur-Seine, France).  

 In phase two, once the effectiveness of the bait trays and camera traps was 

confirmed, we introduced tracking cages at the existing stations. This allowed us to 

determine if tracking cages could collect clear, identifiable footprints from small, 

arboreal mammals. Distinct phases one and two were used to ensure the novel 
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tracking equipment did not bias objectives of phase one. Between 5th August and 3rd 

September 2010, five tracking cages replaced the bait trays at the monitoring stations 

at Cabilla. The camera traps remained monitoring at the stations, to allow comparison 

of detection rates between camera traps and footprint cages. 

 In phase three, all equipment was moved to a second site for testing, which 

allowed further comparisons of camera trapping and tracking cages, at a site where the 

animals would not have been habituated to any of the equipment. From 11th 

September to 13th October 2010, the monitoring stations of camera traps with 

footprint bait cages were moved to Red Moor.  

 

Analysis 

 The number of trapping nights, starting from installation, required to first 

detect dormice and wood mice using camera traps was calculated, in order to 

determine how rapidly small arboreal mammals start utilising bait stations and 

therefore how soon presence may be inferred. This was combined with descriptive 

statistics to indicate the frequency of visits of small mammals to bait stations. 

The effect of time from initial installation of camera trapping equipment, site 

(including an interaction between these two effects), and the number of nights per 

trapping session on dormouse presence detection by camera traps, were investigated 

using a linear mixed effects model. Station was included as a random effect. Model 

simplification was performed using Chi-squared test comparisons of maximum 

likelihood versions of the mixed effects model. 

We compared camera trap and tracking cage detection rates for the period 

when both techniques were running simultaneously at each site. Further analysis was 

conducted using Cohen’s Kappa statistic, a measure of inter-observer variability. This 

descriptive statistic indicates if any observed agreement in the detection, (or not) of 

each species, between the two monitoring techniques was due to chance alone (Cohen 

1960). This allowed an assessment of the degree of agreement between the two 

techniques and suggested the rate of detection failure for the two methods. 

Additionally, to test for a correlation of detection rates between the two techniques, a 
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Pearson’s correlation test on the number of sessions where small mammals were 

detected by paired camera traps and tracking cages was performed in R version 2.14.1 

(R Foundation for Statistical Computing 2011). 

 

Results  

Survey effort 

 Overall, we carried out 30 trapping sessions at 10 different bait locations, across 

two sites in south west England. Over a total of 81 nights, this resulted in a grand total 

of 405 trapping nights. Table 1 provides a summary of survey effort over the three 

testing phases. 

 

Success of baiting and camera traps  

 We successfully demonstrated arboreal small mammals were attracted to bait 

and that camera traps captured images sufficiently clear to identify small mammal 

species (figures 4a-b). Over the three phases 3732 night-time video shots were 

recorded. Of these, 8.3% captured dormice, and 38.0% wood mice. Conversely, the 

percentage of shots where no species was identified, due to a false trigger, the animal 

not being present in the shot or the image being of too pure quality to allow species 

identification was across sites 53.7%. 

 Dormice and wood mice were readily distinguished from each other, due to 

dormice having a much more furry tail, smaller ears and blunter snout. No bank voles 

were recorded, but due to their smaller ears and shorter tails it is unlikely that they 

would be mistaken for either wood mice or hazel dormice. Species were only recorded 

as detected if confidence in species identification was high.  
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Table 1. Summary of the survey effort and study programme piloting camera traps and footprint tracking techniques, in order to detect hazel 

dormice. 

Phase Dates Site Survey method 
Trapping 

sessions 
Trapping nights 

Average number of 

nights per trapping 

session (range) 

Number of 

trapping nights 

1 8/07-27/07 Cabilla 
Bait trays and 

camera traps 
10 20 2 (1-3) 100 

2 5/08-2/09 Cabilla 
Tracking cages & 

camera traps 
9 29 3.22(1-6) 145 

3 11/09-12/10 
Red 

Moor 

Tracking cages & 

camera traps 
11 32 2.91 (2-4) 160 
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Figure 4. Camera trap shots. Frame from camera trap video footage during phase two of study, (therefore includes tracking cages in shots) of:  a) two 

dormice and; b) wood mouse, to demonstrate video quality sufficient to allow species identification.

A B 
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Time to first detection and frequency of visits 

 To investigate how soon after the installation of bait stations small arboreal 

mammals were likely to utilise bait stations we analysed time to detection rates at 

Cabilla (phase one and two combined) and Red Moor (phase three), using camera trap 

data. Across both sites the average number of nights to first detection of dormice was 

10.6 nights (range 2-21 nights) and for wood mice 10.0 nights (range 2-40 nights), see 

table 2 for further breakdown of data.  

 An indication of the relative frequency of visits to bait stations by dormice and 

wood mice at the two sites can be shown by the average number of video shots caught 

per session of the two species, when that species was detected (table 2). The overall 

averages were 6.2 (SD 5.7) and 2.3 (SD 1.6) for dormice, and for wood mice 13.3 (SD 

20.5) and 25.3 (SD 29.0) at Cabilla and Red Moor respectively.  

There was a significant interaction between time from initial installation and 

site on the presence of dormice detected by camera traps (X2 = 8.39, df = 1, p = 0.004). 

At Cabilla, dormice were more frequently detected in trapping sessions as time 

increased from initial installation, however this effect was not seen at Red Moor. There 

was no effect of the number of nights per trapping session on the presence of dormice 

detected by camera traps (X2 = 0.12, df = 1, p = 0.73). 

 

Success of tracking cages 

 It was also successfully demonstrated that tracking cages were able to collect 

tracks of small mammals and that they were of adequate quality to attempt species 

identification. Figure 5 shows some foot prints obtained from the tracking cages whilst 

in the field. The blocking cage also effectively prevented bait disruption by grey 

squirrels during our study, with only two out of a total of 100 trapping sessions being 

disrupted due to squirrels being able to open the cage.  

 Over phases two and three of the study, out of the 100 trapping sessions (20 

sessions with five monitoring stations), 65% resulted in tracking cards with at least one 

print that was sufficiently clear to allow an attempt at species identification at each 

bait station. Of the remaining 35% no prints were present; this would be due to either 
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Table 2. Detection rates at each monitoring bait station, using camera trap data, at Cabilla (phase one and two combined) and Red Moor (phase 

three). Data summarised by the time to first detection at and, where a species was detected, the average number of video shots caught of the 

respective species per session. 

 Time to first detection (nights) Average number of shots per session 

Station trap # Dormouse Wood mouse Dormouse Wood mouse 
Cabilla Phase 1&2     

1 4 8 3.0 (2.5) 1.0 (0.0) 
2 11 14 2.4 (2.6) 2.5 (1.7) 
3 4 40 9.6 (6.5) 7.7 (10.2) 
4 18 4 1.0 (0.0) 23.2 (27.5) 
5 14 6 5.9 (5.0) 6.6 (7.3) 

Average (SD) 10.2 (6.2) 14.4 (14.8) 6.2 (5.7) 13.3 (20.5) 
Redmoor Phase 3     

6 - - - - 
7 - 2 - 14.4 (23.4) 
8 - 8 - 31.0 (16.0) 
9 2 4 1.3 (1.6) 21.8 (16.1) 

10 21 4 3.0 (1.8) 32.3 (47.5) 
Average (SD) 11.5 (13.4) 4.5 (2.5) 2.3 (1.6) 25.3 (29.0) 
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Figure 5. Footprints from wild animals, captured using the footprint tracking cage. Subsequently identified as: hazel dormouse fore foot (A) and hind 

foot (B); and wood mouse forefoot (C) and hind foot (D). All prints are positioned with toes at the top, scale bars represent 0.5mm graduations. Note 

the distinctive three triangular metacarpal pads found in dormouse prints, which in some prints merge into each other, such as in print
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no animals visiting the tracking cage, or the tracks failing to collect any visiting animal 

prints. Whilst there were many overlapping prints, an average of 4 prints per tracking 

card (SD 3.73, range 1-23 prints) were sufficiently clear to allow an attempt at species 

identification from a visual scan of each tracking card. These 306 prints were identified 

by eye. This was achieved by comparing unknown prints to the known reference prints 

(See figure 3 and supplementary figures S1 and S2).  

 

Camera trap and footprint technique comparison 

 We compared the detection rate between camera traps and tracking cages, by 

calculating the percentage of trapping sessions that detected the two species, 

comparing monitoring stations (table 3). This could not be calculated for tracking cages 

in phase one as they were not employed during this phase. For phase two the 

detection rates were 37.8% (SD 40.5) and 40.0% (SD 33.0) for camera traps, and 40.0% 

(SD 30.0) and 35.6% (SD 38.0) for tracking cages for dormice and wood mice 

respectively. During phase three detection rates for wood mice was higher, and lower 

for dormice; at 12.7% (SD 17.7) and 60.0% (SD 34.4) for camera traps, and 3.6% (SD 

8.1) and 65.5% (SD 36.6) for tracking cages for dormice and wood mice respectively. 

 There was substantial agreement between the two survey methods in detecting 

both species (Cohen's kappa = 0.61), with 82% of the trapping nights having an overall 

agreement. When looking at species separately there was substantial agreement 

between techniques for identifying wood mice (Cohen's kappa = 0.65, table 4) and 

moderate agreement for dormice (Cohen's kappa = 0.48, table 4). The reduction in 

agreement for dormice is probably due to less dormice being detected at Red Moor 

and therefore there was an increased chance that by random both techniques would 

fail to detect dormice during a trapping session. If we assume that discrepancies were 

not caused by false-positives and that there were no occasions where both techniques 

missed small mammal activity, we can conclude that tracking cages failed to detect 

visiting small mammals in 7% of trapping sessions, and camera traps in 11% of trapping 

sessions (table 4). There was a highly significant positive correlation for the number 

of sessions that detected wood mice and dormice, comparing tracking and cages 

(Pearson’s correlation = 0.89, df = 18, p-value <0.001, figure 6).
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Table 3 Comparison of detection rates between camera traps and tracking cages. 

 
Percentage of sessions species detected by camera 

traps (%) 

Percentage of sessions species detected by tracking cages 

(%) 

Station trap # Dormouse Wood mouse Dormouse Wood mouse 
Cabilla Phase 1 (n sessions = 10)   

1 60.0 10.0 - - 
2 30.0 30.0 - - 
3 70.0 0.0 - - 
4 10.0 80.0 - - 
5 30.0 50.0 - - 

Average (SD) 40 .0 (24.5) 34 .0 (32.1) - - 
Cabilla Phase 2 (n sessions = 9)   

1 22.2 11.1 22.2 0.0 
2 0.0 11.1 22.2 0.0 
3 100.0 33.3 77.8 33.3 
4 11.1 88.9 11.1 88.9 
5 55.6 55.6 66.7 55.6 

Average (SD) 37.8 (40.5) 40.0 (33.0) 40.0 (30.0) 35.6 (38.0) 
Red Moor Phase 3 (n sessions = 11)   

6 0.0 0.00 0.0 0.0 
7 0.0 63.64 0.0 81.8 
8 0.0 72.73 0.0 81.8 
9 27.3 

 

81.82 0.0 81.8 
10 36.4 81.82 18.2 81.8 

Average (SD) 12.7 (17.7) 60 (34.38) 3.6 (8.1) 65.5 (36.6) 
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Table 4. Summary of agreement between the two monitoring techniques to detect dormice, wood mice and both species combined. Failure to detect 

is based on the assumption that a technique failed to detect a species if it had no record but the other method had a positive record for a session. 

  
Cohen’s Failure to detect 

 
Agreement % Kappa Camera trap Tracking cage 

Dormice 83 0.48 0.08 0.09 

Wood mice 81 0.65 0.14 0.05 

Species combined 82 0.61 0.11 0.07 
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Figure 6. Correlation between of the number of sessions where small mammals were detected, by camera trap and footprint tracking cages, at each 

monitoring station, for dormice (solid circles) and wood mice (open circles).
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Discussion 

 We have established that both camera traps and tracking cages are able to detect 

the presence of small, arboreal mammals at bait stations. Camera traps have rarely 

been used for small animals and we anticipate that our findings will encourage other 

researchers to utilise camera traps for a wider range of species, including smaller 

animals. As camera traps continue to become cheaper and increasingly accessible, this 

will become more feasible (Rowcliffe & Carbone 2008). We have also shown that 

tracking stations can be adapted for use in arboreal habitats, demonstrating the 

importance of continued adaptation and development of existing techniques to 

provide solutions for surveying elusive species.  

 More specifically, both methods have the potential to determine hazel dormouse 

presence much more rapidly than current dormouse survey techniques and can be 

employed at any time throughout the active dormouse season. Our results have shown 

that dormice may visit bait stations and hence be detected, as soon as two days after 

installation. Of the stations that detected dormice, all were visited within three weeks. 

Whilst our methods require more regular visits than the recommended monthly nest 

box/tube checks (Bright et al. 2006), the total number of visits required are 

comparable, and would greatly reduce time-associated conflict with developers. 

Additionally these methods can be used in a greater variety of habitats than existing 

survey methods, as they do not require the presence of any specific vegetation species 

and should not be affected by the availability of nest sites.   

 At Cabilla the probability of detecting dormice increased with increasing time-

since-installation However, this relationship was not observed at Red Moor, perhaps 

due to the low statistical power afforded by low rates of detection. The increasing 

probability of detection implies a certain level of ‘trap-happiness’ among resident 

dormice (perhaps not surprising since the bait stations are deliberate attempts to 

attract subjects), or an aggregation of dormice to bait stations following attraction of 

the first subject(s). For presence-absence surveys this suggests that a pre-baiting 

period may be a simple way to maximise the probability of detection. However for 

studies employing this technique to investigate dormouse ecology, such temporal 

changes in detectability must be considered. The effect of number of trapping nights 
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may have no significant effect on the ability of camera traps to detect dormice, as 

whilst longer trapping sessions may increase the chance of a dormouse visiting the 

monitoring station, the efficiency of the equipment may be compromised due to 

equipment failure, for example. Further studies are required to investigate this. 

 The camera trap and footprint tracking techniques provided similar results for the 

majority of the trapping sessions. Where there was disagreement, the estimated 

proportion of assumed detection failure from the two techniques was very similar, 

which suggests one technique did not appear to detect small mammals more 

effectively than the other. The cause of failure to detect small mammal activity may be 

attributed to several factors, dependent on the technique in question. A qualitative 

comparison of the two techniques is given in table 5. 
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Table 5. A comparison of the pros and cons for camera trap and tracking stations as 

survey techniques, with the objective of detecting the presence of hazel dormice. 

 Camera trap Footprint tracking 

Invasiveness No need to handle animals No need to handle animals 

 Infra-red flash is not detectable Tracking medium adheres to 
animal’s feet, but is non-toxic 

Survey 
effort 

Positive records of dormice are 
acquired within days to weeks 

Positive records of dormice are 
acquired within days to weeks 

 Bait, batteries and memory requires 
replacing 

Bait, tracking card and medium 
requires replacing 

 Can be left out for long periods of time 
before collection as stores data safely 

Must be collected regularly as 
overlapping tracks make footprint 

identification difficult 

 Higher cost reduces potential survey 
effort 

Lower cost allows larger survey 
effort 

Accuracy Animal can be detected even if doesn’t 
make direct contact with bait 

Animal must make contact with bait 
and tracking medium to leave prints 

 False-negative results may result from 
the camera trap failing to trigger, or 
the delay from trigger to recording 

False-negative results may result 
from environmental conditions 

damaging tracking cards 

 False-positives if species incorrectly 
identified 

False-positives if species footprint 
incorrectly identified 

Flexibility Can be used in any habitat where 
camera traps can be secured 

Can be used in any habitat where 
tracking cages can be secured 

 Can be used any time throughout the 
active dormouse season 

Can be used any time throughout 
the active dormouse season 

Reliability Weather conditions may increase the 
number of false triggers, depleting 

memory and battery 

Weather conditions damage 
tracking medium and cards, 

preventing tracks being left by 
animals 

 Equipment waterproof so rain and 
wind should not damage records 

Weather conditions may destroy 
tracks 

 Potential equipment failure and user-
error 

Simple system reduces likelihood of 
equipment failure and user-error 

Expertise Data analysis requires minimal 
expertise 

Data analysis requires footprint 
identification expertise 

 The placing of the camera trap relative 
to bait requires skill to optimise results 

Placing of tracking cage can be more 
ad hoc 

Record Permanent Permanent 

Costs High initial and maintenance costs and 
therefore increased security concerns 

Low cost and therefore less security 
concerns 
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Future directions 

 Whilst the principle of both techniques has been proven, further work is 

required to establish a standardised protocol with guidelines on experimental design 

(Kelly 2008). A survey effort that minimises the risk of false absences and takes 

detection probability into consideration should be determined (Mackenzie 2005). 

 Various ecological factors such as: food availability; abundance of bait 

competitors; habitat type; and weather conditions may influence the effectiveness of 

these baited methods and therefore requires further investigation. The population 

density of the study species is also likely to affect the detection rates of these 

methods. Our surveys at Red Moor detected less dormouse activity at bait stations, but 

it is unclear if this is due to lower dormice density, seasonality, the competitive 

exclusion of dormice by wood mice, other variables or just due to our small sample 

size. Calibration of detection rates to accurate abundance estimates may allow the 

establishment of methods to determine indices of relative abundance (Kelly 2008, 

Rovero et al. 2009). 

 The use of pre-baiting and an increased number of bait stations may reduce the 

temporal survey effort required. However, a subsequent increase in bait competitors 

attracted to pre-bait may dissuade focal species from visiting the bait. As rate of bait 

taken may vary for locations, we recommend a pilot study to determine the required 

rate of replenishment at each site. This would also allow the rate of checking required 

to be determined, depending on chosen camera settings. Whilst we used video clips of 

20 seconds duration, if memory card become full species may be missed, reducing 

video duration to 10 seconds would lessen this. 

 In our study we only detected, and distinguished between, hazel dormice and 

wood mice. The camera trap data suggest that few or no other small mammal species 

visited the bait stations during our study. However, it is important to note that other 

species such as voles and shrews may visit arboreal tracking cages. This is of particular 

note for footprint identification, as wood mice prints may be confused with other 

rodent species, as these rodents have a similar general morphology (Van Apeldoorn et 

al. 1993). However, the characteristic metacarpal pads of the hazel dormouse result in 

it being more distinctive. The adoption of statistical algorithms for footprint 
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identification, such as those employed by Alibhai et al. (2008) and Russell et al. (2009) 

would provide a more automatic and objective method, could include a wider range of 

small animal species and provide additional information, such as age and sex. We 

envisage that the continuing develop of such techniques will lead to an expansion in 

the use of point sampling of footprints for many species groups. 

 

Conclusion 

Our study successfully demonstrated proof-of-concept for the use of camera 

traps and tracking cages to detect the presence small, arboreal animals. As wildlife 

monitoring technology becomes more sophisticated and the urgent need for cheap 

and quick monitoring techniques heightens, it is likely that the employment of 

presence-absence surveys will continue to increase. Therefore, future studies should 

consider these techniques when surveying for such species. We believe that these 

novel survey methods may also be used for other research interests, such as temporal 

and spatial activity patterns and food preferences.  

We have demonstrated that there is value in adapting and creating new survey 

techniques, even if established survey methods exist. Alternative techniques increase 

the range of potential survey methods, providing ecologists with greater flexibility to 

choose a technique most suitable for their particular time and financial constraints. 

Presence/absence survey techniques need not be expensive, as exemplified by the 

simplicity of footprint tracking, but can dramatically reduce the delay in detection of 

species of conservation concern in threatened habitats.  
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Supplementary Figure S1. A description of the morphological features of small mammal feet: a 

comparison of hazel dormice and wood mice. Main features of the feet are marked by: triangles (toes), 

rectangles (metacarpal pads) and circles (heel pads).  

 

Dormouse fore foot 
Toes 

 Four toes. 

 Toes form a symmetrical, shallow arch. 

 A line drawn between toes 1 and 4 would cross well above the 
metacarpal pad. 
Metacarpal pads 

 Three triangular/oval pads close together. 

 If excess ink may merge into an oblong. 
Heel pads 

 Irregular concave polygon shapes. 

 

Dormouse hind foot 
Toes 

 Five toes, sometimes four as outer toe often doesn’t leave a print. 

 Toes 1 and 5 at an obtuse angle from middle three toes. 

 Angle between toes 1,2 and 5 and 1,3 and 5 generally more than 75 
degrees. 
Metacarpal pads 

 Three triangular/oval pads close together. 

 If excess ink may merge into an oblong. 
Heel pads 

 Irregular concave polygon shapes. 

 

Wood mouse fore foot 
Toes 

 Four toes. 

 Toes form a symmetrical pattern. 

 A line drawn between toes 1 and 4 would transect the metacarpal 
pad. 
Metacarpal pads 

 One circular pad. 
Heel pads 

 One to four small round pads below metacarpal pads. 
 

 

Wood mouse hind foot 
Toes 

 Five toes, sometimes four as outer toe often doesn’t leave a print. 

 Toes 1 and 5 at an obtuse angle from middle toe. 

 Angle between toes 1,2 and 5 and 1,3 and 5 generally less than 75 
degrees. 
Metacarpal pads 

 Two oval pads. 

 Can merge into each other if excess ink. 
Heel pads 

 One to four small round pads below metacarpal pads 
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Supplementary Figure S2. Diagram of the dorsal surface of wood mouse and dormouse front and hind 

feet, showing the toes (red), metacarpal pads (blue) and heel pads (black). 
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Chapter 3: Keeping track of hazel dormice: 

an objective method for discriminating small mammal footprints 

 

Abstract  

As a European protected species, there are legal procedures in place which require the 

mitigation of development effects on hazel dormice, Muscardinus avellanarius. Hence, 

a prime role of environmental consultants is to detect the presence of these mammals 

in order to implement conservation initiatives. Established methodologies vary in 

effectiveness, and habitat and temporal constraints, that impact on their execution. A 

recent study (Chapter 2) successfully detected wild dormice and wood mice, Apodemus 

sylvaticus, through the collection of footprints in their arboreal habitat. However, the 

need for expertise in footprint identification is often a barrier to ecologists utilising such 

tracking techniques. Naïve surveyors may find footprint identification challenging, 

therefore an objective system for discrimination between wood mice and dormice is 

required.  

Suitable morphometric measurements from reference images of hazel dormouse and 

wood mouse footprints were selected. An algorithm based on Linear Discriminant 

Analysis (LDA) using four measurements was then developed and tested by non-

experts, through a random selection of 39 reference footprints, and 212 identification 

attempts.  

Of the four measurements, three were found to be highly repeatable and contribute to 

LDA functions that resulted in high proportions of correct identifications. However, the 

inclusion of one measure (B) resulted in an increase in incorrect identifications and 

therefore was dropped from the final LDA algorithm. This final algorithm was 

compared to identifications made manually by experienced footprint surveyors. For 

footprints where both methods made an attempt at species identification agreement 

was 99%. However, using the 95% confidence interval with the LDA function led to 24% 

of prints being reported as unidentified, compared to just 7% of prints examined 

manually. Our methodology could easily be adapted to include additional small 

mammal species as well as applied to other animal communities. 
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Introduction  

 Throughout human history, the identification and interpretation of animal signs 

has been a fundamental skill, enabling ancestral and present-day hunters to detect and 

follow focal species (Stander et al. 1997). More recent scientific, ecological and 

conservation motives, across the range of mammals, has prompted the increased 

uptake of field sign monitoring (Twigg 1975). Field signs surveying is non-invasive, 

relatively inexpensive, begets a permanent record in collected signs and photographs, 

requires less survey effort compared to live trapping for example, and enables spatially 

extensive studies (Van Apeldoorn et al. 1993). 

 Footprints and tracks are widely used field signs for surveying across a range of 

taxa, including large carnivores (Gusset & Burgener 2005, Hussain 2003), ungulates 

(D’Eon 2001), erinaceids (Huijser & Bergers 2000), mustelids (Ratz 2000) and rodentia 

(Connors et al. 2005). This is possible because evolutionary adaptations frequently 

produce inter-specific variation in foot morphology and because animals often leave 

behind tracks in various stratum within their environment (De Camargo et al. 2012, 

Stander et al. 1997). 

 Footprints can be acquired by searching for tracks within a species’ natural 

habitat where the ground is likely to retain prints, such as along the edge of water 

bodies (Sidorovich 1992), sandy roads (Gusset & Burgener 2005) or in the snow (D’Eon 

2001). Whilst these methods will have little or no surveyor effect, intuitively they may 

be habitat and/or seasonally restrictive, time consuming and have low detection rates. 

Therefore, often artificial tracking stations are employed, whereby animals leave 

footprints on a specially prepared tracking medium, frequently attracted by bait or 

lure. A variety of techniques have proved successful at collecting mammal footprints, 

including scent-stations surrounded by sand (Conner et al. 1983), tracking tunnels 

(Drennan et al. 1998, Glennon et al. 2002, King & Edgar 1977), floating rafts for aquatic 

mammals (Reynolds et al. 2004), tracking plates (Connors et al. 2005) and tracking 

cages for arboreal mammals (Chapter 2). 

 However, once tracks are acquired, the task of reliably identifing prints to 

species is challenging and requires expertise. This is particularly difficult for 

morphologically similar, sympatric species. This constraint has potentially impeded the 
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further expansion of tracking techniques for surveying. However, there have been 

advances in objective identification techniques, such as discriminant and canonical 

analyses (e.g. Alibhai et al. 2008, De Angelo et al. 2010, Palma & Gurgel-Gonclaves 

2007 and Sharma et al. 2005), automatic image recognition (Russell et al. 2009) and 

unsupervised neural-network and Bayesian methods (Riordan 1998). 

 The focus of this study is the hazel dormouse, Muscardinus avellanarius. As a 

flagship species protected under European Directives, much effort is put into 

surveying, monitoring and mitigation for this species (Bright et al. 2006). Many existing 

hazel dormouse survey methods are seasonal and/or habitat dependant, or require 

prolonged survey periods (Bright et al. 2006). Therefore, the development of more 

efficient and rapid survey techniques for hazel dormice would be beneficial. It has been 

shown that it is possible to acquire footprints from dormice using a baited tracking 

system placed in their arboreal habitat (Chapter 2). However, non-target, wood mouse, 

Apodemus sylvaticus, tracks were also recorded. Hazel dormouse feet are 

morphologically different from wood mice, and it is possible, with training, to 

distinguish them by eye. However, this is subjective, requiring expertise and therefore 

prone to error if attempted by less experienced surveyors.  

 Measurable morphometric features of known hazel dormouse and wood mouse 

prints were analysed using linear discriminant analysis (Fowler et al. 1998) to develop 

an accurate algorithm with a 95% confidence threshold. The ability of naïve surveyors 

to accurately record these measures from reference footprints and apply the algorithm 

was assessed.  These results were used to select the most accurate and simple 

numerical algorithm for the objective identification of species from footprints. Species 

determinations calculated using this algorithm were then compared to those made 

subjectively by surveyors who are familiar with hazel dormouse and wood mouse 

footprints. 
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Materials and Methods 

Reference footprint collection 

 Reference footprints were collected from 15 captive hazel dormice from 

Paignton Zoo and 16 wild wood mice live trapped during other studies. Tracks were 

obtained by allowing animals to freely walk through a tracking tunnel sited in a large 

container, into which the animal was released.  A cardboard pad covered in tracking 

medium (a viscous mixture of graphite powder and sunflower oil) was positioned at 

the tunnel entrance.  A strip of white card lined the floor of the tunnel. As an animal 

walked over the pad and through the tunnel, footprints were left on the tracking card. 

These were retrieved and sprayed with a fixative (i.e. hairspray) to prevent smudging. 

Each reference footprint was photographed using a digital camera, with a 0.5mm 

increment precision scale in the frame. Data on date, species and sex were recorded. 

Other small mammal species such as voles and shrews were not included in this study, 

as these species were not detected in the testing of arboreal tracking cages (Chapter 

2).  

 

Ethical Note 

 Hazel dormice were kept by Paignton Zoo as part of a conservation 

reintroduction scheme, licenced by Natural England and at all times acting within the 

laws of the UK and abiding by all ethical policies of the British and Irish Association of 

Zoos and Aquariums, the European Association of Zoos and Aquaria and the World 

Association of Zoos and Aquaria.  Collection of footprints took place during normal 

husbandry practices, when animals would normally be removed from their enclosures, 

to ensure no additional disturbance to the animals occurred.  All wild wood mice were 

live trapped following recommended guidelines (Gurnell & Flowerdew 2006), and 

footprints were collected in the field and the animal immediately released at its 

capture site. 
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Morphometric measurement selection 

 The image processing software ImageJ v1.44 (Abramoff et al. 2004), was used 

to collect morphometric measurements from randomly selected reference footprints. 

To avoid pseudoreplication only one fore and one hind print from each individual was 

used. Measurements incorporating angles and distances between all combinations of 

toes and the central pad was carried out on a small subset of the prints (n=4 per 

species per fore/hind foot position). Distances were converted into ratios in order to 

control for variation in footprint size. Additional characteristics, such as distinctive pad 

shapes were also recorded. Those measurements that showed no variation, based on 

exploratory data were eliminated from further analyses.  The remaining measurements 

were taken randomly from the additional reference images, resulting in a suite of 

measurements for one fore and one hind foot from each individual (dormice n=15, 

wood mice n=16). 

 We further selected measurement parameters that were independent of foot 

position (i.e. hind/fore and left/right). This ensured the same methodology could be 

implemented on any print irrespective of foot position, a feature that will usually be 

unknown for prints on tracking cards. Both species have four toes on forefeet and five 

toes on hind feet and so we selected measures that were based on the corresponding 

four toe positions only. Where five toes were present, the outer toe that was closest to 

the central pads was arbitrarily designated as the toe that should be ignored. We used 

this definition, as this is most likely to be the thumb-equivalent and so more likely to 

alter biometric features between feet. This left four toes for further measurements and 

allowing hind and forefeet to be treated by the same analysis.  

 A total of four measurements (A-D) were selected and used throughout the 

following methodology. In brief, A = width to height ratio of the area encompassing the 

four toes, B = ratio between the distance between the outer two toes, and the centre 

of that line to the middle toe which has the greatest distance between itself and the 

adjacent outer toe, C = angle between the two outer toes and the middle toe which 

has the greatest distance between itself and the adjacent outer toe, D = qualitative 

description of metacarpal pad morphology. Figure 1 provides a diagram of each 

measurement for both dormice and wood mice, and supplementary figure S1 includes 
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more detailed instructions on recording these measurements. 

 

Original Linear Discriminant Analysis 

 To determine which measurements were most accurate in determining species 

identity, separate linear discriminant analysis (LDA) models were performed on the 

data for each of the possible combinations of the measurements (A-D), using R v2.10.0 

(R Foundation for Statistical Computing 2010). LDA finds a linear combination of the 

response variables that maximises the probability that a new observation joins one of 

the predefined clusters. It assumes normally distributed data with equal co-variances 

between measurements (among clusters). The proportion of footprints correctly 

assigned by each LDA model was ascertained, using the “leave-one-out” method 

(Everitt 2005). 

 

LDA algorithm testing by non-experts 

 Twenty groups of volunteers (range one to four people per group) from 

biological and non-biological backgrounds, but none with experience of tracking were 

used to trial the LDA algorithm. Volunteers were given a brief introduction to footprint 

morphology and provided with instructions on how to take the measurements and use 

the LDA algorithm (supplementary figure S1). The ability of volunteers to record the all 

four measurements and calculate the corresponding LDA function was then assessed 

through blind testing with a selection of reference footprint images. Images were 

randomly rotated so that volunteers were required to ascertain the correct direction of 

travel for a footprint and determine the layout of toes and pads, as this would not 

necessarily be clear from the tracking card. Volunteers either took measurements 

manually using a rule and protractor, or with ImageJ and then recorded their data in a 

spreadsheet, along with their calculated LDA value and the species identification.  

 

LDA measurement combinations 

 For each LDA model of the different combinations of measurements A-D, the 

lower and upper threshold values were determined that gave 95% confidence that the 

footprint was either dormouse or wood mouse, respectively. This was carried out using 

the original morphometric measurements data. Then using the raw data from the 

volunteers’ measurements, for each combination of LDA model we determined the 
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proportion of samples that were identified correctly before applying the 95% 

confidence threshold, the proportion of samples that provided an identification 

estimate with at least 95% confidence, the proportion of these “confident” 

identifications being correct and the proportion of false identifications of hazel 

dormice.  

 

LDA versus experienced surveyors 

 Three hundred and six unknown footprints collected during trials of tracking 

cages (Chapter 2), were subjected to the final LDA algorithm. The identification results 

using the algorithm were compared to the identifications made subjectively by 

experienced small mammal footprint surveyors, as determined in the original study 

analysis (Chapter 2). 

 

Repeatability analysis 

Intra and inter-observer consistency in recording the footprint measurements 

were investigated through repeatability analyses. Five observers each measured a set 

of eight footprints twice, with a minimum of fifteen minutes between repeat 

measures. For each of the four measurements, observer’s data were analysed using a 

linear model, with mixed effects, whereby observer and print were included as random 

effects. Correlations between the continuous intra-observer repeat measurements 

were assessed using model simplification via Chi-squared tests to compare nested 

Maximum Likelihood models. The distribution of variance amongst the fixed (intra-

observer measures) and random effects (print and inter-observer measures) was 

investigated to determine the relative contributions to the total variance from each of 

these effects. 
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Figure 1. Diagrammatic descriptions of the morphometric measurements A-D, shown 

on prints from both, hazel dormice and wood mice, as well as fore and hind feet. 

Crosses denote the hind toe that is ignored, as per our methodology. 
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Results  

Original Linear Discriminant Analysis 

 Linear discriminant analysis based on the original measurement data 

demonstrated that all combinations of the four reference footprint measurements 

provided high proportions of correct species identifications, ranging from 0.92 to 0.95 

(table 1). The full model, ABCD, did not provide the highest proportion of correct 

identifications. 

 

LDA algorithm testing by non-experts 

 From a random selection of 39 known footprints, volunteers made a total of 

212 identification attempts. When volunteers used all four measurements and 

calculated the LDA value based on the ABCD LDA model, 90% of identification attempts 

were correct, which compares to 94% for the same model when calculated using the 

original measurements. However, there was substantial error in some models, and 

significant variation in the success of the different models, ranging from 44% to 91% 

correct. Note, that this is prior to the application of confidence thresholds.  

 

LDA measurement combinations 

 Further analysis of the volunteers’ raw measurement data allowed us to 

determine in which LDA models the greatest error lay, using the 95% confidence 

threshold values. This analysis demonstrated that there was a large variation between 

models that provided confident identifications in contrast to these confident 

identifications that were also correct. Additionally, there was some variation in the 

proportion of false-positive identifications of hazel dormice (table 2), although in 

models where this was low, this is due to very few samples being identified confidently 

and correctly as dormice. 

 By contrasting these values, it is possible to determine that the LDA model 

using measurements ACD provided the best compromise between the proportion of 

confident and correct identifications (figure 2).  
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Table 1. LDA results for measurements taken by ourselves, showing the proportion of 

correct identifications, based on the “leave-one-out” method (Everitt 2005). 

Measure combination Proportion of correct identifications 

AB 0.92 

ABC 0.92 

ABCD 0.94 

ABD 0.95 

AC 0.92 

ACD 0.94 

AD 0.94 

BC 0.92 

BCD 0.94 

BD 0.95 

CD 0.94 
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Table 2. Comparison of success rates for the different combinations of LDA 

measurements, A-D. Volunteer measurement data were used for all combinations of 

LDA models and tested for: the proportion of identifications that were correct; the 

proportion that provided confident identifications; using the 95% confidence 

threshold; the proportion of these confident values that were correct; and the 

proportion that provided false dormouse identifications. 

Measure 
Proportion correct 

across all data 

Proportion 

providing 

“confident” 

LDA values 

Proportion of 

correct 

“confident” 

identifications 

Proportion of 

false 

dormouse 

identifications 

AB 0.44 0.99 0.45 0.00 

ABC 0.66 0.66 0.72 0.00 

ABCD 0.90 0.83 0.93 0.01 

ABD 0.46 0.92 0.48 0.00 

AC 0.82 0.64 0.89 0.14 

ACD 0.91 0.86 0.94 0.02 

AD 0.87 0.78 0.95 0.02 

BC 0.56 0.77 0.64 0.00 

BCD 0.88 0.82 0.91 0.01 

BD 0.45 0.99 0.45 0.00 

CD 0.91 0.85 0.95 0.02 
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Figure 2. For each LDA model and using the volunteer’s data, a plot of the proportion of confident identifications, against those that were confident 

and correct. LDA models that lie in the furthest top right will provide the highest number of most accurate identifications.
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When the volunteers’ measurement data are compared to the original measurements, 

there is a larger mean and variance for measurement B for the latter trial group. This 

indicates that this measure was responsible for much of the error in the volunteers’ 

data, as the other measurements were similar in mean and variation between trial 

groups (figure 3 a-d). The final LDA function, based on measurements ACD, is:  

 

- 8.417 + (A*-2.132) + (C*0.090) + (D*1.145) 

 

For a footprint to be identified as dormouse, with 95% confidence, this function must 

exceed 0.89. To be identified as wood mouse with 95% confidence, it should be lower 

than -0.87. The frequency of ACD model LDA scores from the original data for the two 

species is shown in figure 4. Using this LDA function and 95% confidence threshold, for 

the 212 identification attempts by volunteers, 81% were identified correctly, 14% were 

classified as unknown and 5% were incorrectly identified.  

 

Footprint bait cages 

 The 306 prints collected from unknown animals using tracking cages, which 

were identified manually by eye by an experienced small mammal ecologist (Chapter 2) 

were then subjected to the final LDA algorithm methodology for the measurements 

ACD. For prints where both techniques made an identification prediction, 99% of the 

predictions were in agreement. However, the LDA algorithm was more conservative, 

with 24% of prints being reported as un-identified, whilst manually by an experienced 

ecologist only 7% were considered unidentifiable. 

 

Repeatability analysis 

All three continuous measurements demonstrated highly significant intra-

observer correlations (measure A: X2 = 31.33, df = 1, p<0.01; measure B: X2 = 33.22, df 

= 1, p<0.01; measure C: X2 = 16.19, df = 1, p<0.01; table 3). Variance distribution 

amongst the effects for all four measurements was predominantly explained by the 

fixed effect of intra-observer measurements (table y). Measurement A alone had a 

substantial percentage (23.02%) of variance explained by the inter-observer effect 

(table 4).
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Figure 3a-b. Box and whisker plots of measurement-values taken from footprints, 

comparing the original measures with those taken by volunteer trial groups, for 

measurements A to D. 

A 

B 
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Figure 3c-d. Box and whisker plots of measurement-values taken from footprints, 

comparing the original measures with those taken by volunteer trial groups, for 

measurements C to D.

C 

D 
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Figure 4. Frequency plots showing the range of LDA scores for wood mice and dormice, using the original measurements for the ACD model.
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Table 3. Results of the analyses of correlations between intra-observer repeated measures of eight small mammal footprints, for the measurements 

A-C. 

Measurement 

Slope between 

repeated 

measures 

Measure 1~ 

Measure 2 

Chi2 (df) 

Measure 1~ 

Measure 2 

Pr 

A 1.01 31.33 (1) <0.01 

B 0.84 33.22 (1) <0.01 

C 0.98 16.19 (1) <0.01 

 

Table 4. The distribution of variance amongst prints, amongst observers and within observers, for the measurements A-D.  

 A B C D 

 Variance % Variance % Variance % Variance % 

Print 1.1864e-20 <0.01 0 0 1.6163e-01 1.08 4.0312e-07 <0.01 

Inter-Observer 3.8559e-04 23.02 0 0 2.1827e-13 <0.01 1.4269e-07 <0.01 

Intra-Observer 

(Residual) 
1.2893e-03 76.98 0.0087 100 1.4829e+01 98.92 4.9999e-02 99.99 
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Discussion 

 We have designed and tested a simple and objective technique for non-experts to 

use for the confident and accurate discrimination between hazel dormouse and wood 

mouse footprints collected in tracking cages. This methodology proved to be as 

accurate as manual identification by experts. Due to the allocation of a confidence 

value it is more conservative and so provides fewer identification attempts. We 

envisage that the two methods would complement each other, as well as assist new 

surveyors in gaining experience in how to identify small mammal prints. 

 The LDA algorithm, ACD, was our chosen model as it had the best compromise 

between the proportion of confident identifications and correct species allocations of 

these, as well as having a low false dormouse identification rate. We demonstrated 

extremely high repeatability for measurements A, C and D within individuals. However, 

the slope value for measurement B indicates a slightly weaker correlation between 

individuals repeat measurements. This concurs with the findings that measurement B 

was responsible for the greatest amount of error, and this is likely due to it being 

particularly difficult to record consistently. Many of the LDA models were less accurate 

due to measurement B. From our data the exact cause of this remains unexplained. It 

may be due to the methodology for this measure being poorly explained to volunteers 

(see figure 1 and supplementary figure S1). Irrespective of the cause, these 

inaccuracies support the removal of this measurement. It could be argued that the 

simpler model CD, which showed similar performance to ACD, may be preferable; 

however we consider the provision of three measurements more beneficial for cases 

where a poor quality print negates the possibility of taking one of the measures 

accurately. 

 Our footprint identification methodology only allows discrimination between hazel 

dormice and wood mice. For hazel dormouse-focused surveys this is not of concern, as 

this species’ footprints tend to be relatively characteristic compared to other British 

small mammals (Chard 1936). However, the inclusion of more sympatric small mammal 

species would further extend the usefulness of this methodology. Additionally, other 

variables such as sex and age may be incorporated. 
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 Here we demonstrate that it is relatively straight forward to establish a simple 

algorithm that can be used for footprint identification and therefore similar 

methodology could be applied to other research projects for any group of species for 

which tracking surveys are used. We envisage that the development of these 

techniques, will lead to an expansion in the use of point sampling of footprints for 

many species groups. 
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Supplementary Figure S1: A copy of the instructions given to the volunteers who 

conducted the trial of collecting data for and implementing the LDA algorithm. Note 

that the equation at the end of this figure is therefore not the final LDA algorithm 

defined in the results section. 

 

Discriminating between dormouse and wood mouse footprints. 

 Hazel dormice are a European protected species and so many ecologists survey for their presence. 

 Current methods can take up to 1 - 2 years to complete.  

 As part of my PhD, I am investigating alternative, more efficient survey methods.  

 This trial involves the collection and identification of small mammal footprints. 

 Collection has successfully been achieved by attracting small mammals to food, the access to which 
requires walking over safe “ink” and then card where they leave footprints.  

 I have designed a method to identify the prints, but need you to trial it - to check that it is accurate 
and easy to use. 

 Your results will demonstrate which combination of the four measurements are best 

 Please use the following instructions, and don’t hesitate to contact me if you have any questions 
 
1. Look carefully at the example prints of dormice and wood mice below and read through the main 

points. This will give you an introduction to what small mammal prints look like. 

 

Main things to notice:  

i. Prints are small - approximately 1 cm in height. 

ii. Both species have four toes on their front feet and five toes on hind feet. 

iii. Metacarpal pads are the pads just below the digits 

iv. Below the metacarpal pads are heel pads. 

v. These training prints are “ideal” prints, but other prints may be missing toes or pads and excess ink, 

slippage and overlapping prints may create unclear foot prints. 

 

 

Dormouse 

front foot 

Dormouse 
hind foot Wood  

mouse 

front foot 

Wood  

mouse 

hind foot 

 

DIRECTION 

OF 

TRAVEL 
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2. The table below highlights the main parts of the footprints and explains the differences between the 

species and front/hind feet. It is vital that you can visualise the general pattern of small mammal 

footprints, such as position of toes, metacarpal and heel pads. 

 

 

Dormouse fore foot 
Toes 

 Four toes. 

 Toes form a symmetrical, shallow arch. 

 A line drawn between toes 1 and 4 would cross well above the 
metacarpal pad. 
Metacarpal pads 

 Three triangular/oval pads close together. 

 If excess ink may merge into an oblong. 
Heel pads 

 Irregular concave polygon shapes. 

 

Dormouse hind foot 
Toes 

 Five toes, sometimes four as outer toe often doesn’t leave a print. 

 Toes 1 and 5 at an obtuse angle from middle three toes. 

 Angle between toes 1,2 and 5 and 1,3 and 5 generally more than 75 
degrees. 
Metacarpal pads 

 Three triangular/oval pads close together. 

 If excess ink may merge into an oblong. 
Heel pads 

 Irregular concave polygon shapes. 

 

Wood mouse fore foot 
Toes 

 Four toes. 

 Toes form a symmetrical pattern. 

 A line drawn between toes 1 and 4 would transect the metacarpal 
pad. 
Metacarpal pads 

 One circular pad. 
Heel pads 

 One to four small round pads below metacarpal pads. 
 

 

Wood mouse hind foot 
Toes 

 Five toes, sometimes four as outer toe often doesn’t leave a print. 

 Toes 1 and 5 at an obtuse angle from middle toe. 

 Angle between toes 1,2 and 5 and 1,3 and 5 generally less than 75 
degrees. 
Metacarpal pads 

 Two oval pads. 

 Can merge into each other if excess ink. 
Heel pads 

 One to four small round pads below metacarpal pads 
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3. Now you are ready to work through the Footprint identification methodology: 
i. Open a footprint jpeg image, which can be found in the folder “Test prints”.  Open in either Paint or 

ImageJ. (Can be downloaded for free from: http://rsbweb.nih.gov/ij/). Alternatively, print the image off 
in black and white. 

ii. Be careful to not change the image in any way that stretches or skews the image, the ratio of 
height:width must stay the same.  

iii. If using Paint or print-outs you will need a ruler and protractor to take measurements. 
iv. As you go along taking measurements, put your data into the Excel file “YOUR NAME HERE_footprint 

data”. Save regularly, replacing file name with your name.  
v. Include the image file name under “Photo ID”, so I know which image the measurements relate to. 

 
STEP 1: Exclusion of fifth toe. 

i. Count the number of toes. If four toes, go to Step 2.  
ii. If five toes, look at the toe outer toes, choose the one that is closest to the central pads and cross this 

one out so that you are left with the other four toes.  
iii. The one you crossed out can now be ignored for the rest of the methodology. The reason is the method 

has been designed to work with four toes only, so it can be used on front and hind feet. 
 
STEP 2: (A) - Height:width ratio.  

i. Imagine you are drawing the smallest possible box that contains the four toes.  
ii. Width of the line just below and between the outer two toes, and that extends to their outer edge. 

iii. Identify the middle toe that is furthest from the width line. 
iv. Height of the line from the top edge of the middle toe identified in iii, down to and perpendicular to the 

width line. 
v. Ratio= height/width. 

 

         
 
STEP 3: (B) - Middle/outer toes distances ratio. 

i. Mark the mid-point distance half way between the outer two toes. 
ii. Measure the distance between this mid-point and the centre of one of the outer toes. 

iii. Look at the two middle toes, select the one which has the largest distance between it and the adjacent 
outer toe. 

iv. Measure the distance between the mid-point and the centre of the middle toe you selected in iii. 
v. Ratio = Middle toe distance/outer toe distance. 

 

http://rsbweb.nih.gov/ij/
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STEP 4: (C) – Angle 
 

i. Mark the centre of the two outer toes 
ii. Look at the two middle toes, select the one which has the greatest distance between it and the adjacent 

outer toe. 
iii. Mark the centre of the middle toe that you selected in ii. 
iv. Measure the angle in degrees between these three toes. 

 

 
 
STEP 5: (D) - Metacarpal pad score. 
 

i. Identify the metacarpal pad on the print. 
ii. Look at the shape, and then give a score based on: 

+1 = Three triangular or oval pads in a straight line and close to each other. If there was excess ink on 
the animal’s feet the pads may merge into one oblong, but three pad impressions are still visible. 
0= No metacarpal print present, or too poor quality to be able to score confidently. If excess ink has 

created a blob. 
-1= Either one round central pad (wood mouse fore foot) or two small ovals (wood mouse hind foot).  

 
 
 
 
 

Triangular/oval metacarpal pads, 

that may merge together 

One circular             

pad 

Two oval pads 
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STEP 6: Calculate the footprint identification score. 
 

i. I established this calculation using prints from known species.  
ii. Use Excel to work out the score for each footprint you measured, using the calculation below, where the 

letters correspond to the  four (A-D) measurements above: 

 
Score value    =    -7.09 + (A*-1.92 )+ (B*-1.64) + (C*0.08) + (D*1.13) 

 
iii. Above 0 indicates a dormouse print, below 0 indicates a wood mouse. 

 
 
STEP 7: Repeat steps 1-7 with a new print. Please try to do as many as you can, doing a mixture of 
images from set 1 and 2 first, and then if you are really keen images from set 3! 
 
 
STEP 8: Send me your completed Excel file. 
 
 

THANK YOU! 
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Chapter 4: Isolation and characterisation of 

hazel dormouse microsatellite loci 

Abstract 

The hazel dormouse, Muscardinus avellanarius L. (Rodentia; Gliridae) is considered 

vulnerable due to habitat loss and fragmentation. As such, research on the species’ 

molecular ecology may provide vital insights, which aid its protection. Integral to these 

studies is the development of DNA markers, which are essential tools in genetic 

analyses. 

We isolated hazel dormouse microsatellite sequences from enriched genomic libraries. 

Fifty-three primer sets were designed from 51 newly isolated loci. Additionally, nine 

primer sets from published hazel dormouse microsatellite sequences (Md Naim et al. 

2009) were redesigned and tested. In total, 61 marker sets were initially tested in eight 

unrelated individuals.  

Thirty-nine polymorphic loci amplified in >85% of samples and therefore were 

genotyped and characterised in further individuals from one of two single populations. 

Of these, 30 autosomal loci (22 new and eight published) adhered to Hardy-Weinberg 

equilibrium and displayed an estimated null allele frequency <0.20. Only one pair of loci 

displayed linkage disequilibrium after correction for multiple tests.  

This marker set will facilitate genetic studies of this protected species, such as 

population genetics and parentage analysis, and provide information for conservation 

management decisions. 
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 Hazel dormice, Muscardinus avellanarius, are vulnerable to habitat 

fragmentation as they have low population densities, limited dispersal and low 

reproductive potential (Bright 1993). Population declines have led to protection by 

European Directives (Amori et al. 2008).  

 Two new microsatellite-enriched libraries were constructed, from one hazel 

dormouse (ID79) found dead in Cornwall, England, in 2009. Genomic DNA was 

extracted from liver tissue using an ammonium acetate precipitation method (Nicholls 

et al. 2000). Libraries were constructed using the approach of Armour et al. (1994) and 

enriched for dinucleotide (library 1) or tetranucleotide microsatellite motifs (library 2) 

and their complements: (AC)n, (AG)n or (GTAA)n, (CTAA)n, (TTTC)n and (GATA)n. Motifs 

were denatured and bound to magnetic beads following Glenn & Schable (2005). 

Following enrichment, the dinucelotide- and tetranucleotide-enriched fragments were 

PCR amplified separately in parallel, three times each to obtain sufficient DNA (c5μg) 

for next generation sequencing. Each 25μl PCR contained 2.0μl dinucleotide or 

tetranucleotide-enriched DNA, 1x reaction buffer (Bioline), 25μg/ml BSA, 150μM 

dNTPs, 0.5μM Sau-L-A linker/primer (Royle et al. 1992), 2.0 mM MgCl2 and 1 unit of 

DNA Taq polymerase (Bioline). The PCR program used was as in Glenn & Schable 

(2005), but omitting the final 15°C hold. The three dinucleotide and three 

tetranucleotide PCRs were pooled into a single tube and purified using a QIAquick PCR 

purification column (Qiagen) and eluted in 40μl to create a concentration of c125 

ng/μl. DNA concentration was measured on the Nanodrop 8000 (Thermo Scientific). 

Pooled PCR-amplified enriched fragments were 454-pyrosequenced (Roche, FLX) at the 

NERC Biomolecular Analysis Facility at the University of Liverpool. Six different species’ 

enriched libraries were tagged and sequenced together on a quarter of a plate.  

 Additionally, microsatellite loci previously characterised for M. avellanarius 

(Md Naim et al. 2009) were redesigned as amplification failure led to the identification 

of errors in the published primer sequences. The reverse primer sequences of MavB5, 

MavG3 and MavH3 were not present in the corresponding full sequences cited by the 

authors and two bases were missing from the middle of forward primer of MavE3. We 

redesigned nine of the ten loci to correct these errors and to create a set of markers all 

within the same melting temperature range. Locus MavC42 was not redesigned as it 

proved to be monomorphic in our populations.  
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 We checked for duplication among all microsatellites using BlastN 2.2.4 

(Altschul et al. 1997). Over 500 new unique hazel dormouse microsatellite sequences 

were isolated, however, approximately 100 had >20bp of sequence on both sides of 

the repeat region. Fifty-three primer sets were designed from singleton (single-read) 

sequences of 51 microsatellite loci using PRIMER3 (Rozen & Skaletsky 2000). 

 These 53 primer sets, plus the nine redesigned primers, were tested in two wild 

populations, near Bodmin, Cornwall and Okehampton, Devon, England. Plucked hair 

samples were taken from dormice residing in nest boxes and stored dry in 

microcentrifuge tubes at -20°C. Genomic DNA was extracted from hair using a Chelex 

method (Walsh et al. 1991). 

 Primer sets were assessed for amplification and polymorphism by typing eight 

unrelated hazel dormice from the Cornwall population. Additional individuals were 

genotyped for polymorphic loci, totalling 26 unrelated individuals (males n=9, females 

n=10, unknown sex n=7). Any monomorphic loci in this population were characterised 

in 22 unrelated individuals from the Devon population (males n=9, females n=12, 

unknown sex n=1).  

 Genotyping was performed in 2-µl PCR reactions, containing <10ng of 

lyophilised genomic DNA, 0.2 µM of each primer and 1 µl QIAGEN multiplex PCR mix 

(QIAGEN Inc.; Kenta et al. 2008). PCR amplification was performed using a DNA Engine 

Tetrad PTC-225 thermal cycler (MJ Research, Bio-Rad, Hemel Hempstead, Herts., UK) 

with the following touch-down program: 95°C for 15 minutes; followed by 13 cycles of 

95°C for 30 seconds, primer annealing for 30 seconds (decreasing by 1°C every cycle 

from 67°C to 55°) and 72°C for 45 seconds; then 25 cycles of 95°C for 30 seconds, 55°C 

for 30 seconds and, 72°C for 45 seconds, and a final elongation at 60°C for 10 minutes. 

Amplified products were loaded on an ABI 3730 48-well capillary DNA Analyser 

(Applied Biosystems, California, USA) and GENEMAPPER v3.7 (Applied Biosystems, 

California, USA) was used to assign allele sizes. Observed and expected 

heterozygosities, and estimated null allele frequencies were calculated using CERVUS 

v3.0.3 (Kalinowski et al. 2007). Tests for departures from Hardy-Weinberg equilibrium 

and assessment of linkage disequilibrium were conducted in GENEPOP v4.0.10 

(Raymond & Rousset 1995, Rousset 2008). The False Discovery Rate correction for 
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multiple tests (Verhoeven et al. 2005) was applied to p-values obtained from Hardy-

Weinberg equilibrium and linkage disequilibrium tests. 

 Of the 59 loci tested in eight individuals, 18 amplified in less than 85% of the 

samples and three were monomorphic in both populations. Of the remaining 39 loci 

(31 new plus eight redesigned), all except Mav034 were polymorphic in the Cornish 

individuals and therefore characterised in 26 individuals from this population. Locus 

Mav034 was polymorphic in the Devon population and characterised in this population 

instead.  

 All 39 polymorphic loci were confirmed to be autosomal, based on their 

successful amplification and presence of heterozygotes in both sexes. In the Cornwall 

population, the number of alleles per locus ranged between two and nine (mean=3.34, 

SD=1.63), and the mean observed and expected heterozygosities were 0.42 (SD=0.23) 

and 0.44 (SD= 0.21), respectively (table 1). Nine loci deviated from Hardy-Weinberg 

equilibrium, four of which also showed a high estimated null allele frequency (>0.2, 

Table 1). Twenty-six loci pairs displayed linkage disequilibrium. This may be due to the 

inclusion of relatives: whilst known parents/offspring/siblings were not included, 

related individuals may have been included as samples were taken from nest boxes, 

which are distributed over a relatively small area. However, only the locus pair 

Mav017/Mav042 showed evidence of linkage disequilibrium in the Cornwall 

population after FDR correction. 

 These loci will enable parentage and population analyses for the hazel 

dormouse, Gliridae and related species and ultimately aid conservation.  

 

. 
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Table 1 Characterization of 39 hazel dormouse (Muscardinus avellanarius) microsatellite loci. 

Locus EMBL 

accession 

no. 

Repeat motif Primer sequence (5'-3') and fluro label Tm (C) Exp. allele 

size (bp)Ŧ 

Observed 

allele size 

range (bp) 

Pop n A HO HE PHWE 
Estimated 

null allele 

frequency 

Mav002 HE819184 GA(15) F:[HEX]CTACCATGTGCTTGGCTGAG 59.5 108 103–111 COR 26 6 0.5 0.56 0.01 0.05 

 
  R:CAGCCTGAACCACTCCAAG 59.4 

 
  

    
 

 
Mav003 HE819185 GTT(16) F:[HEX]TTCTCAATTGCCTTCAGCTC 58.2 226 228–231 COR 26 2 0.42 0.38 1.00 -0.06 

 
  R:TTAGTGAGGCCTTCTGCAAC 58.1 

 
  

    
 

 
Mav005 HE819187 CTTT(12) CCTT(1) CTTT(1) CTT(1) CTTT(3) F:[6-FAM]AGGCATATGGCAGCAGAGC 61.5 314 318–342 COR 25 7 0.72 0.76 0.35 0.02 

 
  R:TTCGTGGACAGCCTCAGC 61.2 

 
  

    
 

 
Mav009 HE819190 CA(14) F:[6-FAM]GGCTGGTATGTAGCTCAGTGG 59.8 167 162–164 COR 26 2 0 0.145 <0.01 0.85 

 
  R:GACCAGCCATTGACACCTG 60.1 

 
  

    
 

 
Mav011 HE819192 CTTT(2) CT(2) CTTT(2) CT(2) CTTT(13) F:[HEX]CCCGAGTACTGGGATTACAGG 60.7 184 186–214 COR 26 5 0.50 0.55 0.19 0.04 

 
  R:AAGGCTGAGGGTTTAGTTCAGAG 60.3 

 
  

    
 

 
Mav015 HE819196 GT(5) GC(3) AC(2) GT(12) F:[HEX]ACACCAGCCTCTGCAACTTAG 59.6 248 244–250 COR 25 3 0.52 0.54 0.61 0.01 

 
  R:GAGAATGGCCTCTGACGAAG 60.0 

 
  

    
 

 

Mav017 HE819198 
CTTT(2) CT(1) CCTT(2) CTTT(1) T(1) CTTT(10) CTT(2) 

C(1) CTT(2) GT(1) CTTT(3) 
F:[6-FAM]ACCATAAGCGAAGGGTGAG 57.8 246 244–260 COR 26 4 0.54 0.72 0.05 0.13 

 
  R:TCTCCGTCTTGCTTTACAGG 58.1 

 
  

    
 

 
Mav020 HE819201 CTTT(12) F:[6-FAM]TCAAGCCCTGGGATTACAAG 60.1 281 285–293 COR 25 4 0.52 0.54 0.03 0.02 

 
  R:ATAGCCCGGAGGTAGAAAGC 59.7 

 
  

    
 

 

Mav021 HE819202 
CTTT(1) TT(1) CTTT(13) CTT(1) CTTT(1) CCTT(1) 

CTTT(3) 
F:[HEX]AACTTGCTAGGCCAGACCAC 59.4 168 162–174 COR 26 4 0.58 0.65 0.64 0.06 

 
  R:CCTGAGCAACTTAGCAAGTCC 59.1 
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Locus 
EMBL 

accession 

no. 

Repeat motif Primer sequence (5'-3') and fluro label Tm (C) 
Exp. allele 

size (bp)Ŧ 

Observed 

allele size 

range (bp) 

Pop n A HO HE PHWE 
Estimated 

null allele 

frequency 

Mav023 HE819204 GT(18) GC(1) GT(3) F:[HEX]GGGAGTATAGCCCGGAGGT 60.3 149 145–162 COR 26 9 0.65 0.77 0.09 0.06 

 
  R:GGCCCTACTTCAAACACATGA 60.0 

 
  

    
 

 
Mav024 HE819205 CA(12) F:[HEX]GGGTGCAGCTGTGAGGTAG 59.4 128 117–123 COR 25 4 0.6 0.57 0.03 -0.06 

 
  R:ACCGGGTGATGAAAATTGAG 59.8 

 
  

    
 

 
Mav026 HE819207 GT(6) GC(1) GT(1) GC(1) GT(11) F:[6-FAM]AGCTTCAGCACCTTAATCCAC 58.5 242 244–246 COR 25 2 0 0.08 0.02 0.67 

 
  R:GCAAGTGAGCTGAGGAAGG 58.7 

 
  

    
 

 
Mav027 HE819208 CA(15) F:[6-FAM]CACGACCATCCCAACCTC 59.9 146 137–141 COR 26 3 0.04 0.11 0.02 0.44 

 
  R:GGGCGATATATGTCTCAGGTG 59.4 

 
  

    
 

 
Mav028 HE819209 CT(4) CTTT(13) F:[HEX]CCTGCTCTGGCTGTAGGC 59.7 215 213–245 COR 26 6 0.77 0.76 0.03 -0.02 

 
  R:GGAGGTAGAAAGCCCTGGAC 60.1 

 
  

    
 

 
Mav030 HE819211 CTTT(16) F:[6-FAM]GGGAACCATCCAACCTATTG 59.1 157 138–157 COR 26 2 0.54 0.48 0.69 -0.06 

 
  R:AAATGTCTCTGGGTTCCATACC 59.2 

 
  

    
 

 

Mav032 HE819213 
GATA(2) AATA(1) GATA(1) CATA(1) GAT(1) GCAA(1) 

GATA(9) 
F:[6-FAM]AGGGTTTCCCACAGAAACAG 59.0 147 145–149 COR 26 2 0.42 0.47 0.68 0.05 

 
  R:GAATCTATAACCAGTTAGCAAATCTCC 59.1 

 
  

    
 

 
Mav033 HE819214 CA(4) CG(5) G(1) CA(14) F:[HEX]GTGAAGCCCAGAGACTTTGC 60.0 230 221–223 COR 26 2 0.15 0.15 1.00 -0.03 

 
  R:AGGGAGAATTGTCTCCTTAGTGG 60.0 

 
  

    
 

 
Mav034 HE819215 GT(15) F:[6-FAM]ATGTACACAACGCGGAAGTG 59.6 236 239–241 DEV 22 2 0.08 0.08 1.00 -0.01 

 
  R:GGCAGCTCAGAAGTAGAATGC 59.2 

 
  

    
 

 
Mav036 HE819217 CG(5) CA(15) F:[HEX]GGTTCTGTGAAAGCCTGAGC 60.0 209 203–207 COR 24 3 0.67 0.51 0.13 -0.18 

 
  R:TGGTCAGAAGCTGTCAATGC 60.0 

 
  

    
 

 
Mav038 HE819219 GT(18) GC(2) GT(7) F:[HEX]TCTTGTCTCAGCTTCCCAAGT 59.1 267 263–267 COR 26 2 0.27 0.34 0.29 0.11 

 
  R:AGCACCTCAGAGGGAGTTGT 58.9 
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Locus EMBL 

accession 

no. 

Repeat motif Primer sequence (5'-3') and fluro label Tm (C) Exp. allele 

size (bp)Ŧ 

Observed 

allele size 

range (bp) 

Pop n A HO HE PHWE 
Estimated 

null allele 

frequency 

Mav039 HE819220 GATA(2) GAT(1) GATA(5) GAT (1) GATA(2) GAT(1) 

GATA(12) 

F:[HEX]AATTTACCGAGGCCCACAG 59.9 174 174–178 COR 26 2 0.69 0.48 0.04 -0.19 

 
  R:TTGAACCAAGACATTCTACCTCTG 59.7 

 
  

    
 

 
Mav040 HE819221 GTAAT(4) GT(13) GC(4) F:[6-FAM]GTGCTGAGTGGTGGAGTGAG 59.4 183 176–178 COR 26 2 0.31 0.32 1.00 0.00 

 
  R:TTTATAGCTAGAATCATGCTGTCTTTG 59.5 

 
  

    
 

 
Mav042 HE819223 CTTT(11) F:[HEX]TCGCAGCAACATAGCAAGAC 60.2 234 231–239 COR 26 3 0.42 0.6 0.11 0.18 

Mav043 HE819224 CTTT(1) CTT(1) CTTT(11) TTT(1) CTTT(1) F:[6-FAM]GGCTCTGGTCTCTGTCACTATG 59.0 165 164–180 COR 26 5 0.50 0.58 0.16 0.08 

 
  R:AAGTAGGACCAGGAGGTAGAAGG 59.2 

 
  

    
 

 

 
  R:GAGAAACGCGATTCATGGAC 60.6 

 
  

    
 

 
Mav044 HE819225 C(6) T(6) CTTT(15) F:[HEX]CAGCACCCACAGCCTCAT 60.9 142 134–142 COR 26 3 0.62 0.56 0.31 -0.06 

 
  R:GGCAGGCTACTGCTGCAC 60.7 

 
  

    
 

 
Mav047 HE819228 CA(5) A(3) CA(10) F:[HEX]ACTGGGGTGTAGCTCAGAGG 59.3 133 133–135 COR 25 2 0.08 0.08 1.00 -0.01 

 
  R:AATTTTACACAGTATGGGGACTGTT 59.2 

 
  

    
 

 

Mav048 HE819229 CTTT(14) TCTTC(1) CTTT(1) CTTC(1)CTTT(1) T(1) F:[HEX[CACAATCCTCCTGTGTCAGC 59.3 221 222–230 COR 26 3 0.54 0.62 0.41 0.07 

 
  R:AGGACTCTCCATGCCAAGAG 59.4 

 
  

    
 

 
Mav049 HE819230 CTAT(11) CT(1) GT(1) CAT(1) CTAT(3) F:[6-FAM]GGGTTTGCAAAGAACCCAAT 61.1 212 208–212 COR 26 2 0.12 0.18 0.19 0.20 

 
  R:CCTGGGTTCCGTCCCTAGTA 61.2 

 
  

    
 

 
Mav050 HE819231 GATA(9) F:[6-FAM]CCAAGCACTCAGCTCTCTTG 58.9 281 279–288 COR 26 3 0.23 0.43 0.01 0.31 

 
  R:TCCATAGAAACTAGGTAATTTGAGTGA 58.8 

 
  

    
 

 
Mav051 HE819232 CA(18) F:[6-FAM]AGTGGTGGCATGTACCTGTG 59.5 235 233–245 COR 26 4 0.69 0.59 0.59 -0.09 

 
  R:ACGATTATTCTGCCACTGAGC 59.4 
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Locus EMBL 

accession 

no. 

Repeat motif Primer sequence (5'-3') and fluro label Tm (C) Exp. allele 

size (bp)Ŧ 

Observed 

allele size 

range (bp) 

Pop n A HO HE PHWE 
Estimated 

null allele 

frequency 

Mav053 HE819234 CA(3) GA(1) CA(3) GA(1) CA(2) GA(1) CA(1) CG(1) CA(17) F:[6-FAM]GGCCTTCTATAACTTAGCAAGAACC 60.1 224 219–221 COR 26 2 0.65 0.49 0.12 -0.15 

 
  R:ACGGACGAGTGAGCTGTACC 60.3 

 
  

    
 

 
MavSB5* GF089516 CA(40) C(1) CA(2) F:[HEX]GTAGAATGCTTCGAGTTCAATTTC 58.5 145 97–107 COR 24 5 0.625 0.586 0.1573 -0.0475 

 
  R: TGGAGAAGGGTACTAGGATGC 58.3 

 
  

    
 

 
MavSE3* GF089515 CA(49) F:[HEX]TGGGAGTATAGCCCAGAGGTAG 59.6 211 151–155 COR 26 3 0.077 0.076 1 -0.0105 

 
  R:CAGGAGTTAGCATCCCGTTC 59.7 

 
  

    
 

 
MavSF10* GF089509 CA(43) F: [6-FAM]GCTGAGGGTATAACTTGGAGGTAG 59.6 266 224–230 COR 26 3 0.538 0.594 0.725 0.045 

 
  R:GTCTGAAATGGCTGGTATTGC 59.6 

 
  

    
 

 
MavSF12* GF089514 GT(16) GG(1) GA(20) GT(17) GA(23) F: [HEX]CAGGCAAGGAGTTGGATG 57.7 300 224–231 COR 24 4 0.417 0.422 0.0954 -0.0349 

 
  R:TTGAAAGGCAGGAGAATCC 57.8 

 
  

    
 

 
MavSG3* GF089517 GT(54) F: [6-FAM]TGTTGACTGATTGAGTGGTGAC 58.6 195 131–159 COR 25 4 0.24 0.255 0.2249 0.0644 

 
  R:GGCTGAAGATGTAGCTCATAGG 58.1 

 
  

    
 

 
MavSG6* GF089511 GT(38) F: [HEX]AGCCCTTCACTTTCCCTGTATC 60.8 194 175–177 COR 26 2 0.538 0.401 0.134 -0.1552 

 
  R:TCCTCAGCAACTTAGCAAGACC 60.9 

 
  

    
 

 
MavSG9* GF089510 GT(34) F: [6-FAM]AGCCACATCCCAACTACTGG 60 208 192–194 COR 26 2 0.5 0.509 1 -0.0007 

 
  R:AGTGCTGCTGGGACAACC 59.8 

 
  

    
 

 
MavSH3* GF089518 GT(29) CNT(1) GT(11) F: [HEX]CTGGGAGTGTAGCTTGAAGG 57.6 246 205–209 COR 25 2 0.16 0.15 1 -0.0338 

 
  R:CAAGGATAGGGATACACCTCAG 57.7 

 
  

    
 

 

* denotes newly designed primer sets for the microsatellite loci published by Md Naim et al. (2009). Tm, primer melting temperature (given by PRIMER3). Ŧ, 

expected allele size based on the sequenced allele isolated from the Cornish hazel dormouse sample used to create the genomic library. Pop, UK populations 

tested - Cornwall,  (COR) and Devon (DEV). n, number of amplifying hazel dormouse samples from a total of 26 (Cornwall) and 22 (Devon) samples tested. A, 

number of alleles observed. HO, observed heterozygosity. HE, expected heterozygosity. PHWE, p-value for testing Hardy-Weinberg equilibrium (HWE) and 

significant values after FDR correction are shown as underlined and bold. Estimated null allele frequency >0.10 is shown as underlined and bold.
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Chapter 5: Dormice on the edge: population genetics of hazel dormice on the 

southwest peninsula of England 

Abstract 

Variation in measures of genetic diversity and differentiation across a species’ range 

will be influenced by many ecological and evolutionary factors. The central-periphery 

hypothesis predicts that edge-of-range populations will have reduced abundances and 

increased isolation, compared to populations within the range core, due to sub-optimal 

resources and/or conditions. Dispersal barriers may also isolate populations through a 

reduction in gene flow. Small, isolated populations are vulnerable to increased genetic 

drift and inbreeding, leading to lower levels of genetic diversity, population fitness and 

adaptive potential, as well increased vulnerability to stochastic events. Such effects 

threaten population persistence, and therefore understanding their mechanistic basis is 

of utmost importance for conservation management. Here, we describe the genetic 

diversity, differentiation and structuring amongst populations of the protected hazel 

dormouse, Muscardinus avellanarius, from the core to periphery of their range in 

southwest England.  

Our results reveal moderate to very high genetic differentiation, with three defined 

regional populations at the highest hierarchical level and further sub-structuring within 

these populations, which corresponds to geographical location. We then test the effect 

of region and a continuous core to periphery longitudinal distribution, on two 

parameters of genetic diversity (frequency of private alleles and allelic richness), 

genetic differentiation (FST), isolation by distance and inbreeding (FIS coefficient).We 

find strong evidence for reduced diversity, increased differentiation and stronger 

isolation by distance at the edge of the species range, but the pattern tends to be an 

abrupt change at the regional boundary rather than a longitudinal cline. This implies 

that these populations at the edge of their range are smaller in effective population 

size with low gene flow between them. However, there is no significant evidence for 

higher levels of inbreeding in the peripheral populations or for population genetic 

bottlenecks.  
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We discuss the implications of our findings, which are two-fold: first, if limited national 

funds for dormouse conservation must be allocated to populations of highest genetic 

diversity, priority should be given to maintaining core populations, such as those in 

Devon; second, if the preservation of genetic diversity across the species is considered 

of importance, the more isolated and differentiated populations, such as those in 

Cornwall, should be conserved. 

 

Introduction 

 Increasingly, the role of population genetics research is being embraced in 

order to infer gene flow, genetic diversity and population structure for species of 

conservation concern (Broquet & Petit 2009, Haig 1998). Conservation genetics 

facilitates the management of species, through identification of populations with high 

levels of extinction risk, informing reintroduction and captive breeding programs, 

describing gene flow patterns that enlighten habitat management and defining 

genetically distinct conservation units (Frankham 2005, Frankham et al. 2002, Paetkau 

1999, Petit et al. 1998). 

 Small, isolated populations, such as those of species vulnerable to habitat 

degradation, loss and fragmentation, will exhibit lower gene flow between them than 

larger, well connected populations (Slatkin 1987). Through genetic drift and the allee 

effect, this will lead to reduced genetic diversity and a lower effective population size 

(Frankham 1996, Stephens et al. 1999).  These populations will be at risk of inbreeding 

depression and mutation accumulation, and have reduced evolutionary potential to 

adapt to environmental change, culminating in an elevated risk of extinction 

(Charlesworth & Charlesworth 1999, Frankham 1996, Frankham 2005, Lande 1995, 

Saccheri et al. 1998,). Descriptions of patterns in population genetic diversity, 

differentiation and structure for species of conservation concern are therefore critical 

(Lawton 1993).  

 Geographical and temporal variation in ecological and evolutionary parameters 

will influence population size and predispose certain populations across a species’ 

range to a higher risk of extirpation than others (Diniz-Filho et al. 2009, Gotelli & 
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Simberloff 1987, Gulve 1994). For example, the central-periphery hypothesis states 

that peripheral populations should have reduced abundances and be more patchily 

distributed than those at the core, due to sub-optimal habitat at range edges (Brown 

1984, Eckert et al. 2008). This may lead to reduced gene flow between peripheral 

populations, and increased genetic differentiation, reduced genetic diversity, smaller 

effective population sizes, increased risk of inbreeding and subsequently a higher risk 

of extinction compared to populations within the core (Diniz-Filho et al. 2009, Lawton 

1993, Vucetich & Waite 2003, but see Channell & Lomolino 2000). Evidence for this 

hypothesis has been provided for a variety of plant and animal taxa. However, findings 

have been somewhat inconsistent: in a review of studies on genetic variation across 

geographical range, only 64.2% identified the predicted pattern (Eckert et al. 2008). 

These mechanisms are also fundamental to an important problem in evolutionary 

biology: why do species not adapt to local conditions and therefore expand their range 

margins? (Eckert et al. 2008).  

 In combination with position on the core-to-periphery continuum, habitat 

configuration and landscape features will affect the ability of species to disperse 

between populations (Fahrig & Merriam 1985, Quemere et al. 2010). Such dispersal is 

necessary in order to maintain gene flow and re-colonise extirpated habitat patches. 

Further, anthropogenically-driven habitat loss, degradation and fragmentation, 

considered the greatest modern threats to biodiversity, may lead to the reduction of 

population abundance, occupancy and connectivity (Dirzo & Raven 2003, Prugh et al. 

2008). In order to make informed conservation decisions it is essential to discover 

which mechanisms are driving population genetic parameters, and identify populations 

at highest risk of extinction. It is also important to consider geographical variation, as 

management actions may have different effects, and hence outcomes, at different 

locations across a species’ range (Whittingham et al. 2007). 

 The hazel dormouse, Muscardinus avellanarius, is a species of conservation 

concern due to population declines that have occurred across much of its northern 

range (Amori et al. 2008). Dormice are thought to be particularly vulnerable to habitat 

fragmentation as they are arboreal habitat specialists (primarily found in woodland, 

scrub and hedgerows), with low population densities, reproductive potential, and 

dispersal ability (Bright 1993, Bright & Morris 1996). As such, they are an ideal model 
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species for the investigation of genetic diversity and structuring (Mortelliti et al. 2009). 

There is an urgent need to establish a baseline measure of population genetic 

structuring of hazel dormice and determine whether measures of genetic diversity and 

differentiation are consistent amongst core and peripheral populations. This will assist 

conservation status assessment and allow future studies to gauge the loss of genetic 

diversity in response to further habitat fragmentation and climate change (Allendorf & 

Luikart 2007).  

 A previous study of population genetics of hazel dormice has shown substantial 

genetic structuring between populations separated at the landscape scale, i.e. located 

15km apart (Md. Naim et al. 2012). However, we are not aware of any studies 

investigating the population genetics of dormice over larger regional scales. We 

hypothesise that dormice are likely to be particularly vulnerable to edge-of-range 

effects, due to their specialist habitat requirements and propensity to form small, 

isolated populations, resulting in sensitivity to clines in environmental and habitat 

suitability. Dormouse reproductive success is influenced by stochastic climatic effects 

(Bright & Morris 1996), which may lead to reduced effective population sizes and 

hence reduced genetic diversity, especially in peripheral populations. We aim to test 

this hypothesis by comparing genetic diversity, differentiation, and inbreeding along a 

sequence of populations that extend down a peninsula, from a dormouse stronghold 

in the east to the westerly edge-of-range for this species. We predict that hazel 

dormouse populations on the periphery will have relatively higher differentiation and 

lower genetic diversity and therefore a higher susceptibility to inbreeding, compared 

to core populations (Lesica & Allendorf 1995).  

 In addition to the theory of a cline in genetic parameters correlating with 

reduced habitat suitability towards the edge-of-range, we predict that landscape 

features will also isolate populations, influence evolutionary mechanisms and 

consequently affect patterns of population genetics. Due to the poor dispersal ability 

of dormice, we expect the species' genetic structure to be impacted upon by landscape 

features that confer significant dispersal barriers. Therefore, we aim to compare 

genetic diversity, differentiation and inbreeding between regions (assessed via 

Bayesian clustering analyses), and assess correlations with major landscape features, 

with the aim of explaining identified patterns in population genetics. 

http://www.springerlink.com/content/?Author=Alessio+Mortelliti
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 To this end, our study has three aims. First, we will test for and describe 

population genetic structuring and isolation by distance patterns (IBD) across the study 

area. Second, we quantify population genetic diversity, differentiation and inbreeding 

amongst populations of hazel dormice across their southwest range in England. Third, 

we relate these results to the central-periphery hypothesis and major landscape 

features, in order to identify the relative importance of these mechanisms on patterns 

of population genetics within this species. 

 

Methods 

Study area 

 The distribution of hazel dormice within Britain is predominantly in southern 

England and Wales (figure 1, NBN Gateway 2012). Our study was conducted 

throughout the southwest range of dormice in England. This area forms a peninsular of 

approximately 11,400sq km, comprising of the counties (from west to east) Cornwall, 

Devon and Somerset (figure 2). Despite many presence-absence surveys, there are few 

reliable dormouse records at the western tip of this peninsula (Bright et al. 2006). 

Further, a survey conducted by us in 2008 using the established nest-tube method of 

Bright et al. (2006), failed to detect any dormice in 20 woodland/hedgerow sites across 

mid and west Cornwall (see figure 2 for location of survey sites). Therefore, our study 

area extends from a core area in Somerset and Devon down to the edge-of-range area 

for this species, namely the peninsula tip in west Cornwall.  

 The study area is a rural region encompassing a heterogeneous landscape of 

fragmented woodland and scrub habitat within a matrix of agricultural and urban land 

use. Many of the woodland patches are connected to varying degrees by hedgerows. 

Three moorland areas, with little woodland vegetation suitable for dormice are found 

in the study area. Many rivers dissect the landscape forming potential physical barriers 

to dormouse dispersal: most significantly, the large river Tamar runs north-south along 

the Cornwall and Devon border and is at its widest in the south, where it forms an 

estuary. See figure 3 for location of moorland and deciduous woodland in relation to 

sampled populations. 
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Figure 1. Distribution map of the records of hazel dormice within Britain, at a 2km-

square resolution, from 1960 to 2012. (Downloaded from NBN Gateway 1st June 2012). 

The box illustrates our study area location. 
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Figure 2. Study area of south west England peninsula: 13 populations (large, numbered black dots) in which we were able to sample n>5 

dormouse individuals: 1-HelmanTor, 2-Penlan, 3-West Bodmin, 4-Middlewood, 5-Darley, 6-Stara, 7-Roadford, 8-North Devon, 9-

Okehampton, 10-East Ivybridge, 11-Newton Abbott, 12- Haldon, 13- Cheddar; and 14 populations with n≤5 (small grey dots). Additionally, 

20 sites surveyed for dormouse presence in 2008 throughout mid and west Cornwall, (but no dormice were detected) are indicated 

(crossed circles). The three counties, Cornwall, Devon and Somerset are also labelled. Inset map shows extent of entire survey area. 
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Figure 3. Study area of south west England peninsula, with 13 populations n>5 (solid black dots), 14 populations with n≤5 (grey dots), and 

surveyed sites with no dormouse detected (crossed circles).  Green shaded areas represent deciduous woodland, blue lines indicate 

waterways. Three major moorlands, Bodmin Moor, Dartmoor and Exmoor are labelled. The approximate area of these moorlands can be 

recognised due to absence of woodland. Inset map shows extent of entire survey area. Landscape data: www.gis.naturalengland.org.uk, 

downloaded 18/03/2012. 
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Sampling 

 Samples were collected from 27 populations across the study area from April 

2009 to October 2011 (figure 2). Plucked hairs were acquired from wild dormice during 

the routine monitoring of dedicated dormouse nest box schemes that are located in 

woodlands throughout the study area. The majority of these schemes are part of a 

long-term national dormouse monitoring programme (Bright et al. 2006). Data on 

sampling date, woodland site (including an OS grid reference), sex, weight, age 

(juvenile or adult), and reproductive condition were recorded.  

 Tweezers were used to pluck 1-3 small clumps of fur from individual dormice. 

Samples were taken under Natural England licence (numbers 20090841, 20100962 and 

20111228). Further samples were obtained from ad hoc discoveries of dead dormice, 

usually by members of the public. Data available for the location of these samples 

were occasionally unavailable; therefore only samples with a definite OS grid reference 

were used. Genetic material was obtained either from tail ends or liver samples. All 

fresh samples were stored dry at -20°C, whilst dissected tissue samples were stored in 

100% ethanol at -20°C. 

 

Microsatellite amplification 

 All DNA extractions were performed by incubating samples overnight at 56°C in 

a 5% Chelex solution with 10mg/ml proteinase-K (Walsh et al. 1991). DNA was then 

denatured at 100°C for eight minutes and the supernatant removed from the Chelex 

solution/tissue debris and stored at -20°C. DNA samples were genotyped using 28 

microsatellite markers selected from Md. Naim et al. 2009 and those described in 

Chapter 4. PCR conditions and profile were performed as in Chapter 4. Amplified 

products were genotyped in an ABI 3730 48-well capillary DNA Analyser (Applied 

Biosystems) and allele sizes determined using GENEMAPPER v3.7 software (Applied 

Biosystems). 

 The samples in our study were freshly plucked, stored immediately, comprised 

multiple hairs and showed a low genotyping error rate. It was therefore concluded that 

the multi-tube technique, of re-analysing samples several times, was unnecessary 
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(Taberlet et al. 1996). This is of more concern with non-invasive genetic samples such 

as shed hair and faeces, which may produce large genotyping error rates due to allelic 

dropout and false alleles (Gagneux et al. 1997, Taberlet & Luikart 1999). Additionally, 

Gagneaux et al. (1997) demonstrated that plucked compared to shed hairs gave 

significantly more reliable genotypes.  

 Note that a glossary of the molecular analysis software packages cited in this 

chapter is provided on pages 156 to 160, giving a brief introduction to the functions of 

the programme and, where appropriate, details on analysis methodology. 

 

Loci error checking 

 Preliminary error-checking of genotyped data was carried out using 

MICROSATELLITE TOOLKIT (Park 2001). In order to calculate the remaining loci error 

rate, 16% (n=93) of samples were randomly selected to re-PCR and were then 

compared to the original genotypes. Error-rate was calculated manually as the 

proportion of mismatches between a) alleles, and b) individual genotypes per loci. 

PEDANT v1.0 (Johnson & Haydon 2007) was also used to determine maximum 

likelihood allelic dropout and false allele rates for each locus. Six loci that had an 

amplification failure rate of above 15% (based only on samples that themselves 

successfully amplified in a minimum of 50% of the loci) and/or an error rate, allelic 

dropout and/or false allele frequency above 5% were dropped (supplementary table 

S1). Additionally, the assumption that no microsatellite loci were under selection was 

confirmed in LOSITAN (Antao et al. 2008, Beaumont et al. 1996). A total of 22 loci were 

found to be suitable for population genetics analyses.  

 

Sample selection 

 Samples which failed to amplify in more than 3 loci (failure≥15%) were 

removed to minimise missing data and improve robustness, as poorly amplifying 

samples are more likely to be problematic and have errors (Morin et al. 2001). Due to 

samples being acquired from animals using nest box schemes, repeat samples from the 

same individual and close relatives were likely. The presence of family groups within 
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sampled sites can lead to biased inferences regarding population genetic structure and 

so their removal is recommended (Anderson & Dunham 2008, Rodríguez-Ramilo & 

Wang 2012). This was achieved by using ML-RELATE (Kalinowski et al. 2006), whereby 

one sample from pairwise comparisons with a relatedness coefficient above 0.4 was 

removed, to account for parent-offspring, full-siblings and repeat samples. The 

inferred relatedness by this method corroborated well with familial data, where 

sampled nest boxes comprised a mother and offspring, and therefore this was deemed 

an appropriate strategy. A total of 554 hair samples and 38 tail ends/corpses were 

collected across the study area. After removing samples with a poor amplification rate, 

repeat individuals and close kin, 237 samples remained for analysis. 215 samples came 

from 13 geographical populations each with sample size n>5 (figure 2).  The remaining 

22 samples were from 14 populations with sample size of n≤5 and so were used only in 

clustering analyses and not for inter-population analyses, such as genetic diversity and 

genetic differentiation between populations. 

 

Genetic diversity 

 GENEPOP v4.0.10 was used to test for deviations from Hardy-Weinberg and 

genotypic equilibrium per locus, per population (Raymond & Rousset 1995, Rousset 

2008). Resulting p-values were manually corrected for multiple tests using the False 

Discovery Rate (Verhoeven et al. 2005). The estimated frequency of null alleles was 

determined per locus per population in CERVUS v3.0 (Kalinowski et al. 2007).  

 For each of the 13 populations across all loci, we calculated deviations from 

Hardy-Weinberg due to heterozygosity deficiency, using the multi-sample score test 

(Rousset & Raymond 1995). We also calculated Weir & Cockerham's (1984) inbreeding 

coefficient (FIS). These two parameters were calculated in GENEPOP v4.0.10. We 

calculated the mean number of alleles, and observed and expected heterozygosities 

per population, using ARLEQUIN v3.5 (Excoffier & Lischer 2010). The rarefaction 

method in ADZE v1.0 (Szpiech et al. 2008) was employed to determine allelic richness 

and frequency of private alleles.  Allele frequencies were summarised in 

MICROSATELLITE ANALYSER v4.05 (Dieringer & Schlötterer 2003). 
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Population genetic structure 

 Bayesian clustering analyses were used to investigate genetic population 

structure across all 27 populations, and compare this to the geographical distribution 

of samples.  Genetic structuring was analysed using STRUCTURE v2.3.3 (Falush et al. 

2003, Pritchard et al. 2000) and BAPS v5 (Corander et al. 2008). The comparison of 

results from different clustering algorithms has been recommended to reduce the 

likelihood of acceptance of biased results (Frantz et al. 2009). For example, patterns of 

IBD may result in an overestimation of structure in clustering analyses, although, this is 

more of a concern when samples are evenly distributed (Frantz et al. 2009). 

 STRUCTURE analyses were carried out based solely on genotype data with no a 

priori information on sample location. An admixture model with correlated allele 

frequencies was used for varying numbers of possible clusters (K), using K=1-25, with 

10 runs for each value of K, and 1,000,000 MCMC iterations following a burn-in of 

500,000. STRUCTURE HARVESTER v0.6.92 (Earl & vonHoldt 2011), was used to 

generate plots of K against a) estimated log-probability of data value and b) delta K 

(Evanno et al. 2005). This latter interpretation method highlights the uppermost 

hierarchical level of clustering, and therefore we ran each of the highest level clusters 

(that we call “regions”) separately to investigate further structuring within them. The 

same parameters as described above were used, except the range of K was adjusted to 

the appropriate number based on the number of populations in each region. CLUMMP 

v1.1.2 (Jakobsson & Rosenberg 2007) was then used to summarise the data over runs 

for models with selected K values. Parameters used were the LargeKGreedy algorithm 

with 1000 repeats. DISTRUCT v1.1 then enabled the construction of labelled bar plots 

(Rosenberg 2004). The 27 populations were also analysed in BAPS, using the 

population mixture model, and latitude and longitude spatial data were incorporated 

with individual clustering analysis (Corander et al. 2008). A range of maximum K of 1 to 

25 with 10 repeats each was run, to determine the probability of the K which the 

analysis returns as the most optimal.  

 A neighbour-joining tree was generated to assess the degree of genetic 

divergence between the 13 geographical populations, based on Nei’s standard genetic 

distance (Nei 1972). Four hundred bootstraps over loci were used in the program 
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POPULATIONS v1.2.32 (Langella 1999). The tree figure was plotted in TREEVIEW v1.6.6 

(Page 1996). 

 

Genetic differentiation 

 A pair-wise FST matrix for the 13 geographically defined populations was 

calculated using the Weir & Cockerham (1984) method and tested against the null 

hypothesis that there is no genetic differentiation between populations using 

permutations. Calculations were performed in MICROSATELLITE ANALYSER v4.05 

(Dieringer & Schlötterer 2003), which subjects the corresponding p-values to 

Bonferroni corrections (Rice 1989). A one-way ANOVA was performed in R v2.14.1 (R 

Foundation for Statistical Computing 2011) in order to compare FST values between the 

highest hierarchical clusters, as determined by STRUCTURE analysis.  

 Several locus-by-locus analyses of molecular variance (AMOVA), using 20,000 

permutations, were performed in ARLEQUIN v3.5 (Excoffier & Lischer 2010, Excoffier et 

al. 1992). AMOVAs were compared for four different population structure models: a) 

13 geographically defined populations, b) 13 geographically defined populations 

divided into the three genetically defined higher hierarchical regions determined by 

STRUCTURE analysis, c) 13 genetically defined clusters grouped into the 3 higher 

hierarchical regions assigned by STRUCTURE, and d) 12 genetically defined clusters 

assigned by BAPS.  

 

Isolation by distance (IBD) 

 Within the 13 populations (with samples n>5), there were 21 spatial categories, 

due to different sampling locations within a population, with sample size ≥5 for a total 

of 209 individuals, which were used in the IBD analysis. Geographical coordinates for 

each of the 21 spatial categories and the corresponding genotypes were input into 

SPAGeDi v1.3 (Hardy & Vekemans 2002). Pair-wise genetic differentiation was 

calculated using FST (Weir & Cockerham 1984) with 10,000 permutations (which is 

equivalent to a Mantel test) and jack-knifing to report a standard error. A regression of 

the spatial distance against FST/(1-FST) was performed (Rousset 1997). 
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 Patterns of IBD were also compared between Cornwall and Devon, as a proxy 

of peripheral versus core populations respectively. Regions defined by clustering 

analyses were not used as the two Cornwall populations alone were of insufficient 

sample size, and therefore were combined. In order to control for spatial range, 

populations from central Devon were selected to match the spatial distance covered 

by the populations in Cornwall (Eckert et al. 2008). The difference in strength of IBD 

patterns and intercepts between the two geographical areas was explored using the 

"MantelPiece" function which uses permutation tests to estimate null-hypothesis-

distributions of Mantel test correlations and ordinarily least square regression 

coefficients (Hamilton & Eckert 2007). Calculations were performed in R v2.14.1 (R 

Foundation for Statistical Computing 2011). 

 

Regional and longitudinal effects on genetic diversity 

 The effect of longitude (a proxy for continuous distribution along the periphery-

core gradient) and region (as defined as the highest hierarchical clusters defined by 

STRUCTURE) on genetic parameters were compared using ANCOVAs and F-tests in R 

v2.14.1 (R Foundation for Statistical Computing 2011). The parameters comprised 

allelic richness, a measure of genetic diversity that is more sensitive to edge-of-range 

affects than expected heterozygosity (Eckert et al. 2008); frequency of private alleles, a 

measure of distinctiveness; and the inbreeding coefficient.  

 

Bottleneck  

 The inference of recent bottleneck events for the 13 populations was carried 

out using two methods. A two-phase 95% step-wise and 5% non-step-wise mutation 

model, with a Wilcoxon sign-rank test was used in BOTTLENECK v1.2.02 (Cornuet & 

Luikart 1997). The second method employed was the Garza-Williamson ratio (Garza & 

Williamson 2001), which was calculated in ARLEQUIN v3.5 (Excoffier & Lischer 2010).  
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Results 

Clustering analysis 

 The STRUCTURE clustering data are presented at the highest hierarchical level 

of population genetic structure, and then within each of these main clusters. At the 

highest hierarchical level of population genetic structure, the Evanno et al. (2005) 

method suggests the data consist of three genetically distinct clusters, or “regions”. 

The log-likelihood and delta K for the range of K runs are shown in figure 4a. This 

corresponds to Mid Cornwall, East Cornwall and Devon/Somerset geographical regions 

and concurs with neighbour-joining tree, results presented below (figure 7). The 

estimated membership coefficients for each individual for each of the three clusters 

suggests there is very strong structuring and little admixture between the three 

clusters (top bar plot in figure 5). Geographical location of these regions, defined by 

STRUCTURE with no a priori spatial information, are shown in figure 6 Further 

STRUCTURE analyses within each of these clusters, based on the Evanno et al. 2005 

method, show that there are three clusters each in Mid Cornwall and East Cornwall, 

and seven clusters in Devon/Somerset. The log-likelihood and delta K for the range of K 

runs are shown in figure 4b-d. Again, estimated membership coefficients for each 

individual, for each of the clusters, suggests there is generally strong structuring. There 

is some admixture between populations within East Cornwall, probably due to these 

being within 2-3km distance of each other, within dormouse dispersal distance. Bar 

plots are shown in figure 5, with a range of K, to demonstrate how individuals were 

clustered between levels of nested hierarchy.  

 The optimal partitioning of clustering in BAPS suggested K = 12 populations 

across the entire study area (probability of 0.91). This concurs well with the 

STRUCTURE analyses, which when considering total the number of subpopulations, 

which in the latter analysis equals 13 when using the Evanno methodology. It is of note 

that Okehampton appears to be sub-divided into two populations by STRUCTURE  

(figure 5). However, BAPS did not concur, therefore the degree of true genetic 

structuring is somewhat equivocal. Inspection of the local geography demonstrates 

that a railway track is the largest landscape feature that correlates with this 

subdivision.
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Figure  4. STRUCTURE results for dormouse samples from south west England, showing the estimated log probability of K on each primary (left) axis 

and delta K on the secondary (right)axes. A-Highest hierarchical structure level – across entire study area of Cornwall, Devon and Somerset, B-Mid 

Cornwall cluster, C- East Cornwall cluster, D- Devon and Somerset cluster.
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Figure 5. Bar plots showing the estimated membership coefficient (Q) for each individual for all clusters is displayed. Each vertical bar 

corresponds to one individual and within each run clusters are represented by different colours. Black site name labels correspond to the 

13 populations (n>5). The grey labels incorporate 14 populations (n≤5) and for clarity in the Devon/Somerset cluster these are grouped 

by broad geographical areas. Inset, torpid hazel dormouse during sampling.

               Mid Cornwall           East Cornwall                                             Devon and West Somerset 
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Figure 6. Geographical location of the three highest hierarchical clusters, as defined with no a priori spatial data by STRUCTURE analysis. The 

three clusters are encircled with dashed lines and labelled. The 13 populations (large black dots) with n>5 dormouse individuals samples are 

numbered; Mid Cornwall cluster: 1-HelmanTor, 2-Penlan, 3-West Bodmin; East Cornwall cluster: 4-Middlewood, 5-Darley, 6-Stara; and 

Devon/Somerset cluster: 7-Roadford, 8-North Devon, 9-Okehampton, 10-East Ivybridge, 11-Newton Abbott, 12- Haldon, 13- Cheddar and 14 

populations with n≤5 (small grey dots).
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 The genetic distances between populations, as represented in the neighbour-joining 

tree (figure 7), shows the presence of two clusters of populations that are distinct from the 

remaining populations. These two clusters correspond to the two regions, Mid Cornwall and 

East Cornwall 

 

Genetic differentiation 

 Across the study area, the global FST was 0.23 (p-value=0.0001). All FST pair-wise 

comparisons between populations indicated highly significant genetic differentiation after 

Bonferroni correction, where all pairwise test p-values were below 0.025: estimates are 

shown in table 1. Across pairwise estimates, FST values ranged from 0.09 to 0.48. The 

greatest FST values were for comparisons between regions: average FST value within regions 

was 0.18 (SD=0.06) and between regions 0.30 (SD=0.08). Within each of the three regions 

the average FST value was; 0.23 (SD=0.03) for mid Cornwall, 0.11 (SD=0.01) for east Cornwall 

and 0.18 (SD=0.06) for Devon and Somerset. There was a significant difference in mean FST 

amongst regions (ANOVA, F2,24=4.3562 p-value=0.024). This indicates that there was 

significantly more genetic differentiation within the mid Cornwall region compared to the 

other regions, despite the Devon/Somerset region encompassing a much larger 

geographical area. 

 Genetic structure existed among clusters or geographic populations at all 

hierarchical levels tested, and for all the population structure models compared (Analysis of 

Molecular Variance, all p-values<0.0001, table 2a-d). This, along with the clustering analyses 

and FST tests, confirms that there is substantial population genetic structure in the 

microsatellites of the sampled dormouse populations. The model describing 13 

geographically defined populations explains 23.1% of variation due to differentiation 

between populations, but this increases to 25.5% when populations are grouped by three 

regions. The highest percentage of subpopulation differentiation variation, 26.2% (c), is 

absorbed by the model defined by STRUCTURE analysis, whilst the BAPS analysis absorbs 

the least variation, at 21.1% (d), of all four models. However, all four models agree with 

regard to number and distribution of clusters, which suggests the results are robust.  
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Figure 7. The neighbour-joining tree calculated using Nei’s standard genetic distance (Nei 1972). Numbers indicate the percentage of 

bootstraps where the next cluster up the tree branch was included. Grey circles indicate the three highest hierarchical clusters as defined by 

STRCUTURE analysis, which demonstrates that both analyses are in concurrence. 
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Table 1. Pairwise FST for the 13 populations. All values were significant - all pairwise tests p-values were >0.025, after Bonferroni correction. 

Region Mid Cornwall East Cornwall Devon and West Somerset 

Site 

H
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HelmanTor 0 0.21 0.22 0.31 0.43 0.40 0.31 0.41 0.24 0.35 0.25 0.34 0.37 

Penlan 0.21 0 0.26 0.35 0.48 0.46 0.35 0.45 0.26 0.38 0.30 0.36 0.44 

Cabilla 0.22 0.26 0 0.25 0.33 0.31 0.27 0.27 0.18 0.29 0.21 0.29 0.32 

Middlewood 0.31 0.35 0.25 0 0.10 0.12 0.14 0.23 0.15 0.24 0.18 0.25 0.32 

Darley 0.43 0.48 0.33 0.10 0 0.11 0.19 0.24 0.20 0.30 0.25 0.30 0.37 

StaraWood 0.40 0.46 0.31 0.12 0.11 0 0.20 0.26 0.19 0.27 0.25 0.31 0.38 

Roadford 0.31 0.35 0.27 0.14 0.19 0.20 0 0.14 0.09 0.17 0.14 0.16 0.21 

NorthDevon 0.41 0.45 0.27 0.23 0.24 0.26 0.14 0 0.13 0.23 0.16 0.22 0.25 

Okehampton 0.24 0.26 0.18 0.15 0.20 0.19 0.09 0.13 0 0.13 0.10 0.17 0.20 

EastIvybridge 0.35 0.38 0.29 0.24 0.30 0.27 0.17 0.23 0.13 0 0.15 0.24 0.28 

NewtonAbbott 0.25 0.30 0.21 0.18 0.25 0.25 0.14 0.16 0.10 0.15 0 0.16 0.21 

Haldon 0.34 0.36 0.29 0.25 0.30 0.31 0.16 0.22 0.17 0.24 0.16 0 0.28 

Cheddar 0.37 0.44 0.32 0.32 0.37 0.38 0.21 0.25 0.20 0.28 0.21 0.28 0 
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Table 2. Results of Analysis of Molecular Variance (AMOVAS). A comparison of the degree of 

population subdivision at several hierarchical levels . AMOVAs were compared for four 

different population structure models: a) 13 geographically defined populations, b) 13 

geographically defined populations divided into the three genetically defined higher 

hierarchical regions, c) 13 genetically defined clusters grouped into the 3 higher hierarchical 

regions assigned by STRUCTURE and d) 12 genetically defined clusters assigned by BAPS. FST 

/FCT/FSC refers to the fixation index- a measure of genetic differentiation among 

subpopulations. FIS is the inbreeding coefficient and FIT is the overall fixation index of 

individuals relative to the total population. All data partitions were significant, p-

value<0.0001. 

  
Sum of 
squares 

Variance 
components 

% variation Fstat 

a) Geographical populations 
     

Among populations 762.74 1.85 23.08 0.23 FST 

Among individuals within populations 1288.89 0.53 6.64 0.09 FIS 

Within individuals 1158.50 5.63 70.28 0.30 FIT 

b) Geographical populations in 3 regions 
     

Among regions 357.48 0.90 10.83 0.11 FCT 

Among populations within regions 405.26 1.21 14.64 0.16 FSC 

Among individuals within populations 1288.89 0.53 6.44 0.09 FIS 

Within individuals 1158.50 5.63 68.09 0.32 FIT 

c) Genetic populations - STRUCTURE 
     

Among regions 335.99 1.07 12.63 0.13 FCT 

Among populations within regions 475.72 1.16 13.63 0.16 FSC 

Among individuals within populations 1468.45 0.61 7.23 0.10 FIS 

Within individuals 1281.00 5.64 66.51 0.33 FIT 

d)  Genetic populations - BAPS 
     

Among populations 760.53 1.70 21.10 0.21 FST 

Among individuals within populations 1519.64 0.72 8.91 0.11 FIS 

Within individuals 1281.00 5.64 69.99 0.30 FIT 
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Isolation by distance 

 There is highly significant evidence of IBD across the study area, where there was an 

increase in genetic differentiation with increasing distance (R2=0.26, p-value<0.0001, figure 

8). Correlations between genetic distance and spatial distance remained significantly 

positive when regions were analysed separately (Mantel tests, Devon, p=0.001; Cornwall, 

p=0.009, figure 9). The populations within Cornwall demonstrated a significantly stronger 

pattern of IBD than those in Devon (permutation tests of difference in slope between 

regions, p-value=0.028), however this was more apparent at larger spatial distances, as 

there was no significant difference between the intercepts of the IBD regressions for the 

two regions (permutation tests, p-value=0.95). There was also no significant difference in 

the goodness-of-fit of the IBD correlations (permutation tests, p-value=0.83). 
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Figure 8. Plot of IBD analysis, with spatial distance against genetic distance, showing significant evidence for a pattern of IBD. Samples n ≥ 5 per 

site, across all south west survey area (21 woodland sites)

y = 0.0007x + 0.0616 
R² = 0.26 
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Figure 9. Comparison of the patterns of IBD, showing a plot of spatial distance against 

genetic distance, in Cornwall (open circles) and Devon (solid circles), proxies for peripheral 

and core areas respectively.  
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Regional and longitudinal genetic diversity  

 The frequency of private alleles was significantly different amongst regions 

(F1,9=8.01, p-value=0.02, figure 10a). There was also evidence for a clinal pattern, where the 

frequency of private alleles declined with longitude from east to west (F2,9=9.53, p-

value=0.006, figure 10a). Region also demonstrated a significant effect on allelic richness 

(F2,10=10.49, p-value=0.004, figure 10b), however, there was no significant longitudinal 

effect and hence no evidence of a clinal pattern (F1,9=3.34, p-value=0.101, figure 10b). The 

inbreeding coefficient, FIS, showed no significant response to either regional (F2,10=0.42, p-

value=0.67, figure 10c) or longitudinal (F1,11=3.44, p-value=0.09, figure 10c) effects. There 

was a highly significant difference between Mid Cornwall and Devon/Somerset, with the 

former region having lower values of frequency of private alleles and allelic richness (Tukey 

post-hoc testing, p-values=0.004 and 0.0007 respectively).  Similarly, the East Cornwall 

region showed significantly lower levels of allelic richness and frequency of private alleles 

compared to the Devon/Somerset region (Tukey post-hoc testing, p-values=0.048 and 

0.0003 respectively). However, there was no significant difference between Mid Cornwall 

and East Cornwall regions for both measures of genetic diversity. There was no significant 

interaction between the two explanatory variables, region and longitude, on allelic richness 

(F2,7=0.67, p-value=0.54) or the frequency of private alleles (F2,7=0.04, p-value=0.96). 

 

Summary Statistics 

 The number of individuals sampled per population with n>5 ranged from 6 to 38, 

with an average of 16.5 (SD=10.3) individuals. Across loci and populations the mean number 

of alleles was 3.84 (SD=0.89); mean observed heterozygosity 0.53 (SD=0.09) compared to 

0.57 (SD=0.09) for the expected heterozygosity; mean FIS inbreeding coefficient 0.07 

(SD=0.17); mean allelic richness 3.12 (SD=0.58) and the mean frequency of private alleles 

0.11 (SD=0.08) (data shown in table 3).  

 Eight of thirteen populations showed deviations from Hardy-Weinberg due to 

heterozygosity deficiency (Helman Tor, West Bodmin, Penlan, Middlewood, Roadford, 

Okehampton, East Ivybridge and Newton Abbott). Across the 13 populations, no locus 
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Figure 10. Plots showing the model outcomes of the effect of region and longitude on: a) 

frequency of private alleles; b) allelic richness; and c) inbreeding coefficient. Longitude is 

plotted against the population genetic parameter, and regions are denoted by different 

colour points: red-Mid Cornwall, orange-East Cornwall and green-Devon/Somerset. 
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consistently indicated a high frequency of null alleles or significant deviations from Hardy-

Weinberg equilibrium or, after correction for multiple tests, evidence of linkage 

disequilibrium (supplementary table S2). Therefore, the population deviations appear to be 

due to ecological mechanisms, such as sub-structuring (i.e. the Wahlund effect (Hartl & 

Clark 2007)), rather than loci not adhering to the assumptions of the model. The results of 

our population genetic analyses, however, should be interpreted with some caution, as 

many of the analyses are based on the assumption of Hardy-Weinberg equilibrium. 

However, this is often unavoidable as some wild populations, especially those of 

conservation concern, simply may not confer to these assumptions (Pearse & Crandall 

2004). The allele frequencies for the 22 loci and all 237 samples are provided in 

supplementary table S3. 

 

Bottleneck 

 Test results for bottleneck events in the 13 populations are provided in table 4. 

Across all populations and the two analysis methods there is no consistent evidence for 

bottlenecks in any of the populations surveyed. The Wilcoxon sign-rank test indicated that 

three populations exhibited a significant departure from the expected heterozygosity for 

populations in mutation-drift equilibrium. Two populations (Darley and Roadford) showed a 

higher expected heterozygosity than would be predicted from the observed allele number, 

which indicates that these populations have suffered a recent bottleneck event. The third 

population (Helman Tor) showed heterozygosity deficiency, which may be due to the 

Wahlund effect, whereby sub-structuring within the population leads to a reduction in the 

average expected heterozygosity (Hartl & Clark 2007). However, for all populations the 

Garza-Williamson index was above the suggested threshold of M=0.68 (Garza & Williamson 

2001), suggesting no populations have experienced a bottleneck.   
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Table 3. Summary statistics for the 13 populations; number of dormice sampled (N), mean 

and standard deviation of number of alleles (Na (SD)), observed heterozygosity (Ho (SD)) 

and expected heterozygosity (He (SD)), and mean and standard error of allelic richness (Ar 

(SE)) and private alleles (Ap (SE)), inbreeding coefficient (FIS), p-value for Hardy-Weinberg 

test for heterozygosity deficiency,  (HetDef), with significant p-values in bold.  

Population N Na (SD) Ho (SD) He (SD) Ar (SE) Ap (SE) Fis Het Def 

Helman Tor 17 
3.52 

(1.72) 
0.36 

(0.29) 
0.40 

(0.25) 
2.58 

(0.24) 
0.05 

(0.02) 
0.14 0.00 

West Bodmin 18 
3.48 

(1.17) 
0.44 

(0.16) 
0.51 

(0.16) 
2.67 

(0.18) 
0.05 

(0.03) 
0.27 0.00 

Penlan 13 
2.88 

(0.81) 
0.35 

(0.14) 
0.42 

(0.18) 
2.08 

(0.19) 
0.01 

(0.01) 
-0.06 0.00 

Middlewood 11 
3.67 

(1.43) 
0.56 

(0.20) 
0.60 

(0.15) 
3.22 

(0.26) 
0.04 

(0.02) 
0.18 0.00 

Darley 10 
2.95 

(0.74) 
0.58 

(0.20) 
0.56 

(0.11) 
2.68 

(0.15) 
0.00 

(0.00) 
0.13 0.68 

Stara 9 
2.73 

(0.55) 
0.50 

(0.17) 
0.50 

(0.15) 
2.59 

(0.11) 
0.02 

(0.01) 
0.07 0.67 

North Devon 6 
3.36 

(1.00) 
0.64 

(0.28) 
0.61 

(0.17) 
3.24 

(0.20) 
0.09 

(0.05) 
0.03 0.72 

Roadford 8 
4.18 

(1.37) 
0.58 

(0.19) 
0.70 

(0.12) 
3.92 

(0.25) 
0.17 

(0.06) 
-0.10 0.00 

Okehampton 38 
5.46 

(2.18) 
0.60 

(0.17) 
0.66 

(0.17) 
4.02 

(0.27) 
0.18 

(0.06) 
0.14 0.00 

East Ivybridge 19 
4.62 

(1.69) 
0.51 

(0.21) 
0.61 

(0.20) 
3.49 

(0.27) 
0.16 

(0.06) 
0.38 0.00 

Newton Abbott 37 
5.38 

(1.80) 
0.60 

(0.16) 
0.66 

(0.16) 
3.75 

(0.25) 
0.19 

(0.05) 
0.03 0.00 

Haldon 19 
4.29 

(1.71) 
0.56 

(0.17) 
0.59 

(0.15) 
3.25 

(0.24) 
0.17 

(0.06) 
0.03 0.24 

Cheddar 10 
3.38 

(1.02) 
0.58 

(0.22) 
0.54 

(0.18) 
3.00 

(0.22) 
0.23 

(0.14) 
-0.30 0.87 
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Table 4. Results of tests for bottleneck events in the 13 populations, from BOTTLENECK and 

using the Garza-Williamson Index. 

 

 Wilcoxon test  Garza-Williamson 

Population N One tail Hdef One tail Hex 
Two tail Hdef 

or Hex 
Sign test Index SD 

Helman Tor 17 0.00 1.00 0.00 0.00 0.85 0.18 

West Bodmin 18 0.49 0.53 0.97 0.57 0.85 0.19 

Penlan 13 0.19 0.83 0.38 0.24 0.80 0.22 

Middlewood 11 0.93 0.07 0.15 0.45 0.83 0.17 

Darley 10 0.99 0.01 0.02 0.03 0.85 0.20 

Stara 9 0.78 0.23 0.46 0.30 0.79 0.24 

North Devon 6 0.84 0.17 0.34 0.49 0.87 0.16 

Roadford 8 1.00 0.00 0.00 0.01 0.86 0.13 

Okehampton 38 0.95 0.05 0.10 0.14 0.94 0.10 

East Ivybridge 19 0.34 0.67 0.68 0.21 0.86 0.17 

Newton Abbott 37 0.79 0.22 0.43 0.29 0.89 0.16 

Haldon 19 0.50 0.51 1.00 0.48 0.83 0.18 

Cheddar 10 0.53 0.49 0.97 0.41 0.87 0.17 
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Discussion 

 This study describes the genetic population structuring and isolation by distance 

patterns, differentiation, diversity and inbreeding amongst hazel dormouse populations 

from the core and periphery of their range in southwest England. Our results clearly reveal 

significant genetic differentiation across all levels of population structure and variation in 

genetic diversity between regions.  

The strong genetic differentiation and structuring amongst all populations at the 

landscape scale concurs with our predictions and the findings of Md. Naim et al. (2012). 

Since dormice are habitat specialists, with low dispersal rates, reproductive potential and 

population densities (Bright 1993, Bright & Morris 1996), we expect this species to form 

small, isolated and genetically differentiated populations within their preferred habitat 

matrix. This lends further support to the premise that dormice are particularly vulnerable to 

habitat loss and fragmentation. Furthermore, the evidence for a pattern of IBD is expected 

for a species with low dispersal ability (Trizio et al. 2005). The IBD effect appears to be 

stronger in the Cornwall populations, compared to those found in Devon. Due to small 

sample size and uneven distribution of samples within the Cornwall sites, it is difficult to 

determine whether the observed pattern can be attributed to a stronger clinal IBD effect 

per se, due to differences in dispersal behaviour, or to the Cornish populations being more 

isolated by landscape barriers and thus corresponding higher differentiation (Guillot et al. 

2009).  Also of note, is the sub-structuring by STRUCTURE of the Okehampton population, 

which may be due to an anthropogenic dispersal barrier. However, the BAPS analysis did not 

subdivide this population and therefore further research is required to determine the extent 

to which landscape features, such as railways and roads confer dispersal barriers to 

dormice. 

 Lower allelic richness in the Mid Cornwall and East Cornwall regions compared to 

Devon/Somerset, but with no effect of longitude, are likely due to limited dispersal between 

Cornwall and Devon/Somerset. Natural and man-made landscape barriers to dispersal 

reduce gene flow, leading to small, isolated, more differentiated populations that 

experience elevated genetic drift and lower genetic diversity (Goossens et al. 2005, Miller & 

Waits 2003, Slatkin 1987). In our study, the large river Tamar runs along the border between 
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Cornwall and Devon and may create a dispersal barrier to dormice, especially in the south 

where it is at its widest (figure 3). In the north this watercourse is narrower and likely to be 

more permeable to dormouse dispersal, where the tree canopy connects above the 

waterway, however, generally there is less woodland cover, with habitat being dominated 

by moorland (Bodmin Moor, figure 3).  

 However, both region and longitude showed significant correlations with the 

frequency of private alleles. Therefore, in addition to the barrier effects of the river Tamar 

and Bodmin Moor, there is strong evidence for a decline in this measure of genetic diversity 

from the core to the periphery of the dormouse range sampled along the southwest 

England peninsula. This concurs with our expectations, based on the central-periphery 

hypothesis (Diniz-Filho et al. 2009, Lawton 1993, Vucetich & Waite 2003).  

 There was relatively lower population differentiation amongst Devon/Somerset 

populations compared to those within Mid Cornwall and there was a stronger IBD pattern 

amongst the populations found within Cornwall, compared to populations from the centre 

of Devon. Peripheral populations are likely to be more isolated and patchily distributed, with 

reduced population sizes and more variable densities (Lawton 1993, Vucetich & Waite 

2003). Such restricted gene flow between habitat patches, compared to within the core 

range where there may be a more continuous distribution, will lead to increased genetic 

differentiation (Keyghobadi et al. 2005, Slatkin 1987). Additionally, isolated, small 

populations are subject to elevated genetic drift, further contributing to genetic 

differentiation amongst peripheral populations, as well as reducing genetic diversity in 

comparison to larger populations (Frankham et al. 2002). 

 However, the edge-of-range patterns do not imply causation, and alternative 

mechanisms may be driving the variation in genetic diversity between populations. 

Contemporary explanations are confounded by historical variables, such as past barriers to 

gene flow, habitat configurations and climatic changes that have driven range expansions 

and contractions (Hampe & Petit 2005, Slatkin 1987). Our observed pattern of genetic 

diversity may be explained by residual effects of post-glacial range expansion (Garner et al. 

2004). It is assumed terrestrial mammals migrated from mainland Europe into eastern 

England across the land-bridge, Doggerland, which concurs with genetic patterns described 
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in other small mammals (Searle et al. 2009). Colonisation tends to take place in a series of 

waves of founder events. Each founder event includes only a subset of core genetic 

diversity. This leads to a gradient of reduced diversity along the colonisation route away 

from the core (Hewitt 1999).  

 It is likely that a combination of historical and contemporary ecological mechanisms 

will be acting on the population genetics of these populations (Slatkin 1987). To tease apart 

these mechanisms, wider sampling and further analyses are required, such as approximate 

Bayesian computation and coalescent modelling (Cornuet et al. 2008). In addition, the 

integration of phylogeographic information may allow us to distinguish between 

contemporary and historical influences and quantitative genetics may provide insights into 

adaptive processes (Eckert et al. 2008). To more vigorously test the periphery-core 

hypothesis, analyses such as ours are required across the entire range of dormice. 

Additional landscape analyses may highlight the relative importance of natural and 

anthropogenic features which hinder dispersal. Such studies would require a more 

continuous sampling scheme across the landscape (Manel et al. 2003).  

 With these caveats in mind, we can still attempt to tease apart the mechanisms 

driving population genetic parameters at the edge of the dormouse’s range. Lower genetic 

diversity at edge-of-range could be due to: a reduction in resource quality or availability; a 

reduction in the optimality of climatic conditions; historical colonisation processes; or recent 

major population-wide disturbances. We propose that changing climatic conditions would 

impose clines in diversity rather than our observed abrupt changes, while recent 

disturbances would reveal the signal of genetic bottlenecks, which we do not observe. This 

leaves two rival mechanisms for the difference between core and peripheral populations: an 

abrupt change in resources, or colonisation limitation between the regions. In fact these 

mechanisms are likely to be coupled: smaller patches of woodland in Cornwall, which occur 

in steep-sided valleys separated by moorland on its granite backbone, may cause increased 

population subdivision and isolation. This effect may then be exaggerated by dispersal 

barriers between the regions: a strong candidate barrier is the river Tamar.   
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Implications 

 Irrespective of underlying mechanisms, it is of concern that populations in Cornwall 

are less genetically diverse as they are suffering from a small effective population size and 

genetic drift (Frankham 1996). Such populations are vulnerable to inbreeding depression, 

which may be more influential in populations that are under more stress (Armbruster & 

Reed 2005), such as peripheral populations that are characterised as having lower quality 

habitats (Brown 1984, Vucetich & Waite 2003). As such, these populations in Mid and East 

Cornwall regions may be at a higher risk of extinction (Frankham 1996, Frankham 2005, 

Saccheri et al. 1998). However, we did not find a significant effect of either region or 

longitude on the inbreeding coefficient, which suggests dormouse behaviour is facilitating 

the avoidance of inbreeding even in the least genetically diverse populations. For example, 

polyandry may increase the effective population size, as discussed in Chapter 6. Whilst there 

are records of hazel dormice in west Cornwall (Environmental Records Centre for Cornwall 

and the Isles of Scilly 2012) our 2008 survey across west Cornwall failed to detect any 

dormice here, despite conducting seven month-long surveys at 20 sites, following the 

recommended guidelines (Bright et al. 2006). This does, indirectly, suggest a range 

contraction from the western tip of Cornwall.  

 Whilst we have highlighted variation in population genetics parameters, it remains 

open to debate how best to use this information to conserve hazel dormice in southwest 

England. It is argued that peripheral populations warrant conservation consideration as, due 

to differences in natural selection, they may have local adaptations that are advantageous 

to the evolution of future populations (Lesica & Allendorf 1995). Significantly distinct 

populations, or "Evolutionarily Significant Units", are considered of conservation priority 

(Moritz 1994). The Cornish populations are well differentiated from dormice further west in 

Devon, presumably due to the river Tamar and Bodmin Moor. The larger, source population 

in Devon, therefore cannot flood these peripheral populations with genotypes that are not 

adapted to local conditions, leaving these populations an increased chance to adapt (Eckert 

et al. 2008). Range contractions should be of concern for the entire population as a whole, 

as models predict a positive correlation between regional occupancy and local abundance 

(Lawton 1993, Zuckerberg et al. 2009) and the loss of peripheral populations may have a 

knock-on negative effect on core population abundance. Channell & Lomolino (2000) found 
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that range contractions do not always occur from edge towards core and therefore support 

conservation of edge populations, especially for species where the core has been heavily 

impacted upon by human actions. Therefore there is a strong argument for the conservation 

of Cornish dormouse populations. Conversely, it is argued that as core populations are more 

stable and contain higher levels of genetic diversity it is more efficient to focus limited 

conservation resources, in such core areas (Petit et al. 1998). This promotes the alternative 

argument for prioritising conservation of Devon populations. Whichever approach is taken, 

links between habitat suitability and wider landscape permeability must be considered.  

In the light that Cornish hazel dormouse populations are likely to be genetically 

distinct, it would be unadvisable to recommend landscape-scale management plans that 

connect Cornish and Devon populations, or to translocate animals from other locations into 

unoccupied Cornish woodlands. Such actions may prove to diminish the genetic 

distinctiveness of Cornish populations and lead to a loss of important adaptations that allow 

them to survive on the edge of this species range. Clearly this supposition warrants further 

investigation, however, in the meantime we recommend that conservation managers 

concentrate on the habitat management of Cornish woodlands that ensure the persistence 

of existing dormice populations across Cornwall. In addition, we advocate the linking of 

populations with hedgerows and other suitable habitat corridors within the Cornish region, 

to encourage recolonisation of woodland patches were dormice appear to have become 

extinct. Ultimately these actions should aim to increase the population size and halt further 

loss of Cornish hazel dormouse genetic diversity. 

 

Conclusions 

 Our study provides evidence that a combination of dispersal barriers and core-

periphery effects influence key population genetics parameters in south-western UK edge of 

range of the hazel dormouse. Several parameters tested revealed regional changes, moving 

from the eastern core to the western periphery: namely genetic diversity, differentiation, 

structure and isolation by distance. However, we found no evidence for changes in levels of 

inbreeding or frequencies of bottleneck events at the range edge. Further studies are 

required to determine if these patterns apply throughout the entire range of hazel dormice. 

Such data is vital in order to identify and define conservation priorities. Additionally, it 
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allows the elucidation of regional effects on population parameters in a species vulnerable 

to habitat loss and fragmentation. 
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Supplementary Table S1. Error checking results for the 28 genotyped loci, shaded entries 

denote values that justified the dropping of that locus. 

Locus % Amp Failed Error rate - Alleles Error rate - Individuals Allelic dropout False alleles 

Mav021 14.60 0.01 0.03 0.00 0.02 

Mav038 7.12 0.01 0.02 0.00 0.01 

Mav043 4.56 0.01 0.02 0.00 0.00 

Mav044 5.11 0.03 0.05 0.02 0.00 

MavSF10 4.74 0.01 0.02 0.03 0.00 

Mav011 2.74 0.01 0.03 0.03 0.00 

Mav053 1.09 0.00 0.00 0.00 0.00 

Mav015 8.21 0.03 0.04 0.05 0.00 

Mav032 11.86 0.01 0.02 0.00 0.00 

Mav051 2.55 0.02 0.03 0.00 0.00 

MavSH3 5.84 0.00 0.01 0.03 0.00 

Mav033 2.19 0.01 0.02 0.51 0.00 

MavSG3 2.19 0.02 0.04 0.00 0.01 

Mav005 16.24 0.02 0.03 0.02 0.00 

Mav017 5.11 0.01 0.01 0.02 0.00 

Mav030 11.86 0.01 0.02 0.01 0.00 

Mav036 8.94 0.01 0.01 0.00 0.00 

Mav040 4.93 0.00 0.00 0.00 0.00 

Mav048 2.55 0.03 0.04 0.02 0.00 

MavA5 11.50 0.01 0.02 0.02 0.00 

MavSB5 31.39 0.06 0.06 0.03 0.05 

MavSG6 2.74 0.01 0.02 0.00 0.00 

Mav034 2.92 0.01 0.01 0.00 0.00 

Mav047 1.64 0.01 0.01 0.70 0.00 

Mav003 6.39 0.02 0.03 0.02 0.00 

MavSG9 3.10 0.03 0.06 0.02 0.06 

Mav049 5.47 0.01 0.01 0.03 0.00 

MavSF12 24.27 0.02 0.05 0.08 0.00 
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Supplementary Table S2. Summary for 22 loci used in genetics analysis of 13 dormouse populations. Size range of alleles across populations in bp, K= mean 

number of alleles across populations, n=number of samples genotyped per locus per population, Null = estimated frequency of null alleles, HW= p-value for 

test of deviation from Hardy Weinberg equilibrium prior to multiple test correction, bold highlights values significant after correction for multiple tests, using 

the False Discovery Rate. 

  

Size range 
(bp) 

  
West Bodmin Cheddar Darley East Ivybridge Haldon Helman Tor Middlewood Newton Abbott North Devon Penlan Roadford Stara Okehampton 

 
  

Locus K n Null HW n Null HW n Null HW n Null HW N Null HW n Null HW n Null HW n Null HW n Null HW n Null HW n Null HW n Null HW n Null HW 

Mav021 139-201 4.7 17 0.15 0.09 10 -0.20 1.00 10 0.05 1.00 19 0.21 0.01 18 -0.03 0.83 14 0.05 0.74 10 0.01 0.54 35 0.01 0.89 5 - 0.90 10 -0.05 1.00 8 - 0.41 6 - 1.00 33 0.07 0.16 

Mav038 259-269 3.0 18 0.00 1.00 10 -0.07 0.56 10 0.21 0.48 19 0.15 0.01 18 0.22 0.08 14 -0.01 - 10 0.09 0.57 37 0.04 0.60 6 - 0.39 13 - - 8 - 0.38 7 - 1.00 36 -0.01 0.81 

Mav043 160-184 3.6 18 0.10 0.35 9 - 0.63 10 -0.01 0.62 19 0.08 0.42 18 0.05 0.41 17 0.78 0.03 10 - - 37 0.00 0.10 6 - 0.48 13 -0.04 1.00 8 - 0.03 7 - 1.00 37 0.11 0.37 

Mav044 126-160 4.7 18 -0.02 0.48 9 - 0.80 10 -0.17 0.52 19 -0.10 0.07 19 -0.04 0.46 17 0.18 0.07 10 -0.03 1.00 37 0.05 0.00 6 - - 13 0.09 0.12 8 - 0.08 9 - 0.51 37 0.00 0.55 

MavSF10 210-238 3.8 18 0.01 0.22 10 -0.05 1.00 10 -0.11 1.00 18 0.09 0.01 19 -0.04 1.00 17 0.11 0.13 10 -0.11 1.00 37 0.00 0.60 6 - 0.09 13 -0.13 1.00 8 - 0.17 9 - 1.00 37 0.04 0.14 

Mav011 169-214 5.5 18 0.08 0.01 10 -0.06 1.00 10 -0.14 0.73 17 0.02 0.75 19 0.02 0.33 16 0.03 0.78 11 0.09 0.01 36 0.17 0.05 6 - 0.87 12 0.11 0.28 8 - 0.33 8 - 1.00 37 0.14 0.01 

Mav053 215-227 3.5 18 0.02 1.00 10 -0.11 1.00 10 0.25 0.31 19 0.01 0.40 19 -0.01 1.00 17 0.06 0.26 11 0.68 0.00 36 0.04 0.68 6 - 0.27 13 0.16 0.23 8 - 0.06 9 - 1.00 37 0.05 0.37 

Mav015 243-251 2.9 18 -0.06 0.56 8 - 1.00 10 0.14 0.10 17 0.14 0.26 18 0.09 0.47 16 0.34 0.00 11 0.25 0.27 37 -0.02 0.26 6 - 1.00 12 0.00 1.00 8 - 0.08 9 - 1.00 35 0.20 0.03 

Mav032 124-158 3.2 18 0.06 0.66 8 - 0.53 10 -0.14 1.00 16 -0.16 0.31 17 0.06 0.60 17 -0.04 1.00 11 0.14 0.09 37 0.11 0.01 6 - 1.00 13 0.13 0.09 8 - 0.74 9 - 0.53 30 -0.07 0.43 

Mav051 229-244 4.0 18 -0.06 1.00 9 - 1.00 10 -0.07 0.66 17 -0.02 0.87 19 -0.03 0.39 16 -0.03 0.41 11 0.01 0.76 37 0.01 0.63 6 - 1.00 13 -0.03 0.30 8 - 0.71 8 - 1.00 36 0.14 0.02 

MavSH3 203-217 3.5 18 -0.05 1.00 10 -0.13 0.44 10 0.19 0.02 18 0.21 0.06 18 0.01 0.74 15 -0.01 - 11 0.08 0.76 36 0.21 0.03 6 - 0.53 13 0.16 0.39 8 - 1.00 8 - 0.01 37 0.04 0.49 

MavSG3 123-158 5.0 17 -0.02 1.00 8 - 0.82 10 -0.11 0.20 18 -0.05 0.83 18 0.04 0.57 17 0.11 0.11 11 -0.05 1.00 37 0.06 0.69 6 - 0.74 13 -0.08 1.00 8 - 0.46 9 - 0.34 38 0.00 0.26 

Mav017 239-267 4.0 18 0.06 0.73 10 0.12 0.06 10 -0.16 0.86 19 0.06 0.09 17 -0.06 0.82 16 -0.14 0.05 10 -0.10 0.15 37 0.02 0.70 6 - 0.12 13 0.23 0.24 8 - 0.71 8 - 1.00 37 -0.09 0.15 

Mav030 122-176 5.4 17 0.07 0.03 10 0.01 0.44 10 0.03 0.19 14 0.16 0.01 15 0.01 0.26 16 -0.07 0.05 9 - 0.52 35 0.04 0.08 6 - 1.00 13 0.08 0.52 7 - 0.11 8 - 0.39 37 0.05 0.66 

Mav036 203-209 2.2 17 0.20 0.26 10 -0.07 1.00 10 0.09 0.57 19 - - 16 0.06 0.44 17 -0.01 - 10 -0.14 1.00 37 0.11 0.30 6 - 0.23 13 - - 7 - 0.63 9 - - 31 0.16 0.03 

Mav040 176-180 1.9 18 0.06 0.51 10 -0.21 0.22 9 - - 18 -0.01 - 18 -0.05 1.00 17 - - 9 - 1.00 36 -0.01 1.00 6 - 1.00 13 - - 8 - 0.12 7 - 1.00 37 -0.05 0.63 

Mav048 201-237 4.2 18 0.05 0.32 10 0.05 0.46 10 0.13 0.47 19 0.07 0.21 19 0.08 0.49 17 -0.21 0.17 11 0.06 0.30 36 -0.03 0.86 6 - 0.27 13 0.15 0.25 8 - 0.38 8 - 0.60 38 0.01 0.08 

MavA5 236-254 4.6 18 0.21 0.07 9 - 0.52 9 - 1.00 15 -0.02 0.18 16 -0.03 0.94 15 0.44 0.00 11 -0.05 0.67 30 -0.07 0.77 5 - 0.65 9 - 0.18 8 - 1.00 7 - 0.18 34 0.15 0.03 

MavSG6 171-190 3.5 18 0.10 0.13 10 -0.05 1.00 10 -0.14 0.73 18 -0.05 0.08 18 0.06 0.83 17 0.17 0.29 11 -0.02 0.36 37 0.03 0.68 6 - 1.00 13 -0.01 - 8 - 0.59 9 - 0.63 36 0.09 0.09 

Mav034 229-247 2.2 18 - - 9 - 0.22 10 -0.05 1.00 19 -0.02 1.00 19 - - 16 -0.01 - 11 -0.19 0.48 37 - - 5 - 1.00 12 - - 8 - 1.00 9 - 1.00 37 0.09 0.35 

Mav003 222-237 2.8 18 0.10 0.04 10 - - 10 -0.13 0.52 15 0.38 0.00 19 0.01 1.00 17 0.45 0.03 11 0.00 0.61 35 0.03 0.31 6 - 1.00 11 - - 8 - 0.02 9 - 1.00 37 -0.02 0.59 

Mav049 204-220 3.5 18 0.22 0.16 10 -0.07 1.00 10 -0.16 0.16 16 0.45 0.00 18 0.02 0.91 17 -0.12 0.42 11 -0.03 0.56 35 0.04 0.30 6 - 1.00 10 - - 8 - 0.30 9 - 0.37 36 0.03 0.34 
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Supplementary Table S3.  Allele frequencies across all populations (Total) and for each population for 22 microsatellite loci used for population genetics 

analysis. 

 

  

 
Total 

                       
Mav021 

139 161 165 169 173 177 181 185 189 193 197 201 
              0.00 0.03 0.07 0.14 0.22 0.08 0.12 0.12 0.06 0.10 0.05 0.00 
              

Mav038 
259 261 263 265 267 269 

                    0.00 0.09 0.44 0.26 0.18 0.01 
                    

Mav043 
160 164 168 172 176 180 184 

                   0.01 0.13 0.46 0.18 0.08 0.11 0.03 
                   

Mav044 
126 130 134 138 142 145 148 150 152 156 160 

               0.02 0.04 0.17 0.17 0.35 0.00 0.09 0.01 0.14 0.02 0.00 
               

MavSF10 
210 218 224 226 228 230 232 234 236 238 

                0.01 0.00 0.24 0.17 0.27 0.11 0.10 0.08 0.02 0.01 
                

Mav011 
169 174 178 182 186 190 194 198 200 202 206 210 214 

             0.03 0.12 0.02 0.02 0.09 0.25 0.14 0.10 0.01 0.07 0.12 0.03 0.02 
             

Mav053 
215 217 219 221 223 225 227 

                   0.09 0.17 0.39 0.28 0.04 0.03 0.01 
                   

Mav015 
243 245 247 249 251 

                     0.12 0.10 0.38 0.39 0.02 
                     

Mav032 
124 137 141 145 149 153 158 

                   0.03 0.04 0.12 0.39 0.40 0.03 0.00 
                   

Mav051 
229 231 233 235 237 239 241 242 244 

                 0.06 0.05 0.08 0.39 0.03 0.18 0.15 0.03 0.03 
                 

MavSH3 
203 205 207 209 211 213 217 

                   0.00 0.31 0.12 0.43 0.13 0.00 0.00 
                   

MavSG3 
123 131 133 135 138 140 142 145 147 149 151 154 156 158 

            0.07 0.08 0.02 0.01 0.03 0.13 0.16 0.26 0.13 0.08 0.01 0.02 0.00 0.02 
            

Mav017 
239 243 247 251 255 259 267 

                   0.17 0.24 0.35 0.11 0.11 0.02 0.00 
                   

Mav030 
122 138 142 148 152 156 160 164 168 172 176 

               0.00 0.07 0.05 0.01 0.15 0.23 0.21 0.12 0.11 0.05 0.01 
               

Mav036 
203 205 207 209 

                      0.17 0.76 0.06 0.01 
                      

Mav040 
176 178 180 

                       0.71 0.27 0.02 
                       

Mav048 
201 209 213 217 221 225 229 233 237 

                 0.01 0.02 0.20 0.11 0.30 0.23 0.10 0.02 0.02 
                 

MavA5 
236 238 240 242 244 246 248 250 252 254 

                0.04 0.16 0.29 0.16 0.16 0.03 0.10 0.05 0.01 0.00 
                

MavSG6 
171 173 175 177 179 181 183 185 188 190 

                0.02 0.07 0.44 0.08 0.09 0.01 0.09 0.10 0.08 0.02 
                

Mav034 
229 230 237 239 241 243 247 

                   0.00 0.01 0.01 0.85 0.10 0.01 0.01 
                   

Mav003 
222 225 228 231 234 237 

                    0.03 0.18 0.56 0.12 0.05 0.06 
                    

Mav049 
204 208 212 216 220 

                     0.08 0.25 0.34 0.24 0.09 
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Cabilla 

    
Cheddar 

   
Darley 

  
EastIvybridge 

     
Mav021 

139 161 165 169 173 
  

173 177 181 185 193 
 

169 181 185 
  

173 177 181 185 189 193 
  0.03 0.09 0.32 0.41 0.15 

  
0.10 0.60 0.10 0.05 0.15 

 
0.60 0.10 0.30 

  
0.11 0.11 0.13 0.24 0.18 0.24 

  
Mav038 

263 267 
     

261 263 265 267 
  

265 267 
   

259 261 263 265 267 269 
  0.67 0.33 

     
0.05 0.65 0.25 0.05 

  
0.35 0.65 

   
0.03 0.50 0.11 0.16 0.08 0.13 

  
Mav043 

164 168 172 176 180 
  

160 164 168 172 
  

164 168 172 184 
 

168 172 176 180 184 
   0.03 0.33 0.53 0.08 0.03 

  
0.17 0.22 0.44 0.17 

  
0.10 0.45 0.25 0.20 

 
0.24 0.05 0.18 0.50 0.03 

   
Mav044 

130 134 138 142 
   

134 138 142 148 
  

134 138 
   

126 130 138 142 148 152 
  0.06 0.36 0.06 0.53 

   
0.11 0.06 0.61 0.22 

  
0.55 0.45 

   
0.03 0.03 0.05 0.37 0.05 0.47 

  
MavSF10 

224 228 230 234 
   

230 232 
    

224 226 
   

228 230 232 234 
    0.56 0.28 0.14 0.03 

   
0.10 0.90 

    
0.60 0.40 

   
0.42 0.06 0.19 0.33 

    
Mav011 

190 194 198 210 214 
  

190 194 206 
   

186 190 198 
  

178 182 186 190 194 198 
  0.58 0.22 0.03 0.03 0.14 

  
0.25 0.55 0.20 

   
0.05 0.55 0.40 

  
0.09 0.09 0.18 0.50 0.03 0.12 

  
Mav053 

217 219 221 223 
   

219 221 223 225 
  

219 221 223 
  

215 219 221 223 227 
   0.03 0.36 0.58 0.03 

   
0.10 0.25 0.05 0.60 

  
0.80 0.15 0.05 

  
0.03 0.37 0.37 0.13 0.11 

   
Mav015 

243 247 249 
    

247 251 
    

245 247 249 
  

245 247 249 
     0.42 0.06 0.53 

    
0.56 0.44 

    
0.10 0.20 0.70 

  
0.35 0.44 0.21 

     
Mav032 

145 149 
     

141 149 
    

141 145 
   

145 149 
      0.50 0.50 

     
0.44 0.56 

    
0.25 0.75 

   
0.53 0.47 

      
Mav051 

231 233 235 239 
   

235 237 244 
   

235 239 241 244 
 

233 235 237 239 241 244 
  0.03 0.56 0.28 0.14 

   
0.72 0.22 0.06 

   
0.45 0.05 0.40 0.10 

 
0.03 0.56 0.06 0.12 0.21 0.03 

  
MavSH3 

205 207 209 
    

205 207 209 211 
  

205 209 211 
  

205 207 209 
     0.08 0.03 0.89 

    
0.10 0.40 0.05 0.45 

  
0.50 0.30 0.20 

  
0.61 0.31 0.08 

     
MavSG3 

131 135 145 
    

140 142 145 147 
  

140 145 151 154 
 

135 138 140 142 147 
   0.94 0.03 0.03 

    
0.25 0.06 0.13 0.56 

  
0.60 0.25 0.05 0.10 

 
0.08 0.03 0.03 0.72 0.14 

   
Mav017 

239 243 247 251 255 259 
 

243 247 251 
   

239 243 247 255 
 

243 247 251 255 
    0.03 0.36 0.22 0.06 0.25 0.08 

 
0.30 0.60 0.10 

   
0.45 0.20 0.30 0.05 

 
0.03 0.16 0.63 0.18 

    
Mav030 

138 152 156 160 
   

160 164 168 172 
  

156 160 164 
  

138 142 152 156 160 164 168 172 
0.44 0.12 0.38 0.06 

   
0.20 0.10 0.40 0.30 

  
0.30 0.40 0.30 

  
0.04 0.04 0.11 0.25 0.18 0.29 0.04 0.07 

Mav036 
205 207 

     
203 205 207 

   
203 205 

   
205 

       0.68 0.32 
     

0.05 0.85 0.10 
   

0.40 0.60 
   

1.00 
       

Mav040 
176 178 

     
176 178 

    
178 

    
176 180 

      0.81 0.19 
     

0.65 0.35 
    

1.00 
    

0.97 0.03 
      

Mav048 
221 225 229 

    
201 213 217 221 229 

 
221 225 229 

  
209 213 217 221 225 233 

  0.44 0.42 0.14 
    

0.20 0.15 0.20 0.35 0.10 
 

0.75 0.20 0.05 
  

0.13 0.24 0.13 0.34 0.13 0.03 
  

MavA5 
238 240 244 250 

   
238 240 244 

   
236 242 244 

  
236 238 240 242 244 246 250 

 0.28 0.67 0.03 0.03 
   

0.28 0.61 0.11 
   

0.28 0.11 0.61 
  

0.03 0.17 0.13 0.47 0.07 0.03 0.10 
 

MavSG6 
175 177 179 

    
175 177 

    
173 185 188 

  
171 179 183 185 

    0.75 0.22 0.03 
    

0.90 0.10 
    

0.40 0.05 0.55 
  

0.06 0.42 0.31 0.22 
    

Mav034 
239 

      
230 237 239 241 247 

 
239 241 

   
229 239 241 

     1.00 
      

0.28 0.17 0.22 0.11 0.22 
 

0.35 0.65 
   

0.03 0.95 0.03 
     

Mav003 
222 228 231 

    
225 

     
222 225 228 231 

 
225 228 237 

     0.06 0.72 0.22 
    

1.00 
     

0.20 0.10 0.40 0.30 
 

0.23 0.20 0.57 
     

Mav049 
208 212 

     
208 212 216 

   
212 216 220 

  
208 212 216 

     0.22 0.78 
     

0.10 0.85 0.05 
   

0.10 0.40 0.50 
  

0.22 0.13 0.66 
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Haldon 

      
HelmanTor 

       
Middlewood 

    
Mav021 

173 177 181 193 
     

161 165 169 
       

165 169 173 185 189 193 
 0.72 0.06 0.17 0.06 

     
0.32 0.46 0.21 

       
0.11 0.11 0.39 0.11 0.22 0.06 

 
Mav038 

263 265 267 
      

263 267 
        

265 267 
     0.58 0.39 0.03 

      
0.96 0.04 

        
0.40 0.60 

     
Mav043 

164 168 172 
      

164 168 
        

168 
      0.03 0.33 0.64 

      
0.06 0.94 

        
1.00 

      
Mav044 

126 130 138 142 148 150 152 156 
 

130 134 138 142 152 
     

134 138 142 
    0.13 0.11 0.05 0.13 0.26 0.05 0.24 0.03 

 
0.06 0.03 0.15 0.68 0.09 

     
0.35 0.35 0.30 

    
MavSF10 

226 228 230 232 234 
    

224 226 234 
       

224 226 232 238 
   0.26 0.53 0.13 0.03 0.05 

    
0.85 0.12 0.03 

       
0.60 0.05 0.25 0.10 

   
Mav011 

169 174 178 190 198 206 210 214 
 

194 198 202 206 210 
     

182 186 190 194 200 202 206 
0.03 0.58 0.03 0.13 0.13 0.03 0.05 0.03 

 
0.19 0.09 0.13 0.53 0.06 

     
0.05 0.05 0.36 0.09 0.09 0.23 0.14 

Mav053 
217 219 221 

      
217 219 221 

       
217 219 221 

    0.66 0.32 0.03 
      

0.26 0.21 0.53 
       

0.18 0.68 0.14 
    

Mav015 
247 249 251 

      
243 247 249 251 

      
245 247 249 

    0.53 0.44 0.03 
      

0.66 0.03 0.28 0.03 
      

0.05 0.14 0.82 
    

Mav032 
124 141 145 149 153 

    
145 149 

        
137 145 149 

    0.09 0.18 0.15 0.47 0.12 
    

0.09 0.91 
        

0.14 0.77 0.09 
    

Mav051 
229 231 235 241 242 

    
233 235 239 

       
235 239 244 

    0.29 0.34 0.18 0.13 0.05 
    

0.22 0.16 0.63 
       

0.55 0.36 0.09 
    

MavSH3 
205 207 209 211 213 

    
209 211 

        
205 209 211 

    0.08 0.47 0.28 0.14 0.03 
    

0.97 0.03 
        

0.32 0.45 0.23 
    

MavSG3 
123 140 142 145 149 151 

   
135 140 142 145 147 

     
140 145 147 

    0.03 0.03 0.53 0.36 0.03 0.03 
   

0.03 0.18 0.03 0.71 0.06 
     

0.45 0.45 0.09 
    

Mav017 
239 243 247 251 

     
239 243 247 255 259 

     
239 243 247 255 259 

  0.12 0.15 0.59 0.15 
     

0.03 0.28 0.53 0.03 0.13 
     

0.25 0.10 0.25 0.30 0.10 
  

Mav030 
122 152 160 164 168 172 

   
138 148 152 156 160 164 168 172 176 

 
156 160 164 172 

   0.03 0.53 0.07 0.07 0.27 0.03 
   

0.34 0.03 0.03 0.03 0.25 0.13 0.13 0.03 0.03 
 

0.56 0.17 0.17 0.11 
   

Mav036 
203 205 209 

      
205 207 

        
203 205 

     0.09 0.81 0.09 
      

0.97 0.03 
        

0.25 0.75 
     

Mav040 
176 178 

       
176 

         
176 178 

     0.11 0.89 
       

1.00 
         

0.44 0.56 
     

Mav048 
213 217 225 

      
213 221 225 

       
213 221 225 229 

   0.26 0.50 0.24 
      

0.15 0.62 0.24 
       

0.05 0.32 0.14 0.50 
   

MavA5 
238 244 248 250 

     
238 240 242 254 

      
236 238 240 242 244 248 

 0.13 0.28 0.41 0.19 
     

0.70 0.23 0.03 0.03 
      

0.23 0.09 0.05 0.09 0.18 0.36 
 

MavSG6 
171 175 179 181 185 

    
175 177 

        
173 175 185 188 190 

  0.14 0.25 0.22 0.03 0.36 
    

0.85 0.15 
        

0.14 0.09 0.05 0.55 0.18 
  

Mav034 
239 

        
239 241 

        
239 241 

     1.00 
        

0.97 0.03 
        

0.68 0.32 
     

Mav003 
225 228 

       
225 228 231 

       
222 228 231 

    0.32 0.68 
       

0.03 0.94 0.03 
       

0.09 0.73 0.18 
    

Mav049 
208 212 216 

      
204 208 212 216 220 

     
208 212 216 220 

   0.44 0.39 0.17 
      

0.24 0.56 0.15 0.03 0.03 
     

0.23 0.05 0.36 0.36 
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NewtonAbbott 

      
NorthDevon 

   
Okehampton 

        
Mav021 

169 173 177 185 193 197 201 
  

173 177 181 185 189 
 

173 177 181 185 189 193 197 
    0.19 0.24 0.04 0.19 0.21 0.11 0.01 

  
0.10 0.10 0.40 0.20 0.20 

 
0.05 0.14 0.35 0.14 0.06 0.14 0.14 

    
Mav038 

261 263 265 267 
     

263 265 267 
   

259 261 263 265 267 
      0.08 0.24 0.53 0.15 

     
0.50 0.42 0.08 

   
0.01 0.15 0.57 0.15 0.11 

      
Mav043 

164 168 172 176 180 
    

164 172 176 180 
  

164 168 172 176 180 
      0.03 0.65 0.07 0.18 0.08 

    
0.17 0.25 0.42 0.17 

  
0.26 0.27 0.18 0.05 0.24 

      
Mav044 

126 130 138 142 148 152 156 160 
 

134 142 
    

130 134 138 142 145 148 150 152 156 
  0.01 0.03 0.01 0.50 0.12 0.22 0.09 0.01 

 
0.92 0.08 

    
0.04 0.11 0.30 0.22 0.01 0.16 0.01 0.12 0.03 

  
MavSF10 

218 226 228 230 232 234 
   

228 230 
    

210 224 226 228 230 232 234 236 
   0.01 0.20 0.32 0.35 0.01 0.09 

   
0.83 0.17 

    
0.05 0.03 0.19 0.34 0.05 0.12 0.14 0.08 

   
Mav011 

169 174 186 190 194 198 206 
  

186 190 194 198 202 
 

186 190 194 198 202 206 210 
    0.14 0.38 0.03 0.08 0.22 0.10 0.06 

  
0.08 0.50 0.17 0.17 0.08 

 
0.32 0.19 0.09 0.09 0.20 0.05 0.04 

    
Mav053 

215 217 219 221 223 
    

219 223 
    

215 219 221 223 
       0.13 0.42 0.42 0.01 0.03 

    
0.75 0.25 

    
0.39 0.36 0.23 0.01 

       
Mav015 

245 247 249 
      

245 247 
    

245 247 249 
        0.15 0.38 0.47 

      
0.25 0.75 

    
0.01 0.66 0.33 

        
Mav032 

124 137 141 145 149 
    

141 145 149 153 
  

141 145 149 
        0.11 0.04 0.26 0.28 0.31 

    
0.17 0.58 0.08 0.17 

  
0.13 0.53 0.33 

        
Mav051 

229 235 239 241 242 
    

235 237 241 
   

229 231 235 237 239 241 
     0.11 0.42 0.01 0.34 0.12 

    
0.17 0.25 0.58 

   
0.10 0.07 0.58 0.03 0.10 0.13 

     
MavSH3 

205 207 209 211 
     

205 207 209 211 
  

203 205 209 211 217 
      0.38 0.01 0.56 0.06 

     
0.33 0.08 0.25 0.33 

  
0.01 0.59 0.24 0.12 0.03 

      
MavSG3 

123 138 140 142 145 147 149 158 
 

140 147 149 151 
  

123 133 138 140 142 145 147 149 156 158 
 0.24 0.04 0.01 0.20 0.12 0.20 0.16 0.01 

 
0.08 0.58 0.25 0.08 

  
0.14 0.09 0.11 0.03 0.01 0.22 0.14 0.21 0.01 0.03 

 
Mav017 

239 243 247 251 255 
    

239 243 247 267 
  

239 243 247 
        0.36 0.16 0.27 0.18 0.03 

    
0.33 0.17 0.42 0.08 

  
0.18 0.45 0.38 

        
Mav030 

148 152 156 160 164 168 172 
  

152 160 164 168 172 
 

142 152 156 160 164 168 172 176 
   0.03 0.29 0.11 0.24 0.14 0.16 0.03 

  
0.25 0.25 0.08 0.08 0.33 

 
0.23 0.11 0.28 0.20 0.08 0.07 0.01 0.01 

   
Mav036 

203 205 
       

203 205 207 
   

203 205 207 
        0.38 0.62 

       
0.50 0.42 0.08 

   
0.16 0.68 0.16 

        
Mav040 

176 178 
       

176 178 
    

176 178 180 
        0.96 0.04 

       
0.42 0.58 

    
0.80 0.15 0.05 

        
Mav048 

209 213 217 221 225 229 237 
  

217 221 225 229 
  

213 217 221 225 229 233 
     0.03 0.60 0.07 0.07 0.07 0.07 0.10 

  
0.17 0.08 0.17 0.58 

  
0.13 0.12 0.21 0.36 0.08 0.11 

     
MavA5 

238 240 242 244 246 248 250 252 
 

238 240 244 246 
  

236 238 240 242 244 246 248 250 
   0.05 0.55 0.20 0.05 0.02 0.05 0.02 0.07 

 
0.30 0.30 0.10 0.30 

  
0.01 0.06 0.16 0.37 0.19 0.06 0.13 0.01 

   
MavSG6 

175 177 181 185 190 
    

175 177 183 
   

173 175 177 179 183 
      0.49 0.15 0.03 0.27 0.07 

    
0.33 0.58 0.08 

   
0.15 0.43 0.01 0.10 0.31 

      
Mav034 

239 
        

239 241 243 
   

239 241 243 
        1.00 

        
0.60 0.10 0.30 

   
0.89 0.09 0.01 

        
Mav003 

225 228 231 234 237 
    

222 225 228 
   

225 228 231 234 
       0.29 0.33 0.07 0.21 0.10 

    
0.17 0.33 0.50 

   
0.07 0.57 0.30 0.07 

       
Mav049 

204 208 212 216 220 
    

208 212 216 
   

204 208 212 216 220 
      0.17 0.04 0.41 0.27 0.10 

    
0.08 0.67 0.25 

   
0.17 0.15 0.36 0.21 0.11 
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Penlan 

  
Roadford 

      
StaraWood 

         
Mav021 

169 173 
   

173 181 185 189 197 
    

169 181 185 
         0.10 0.90 

   
0.13 0.13 0.13 0.38 0.25 

    
0.42 0.25 0.33 

         
Mav038 

263 
    

261 263 265 
      

265 267 
          1.00 

    
0.06 0.19 0.75 

      
0.14 0.86 

          
Mav043 

164 168 
   

160 164 168 172 184 
    

168 184 
          0.69 0.31 

   
0.06 0.31 0.25 0.19 0.19 

    
0.71 0.29 

          
Mav044 

130 134 142 152 
 

138 142 148 
      

134 138 142 
         0.08 0.38 0.38 0.15 

 
0.63 0.31 0.06 

      
0.44 0.50 0.06 

         
MavSF10 

224 228 
   

226 228 234 236 238 
    

224 226 
          0.77 0.23 

   
0.44 0.25 0.13 0.06 0.13 

    
0.33 0.67 

          
Mav011 

194 206 210 214 
 

178 186 190 194 198 200 202 206 
 

182 190 198 
         0.08 0.54 0.21 0.17 

 
0.19 0.06 0.06 0.19 0.13 0.06 0.19 0.13 

 
0.19 0.69 0.13 

         
Mav053 

217 219 221 
  

217 219 221 225 
     

219 221 223 
         0.04 0.12 0.85 

  
0.13 0.38 0.44 0.06 

     
0.61 0.33 0.06 

         
Mav015 

243 249 
   

243 245 247 249 
     

245 247 249 
         0.50 0.50 

   
0.06 0.50 0.31 0.13 

     
0.06 0.72 0.22 

         
Mav032 

137 145 149 153 
 

137 145 149 158 
     

137 145 149 
         0.08 0.12 0.65 0.15 

 
0.19 0.31 0.44 0.06 

     
0.17 0.72 0.11 

         
Mav051 

229 233 239 
  

235 239 241 242 
     

235 239 244 
         0.04 0.23 0.73 

  
0.56 0.19 0.19 0.06 

     
0.19 0.38 0.44 

         
MavSH3 

205 207 209 
  

205 207 211 
      

205 209 211 
         0.04 0.15 0.81 

  
0.38 0.31 0.31 

      
0.13 0.38 0.50 

         
MavSG3 

131 140 142 145 
 

140 142 145 147 156 158 
   

140 151 154 
         0.04 0.04 0.08 0.85 

 
0.19 0.06 0.31 0.13 0.06 0.25 

   
0.67 0.06 0.28 

         
Mav017 

243 247 255 
  

243 247 255 
      

239 243 255 
         0.15 0.46 0.38 

  
0.31 0.44 0.25 

      
0.38 0.19 0.44 

         
Mav030 

152 156 160 
  

156 160 164 168 172 176 
   

156 160 164 
         0.19 0.77 0.04 

  
0.07 0.29 0.21 0.29 0.07 0.07 

   
0.19 0.75 0.06 

         
Mav036 

205 
    

203 205 207 
      

203 205 
          1.00 

    
0.36 0.57 0.07 

      
0.06 0.94 

          
Mav040 

176 
    

176 178 180 
      

176 178 
          1.00 

    
0.25 0.44 0.31 

      
0.43 0.57 

          
Mav048 

221 225 229 
  

213 217 221 225 229 
    

221 225 229 
         0.58 0.38 0.04 

  
0.31 0.06 0.13 0.31 0.19 

    
0.69 0.19 0.13 

         
MavA5 

238 240 
   

244 246 248 250 
     

236 242 244 
         0.17 0.83 

   
0.25 0.06 0.31 0.38 

     
0.29 0.14 0.57 

         
MavSG6 

173 175 
   

175 177 179 183 
     

173 185 188 
         0.04 0.96 

   
0.38 0.06 0.44 0.13 

     
0.28 0.06 0.67 

         
Mav034 

239 
    

239 241 
       

239 241 
          1.00 

    
0.56 0.44 

       
0.72 0.28 

          
Mav003 

228 
    

225 228 231 
      

222 228 
          1.00 

    
0.31 0.56 0.13 

      
0.11 0.89 

          
Mav049 

208 
    

204 208 212 216 220 
    

208 212 216 220 
        1.00 

    
0.06 0.44 0.13 0.25 0.13 

    
0.17 0.22 0.56 0.06 
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Genetics analyses glossary 

GENEMAPPER v3.7 software (Applied Biosystems) 

This software facilitates the scoring of alleles from raw genotype data. The processed  data can 

then be exported to a spreadsheet in a format for down-stream analysis. 

MICROSATELLITE TOOLKIT (Park 2001) 

This is an add-in utility for Excel, which we used to identify and rectify any incorrectly scored 

alleles.  Preliminary error checking can be performed, such as to detect invalid allele sizes and 

population/sample names and missing genotypes through typing errors. This toolkit also can 

calculate some basic summary statistics and convert genotype data into formats for use in 

many population genetics software programs. 

PEDANT v1.0 (Johnson & Haydon 2007) 

We used this program to calculate the allelic dropout and false allele error rate per 

microsatellite loci, comparing the original scored genotypes to re-runs for 16% of our samples. 

Pedant allows the estimation of the maximum likelihood of error rates from duplicate 

genotypes when reference genotypes are not available, for which it also provides confidence 

intervals. 

LOSITAN (Beaumont et al. 1996, Antao et al. 2008) 

We employed LOSITAN to test the assumption that the microsatellite loci used in our analyses 

were not under selection and hence neutral. The software LOSITAN uses the Fst outlier method 

to detect loci under selection. 

ML-RELATE (Kalinowski et al. 2006)  

This program was used to calculate a maximum likelihood pair-wise relatedness coefficients 

for samples within each population using our genotype data. This was carried-out in order to 

identify genetic relationships in our samples. For relationships with a relatedness coefficient 

above 0.4 we removed one of the samples, hence removing close relatives, which may bias 

population genetics analyses. 

CERVUS v3.0 (Kalinowski et al. 2007)  

This software package uses allele frequencies for likelihood parentage testing. The preliminary 

analysis produces a range of summary statistics that includes the estimated frequency of null 

alleles, which we used to check and select out all loci per population, for further downstream 
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population genetics analyses.  CERVUS also converts genotype data into several formats for 

use in other statistical packages, such as GENEPOP. 

GENEPOP v4.0.10 (Raymond & Rousset 1995, Rousset 2008) 

This program is available for use both on the internet, and to download to a PC, and performs 

a variety of population genetics analyses. We used the program to test if our loci adhered to 

the Hardy-Weinberg genotypic equilibrium and linkage disequilibrium for each population. 

These are important, underlying assumptions required for many population genetics analyses. 

We also performed a global multi-sample score test across loci for each population, to identify 

deviations from Hardy-Weinberg due to heterozygosity deficiency. Finally we calculated the 

inbreeding coefficient (FIS) using Weir & Cockerham's (1984) method. 

ADZE v1.0 (Szpiech et al. 2008)  

Here, the rarefaction method is employed in order to correct for variation in sample size 

between populations, and therefore more accurately calculate the frequency of private alleles 

and allelic richness for each analysed population. This methodology is important as these 

measures of genetic diversity are sensitive to sample size. 

ARLEQUIN v3.5 (Excoffier & Lischer 2010) 

This statistical package provides the user with a wide range of population genetics tests, from 

simple intra-population summary statistics to inter-population analyses. We used this program 

to calculate the mean and standard deviation for the number of alleles, and observed and 

expected heterozygosities. We also used performed several locus-by-locus AMOVAs  in order 

to evaluate the amount of genetic differentiation in our data (Excoffier et al. 1992). 

Additionally, Garza-Williamson ratio (Garza & Williamson 2001) was calculated using this 

software. This parameter is based on the number of alleles relative to allele size range.  After a 

bottleneck, increased genetic drift will reduce the number of alleles in a population, however 

only the loss of the largest and/or smallest alleles will affect allele size range. Therefore the 

number of alleles is likely to be reduced more rapidly than allelic range, resulting in a smaller 

ratio of allelic number to size range in a population which has experienced a bottleneck and 

thus not in equilibrium. This method is more sensitive than the method of Cornuet & Luikart 

(1997) at detecting bottlenecks that have occurred further back in time (Garza & Williamson 

2001). 
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BOTTLENECK v1.2.02 (Cornuet & Luikart 1997)  

This program has been designed to identify recent bottlenecks in populations using genotype 

data. The methodology uses a comparison of heterozygosity and allelic diversity parameters, 

as the latter is lost more rapidly after a bottleneck event. Populations that have experienced a 

recent bottleneck will exhibit an observed heterozygosity excess compared to the expected 

heterozygosity from the population’s observed number of alleles, assuming the loci are at 

mutation-drift equilibrium. We used two-phase mutational model, as it has been suggested to 

provide the most accurate characterisation of the microsatellite mutation process (Di Rienzo et 

al. 1994). 

STRUCTURE v2.3.3 (Pritchard et al. 2000, Falush et al. 2003) 

STRUCTURE uses Bayesian clustering to assign individuals to populations based solely on 

genotype data with no a priori information on sample location Since the true number of 

populations (K), in the study area is unknown separate models are run for a range of 

hypothesised K values. For each K run a Markov Chain Monte Carlo approach is used to assign 

each individual to one or more of the K clusters, which are characterised by allele frequencies. 

The assignments maximise clusters adherence to Hardy-Weinberg and linkage equilibrium. 

Individuals are given a membership coefficient (Q) for each cluster, which is a probabilistic 

value of the individual’s ancestry for that cluster. Where individuals are admixed they may be 

assigned to two or more clusters. Each K model should be run independently several times to 

check for consistent estimates. Each K model is given an estimated log probability of data 

value, which can be used to determine which is the most appropriate number of K.The log-

probability of data can indicate which value of K is most likely, depending on the highest value 

and where data points for independent runs for the same K converge. As the interpretation of 

these plots can be challenging Evanno et al. (2005) suggest using the delta K statistic, which 

uses the rate of change in log-probability of data between successive K values to determine 

the most likely K value. The bar plots produced in STRUCTURE are also vital in the 

interpretation of the data, where Q for each individual for all clusters is displayed, with each 

vertical bar corresponding to an individual and each cluster represented by a different colour. 

STRUCTURE HARVESTER v0.6.92 (Earl & vonHoldt 2011) 

This online tool allows the rapid processing and visualisation of STRUCTURE results, by 

summarising and plotting Ln probability of data, and Delta K against K, as per Evanno et al. 

(2005). Output files for use the software CLUMMP are also generated. 
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CLUMMP v1.1.2 (Jakobsson & Rosenberg 2007) 

CLUMMP summarises repeat STRUCTURE output runs for a given K. The choice of  combination 

of algorithm parameters is likely to be driven by computation time. The output file can then be 

adjusted for use in DISTRUCT. 

DISTRUCT v1.1 (Rosenberg 2004) 

This software package is used to construct and edit graphical displays of labelled bar plots from 

STRUCTURE analyses, which show the membership coefficient (Q) for each individual for all 

clusters, for a particular K. 

BAPS (Corander et al. 2008) 

Using Bayesian algorithms, BAPS characterises individuals into population genetic clusters 

using allele frequencies.  BAPS allows the incorporation of spatial data into the model, which, 

assuming that clusters are somewhat spatially smooth, increases the power of the model to 

correctly define the genetic population structure. 

POPULATIONS v1.2.32 (Langella 1999)  

We used this software to plot a neighbour-joining tree with genetic distances, using the 

bootstrapping option, which calculates the support for the tree nodes. We used Nei’s standard 

genetic distance, which measures the proportion of alleles that are different between pairwise 

comparisons of populations (Nei 1972). The output file was then used in TREEVIEW to 

generate a graphic. 

TREEVIEW v1.6.6 (Page 1996). 

This is a tree-plotting software package, which allows the editing of genetic tree data, such as 

those generated by analysis in POPULATIONS. 

MICROSATELLITE ANALYSER v4.05 (Dieringer & Schlötterer 2003) 

This package allows the generation of a variety of microsatellite summary statistics and 

converts genotype datasets into several formats for use in genetic analysis software programs. 

We used this program to generate the FST matrix, which allows interpretations to be made 

concerning the extent of genetic differentiation amongst sampled populations. We used the 

Weir & Cockerham (1984) method, which was preferable it as takes sample size and uneven 

sample sizes into account. Wright’s (1978) FST interpretation guidelines state that values 
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ranging from 0.05-0.15 indicate moderate, 0.15-0.25 great and above 0.25 very great, genetic 

differentiation. 

SPAGeDi v1.3 (Hardy & Vekemans 2002)  

SPAGeDI, or Spatial Pattern Analysis of Genetic Diversity, uses spatial coordinates and 

genotype data to perform spatial genetic analyses. We used this software to investigate the 

presence of isolation by distance (IBD) in our samples. IBD refers to the propensity of 

individuals to reproduce with others that are geographically close. This results in a clinal 

distribution of genetic differentiation in relation to spatial distance across a species range, with 

populations that are geographically more distant also being more genetically differentiated 

and is due to limited dispersal and continuous distribution (Wright 1943). In our analysis 

employed permutation tests, which is equivalent to a Mantel test. 
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Chapter 6: Multiple paternity in the hazel dormouse:  

not so promiscuous after all? 

 

Abstract 

Polyandry, leading to multiple paternity within litters, has been demonstrated across a 

range of animal taxa and therefore is an important phenomenon in the mating systems 

of many species. Complex interactions between life history, ecological and evolutionary 

mechanisms drive the prevalence of multiple paternity, which in turn will impact upon 

population parameters such as effective population size and genetic diversity. As such, 

information on reproductive behaviour will better inform habitat management, 

mitigation and captive breeding programmes for species of conservation concern.  

Here, we utilise 22 microsatellite markers to investigate the occurrence and frequency 

of multiple paternity in 12 litters of the hazel dormouse, Muscardinus avellanarius, 

from populations in southwest England. We use group-wide maximum likelihood and 

probability-based pairwise sibship analyses in the program COLONY, which are based 

on allele-frequencies. 

We detected multiple paternity in 50% of litters, which is significantly lower than 

previously described for hazel dormouse populations investigated in Wales. Of the six 

litters that exhibited multiple paternity, analyses inferred that four litters were sired by 

two males, one by three males and one by four males.  

It is unclear what is responsible for the conflicting results between the previous study 

and our work. Therefore we discuss the technical, ecological and evolutionary effects 

that may be driving the variation in multiple paternity rates described by the two 

different studies and highlight important areas of further research. 
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Introduction 

 Studies pertaining to natural mating systems not only contribute to the growing 

knowledge of life histories, but also have important implications for populations of 

conservation concern. This includes how mating systems influence effective population 

size and genetic diversity, and informing captive breeding programmes (Martinez et al. 

2000, Moore et al. 2008, Sugg & Chesser 1994). Clearly, it is important that 

information on natural behaviour is incorporated into conservation management plans 

(Anthony & Blumstein 2000). 

 Increasingly, genetic markers have been employed to infer relatedness and the 

nature of mating systems (Jones & Ardren 2003, Walling et al. 2010), often yielding 

results that vary greatly from studies based on behavioural observations (Hughes 

1998). For example, the prevalence of multiple mating by females, has proven to be 

much more common than previously recognised (Griffith et al. 2002, Zeh & Zeh 2001). 

Polyandry has now been demonstrated across many animal taxa, including insects 

(Arnqvist & Nilsson 2000), reptiles (Uller & Olsson 2008), birds (Griffith et al. 2002) and 

mammals (Soulsbury 2010). Assuming females produce two or more offspring, and 

more than one mated male is successful at fertilising ova, such behaviour leads to 

multiple paternity within a litter (Dean et al. 2006).  

 Despite the acceptance that polyandry is prevalent, the drivers of such 

mechanisms continue to be debated. Breeding behaviour is associated with costs, 

including time spent searching for a mate, antagonistic interactions and increased risk 

of mortality through predation and disease transmission (Daly 1978).  Subsequently, 

the traditional assumption was that females are passive and should not actively exhibit 

polyandry, as their optimal reproductive success generally requires just one mating 

event (Bateman 1948, Uller & Olsson 2008). Multiple mating by females may occur 

through sexual conflict, for example for cost avoidance of resisting male harassment 

(Arnqvist 1989, Clutton-Brock & Parker 1995). However, these assumptions have since 

been contested, hypothesising that females actively seek multiple mates, as this 

behaviour is adaptive, conferring increased lifetime and reproductive fitness (Arnqvist 

& Nilsson 2000, Birkhead & Møller 1998, Hosken & Stockley 2003). Berteaux et al. 

(1999) revealed, through the use of tethered male meadow voles, Microtus 
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pennsylvanicus, that females actively choose to mate with multiple males. However, 

other studies find evidence lacking for many of the suggested benefits to females and 

maintain polyandry can be explained by sexual conflict interactions (Akçkay & 

Roughgarden 2007, Westneat & Stewart 2003). 

 Furthermore, the nature of how multiple mating may increase female fitness 

continues to be debated (Jennions & Petrie 2000, Stockley 2003). Where males provide 

direct benefits such as nuptial gifts and parental care, multiple-mates may confer 

additional benefits to the female, assuming it does not lead to divorce (Arnqvist & 

Nilsson 2000, Hosken & Stockley 2003). If infanticide by males is prevalent, uncertainty 

in paternity may reduce such behaviour (Hrdy 1979, Wolff & Macdonald 2004). Bet-

hedging through insemination from multiple males will confer fertilisation insurance 

(Hoogland 1998). Polyandry may also be driven by indirect genetic benefits, such as 

reduced inbreeding, increased genetic diversity of offspring and the increased 

likelihood of compatibility of genotypes between parents (Colegrave et al. 2002, Mays 

& Hill 2004, Tregenza & Wedell 2002, Zeh & Zeh 2001). Indeed, polyandry has been 

associated with reduced early embryonic failure (Stockley 2003). At the population 

level, multiple paternity may increase effective population size, reducing inbreeding 

and loss of genetic diversity through genetic drift (Anthony & Blumstein 2000, Snugg & 

Chasser 1994, but see Karl 2008).  

 Here, we use microsatellites to focus on multiple paternity in the hazel 

dormouse, Muscardinus avellanarius. Relatively low population densities, reproductive 

potential and dispersal ability makes this small rodent especially vulnerable to habitat 

degradation, loss and fragmentation, mechanisms often driven by anthropogenic 

actions (Bright 1993, Bright & Morris 1996). The resultant small, isolated dormouse 

populations are prone to genetic drift and inbreeding (Frankham 1995). Mating 

systems will also affect these ecological and evolutionary parameters and therefore a 

better understanding of dormouse breeding behaviour is vital for its informed 

conservation. A captive breeding and reintroduction programme is underway in the 

UK, with the aim of reinstating dormice to parts of their historical range (Mitchell-

Jones & White 2009). The management of this programme will benefit from 

knowledge of the natural mating systems and information on how genetic diversity is 

maintained in the wild (Moore et al. 2008).  

http://rspb.royalsocietypublishing.org/content/274/1621/1993.full#ref-10
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 We can make a prediction regarding the relative rate of multiple paternity in 

hazel dormice, based on comparative analyses with other rodents that occupy similar 

niches. Two species of small rodents found in England in similar habitats to hazel 

dormice are wood mice Apodemus sylvaticus and bank voles Myodes glareolus. 

Recorded rates of multiple paternity in litters of wood mice are moderately high at 

50% to 68.2% (Baker et al. 1999, Bryja et al. 2008) and average at 35.5% for bank voles 

(Soulsbury 2010). Relative testes size correlates positively with rates of multiple 

paternity across rodent species, due to sperm competition (Ramm et al. 2005, 

Soulsbury 2010). Hazel dormice do not have prominent testes and therefore this 

morphological trait is not used to distinguish between sexes in the field, whereas 

reproductively mature wood mice and voles can be confidently sexed because males 

have very evident testes (Bright & Morris 2005). Indeed, wood mice are reported to 

have amongst the highest relative testes to body size ratio across the rodents (Moore 

et al. 2002). Based on this premise we would hypothesise levels of polyandry will be 

lower in hazel dormice compared to these other species. It should, however, be noted 

that quantitative data on relative dormouse testes size is not available and so we 

cannot rule out the possibility that hazel dormice possess large internal testes.  

 Further support for the hypothesis that hazel dormice would exhibit lower 

multiple paternity rates than other rodent species may come from a consideration of 

mating systems, although the information currently available is scarce. Male hazel 

dormice are territorial during the mating season and have larger home ranges than 

females, which overlap with several females (Bright & Morris 1991, Juškaitis 2008). 

Male dormice leave hibernation earlier than females, possibly to secure high quality 

home ranges in advance of the breeding season (Juškaitis 2008). This suggests that 

dominant male dormice monopolise access to females, which would reduce 

opportunities for subordinate males to mate with females and hence the prevalence of 

multiple paternity. In contrast, wood mice are thought to exhibit scramble competition 

in mate selection, whereby access to females is not monopolised by just a few males, 

leading to substantial promiscuity and subsequent high levels of multiple paternity 

(Moore et al. 2002). Similarly, in many rodent species that exhibit the highest levels of 

multiple paternity, mate chasing occurs, where several males mate with one female 

during the short period in which she is receptive (e.g. yellow-pine chipmunks, Tamias 
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amoenus (Schulte-Hostedde et al. 2004) and the North American red squirrel, 

Tamiasciurus hudsonicus, (McFarlane et al. 2010)).  However, current information on 

mating systems in hazel dormice also suggests that the females are also territorial 

during the breeding season, presumably as females are likely to require high quality 

habitats with sufficient food supplies that are patchily distributed (Juškaitis 2008, 

Ściński & Borowski 2007). Such promiscuous mating systems where males have large 

home ranges and compete over receptive, territorial females have been observed in 

other arboreal rodents, such as the edible dormouse, Glis glis, (Ściński & Borowski 

2007) and the red squirrel, Sciurus vulgaris (Lee 2001). Such behaviour would lead to 

intra-sexual male competition when males aggregate around a receptive female, and 

thus potentially relatively higher levels of polyandry. However, there is evidence that 

female hazel dormice are not, at least consistently, territorial, such as evidenced by 

the occasions when litters from two different females are amalgamated into a crèche 

(Bright et al. 2006).  

 However, a very high proportion (95%) of hazel dormouse litters were reported 

to show multiple paternity in populations in Wales (Md. Naim et al. 2011). This is 

amongst the highest reported in mammals, based on a meta-analysis study by 

Soulsbury (2010), where the mean rate of multiple paternity across mammals was 

35.7% (range 0–92%). As such, hazel dormice lie above the range of multiple paternity 

frequency described in this meta-analysis. This discrepancy from our predictions may 

be due to other life history parameters confounding expected correlations between 

testes size and multiple paternity rate, such as length of breeding season (Ribble & 

Millar 1992, Soulsbury 2010).  Alternatively, the high rate in multiple paternity 

revealed by Md. Naim et al. (2011) may be due to ecological or evolutionary 

mechanisms particular to the populations sampled. Indeed, great variation exists in 

multiple paternity rates amongst populations of other species (Dean et al. 2006, Petrie 

& Kempanaers 1998). 

 

 Therefore, further investigation of multiple paternity in alternative hazel 

dormice populations is warranted. This would allow an assessment of consistency 

between studies and populations and to confirm if hazel dormice are generally prone 



173 
 

to very high levels of polyandry. To this end, we employed polymorphic microsatellite 

markers to estimate the frequency of multiple paternity in litters of hazel dormice 

populations from south west England.  

 

Methods 

Sampling 

 Genetic samples suitable for our parentage analysis were obtained from five 

woodland sites in the counties of Cornwall and Devon which are located in the 

southwest of England. Samples were collected from April 2009 to October 2011, as 

part of a larger study on dormouse population genetics (Chapter 5). Access to wild 

dormice was possible through the routine monitoring of dedicated nest box schemes, 

which are part of a long-term national dormouse monitoring programme (Bright et al. 

2006). Genetic material was taken by plucking 1-3 small clumps of fur from animals. 

Samples were taken under Natural England licence (numbers 20090841, 20100962 and 

20111228). Data on sampling date, woodland site (including an OS grid reference), 

nest box number, sex, weight, age (juvenile or adult), reproductive condition, torpor 

state (torpid or active) and any distinguishing features (e.g. short/missing tail) were 

recorded for each dormouse. Hair samples were stored dry in micro centrifuge tubes 

at -20°C. 

 

Genotyping 

 For all samples DNA was extracted using Chelex (Walsh et al. 1991). PCR 

conditions and profile were performed as in Chapter 4, using the 28 loci as previously 

described in Chapter 5 of this thesis. Amplified products were genotyped in an ABI 

3730 48-well capillary DNA Analyser (Applied Biosystems) and allele sizes determined 

using GENEMAPPER v3.7 software (Applied Biosystems). After the loci selection 

methods in Chapter 5, 22 loci were selected for parentage analysis.  
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Parentage analysis 

 Analysis was carried out in COLONY v2.0.1.9 (Wang 2004, Wang & Santure 

2009). Compared to other parentage programs, COLONY utilises known information on 

relatedness, such as siblings from the same litter. This allows for more correct 

paternities to be assigned, and produces fewer incorrect assignments through the use 

of individual rather than population-level confidences (Walling et al. 2010). Parentage 

inferences were determined using group-wide maximum likelihoods, which 

incorporate prior family relationship data (i.e. known siblings, mothers and fathers) in 

order to estimate the best maximum likelihood relatedness configurations. These 

results were then used to determine the most likely number of fathers per litter and 

therefore ascertain if multiple paternity has occurred. Further, we contrasted these 

results to probability-based pairwise sibship relationships between litter mates, also 

using COLONY. Through the examination of the proportion of full and half siblings 

within a litter, this latter analysis allows us to infer if the mother of each litter mated - 

and successfully produced offspring - with multiple males. The maximum likelihood 

configuration methods are more vigorous as all related individuals in the cluster are 

used in the analysis, rather than just pair-wise comparisons when analysing sibship 

data. However, the latter analysis allows comparison of two different methodologies, 

which further ensures data is robust. 

 As COLONY analysis is based on allele frequencies, each population was run 

independently to ensure accurate paternity estimates. Different years were also run 

separately, so that between-generation relationships would not confound the results. 

The parameters used were as follows. We assumed both males and females exhibit 

polygamy, to allow for the presence of paternal or maternal half siblings. Inbreeding 

was allowed for, as this is possible in our study species which is insular and as our 

sample size was small computation time would not be constraining. We used a 

medium run length and the full likelihood method, which has been shown to be the 

most accurate (Wang 2004; Wang & Santure 2009). We did not employ updating of 

allele frequencies, as our family sizes were small and therefore our analysis would gain 

little benefit from this option. The microsatellite error rate, which is required by 

COLONY for each locus, was based on the genotyping error and allelic dropout rate 

determined from analyses in Chapter 5. 
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 For each separate analysis, all dormouse samples that were successfully 

genotyped for that population and year were input into COLONY. This provided 

COLONY with a larger sample size in which to calculate the allele frequencies and 

therefore improve accuracy. Dormouse genotypes were classified either as: juveniles, 

adult males or adult females. This was based on the field data provided by experienced 

monitors in the field. Age classification was based on a combination of weight and fur 

colour, and sex was determined for adults by inspection of genitalia. Determining the 

sex of juveniles is often inconclusive and not necessary for our analyses and so was not 

incorporated.  Any samples with the necessary field data missing were omitted from 

further analyses. All three sets of classified genotypes were then uploaded into 

COLONY, using an estimated probability of 0.4 that the mother and father were 

present in the sample genotypes.  

 Known relationships based on field data were also input into COLONY for 

analysis. We defined litters as groups of juveniles of the same age (i.e. similar weights), 

sharing the same dormouse nest box on the same date, with or without adults also in 

the same box. Using the field data, we selected litters that comprised of three or more 

juveniles because the confidence in detecting multiple paternity increases with 

number of juveniles sampled. In 11 of the 12 litters, one or more adults were found in 

the same box. Here the adult genotypes were manually compared to each of the 

juveniles to determine if the adult was likely to be a parent of the offspring.  This was 

to confirm sibship, as there are reports of different females combining litters into a 

“crèche” (Bright et al. 2006). Adults in the same nest box were assumed to be the 

parent of a juvenile if, across all loci, at least one of the adult’s alleles was present in 

each of the juvenile’s locus genotypes. If there was only one genotype mismatch, from 

the 22 loci, between potential parent-offspring pairs, the genotype scoring was 

checked and if the disparity could be reliably attributed to genotyping error the 

conflicting loci genotypes were removed from further analysis from both the adult and 

juvenile. Where there were two or more mismatches we did not assume that the adult 

was the parent, a situation which occurred in two litters. In one litter, two adult 

females and one adult male were present and by using the above methodology, one 

female was confirmed as the mother and the other two adults were assumed not to be 

the parents as they had a total of 15 mismatches with the juveniles. Within the second 
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litter there was one adult female and male and, whilst the female was confirmed as 

the mother, the male demonstrated 7-8 mismatches with each juvenile and therefore 

was discounted as the father. The inferred parental relationships were input into 

COLONY, as known maternal and/or paternal sibling groups. For families with three or 

more juveniles sharing a nest box, but no adult present, these relationships were input 

into COLONY as known siblings, with no adults assigned as the parent. We also 

checked that no litters within the same site/year were repeat samples, by manually 

comparing individuals’ genotypes. 

 Once computations were complete the output was summarised, using the 

maximum likelihood configuration results to determine the number of fathers per 

litter. Analyses were replicated three times to check for consistency between runs. 

Additionally, to assess concurrence with this configuration data, the pairwise sibship 

data was summarised, giving the number of full-sibling and half-sibling relationships 

present in each litter.  Litters with at least one relationship of half-siblings, above the 

probability threshold of 0.70 were assumed to show reasonable evidence of multiple 

paternity.  

 A Chi-squared test was used to determine if there is a significant difference in 

rates of multiple paternity between this study and that conducted in Wales by Md. 

Naim et al. (2011). A Welch two sample t-test was used to detect any differences in the 

mean weights of the known mothers of the litter between those that displayed 

multiple paternity and those that did not. An ANOVA and F-test were performed to 

investigate if litter size was influenced by the weight of the mother. All tests were 

carried out in R v2.14.1 (R Foundation for Statistical Computing 2011). 

 

Results 

Sampling 

 A total of 216 dormouse samples were used in the analyses, (98 juvenile, 60 

adult female and 58 adult male). We performed eight analyses over five sites from 

Cornwall and Devon, across the three-year period of 2009-2011, which comprised 12 

litters (table 1). The mean number of juveniles per litter was 4.75 (SD = 1.42, range 3-
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8). Table 1 summarises the number of genotypes included in each site/year analysis, 

for the three classified groups, juveniles, adult females and adult males, as well as the 

number of predefined sibship groups within each of these analyses.  

 

Loci selection 

 All chosen loci had an amplification rate above 85% (for samples that were 

amplified in a minimum of 50% of the loci) and an error rate below 5%. Chosen loci 

showed no evidence of a consistently high frequency of null alleles or significant 

deviations from Hardy-Weinberg equilibrium or evidence of linkage disequilibrium 

across populations (after correction for multiple tests using the False Discovery Rate). 

Additionally all loci were not found to be under selection or sex-linked. See Chapter 5 

for summary statistics for each locus and population. 

 

Multiple paternity analysis 

 For 11 of the 12 litters a female adult that was present in the nest box was 

confirmed by our analyses to be the mother of all offspring in the litter. Additionally, 

for one litter a male present in the nest box was assigned as the father of all juveniles 

of that litter (Newton Abbott 2009 mother ID 15 father ID 14). Only one litter had no 

parent assigned to it. 

 The best maximum likelihood configuration data from COLONY indicate that 

six, (50 %), of the 12 analysed litters had more than one sire. For all but one litter a 

single female was confirmed as the mother to all juveniles, and therefore provides 

robust analysis. For the litter with no known maternal genotype, the analysis strongly 

suggests all offspring are half siblings, again indicating polyandry, although we cannot 

rule out the possibility that juveniles were from different mothers. All three re-runs 

were consistent, all providing the same familial configurations across the 12 analysed 

litters. Figure 1 shows the frequency of the number of inferred fathers per litter and 

table 2 summarises all COLONY output. 
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Table 1. Sample size summary for each site/year used in the COLONY analyses, 

whereby genotypes are classified into juveniles, adult males and adult females. The 

number of litters represents the number of known and predefined sibship groups, with 

three or more juveniles, within the samples. 

Site Year 
No. juvenile 

genotypes 

No. adult 

female 

genotypes 

No. adult 

male 

genotypes 

No. litters 

Haldon 2009 16 5 3 2 

 

2011 5 1 8 1 

Newton Abbott 2009 18 7 2 2 

 

2011 9 11 17 1 

Okehampton 2009 10 8 7 1 

Roadford 2010 8 1 0 1 

West Bodmin 2010 20 8 5 2 

 

2011 12 19 16 2 
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 Analysis of the sibship data concurs with the configuration results, where those 

litters with at least one half-sibling relationship, above the probability threshold of 

0.70, further confirms evidence of dormice multiple paternity in the same litters (table 

2).  Only one litter (West Bodmin, 2011, mother ID 468) had slightly differing 

conclusions from the two analytical approaches, where the configuration infers 

multiple paternity but the sibship data were inconclusive. As explained in the 

methodology section, configuration analysis is more robust and therefore we are more 

confident in the conclusion that this litter does have multiple paternity. 

 Of the four litters that demonstrated multiple paternity and had more than 

three juveniles sampled, three showed a skew in the number of offspring sired by the 

different males. In the non-biased litter, four different males were inferred as having 

sired the four juveniles. 

 The rate of multiple paternity of 50% in this study of dormouse litters in south 

west England was significantly lower, compared to the study by Md. Naim et al. (2011), 

which was conducted in Wales and found multiple paternity in 95% of the 20 litters 

they analysed (X2
1 = 6.45, p = 0.011).  

There was no significant difference in maternal weight between monandrous 

and polyandrous litters (t = -0.20, df = 7.8, p-value = 0.85). Finally there was no 

correlation between litter size and weight of the mother (F 1,10 =1.79, p-value = 0.21). 

However, as the sample sizes were small, it is likely our data may not have the power 

to detect such signals. 
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Figure 1. Frequency of number of fathers per litter across all populations and years, for the 13 litters sampled in Devon and Cornwall
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Table 2. Parentage results summary from COLONY analysis for each of the 12 litters. Maximum likelihood configuration: Mother ID = 

identification number of the female assigned to the litter, No. juveniles = number of juveniles found in the litter, No. fathers = number of 

males that sired the litter, Ratio = ratio of juveniles sired by the different fathers for that litter. Sibship probability: the percentage of full, 

half sibling relationships within in each litter where probability is above 0.7, for pairwise comparisons below 0.7 the relatedness was 

classified as uncertain. Multiple paternity? =presence/absence of evidence for multiple paternity for each analysis method. 

    
Maximum Likelihood Configuration Sibship Probability 

Site Year Mother ID 
No. 

juveniles 
No. 

fathers 
Ratio 

Multiple 
paternity? 

% full 
siblings 

% half 
siblings 

% uncertain 
sibship 

Multiple 
paternity? 

Haldon 2009 95 6 1 1 No 100 0 0 No 

 
2009 96 6 3 4:1:1 Yes 40 60 0 Yes 

 
2011 

No female 
in box 

4 4 1:1:1:1 Yes 0 100 0 Yes 

Newton 
Abbott 

2009 15 5 1 1 No 100 0 0 No 

 
2009 28 5 1 1 No 100 0 0 No 

 
2011 606 4 1 1 No 100 0 0 No 

Okehampton 2009 115 4 1 1 No 100 0 0 No 

Roadford 2010 59 8 2 5:3 Yes 14 54 32 Yes 

West Bodmin 2010 256 5 1 1 No 100 0 0 No 

 
2010 299 3 2 2:1 Yes 33 67 0 Yes 

 
2011 381 3 2 2:1 Yes 0 33 67 Yes 

 
2011 468 4 2 3:1 Yes 50 0 50 Inconclusive 
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Discussion 

 Our findings have revealed a moderate rate of multiple paternity, at 50% of the 

12 litters across sampled populations in the south west of England. This frequency of 

multiple paternity is substantially lower than the 95% previously reported for two 

hazel dormouse populations and 20 litters in north Wales (Md. Naim et al. 2011). 

Hence our findings concur more closely with the prediction that rates of multiple 

paternity will be related to testes size. However, our results do still indicate a 

frequency of multiple paternity that is above the mean across mammals, suggesting 

hazel dormice harbour life history traits that predispose the species to moderate to 

high levels of multiple paternity (Soulsbury 2010).  

For example, it has been demonstrated that female-female competition for 

suitable nesting territories results in a relatively lower proportion of hazel dormouse 

females within the breeding population (Juškaitis 2008). Such female territoriality may 

lead to aggregations of males at locations of receptive females, promoting promiscuity, 

as shown in edible dormice (Ściński & Borowski 2007) and the red squirrel (Lee 2001). 

Such a mating system would likely result in a high frequency of multiple paternity,  

Further studies on spatial organisation and mating systems are required to clarify the 

mating systems of hazel dormice and other arboreal mammals. 

 It is not possible to provide direct evidence for the cause of the discrepancy 

between the two studies. However, it is unlikely that a single multiple paternity rate 

will be applicable across a range of populations (Dean et al. 2006). Indeed, great 

variation in mating behaviour has been identified both amongst and within species, 

due to the complex interplay of ecological and evolutionary mechanisms that drive 

costs, benefits and constraints on reproductive behaviour (Petrie & Kempanaers 1998). 

Population density will affect mate encounter rates, which in turn determines the 

relative trade-offs between time searching for males versus any conferred benefits of 

polyandry to reproductive success (Dean et al. 2006, Uller & Olsson 2008). Female-

female competition may be prevalent if males or the resources they provide are 

limited, suppressing any benefits that may be realised through polyandry (Berglund et 

al. 1993). Genetic benefits are likely to be better realised, and hence multiple paternity 

higher, in populations where there is greater genetic variation between males (Petrie 
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& Kempanaers 1998), although if polyandry is employed to reduce inbreeding this may 

be the reverse (Brooker et al. 1990). Evolutionary arms-races driven by sexual 

selection, which arise due to the fact that the evolutionary interests of males and 

females vary, will also dictate the dynamics of mating systems. Polyandry may be 

countered, and hence benefits reduced, by male strategies such as mate guarding, 

repetitive copulation and sperm competition (Long & Montgomerie 2006, Storey et al. 

1995). 

 However, as methodology could not be fully controlled between the two 

studies and we do not have environmental variables to correlate with the rates of 

multiple paternity between the populations, it is not possible to be confident that the 

differences were due to variation between populations, rather than analyses. Variation 

in type and frequency of genotyping errors in either study, due to incorrect scoring, 

allelic dropout, false alleles and null alleles, would provide erroneous and therefore 

conflicting results. We did not use two loci that were utilised by Md. Naim et al. (2009), 

because they gave high rates of error (MavSB5), and allelic dropout (MavSF12). 

However, it should be noted that whilst they are the same loci, the primers were 

different and so this does not explicitly indicate any error by Md. Naim et al. (2009).  

 Whilst it is possible that our lower rate of multiple paternity may be explained 

by our analyses missing multiple paternity we feel this is unlikely. Insufficient 

informative polymorphic loci can lead to analyses failing to identify some sires, 

however we used 22 loci, compared to 10 by Md. Naim et al. (2011).  Secondly, if the 

entire litter is not sampled, for example if a juvenile leaves the nest box before its 

siblings, dies or escapes during monitoring, there is a possibility that multiple paternity 

will be missed. However, this is unlikely to be a serious bias across all the sampled 

litters, as the mean number of juveniles per litter was comparable between both the 

English (4.62 SD = 1.45) and Welsh studies (4.1 SD = 1.17) and for reported mean litter 

sizes from other monitoring studies (Juškaitis 2008).  

 Our findings highlight the need for further research, with larger samples sizes, 

to investigate variation in multiple paternity across populations, in relation to spatial 

and temporal environmental variables. Such parameters may include, but are not 

limited to, population density, habitat quality, genetic diversity, reproductive skew, 
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season and climate. The data would allow inferences to be made concerning the 

impact of environmental changes, driven by anthropogenic actions, on mating 

behaviour in wild populations and the ultimate consequences. For example, habitat 

loss and fragmentation has been associated with a decrease in rates of multiple 

paternity (Banks et al. 2005). Additionally, small populations may be subject to the 

Allee effect, whereby a negative population growth rate and eventual extinction may 

result following difficulties in locating a mate, increased inbreeding, genetic drift, and 

loss of integrity due to hybridisation (Stephens et al. 1999). Further, the effect of nest 

box provision on hazel dormouse mating systems warrants investigation. Boxes 

increase nesting resources in an area and have also been shown to increase population 

density (Morris et al. 1990). This is likely to have an effect on operative reproductive 

skew and competition levels amongst populations, which are likely to impact upon 

mating systems and the prevalence of polyandry and sperm competition (Emlen & 

Oring 1977). 

 In conclusion, we have shown that rates of multiple paternity, in the hazel 

dormouse, although high, are not as dramatically so, as indicated by the only previous 

study in this species. We recommend further study of multiple paternity in populations 

at the core and periphery of the hazel dormouse's range, and of behaviour and 

ecological mechanisms that drive levels of polyandry in this species. The investigation 

of mating systems in natural populations is vital in conservation planning, mitigation 

and for informing captive breeding programmes. 
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Chapter 7: Patterns of hibernation in the hazel dormouse:  

Intra-specific variation and the influence of diet 

 

Abstract 

Hibernation facilitates the survival of endothermic organisms during periods of reduced 

ambient temperature and food availability. The efficiency of hibernation behaviour is 

likely to determine rates of weight loss, reproductive success and mortality, and thus be 

a key driver of population dynamics. To test the hypothesis that hibernation behaviour 

is plastic in response to available diet quality, we studied 24 captive hazel dormice, 

Muscardinus avellanarius, under natural temperature and photoperiod fluctuations, 

with access to high or low calorie diets.   

All dormice exhibited several periods of arousal and feeding behaviour during winter 

months. We observed natural variation along a continuum in the mean length of torpor 

periods among individuals. Quite intuitively, relatively long-torpor dormice spent the 

majority of winter in hibernation, made few visits to food and were least likely to feed 

during visits. Critically, these dormice demonstrated no plasticity in response to diet. In 

contrast, relatively short-torpor dormice adjusted their behaviour according to diet, 

such that dormice on a high calorie diet spent less time in hibernation, had fewer bouts 

of torpor, visited food more often and were more likely to feed during foraging trips, 

than dormice offered low calorie diet. This plasticity is consistent with theory regarding 

the balancing of energy budgets, in response to current energy reserves and 

hibernation costs and benefits. Additionally, the expression of torpor increased with 

decreasing ambient temperature and day length.  

We discuss the implications of changes in winter climate and food availability for the 

behaviour and winter survival of hazel dormice, and propose that heterogeneity among 

individuals in hibernation behaviour could be maintained by fluctuations in ambient 

temperature, food abundance and food quality in nature.  
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Introduction 

Endotherms have evolved elevated metabolic rates and a high, constant body 

temperature, allowing the exploitation of thermally-variable habitats (Angilletta et al. 

2010, Ruben 1995). However, when increased thermoregulatory costs, associated with 

low ambient temperatures, coincide with diminished food availability, the 

endothermic strategy may become unsustainable (Geiser 2004, Heldmaier et al. 2004). 

Hence, amongst other strategies, many endothermic species dwelling in periodically 

cold environments have evolved heterothermy, that is torpor and hibernation 

behaviour, in order to balance energy budgets (Angilletta et al. 2010).  

 The precise distinction between torpor and hibernation is somewhat 

ambiguous. It is suggested that, rather than being discrete conditions, torpor and 

hibernation can be considered as degrees along a continuum, with short, shallow 

torpor and prolonged, deep hibernation at the opposite extremes (Feldhamer et al. 

2007).  

 A hibernator’s ability to balance its winter energy budget efficiently is critical to 

its overall fitness (Humphries et al. 2002). There are various environmental factors that 

may influence survival during hibernation periods, such as winter length and severity, 

hibernacula conditions and disturbance (Boyles & Brack 2009). Food availability will 

clearly affect body mass, the latter of which has been shown to be a predictor of 

hibernation survival (Schorr et al. 2009). Turbill et al. (2011) highlighted a positive 

correlation between hibernation and increased winter survival, most likely due to 

reduced predation risk. However, a key trade-off associated with slower life history is a 

reduction in annual reproductive output in comparison to non-hibernating species of 

similar body size. Additionally, body condition when emerging from hibernation 

influences an individual’s immediate survival and onset of breeding, which in turn 

determines fecundity and offspring survival (Bieber et al. 2012).  

 Many mammals that exhibit hibernation are of conservation concern, including 

several species of bats (Boyles et al. 2007, Turbill 2008), rodents (Bright et al. 1996, 

Lehmer & Biggins 2005), marsupials (Kortner & Geiser 1998) and primates (Schmid & 

Ganzhorn 2009). Given global, anthropogenic climate change and habitat 

fragmentation and degradation, it is important that we gain a better understanding of 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schmid%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ganzhorn%20JU%22%5BAuthor%5D
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links between diet quality, environment and behaviour in endangered hibernating 

mammals. 

 The hazel dormouse, M. avellanarius, a fat-storing hibernator, is listed on 

Appendix III of the Bern Convention and Annex IV of the EU Habitats and Species 

Directive, having declined in many parts of its northern range (Amori et al. 2008). Hazel 

dormice are particularly sensitive to temporal and spatial variation in food availability 

and their reliance on high quality, arboreal food requires them to hibernate during the 

winter (Bright et al. 1996). However, very little is known about the cues and 

constraints associated with torpor and hibernation in hazel dormice. Here, we consider 

three critical gaps in our understanding, as outlined below.  

 First, we know little about natural, intra-specific variation in hibernation 

behaviour patterns, such as length of hibernation bouts, in hazel dormice (but see 

Vogel & Frey 1995). Research has highlighted the prevalence of periodic arousals in 

hibernators, contravening the assumption that they ‘sleep through’ the winter (Lyman 

& Chatfield 1955, Twente & Twente 1965). The function of these periodic arousals 

remains undetermined, however explanations include excretion of accumulated 

metabolites (Geiser & Kenagy 1988), relief from oxidative stress (Carey et al. 2000), 

sleep deprivation avoidance (Daan et al. 1991, Trachsel et al. 1991), neural structure 

recovery (Larkin & Heller 1999), evaporative water loss replacement (Thomas & Geiser 

1997) and the initiation of immune responses (Prendergast et al. 2002). Intra-specific 

variation in arousal patterns has been identified in various species, including the 

arousal and feeding frequency in Japanese dormice, Glirulus japonicus, (Otsu & Kimura 

1993) and length of hibernation period and inter-bout arousals in Marmota monax at 

varying latitudes (Zervanos et al. 2010). This plasticity suggests hibernators optimise 

torpor patterns, making trade-offs between the potential benefits and costs of 

hibernation. Hibernation is ecologically and physiologically costly and so theoretically 

should be avoided when energetically possible (Humphries et al. 2003b). However, 

periodic arousals are energetically expensive and responsible for the majority of 

energy use during winter (Karpovich et al. 2009). Trade-offs, therefore, are likely to 

have an important impact on winter survival and so is worthy of investigation in 

species of conservation concern such as the hazel dormouse. As such, we explore the 

variation in mean length of bouts of torpor between individual dormice over the study 
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period, and describe such patterns along a continuum from relatively short to long 

torpor bouts. 

 Second, we hypothesise that the availability and quality of winter food sources 

will influence the expression of torpor, but also that this could be mediated by 

underlying behavioural variation among individuals. Energetic models predict that if a 

hibernator has sufficient energy stores prior to hibernation or if sufficient food is 

available during the winter period, the animal should forego torpor expression 

(Humphries et al. 2003b). Reduced torpor in hibernators provided with excess food has 

been documented (French 2000, Humphries et al. 2003a, Munro et al. 2005, Pavey et 

al. 2009). However, plasticity has generally been identified in food-storing hibernators, 

rather than fat-storers such as hazel dormice (but see Otsu & Kimura 1993, Pulawa & 

Florant 2000). Due to physical limitations, the latter are likely to be more energetically 

constrained and so less able to demonstrate behavioural plasticity (French 2000, 

Humphries et al. 2003b). We aim to use an experimental approach to infer the effects 

of winter food availability on hazel dormouse hibernation patterns. 

 Third, there is some debate regarding the supposition that torpor is induced by, 

and will lengthen and deepen in response to, decreasing ambient temperatures. 

During hibernation periods body temperature closely follows ambient temperature 

(Geiser 2004) and increased body temperature should correlate with decreased torpor 

expression and increased metabolic rate (Geiser & Kenagy 1988). An inverse 

relationship between ambient temperature and torpor expression has been identified 

in many hibernating species, including ground squirrels (Spermophilus spp.) and tree-

roosting bats (Geiser & Kenagy 1988; Turbill 2008, Twente & Twente 1965) but the 

correlation was found to be weak in chipmunks (Eutamias spp.;  Kenagy 1981) and 

non-existent in Japanese dormice (Otsu & Kimura 1993). Therefore, we aim to 

determine how the hibernation behaviour of our species of interest, the hazel 

dormouse, is affected by ambient temperature and day length in comparison to other 

species. 
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Methods 

We studied the hibernation behaviour of 24 captive dormice (males n=9 and 

females n=15) at Paignton Zoo Environmental Park, Devon, UK. The dormice were 

individually housed in metre-cubed cages, located in an outside area exposed to 

natural light and environmental conditions, but protected from precipitation and away 

from public access. Inside each cage the dormice were provided with a wooden nest 

box, bedding and branches for environmental enrichment.  

 Dormice were randomly divided into two treatment groups, low (n=12) and 

high (n=12) calorie diet throughout the hibernation study period. High calorie diet 

consisted of a mix of seeds, corn, dog biscuits, egg, crushed insects, fruit and carrot, 

whilst for lower calorie diet seeds, corn and fruit were omitted. Food and water were 

provided ad libitum. Dormouse cage number, diet, sex and pre-study weight were 

recorded. From an inspection of the food bowl, keepers kept a daily log of feeding 

behaviour of each dormouse for the preceding night. Due to time constraints, it was 

not possible to weigh the food each morning and so three behaviour categories were 

used; no evidence of feeding, evidence of disturbing food but not feeding, and definite 

evidence of feeding.  

 Dormouse hibernation behaviour was inferred by recording nest temperature 

over part of the winter hibernation period; 15th October 2008 to 21st January 2009. A 

temperature probe fixed to a data logger (ThermaData logger TD2F, Electronic 

Temperature Instruments, UK) was inserted through the side of each nest box and into 

the dormouse’s nest chamber. Cables were protected from gnawing by copper piping. 

Data loggers positioned outside the cages recorded nest chamber temperature every 

15 minutes. Data were downloaded approximately every 20 days, before logger 

memory was exceeded. The logger’s position outside the cage allowed easy access 

without causing any disturbance to the dormice. Throughout the study period ambient 

temperature in the enclosure area was also recorded with an environmental data 

logger (ThermaData logger HTB, Electronic Temperature Instruments, UK) in order to 

compare nest and ambient temperatures.  

 Nest temperatures close to ambient suggested the dormouse was absent from 

the box or in a thermo-conforming, torpid state. Nest temperatures above ambient 
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indicated the animal was present in the box but homeothermic and therefore not in 

torpor. Hibernation behaviour was measured as a bout, which was a continuous period 

of time, measured in hours, where nest temperature was stable and close to ambient, 

indicating the animal was in thermo-conforming. A bout was terminated when nest 

temperature rapidly increased, due to the animal arousing from torpor, increasing it’s 

metabolism and body temperature and consequently increasing nest chamber 

temperature. Hibernation bouts were inferred only when nest temperature equalled 

ambient temperature for 20 hours or more.  Whilst shorter periods of cool nest 

temperature may have been due to the animal thermo-conforming, a distinction 

between hibernation and absence from the nest box was necessary. It was deemed 

unlikely that dormice would be out of the nest for longer than 20 hours, as during this 

study the longest night was 17 hours. Dormice are nocturnal and during active periods 

have been found to start activity just after sunset and return to nests before sunrise 

(Bright et al. 1996).  

In five boxes, temperature logger data suggested no significant increase in 

temperature above ambient for the entire hibernation period, despite other evidence 

of dormouse activity in these boxes. This is most likely due to the temperature probes 

not being close enough to the resting chamber within the nest. Therefore, these data 

were rejected and nest temperature data sample sizes were reduced (low diet n=10 

and high calorie diet n= 9). 

 Validation of nest temperature as an accurate method to infer hibernation 

behaviour was carried out using four activity tubes. These comprised a plastic tube 

with a floor switch at the entrance of each dormouse nest box. When the animal 

walked through the tube, the floor pushed down on a switch connected to a data 

logger (Hobo U11 3-state/1-event data logger, Onset, USA), which recorded the time 

of each passage through the tube. The data from the activity tubes were visually 

compared to the data for the corresponding animal’s nest temperature and feeding 

behaviour logs. Long periods (>20 hours) of match between nest and ambient 

temperature, followed by an increase in nest temperature, were consistently followed 

by triggering of the activity tube, and commonly followed by food disturbance events. 

This justified confidence in the use of the nest temperature loggers to infer dormouse 
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hibernation behaviour. See Supplementary Table S1 for a summary of the raw data of 

inferred hibernation behaviour. 

 

 Hibernation behaviour data were analysed using generalised linear models (see 

Crawley 2008) in R version 2.10.0 (R Foundation for Statistical Computing 2010). These 

models allow for response variables that have a non-normal distribution, through the 

use of a link function. Such analyses were used to compare hibernation bout lengths 

(length of a bout measured in hours) among individuals that demonstrated true 

hibernation during the survey period. The effects of diet, sex and initial weight on 

mean hibernation bout length across the entire study period were investigated using a 

Gaussian error structure. The influence of sex, initial weight, diet and hibernation bout 

length (including two-way interactions) on the proportion of time spent in hibernation 

(i.e. total bout length as a proportion of the total study period) were modelled using 

quasibinomial error structure to account for overdispersed proportion data. Models 

relating the number of hibernation bouts throughout the study period, and the total 

number of visits to food (i.e. frequency of daily records across total study period where 

food was disturbed and/or eaten by animal) , to mean hibernation bout length and 

diet treatment, used quasipoisson error structures to account for over dispersed count 

data. The effect of diet and mean hibernation bout length on the proportion of visits 

where food was eaten, was investigated using a quasibinomial error structure. The 

relative influence of date, mean daily temperature and mean day length on the length 

of hibernation bouts through time was analysed using a linear mixed-effects model 

with Gaussian error structure, using dormouse identity as a random effect. A binomial 

GLM was used to assess the influence of date, day length and ambient temperature on 

the probability of dormice being in hibernation, through time.  

 

Ethical Note 

 The animals were kept by Paignton Zoo as part of a conservation reintroduction 

scheme, licenced by Natural England and at all times acting within the laws of the UK 

and abiding by all ethical policies of the British and Irish Association of Zoos and 

Aquariums, the European Association of Zoos and Aquaria and the World Association 
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of Zoos and Aquaria.  All installation of research equipment took place during normal 

husbandry practices, to ensure no additional disturbance to the animals occurred.  

Diets were carefully designed to ensure they were sufficient to prevent any nutritional 

deficiencies and not cause starvation, but still allow a comparison of food quality. 

Whilst less accurate than sub-dermal body temperature loggers, temperature probes 

in the nest chambers were significantly less invasive and so deemed more appropriate 

for this protected species. 

 

Results 

 Dormice demonstrated highly significant intra-specific variation in mean 

duration of each period of torpor (F 17,570 = 3.14, P = 0.001). This variation was not 

influenced by the main effects of diet, sex or initial weight (mean torpor period: sex, F 

1,15 = 0.18, P = 0.68; weight, F 1,15 = 0.40, P = 0.54; diet, F 1,15 = 0.87, P = 0.37; 

proportion of time during survey spent hibernating: sex, F 1,15 <0.001, P = 0.98; weight, 

F 1,15 = 0.11, P = 0.75; diet, F 1,15 = 0.95, P = 0.34). Hereafter we classify dormice along a 

continuum of mean torpor period, ranging from ‘short torpor’ to ‘long torpor’. As 

would be expected, the proportion of time spent in hibernation increased with 

increasing mean torpor period. However the slope of the relationship between mean 

torpor period and proportion of time spent in hibernation was different between diets 

(interaction between mean torpor period and diet, F 1,15 = 8.22, P = 0.01, figure 1). The 

net result of this interaction was that dormice with short torpor spent a reduced 

proportion of their time in hibernation when fed higher quality diet, compared to 

those fed low quality diet (comparison of predicted values at mean torpor period 

25hrs, F 1,15 = 7.68, P = 0.01). Dormice with long torpor did not differ in proportion of 

time spent hibernating between diet treatments (comparison of fitted values at mean 

torpor period 100hrs, F 1,15 = 4.41, P = 0.05).  
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Figure 1. Proportion of total time spent in hibernation, throughout experiment for 

dormice on high (solid points and line) and low (open points and dashed line) quality 

diet treatments, showing variation in individual mean hibernation bout length in hours. 

Sigmoid fitted lines emerge from back-transformation from the logit link used to 

analyse binomial GLM.
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 Dormice from different diet treatments exhibited contrasting relationships 

between number of hibernation bouts and mean torpor period (interaction between 

diet and mean torpor period, F 1,15 = 6.95, P = 0.02, figure 2). Dormice on high calorie 

diets decreased the total number of hibernation bouts with decreasing mean torpor 

period (test of slope > 0, t8 = 2.76, P = 0.01, figure 2). Those dormice on low calorie 

diets showed no relationship between the total number of bouts and mean torpor 

period (test of slope < 0, t9 = 0.83, P = 0.42, figure. 2). Hence the relationships between 

number of bouts and mean torpor period converged: dormice with short torpor 

entered hibernation more often when fed low, compared to high, quality diet 

(comparison of fitted values at mean torpor period 25hrs, F 1,15 = 9.45, P = 0.01), but 

diet did not influence the number of hibernation bouts of dormice with long torpor 

(comparison of fitted values at mean torpor period 100hrs, F 1,15 = 1.14, P = 0.30). 

 The food disturbance records demonstrated that dormice given a high calorie 

diet exhibited foraging behaviour on a significantly higher mean number of days than 

dormice on a low calorie diet throughout the experimental period (F 1,16 = 8.74, P = 

0.01, Fig. 3). The total number of visits to food decreased with increasing mean torpor 

period of each dormouse (F 1,16 = 36.94, P < 0.01, figure 3). The slopes of this 

relationship for high and low quality diets are equivalent on a log scale (test of 

interaction, F 1,15 = 2.75, P = 0.12) 

 When fed high quality diet, dormice with short torpor were highly likely to feed 

during food exploration visits, but this probability declined steeply with increasing 

mean torpor period (figure. 4). Dormice on low quality diet showed no such 

relationship between probability of feeding and mean torpor period (difference in 

slopes shown by interaction between mean torpor period and diet, F 1,15 = 13.63, P = 

0.002; test of slope < 0 for low quality diet, t9 = 0.76, P = 0.46). Overall, the 

relationships on the two diets converged such that dormice with short torpor were 

more likely to eat high, compared to low, quality diet (comparison of fitted values at 

mean torpor period 25hrs, F 1,15 = 52.55, P < 0.001), while dormice with long torpor fed 

on the two diet types with equal probability (comparison of fitted values at mean 

torpor period 100hrs, F 1,15 = 2.90, P = 0.11). 
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Figure 2. Number of hibernation bouts for dormice in high (solid points and line) and 

low (open points and dashed line) quality diet treatments, showing variation in 

individual mean hibernation bouts lengths. 
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Figure 3. Total number of days dormice showed evidence of activity, through-out 

experiment for dormice on high (solid points and line) and low (open  points and 

dashed line) quality diet treatments, showing variation in individual mean hibernation 

bout length in hours. 
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Figure 4. Proportion of visits to food where food was eaten, through-out experiment 

for dormice on high (solid points and line) and low (open points and dashed line) 

quality diet treatments, plotted against individual mean hibernation bout length in 

hours. 
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The length of hibernation bouts changed during the hibernation season. Mixed model 

regression and model simplification identified that this change appeared to be driven 

by an interaction between mean ambient temperature and mean day length (χ2
1 

=102.98 , P < 0.001, figure 5), with no extra contribution of date (χ2
1 =0.20, P = 0.66).  

 Additionally, the hibernation season was summarised into three-day intervals, 

and the number of dormice that were in hibernation at least once in each interval, 

were counted. The probability of the dormice being in hibernation declined with 

increasing ambient temperatures (χ2
1 =11.91, P < 0.001) and was not further 

influenced by date (χ2
1 = 0.54, P =0.47) or mean day length (χ2

1 = 0.1, P =0.75). 

A summary of the raw data of inferred hibernation behaviour of 19 hazel 

dormice, through logging of nest chamber temperature throughout the winter study 

period is given in Supplementary Table S1. Plots testing the model assumptions of 

homoscedasticity and normal error structure, after implementation of the link 

function, are shown in Supplementary Table S2. 
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Figure 5. Three-dimensional plot showing the interaction between mean ambient 

temperature (degrees C) and mean day length (hours) on the length of the hibernation 

bout, for an ‘average’ dormouse. The missing data along the surface edges are due to 

limiting the temperature/day length to within where these measurements lay. 
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Discussion 

 We studied the intra-specific variation in hibernation patterns and the 

influence of diet quality, ambient temperature and day length on the hibernation 

behaviour of M. avellanarius. 

 Our results demonstrate variation in hibernation behaviour among individual 

hazel dormice, despite sharing similar environmental conditions. The proximate cause 

of the observed plasticity was not determined despite investigating the effect of diet, 

sex and weight. However, physiology, heritable traits or early life experience may be 

possible explanations for the observed intra-specific variation. A shortage of 

polyunsaturated fatty acids reduces torpor expression in other hibernating species 

(Frank 1992, Gesier & Kenagy 1987). Whilst this is unlikely to be the main mechanism 

driving variation in hibernation behaviour in our study, as all dormice were provided 

with the same diet prior to the manipulations, it exemplifies how underlying factors 

such as physiological condition prior to the hibernation period may be important. 

 Whatever factor pre-determined each dormouse’s propensity to engage in long 

or short periods of torpor, its outcome shaped the subsequent relationship between 

hibernation behaviour and diet quality. The proportion of time spent in hibernation 

was not influenced by diet quality, sex or initial weight per se. Instead, the influence of 

diet was only revealed when its effect was mediated by each dormouse’s position 

along the mean torpor period continuum.  Long-torpor dormice spent a greater 

proportion of their time being torpid, but did not adjust the amount or frequency of 

torpor in response to diet quality. However, short-torpor dormice engaged in fewer 

bouts of torpor, and hence spent a lower proportion of their time in torpor when high 

quality diet was available. The plasticity in short-torpor dormice is consistent with the 

theory that hibernators should optimise torpor expression based on trade-offs 

between hibernation costs and benefits (Humphries et al. 2003b). The direct link to 

diet quality was evidenced by these dormice exploring high quality food more often, 

being more likely to consume high quality food, and adjusting their torpor patterns 

accordingly. This concurs with studies on other hibernating species, where higher 

energy diets reduce the need for hibernation (Humphries et al. 2003a, Munro et al. 
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2005, Pavey et al. 2009).These links between mean torpor length and the adjustment 

of hibernation behaviour in response to diet quality yield three important questions.  

 First, why did long-torpor dormice not adjust their behaviour according to diet? 

The simplest explanation might be that individuals that spend most of their time in a 

torpid state are time constrained and therefore simply unable to respond 

behaviourally to dietary cues. Alternatively, unresponsiveness may be due to a lack of 

appetite during hibernation. Garden dormice, Eliomys quercinus, lose their appetite 

prior to the hibernation period (Montoya et al. 1979). This may be explained by gut 

atrophy (Carey et al. 2003), which improves energy conservation, but is energetically 

costly and it is slow to resume digestion (Hume et al. 2002, Humphries et al. 2003b). 

Relatively more energetically constrained individuals risk wasting valuable energy for 

digestion if food supply is unpredictable. Long-torpor dormice may leave their 

hibernacula to excrete waste products and replace water due to evaporative loss 

(Thomas & Geiser 1997), but not to forage.  

 Second, what are the implications of variation in diet quality for short-torpor 

dormice? When higher levels of food are available, short torpor dormice are able to 

adjust their behaviour by reducing the number of hibernation bouts, and consequently 

lessen hibernation costs. Therefore, when food availability is relatively high during the 

winter, short torpor dormice may benefit from increased winter survival. However, 

they may simultaneously suffer from higher predation risk. In contrast, we suggest that 

short-torpor dormice may suffer a relatively higher risk of winter mortality when food 

is scarce or of poor quality. This is a key avenue for future research and will be driven 

by the ultimate cause(s) that govern an individual’s trade-offs between hibernation 

and foraging costs and benefits. 

 Third, could the costs and benefits of long and short torpor, combined with 

natural unpredictability of food availability and quality, actually maintain variation in 

torpor duration? While we are unable to ascribe the observed variation in torpor 

duration to genetic, developmental, physiological or environmental causes, it remains 

possible that behavioural heterogeneity among hibernators could be maintained by a 

behaviour-by-environment interaction. When food is scarce or poor, long-torpor 

individuals may have the highest rates of winter survival. When food is abundant or of 
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high quality, relative survival may be highest among individuals that arouse regularly to 

feed. Spatial or temporal fluctuations in food distribution could then create a mosaic in 

which the expected fitness of long- or short-torpor strategies is equalised. This 

hypothesis is speculative, but deserves testing in natural populations of hibernators, 

particularly dormice.  

 The finding that increased ambient temperature negatively influences 

dormouse torpor expression agrees with findings for other hibernating species (Geiser 

& Kenagy 1988; Turbill 2008). Various attempts have been made to explain these 

findings and can be categorised into temperature-dependent metabolic, chemical, 

neural and physical explanations (Thomas & Geiser 1997). Day length has also been 

demonstrated to influence hibernation behaviour, with longer photoperiods 

decreasing the expression of torpor (Kenagy 1981). Whilst hibernation is controlled to 

some extent by endogenous circannual rhythms, the additional effect of day length 

suggests this cue is used to synchronise the internal rhythm (Kenagy 1981). Among the 

dormice studied here, torpor expression increased with a combined decrease in 

temperature and day length, but relatively high values of either day length or 

temperature caused individuals to reduce the period of torpor. The probability of 

being in a torpid state increased only with decreasing ambient temperature.  

 Our results provide key insights into the plasticity and constraints associated 

with hibernation, in a species of conservation concern and yield predictions of 

hibernation success in wild dormouse populations. That the climate is warming rapidly 

(IPCC 2007) is likely to have implications for dormouse over-wintering survival. Inter-

annual variation in abundance of wild populations of dormouse in the UK indicates 

that cold, dry winters are correlated with higher dormouse abundance the following 

summer, suggesting warmer winter temperatures decrease dormouse winter survival 

(Sanderson 2004). Our findings provide an explanation for this: increasing ambient 

winter temperatures result in a higher frequency of periodic arousals that would in 

turn increase individual energy requirements (Thomas et al. 1990). Such costs could be 

mediated by the greater availability of winter food, however, this will only be the case 

if the phenology of dormouse food sources keep pace with climatic change. Otherwise, 

warm ambient temperatures combined with scarce or low quality food could be 

extremely detrimental to the over-wintering survival of dormice. We recommend 
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further research into the frequency and duration of torpor, in relation to temperature 

and food, in wild dormouse populations.  
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Supplementary Table S1.  Summary of raw data of inferred hibernation behaviour of 19 hazel dormice, through logging of nest chamber temperature 

throughout the winter study period. Individuals were randomly allocated to a low or high quality diet and weighed prior to the start of monitoring. Time thermo-

conforming indicates total time across study period individual dormice demonstrated bouts of 20 hours or longer, where nest chamber temperature was close to 

ambient, therefore inferred to be exhibiting hibernation behaviour. Time thermo-regulating is defined as total time monitored during study period less the time 

each individual was thermo-conforming, indicating periods where dormice had aroused from hibernation. The number of torpor bouts (time periods where nest 

temperature is close to ambient temperature for a minimum of 20 hours) and mean bout length across the study period is also shown. The daily food log data 

provides counts for the number of nights when provided food was a) disturbed (but no evidence of eaten) and b) eaten. 

ID Sex Diet Weight Time thermoconforming (hours) Time thermoregulating (hours) Number of torpor bouts Mean bout length 
Daily food log 

Disturbed food Ate food 

c1 F High 31 2243 139.5 22 407.82 5 1 

c11 F Low 21 1835.75 546.75 38 193.24 9 5 

c13 F High 29 1240.5 1142 27 183.78 6 45 

c2 M Low 36 1424.5 958 20 284.90 7 12 

c21 M Low 26 1660 722.5 16 415.00 8 20 

c22 F Low 24 509 1873.5 20 101.80 11 38 

c24 M High 25 717.25 1665.25 13 220.69 7 56 

c25 M High 30 2237 145.5 25 357.92 11 5 

c27 F High 27 1369.25 1013.25 23 238.13 4 44 

c28 F Low 27 1801.5 581 24 300.25 3 10 

c29 M High 28 190.25 2192.25 7 108.71 2 89 

c3 M High 32 1729.25 653.25 25 288.21 3 16 

c30 M Low 29 2079.25 303.25 27 308.04 4 2 

c4 F High 30 25.5 2357 1 102.00 1 90 

c5 F Low 29 1261.5 1121 25 201.84 13 5 

c6 F Low 26 2106.75 275.75 21 401.29 4 3 

c7 F High 26 2332.75 49.75 28 333.25 1 3 

c8 Low  28 2222.25 160.25 28 317.46 9 2 

c9 Low  27 1913.25 469.25 22 347.86 6 4 
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Supplementary Table S2. Plots testing the model assumptions of homoscedasticity 

(residuals vs fitted) and normal error structure (normal Q-Q), after implementation of 

the link function, corresponding to figures 1-4. 
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Chapter 8: General discussion 

This thesis has focussed on various aspects of the ecology and conservation of 

the hazel dormouse, Muscardinus avellanarius. Whilst single-species conservation may 

be limited, there are several important justifications for the interest in conserving 

hazel dormice and hence the work outlined within this thesis. Although dormice do not 

have a direct resource use, they provide many members of the public with the rare 

opportunity to interact with wild mammals through involvement in nest box surveys 

(Bright et al. 2006). It may be argued that this is an unnatural situation, reserved for 

the licensed few, however this point of view undervalues the impact such experiences 

have and how it influences attitudes towards nature (Guiney & Oberhauser 2009). 

Additionally, volunteers make important contributions to a long-term monitoring 

programme. Less hands-on, dormice are an endearing species that are often in the 

public eye through various forms of the media, and so the value of knowing the species 

exists should not be dismissed (Macguire & Justus 2008, Morris 2003). As such an 

iconic British mammal, they are also an important flagship species, fostering a general 

interest in nature conservation in human society (Caro & O’Doherty 1999).  

Mitigation undertaken for dormice, such as habitat connectivity through 

hedgerow management and restoration, is likely to have positive effects on a range of 

other species and so promote persistence of biodiversity and ecosystem services 

(Morris 2003). Hazel dormice are scientifically interesting, due to their general ecology 

and life history which contrasts starkly to other small rodents. As dormice are sensitive 

to habitat fragmentation, they are important model species and hence may provide 

insights into landscape effects (Mortelliti et al. 2009). It is unknown to what extent, if 

at all, hazel dormice may contribute to ecosystem functioning. However, dormice have 

been suggested as a bioindicator species, in that their presence indicates a biologically 

diverse woodland (Morris 2003). There is also, the ethical consideration that dormice 

have an intrinsic right to existence. This, however, is being threatened by human 

action through increased conversion of natural habitat to agriculture, urbanisation and 

roads and therefore as the dominant species we have a responsibility to ensure our 

actions do not cause extinctions (Ehrlich & Ehrlich 1992).   

 

http://www.springerlink.com/content/?Author=Alessio+Mortelliti
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Summary of thesis 

In Chapter 2 alternative survey techniques, namely camera traps and footprint 

tracking, for detecting hazel dormouse presence were piloted. The results 

demonstrated that dormice and other small mammals would visit baited monitoring 

stations, which is vital if dormice are to be detected using these techniques. In 

addition, both methods successfully recorded the presence of small, arboreal 

mammals and the records were of sufficient quality to allow discrimination between 

hazel dormice and another sympatric species, the wood mouse Apodemus sylvaticus. A 

comparison between the camera trap and footprint tracking results showed that there 

was moderate to substantial agreement between the two survey methods, indicating 

their robustness. Feeding remains surveys, comprising hazel nut searches, are much 

less time dependant, but unlike camera trap and footprint tracking techniques, are 

only possible where hazel is present.  

In Chapter 3, a simple algorithm based on Linear Discriminant Analysis (LDA) 

was developed for the objective species identification of small mammal footprints, as 

collected by the footprint tracking methodology outlined in Chapter 2. Analysis 

demonstrated that, through the use of several morphometric measures of footprints, 

it was possible to distinguish between footprints from hazel dormice and wood mice. 

The piloting of the algorithm by volunteers with no experience of footprint tracking 

allowed further refinement of the methodology. The final algorithm demonstrated 

that the volunteers were, with 95% confidence, able to correctly identify 94% of 

footprints that were sufficiently clear to allow an attempt at species identification. The 

LDA algorithm performance was compared to the results from manual identification by 

an ecologist familiar with small mammal footprint identification. Although the LDA 

algorithm was more conservative, where identification was attempted by eye and over 

95% confidence was given by the LDA algorithm, agreement was 99%. Therefore, the 

algorithm provides an objective, accurate and precise technique for the discrimination 

between hazel dormouse and wood mouse footprints.  

In chapter 4 the isolation and characterisation of new hazel dormouse 

microsatellite loci are described. Twenty-one markers were found to conform to the 

assumptions of the Hardy-Weinberg equilibrium and linkage disequilibrium, as well as 
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display an estimated null allele frequency <0.20, rendering them suitable for many 

molecular ecology applications. In addition, primers were redesigned from 

microsatellite loci that were reported in a previous primer notes publication by Md. 

Naim et al. (2009). The reasons for this was two-fold, firstly errors were identified in 

four of the ten reported primer sequences, which led to these markers failing to 

amplify, and secondly all primers were designed to be within a similar melting 

temperature range, which would provide more flexibility when multiplexing PCRs. 

In chapter 5, the investigation of population genetics in hazel dormice in 

southwest England is presented. Here, significant genetic differentiation and 

structuring was identified, supporting the assumption that gene flow between 

populations of dormice is limited, due to their low dispersal ability, reproductive 

potential and population densities, as well as habitat specialism (Bright 1993, Bright & 

Morris 1996). Across the southwest region there was significant variation in genetic 

diversity. The two regions (as defined by population clustering analysis) further west, 

that are in Cornwall, show significantly lower levels of genetic diversity, compared to 

populations within the Devon/Somerset region. The cause of this is probably due to a 

combination of mechanisms, namely; edge-of-range effects, whereby isolated 

populations on the periphery tend to be smaller and so subject to genetic drift and 

inbreeding (Brown 1984, Lawton 1993, Vucetich & Waite 2003,); dispersal barriers due 

to the river Tamar and large areas of unsuitable dormouse habitat, such as Bodmin 

Moor (Slatkin 1987); and historical effects such as colonisation patterns creating a 

wave of founder events, reducing genetic diversity along the colonisation route 

(Hewitt 1999). 

In Chapter 6 microsatellite genotype data was utilised in order to infer the rate 

of multiple paternity in litters sampled in southwest England through the investigation 

of relatedness of siblings. The results indicated a rate of multiple paternity significantly 

lower compared to a previous study conducted in Wales (Md. Naim et al. 2011). The 

reason for these contrasting results may be due to variation in ecological and 

evolutionary mechanisms in the different populations. For example, population 

densities may affect mate encounter rate and competition levels (Dean et al. 2006, 

Uller & Olsson 2008). 
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 It is in Chapter 7, that an investigation of the effect of variation in diet quality 

and temperature on captive hazel dormice is described. The results indicated clear 

intra-specific variation in the propensity to hibernate, the underlying cause of which 

was undetermined and requires further research. However, this variation was an 

important consideration in how dormice responded to diet quality. Animals with long 

torpor bouts during the hibernation period did not significantly adjust their 

hibernation behaviour in response to the food provided. However, for animals that 

had relatively shorter torpor bouts, there was evidence that diet quality did influence 

their hibernation patterns. Specifically, if these dormice were given a relatively higher 

quality diet, they increased the time they spent out of torpor, whilst this was not the 

case for individuals that were provided with lower quality diet 

 

Aims, objectives and conservation implications 

 It is anticipated that the findings outlined in this thesis will contribute to the 

monitoring and conservation planning that aim to protect the hazel dormouse. 

Furthermore, it is hoped that much of this research will have a broader relevance to 

biological knowledge and understanding, which will have relevance to broader 

conservation science. The work outlined in this thesis has significantly fulfilled the aims 

and objectives, as set out in the introduction and as such are briefly outlined below: 

 

 Carry out a pilot study to investigate the effectiveness of alternative techniques 

to determine the presence of hazel dormice.  

Whilst these techniques are not new per se, both have rarely been used in this 

context and therefore are currently not meeting their full potential. Both methods 

were successfully implemented and therefore we demonstrated their use as rapid, 

non-invasive and objective hazel dormouse survey techniques, suitable for a range of 

habitat types. The survey effort for these two methods can be measured in weeks, 

compared to existing nest box and nest tube survey methods that can extend over 

many months (Bright et al. 2006), although the former is more intensive. These more 

rapid tools are urgently required, as dormice presence may be missed if surveys are 

rushed, or development projects may be overly delayed whilst dormouse surveys are 
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underway. Increasingly, dormice are being found in non-typical habitats (Bright et al. 

2006, Juškaitis 2008), and therefore less habitat dependant survey techniques are also 

required if these alternative habitats are to be monitored. The failure to detect hazel 

dormice at a site earmarked for development will lead to insufficient mitigation for the 

species, and hence potentially population loss. Developers may be frustrated and 

suffer economically if required to wait for long periods of time for survey results, 

increasing human-wildlife conflict. More broadly, both techniques are clearly not 

restricted to hazel dormice and it is hoped that they will be applied to ecological and 

conservation projects focusing on other small and/or arboreal species. The simple 

protocol followed to produce the LDA algorithm could be adapted for use in any 

community of animals, and therefore this study may be of interest to any ecologists 

investigating survey techniques. That small, nocturnal, arboreal mammals are amongst 

the most elusive of species demonstrates that the adoption of such techniques would 

be highly advantageous for use in these ecological niches.  

 

 Develop a suite of hazel dormouse microsatellite markers for use in molecular 

ecology analyses 

The novel hazel dormouse microsatellite markers we developed were essential for use 

in molecular analyses in Chapters 5 and 6, on population genetics and parentage 

respectively. The redesigning of incorrectly reported sequences will hopefully also help 

to avoid future researchers spending time trialling erroneous primers.  The loci 

sequences and primers have been submitted to GenBank, a publically available genetic 

sequences database, and as such can be freely accessed by the research community 

for use in further molecular ecology studies on hazel dormice, and potentially other 

members of the Gliridae. Genetics has an important role to play in conservation, such 

as through the detection of populations that are genetically distinct or inbred, 

informing reintroduction programmes, and facilitating research that investigates 

ecology, evolution and behaviour of animals of conservation concern in order to better 

implement conservation actions (Frankham et al. 2002, Haig 1998).   
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 Describe patterns of population genetics of hazel dormice at a regional scale.  

As far as we are aware, this thesis is the first description of patterns of population 

genetics of hazel dormice at a regional scale (Chapter 5). Cornish populations, on the 

edge of the hazel dormouse range, as hypothesised, demonstrated lower genetic 

diversity and higher genetic differentiation compared to those found in the core range, 

in Devon. The identification of this pattern of genetic diversity and differentiation has 

important implications for hazel dormouse conservation in the south west UK. In order 

to preserve the assumed Cornish hazel dormouse genetic distinctiveness, it would not 

be advisable to connect these to Devon populations on a large landscape scale, or to 

reintroduce individuals from outside Cornwall. Rather, within Cornwall, land managers 

would be advised to connect small woodland patches and conduct appropriate habitat 

management for this species, in order to ensure persistence of Cornish dormouse 

populations, and facilitate the recolonisation of woodland patches that currently do 

not have dormice present. 

 

 Quantify the rate of multiple paternity in litters sampled in southwest England 

and compare results to published data. 

The incongruence in frequency of multiple paternity between the previous study (Md. 

Naim et al. 2011), and the results in this thesis are important, as they highlight either 

an error in one of the studies, or an ecologically interesting variation in mating 

systems; either of which deserves further study. Rate of multiple paternity is a key 

parameter for consideration in species that exist in small populations, as it may 

influence effective population size, which in turn will influence genetic drift and 

inbreeding (Anthony & Blumstein 2000, Sugg & Chesser 1994). Natural behaviour 

should also be considered in captive breeding and reintroduction programmes (Md. 

Naim et al. 2011).  
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 Investigate the effect of food availability and natural temperature fluctuations 

on the hibernation behaviour of hazel dormice.  

An experiment on the effect of food availability and natural temperature fluctuations 

on the hibernation behaviour of hazel dormice confirmed that there is significant inter-

individual variation in bout length during hibernation (Chapter 7). As predicted, 

dormice that more frequently arouse from hibernation, and hence had relatively short 

bouts of torpor, reduced the extent to which they exhibit torpor where food 

availability is relatively higher. This is consistent with the theory that hibernating 

animals must make trade-offs between the energy conservation compared to the - 

presumably physiological - costs of torpor (Humphries et al. 2003). Additionally, as 

predicted, air temperature and day length both influenced dormouse hibernation 

behaviour. These results have important implications for hazel dormouse 

conservation, in regard to how winter food availability in combination with climatic 

conditions may affect dormouse trade-offs and hence survival. Such consequences 

may also be applicable to other hibernating species. In the light of the concerns 

regarding global climate change this information may be critical. 

 

Further work 

There remains much further research that could be carried out, both to 

continue the work in this thesis, as well as contribute to dormouse conservation 

throughout many other avenues. Such work would also likely inform broader 

conservation research and practices. 

Concerning the camera trap and footprint dormouse-detection survey 

methods, further work is required to refine the methodologies, compare detection 

rates across different spatial and temporal variables and produce an explicit protocol. 

Further investigation into how dormice use their habitat may inform how best to 

employ the monitoring stations in regard to variables such as vegetation type and 

position in canopy. Detection rates could also be calibrated against robust measures of 

population size to determine if these techniques could be used as an index of 

abundance. This study may also encourage the use of these techniques for other 

arboreal small mammal species, in a variety of habitat types across the globe, and 
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hence assist with these methodologies meeting their full potential and aid the study of 

species that are particularly elusive. 

Expansion of the footprint identification algorithm to incorporate more species 

would increase its utility to further habitats and ecosystems. Interdisciplinary research 

would allow for the development of more sophisticated footprint identification 

techniques, such as through the use of advanced statistical analyses or pattern-

recognition analysis (Alibhai et al. 2008, Russell et al. 2009). Ultimately, a freely-

available database of global species’ footprints which allows researchers to access and 

share footprints, in conjunction with identification tools would have the potential to 

greatly expand tracking surveys, and make a significant contribution to the monitoring 

of species of conservation concern. 

The population genetics study in Chapter 5 highlighted regional effects on 

dormouse genetic diversity, which are most likely driven by a combination of: edge-of-

range effects due to sub-optimal habitat; an artefact of historical colonisation routes; 

and large landscape features that impose barriers to dormouse dispersal. Further 

analyses, such as approximate Bayesian computation, along with increased sample 

sizes may permit more detailed inferences to be made. It is an important task to 

evaluate the extent to which populations are influenced by edge-of-range effects 

across the entire distribution of hazel dormice. It is in their north-westerly range where 

population declines are occurring (Amori et al. 2008) and therefore there may be 

important core-periphery effects that are driving these population extinctions.  

Other priorities should include assessment of the relative impact of different 

natural and anthropogenic landscape features on dormouse dispersal, and the 

importance of hedgerows in facilitating gene flow between habitat fragments. The 

combining of genetic data with GIS, would allow us to quantify landscape effects on 

dormouse population genetics and compare different dispersal barriers, to include 

natural and anthropogenic features. In the future, through the use of models that 

predict the effects of climate change, for example, on landscape variables, we may be 

able to make predictions of the vulnerability of existing populations.   

By developing a better understanding of the mechanisms that drive current and 

future population genetic diversity and differentiation, it may be possible to identify 
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populations that are most vulnerable to extirpation, and inform conservation 

priorities. Such patterns may be applicable to other species that are also impacted 

upon by habitat loss and fragmentation. Indeed, the ecology of hazel dormice lends 

them well to research investigating the effects of habitat fragmentation. 

The significantly lower rate of multiple paternity revealed in this thesis, 

compared to a previous report (Md. Naim et al. 2011), importantly highlights that not 

all hazel dormouse populations necessarily have such extreme levels of multiple 

paternity. The cause of the discrepancy remains unknown and therefore further 

investigation into the ecological and evolutionary effects on mating systems in dormice 

is required. More broadly, further research into the mechanisms that drive variation 

between populations would be of both academic and applied conservation interest, 

for many species that exhibit polyandry. Further studies should investigate variation in 

mating systems amongst dormouse populations and attempt to correlate this with 

environmental and population parameters. This would provide additional insights into 

the factors that drive dormouse behaviour, ecology, and evolution. Such data would 

further our understanding of the proximate and ultimate drivers of polyandry as well 

as highlight the consequences at a population level, such as effective population size 

and inbreeding. This information would also be of use to captive breeding and 

reintroduction projects.  

The identification of intra-specific variation in hibernation patterns, and 

corresponding response to food availability, during the hibernation period, contributes 

to our understanding regarding the trade-offs dormice must make during winter. In 

the light of climate change more work is required to determine how this trade-off 

affects survival during winter, and how future climatic conditions may therefore affect 

dormouse abundance. 

 

Conclusion 

 As stated in the general introduction in Chapter 1, conservation biologists are 

finding an increasing selection of tools at their disposal. This includes emerging 

practical field and laboratory techniques, theory, and sophisticated analytical methods, 
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from across the field of biology, but also other disciplines. These can provide 

alternative solutions, and encourage continuing innovative and adaptive thinking for 

conservation surveying, monitoring and planning. The results presented in this thesis, 

have benefited from many techniques that were not initially developed for 

conservation per se, such as molecular techniques, statistical analyses and 

technologies.  

 Additionally, the important contribution of various disciplines within biology to 

conservation is becoming ever more realised, and this is apparent in this thesis. There 

have been various debates on the relative importance of areas such as genetics and 

behaviour to conservation. Despite the contribution of molecular techniques to 

conservation having greatly increased in recent years, some question the relevance of 

genetics, and claim ecological and demographic parameters are of much greater 

importance (Frankham et al. 2002, Haig 1998). Whilst short-term goals may often take 

precedence, the maintenance of genetic diversity is vital (Haig 1998). Conservation 

genetics is useful in a variety of ways, such as, among many others; defining 

evolutionary significant units (Moritz 1994); determining migration patterns for species 

in fragmented populations (Goossens et al. 2005); understanding the significance of 

loss of evolutionary potential and inbreeding (Amos & Balmford 2001) and monitoring 

(Schwartz et al. 2006). As next-generation sequencing becomes more accessible, it is 

likely that the future will see conservationists utilise molecular techniques in 

increasingly novel ways.  Likewise, the importance of behavioural research to 

conservation has also been questioned by many. However, Sutherland (1998) outlined 

in a review a plethora of broad areas that or concern to conservationist, in which 

behavioural studies may be relevant, such as small population extinctions, dispersal in 

fragmented populations and reducing predations. Indeed in this thesis we discuss the 

potential effect of behaviour and mating systems on effective population size (Anthony 

& Blumstein. 2000), and how plasticity in hibernation behaviour is influenced by 

ecological trade-offs (Humphries et al. 2003), both of which both have potentially 

important conservation implications. 

As well as increased unified work with all biological disciplines, conservations 

must also be more proactive in bridging the gap between science and the general 

public. In order for biodiversity to be prominent on the political agenda peoples' 
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perception of nature and ecosystems need to change. This can be best achieved 

through the media and community involvement (Erhlich & Pringle 2008). The 

participation of the general public and volunteers is painfully undervalued, but actually 

mutualistically vital (Bell et al. 2008). Many crucial volunteer hours have contributed to 

this thesis, such as assistance in the collection of samples for genetic analysis and trials 

of footprint identification. In return it is hoped these volunteers have they also 

benefitted from contributing to science and that it advances their interest and concern 

for conservation, which they may pass onto others, including future generations.  

The challenges that face future conservation biologists are monumental, and 

the successful preservation of biodiversity will require many approaches that include 

all facets of human society. As a flagship species, the hazel dormouse has a small, but 

nonetheless important role in this. 
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