Bacterial-Nanoparticle Interactions

Submitted by Jonathan McQuillan to the University of Exeter

as a thesis for the degree of

Doctor of Philosophy in Biological Sciences

In December 2010

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature:

Abstract

Bionanotechnology is an intersection between biology and nanotechnology, a field in which novel applications for very small materials are being realised at an alarming rate. Nanoparticles have 3 dimensions that can be measured in nanometers, their small size conferring upon them different properties from individual atoms or the bulk material. The interactions between these unique materials and microorganisms are often toxic, thus have been exploited for antimicrobial applications. However, there is a considerable paucity of data for the underlying molecular mechanisms. This study has been carried out to investigate the interactions that occur between nanoparticles and bacteria with the objective of identifying these toxicological mechanisms and novel nanoparticle effects, using the model Gram negative organism Escherichia coli K12. This study has identified metal nanoparticles that are a superior vehicle for the delivery of toxic metal ions to E. coli. The nanoparticles associate with the bacterial surface, but do not cross the cell wall. They then dissolve, releasing a concentration of metal ions that accumulate at the bacterialnanoparticle interface, enhancing the antibacterial efficacy compared to the concentration of metal ions in the bulk solution phase. Measurement of the whole transcriptome response to silver nanoparticles in comparison to the silver ion indicates that the different modes of ion delivery may induce a differential stress response. Moreover, this data identifies molecular mechanisms that are involved in the toxicity of this metal that is now becoming increasingly prevalent in society. The dissolution based toxic effects of zinc oxide nanoparticles are augmented by an interaction with ultra-violet light, offering an alternative mode for nanoparticle toxicity.

List of Contents

Acknowledgements

Abstract

- List of Contents
- List of Figures
- List of Tables

2.2

2.3

2.3.1

Bacterial Culture

Chapter 3 Methods

Gold and Silver Nanoparticle Synthesis

Chapter 1	Bacterial-Nanoparticle Interactions	1
1.1	General Introduction	1
1.2	Definitions and Terms	2
1.3	Bacterial-Nanoparticle Interactions	4
1.3.1	Escherichia coli as a Model Organism for Studying Bacterial-Nanoparticle Interactions	5
1.3.2	Anti-Bacterial Nanoparticles	6
1.3.3	Other Applications of Bionanotechnology	9
1.3.4	The <i>E. coli</i> Cell Envelope	11
1.4	Strategies for Nanoparticle Synthesis	15
1.5	Nanoparticle Characterisation	17
1.5.1	Electron Microscopy	17
1.5.2	UV-Visible Spectroscopy	19
1.5.3	Nanoparticle Dissolution	20
1.6	Conclusions	26
1.7	Objectives	26
1.8	Thesis Overview	28
1.9	References	29
Chapter 2	Materials and Methods	39
2.1	General Materials	39

40

41

41

2.3.2	Bacterial-Nanoparticle Exposure	42
2.3.3	Transmission Electron Microscopy (TEM)	42
2.3.3.1	Nanoparticle Size Analysis	42
2.3.3.2	TEM of Bacterial-Nanoparticle Interactions	43
2.4	Chapter 4 Methods	44
2.4.1	Suspension of Silver Nanopowder in Modified-LB Medium	44
2.4.2	Electron Microscopy	44
2.4.3	Exposure to Silver Nanoparticles on Solid Modified-LB Medium	44
2.4.4	Silver Nanoparticle Dissolution Measurements and Differential Silver Nanoparticle-Silver Ion Toxicity Test	45
2.4.5	Real Time Polymerase Chain Reaction (real time PCR)	46
2.4.6	Gene Deletion	48
2.4.7	Minimum Inhibitory Concentration Assay for Metal Ions	49
2.5	Chapter 5 Methods (Gene Expression Microarray Experiments)	50
2.5.1	E. coli Culture	50
2.5.2	RNA Isolation	50
2.5.3	RNA Amplification and Labeling	51
2.5.4	Microarray Hybridisation	52
2.5.5	Data Analysis and Biological Interpretation	52
2.5.6	Microarray Validation	52
2.6	Chapter 6 Methods	53
2.6.1	Suspension of Zinc Oxide Nanopowder in Neidhards' Minimal Salts Medium	53
2.6.2	Transmission Electron Microscopy	53
2.6.3	UV-Visible Spectroscopy	53
2.6.4	Zinc Oxide Nanoparticle Dissolution Measurements and Differential Zinc Oxide Nanoparticle-Zinc Ion Toxicity Test	54
2.6.5	Gene Deletion	55
2.6.6	Real-Time PCR	55
2.6.7	Ultra-Violet Irradiation	56
2.6.8	Photo-Electron Production Assay and Toxicity Test	56
2.7	References	59

Chapter 3	Bacterial Nanoparticle Interactions in Transmission Electron Micrographs	60
3.1	Introduction	60
3.2	Results	63
3.2.1	Nanoparticle Synthesis and Characterisation	63
3.2.2	Transmission Electron Microscopy of Bacterial-Nanoparticle Interactions	69
3.3	Discussion	76
3.3.1	Nanoparticle Synthesis using Wet-Chemistry Methods	76
3.3.2	Gold Nanoparticles Associate Directly with E. coli Bacteria	78
3.3.3	Silver Nanoparticles were Absent from TEM Images	80
3.3.4	Evidence of Gold Nanoparticle Uptake in E. coli from TEM Images	81
3.3.5	Conclusions	85
3.4	References	86
Chapter 4	Enhanced Silver Nanoparticle Stress Response in E. coli K12	89
4.1	Introduction	89
4.2	Results	92
4.2.1	Nanoparticle Characterisation	92
4.2.2	Silver Nanoparticle Interactions with the E. coli Cell Envelope	95
4.2.3	Silver Nanoparticle Dissolution in Modified-LB Medium	97
4.2.4	Differential Efficacy of Silver Nanoparticles and Silver Ions	99
4.2.5	The Transcriptional Response to Silver	101
4.3	Discussion	105
4.3.1	Nanoparticle Characterisation	105
4.3.2	Bacterial-Nanoparticle Interactions	106
4.3.3	Nanoparticle Dissolution	108
4.3.4	Differential Activity of Silver Nanoparticles and Silver Ions	110
4.3.5	Conclusions	114
4.4	References	115

Chapter 5	The <i>E. coli</i> K12 Transcriptome Response to Silver	120
5.1	Introduction	120
5.2	Results	123
5.2.1	E. coli Culture	123
5.2.2	Gene Expression Analysis	124
5.2.3	Microarray Validation	134
5.2.4	Unknown Genes	135
5.2.5	Differential Gene Regulation	136
5.3	Discussion	138
5.3.1	Silver Induces the Up-Regulation of Genes that Encode Molecular Chaperones and Proteases that Stabilise, Re-fold or Degrade Denatured Proteins	139
5.3.2	Silver Induces the Expression of Genes for Iron and Sulfur Metabolism, and Iron-Sulfur Cluster Assembly: Further Evidence that Silver Acts Upon Proteins	141
5.3.3	Evidence that Exposure to Silver Leads to the Formation of Reactive Chemical Species	145
5.3.4	Exposure to Silver Leads to the Repression of Genes for Lipid Metabolism and RNA Processing, Flagella Biosynthesis and Ribosome Sub-units	146
5.3.5	The Action of Ag^{\star} on Cell Signalling May Lead to a Disruptive Transcriptional Response	147
5.3.6	Exposure to Silver Induces Genes for Copper Homeostasis: an Adaptive and Disruptive Response	148
5.3.7	Silver Nitrate and Silver Nanoparticles Elicit a Differential Transcriptome Response in <i>E. coli</i> K12	149
5.3.8	Conclusions	151
5.4	References	153
Chapter 6	The Anti-Bacterial Effects of ZnO Nanoparticles	163
6.1	Introduction	163
6.2	Results	166
6.2.1	Nanoparticle Characterisation	166
6.2.2	Dissolution in Minimal Salts Medium	168
6.2.3	Anti-Bacterial Activity of Zinc Oxide Nanoparticles in the Dark	170
6.2.4	Anti-Bacterial Activity of Zinc Oxide Nanoparticles in Ultra-Violet Light	174
6.3	Discussion	179

Appendix A	A Method for Preparing Neidhardts' Minimal Salts Medium	
Chapter 7	General Conclusions and Future Work	192
6.4	References	188
6.3.4	Conclusions	186
6.3.3	Zinc Oxide Nanoparticle Anti-Bacterial Activity in Ultra-Violet Light	184
6.3.2	Zinc Oxide Nanoparticle Anti-Bacterial Activity in the Dark	180
6.3.1	Nanoparticle Physical Characteristics	179

Appendix B Gene Expression Microarray Data

List of Figures

Chapter 1	Introduction	
Figure 1.1	The <i>E. coli</i> cell envelope	12
Figure 1.2	Nanoparticle dissolution model	22
Figure 1.3	Inductively Coupled Plasma Mass Spectrometry	25
Figure 1.4	Bacterial-nanoparticle interactions	27
Chapter 3	Bacterial Nanoparticle Interactions in Transmission Electron Micrographs	
Figure 3.1	Transmission electron micrographs of citrate capped gold and silver nanoparticles	64
Figure 3.2	Histograms showing the size distribution of gold and silver nanoparticles	65
Figure 3.3	UV-Visible extinction spectra of gold and silver nanoparticles	66
Figure 3.4	UV-Visible extinction spectra of citrate capped and BSA capped gold or silver nanoparticles	67
Figure 3.5	E. coli survival in water containing colloidal gold or silver nanoparticles	68
Figure 3.6	Transmission Electron Micrographs of <i>E. coli</i> K12 prepared from specimens, which had not been exposed to gold or silver nanoparticles	70
Figure 3.7	Transmission electron micrographs of <i>E. coli</i> post treatment with citrate-coated gold nanoparticles or BSA-coated gold nanoparticles (transverse sections)	72
Figure 3.8	Transmission electron micrographs of <i>E. coli</i> post treatment with citrate-coated gold nanoparticles or BSA-coated gold nanoparticles (longitudinal sections)	73
Figure 3.9	A transverse section of an <i>E. coli</i> with gold nanoparticles on the extracellular and intracellular face of the envelope	74
Figure 3.10	Transmission electron micrographs of <i>E. coli</i> sections post treatment with citrate- coated silver nanoparticles or BSA-coated silver nanoparticles	75
Figure 3.11	A cartoon representation of a terminal section of an <i>E. coli</i> , with nanoparticles inside the cytosol and on the cell surface	83
Figure 3.12	A cartoon representation of how extracellular nanoparticles could appear to be within the cytosol from transverse TEM sections	84
Chapter 4	Enhanced Silver Nanoparticle Stress Response in <i>E. coli</i> K12	
Figure 4.1	Gas plasma-synthesised silver nanoparticles, viewed in scanning and transmission electron micrographs	92
Figure 4.2	Photographs of modified-LB agar containing silver nanoparticles	94

Figure 4.3	Scanning electron micrographs of E. coli with silver nanoparticles	95
Figure 4.4	Transmission electron micrographs of E. coli with silver nanoparticles	97
Figure 4.5	The rate of silver nanoparticle dissolution in modified-LB medium	98
Figure 4.6	Differential anti-bacterial efficacy of silver nanoparticles and silver ions, as a function of silver ion concentration in the bulk solution phase	100
Figure 4.7	Decline and recovery of viable cell numbers in modified-LB medium containing silver ions and silver nanoparticles	101
Figure 4.8	Real-Time PCR data for transcription of a gene panel in response to silver	103
Chapter 5	E. coli K12 Transcriptome Response to Silver	
Figure 5.1	Growth and replication of <i>E. coli</i> K12 in modified-LB medium containing silver ions or silver nanoparticles	123
Figure 5.2	An overview of gene regulation in E. coli K12 after treatment with silver ions	125
Figure 5.3	An overview of gene regulation in <i>E. coli</i> K12 after treatment with silver nanoparticles	126
Figure 5.4	Microarray validation by real-time PCR	134
Figure 5.5	Differential silver nitrate and silver nanoparticle transcriptional response	137
Figure 5.6	Distribution of <i>P</i> values	138
Figure 5.7	Ag ⁺ induced expression of genes for removing denatured proteins	141
Figure 5.8	Iron acquisition in E. coli K12, after exposure to silver	143
Figure 5.9	Synthesis of enterobactin from chorismic acid	144
Figure 5.10	A cartoon representation of two-component signalling in bacteria	148
Chapter 6	The Anti-Bacterial Effects of ZnO Nanoparticles	
Figure 6.1	Band gap energy for ZnO	164
Figure 6.2	TEM image of zinc oxide nanoparticles	166
Figure 6.3	UV-visible extinction spectra of zinc oxide nanoparticles suspended in minimal salts medium	167
Figure 6.4	The extinction spectrum of a colloidal suspension of zinc oxide nanoparticles over 24 hours	168
Figure 6.5	The estimated rate of dissolution of zinc oxide nanoparticles in minimal salts medium	169
Figure 6.6	Crude TEM image of <i>E. coli</i> K12 after exposure to zinc oxide nanoparticles following minimal, non-disruptive specimen preparation	170
Figure 6.7	Growth and replication of E. coli in minimal salts medium containing zinc oxide	171

	nanoparticles or zinc ions	
Figure 6.8	Growth curves for <i>E. coli</i> K12 strain MG1655 and MG1655 Δ <i>znt</i> A in minimal salts medium with Zn ²⁺ as the chloride or zinc oxide nanoparticles	173
Figure 6.9	Transcript abundance zinc ion transporter genes in <i>E. coli</i> K12 during exposure to zinc chloride, or zinc oxide nanoparticles	174
Figure 6.10	The reduction of the redox-sensitive dye DCPIP	174
Figure 6.11	The reduction of the redox-sensitive dye DCPIP by zinc oxide nanoparticles under UV light	175
Figure 6.12	DCPIP reduction by zinc oxide nanoparticles in UV light in minimal salts medium, water or 0.1 % (w/v) glucose	176
Figure 6.13	<i>E. coli</i> survival in a suspension of zinc oxide nanoparticles in the dark or under UV light	177
Figure 6.14	Transcript abundance of superoxide and hydrogen peroxide-responding genes in <i>E. coli</i> K12 during exposure to a suspension of zinc oxide nanoparticles in the dark and under UV light	178
Chapter 7	General Conclusions and Future Work	

SOM analysis showing *E. coli* metabolite clustering post exposure to silver nitrate

196

Figure 7.1

List of Tables

Chapter 1	Introduction	
Table 1.1	Silver nanoparticles in anti-bacterial medical products	7
Chapter 2	Materials and Methods	
Table 2.1	Primers for real-time PCR	57
Table 2.2	Oligonucleotide sequences for gene deletions	58
Chapter 2	Bacterial Nanoparticle Interactions in Transmission Electron Micrographs	
Table 2.1	The effect of sodium citrate concentration in the synthesis reaction on gold nanoparticle size	63
Chapter 4	Enhanced Silver Nanoparticle Stress Response in E. coli K12	
Table 4.1	The anti-bacterial efficacy of gas plasma-synthesised silver nanoparticles in solid, modified-LB medium against three species of bacteria; <i>E. coli</i> , <i>P. aeruginosa</i> and <i>S. aureus</i>	94
Table 4.2	Elemental analysis of E. coli with silver nanoparticles	96
Table 4.3	The Gene Panel	102
Table 4.4	MICs of Ag ⁺ , Cu ⁺ and Zn ²⁺ for <i>E. coli</i> deletion mutants	104
Chapter 5	E. coli K12 Transcriptome Response to Silver	
Table 5.1	Silver up-regulated transcription/biological processes	126
Table 5.2	Silver down-regulated transcription/biological processes	131
Table 5.3	Minimum inhibitory concentration of Ag^{+} on gene deletion mutants	135