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Abstract

The field of computer vision studies the computational tools and meth-

ods required for computers to be able to process visual information,

for example images and video. Shape descriptors are one of the tools

commonly used in image processing applications. Shape descriptors are

mathematical functions which are applied to an image and produce nu-

merical values which are representative of a particular characteristic of

the image. These numerical values can then be processed in order to

provide some information about the image. For example, these values

can be fed to a classifier in order to assign a class label to the image.

There are a number of shape descriptors already existing in the literature

for 2D and 3D images. The aim of this thesis is to develop additional

shape descriptors which provide an improvement over (or an alternative

to) those already existing in the literature.

A large majority of the existing 2D shape descriptors use surface in-

formation to produce a measure. However, in some applications sur-

face information is not present and only partially extracted contours are

available. In such cases, boundary based shape descriptors must be used.

A new boundary based shape descriptor called Linearity is introduced.

This measure can be applied to open or closed curve segments.

In general the availability of 3D images is comparatively smaller than

that of 2D images. As a consequence, the number of existing 3D shape

descriptors is also relatively smaller. However, there is an increasing

interest in the development of 3D descriptors. In this thesis we present

two basic 3D measures which afterwards are modified to produce a range

of new shape descriptors. All of these descriptors are similar in their

behaviour, however they can be combined and applied in different image

processing applications such as image retrieval and classification. This

simple fact is demonstrated through several examples.
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Chapter 1

Introduction

It is a common saying that a picture is worth a thousand words. It is true that visual

information is very useful in communicating ideas and certainly humans rely heavily

on sight to perceive information regarding the physical world surrounding us. The

way in which the human brain processes visual information has been a topic of study

for many years. Indeed the way in which humans are able to recognise an object

or identify people in a fraction of a second is remarkable. It would be desirable for

computers and robotic applications to be able to mimic these capacities.

The field of computer vision investigates the algorithms required to eventually

be able imitate human vision. Such algorithms would provide computers with the

means to collect information and learn about the world around them. In this way

computers could eventually understand their surroundings in a very similar way as

humans do. The fields of application for computer vision are diverse: any human

activity could potentially benefit from it.

1.1 Background

An image is a two dimensional function f(x, y) of colour intensity (or grey level) on a

plane. For a digital computer to be able to process an image, the (x, y) coordinates of

any given point in such image must be discrete values. The image is then a discrete

grid of picture elements (pixels) which also have discrete values. This is known as a

digital image. Regardless of the method used to acquire a digital image (e.g. digital

camera, scanner, etc.) images must be quantised (i.e. continuous values must be

converted to integer values) which causes an inherent loss of information. Higher

resolution acquisition instruments (e.g. high resolution cameras) may help reduce

the error induced by the quantisation process, but will never fully eliminate it. The
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Chapter 1. Introduction

loss of information during digitisation is a well known problem and has been widely

studied in the literature. There are other alternatives to pixel based representation,

like vector graphics, which represent images as points, lines and curves that have

well defined mathematical equations.

When dealing with 3D objects, there are again several ways in which these may

be represented. One possible representation, analogous to pixel representation, is

a voxel (volume element) representation. In this case a 3D binary object would

be represented by a 3D matrix of zeroes and ones which indicate the presence or

absence of the object in a particular location of a regular discrete grid. The voxel

representation of an object has similar limitations to the pixel representation of an

object, being susceptible to quantisation error and dependant on the resolution of

the voxel grid. Another way of representing a 3D object is by using a polygonal

mesh representation. A polygonal mesh is composed of a set of vertices, edges and

faces joined to form a 3D object. Figure 1.1 shows a sphere with 2 different possible

representations.

(a) A sphere (b) Polygonal mesh representation (c) Voxel representation

Figure 1.1: A real sphere (a) with two different representations: (b) a polygonal

mesh representation and (c) a voxel representation. Notice that there are infinitely

many real 3D objects which would have the same voxel representation.

There is a variety of representations which can be used for 2D and 3D images.

Some information may be easier to obtain depending on the representation used,

for example computing the volume of a voxelized 3D object is simpler than using a

polygonal mesh. However it is worth emphasising the importance of independence

between the object and its representation. The true nature of an object’s shape

should not be constrained by its representation. We should always be concerned

with the shape of the object we are dealing with and not with the limitations that

its current representation imposes on our understanding of the shape. For example,

the spheres in Figure 1.1 have different representation but they are, in essence,

the same shape: a sphere. The fact that they are expressed in different formats is

16



1.1. Background

completely unrelated with the shape they represent. What’s in a name? That which

we call a rose by any other name would smell as sweet1. Likewise, that which we

call a sphere in any other representation is still a sphere.

The several image representations methods are ways of expressing visual data.

This data still needs to be processed in a way which is useful for a specific purpose.

This is what we call image processing application. Generally speaking most image

processing applications would have the following elements:

• Acquisition – The first thing that is required is to capture a real image and

transform it into a digital representation. This is commonly done by means

of digital cameras, but other acquisition techniques can also be used (e.g.

scanners, other types of sensors) or even be constructed artificially (e.g. using

graphics editing software).

• Pre-processing – The digital image must be prepared to be used at a later

stage. At this stage, the representation of the image may be modified in order

to discard unimportant information and preserve only information which may

be of use at later stages. Tasks involved in the pre-processing stage are di-

verse, including but not limited to: image enhancement, grey scale conversion,

object segmentation, binarization, boundary detection, polygonal approxima-

tion, normalisation, etc.

• Feature extraction – This is the process of obtaining information from the

object in question, highlighting its features of interest. These features or de-

scriptors may be obtained from the object’s boundary, surface, texture, or any

other characteristic. The features of an object are typically represented in a

quantitative form which allows for comparison between objects. Such features

can be extracted by using computational methods called shape descriptors.

• Further processing – Once the relevant information has been extracted from

the image we may use this information to perform the task which the applica-

tion aims to achieve, for example, recognition, classification, similarity search,

etc.

When dealing with 3D imagery, the processing stages involved are very similar.

However acquisition of 3D models is not yet as well developed as it is for 2D images.

Several 3D model acquition methods are currently available in the literature. One

alternative is scanning real objects using laser scanners, which normally produce a

1From Shakespeare’s Romeo and Juliet
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Chapter 1. Introduction

voxel representation of the object. Another technique is construction of 3D models

from 2D images, using 2D sections of a 3D object (Bors et al., 2002). Yet another

method is construction of 3D models from stereo images, however this is a topic of

ongoing research (Grum and Bors, 2008; Kim and Sohn, 2005). Probably the most

common practise at the moment is to create 3D models using 3D modelling software,

like Blender2. There is a wide range of free and commercial CAD/CAM software

packages available which makes 3D modelling generally available to end users.

1.2 Shape descriptors

Shape descriptors are computational tools used for analysing image shape informa-

tion. Shape descriptors consist of mathematical functions which when applied to

an image produce numerical values. These numerical values are representative of a

specific characteristic of the given shape. The nature and meaning of such values

depends on the definition of the shape descriptor. After shape features have been

extracted, they can be used as input features for an image processing application.

For example, for a shape classification application, a vector of shape descriptors can

be fed to a classifier to determine the class membership of the given image. More

details on shape descriptor applications are given later in this section (see page 24).

Generally speaking we could classify shape descriptors depending on the infor-

mation they take into account to compute their measures. In 2D, shape area and

boundary (perimeter) are the two major sources of information, so we could speak

of area based descriptors and boundary based descriptors. However it is important

to point out that some descriptors may use a combination of boundary and interior

points to compute their measures.

Both boundary based and area based approaches have particular characteristics

which could be considered to be advantages or disadvantages depending on the

particular needs of each application.

Boundary based methods are generally sensitive to small changes on the shape;

this usually causes these methods to produce different results when the shape bound-

ary changes slightly. This means that boundary based methods can perceive small

changes in the shape. However this also means that such methods can be affected

by the presence of noise in the shape, producing undesirable results.

On the contrary, area based methods are not sensitive to such small changes on

the shape; even large changes on the boundary have a small effect on the shape area.

2http://www.blender.org/
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1.2. Shape descriptors

This means that area based descriptors are not greatly affected by the presence of

noise, thus they are robust with respect of noise. However, this also means that

they are unable to perceive small variations on the shape, which implies that shape

details are ignored.

In 3D, volume and surface area are the two major sources of information, so we

could speak of volume based and surface based descriptors, also pointing out some

descriptors may use a combination of the two.

Surface area is analogous to boundary, implying that surface based descriptors

are more sensitive to small changes but more susceptible to noise. Likewise volume

based descriptors are analogous to area based descriptors, implying they are robust

to noise, but insensitive to small shape details.

There are some properties which are desirable for shape descriptors in general,

although they are not, strictly speaking, requirements for all shape descriptors. The

following is a list of some of these desirable properties which by no means intends

to be extensive:

• Rotation invariance – The rotation of an object does not affect its shape;

therefore it would be expected that a shape descriptor should produce the

same measure for a shape S and for the same shape rotated by θ degrees,

R(S, θ),

• Translation invariance – The shape of an object is independent of the coordi-

nate axes used; therefore it would be expected that a shape descriptor should

produce the same measure for the shape S regardless of its location in the

coordinate plane.

• Scale invariance – Because the shape of an object is independent of its repre-

sentation, the scale of an object should not affect the measure produced by a

shape descriptor.

• Well defined range – Having an idea of the range of values produced by a shape

descriptor can be important when interpreting the meaning of the values pro-

duced by the descriptor. Also it may be useful to know the range produced by

a descriptor in particular when designing an application (in case normalisation

is required).

1.2.1 Existing 2D descriptors

Over the years there has been a continuous interest in shape descriptors. Many

different approaches have been taken and there is a large existing body of available
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literature. This section provides the reader with a brief survey of some of the

methods considered most relevant to this thesis.

One of the most well known shape descriptors are moment invariants introduced

by Hu (1962) which have been used extensively in the literature on their own and

as basis to construct other shape descriptors. The basic definition of 2D moments

of (p+ q)-th order is as follows:

mp,q(f) =

∞∫
−∞

∞∫
−∞

xpyqf(x, y)dxdy, (1.1)

where p, q ∈ Z+ and f(x, y) is the intensity function of the image. If the given image

is a binary image representing a shape S, we can simplify the definition of moments

to the following expression:

mp,q(S) =

∫∫
S

xpyqdxdy, (1.2)

In order to attain translation invariance, moments are translated to the centroid

of the shape. These are called central moments µp,q and are defined as:

µp,q(S) =

∫∫
S

(x− x̄)p(y − ȳ)qdxdy, (1.3)

where (x̄, ȳ) is the centroid of the shape:

C = (x̄, ȳ) =

(
m1,0(S)

m0,0(S)
,
m0,1(S)

m0,0(S)

)
. (1.4)

From these, Hu derives a set of invariants which are independent of position, size

and orientation which have been widely used in the literature.

Moments as defined in equation (1.2) are computed from shape area information.

However moments can also be computed from shape boundary information (Lambert

and Gao, 2006). These are referred to as line moments. In order to compute line

moments, the boundary of any given shape S has to be expressed in parametric

form.

First lets introduce the parametric representation of a given shape’s contour. Let

B be the boundary of a given shape S and let us start by assuming that B is an

open curve. Also let P be the length of B. We then can refer to the coordinates of

any point of B(s) = (x(s), y(s)) for 0 ≤ s ≤ P . Of course if B is a closed curve it

only means that B(0) = B(P ).
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1.2. Shape descriptors

An easy way to understand contour parametric representation is to think about

an athletics track: runners run a distance of 400 meters (0 ≤ s ≤ 400mts) although

the distance is not measured in a straight line, but rather the distance travelled on

the track; in hurdle races, the first hurdle is placed after 45 meters (i.e. B(45mts))

and then every 35 meters after (i.e. B(80mts), B(115mts), ...). For further detail

on contour parametric representation the reader is referred to Kindratenko (1997).

Line moments can be calculated for open curve segments and partially extracted

boundaries. Line moments are defined as follows:

m(l)
p,q(B) =

∫
B

x(s)py(s)qds (1.5)

where the shape boundary B is given in parametric form and s ∈ [0, length(B)].

Central moments can also be derived from the boundary information:

µ(l)
p,q(B) =

∫
B

(x(s)− x̄(l))p(y(s)− ȳ(l))qds, (1.6)

In this case (x̄(l), ȳ(l)) the centroid is obtained from boundary information:

(x̄(l), ȳ(l)) =

(
m

(l)
1,0(B)

m
(l)
0,0(B)

,
m

(l)
0,1(B)

m
(l)
0,0(B)

)
. (1.7)

Moments are widely used in literature, for different 2D and 3D applications and

for the creation of shape descriptors. Moments can be used, for example, to detect

the principal axes of given shapes (Tsai and Chou, 1991) (this will be discussed in

more detail in Chapter 2) or for object watermarking (Bors, 2006).

An example of shape descriptors derived from moment invariants is the circular-

ity descriptor developed by Žunić et al. (2010b). They use second order centralised

moments to derive their measure, by showing that the quantity

µ2,0(S) + µ0,2(S)

µ0,0(S)2

reaches its minimum if and only if the given shape S is a circle. This shape descriptor

gives a measure of similarity between a given shape and a perfect circle – this is

also referred to as compactness. In the literature there is a common definition of

compactness as a ratio between the perimeter and area of a shape:

CStd(S) =
4π · Area(S)

Perimeter(S)
. (1.8)

The circularity measure introduced by Žunić et al. is defined as follows:

C(S) =
1

2π
· µ0,0(S)2

µ2,0(S) + µ0,2(S)
. (1.9)
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The descriptor is modified by an additional tuning parameter β which modifies the

behaviour of the descriptor. The modified circularity measure is defined as follows:

Cβ(S) =



1

(β + 1)πβ
· µ0,0(S)β+1∫∫
S

(x2 + y2)βdxdy
β > 0,

(β + 1)πβ

1
·

∫∫
S

(x2 + y2)βdxdy

µ0,0(S)β+1
β ∈ (−1, 0).

(1.10)

An image can be thought of as a particular type of signal, and as such image

processing is a branch of the broader field of signal processing. In general, sig-

nals can be decomposed into a linear combination of simpler signals, for instance

wavelets. Wavelets are localised oscillation signals which typically look like small

waves. Wavelets provide a powerful tool for image decomposition and analysis. Such

analysis can be performed at various resolution levels. This is usually called mul-

tiresolution analysis and has the additional advantage that some details which are

overlooked at low level resolutions, might become more evident in higher levels of

resolution (Meyer, 1993).

Wavelets are a very popular tool in image processing. Several extensions to

wavelets have been developed over the years. An example of these is the contourlet

transform developed by Do and Vetterli (2005). The contourlet transform uses

directional filters to decompose the image contours. It was used by Chen and Kgl

(2010) for palmprint classification.

Other examples of shape descriptors are: the sigmoidality descriptors introduced

by Rosin (2004), the ellipticity, rectangularity, and triangularity descriptors intro-

duced by Rosin (2003) and the elongation descriptor introduced by Stojmenović and

Žunić (2008).

1.2.2 Existing 3D descriptors

In the past, the use of 3D media was very restricted due to the computational

power required to process this type of media. With the continuous increase of

computational power available to end users, this restriction seems to be fading away.

As a consequence of this, in recent years there has been an increase in the use of

3D media for different purposes: medical applications, CAD/CAM applications,

museum catalogues, entertainment, etc. This appears to be an ongoing trend and

the use of 3D media is likely to continue growing in the foreseeable future.

With this growth in the use of 3D media comes an increasing need for 3D search,

matching and classification applications. 3D shape descriptors provide a powerful
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and useful tool for such applications. Thus, in recent years there has been a growing

interest in developing new and more efficient 3D shape descriptors; some of them

come as an extension of existing 2D descriptors while others have been specifically

developed for the 3D domain.

Moment invariants are one of the most popular shape descriptors in 2D and

extending them to 3D is straight forward (Sadjadi and Hall, 1980). In fact it has

been shown by Mamistvalov (1998) that moment invariants can be extended to n

dimensions. The basic definition of 3D moments of (p+ q+ r)-th order is as follows:

mp,q,r(f) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

xpyqzrf(x, y, z)dxdydz, (1.11)

where p, q, r ∈ Z+ and f(x, y, z) is the intensity function of the 3D image. Notice

that this is analogous to the definition of 2D moments in equation (1.1). Again we

can assume the 3D image to be a binary image representing a shape S and simplify

the definition to:

mp,q,r(S) =

∫∫∫
S

xpyqzrdxdydz, (1.12)

Also analogously to equation (1.3), central moments µp,q,r are defined as:

µp,q,r(S) =

∫∫∫
S

(x− x̄)p(y − ȳ)q(z − z̄)rdxdydz, (1.13)

where (x̄, ȳ, z̄) is the centroid of the shape is defined analogous to equation (1.4):

(x̄, ȳ, z̄) =

(
m1,0,0(S)

m0,0,0(S)
,
m0,1,0(S)

m0,0,0(S)
,
m0,0,1(S)

m0,0,0(S)

)
. (1.14)

In order to reduce the computational complexity involved with computing mo-

ments, some algorithms for efficiently computing 3D moments have been developed.

For 3D shapes represented as a set of voxels Yang et al. (1997) have developed an al-

gorithm that computes moments as a summation over the discrete surface enclosing

the region. Furthermore, their algorithm can be applied to n-dimensional discrete

regions. Sheynin and Tuzikov (2001) presented an explicit formulae for computing

moments of 3D polyhedra, which is useful for 3D models represented as a polygon

mesh.

One 2D descriptor which is easily extended to 3D is compactness (circularity).

In a similar manner as the ratio between area and perimeter is used to compute

compactness in 2D (see equation (1.8)), a ratio between surface area and volume
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is commonly used in the literature to compute compactness of 3D shapes. This

measure of compactness is defined as follows:

C3D
Std(S) =

36π · V olume(S)2

Surface(S)3
. (1.15)

Another approach is the measure of discrete compactness introduced by Bribiesca

(2000, 2008). This descriptor takes into account the volume of the object (number

of voxels) and the area of the enclosing surface, i.e. the number of voxel faces which

are not directly in contact with another voxel. This compactness measure is defined

as follows:

Cd =
n− A/6
n− 3
√
n2

(1.16)

where n is the total number of voxels and A is the area of the enclosing surface.

In 2D Fourier analysis can be applied to extract features of a shape. Similarly

in 3D Fourier analysis can be used for shape description. A 3D Discrete Fourier

Transform (3D-DFT) was used by Vranić and Saupe (2001) as a shape descriptor:

the 3D-DFT was applied to a voxelized 3D model to produce feature vectors which

were later used to search in a database for similar objects. The developed descriptor

is invariant with respect to translation, rotation, scaling and reflection. It is also

robust with respect to level of detail.

1.3 Shape descriptor applications

The applications where visual information needs to be processed are as complex

as they are diverse. As it has been mentioned before, shape descriptors are useful

tools for extracting features from visual information and can be of aid for this kind

of applications. Shape descriptors have been successfully used in a wide range of

applications from medical applications to search engines. In this section I mention

a small collection of examples where shape descriptors have been implemented.

1.3.1 2D applications

In biology, the study of animal movement in their geographical space is of great

importance. The differences in the paths animals follow gives specialists information

on animal behaviour (Nams, 2006). In the study conducted by Benhamou (2004) the

author utilises 3 shape descriptors (straightness, sinuosity and fractal dimension) to

determine the behaviour of an animal. A higher number of changes in the direction

of the path followed by the animal (i.e. a less straight path) indicates that the
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animal might be performing a random search. Imre (2009) used fractal analysis to

study the tortuosity of animal paths highlighting the importance of chronological

information being recorded as part of the path.

Several example classification applications for the circularity measure are given

by Žunić et al. (2010b). The first example uses circularity measure to classify mam-

mograms achieving up to 90.74% accuracy for classification of circumscribed/spiculated

classes. The second example uses circularity to classify galaxies in two groups: spiral

and elliptical. Despite not being able to reach the same accuracy as using image

texture the results obtained are good, taking into account that only one circularity

measure was used; the combination of more measures may increase the classifica-

tion rates obtained. The third and final example uses circularity to measure print

quality: a linear combination of nine circularity measures Cβ(S) (see equation 1.10)

is used and the average correlation coefficient obtained is 0.77 which is favourable

according to Žunić et al.

The work presented by Gouet-Brunet and Lameyre (2008) uses a set of local and

global descriptors for object tracking in video sequences. Local descriptors are used

to identify points in the images which have interesting properties. Global descriptors

provide high level description of the object shape. As a result, global descriptors

can be used without previous image segmentation. In this way object segmentation

in video sequences is attained, even if the object in question is partially occluded.

1.3.2 3D applications

Some applications of 3D shape descriptors can be found in medicine. The object

classification framework presented by Atmosukarto et al. (2010) has proved its use-

fulness for medical applications. The frameworks extracts low level features from a

given 3D shape and identifies points of interest on the object’s surface. The classifier

learns the features of these points of interest and maps them to a 2D plane. The 2D

is then used to train a classifier which is used on craniofacial data to detect 22q11.2

deletion syndrome3 and deformational plagiocephaly4, obtaining classification accu-

racy comparable to that of medical experts.

Probably the most common application of 3D shape descriptors is constructing

3Also known as DiGeorge Syndrome, this is a disorder caused by the deletion of a small piece of
chromosome 22. Symptoms may include mild differences in facial features. http://www.medic8.

com/genetics/
4Also known as Flathead Syndrome, this is a condition characterised by a flattening on one side

of the back of the head. http://www.londonorthotics.co.uk/plagiocephaly/deformational.
html
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3D model retrieval applications (i.e. 3D search engines). A comprehensive survey

and comparison of various feature based methods for 3D retrieval was presented by

Bustos et al. (2005). The authors highlight the importance of rotation, translation,

reflection and scale invariance for the shape descriptors used to create feature vec-

tors. The need for robustness with respect to level of detail and geometry is also

highlighted. The authors also point out two criteria to be considered to evaluate

3D search engines: effectiveness, i.e. retrieve models which are most relevant to the

given search; and efficiency, i.e. each query to the database should be responded as

quickly as possible.
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Figure 1.2: Structure of a typical image retrieval system. An image or 3D model is

taken as input; relevant features are extracted using shape descriptors and collected

in a feature vector; neighbouring objects in the feature space are considered to be

similar to the input image.

Figure 1.2 shows the basic design of typical 3D retrieval applications: an image

(3D model) is taken as an input to the system; a feature extraction process is applied

to the image; a feature vector is formed using quantitative descriptors which are

representative of the shape; the feature vector is used to search for other shapes in

the feature space which are close by, under the assumption that they will be similar

to the input image.

A 3D model retrieval based on spatial structure was developed by Gao et al.

(2010). This 3D model retrieval system uses 2D images to describe spatial infor-

mation of 3D models. In this way every 3D model is represented by a set of 2D

images, which are called spatial structure circular descriptor images (SSCD images).

Histogram information is then used to compare SSCDs and find similarities between

3D models.

26



1.3. Shape descriptor applications

Another 3D model retrieval which is based on 2D view point images was devel-

oped by Li et al. (2010). This retrieval system uses a set of 2D view point images

to represent each 3D model. Different number of view point images and camera

settings are used to create the image set for each 3D model. A quasi-histogram

from each of the view is converted into a sequence of states and a Markov Chain

is utilised for modeling the views from each 3D model. In order to convert the

quasi-histogram into a sequence of states, each bin of the histogram is treated as an

independent random variable with exponential distribution. Once the 3D objects

have been characterised by the Markov Chain, Li et al. used the Kullback-Leibled

divergence to determine the distance between two objects. These distances are then

used to retrieve the 3D objects from the database.

The 3D model retrieval system developed by Vranić and Saupe (2001) is based

on a descriptor which uses 3D Fourier Transform. The 3D model is characterised

by feature vectors extracted using the 3D DFT. Similar objects are represented

by neighbouring points in the feature space. The method proposed improves the

performance of the retrieval process over previous approaches.

A descriptor based on Fourier series (FSD) was presented by Lmaati et al. (2010)

and used to develop a 3D search engine. 3D models are represented by means of

3D closed curves and feature vectors are extracted using the Fourier series. The

FSD are invariant with respect of translation, rotation, flipping and scaling, and

also robust to noise and level of detail. Similar to the model retrieval presented by

Vranić and Saupe, the feature vectors are used to search the database for similar

3D objects.

The 3D search engine developed by Funkhouser et al. (2003) (a Google for 3D

models, as the authors call it) provides several methods for performing searches:

3D sketches, 2D sketches, 3D models and text keywords. Spherical harmonics are

used to measure similarity between objects when a 3D model is provided as a query.

The search engine is fast enough to be used for web based searches. The results

presented by the authors suggest that a combination of shape and relevant text can

provide positive results for 3D object searches.

When the canonical orientation of an object is unknown, principal component

analysis (PCA) is normally used to determine the orientation of an object; this is

known as pose normalisation. The shape descriptor presented by Lian et al. (2009)

can be used for pose normalisation as well, in many instances performing better that

PCA. Both methods are combined into an algorithm which achieves better accuracy.

One area where 3D applications have a great potential is in medicine. The shape

descriptor presented by Feng et al. (2008) uses the relative angle distribution at each
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vertex point of a 3D surface (represented in a mesh format) and establishes a point

correspondence between two models. The relative angle distribution is measured

with respect to a reference frame, calculated from principal components analysis.

This descriptor can be used as a similarity measure for 3D models of symmetric

organs such as the liver, stomach and head. Shen and Makedon (2006) also mentions

the use of high quality 3D images for diagnosis in medical applications.

Another example where 3D shape descriptors have been successfully applied is

for detecting shape similarities in 3D video sequences (Huang et al., 2010). Video

frames from the 3D video sequence with similar shape and motion are detected. The

shapes detected include people with loose clothing performing complex motions, and

despite the difficulty of such scenario good results are achieved.

1.4 Thesis context

As it can be seen from Section 1.3, shape descriptors have a wide range of applica-

tions. Chapters 2 to 6 of this thesis introduce some novel shape descriptors which

can be applied to various applications in the same way as described above.

The main contribution of this thesis is the development of 2D and 3D shape

descriptors suitable for implementation in 2D and 3D image processing applications.

Each chapter provides some examples to illustrate how the developed descriptors

can be applied. Notice that the examples provided in each chapter are meant as an

illustration of the possible applications and not as a definitive guide of application.

As with all shape descriptors, these can be applied to a variety of applications, on

their own or in combination with other descriptors.

1.4.1 Thesis structure

The rest of the thesis is structured as follows: Chapter 2 introduces two shape ori-

entation methods which use different shape features to calculate shape orientation.

Specific features, like high curvature points, may be made more or less relevant to

the computed orientation depending on a weighting parameter. Chapter 3 intro-

duces a linearity measure: a 2D shape descriptor which provides an indication of

how similar an open curve segment is to a straight line segment. This method can

also be applied to closed curves. Chapter 4 introduces two 3D shape descriptors:

compactness and cubeness. These descriptors work as a similarity measure with

a sphere and a cube respectively. Chapter 5 modifies the compactness and cube-

ness measures to include different weighting parameters. The behaviour of the 3D
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descriptors can be modified by tuning these weighting parameters. Chapter 6 in-

troduces another 3D shape descriptor: octahedroness measures. This descriptor is

derived in a similar way as those presented in Chapter 4, but a different distance

metric (city block distance) is used to derive this measure. Chapter 7 concludes

with a summary of the thesis and outlining some lines of future research.

1.4.2 List of publications

The work in this thesis has been submitted to various journals. The following is a

list of conference and journal articles already published or under review:

• Martinez-Ortiz, C. and Žunić, J. (2008). Points position weighted shape ori-

entation. Electronics Letters, 44(10):623–625

• Žunić, J. and Martinez-Ortiz, C. (2009). Linearity measure for curve segments.

Applied Mathematics and Computation, 215(8):3098–3105

• Martinez-Ortiz, C. and Žunić, J. (2009). Measuring cubeness of 3d shapes.

In CIARP ’09: Proceedings of the 14th Iberoamerican Conference on Pattern

Recognition, volume 5856/2009 of LNCS, pages 716–723, Berlin, Heidelberg.

Springer-Verlag

• Martinez-Ortiz, C. and Žunić, J. (2010a). Curvature weighted gradient based

shape orientation. Pattern Recognition, 43(9):3035–3041

• Žunić, J., Hirota, K., and Martinez-Ortiz, C. (2010a). Compactness measure

for 3d shapes. Submitted

• Martinez-Ortiz, C. and Žunić, J. (2010b). A family of cubeness measures.

Submitted

• Martinez-Ortiz, C. and Žunić, J. (2010c). Measuring cubeness in the limit

cases. Submitted

• Martinez-Ortiz, C. and Žunić, J. (2010d). Tuneable cubeness measures for 3d

shapes. Submitted
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Chapter 2

Shape Orientation Methods

This chapter includes material from:

Martinez-Ortiz, C. and Žunić, J. (2008). Points position weighted shape orientation.
Electronics Letters, 44(10):623–625

and

Martinez-Ortiz, C. and Žunić, J. (2010a). Curvature weighted gradient based shape
orientation. Pattern Recognition, 43(9):3035–3041

2.1 Introduction

Image normalisation is a common task during the pre-processing stage of image

processing applications. Image normalisation helps us define a reference frame for

images, so they can be processed with respect of such reference frame. Some of the

tasks which take place during image normalisation process are: positioning, scale

normalisation and orientation normalisation (a.k.a. pose normalisation or simply

shape orientation).

Shape orientation consists of rotating the shape by a given angle so it is oriented

in a standard or canonical orientation. It is important to have shapes in a canonical

orientation, for example, for matching applications; a given shape S and a rotated

copy R(S, θ) can only be identified as being identical once they have been rotated

to their canonical orientation.

Some shapes have a clear and easily distinguishable axis of orientation, for ex-

ample it would be easy to orient a rectangle or an ellipse using their longest axis as

axis of orientation. However some other shapes may not have such a clear axis of

orientation. One example of such shapes are rotationally symmetric shapes, which

have multiple possible axes of orientation. A shape is said to be rotationally sym-

metric when it is identical to itself when rotated by an angle θ. More specifically, a
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shape S is n-fold rotational symmetric when it is identical to R(S, 2π/n) for n > 1

and n ∈ Z+.

There are several methods for computing the orientation of a shape, each of them

with its own strengths and weaknesses; a method which performs outstandingly for

one application may have a poor performance for a different application.

This chapter introduces two alternative methods for computing shape orienta-

tion. The first method is an area based method which computes the orientation

modifying the impact of each individual shape point depending on its position with

respect of the shape centroid. The second method is a boundary based method which

gives different impact to boundary points depending on the boundary curvature at

that point.

2.2 Existing orientation methods

This section reviews some of the orientation methods which are relevant to the

developed methods presented later in this chapter. An understanding of the existing

methods is necessary to be able to understand the motivation for developing new

methods and, to some extent, because they are the basis used to develop the new

methods.

2.2.1 Standard method

The most standard definition of orientation is the axis of least second moment of

inertia (Jain et al., 1995). This method of orientation says that the orientation of

an object is given by the line which minimises the sum of squared distance of points

belonging to the shape to the line. More formally the standard orientation method

is defined as follows:

Definition 2.1. The orientation of a given shape S is defined by the line which

minimises the integral:

I(θ, S, ρ) =

∫∫
S

r2(x, y, θ, ρ)dxdy (2.1)

where r(x, y, θ, ρ) is the perpendicular distance from the point (x, y) to the line given

in the form x · sin θ − y · cos θ = ρ.

It is well known that the axis of least second moment of inertia passes through

the centroid (x̄, ȳ) of the shape. By assuming that the centroid of the shape coincides
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with the origin (i.e. (x̄, ȳ) = (0, 0)), the axis of least second moment of inertia is

given by x · sin θ− y · cos θ = 0. The squared distance from any given point (x, y) to

such line is then (x · sin θ − y · cos θ)2 and so in order to compute the orientation of

S we have to minimise the function:

Fst(θ, S) =

∫∫
S

(x · sin θ − y · cos θ)2dxdy (2.2)

The orientation of shape S, computed by the standard method, is then given

by the angle θ∗std which minimises Fst(θ, S). Figure 2.1 illustrates this concept: the

orientation of shape S is given by the line with slope θ∗std which minimises Fst(θ, S)

as it can be seen in the graph on (b).

B

A
(x̄, ȳ)

θiθ∗std

(a) Shape S and lines with angles θi and θ∗std
going through its centroid (x̄, ȳ).
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(b) Function Fst(θ, S) for θ ∈ (0, 2π).

Figure 2.1: A shape S and its function Fst(θ, S) for θ ∈ (0, 2π). In (a), the distances

from points A and B to the lines with angles θi and θ∗std which goes through its

centroid are marked with dashed lines. The orientation of S is given by θ∗std which

minimises Fst(θ, S); the point Fst(θi, S) for the line with slope θi in (a) is also marked.

In order to find the angle θ∗std which minimises the function Fst(θ, S), we set the

first derivative dFst(θ, S)/dθ = 0. This allows for the derivation of a simple closed

formula as shown in the following Lemma:

Lemma 2.1. The angle θ∗std then satisfies the following equation:

tan(2θ∗std) =
2 · µ1,1(S)

µ2,0(S)− µ0,2(S)
(2.3)
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Proof. The first derivative of Fst(θ, S) is:

dFst(θ, S)

dθ
=

=
d

dθ

∫∫
S

(x · sin θ − y · cos θ)2dxdy


=

d

dθ

∫∫
S

(x2 · sin2 θ − xy · sin(2θ) + y2 · cos2 θ)dxdy


=

∫∫
S

(2x2 · sin θ cos θ − 2xy · cos(2θ)− 2y2 · cos θ sin θ)dxdy

= sin(2θ)

∫∫
S

x2dxdy − cos(2θ)

∫∫
S

2xydxdy − sin(2θ)

∫∫
S

y2dxdy

The point in which function Fst(θ, S) reaches its minimum (i.e. θ∗std) satisfies

dFst(θ, S)/dθ = 0 so we have:

dFst(θ, S)

dθ
= 0

sin(2θ∗std)

∫∫
S

x2dxdy −
∫∫
S

y2dxdy

 = cos(2θ∗std)
∫∫
S

2xydxdy

sin(2θ∗std)
cos(2θ∗std)

=

2 · ∫∫
S

xydxdy∫∫
S

x2dxdy − ∫∫
S

y2dxdy

tan(2θ∗std) =
2 · µ1,1(S)

µ2,0(S)− µ0,2(S)

2.2.1.1 Alternative definition

From Definition 2.1 it appears to be that the contribution of any point P = (x, y)

to Fst(θ, S) is independent of the distance from that point to the shape centroid

C = (x̄, ȳ). Looking at equation (2.2) each point of the shape contributes by (x ·
sin θ − y · cos θ)2 to the function Fst(θ, S). In order to clarify the impact that

the position of any point has on the contribution of that point to the computed

orientation, the following alternative definition is given:

Definition 2.2. The orientation of a given shape S is defined by the angle θ∗alt
which maximises the integral of the squared length of projections of all lines from

shape points to the centroid of the shape C, onto a line having the slope θ.
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2.2. Existing orientation methods

More formally, prθCP is the projection of the line segment CP onto a line with

slope θ and |prθCP | is the length of such projection. Then, the orientation of S is

determined by the angle θ∗alt which maximises:

Falt(θ, S) =

∫∫
P∈S

|prθCP |2dxdy. (2.4)

This alternative definition gives lower influence to points which are close to the

shape centroid while giving higher influence to points which are far away. The

following lemma shows that Fst(θ, S) and Falt(θ, S) are equivalent.

Lemma 2.2. Definition 2.1 and Definition 2.2 are equivalent and lead to the same

computed orientation.

Proof. Given a point P = (x, y) ∈ S, the square length of the projection of the line

CP onto a line with slope θ is |prθCP |2 = (x · cos θ+ y · sin θ)2. Thus, Falt(θ, S) can

be re-expressed as:

Falt(θ, S) =

∫∫
S

(x · cos θ + y · sin θ)2dxdy (2.5)

Adding equations (2.2) and (2.5) together gives:

Fst(θ, S) + Falt(θ, S) =

=

∫∫
S

(x · sin θ − y · cos θ)2dxdy +

∫∫
S

(x · cos θ + y · sin θ)2dxdy

=

∫∫
S

x2dxdy +

∫∫
S

y2dxdy (2.6)

which is constant and does not depend on θ. It can be concluded that Fst(θ, S)

reaches its minimum at the same point where Falt(θ, S) reaches its maximum, and

this completes the proof.

As it has been mentioned before, rotationally symmetric shapes can not be ori-

ented by the method given in Definition 2.1. For this reason an alternative method

of orientation was developed, which deals with rotationally symmetric shapes (Tsai

and Chou, 1991): The line that minimises the N -th order moment of inertia IN can

be used to orient an n-fold rotationally symmetric shapes for N ≥ n.
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Chapter 2. Shape Orientation Methods

2.2.2 Boundary based standard method

The orientation method given in Definition 2.1 and Definition 2.2 compute the shape

orientation from surface information. An alternative method, which uses boundary

information only, can be defined analogously:

Definition 2.3. The orientation of a given shape boundary ∂S is defined by the line

which minimises the integral:

I(l)(θ, ∂S, ρ) =

∫
∂S

r2(x(s), y(s), θ, ρ)ds (2.7)

of square distances of the boundary points to a line with slope θ and which goes

through the shape centroid.

In this case, the orientation of the shape boundary ∂S can be determined by the

angle θ∗bb which minimises:

F
(l)
st (θ, ∂S) =

∫
∂S

(x(s) · sin θ − y(s) · cos θ)2ds (2.8)

Similar to equation (2.3), the angle θ∗bb which minimises such function satisfies

the following equation:

tan(2θ∗bb) =
2 · ∫

∂S
xyds∫

∂S
x2ds− ∫

∂S
y2ds

=
2 · µ(l)

1,1(∂S)

µ
(l)
2,0(∂S)− µ(l)

0,2(∂S)
(2.9)

The proof is analogous to that of Lemma 2.1 and thus its omitted.

2.2.3 Orientation from boundary edge projections

An alternative boundary based method was introduced by Žunić and Stojmenović

(2008) which defines the orientation of a polygonal boundary ∂S as the line with

slope θ∗pr which maximises the total sum of squared lengths of projections of shape

edges onto such line. More formally:

Definition 2.4. (Žunić and Stojmenović, 2008) Let ∂S be the polygonal boundary

of a given shape. The orientation of ∂S is defined by the angle θ∗pr which maximises:

Fpr(θ, ∂S) =
N∑
i

|prθei|2 (2.10)

where ei are each of the N edges of ∂S.
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2.3. Weighted shape orientation methods

Then angle θ∗pr for which function Fpr(θ, ∂S) reaches its maximum satisfies the

following equation:

tan(2θ∗pr) =

∑N
i=1 |ei|2 · sin(2θi)∑N
i=1 |ei|2 · cos(2θi)

(2.11)

where θi is the angle between the edge ei and the x-axis.

The method in given by Definition 2.4 could not be applied to shapes with curved

boundaries. A modification is also given by Žunić and Stojmenović which can be

applied to shapes with smooth boundaries:

tan(2θ∗sb) =

2 ·
∫ b

a

x′(s)y′(s)√
x′(s)2y′(s)2

ds∫ b

a

x′(s)2 − y′(s)2√
x′(s)2y′(s)2

ds

(2.12)

where
−−−−−−−−→
(x′(s), y′(s)) is tangent vector at point (x(s), y(s)) of the boundary of ∂S

given in parametric form. Figure 2.2 illustrates the projection of the vector tangent

to a boundary point onto a line.

θ

−−
−−
−−
−−
→

(x
′ (s

),
y

′ (s
))

pr θ

−−−
−−−
−−→

(x
′ (s)

, y
′ (s)

)

Figure 2.2: The vector
−−−−−−−−→
(x′(s), y′(s)) is tangent to the boundary of S at point

(x(s), y(s)) and prθ
−−−−−−−−→
(x′(s), y′(s)) is its projection onto the line with slope θ.

2.3 Weighted shape orientation methods

This section introduces two new methods which compute the orientation of a shape

taking into account specific shape characteristics. The first method is an area based

method which takes into account the position of individual points with respect to the

centroid and modifies its contribution to the computed orientation accordingly. The
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Chapter 2. Shape Orientation Methods

second method is a boundary based method which takes into account the boundary

curvature at every boundary point and modifies its contribution to the computed

orientation accordingly.

The behaviour of both methods can be adjusted depending on the parameters

given. Their behaviour can highlight or suppress specific features of the shapes.

This may be desirable in certain cases, but might not be suitable in all cases. Some

previous knowledge of the data to which the orientation method will be applied

is assumed. The orientation method must then be carefully selected to fulfil the

specific needs of the application.

2.3.1 Position weighted orientation

As it has been mentioned in section 2.2.1.1, the impact that each individual point

has on the orientation computed by the standard method depends on their distance

to the origin. In this section Definition 2.1 is modified to enable control on the

impact each point has on the orientation computed. The modified point position

dependant orientation method is defined as follows:

Definition 2.5. Let a given shape S and fixed δ < 3/2. The orientation of S is

defined by the angle θ∗pw that maximises the function:

Fδ(θ, S) =

∫∫
P∈S

|prθCP |2
(x2 + y2)δ

dxdy

=

∫∫
S

(x · cos θ + y · sin θ)2

(x2 + y2)δ
dxdy (2.13)

The value of δ < 3/2 is assumed to preserve the existence of the integral in equation

(2.13).

Under the new definition, any given point P = (x, y) ∈ S contributes to the

function Fδ(θ, S) by
(x · cos θ + y · sin θ)2

(x2 + y2)δ
. Similar to equation (2.3), the angle

θ∗pw which maximises Fδ(θ, S) can be found by setting the first derivative to zero

(dFδ(θ, S)/dθ = 0) and such angle satisfies the following equation:

tan(2θ∗pw) =

2 ·
∫∫
S

xy

(x2 + y2)δ
dxdy

∫∫
S

x2 − y2

(x2 + y2)δ
dxdy

(2.14)
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2.3. Weighted shape orientation methods

The proof is analogous to that of Lemma 2.1 and thus its omitted.

Obviously for δ = 0 equation (2.14) is equivalent to equation (2.3). In other

words, the standard orientation method is a particular case of the point position

dependant method with δ = 0. Table 2.1 summarises the effect that different values

of δ have on the influence given to points, depending on their distance from the

centroid.

Effect on influence given to each point.

δ = 0 Higher influence is given to points which are far

away from the centroid (standard method).

δ < 1 Higher influence is given to points which are far

away from the centroid.

δ = 1 All points are given equal influence, regardless of

their distance from the centroid.

δ ∈ (1, 3/2) Higher influence is given to points which are close

to the centroid.

Table 2.1: The value of δ will have an effect on the influence given to each point

of S over the computed orientation. The value of δ should be carefully selected

depending on the desired effect.

Table 2.1 provides some indication of how the choice of values for δ may modify

the behaviour of the computed orientation. The selection of δ should be made

depending on the behaviour required by a particular application, based on the nature

of the shapes it will be dealing with.

For example, assume that the shape to be oriented is an airplane and that the

most important features are the wings, which are located away from the main body

(centroid) of the object. In this case δ < 0 could be selected. On the other hand,

assume that the shape to be oriented is a watch, where the most important feature is

the (shorter) hour hand; in this case a value of δ ∈ (1, 3/2) might be more suitable.

As it is mentioned in Definition 2.5 it is assumed that δ < 3/2. This is done to

preserve the integration in equation (2.13). However, it could also be interpreted

from its geometric meaning: for δ ∈ (1, 3/2), higher influence is placed on points

closer to the centroid, getting closer to the centroid as δ → 3/2; δ can never reach

δ = 3/2, because this would mean highest influence is given to a centroid. This would

be meaningless, because the orientation of a single point can not be determined.

Thus δ should remain bound to keep geometric meaning.
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2.3.2 Curvature weighted orientation

The method presented in this section considers the tangent vectors at every point of

the shape boundary and their projections onto a line. In order to control the impact

that each boundary point has on the computed orientation a function of curvature

is proposed as a weighting factor. It is reasonable to assume that in some situations

the orientation should be more influenced by long flat boundary segments (i.e. low

curvature points) and in other situations higher influence should be given to points

where the line changes direction rapidly (i.e. high curvature points). Notice that

this orientation method does not require the shape boundary to be a closed curve,

so it can also be applied to open curve segments.

First let us note that for all appearing boundaries, it is assumed that the length

of tangent vector
−−−−−−−−→
(x(s)′, y(s)′) and that the boundary length are normalised, such

that |−−−−−−−−→(x(s)′, y(s)′)| = 1 and s ∈ [0, 1].

Also note that for a given shape boundary ∂S given in parametric form, the

curvature at point (x(s), y(s)) is given by:

κ(s) =
|x′(s)y′′(s)− y′(s)x′′(s)|

(x′(s)2 + y′(s)2)3/2
. (2.15)

Such equation for computing the curvature at a given point, assumes the bound-

ary to be given in parametric form and also that the first and second derivative

of such boundary are known, which may not always be the case. Alternative algo-

rithms based on Digital Straight Segments (DSS) are used instead to estimate the

curvature (Hermann and Klette, 2007).

Now, the curvature weighted orientation method is defined as follows:

Definition 2.6. Given the boundary of a shape ∂S given in parametric form, lets

assume a function of curvature f(κ(s)). The orientation of ∂S is given by the line

with slope θ∗κ that maximises the integral:

Fκ(θ, ∂S) =

∫
∂S

f(κ(s)) · |prθ
−−−−−−−→
(x(s), y(s))|2ds (2.16)

of squared length of projection of tangent vectors of ∂S on the line, weighted by the

curvature at the point corresponding to the tangent vector.

Again similar to equation (2.3), the angle θ∗κ which maximises Fκ(θ, ∂S) can be

found by setting dFκ(θ, ∂S)/dθ = 0 and such angle satisfies the following equation:

tan(2θ∗κ) =
2 · ∫

∂S
f(κ(s)) · x′(s)y′(s)ds∫

∂S
f(κ(s)) · (x′(s)2 − y′(s)2)ds

. (2.17)
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2.3. Weighted shape orientation methods

The proof is analogous to that of Lemma 2.1 and thus its omitted.

Although any function of curvature can be used as weighting function f(κ(s)),

for the scope of our experiments the 3 curvature weighting functions shown in Table

2.2 are used. A short comment is provided as a brief explanation of the effect each

weighting function has, depending on the curvature. Notice that two of the weighting

functions have additional parameters, α and β, which allows enhancing or dimin-

ishing the produced effect. Also notice that weighting function f(κ(s)) = 1 causes

equation (2.17) to be equivalent to equation (2.12), given that |−−−−−−−−→(x(s)′, y(s)′)| = 1

was assumed.

Function Comment

f(κ(s)) = 1 All points are weighted equally.

f(κ(s)) = κ(s)α Gives high weight to high curvature points when α > 0.

f(κ(s)) = e−β·κ(s) Gives high weight to low curvature points when β > 0.

Table 2.2: Curvature weighting functions used for the experiments in this chapter.

Functions of curvature could be specially designed to produce different behaviours.

0 1 2
0

2

4

θ*
std

=66.5°

(a) Standard
method

0 1 2
0

1

2

3

4

θ*
κ=57.75°

(b) f(κ(s)) = 1

0 1 2
0

1

2

3

4

θ*
κ=11.5°

(c) f(κ(s)) = κ(s)2
0 1 2

0

1

2

3

4

θ*
κ=71°

(d) f(κ(s)) = e−2·κ(s)

Figure 2.3: Computed orientation of parabola segment using different curvature

weighting functions f(κ(s)) to illustrate the effect of each function.

In order to illustrate the effect different curvature weighting functions have, lets

take the parabola segment (x, x2), x ∈ [0, 2] and compute its orientation using dif-

ferent curvature weighting functions. Figure 2.3 shows the computed orientation

values for the different weighting functions: using the standard boundary based

method given by equation (2.9), we get an orientation of 66.5◦; using weighting
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function f(κ(s)) = 1, we get an orientation of 57.75◦; using weighting function

f(κ(s)) = κ(s)2, a higher influence is given to high curvature points which are

found close to the base of the parabola and thus an orientation of 11.5◦ is given;

finally, using weighting function f(κ(s)) = e−2·κ(s), a higher influence is given to low

curvature points which are found towards the top of the parabola segment and thus

the given orientation is 71.0◦.

2.3.2.1 Modification for rotationally symmetric shapes

By looking at equation (2.9) it is easy to see that the standard boundary based

method given by Definition 2.3 can not give an orientation for shapes which satisfy

the following:

µ
(l)
1,1(∂S) = 0 and µ

(l)
2,0(∂S)− µ(l)

0,2(∂S) = 0 (2.18)

Such is the case for n-fold rotationally symmetric shapes (for n > 2), as shown in

the following Lemma:

Lemma 2.3. Assume an n-fold rotationally symmetric shape, with n > 2. Then

function Fκ(θ, ∂S) is constant, for any weighting function f(κ(s)) and independent

of θ.

Proof. If we assume that Fκ(θ, ∂S) is not a constant function then, because of the

symmetry assumed , it should have at least 2n strict maxima and 2n strict minima.

Because:

dFκ(θ, ∂S)

dθ
=

= 2 ·
∫
∂S

f(κ(s)) · (x′(s) cos θ + y′(s) sin θ)(−x′(s) sin θ + y′(s) cos θ)ds

= 2 cos(2θ) ·
∫
∂S

f(κ(s)) · x′(s)y′(s)ds− 2 sin(2θ) ·
∫
∂S

f(κ(s)) · (x′(s)2 − y′(s)2)ds

can not have more than two strict maxima and two strict minima (differing by 180◦).

Then Fκ(θ, ∂S) not being constant would be a contradiction.

Following the idea from Tsai and Chou (1991), the orientation method can be

modified to overcome the problem of non-orientability of symmetric shapes. By

increasing the exponent of Fκ(θ, ∂S), we arrive to the following definition:

Definition 2.7. The orientation of a shape boundary ∂S is given by the angle θ∗κM
which maximises the function:

Fκ,2M(θ, ∂S) =

∫
∂S

f(κ(s)) · |prθ
−−−−−−−→
(x(s), y(s))|2Mds (2.19)
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2.3. Weighted shape orientation methods

with M > 1.

Definition 2.7 gives a boundary based, curvature weighted, orientation method

which can be used to calculate the orientation of rotationally symmetric shapes.

Increasing the order of Fκ,2M(θ, ∂S) allows to compute the orientation of n-fold

rotationally symmetric shapes. This method uses M -th order central moments of

inertia to compute such orientation. Tsai and Chou (1991) showed that for an n-fold

rotationally symmetric shape, its M -th order central moment of inertia is constant

about any line going through the centroid of such shape for any M less than n.

Therefore, M ≥ n is required for Fκ,2M(θ, ∂S) to be able to compute orientation.

Unfortunately it is not possible to derive a closed formula for his method so numerical

computation is required, which is more computationally expensive.

2.3.2.2 Reliability of computed orientation

Using the orientation methods presented in this chapter, the computed orientation

of a given shape is said not to be reliable if no clear maxima (minima) can be found

for the optimisation function used in that method. For the shapes in Figure 2.4 the

standard boundary based method gives an orientation which is not reliable. The

optimisation function F
(l)
st (θ, ∂S) (from equation (2.8)) varies between 0.0026 and

0.0060, therefore the corresponding graph (see Figure 2.4(a)) is an almost flat line.

Since the standard method does not give a distinct orientation, small deviations on

the shape boundary (caused by the noise or the digitisation process applied) could

lead to an essential deviation of the computed orientation.

Standard method f(κ(s)) = 1 f(κ(s)) = κ(s)1.5 f(κ(s)) = e−1.5κ(s)

(a) – 97.40◦ 89.29◦ 45.84◦

(b) – 103.13◦ 51.57◦ 66.37◦

(c) – 85.94◦ 108.86◦ 45.84◦

Table 2.3: Curvature weighted orientation of shapes in Figure 2.4. Notice that

orientation given by the standard method is not given because no clear orientation

can be given.

As mentioned in section 2.3.2.1, second order moments (i.e. µ
(l)
1,1, µ

(l)
2,0 and µ

(l)
0,2)

are crucial in computing orientation by the standard boundary based method. Table

2.4 shows the second order moments for the shapes in Figure 2.4. These values imply

that the optimisation function F
(l)
st (θ, ∂S) is almost flat (i.e. constant), and thus it
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0 2π
0

0.5

1

(a) 0% noise

0 2π
0

0.5

1

(b) 3% noise

0 2π
0

0.5

1

(c) 7% noise

Standard Method
f(κ(s))=1

f(κ(s))=κ(s)1.50

f(κ(s))=e−1.20κ(s) 

Figure 2.4: Windmill with different levels of noise. The graph below each windmill is

the optimisation function Fκ(θ, ∂S) maximised to find the orientation of the shape.

Notice that all optimisation function have been normalised.

is expected that the standard boundary based method will not perform well on this

example.

µ
(l)
1,1 |µ(l)

2,0 − µ(l)
0,2|

Figure 2.4(a) 0.000135 −0.003466

Figure 2.4(b) 0.000095 −0.004299

Figure 2.4(c) −0.000025 −0.005772

Table 2.4: Second order moments of shapes in Figure 2.4. Notice that these val-

ues are very close to zero and thus no maxima can be reliably found for function

F
(l)
st (θ, ∂S).

However, the curvature weighted orientation method can produce a reliable ori-

entation. Using the weighting function f(κ(s)) = e−1.5κ(s) produces reliable orien-

tation, although not completely unaffected by noise. As it can be seen on Figure

2.4 the graphs of function Fκ(θ, ∂S) using such weighting function (see dashed line)

have easily distinguishable maxima which implies that the computed orientation is

reliable. In this way the noise effects are minimised.

On the other hand, if we use weighting functions which give higher weight to

high curvature points, then the computed orientations are expected to be highly

dependent on the noise. This is exactly what happens when using f(κ(s)) = κ(s)1.5:

the computed orientation changes dramatically when noise is added.
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2.4 Examples

This section features a compilation of examples which illustrate the different ori-

entation methods presented in this chapter. Each one of the methods has special

characteristics and may be better suited for specific task. Therefore, in order to bet-

ter illustrate the type of scenario in which each method might be preferred, specific

examples have been selected to highlight the strengths of each orientation method.

2.4.1 Position weighted orientation

The orientation method given by Definition 2.5 gives different weight to shape points

depending on their position with respect of the shape centroid. For this example we

use some images which have part of their mass (i.e. a large number of points) away

from the centroid. These images are shown in Figure 2.5 and their orientation for

different values of δ is summarised in Table 2.5.

(a) (b) (c) (d)

Figure 2.5: Shapes with part of their mass located away from the centroid.

(a) (b) (c) (d)

δ = −1.4 104.2◦ 92.6◦ 44.8◦ 34.8◦

δ = −1.2 104.6◦ 93.4◦ 46.4◦ 34.2◦

δ = −1.0 104.8◦ 95.2◦ 48.6◦ 33.6◦

δ = −0.5 106.0◦ 170.2◦ 58.4◦ 31.6◦

δ = 0.0 107.8◦ 177.8◦ 75.8◦ 29.0◦

δ = 0.5 110.8◦ 178.8◦ 90.2◦ 25.4◦

δ = 1.0 118.4◦ 179.2◦ 95.0◦ 20.4◦

δ = 1.2 126.4◦ 179.2◦ 93.6◦ 18.0◦

δ = 1.4 141.2◦ 178.4◦ 84.2◦ 15.4◦

Table 2.5: Orientation of shapes in Figure 2.5 for different values of δ.

Take for example the axe in (a): for lower values of δ (e.g. δ = −1.4) its
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orientation is more influenced by the handle because the points in the handle are

further away from the centroid; on the other hand larger values of δ (e.g. δ = 1.4)

give higher impact to points belonging to the blade because they are closer to the

centroid.

Similarly happens with the building in (b): orientation computed using low

values of δ are influenced by the tower, giving a near vertical orientation, while

using larger values of δ gives a nearly horizontal orientation due to the influence of

the building’s main body.

The human torso in (c) has its orientation influenced by the arms for low values

of δ, being oriented at roughly 45◦ while, for larger values of δ, it is the waist that

has highest influence on the computed orientation. Probably the most intuitive

orientation is achieved for δ = 0.5 with a computed orientation of 90.2◦.

Finally, the dinosaur in (d) has its orientation influenced by its neck for low

values of δ, while the back is probably most influential for larger values of δ.

2.4.2 Curvature weighted orientation

The orientation method given by Definition 2.6 gives different weight to boundary

points depending on the curvature of the boundary. The examples in this section

show how different weighting functions can be applied in order to give more influence

to particular shape characteristics.

Note: Since the equation of the shapes used for these experiments is unknown,

curvature can not be estimated using the formula in equation (2.15). Instead, cur-

vature is estimated using the method suggested by Hermann and Klette (2007).

2.4.2.1 Human femurs

In this example the orientation of a human femur is computed, showing how the

straight segments of the bone can be used to orient the shape. The standard bound-

ary based method gives inconsistent orientations: 107.0◦, 120.4◦ and 131.0◦. Giving

equal weight to all boundary points (using f(κ(s)) = 1), which produces better

results but still unsatisfactory.

Due to the straight nature of the femur shape, it could be expected that straight

segments (i.e. segments of low curvature) could be more influential to determine the

orientation. The curvature function f(κ(s)) = e−β·κ(s) does exactly that: it gives

higher influence to low curvature points (see Table 2.2). By setting β = 0.05 an

orientation of 91.7◦ is achieved for all 3 shapes which matches our expectation.
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(a) (b) (c)

Figure 2.6: The bone from (a) is cut to a shorter length in (b) and then cut even

shorter in (c). In this case, it would be preferable for the bone socket to have

low influence on the computed orientation, and have the orientation being mainly

determined by the straight bone segment.

standard method f(κ(s)) = 1 f(κ(s)) = e−0.01·κ(s) f(κ(s)) = e−0.05·κ(s)

(a) 107.0◦ 91.7◦ 91.7◦ 91.7◦

(b) 120.4◦ 95.0◦ 95.0◦ 91.7◦

(c) 131.0◦ 97.4◦ 97.4◦ 91.7◦

Table 2.6: Curvature weighted orientation of shapes in Figure 2.6. The change in

length greatly affects the computed orientation.

2.4.2.2 Hand written numbers

The next example illustrates how the method can be applied to open end curves, like

hand-written numbers. Notice that these objects are linear in their nature (i.e. they

have no surface) and thus area based methods may not be applied for computing

their orientation.

When using weighting function f(κ(s)) = κ(s)2 most numbers displayed in Fig-

ure 2.7 are given an almost horizontal orientation, which is actually our preference.

The use of other weighting functions (f(κ(s)) = 1 and f(κ(s)) = e−0.1·κ(s)), as well

as the use of the standard method, leads to a number of distinctive orientations. For

example, using weighting function f(κ(s)) = e−0.1·κ(s), the computed orientation of

number ‘2’ is in the range [20.5◦, 63.0◦] and the computed orientation of number ‘3’

is in the range [−4.8◦, 20.5◦].

This small example illustrates how different weighting functions can be applied

for different tasks. For example, κ(s)2 could be used to align all numbers, while by

additionally considering e−0.1·κ(s) we could differentiate between numbers ‘2’ and ‘3’.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.7: Five samples of hand-written numbers 2 and 3 are presented with dif-

ferent hand writing styles.

standard method f(κ(s)) = 1 f(κ(s)) = κ(s)2 f(κ(s)) = e−0.1·κ(s)

(a) 115.1◦ 54.9◦ 3.4◦ 63.0◦

(b) 65.1◦ 37.7◦ 0.0◦ 43.5◦

(c) 118.3◦ 20.5◦ −2.4◦ 32.0◦

(d) 127.4◦ 17.2◦ 0.0◦ 20.5◦

(e) −14.4◦ 28.7◦ 0.0◦ 28.7◦

(f) 119.5◦ 17.2◦ 9.1◦ 20.5◦

(g) −18.5◦ 0.0◦ 0.0◦ 0.0◦

(h) 95.9◦ 5.7◦ 0.0◦ 9.1◦

(i) 111.2◦ 5.7◦ 3.4◦ 9.1◦

(j) 84.3◦ −2.4◦ −2.4◦ −4.8◦

Table 2.7: Curvature weighted orientation of shapes in Figure 2.7. Different orien-

tation is given depending on the curvature weighting function applied.

2.4.2.3 Real world objects

The aim of this example is to illustrate how the curvature weighted orientation

method behaves for “real world” objects. For this example, a selection of images of

real world objects from the Kimia database1. As in previous examples, the different

weighting functions used produce different orientations caused by specific features

of each shape.

For example, Figures (e) and (f) have very different orientation depending on the

weighting function used. Function f(κ(s)) = κ(s)2 gives more influence to the curved

sections on the image (e.g. the hump of the camels). Function f(κ(s)) = e−0.1·κ(s)

1http://www.lems.brown.edu/~dmc/
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(a) (b) (c) (d) (e) (f)

Figure 2.8: Some images of real objects from the Kimia database and their computed

orientations.

standard method f(κ(s)) = 1 f(κ(s)) = κ(s)2 f(κ(s)) = e−0.1·κ(s)

(a) −39.2◦ 118.0◦ 17.2◦ 120.3◦

(b) 96.5◦ 91.7◦ 14.8◦ 97.4◦

(c) 135.5◦ 123.7◦ −2.4◦ 126.1◦

(d) −12.6◦ −10.5◦ 22.9◦ −13.8◦

(e) 135.1◦ 112.2◦ 17.2◦ 106.5◦

(f) −15.3◦ 95.0◦ 3.4◦ 95.0◦

Table 2.8: Curvature weighted orientation of real world shapes in Figure 2.8.

gives a higher influence to straight segments (like the legs and neck of the camels),

and therefore the computed orientation is different (in this case, close to vertical).

2.5 Conclusions

As mentioned before, shape orientation is commonly applied during the early stages

of image processing applications. This is still an area of interest in the field and

new orientation methods continue to be developed (Saleem et al., 2007; Žunić and

Stojmenović, 2008). This chapter provided an overview of some of the existing area

based and boundary based shape orientation methods. The difficulties encountered

when dealing with rotationally symmetric shapes were analysed (Tsai and Chou,

1991; Žunić et al., 2006).

This chapter introduced novel modifications to the existing orientation methods.

The modified methods introduce two different weighting factors: a point position

weighting factor for the area based method and a curvature weighting factor for the

boundary based method.

The position weighted orientation method uses a tuning parameter, δ, which

adjusts the importance each point has, relative to its distance to the centroid. As
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the examples from Figure 2.5 show, lower values of δ give greater influence to points

which are away from the centroid, while higher values of δ give greater influence to

points which are close to the centroid. Setting δ = 0 causes the position weighted

method to be equivalent to the standard method. The effect of different values of δ

is summarised in Table 2.1.

The curvature weighted orientation method uses a function of curvature, f(κ(s))

as weighting factor. Depending on the choice of f(κ(s)), greater influence can be

given to high curvature or low curvature points. Table 2.2 provides some possible

curvature functions which can be used, but other functions of curvature can be used.

The orientation methods introduced in this chapter can be applied for automat-

ically generating properly oriented views from large image repositories, as it was

done by Saleem et al. (2007).
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Chapter 3

2D Shape Descriptors

This chapter includes material from:

Žunić, J. and Martinez-Ortiz, C. (2009). Linearity measure for curve segments.
Applied Mathematics and Computation, 215(8):3098–3105

3.1 Introduction

Most image processing applications work with 2D images and the majority of shape

descriptors developed are built for such images. As it was mentioned in section

1.2.1 a number of 2D shape descriptors have been developed which can be generally

divided in two groups: boundary and area based. So far, there has been a greater

interest in area based descriptors, because of their robustness with respect to noise

and because they can be reliably estimated. For example, the area of a shape can

be estimated simply by counting the pixels whose centre falls inside of the digitised

shape (Klette and Žunić, 1999), however to estimate the perimeter of a shape more

complex methods are required, like DSS estimation (Coeurjolly and Klette, 2004).

Recently there has been an increased interest on boundary based descriptors

(Liu et al., 2008; Manay et al., 2006; Mio et al., 2007; Stojmenović and Žunić, 2008)

because of their sensitivity to fine detail. Another reason of interest is that boundary

based descriptors can be applied to objects of linear nature (e.g. human signatures)

where area based descriptors can not be used.

This chapter introduces a boundary based descriptor: linearity. The linearity

measure indicates the degree to which a given curve differs from a perfect straight

line segment. The linearity measure ranges over the interval (0, 1] and reaches

its maximum value 1 if and only if the measured line is a perfect straight line

segment. The measure is invariant with respect to translations, rotations and scaling

transformations. It is initially defined as a measure for open curve segments, and
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a simple modification allows for the measure to be applied to closed curves. Other

comparable measures have been developed by Benhamou (2004) and Stojmenović

et al. (2008).

3.2 Linearity

This section introduces the shape linearity measure. First, the linearity measured

for open curve segments will be introduced. Just to mention, the straightness index

and sinuosity measure presented by Benhamou (2004) are comparable to the lin-

earity measure introduced here. The straightness index is referred to as a measure

of discrepancy between the path actually followed and a perfectly oriented straight

segment (Benhamou, 2004), which is essentially the same idea behind the linearity

measure introduced here. The straightness index is defined as the ratio:

Sidx(∂S) =
D

L
(3.1)

where D is the length of the open curve segment ∂S and L is the distance between

its end points.

The sinuosity measure is defined as a ratio between the standard deviation of

the turning angle of a path (σ) and the step length of such path (p), as expressed

by the following formula:

Sb(∂S) =
σ√
p

(3.2)

However this requires the path to be sampled in regular intervals of identical length.

3.2.1 Open curve segments

As it has been mentioned before, the linearity measure should provide an indication

of how much an open curve segment differs from a straight line segment. To define

the new linearity measure, we start with a Lemma that describes some facts about

the integral of distance from line points to the line end points. These facts are then

used as a basis to define the new linearity measure.

Lemma 3.1. Let an open curve segment ∂S given in the arc-length parametric form
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3.2. Linearity

(x = x(s), y = y(s)), s ∈ [0, 1]. Then:∫
∂S

(x(s)− x0)2 + (y(s)− y0)2ds ≤ 1

3
, (3.3)∫

∂S

(x(s)− x1)2 + (y(s)− y1)2ds ≤ 1

3
, (3.4)∫

∂S

(x(s)− x0)2 + (y(s)− y0)2ds =
1

3
⇔ ∂Sis a straight line segment, (3.5)∫

∂S

(x(s)− x1)2 + (y(s)− y1)2ds =
1

3
⇔ ∂Sis a straight line segment, (3.6)

where (x0, y0) and (x1, y1) are the end points of ∂S.

Proof. Since s is the distance from (x0, y0) to the point (x(s), y(s)) along the curve

∂S (see Figure 3.1):

(x(s)− x0)2 + (y(s)− y0)2 ≤ s2 (3.7)

Now, (3.7) gives:∫
∂S

((x(s)− x0)2 + (y(s)− y0)2)ds ≤
∫
∂S

s2ds =

∫ s=1

s=0

s2ds =
1

3
,

which proves (3.3). The proof of (3.4) is analogous. Trivially, the squared distance

from the endpoint (x0, y0) to a given point (x(s), y(s)) is s2 (i.e. (x(s) − x0)2 +

(y(s)− y0)2 = s2) only when the segment of ∂S between (x0, y0) and (x(s), y(s)) is

a straight line segment. So:∫
∂S

((x(s)− x0)2 + (y(s)− y0)2)ds =

∫
∂S

s2ds =

∫ s=1

s=0

s2ds =
1

3
,

which proves (3.5). Again, the proof of (3.6) again is analogous.

.
.

.
(x0, y0)

∂S (x(s), y(s))

(x1, y1)

Figure 3.1: The distance (dashed line) between the points (x0, y0) and (x(s), y(x))

is not bigger than s, which is the length of the ∂S between those points.
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For simplicity we will use the following two equalities∫
∂S

((x(s)− x0)2 + (y(s)− y0)2)ds =

=

∫
∂S

(x(s)2 − 2x(s)x0 + x2
0 + y(s)2 − 2y(s)y0 + y2

0)ds

= µ
(l)
2,0(∂S) + µ

(l)
0,2(∂S) + x2

0 + y2
0 (3.8)

and ∫
∂S

((x(s)− x1)2 + (y(s)− y1)2)ds =

=

∫
∂S

(x(s)2 − 2x(s)x1 + x2
1 + y(s)2 − 2y(s)y1 + y2

1)ds

= µ
(l)
2,0(∂S) + µ

(l)
0,2(∂S) + x2

1 + y2
1 (3.9)

Notice that
∫
∂S
x(s)ds = 0 and

∫
∂S
y(s)ds = 0 because ∂S is assumed to be

centred in the origin. Also notice that the identity µ
(l)
p,q(B) =

∫
B

(x(s)− x̄(l))p(y(s)−
ȳ(l))qds from equation (1.6) is used in these equations.

Now, the new linearity measure for open curve segments is defined as follows:

Definition 3.1. Let an open curve segment ∂S having the arc-length parametrisa-

tion (x(s), y(s)) and s ∈ [0, 1]. Then, the linearity measure L(∂S) of ∂S is defined

as:

L(∂S) = 3 · µl2,0(∂S) + 3 · µl0,2(∂S) +
3

2
· (x2

0 + y2
0 + x2

1 + y2
1) (3.10)

Theorem 3.1. The new measure L(∂S) has the following properties:

(a) L(∂S) ∈ (0, 1] for all open curve segments ∂S;

(b) L(∂S) = 1 ⇔ ∂S is a straight line segment;

(c) L(∂S) is invariant with respect to similarity transformations;

(d) For each δ > 0 there is an open curve segment ∂S such that 0 < L(∂S) < δ.

Proof. (a): L(∂S) > 0 is trivial since µl2,0(∂S) +µl0,2(∂S) > 0 for all curve segments

∂S. L(∂S) ≤ 1 follows directly from equations (3.3), (3.4), (3.8) and (3.9).

(b): The proof of L(∂S) = 1 follows from adding together equations (3.5) and

(3.6), and multiplying by 3/2.

(c): To prove this item it is enough to notice that µl2,0(∂S) + µl0,2(∂S) is a well

known similarity transformations invariant (see Chen (1993); Hu (1962)). Under

54



3.2. Linearity

assumptions that ∂S is normalised so it has length 1 and that the centroid of ∂S

coincides with the origin (i.e. (x̄(l), ȳ(l)) = (0, 0)), it is easy to deduce that (x2
0 +

y2
0) + (x2

1 + y2
1) is also invariant with respect to similarity transformations.

(d): It is easy to construct a curve segment ∂S such that 0< L(∂S) < δ for

any given δ. For example, let a circle C(r) with radius r, and let ∂Sr be an open

segment, normalised so its length is 1, and that is inscribed in C(r). Then:

µl2,0(∂Sr) + µl0,2(∂Sr) =

∫
∂Sr

(x(s)2 + y(s)2)ds

≤ max{x(s)2 + y(s)2|(x(s), y(s)) ∈ ∂Sr}
≤ r2

Also, the end points (x0, y0) and (x1, y1) of ∂Sr are within a distance of r from the

origin. This, together with the previous inequality and equation (3.1) gives:

L(∂Sr) ≤ 3 · r2 +
3

2
· (r2 + r2)

= 6 · r2

The statement (d) follows by setting r <
√
δ/6.

3.2.2 Closed curve segments

This section introduces a modification of Definition 3.1 which allows the linearity

measure to be applied to closed curves. Generally speaking, a closed curve can be

understood as an open curve segment whose ending points coincide, i.e. (x0, y0) =

(x1, y1). However when a method designed for open curves (which is the case for

L(∂S)) is extended for closed curves, the main problem is how to select a particular

point which will play the role of the start-and-finish-point, i.e. Psf = (x0, y0) =

(x1, y1). Selecting such point is not trivial because the method applied could lead

to different results depending on the choice of Psf .

The measure L(∂S) is susceptible to such dependency on the choice of Psf . For

example, consider a closed curve ∂S and select a start-and-finish-point Psf , so ∂S

can then be considered an open curve segment (let us denote it ∂Ssf ). Also let

us denote the centroid of ∂S as C. Then L(∂Ssf ) would depend on the choice of

Psf . Furthermore, it is possible that for two different choices of start-and-finish-

points, Psf1 and Psf2, the measure L(∂S) produces different results, i.e. L(∂Ssf1) 6=
L(∂Ssf2).

More precisely, equation (3.10) says that L(∂S) depends only on the distance

from Psf to the centroid C: because µl2,0(∂S) = µl2,0(∂Ssf ) and µl0,2(∂S) = µl0,2(∂Ssf )
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for any Psf ∈ ∂S, then the moments µl2,0(∂S) and µl0,2(∂S) do not depend on the

choice of Psf . Thus, L(∂Ssf ) depends only on the choice of Psf . So if the distance

from Psf1 to the centroid C is different from the distance from Psf2 to C their

measured linearities will also be different, i.e.

|CPsf1| 6= |CPsf2| =⇒ L(∂Ssf1) 6= L(∂Ssf2)

From equation (3.10) it can be easily deduced that the linearity measure will

increase as the distance from point Psf to the centroid (i.e. |CPsf |) increases:

|CPsf1| < |CPsf2| =⇒ L(∂Ssf1) < L(∂Ssf2)

There are two logical approaches for selecting Psf :

• Select a Psf = Pmax which is furthest away from the centroid in order to

maximise L(∂Ssf ), or

• Select a Psf = Pmin which is closest to the centroid in order to minimise

L(∂Ssf ).

Taking this into account, the following definition is given for two linearity mea-

sures for closed curves, as an extension of the linearity measure give in Definition

3.1:

Definition 3.2. Let a closed curve ∂S given in an arc length parametrisation and

placed so that the centroid of ∂S is located at the origin. And let d2
max(∂S) and

d2
min(∂S) denote the maximum and minimum possible squared distance of points

from ∂S to the centroid C:

d2
max(∂S) = max{x2 + y2|(x, y) ∈ ∂S},
d2
min(∂S) = min{x2 + y2|(x, y) ∈ ∂S}.

Then, the linearity measures Lmax(∂S) and Lmin(∂S) are defined as follows:

Lmax(∂S) = 3 · (µl2,0(∂S) + µl0,2(∂S) + d2
max(∂S)

)
(3.11)

and

Lmin(∂S) = 3 · (µl2,0(∂S) + µl0,2(∂S) + d2
min(∂S)

)
(3.12)

56



3.2. Linearity

Note. There can be many points on ∂S which are at d2
max(∂S) distance (or

d2
min(∂S) distance) from the centroid. This does not interferes with the computa-

tion of Lmax(∂S) (or Lmin(∂S)) because Definition 3.2 uses the distance d2
max(∂S)

(or d2
min(∂S)) and not the points coordinates of any point located as such distance.

Because closed curves have the additional restriction of starting and ending at

the same point there is an upper bound to d2
max(∂S) and d2

min(∂S). The furthest

away a given point can be from the centroid of a closed curve ∂S of length 1 is 1/4.

Such is the case of the infinitely thin rectangle shown in Figure 3.2: starting from

point Psf at s = 0, the curve ∂S moves away (to the left of C in Figure 3.2) from

the centroid in a straight line until it reaches s = 0.25. At this point the curve ∂S

must go back and return to the centroid where it reaches s = 0.5. Notice that in

Figure 3.2 half of the line (i.e. s ∈ [0.5, 1]) must be to the right of the centroid.

From equation (3.11), it can be shown that for such a shape Lmax(∂S) = 0.25.

C

(x(0.25), y(0.25)) (x(0.75), y(0.75))

h ≈ 0

Figure 3.2: Infinitely thin rectangle centred in the origin. If Psf is selected at the

origin, the most remote points of the curve ∂Ssf are located at (x(0.25), y(0.25))

and (x(0.75), y(0.75)).

The upper bound of d2
min(∂S) would be reached for a shape which maximises

d2
min(∂S). Such a shape would be a circle of unitary perimeter, having radius r =

1/2π. By definition, all points of the circle are at the same distance of its centroid,

thus d2
min(∂S) = 1/2π. From equation (3.12), it can be shown that for such a shape

Lmin(∂S) = 3/2π2.

3.2.3 Other comparable measure

During the review process of Žunić and Martinez-Ortiz (2009) it was suggested that

the linearity measures for open curve segments would be in a sense comparable to

the well known standard compactness measure (also known as shape circularity, see

equation (1.8)).

The compactness measure CStd(S) provides an indication of how much given

shape differs from a circle, producing its maximal possible value of 1 if and only

if the given shape is a circle. At the same time, the compactness measure CStd(S)

produces low values if the given shape is an elongated rectangle approximating a
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straight line. It could be expected that a higher circularity CStd(S) implies a lower

linearity, and vice-versa.

3.3 Experiments

This section provides examples which illustrate the behaviour of linearity measures

L(∂S), Lmax(∂S) and Lmin(∂S). This section is divided in two parts: Subsection

3.3.1 provides some examples for the linearity measure for open curve segments

given in Definition 3.1. Subsection 3.3.2 presents some experiments to illustrate the

behaviour of linearity measures for closed curves given in Definition 3.2.

3.3.1 Linearity of open curve segments

The first example in this section shows some simple cases where the linearity measure

L(∂S) might be preferable over the straightness index Sidx(∂S). The three polygonal

lines in Figure 3.3 preserve the same length and the same distance between their end

points, thus their straightness indices would be equal. However this is clearly not

the preferred case. The linearity measure L(∂S) gives different measures to each of

these lines.

(a) 0.4456 (b) 0.3046 (c) 0.2811

Figure 3.3: Three displayed curves have different linearities measured by L(∂S).

The straightness index Sidx(∂S) gives the same value for all three curves.

The original motivation to develop the straightness index was for analysing the

path that an animal follows while moving towards its goal (Benhamou, 2004). A

straighter path usually means that the animal has more efficient orientation, while a

path with constant changes in direction could indicate that the animal is wandering

(random search) (Nams, 2006). Measure L(∂S) may be more suitable than Sidx(∂S)

for identifying such behaviours.

58



3.3. Experiments

The next synthetic example illustrates how the measured L(∂S) of a circular arc

segment decreases as the arc segment approaches a full circle. Different arc segments

on the form ∂Sα = (x = sin θ, y = cos θ), θ ∈ [0, α] are constructed for α ∈ (0, 2π).

Figure 3.4 shows the graph of the measured linearities L(∂Sα) for different values

of α.

Figure 3.4 also shows three circular arc segments. Since all measured curve

segments are assumed to be of unit length, all appearing arcs should be scaled for

a certain factor. The left hand arc displayed in Figure 3.4 is the shortest from the

displayed circles, so the scaling factor applied to it is larger than in the case of two

arcs.
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Figure 3.4: The graph presents the measured linearities L(∂S) of the circular arcs:

(x = sin θ, y = cos θ), θ ∈ [0, α], while different arcs correspond to a different α ∈
(0, 2π). Three particular arcs are displayed (bold lines) and their measured linearities

(0.95169, 0.6079 and 0.17439, respectively) are pointed out by the corresponding

arrows.

Using equation (3.10) it is easy to see that the measured linearity of the circular

arc in the middle of Figure 3.4 (a “half-circle”) is 6/π2 ≈ 0.6079. Let us mention

that in the two limit cases, when α → 0 and when α → 2π the graph shows the

expected results: if α → 0 we get the arc would tend to a straight line segment

and its measured linearity would tend to 1; if α → 2π then the measured linearity

decreases to a limit value of 3/2π2 ≈ 0.1520 (easily computed from equation (3.10)).
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Figure 3.5 shows the linearity measure applied to a variety of open curves. The

measured linearities of the curves in figures (a) and (d) seem reasonable: a higher

linearity for shape in (a) matches with our perception. Similarly happens for the

curves in (b) and (e): a lower linearity for (e) seems reasonable since it is more bent

than (b).
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Figure 3.5: Open curve segments and their measured linearity L(∂S) and sinuosity

Sb(∂S) (in parenthesis) re-sampled to 1,000 steps. The graphs below each open

curve shows the change in linearity and sinuosity when the curves are re-sampled to

different number of steps. Sinuosity has been normalised.

The number in parenthesis shown underneath each figure is the sinuosity measure

Sb(∂S) obtained for these curves, re-sampling each curve into 1,000 steps of uniform

length.
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As it has been mentioned before, the sinuosity measure requires the path to be

re-sampled into uniform length steps. It is mentioned by Benhamou (2004) that the

sinuosity measure depends on the way the path is discretized. The graphs under

each shape in Figure 3.5 shows the linearity L(∂S) and sinuosity Sb(∂S) measured

for each shape re-sampled to different number of steps ranging from 50 to 1,000

steps. Note: on each graph, sinuosity has been normalised so its produced values

are in the range [0, 1].

These graphs illustrate to what extent the sinuosity measure Sb(∂S) is affected

by the re-sampling process. This shows that the linearity measure L(∂S) is more

robust in this respect, making the results produced by linearity measure be more

reliable.

The last example in this section illustrates uses the linearity measure on its

own to group together small data set of handwritten digits. Figure 3.6 shows the

handwritten digits, approximated by polygonal lines, arranged in ascending order of

linearity. L(∂S) successfully groups together the pairs of digits: “0”, “7”, “8” and

“9”. Additionally digits “1”, “3”, “4”, and “5” are ranked very closely – i.e. only

one digit is ranked in between pairs of those digits: the pair of digit “3” overlaps

with the pair of digit “5”, and the pair of digit “1” overlaps with the pair of digit

“4”. L(∂S) gives its worst matching for the digits “2” and “6” – i.e. five other digits

are ranked in between both instances of digit “2” (and in between both instances of

digit “6”).
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Figure 3.6: Hand written digits ordered by their linearity L(∂S).

3.3.2 Linearity of closed curve segments

The first experiment in this section applies the linearity measures Lmax(∂S) and

Lmin(∂S) to a set of geometric shapes. Figure 3.7 shows the geometric shapes and
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their measured linearities. It can be observed that the values obtained for Lmin(∂S)

for all shapes are quite low – i.e. all values are in the range [0.0637, 0.1091] for

shapes (a)-(g). This implies that the scores given by the linearity measure Lmin(∂S)

may not be very informative. Also notice that from equations (3.11) and (3.12) it

is expected that for the circle in (h), linearity measures Lmax(∂S) and Lmin(∂S)

should be the same – this is not the case due to digitisation errors.

The shapes used in Figure 3.7 are sampled to approximately 1,000 points, sam-

pled images of 200x200 pixels. Using a higher resolution images will reduce the

error induced due to approximation errors. For example, for the circle in (h),

using an image of 1000x1000 the obtained values are Lmax(∂S) = 0.1521 and

Lmin(∂S) = 0.1516. These values are less affected by digitisation errors, being closer

to the theoretical value of Lmax(∂S) = Lmin(∂S) = 3/2π2 which should ideally be

obtained for a circle (easily computed from equation (3.10)).
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Figure 3.7: Geometric shapes with their corresponding linearities Lmax(∂S) and

Lmin(∂S) in brackets.

Figure 3.8 shows a sequence of shapes obtained from the elastic deformation be-

tween two bird shapes1: shape (a) is deformed to become shape (h), with shapes (b)-

(g) being the intermediate stages. The linearity measures Lmax(∂S) and Lmin(∂S)

and standard circularity measure CStd(S) are applied to these shapes (see Table 3.1).

1Images taken from Srivastava et al. (2009)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.8: Elastic deformation of shapes: Shape (a) is deformed to become (g).

The distance from the centroid to the maximal and minimal distance points are

marked for each shape.

(a) (b) (c) (d) (e) (f) (g) (h)

Lmax(∂S) 0.1601 0.1551 0.1531 0.1491 0.1431 0.1361 0.1251 0.1151

Lmin(∂S) 0.0571 0.0601 0.0611 0.0611 0.0581 0.0561 0.0531 0.0511

CStd(S) 0.4070 0.4317 0.4577 0.4612 0.4498 0.4355 0.4129 0.3861

Table 3.1: Linearity measures Lmax(∂S), Lmin(∂S) and circularity measure for the

closed curves in Figure 3.8.

In this case again it seems to be that the linearity measure Lmin(∂S) is less

informative, giving very similar scores for all shapes in the sequence. On the other

hand, the linearity measure Lmax(∂S) decreases in each stage of the deformation

process. This seems reasonable since the latter shapes have a more elaborated

boundary, which leads to the observed decrease in Lmax(∂S) linearity.

Notice that the linearity measures Lmax(∂S) and Lmin(∂S) vary consistently

although the maximal and minimal distance points (Pmax and Pmin) change their

relative position (denoted by “+” and “x” in the images in Figure 3.8), e.g. Pmax is

located near the beak of the bird in shape (a) but it changes to be near the tail of

the bird in shape (h). This is in accordance with Definition 3.2 because Lmax(∂S)
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Chapter 3. 2D Shape Descriptors

is computed using the distance d2
max(∂S) and not the coordinates of the point Pmax

itself.

By looking at Table 3.1 it would be difficult to tell whether the circularity mea-

sure CStd(S) or the linearity measures Lmax(∂S) and Lmin(∂S) would be preferable

in every case: Linearity measure Lmax(∂S) decreases continuously on each step of

the deformation process; mean while circularity measure CStd(S) increases on the

first steps of the deformation process only to decrease on the later steps. Which of

these behaviours might be preferable is a completely application dependant choice.

3.4 Conclusions

This chapter introduced the linearity measure, which can be applied to open and

closed curves. The linearity of a curve segment ∂S provides an indication of simi-

larity between ∂S and a straight line segment.

When applied to closed curves, a start-and-finish point must be selected; this

can be selected as the point closest to the centroid or the point furthest away from

the centroid. The choice of the start-and-finish point will have an impact on the

computed linearity: as mentioned before µl2,0(∂S) and µl0,2(∂S) are unaffected by the

choice of start-and-finish point, so the difference between Lmax(∂S) and Lmin(∂S)

will be determined by d2
max(∂S) and d2

min(∂S) only. When the point closest to the

centroid is selected, the linearity values will generally be quite low, so generally

speaking Lmin(∂S) will have smaller values than Lmax(∂S).

When the linearity measure is applied to closed curves, a feature selection algo-

rithm can be used to decide whether to use Lmax(∂S), Lmin(∂S) or both. However,

the selection of one linearity measure over another is dependant on the goal to be

achieved. For example, with the shapes in Figure 3.8, if our aim is to classify all

birds as being of the same class, perhaps Lmin(∂S) would be a more suitable feature

for this task, since all values produced by Lmin(∂S) are very close together. On the

other hand, if our aim is to classify them in two different classes, perhaps Lmax(∂S)

would be a more suitable feature, since it provides a better separation of the shapes.

The linearity measure introduced here can be applied to objects which, due to

the nature of the information they represent, are best represented as curve segments.

One example is the path followed by animals when exploring their surroundings as

described by Benhamou (2004); another example could be the path described by an

individual being tracked by a CCTV camera as described by Han et al. (2004).
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3D Shape Descriptors

This chapter includes material from:

Žunić, J., Hirota, K., and Martinez-Ortiz, C. (2010a). Compactness measure for 3d
shapes. Submitted

and

Martinez-Ortiz, C. and Žunić, J. (2009). Measuring cubeness of 3d shapes. In CIARP
’09: Proceedings of the 14th Iberoamerican Conference on Pattern Recognition, vol-
ume 5856/2009 of LNCS, pages 716–723, Berlin, Heidelberg. Springer-Verlag

4.1 Introduction

As it has been mentioned before, in recent years there has been an increased interest

in development of new 3D shape descriptors. Plenty of research has been done for

2D shape descriptors, however, less research has been made on 3D shape descriptors

as the use of 3D images is relatively new. It is only recently that the use of 3D

media is becoming more easily available and thus increasingly common in their use.

Some 3D shape descriptors have already been developed as extension of 2D shape

descriptors, some of which are mentioned in section 1.2.2.

In this chapter we introduce two 3D shape descriptors: compactness and cube-

ness. Both descriptors are derived in a very similar manner, following the same

process but using different distance metrics. These descriptors work, in fact, as a

measure of compactness under their given distance metric: using euclidean distance,

the most compact shape is a sphere; using chessboard distance, the most compact

shape is a cube. The next section explains these distance metrics and why the sphere

and the cube are most compact under these metrics.
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4.2 Distance metrics

In general a measure of distance is a number which indicates how far two objects are

from each other. The physical distance between two points is normally understood

as the length of a straight line segment joining these points. However, there exist

some alternative sets of rules for measuring the space between two points. These

are known as distance metrics. Although there is a wide variety of distance metrics

available in the literature, in this section we will only briefly review two of these

metrics which are relevant for the development of the 3D shape descriptors which

are the subject of our study.

4.2.1 Euclidean distance

Euclidean distance is probably the most commonly used distance metric. It is de-

fined, as mentioned above, as the length of straight line segment joining two points.

It can be calculated by means of the Pythagoras’ theorem. The euclidean distance

between two n-dimensional points P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) is given

by:

l2(P,Q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pn − qn)2 (4.1)

4.2.2 Chessboard distance

One alternative distance metric is the chessboard distance metric (also known as

Chebyshev distance or l∞-distance). The distance between two points is defined

as the greatest of their differences along any coordinate axis. More formally, the

l∞-distance between two points P = (p1, p2, ..., pn) and Q = (q1, q2, ..., qn) is given

by:

l∞(P,Q) = max(|p1 − q1|, |p2 − q2|, ..., |pn − qn|) (4.2)

4.2.3 Unit disks

Let us notice that compactness (in 2D) is generally understood as the degree to

which a given shape differs from a region bounded by a circle (compactness in 2D

is sometimes also called the circularity). For this reason before introducing the 3D

compactness measure it is important to review how a disk is defined.
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Generally speakings, a disk of radius r is the collection of all points which are (at

most) at a distance r from the centre of such disk. For simplicity, lets assume that

the centre of the disk is situated at the origin O. So, if euclidean distance is used,

it is clear that a disk of radius r is a circle and that such circle can be expressed as:

c2(r) = {P = (x, y, z) : l2(P,O) ≤ r} (4.3)

Of course this definition can easily be extended to 3D in which case the resulting

shape is a sphere. However, if the distance metric used is the chessboard distance

instead of the euclidean distance, the resulting disk is not a circle but a square.

c∞(r) = {P = (x, y, z) : l∞(P,O) ≤ r} (4.4)

This definition can also be extended to 3D in which case the resulting shape in

this case is a cube. Figure 4.1 shows the c2(r) and c∞(r) with r = 1, r = 2 and

r = 3 in 2D and 3D space.

O

r=1 r=3r=2

(a)

O

r=1 r=3r=2

(b)

(c) (d)

Figure 4.1: Most compact shapes using euclidean and chessboard distances. (a) and

(b) show the most compact shapes in 2D (circles and squares) while (c) and (d)

shows the most compact shape in 3D (spheres and cubes).

After seeing how the different distance metrics produce different shapes as their
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most compact shapes, it is obvious that the definition of a compactness measure will

change depending on the distance metric used for each definition.

4.3 3D Compactness

As it was mentioned in the previous section, when euclidean distance is used, the

most compact shape in 3D is a sphere. Following this idea the 3D shape compactness

measure should describe the degree to which a given 3D shape differs form a region

bounded by a perfect sphere.

For the compactness measure defined in this section central moments µp,q,r are

used (see equation (1.13)). Notice that for any given shape S, the moment µ0,0,0(S)

equals the volume of such shape.

In order to to keep our proofs mathematically rigorous, it will be assumed that

two given shapes S1 and S2 are considered to be equal if the symmetric set difference

(S1 \ S2) ∪ (S2 \ S1) has the volume zero, i.e.∫∫∫
(S1\S2)∪(S2\S1)

dxdydz = 0

Under this assumption an open ball {P = (x, y, z) : l2(P,O) < r} is equal to the

closed ball {P = (x, y, z) : l2(P,O) ≤ r} even if they differ for a spherical surface

of {P = (x, y, z) : l2(P,O) = r}. This condition is not a restriction for image

processing applications where volume based shape descriptors are used. It is also

assumed that all appearing shapes have a nonempty interior, i.e. they have a strictly

positive volume.

We begin with the expression:

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S)

µ0,0,0(S)5/3

and prove that it reaches its minimum value of
35/3

5(4π)2/3
only when the given shape

S is a sphere.

Theorem 4.1. Let S be a given 3D shape, then:

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S)

µ0,0,0(S)5/3
≥ 35/3

5(4π)2/3
(4.5)

µ2,0,0(S) + µ0,2,0(S) + µ0,0,3(S)

µ0,0,0(S)5/3
=

35/3

5(4π)2/3
⇔ Sis a sphere (4.6)
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Proof. Let S be a given shape whose centroid coincides with the origin. Also, let

Bfit be the sphere with radius r =

(
3

4π
· µ0,0,0(S)

)1/3

and centred at the origin.

Trivially µ0,0,0(Bfit) = µ0,0,0(S) and also:

(a) The set differences S \Bfit and Bfit \ S have equal volume;

(b) The points from Bfit \ S are closer to the origin than the points from S \ Bfit.

More formally:

(u, v, w) ∈ (S \Bfit) and (x, y, z) ∈ (Bfit \ S)⇒ u2 + v2 + w2 > x2 + y2 + z2

(see Figure 4.2).

Further, (a) and (b) give:∫∫∫
S\Bfit

(x2 + y2 + z2)dxdydz ≥
∫∫∫
Bfit\S

(x2 + y2 + z2)dxdydz (4.7)

Now, we derive:

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S) =

=

∫∫∫
S

(x2 + y2 + z2)dxdydz

=

∫∫∫
S\Bfit

(x2 + y2 + z2)dxdydz +

∫∫∫
S∩Bfit

(x2 + y2 + z2)dxdydz

≥
∫∫∫
Bfit\S

(x2 + y2 + z2)dxdydz +

∫∫∫
S∩Bfit

(x2 + y2 + z2)dxdydz

=

∫∫∫
Bfit

(x2 + y2 + z2)dxdydz

=

2π∫
θ=0

π∫
φ=0

( 3
4π
µ0,0,0(S))1/3∫
ρ=0

((ρ · cos θ sinφ)2 + (ρ · sin θ sinφ)2

+(ρ · cosφ)2)ρ2 · sinφdθdφdρ
=

35/3

5(4π)2/3
· µ0,0,0(S)5/3

This proves equation (4.5).
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To prove equation (4.6), notice that if S is not a sphere then the inequality (4.7)

is strict. For any shape S different from a sphere we also have:

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S) >

µ2,0,0(Bfit) + µ0,2,0(Bfit) + µ0,0,2(Bfit) =
35/3

5(4π)2/3
· µ0,0,0(S)5/3

which establishes the proof.

(a) Bfit and S (b) S \Bfit (c) Bfit \ S

Figure 4.2: (a) shows a given shape S and the sphere Bfit which has the same

volume as S and both shapes are centred at the origin. (b) and (c) show S \ Bfit

and Bfit \ S respectively. Any point from Bfit \ S is closer to the origin than any

point from S \Bfit.

Notice that the quantity

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S)

(µ0,0,0(S))5/3

is well known from the literature: this quantity appears as one of the geometric in-

variants derived in Mamistvalov (1998) and Xu and Li (2008). The 3D compactness

measure is defined as follows:

Definition 4.1. Let S be a given 3D shape, the compactness measure C3D
2 (S) is

defined as:

C3D
2 (S) =

35/3

5(4π)2/3
· µ0,0,0(S)5/3

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S)
(4.8)

The following theorem summarises the desirable properties of C3D
2 (S).

Theorem 4.2. The compactness measure C3D
2 (S) has the following properties:
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(a) C3D
2 (S) ∈ (0, 1] for any shape S;

(b) C3D
2 (S) = 1 ⇔ S is a sphere;

(c) C3D
2 (S) is invariant with respect to the similarity transformations;

(d) For any δ > 0 there is a shape S such that 0 < C3D
2 (S) < δ (i.e. there are shapes

whose measured compactness is arbitrarily close to 0, and consequently the best

possible lower bound for C3D
2 (S) is 0).

Proof. The items (a) and (b) follow directly from Theorem 4.1. The proof of item

(c) is also straightforward: C3D
2 (S) is invariant to similarity transformations because

µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S)

µ0,0,0(S)5/3

is such an invariant (Mamistvalov, 1998).

To prove (d), let us consider a cuboid Q(t) whose edges are aligned with the

coordinate axes and have the length 1, 1 and t respectively, with t being an arbi-

trary positive number. It is easy to verify that µ0,0,0(Q(t)) = t, µ2,0,0(Q(t)) = t/3,

µ0,2,0(Q(t)) = t/3 and µ0,0,2(Q(t)) = t3/3. Thus,

C3D
2 (Q(t)) =

35/3

5(4π)2/3
· µ0,0,0(Q(t))5/3

µ2,0,0(Q(t)) + µ0,2,0(Q(t)) + µ0,0,2(Q(t))

=
38/3

5(4π)2/3
· t2/3

2 + t2
(4.9)

It can be observed that lim
t→∞

C3D
2 (Q(t)) = 0 as Q(t) approximates an infinitely elon-

gated stick; and lim
t→0

C3D
2 (Q(t)) = 0 as Q(t) approximates a planar square. This

proves (d).

4.4 3D Cubeness

As it was mentioned in section 4.2, when chessboard distance is used, the most

compact shape in 3D is a cube. So, the 3D cubeness measure presented in this

section describes a degree to which a given 3D shape differs from a region bounded

by a perfect cube.

For the cubeness measure and other subsequent measures, let R(S, θ, φ) denote

a shape S rotated first along the x-axis by an angle θ and then along the y-axis by

an angle φ.
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Following the same idea as in section 4.3, we begin to define the cubeness measure

by showing that the quantity

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz

reaches its minimum value of
3

8
only when the given shape is a cube.

Theorem 4.3. Let S be a given 3D shape, and let R(S, θ, φ) denote the rotation of

S along the x-axis by an angle θ and along the y-axis by an angle φ. Then,

∫∫∫
S

max{|x|, |y|, |z|}dxdydz
µ0,0,0(S)4/3

≥ 3

8
(4.10)∫∫∫

S

max{|x|, |y|, |z|}dxdydz
µ0,0,0(S)4/3

=
3

8
⇐⇒ S = Q

(
µ0,0,0(S)1/3

2

)
(4.11)

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz

µ0,0,0(S)4/3
=

3

8
⇐⇒ S is a cube. (4.12)

Proof. Let S be given 3D shape centred in the origin and let Qfit denote a cube

centred in the origin, aligned with the coordinate axes and with sides of length

a = µ0,0,0(S)1/3 (so Qfit has the same volume as S). The faces of Qfit intersect

the axes at points: (a/2, 0, 0), (−a/2, 0, 0), (0, a/2, 0), (0,−a/2, 0), (0, 0, a/2) and

(0, 0,−a/2). Thus we have that:

(a) The set differences S \Qfit and Qfit \ S have equal volume;

(b) The points from Qfit \ S are closer to the origin than the points from S \ Qfit

(note that chessboard distance is considered). More formally:

(u, v, w) ∈ (S\Qfit) and (x, y, z) ∈ (Qfit\S)⇒ max{|u|, |v|, |w|} > max{|x|, |y|, |z|}

(see. Figure 4.3).

Further (a) and (b) give:

∫∫∫
S\Qfit

max{|x|, |y|, |z|}dxdydz ≥
∫∫∫
Qfit\S

max{|x|, |y|, |z|}dxdydz. (4.13)
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Now, we derive:∫∫∫
S

max{|x|, |y|, |z|}dxdydz = 8 ·
∫∫∫

(x,y,z)∈S
x,y,z≥0

max{x, y, z}dxdydz

= 48 ·
∫∫∫

(x,y,z)∈S
x≥y≥z≥0

xdxdydz = 48 ·
a/2∫
0

x∫
0

y∫
0

xdxdydz =
3

8
· a4,

which proves equation (4.10) since a = µ0,0,0(S)1/3.

To prove equation (4.11) notice that equation (4.13) holds only when the shapes

S and Qfit are identical, i.e. when µ0,0,0(S \Q) = µ0,0,0(Q \ S) = 0.

To prove equation (4.12) let θ0 and φ0 be the angles which minimise the quantity∫∫∫
R(S,θ0,φ0)

max{|x|, |y|, |z|}dxdydz:

∫∫∫
R(S,θ0,φ0)

max{|x|, |y|, |z|}dxdydz = min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz (4.14)

Since the volume of S remains is not affected by its orientation (i.e. µ0,0,0(S) =

µ0,0,0(R(S, θ, φ)) = µ0,0,0(R(S, θ0, φ0)), then (see equation (4.11)):∫∫∫
R(S,θ0,φ0)

max{|x|, |y|, |z|}dxdydz

µ0,0,0(R(S, θ0, φ0))4/3
=

3

8

would imply that R(S, θ0, φ0) must be equal to Qfit and thus S is a cube.

(a) Qfit and S (b) S \Qfit (c) Qfit \ S

Figure 4.3: (a) shows a given shape S and a cube Qfit which has the same volume as

S and both shapes are centred at the origin. (b) and (c) show S \Qfit and Qfit \ S
respectively. Any point from Qfit \ S is closer to the origin than any point from

S \Qfit (in terms of chessboard distance).

The 3D cubeness measure is defined as follows:
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Definition 4.2. Given a shape S, the cubeness measure C3D
∞ (S) is defined as:

C3D
∞ (S) =

3

8
· µ0,0,0(S)4/3

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz (4.15)

The following theorem summarises the desirable properties of C3D
∞ (S).

Theorem 4.4. The cubeness measure C3D
∞ (S) has the following properties:

(a) C3D
∞ (S) ∈ (0, 1] for any shape S;

(b) C3D
∞ (S) = 1 ⇔ S is a cube;

(c) C3D
∞ (S) is invariant with respect to the similarity transformations;

Proof. The items (a) and (b) follow directly from Theorem 4.3.

The proof of item (c) is also straight forward: both min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz
and µ0,0,0(S) are rotation invariant, which makes C3D

∞ (S) rotation invariant; because

it is assumed for the definition that any given shape S has its centroid located at the

origin, then C3D
∞ (S) is translation invariant; finally C3D

∞ (S) is scale invariant because

if the shape S is scaled by a factor r we have that:

min
θ,φ∈[0,2π]

∫∫∫
R(r·S,θ,φ)

max{|x|, |y|, |z|}dxdydz

= r4 · min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz

and

µ0,0,0(r · S) = r3 · µ0,0,0(S).

These two equalities give:

C3D
∞ (r · S) =

3

8
· µ0,0,0(r · S)4/3

min
θ,φ∈[0,2π]

∫∫∫
r·R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz

=
3

8
· (r3 · µ0,0,0(S))4/3

r4 · min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}dxdydz = C3D
∞ (S)

which means that C3D
∞ (S) is scale invariant.
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4.5 Comparable 3D descriptors

In the existing literature, there are a few shape descriptors which have been devel-

oped with the aim of providing an index of compactness for shapes, just like the

C3D
2 (S) and C3D

∞ (S) descriptors in this chapter. It is worth comparing our proposed

descriptors with the already existing ones. Some of these descriptors have already

been mentioned in section 1.2.2 so this section presents a closer look at these de-

scriptors.

4.5.1 Standard compactness

One such measure is the standard measure of 3D compactness which is an extension

of the standard compactness measure (also known as circularity). This measure

was introduced in Chapter 1 (see equation (1.15)). The behaviour of the standard

3D compactness measure is comparable to that of the measure C3D
2 (S), reaching

its maximum value of 1 only for a sphere. The measure C3D
Std(S) also shares the

properties defined in Theorem 4.2.

Although this measure has a simple definition, computing it may be complicated

depending on the representation used for the 3D model: approximating the surface

area of a voxelised shape is not a straight forward process and requires some addi-

tional computation. For this reason the measure C3D
Std(S) was only used in a limited

number of the examples presented in section 4.6.

4.5.2 Fitting shape methods

A very natural and simple approach to develop measure of similarity with a sphere

(or a cube) could be derived by comparing the given shape S with a sphere (or

cube) with the same volume as shape S. The measure using a fit sphere is defined

as follows:

Definition 4.3. Let S be a given 3D shape and Bfit be a sphere such that V olume(Bfit) =

V olume(S) and centred in the origin. The measure C3D
fit−2(S) is defined as:

C3D
fit−2(S) =

V olume(S ∩Bfit)

V olume(S ∪Bfit)
(4.16)

It is important to point out that the matching between a given shape S and

a cube of equal volume may vary depending on the orientation of S. Therefore,
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in order to achieve rotational invariability, it is necessary to test for every possible

angle. The measure using a fit cube is defined as follows:

Definition 4.4. Let S be a given 3D shape and Qfit be a cube such that V olume(Qfit) =

V olume(S); also, Qfit is assumed to be centred in the origin and aligned with the

coordinate axes. The measure C3D
fit−∞(S) is defined as:

C3D
fit−∞(S) = max

θ,φ∈[0,2π]

V olume(S ∩R(Qfit, θ, φ))

V olume(S ∪R(Qfit, θ, φ))
(4.17)

The measures C3D
fit−2(S) and C3D

fit−∞(S) also shares the properties defined in The-

orems 4.2 and 4.4.

4.5.3 Digital compactness

Another of the descriptors briefly presented in section 1.2.2 which could be com-

parable with the descriptors introduced in this chapter is the measure of discrete

compactness Cd (see equation (1.16)).

Although this descriptor is defined as a measure of discrete compactness (and

thus should be comparable to measure C3D
2 (S)), its behaviour is more similar to that

of measure C3D
∞ (S) considering the cube as the most compact shape in 3D space.

Ideally, shape descriptors should provide information a given object regardless

of their representation. However, measure Cd(S) is defined in discrete space and

therefore shapes must be converted to a voxel representation before the measure

can be computed. This additional translation step may induce undesirable errors to

the measure Cd(S), e.g. a coarse voxelisation grid may induce error in the measure.

The measure Cd(S) shares most of the properties defined in Theorem 4.4, except

being rotationally invariant. In fact, the measure Cd(S) produces different results

repending on the orientation of the given shape S. For example, take a 3D shape

S in continuous space (like the chair in Figure 4.4(a)), voxelise it and compute its

compactness Cd(S); then rotate S by θ and φ voxelise it and compute its compactness

Cd(R(S, θ, φ)). The two measures are not (necessarily) equal, i.e. it may be the case

that Cd(S) 6= Cd(R(S, θ, φ)). Figure 4.4(d) shows a plot of the values produced by

Cd(R(S, θ, φ)) for θ ∈ (0, 2π), φ ∈ (0, 2π).

This is a major drawback of measure Cd(S) because it may not produce the

results which would be expected. For example, if used to build a 3D search engine it

would be unable to properly identify two objects as being equal if they are identical

but have been voxelised in different orientations.
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(a) Chair (b) Voxel representation (c) Alternative
voxel representa-
tion

0

2π
2π

0

π π

0

0.5

1

φ θ

(d) Compactness plot

Figure 4.4: (a), (b) and (c) show a chair and two alternative voxel representations.

(d) shows the Cd(S) as a function of θ ∈ [0, 2π], φ ∈ [0, 2π]. Notice that Cd(S) is

periodic every 90◦ since R(S, θ, φ) repeats itself with this periodicity.

Both chairs in (b) and (c) are sampled to the same voxel resolution, and each

chair is made of approximately 500 voxels. The values in figure (d) were calculated

using a higher resolution (chairs sampled to around 25,000 voxels).

4.6 Experiments

The first experiment in this section illustrates the behaviour of the measures intro-

duced earlier in this section applied to some geometrical shapes. These geometrical

shapes are shown in Figure 4.5 and the computed descriptors for these shapes are

listed in Table 4.1.

In accordance with their definition, the measures C3D
Std(S), C3D

2 (S), and C3D
fit−2(S)
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(a) (b) (c) (d) (e)

Figure 4.5: Sample basic geometric shapes: (b) a cube, (a) a sphere, (c) a cone,

(d) a squared pyramid and (e) a torus. The expected compactness and cubeness

values for the cube and the sphere are intuitively clear but not so much for the other

geometric shapes.

reach their maximum value of 1 for the sphere in (a). Notice that measure C3D
Std(S)

theoretically should give a value of 1 for a perfect sphere; however, the reported

value is 0.997. This deviation from the expected value is assumed to be caused by

digitisation error. Similarly, the measures C3D
∞ (S), C3D

fit−∞(S) and Cd(S) reach their

maximum value of 1 for the cube in (b).

Also notice that for the torus in (e) measures C3D
fit−2(S) and C3D

fit−∞(S) give a

score of 0.000. This is because the intersection between the torus and the fitting

sphere/cube are an empty set, i.e. the sphere/cube which has volume equal to that of

the torus fits within the inner hole of the torus without touching the torus at all. This

would also be the case for any other shape which has a hole large enough (around

its centroid) to encircle the fit sphere/cube. Therefore the measures C3D
fit−2(S) and

C3D
fit−∞(S) would be unable to make any distinction between two shapes with such

characteristic.

C3D
Std(S) C3D

2 (S) C3D
∞ (S) C3D

fit−2(S) C3D
fit−∞(S) Cd(S)

(a) 0.997 1.000 0.971 1.000 0.723 0.991

(b) 0.524 0.925 1.000 0.726 1.000 1.000

(c) 0.471 0.845 0.812 0.618 0.549 0.734

(d) 0.308 0.747 0.795 0.532 0.443 0.754

(e) 0.069 0.116 0.340 0.000 0.000 0.785

Table 4.1: Different compactness and cubeness values for the geometric shapes from

Figure 4.5. Notice that a small deviation from the expected values might be induced

due to digitisation error.
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It may be considered advantageous that the scores given by measures C3D
2 (S)

and C3D
∞ (S) span a wider range than the scores given by Cd(S), i.e. the scores

obtained for the shapes in Figure 4.5 by measures C3D
2 (S) and C3D

∞ (S) are in the

range [0.116, 1.000] and [0.340, 1.000] respectively, while the scores obtained by Cd(S)

are in the range [0.734, 1.000]. This indicates that C3D
2 (S) and C3D

∞ (S) assign more

distinctive values than Cd(S), thus making it easier to differentiate between these

shapes.

Figure 4.6 illustrates the behaviour of the compactness measures with respect to

erosion. Starting from a cube, on each step of the erosion process pieces of the 3D

object are progressively cut out. As it would be expected the scores produced by

all measures, with exception of Cd(S), decrease as the level of erosion increases.

(a) (b) (c) (d)

Figure 4.6: Cube under different levels of erosion. On each step of the erosion

process, a portion of the original shape is carved out reducing the total volume of

the shape and altering its enclosing surface area.

In this example, the measure Cd(S) remains almost unchanged regardless of the

level of erosion. This may be due to the fact that measure Cd(S) is a voxel based

approach and thus it is sensitive to errors induced by the voxelisation process. It

is well known that the resolution level used when converting an object to voxel

representation may be critical in subsequent processing. In this case, insufficient

resolution may cause that small levels of erosion go unnoticed: removing a very

small part of the shape may not cause any voxels to be removed from the voxel

representation and therefore the score produced by the measure Cd(S) would remain

the same.

The cubes in Figure 4.6 have a resolution of 60 voxels per side, with a perfect

cube being made up of 216,000 voxels. At the first stage of erosion shown in (a),

around 10% of the total number of voxels has been removed; for the following stages

of erosion in (b), (c) and (d), around 20% of the initial volume is removed in each

stage.

The standard compactness measure C3D
Std(S) decays very rapidly, producing values
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C3D
Std(S) C3D

2 (S) C3D
∞ (S) C3D

fit−2(S) C3D
fit−∞(S) Cd(S)

(a) 0.174 0.855 0.961 0.488 0.784 0.684

(b) 0.092 0.668 0.850 0.342 0.517 0.672

(c) 0.052 0.452 0.708 0.148 0.272 0.681

(d) 0.012 0.239 0.507 0.004 0.026 0.642

Table 4.2: Different compactness and cubeness values for the shapes in Figure 4.6.

very close to zero even for the lowest level of erosion. Such behaviour is expected

since the volume of the shape decreases while the surface area increases as it becomes

more intricate.

Notice also that both shape fitting methods, C3D
fit−2(S) and C3D

fit−∞(S), decay

more rapidly than the measures C3D
2 (S) and C3D

∞ (S). This suggests the robustness

with respect to noise of the measures C3D
2 (S) and C3D

∞ (S). These measures are able

to perceive small variations in the shape while still producing reasonable results in

the presence of noise. Such robustness is generally expected from volume based

measures such as these.

Figure 4.7 illustrates a scenario where measures C3D
fit−∞(S) and Cd(S) decay more

rapidly than measure C3D
∞ (S). This also shows that measure C3D

∞ (S) is more suitable

than the other two, for objects which are composed of several disconnected parts.

(a) λ = 8 (b) λ = 9 (c) λ = 10 (d) λ = 11 (e) λ = 13

(f) λ = 14 (g) λ = 17 (h) λ = 18 (i) λ = 25 (j) λ = 40

Figure 4.7: Objects composed of 512 voxels randomly distributed over an increas-

ingly larger bounding box. As the size of the bounding box increases, the voxels are

more spaced out while still roughly resembling a cube.
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Each of the objects shown in Figure 4.7 is composed of an equal number of voxels

(512 voxels) randomly distributed inside a cubical bounding box having side length

λ. Table 4.3 shows the scores of C3D
∞ (S), C3D

fit−∞(S) and Cd(S) for each of these

objects.

From their definitions, all three measures give a score of 1.000 to the cube in (a),

however, as it can be seen from Table 4.3 measures C3D
fit−∞(S) and Cd(S) approach

zero quicker than C3D
∞ (S). In fact, both measures C3D

fit−∞(S) and Cd(S) can give a

value of zero for any shape given certain circumstances: measure C3D
fit−∞(S) gives zero

for any shape where there is an empty space around the centroid of the shape large

enough to contain the fitting cube; measure Cd(S) gives zero for any shape where

all voxels which compose the shape are disconnected from each other, regardless of

their relative distribution.

C3D
∞ (S) C3D

fit−∞(S) Cd(S)

(a) 1.000 1.000 1.000

(b) 0.904 0.702 0.833

(c) 0.806 0.428 0.656

(d) 0.743 0.319 0.531

(e) 0.617 0.164 0.308

(f) 0.564 0.112 0.253

(g) 0.469 0.078 0.138

(h) 0.443 0.060 0.128

(i) 0.326 0.027 0.034

(j) 0.200 0.004 0.010

Table 4.3: Different cubeness values for shapes in Figure 4.7.

In accordance with its definition, measure C3D
∞ (S) continues to produce values

which are arbitrarily close to zero as the size λ of the bounding box continues to

increase. For any given size of the bounding box, measure C3D
∞ (S) would still produce

different non-zero values depending on the voxel’s relative positions.

Figure 4.8 shows a graph of the obtained measures C3D
∞ (S), C3D

fit−∞(S) and Cd(S)

as a function of λ. Notice how both C3D
fit−∞(S) and Cd(S) measures already have

values very close to zero for λ ≥ 20 while measure C3D
∞ (S) continues to decrease,

asymptotically approaching zero as the values of λ continue to increase. This smooth

decay of the values of C3D
∞ (S) is preferable to the more abrupt decay exhibited by

the other two measures.
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C3D∞ (S)

C3D
fit−∞(S)

Cd(S)

Figure 4.8: Measures C3D
∞ (S), C3D

fit−∞(S) and Cd(S) over a range of λ bounding box

sizes.

Figure 4.9 shows some objects which are composed of multiple disconnected

objects. This example illustrates the influence that the relative position of the

spheres has on the computed measures. The relative position of elements in a group

may be relevant when in describing the group as a whole as it could be the case

with a flocks of birds or a school of fish.

Each object in Figure 4.9 is composed of four isometric spheres (S1, S2, S3, S4)

located in different positions in space and which never intersect with each other. The

four spheres are considered to be part of a single object: (S = S1 ∪ S2 ∪ S3 ∪ S4).

It is clear that all shapes in Figure 4.9 have the same surface area and volume.

Because the measure C3D
Std(S) is computed from these two quantities, it remains

constant for all objects (a)-(f) (see Table 4.4). This is also the case for measure

Cd(S). This inability to detect changes in the relative position of the elements of a

group suggests that the measures C3D
Std(S) and Cd(S) are not suitable for analysis of

multi-component objects. Notice that for measure Cd(S) there is a slight variation

on the values in Table 4.4 induced by the voxelisation process.

Measures C3D
fit−2(S) and C3D

fit−∞(S) can detect changes in relative position of the

individual elements of a group, producing different values for each shape in Figure

4.9. However, as it has been mentioned before, they will produce a zero for any

shape S where the fitting sphere/cube does not intersect with the shape S. This is

the case of the object (f), where the spheres are arranged in a square pattern; the

fitting sphere/cube would be located in the middle of the four spheres and it would

not intersect them.

Measures C3D
2 (S) and C3D

∞ (S) are capable of detecting changes in relative position
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Multi-component shapes composed of fours spheres of equal volume in

different relative positions. Notice that the surface area and volume of these shapes

remains constant.

C3D
Std(S) C3D

2 (S) C3D
∞ (S) C3D

fit−2(S) C3D
fit−∞(S) Cd(S)

(a) 0.250 0.226 0.494 0.076 0.069 0.963

(b) 0.250 0.818 0.915 0.578 0.529 0.966

(c) 0.250 0.299 0.591 0.268 0.234 0.965

(d) 0.250 0.105 0.382 0.193 0.180 0.961

(e) 0.250 0.632 0.812 0.393 0.396 0.967

(f) 0.250 0.102 0.352 0.000 0.000 0.963

Table 4.4: Different compactness and cubeness values for the shapes in Figure 4.9.

of the individual elements of a group and will produce a non-zero value for any given

shape. The behaviour of these measures also matches our natural preception, giving

a higher measure to the shapes when the spheres are closer together than when they

are spread out. This can be appreciated in the shapes (c) and (d) where all four

spheres are co-linear but the distance between them changes; similarly happens with

shapes (e) and (f) where spheres are coplanar but the distance between them again

changes.

Figure 4.10 shows some voxelised 3D models of real world objects1. Table 4.5

summarises the compactness measures for these objects. As it has been mentioned

1Some of these shapes are taken from the McGill database: http://www.cim.mcgill.ca/

~shape/benchMark/
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before, computing measure C3D
Std(S) from the voxel representation of an object would

require additional computations and due to the complexity of this process it is

avoided in this experiment.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4.10: Voxelised 3D model of real world objects: different species of animals,

two airplanes and a mushroom.

From a human perception point of view, it is obvious that objects (j) and (k)

are similar because they are both airplanes. So it seems reasonable that measures

C3D
2 (S), C3D

∞ (S), C3D
fit−2(S) and C3D

fit−∞(S) give very similar scores to these two objects

as it can be seen in Table 4.5. It also seems reasonable that the object in (i) has a

similar ranking according to measure C3D
2 (S): the bird has a score of 0.237, while

the airplanes have 0.224 and 0.205 respectively. This could be considered to be in

accordance with human perception since airplanes and birds have similar shapes.

It also seems reasonable that measure C3D
2 (S) gives the lowest compactness
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C3D
2 (S) C3D

∞ (S) C3D
fit−2(S) C3D

fit−∞(S) Cd(S)

(a) 0.435 0.745 0.347 0.333 0.976

(b) 0.421 0.726 0.325 0.306 0.973

(c) 0.408 0.724 0.346 0.305 0.976

(d) 0.382 0.730 0.342 0.301 0.973

(e) 0.380 0.702 0.313 0.291 0.967

(f) 0.364 0.684 0.316 0.290 0.962

(g) 0.377 0.739 0.372 0.347 0.972

(h) 0.281 0.677 0.409 0.366 0.944

(i) 0.237 0.582 0.260 0.241 0.932

(j) 0.224 0.533 0.186 0.180 0.847

(k) 0.205 0.522 0.188 0.179 0.946

(l) 0.139 0.460 0.220 0.205 0.859

Table 4.5: Compactness measures for shapes in Figure 4.10. Notice that measure

C3D
Std(S) is not computed because the objects are in voxel representation.

amongst these object to the octopus shape in (l): the octopus could be perceived

as being the least compact object from the shapes in Figure 4.10 because it has its

arms stretching out of away from the main mass of its body.

Notice that the range of values covered by the measure Cd(S) (i.e. [0.847, 0.976])

is narrower than the range of any other measure (e.g. [0.139, 0.612] for measure

C3D
2 (S)). Such a short range of values produced by measure Cd(S) implies that it is

difficult to differentiate between the objects in Figure 4.10 using this measure alone.

It is also in accordance with our expectations that both dolphins, (c) and (d),

and the fish (g) have similar scores with respect of measure C3D
∞ (S), having their

cubeness scores being in the range [0.724, 0.739].

Looking at the shapes in Figure 4.10 and at the values in Table 4.5 it seems to be

that there is an overlap between the values of the horses ((a), (b), (e) and (f)) and

the marine creatures ((c), (d) and (g)). It would be desirable to be able to separate

these two groups of shapes.

Using measure C3D
2 (S), shapes the horses ((a), (b), (e) and (f)) are spread in a

wide range, which completely overlaps with that of the marine creatures ((c), (d)

and (g)); a similar thing happens for descriptor C3D
∞ (S). Although it is assumed

that members of the same class should have similar scores for the same descriptor,

some classes may have more variability within members of the same class. In this
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Figure 4.11: Plot of features C3D
2 (S) vs. C3D

∞ (S). Some objects from Figure 4.10 are

located in this feature space.

case, horses span a wider range than marine creatures.

Even though neither of the shape descriptors shown in Table 4.5 can achieve

such a separation, it is possible to separate these two groups of shapes by combining

the measures C3D
2 (S) and C3D

∞ (S).

When both descriptors C3D
2 (S) and C3D

∞ (S) are combined, a two dimensional

feature space is created. Figure 4.11 shows a plot of the feature space created by

combining these two measures and locates the horses and marine creatures ((a), (b),

(c), (d), (e), (f) and (g)) in this feature space. As it can be seen in Figure 4.11, a

simple curve can easily split these shapes in two groups in this feature space.

However, there are still some limitations: (c) is closer to (b) than it is to (d)

and (g). Also, class overlap would still exist if elements from other classes were to

be included; furthermore, there is no guarantee that more items of the same classes

would be properly classified by this decision boundary. One way to work around

this problem would be to include more descriptors, thus creating a larger feature

space where a better class separation may be achieved.

4.7 Conclusions

In this chapter, the Euclidean and chessboard distance metrics are used to derive

the 3D compactness and cubeness descriptors. Both descriptors are derived in a
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similar way, and both provide an indication of similarity with the most compact

shape according to the metric used: using the Euclidean distance, the most compact

shape is a sphere; using the chessboard distance, the most compact shape is a cube.

The new measures are compared with some similar existing descriptors from the

literature. Examples illustrate the behaviour of the new measures, their robustness

to noise and their suitability for classification applications.

As mentioned before, the development of 3D shape descriptors is still a topic

of interest in the field of image processing. Applications like those presented by

Funkhouser et al. (2003), Tangelder and Veltkamp (2004) and Bustos et al. (2005),

provide excellent examples where these methods could be applied. The compactness

and cubeness measures can be incorporated to the feature sets used in these appli-

cations. An increase in retrieval performance would be expected as a consequence

of the use of an extended descriptor set.

In the next chapter, these descriptors are modified to incorporate different weight-

ing parameters which allows tuning of their behaviour.
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Chapter 5

Tuneable 3D Descriptors

This chapter includes material from:

Žunić, J., Hirota, K., and Martinez-Ortiz, C. (2010a). Compactness measure for 3d
shapes. Submitted

Martinez-Ortiz, C. and Žunić, J. (2010b). A family of cubeness measures. Submitted

Martinez-Ortiz, C. and Žunić, J. (2010c). Measuring cubeness in the limit cases.
Submitted

and

Martinez-Ortiz, C. and Žunić, J. (2010d). Tuneable cubeness measures for 3d shapes.
Submitted

5.1 Introduction

Chapter 2 introduced two weighted orientation methods for 2D shapes: section

2.3.1 introduced the idea of modifying a shape orientation method by taking into

account the influence that each individual point has on the computed orientation;

similarly, the modified method introduced in section 2.3.2 computes the orientation

by taking into account the influence of boundary points, weighted using a function

of the curvature. These methods include additional parameters which allow for

certain shape features to be highlighted or ignored, thus tuning the behaviour of

the orientation methods. This may be desirable to suit specific needs in a particular

application.

Following the idea of tuneable orientation measures introduced in Chapter 2, this

chapter introduces tuneable modifications of the 3D shape descriptors introduced

in Chapter 4. These modifications incorporate additional parameters which allow

tuning of the behaviour of the 3D shape descriptors.
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5.2 Position-dependent compactness

This section introduces a modification of the compactness measure C3D
2 (S) intro-

duced in Chapter 4 which takes into account the impact that each individual point

has on the computed measure.

From equation (4.8) it can be seen that each individual point (x, y, z) ∈ S con-

tributes to C3D
2 (S) by x2 +y2 +z2. This indicates that points which are closer to the

origin have a lower influence on the computed compactness and points which are

far away have a greater influence. However, this may not necessarily be desirable

in every situation and it may be preferred to have some control on the impact that

the distance to the origin has over the computed compactness measure.

To this end, the definition of measure C3D
2 (S) is modified to include an additional

parameter, β, which provides the means to control the influence that the point’s

position has on the measured compactness.

Before the modified measure of compactness can be defined, the following lemma

is given:

Lemma 5.1. Given a shape S whose centroid coincides with the origin, and a

constant β > 0. Then:∫∫∫
S
(x2 + y2 + z2)βdxdydz

µ0,0,0(S)(2β+3)/3
≥ 3

2β + 3

(
3

4π

)2β/3

(5.1)∫∫∫
S
(x2 + y2 + z2)βdxdydz

µ0,0,0(S)(2β+3)/3
=

3

2β + 3

(
3

4π

)2β/3

⇔ Sis a sphere (5.2)

Lemma 5.1 can be proven in a similar manner as Theorem 4.1:

Proof. Let S be a given shape whose centroid coincides with the origin and Bfit be

the sphere with radius r =

(
3

4π
· µ0,0,0(S)

)1/3

and centred at the origin. Since β is

assumed to be a positive number:

(u, v, w) ∈ (S \Bfit) and (x, y, z) ∈ (Bfit \ S)⇒ (u2 + v2 + w2)β > (x2 + y2 + z2)β

which gives immediately:∫∫∫
S\Bfit

(x2 + y2 + z2)βdxdydz ≥
∫∫∫
Bfit\S

(x2 + y2 + z2)βdxdydz (5.3)
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and further:∫∫∫
S

(x2 + y2 + z2)βdxdydz =

=

∫∫∫
S\Bfit

(x2 + y2 + z2)βdxdydz +

∫∫∫
S∩Bfit

(x2 + y2 + z2)βdxdydz

≥
∫∫∫
Bfit\S

(x2 + y2 + z2)βdxdydz +

∫∫∫
S∩Bfit

(x2 + y2 + z2)βdxdydz

=

∫∫∫
Bfit

(x2 + y2 + z2)βdxdydz

=

2π∫
θ=0

π∫
φ=0

„
3·µ0,0,0(S)

4π

«1/3∫
ρ=0

((ρ · cos θ sinφ)2 + (ρ · sin θ sinφ)2

+(ρ · cosφ)2)βρ2 · sinφdθdφdρ

=
3

2β + 3

(
3

4π

)2β/3

· µ0,0,0(S)(2β+3)/3

This proves equation (5.1).

To prove equation (5.2) is enough to notice that if S is not a sphere then the

inequality (5.3) is strict. Consequently,∫∫∫
S

(x2 + y2 + z2)βdxdydz >

∫∫∫
Bfit

(x2 + y2 + z2)βdxdydz

for any shape different from a sphere.

In Lemma 5.1 the values of β were assumed to be positive. However, this is not

a restriction and negative values can be considered as well. The following lemma

considers −1 < β < 0. Notice that β > −1 is assumed in order to preserve the

convergence of the integrals. Also notice that, according to this lemma, for −1 <

β < 0 the expression: ∫∫∫
S

(x2 + y2 + z2)βdxdydz

µ0,0,0(S)(2β+3)/3

reaches its maximum value of
3

2β + 3

(
3

4π

)2β/3

only when the given shape S is a

sphere.
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Lemma 5.2. Given a shape S whose centroid coincides with the origin and a con-

stant β such that −1 < β < 0. Then:

∫∫∫
S

(x2 + y2 + z2)βdxdydz

µ0,0,0(S)(2β+3)/3
≤ 3

2β + 3

(
3

4π

)2β/3

(5.4)∫∫∫
S

(x2 + y2 + z2)βdxdydz

µ0,0,0(S)(2β+3)/3
=

3

2β + 3

(
3

4π

)2β/3

⇔ Sis a sphere (5.5)

The proof of Lemma 5.2 is analogous to the proof of Lemma 5.1 and thus it is

omitted.

Based on the two lemmas above, the following definition is given for the position-

dependent compactness measure:

Definition 5.1. Given a shape S with its centroid located at the origin and a real

number β such that −1 < β and β 6= 0, the compactness measure C3D
2 (S, β) is defined

as:

C3D
2 (S, β) =



3

2β + 3

(
3

4π

)2β/3

· µ0,0,0(S)(2β+3)/3∫∫∫
S

(x2 + y2 + z2)βdxdydz
β > 0

2β + 3

3

(
4π

3

)2β/3

·

∫∫∫
S

(x2 + y2 + z2)βdxdydz

µ0,0,0(S)(2β+3)/3
−1 < β < 0

(5.6)

The modified measure C3D
2 (S, β) is a generalisation of the previously defined

measure C3D
2 (S). It can be said that measure C3D

2 (S) is a particular case of C3D
2 (S, β)

with β = 1. The measure C3D
2 (S, β) still complies with the desirable properties

established by Theorem 4.2.

For lower values of β, the measure C3D
2 (S, β) gives higher impact to points which

are closer to the shape centroid; on the other hand for higher values of β, a higher

impact is given to the points which are further away from the centroid. This means

that C3D
2 (S, β) penalises deviations from a perfect sphere for large values of β. This

property could be used to detect small deviations from a perfect sphere, provided

that the selected value of β is large enough. Trivially, if S is a perfect sphere,

C3D
2 (S, β) = 1 for any given value of β.
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5.3 Position-dependent cubeness

In the previous section, measure C3D
2 (S) is modified to include an additional param-

eter β to modify its behaviour. In a similar way, in this section measure C3D
∞ (S) is

also modified to include a tuning parameter β which controls the impact that each

point has on the computed cubeness.

Before the modified cubeness measure can be defined, the following lemma is

given:

Lemma 5.3. Given a shape S whose centroid coincides with the origin, let R(S, θ, φ)

denote the shape S rotated along the x-axis by an angle θ and along the y-axis by

an angle φ. Then:∫∫∫
S

max{|x|, |y|, |z|}βdxdydz
µ0,0,0(S)(β+3)/3

≥ 3

2β(β + 3)
(5.7)

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}βdxdydz

µ0,0,0(S)(β+3)/3
=

3

2β(β + 3)
⇔ Sis a cube. (5.8)

Proof. Let S be a given shape centred in the origin and let Qfit be a cube centred

in the origin, aligned with the coordinate axes and whose volume is equal to that of

S. Also, for β > 0:

(u, v, w) ∈ (S\Qfit) and (x, y, z) ∈ (Qfit\S)⇒ max{|u|, |v|, |w|}β > max{|x|, |y|, |z|}β

which gives immediately:∫∫∫
S\Qfit

max{|x|, |y|, |z|}βdxdydz ≥
∫∫∫
Qfit\S

max{|x|, |y|, |z|}βdxdydz (5.9)

and further:∫∫∫
S

max{|x|, |y|, |z|}βdxdydz

=

∫∫∫
S\Qfit

max{|x|, |y|, |z|}βdxdydz +

∫∫∫
S∩Qfit

max{|x|, |y|, |z|}βdxdydz

≥
∫∫∫
Qfit\S

max{|x|, |y|, |z|}βdxdydz +

∫∫∫
S∩Qfit

max{|x|, |y|, |z|}βdxdydz

=

∫∫∫
Qfit

max{|x|, |y|, |z|}βdxdydz
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= 48 ·
1/2∫
0

x∫
0

y∫
0

xβdxdydz

=
3

2β(β + 3)

This proves (5.7).

To prove (5.8) is enough to notice that inequality (5.9) is strict if shapes S and

Qfit are different, and therefore,∫∫∫
S

max{|x|, |y|, |z|}βdxdydz > 3

2β(β + 3)

for any shape different from the cube.

Notice that according to Lemma 5.3 the expression:∫∫∫
S

max{|x|, |y|, |z|}βdxdydz
µ0,0,0(S)(β+3)/3

reaches its minimum possible value of
3

2β(β + 3)
only when the given shape S is a

cube centred in the origin and aligned with the ordinate axes.

The following lemma considers negative values of β. Notice that according to

this lemma, for −1 < β < 0 the expression∫∫∫
S

max{|x|, |y|, |z|}βdxdydz

reaches its maximum value of
3

2β(β + 3)
only when the given shape S is a suitably

oriented cube.

Lemma 5.4. Given a shape S whose centroid coincides with the origin and a con-

stant β such that −1 < β < 0, then:∫∫∫
S

max{|x|, |y|, |z|}βdxdydz
µ0,0,0(S)(β+3)/3

≤ 3

2β(β + 3)
(5.10)

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}βdxdydz

µ0,0,0(S)(β+3)/3
=

3

2β(β + 3)
⇔ Sis a cube. (5.11)
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The proof of the Lemma 5.4 is analogous to the proof of Lemma 5.3 and thus it

is omitted.

Based on the two lemmas above, the following definition is given for the position-

dependent cubeness measure:

Definition 5.2. Given a shape S whose centroid coincides with the origin and a real

valued β such that −1 < β and β 6= 0, the cubeness measure C3D
∞ (S, β) is defined as:

C3D
∞ (S, β) =



3

2β(β + 3)
· µ0,0,0(S)(β+3)/3

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}βdxdydz β > 0

2β(β + 3)

3
·

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, |y|, |z|}βdxdydz

µ0,0,0(S)(β+3)/3
−1 < β < 0

(5.12)

Again, similarly to C3D
2 (S, β), the modified measure C3D

∞ (S, β) is a generalisation

of the previously defined measure C3D
∞ (S) and it can be said that C3D

∞ (S) = C3D
∞ (S, β)

for β = 1. This measure still fulfils the desirable properties established in Theorem

4.4.

For lower values of β, the measure C3D
∞ (S, β) gives higher impact to points which

are close to the shape centroid; for higher values of β the measure C3D
∞ (S, β) gives

higher impact to points which are away from the centroid. Trivially, when S is a

perfect cube, C3D
∞ (S, β) = 1 for any given value of β.

5.3.1 Convergence of measure C3D
∞ (S, β)

This section takes a closer look at the behaviour of measure C3D
∞ (S, β) when it

approaches its limit cases. These limit cases are β → 0 and β →∞. From equation

(5.12) it is easy to see that:

lim
β→0

C3D
∞ (S, β) = 1 (5.13)

However the other limit case is not as straightforward. The following theorem shows

that for β →∞, the measure C3D
∞ (S, β) also has a consistent behaviour.

Lemma 5.5. Given a shape S different from a cube:

lim
β→∞

C3D
∞ (S, β) = 0 (5.14)
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Proof. Let S be a given shape different from a cube, with unit volume. It is easy to

see that:

lim
β→∞

3

2β(β + 3)
= 0

Since the shape S is different from a cube, the inequality (5.7) is strict. And because∫∫∫
S

max{|x|, |y|, |z|}βdxdydz > 3

2β(β + 3)

then the quantity C3D
∞ (S, β)→ 0 as β →∞.

Figure 5.1 shows two shapes and the corresponding graphs which display all

the computed cubeness measures C3D
∞ (S, β) as a function of β, as β varies through

(−1, 0) ∪ (0, 5). These graphs show how C3D
∞ (S, β) approaches zero as β →∞, as it

has been mentioned before. This is in accordance with equation (5.14).

0 2 4
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β

C
3D ∞

(S
,β

)
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0 2 4
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3D ∞

(S
,β

)

(b)

Figure 5.1: Two shapes and their corresponding measured C3D
∞ (S, β) as β varies

through (−1, 0) ∪ (0, 5).

5.3.2 Analysis of C3D
∞ (S, β) graphs

As it is shown in Figure 5.1, for a given object S the measure C3D
∞ (S, β) can be seen

as a function of β, as shown in the graph to the right of each one of the objects in

Figure 5.1. It is interesting to analyse the graph of these functions. For simplicity,

we denote these as GS(β), so for a fixed shape S:

GS(β) = C3D
∞ (S, β)

Because measure C3D
∞ (S, β) gives similar scores to objects which are similar in

shape (e.g. objects of the same class), it is reasonable to assume that the graphs
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GS(β) for two objects of the same class will be very similar. Under this assumption

a graph which is representative of a class can be computed as:

GC(β) =

N∑
n=1

GSn(β)

N
(5.15)

where Sn are the N elements of a given class C. We call this the mean-graph of

the objects in class C (this is not to be confused with the mean graphs from graph

theory (Vaidya and Bijukumar, 2010)). Figure 5.2 illustrates how the mean-graph

of a class follows the trend of the GS(β) graphs for objects in that class.
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Figure 5.2: Objects from 3 different classes from the McGill database. The right

column shows the GS(β) graph for all objects of the class shown and the mean-graph

for that class.

Figure 5.2 uses objects from 3 classes from the McGill database: (a) - (d) belong

to class four leg (31 shapes); (e) - (h) belong to class teddy (20 shapes); (i) - (l)

belong to class snake (25 shapes). The graphs to the right of each row ((d), (h) and

(l)) show the mean-graph of their class (bold line) and the GS(β) of each object in

that class.
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The images to the left of each graph show the most representative object for

each class ((a), (e) and (i)) as well as the top extreme ((b), (f) and (j)) and bottom

extreme ((c), (g) and (k)) objects in each class. The most representative object of

each class is the object whose GS(β) is closest to the mean graph GC(β) for that

class; likewise, the extreme top/bottom object of each class is the object whose

GS(β) is furthest above/below the mean graph GC(β) for that class.

It can be seen from (l) that the GS(β) graphs of the objects from class snakes

deviate more from their GC(β) than the objects from the other two classes. This

suggests that there is a higher intra-class variability, i.e. objects in the same class

are more distinct from each other. This is confirmed by looking at objects (j) and

(k), which correspond to the extreme top and bottom GS(β) graphs in (l): the snake

in (j) is almost completely stretched, forming an arch, while the snake in (k) is coiled

in a very compact shape.

The area between the GS(β) graphs of the extreme top and extreme bottom

objects provides a numerical indication of the intra-class variability. For example,

the area between the GS(β) graphs of (b) and (c) is 0.865, while the area between

between the GS(β) graphs of (f) and (g) is 0.545. As mentioned before, this gives an

indication that class four leg has a higher intra-class variability compared to that of

class teddy.

The area between the GS(β) graphs of (j) and (k) is 1.834, showing that class

snake has a much larger intra-class variability than the other two classes. Such a

large variation leads to question if objects in this class should be grouped together,

or whether it would be more meaningful to group them in two separate classes. If

the GC(β) graph is used as a division boundary, two resulting sub-classes would be

formed: snakeA consisting of 10 objects with their GS(β) graphs between the GS(β)

graph of (j) and the GC(β) graph, covering an area of area of 0.890; and snakeB,

consisting of 15 objects with their GS(β) graphs between the GC(β) graph and the

GS(β) graph of (k), covering an area of 0.9436.

These GC(β) graphs can be used as a tool for selecting the value of β which gives

a better class separation. Additionally, the graphs themselves can also be used as

features for shape classification applications. Section 5.5.4 gives some examples of

how GC(β) graphs can be useful for classification applications.

5.4 Cubeness with different axis weighting

The modified measure introduced in section 5.3 takes into account the distance from

each point to the centroid of the shape. Even though this may have some applica-
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tions, the modified measure is still very similar in its essence to the original measure.

In this section an additional modification to measure C3D
∞ (S) is introduced. This

measure includes two additional parameters, γ and δ, which modify the behaviour

of the measure: these parameters cause the new measure to function as a similarity

measure not with a cube, but with a cuboid W(γ, δ) whose edges are in proportion

1 : γ : δ. For simplicity, these cuboids are assumed to have unit volume. Such

cuboid can be given in the form:

W(γ, δ) =

{
(x, y, z)|max{|x|, γ · |y|, δ · |z| ≤ 1

γ · δ
}

(5.16)

Figure 5.3 illustrates such a cuboid.

δ
γ

1

Figure 5.3: Cuboid given by the expression W(γ, δ). The edges of the cuboid are in

proportion 1 : γ : δ.

The new measure is derived in a similar way to the previous introduced measures,

beginning from the fact that expression∫∫∫
S

max{|x|, γ · |y|, δ · |z|}dxdydz

reaches its maximum value only when the given shape S is a suitably oriented cuboid

W(γ, δ) (not necessarily a cube). Notice that suitably oriented refers to the cuboid

W(γ, δ) being aligned with the ordinate axes.

As for the previous measures, first of all the following lemma is given:

Lemma 5.6. Given a shape S with its centroid located at the origin, let R(S, θ, φ)

denote the shape S rotated along the x-axis by an angle θ and along the y-axis by
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an angle φ. Then:∫∫∫
S

max{|x|, γ · |y|, δ · |z|}dxdydz
µ0,0,0(S)4/3

≥ 3

8
· (γ · δ)1/3 (5.17)

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, γ · |y|, δ · |z|}dxdydz

µ0,0,0(S)4/3
=

3

8
· (γ · δ)1/3 (5.18)

⇔ S is a cuboid W(γ, δ)

Proof. Given a shape S with unit volume and centred in the origin and W(γ, δ) as

given by equation (5.16), we derive:∫∫∫
S\W(γ,δ)

max{|x|, γ · |y|, δ · |z|}dxdydz ≥
∫∫∫

W(γ,δ)\S

max{|x|, γ · |y|, δ · |z|}dxdydz

and consequently,∫∫∫
S

max{|x|, γ · |y|, δ · |z|}dxdydz ≥
∫∫∫
W(γ,δ)

max{|x|, γ · |y|, δ · |z|}dxdydz

Notice that both S and W(γ, δ) have unit volume. Also notice that the faces of

the cuboid W(γ, δ) intersect with the axes at points (a, 0, 0), (−a, 0, 0), (0, a/γ, 0),

(0,−a/γ, 0), (0, 0, a/δ) and (0, 0,−a/δ), where a = (γ · δ)1/3/2. Then we have:

∫∫∫
W(γ,δ)

max{|x|, γ · |y|, δ · |z|}dxdydz =

= 8 ·
∫∫∫

(x,y,z)∈W(γ,δ)
x,y,z≥0

max{x, γ · y, δ · z}dxdydz

= 8 ·
∫∫∫

(x,y,z)∈W(γ,δ)
0≤x≤γ·y≤δ·z

max{x, γ · y, δ · z}dxdydz + 8 ·
∫∫∫

(x,y,z)∈W(γ,δ)
0≤x≤δ·z≤γ·y

max{x, γ · y, δ · z}dxdydz +

8 ·
∫∫∫

(x,y,z)∈W(γ,δ)
0≤γ·y≤x≤δ·z

max{x, γ · y, δ · z}dxdydz + 8 ·
∫∫∫

(x,y,z)∈W(γ,δ)
0≤γ·y≤δ·z≤x

max{x, γ · y, δ · z}dxdydz +

8 ·
∫∫∫

(x,y,z)∈W(γ,δ)
0≤δ·z≤x≤γ·y

max{x, γ · y, δ · z}dxdydz + 8 ·
∫∫∫

(x,y,z)∈W(γ,δ)
0≤δ·z≤γ·y≤x

max{x, γ · y, δ · z}dxdydz
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= 8 ·
a/δ∫

z=0

 δ·z/γ∫
y=0

 γ·y∫
x=0

δ · zdx
 dy

 dz + 8 ·
a/γ∫

y=0

 γ·y/δ∫
z=0

 δ·z∫
x=0

γ · ydx
 dz

 dy +

8 ·
a/δ∫

z=0

 δ·z∫
x=0

 x/γ∫
y=0

δ · zdy
 dx

 dz + 8 ·
a∫

x=0

 x/δ∫
z=0

 δ·z/γ∫
y=0

xdy

 dz

 dx+

8 ·
a/γ∫

y=0

 γ·y∫
x=0

 x/δ∫
z=0

γ · ydz
 dx

 dy + 8 ·
a∫

x=0

 x/γ∫
y=0

 γ·y/δ∫
z=0

xdz

 dy

 dx

=
6

γ · δ · a
4

which proves equation (5.17).

To prove equation (5.18) lets assume θ0 and φ0 to be the angles such that:∫∫∫
R(S,θ0,φ0)

max{|x|, γ · |y|, δ · |z|}dxdydz = min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, γ · |y|, δ · |z|}dxdydz

(5.19)

Obviously the volume of S remains the same regardless of its orientation, therefore

R(S(θ0, φ0)) must be equal to W(γ, δ), which implies that S differs of W(γ, δ) only

in their orientation.

Based on the above lemma, the following definition is given for the cuboid simi-

larity measure:

Definition 5.3. Given a shape S centred in the origin and two real positive values

γ and δ, the cuboidness measure C3D
∞ (S, γ, δ) is defined as follows:

C3D
∞ (S, γ, δ) =

3

8
· (γ · δ)1/3 · µ0,0,0(S)4/3

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

max{|x|, γ · |y|, δ · |z|}dxdydz (5.20)

The measure C3D
∞ (S, γ, δ) has very similar properties to those established in The-

orem 4.4, however it differs slightly reaching its maximum value for a cuboid W(γ, δ)

instead of a cube. The following theorem summarises these desirable properties:

Theorem 5.1. The measure C3D
∞ (S, γ, δ) has the following properties:

(a) C3D
∞ (S, γ, δ) ∈ (0, 1], for any shapes S with non-empty interior;

(b) C3D
∞ (S, γ, δ) = 1 ⇔ S and W(γ, θ) are isometric (i.e. they differ only on

their orientation);
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(c) C3D
∞ (S, γ, δ) is invariant with respect to similarity transformations;

The proof of Theorem 5.1 is omitted because it is analogous to the proof of

Theorem 4.4.

The values of (γ, δ) need to be carefully chosen for measure C3D
∞ (S, γ, δ). It

must be considered that there are different pairs of (γ, δ) which describe equivalent

W(γ, δ) cuboids. Obviously, given two numbers p and q, the cuboid W(γ = p, δ = q)

is equivalent to the cuboid W(γ = q, δ = p). Furthermore, the length of the sides

of a cuboid W(γ, δ) is in proportion 1 : γ : δ and the measure C3D
∞ (S, γ, δ) is scale

invariant. From this it can be deduced that a two parameter pairs (γ1, δ1) and

(γ2, δ2) can produce identical behaviours from measure C3D
∞ (S, γ, δ).

Take for example the cuboids W(p, q) and W(1/p, q/p), these two cuboids have

equivalent proportions. The sides of cuboids W(p, q) are in proportion 1 : p : q,

while the sides of cuboid W(1/p, q/p) are in proportion 1/p : 1 : q/p = (1 : p : q)/p,

thus the cuboid W(p, q) is equivalent to the cuboid W(1/p, q/p) scaled by a factor

of 1/p. From this and because measure C3D
∞ (S, γ, δ) is scale invariant, it can be seen

that the measures C3D
∞ (S, γ = p, δ = q) and C3D

∞ (S, γ = 1/p, δ = q/p) will have the

same behaviour.

5.5 Experiments

This section features several experiments which demonstrate the behaviour of the

measures C3D
2 (S, β), C3D

∞ (S, β) and C3D
∞ (S, γ, δ) introduced in this chapter. These

experiments are illustrative of their behaviour in specific scenarios. A comparative

study between these measures has not been carried out because it is not possible to

establish one measure as being better than the rest in every case; each measure will

perform better than the rest under specific circumstances. Instead of a comparative

study, the experiments have been designed to show cases in which each measure

could be suitably applied.

5.5.1 Experiments for C3D
2 (S, β) measure

This example illustrates how the measure C3D
2 (S, β) changes its behaviour for differ-

ent values of β. Figure 5.4 features some 3D objects. Their C3D
2 (S, β) values (using

different values of β) are summarised in Table 5.1.

Notice how for C3D
2 (S, β = 1) all objects (a)-(e) give compactness scores which

are close to 1. This is to be expected because these objects are roughly spherical, or
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 5.4: Several 3D objects ordered in descending order of compactness

C3D
2 (S, β = 1).

it could be said that they are highly similar to a sphere. However, when the value

of β is set to β = 10, the small deviations from the sphere become more important

and it is possible to differentiate between them.

β = −0.9 β = −0.5 β = 0.5 β = 1.0 β = 2.0 β = 5.0 β = 10.0

(a) 0.9630 0.9962 0.9999 0.9998 0.9995 0.9977 0.9916

(b) 0.9663 0.9968 0.9977 0.9950 0.9885 0.9646 0.9124

(c) 0.9579 0.9933 0.9948 0.9871 0.9642 0.8447 0.5635

(d) 0.9974 0.9968 0.9914 0.9761 0.9182 0.4688 0.0248

(e) 0.9270 0.9787 0.9848 0.9707 0.9433 0.8616 0.7261

(f) 0.9566 0.9825 0.9695 0.9254 0.8057 0.3875 0.0555

(g) 0.9066 0.9438 0.8951 0.7569 0.4612 0.0425 0.0002

(h) 0.8028 0.8292 0.6876 0.4038 0.1014 0.0006 0.0000

(i) 0.5792 0.6312 0.5388 0.2727 0.0629 0.0004 0.0000

Table 5.1: Measures C3D
2 (S, β) for shapes in Figure 5.4 for different values of β.

As it can be seen from Table 5.1, object (d) is more seriously penalised than

the others; this is because object (d) is the only object to have a protrusion: as it

was mentioned before, measure C3D
2 (S, β) gives a higher impact to the points which

are away from the centroid, as it is the case of the protrusion on object (d), for

higher values of β. The points which are away from the centroid greatly affect the
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compactness of the object, making it significantly less compact as the values of β

are increased.

The values of β used must be carefully selected in order to avoid undesirable

results: for β ≥ 5, objects (g), (h) and (i) are impossible to differentiate using

C3D
2 (S, β), even though they are perfectly distinguishable when β = 1 is used. The

value of β to be used is dependent on the particular application in which the measure

will be used and on the kind of shapes which it will be dealing with.

5.5.2 Experiments for C3D
∞ (S, β) measure

This example illustrates how the behaviour of measure C3D
∞ (S, β) changes for differ-

ent values of β. Figure 5.5 shows a set of 3D objects and their C3D
∞ (S, β) measures

(for different values of β) are summarised in Table 5.2.

(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Figure 5.5: Several 3D objects ordered in descending order of compactness

C3D
∞ (S, β = 1).

Notice that the cube in (a) is given a score C3D
∞ (S, β) = 1 for any value of β.

This is in accordance with the definition of C3D
∞ (S, β). Also notice that for any other

shape in Figure 5.5, the computed values of C3D
∞ (S, β) decrease as the values of β

increase. For β = 5.0, objects (b) and (c) still have relatively high C3D
∞ (S, β) scores

however, higher values of β get lower scores. In fact, for (b) Cβ=20.0(S) = 0.065 and

for (c) Cβ=20.0(S) = 0.090. These values are in accordance with Lemma 5.5; given

an arbitrarily high value of β, the values of Cβ(S) will tend to zero.

From the values in Table 5.2 it can be seen that for any shape (except the cube)

the values produced by measure C3D
∞ (S, β) decrease as the values of β increase.
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β = 0.1 β = 0.5 β = 1.0 β = 2.5 β = 5.0

(a) 1.000 1.000 1.000 1.000 1.000

(b) 0.999 0.996 0.976 0.882 0.665

(c) 0.997 0.986 0.969 0.899 0.745

(d) 0.985 0.917 0.817 0.481 0.128

(e) 0.981 0.905 0.810 0.550 0.258

(f) 0.998 0.969 0.745 0.434 0.025

(g) 0.998 0.968 0.715 0.381 0.009

(h) 0.931 0.697 0.482 0.153 0.020

(i) 0.979 0.792 0.193 0.016 0.000

Table 5.2: Measures C3D
∞ (S, β) for shapes in Figure 5.5 for different values of β.

However, the ordering of the shapes does not necessarily remains the same. For

example, using β = 1.0, (b) has a higher score than (c), but when β = 5.0 it is (c)

that has the higher score. Something similar happens for objects (h) and (i): using

β = 1.0, (h) has a higher score, but when β = 0.1 is used, (i) has a higher score.

5.5.3 Detecting small defects using C3D
∞ (S, β) measure

This experiment shows how measure C3D
∞ (S, β) can be used to detect small deviations

from a perfect cube. It is required that a suitable value of β is selected, and the

value of β depends on the size and number of defects that can be tolerated.

(a) Erosion:
10%

(b) Erosion:
75%

2000400060008000
0.0

0.2

0.4

0.6

0.8

1.0

Number of Voxels

8333
2304

C3
D ∞

(S
,
β
)

β = 1.5

β = 13.0

(c)

Figure 5.6: Figures (a) and (b) show cube eroded 10% and 75% respectively. The

graph on the right show the rate of decay of measures C3D
∞ (S, β = 1.5) and C3D

∞ (S, β =

13.0) as more voxels are removed.

For this experiment a voxelised cube was considered, consisting of 21 voxels per
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side (9261 voxels in total). A process of erosion was applied to the cube, removing

5% of its initial volume on each step of erosion. For each step, measure C3D
∞ (S, β) was

computed and recorded for the eroded cube, using β = 1.5 and β = 13.0. Figure

5.6 shows the cube at two stages of the erosion process. A plot of the C3D
∞ (S, β)

measures is also shown. Table 5.3 shows the computed C3D
∞ (S, β) scores.

As it would be expected, any given value of β gives a score C3D
∞ (S, β) = 1 when

no erosion has been applied because the given shape is still a perfect cube. As soon

as some level of erosion is applied, the values of C3D
∞ (S, β) will decrease but the rate

of decay depends on the value of β selected.

No. Voxels % removed β = 1.5 β = 13.0

9261 0% 1.000 1.000

8797 5% 0.995 0.935

8333 10% 0.986 0.793

7406 20% 0.959 0.521

6477 30% 0.922 0.296

5086 45% 0.845 0.087

3695 60% 0.734 0.012

2304 75% 0.579 0.001

Table 5.3: Measures C3D
∞ (S, β = 1.5) and C3D

∞ (S, β = 13.0) of a cube being eroded.

The scores obtained for these measures when a percentage of the cube has been

eroded are shown here.

Using β = 1.5, measure C3D
∞ (S, β) is more tolerant to small defects and does not

change too quickly. Even with 20% of erosion C3D
∞ (S, β = 1.5) is still relatively close

to 1, reflecting a behaviour tolerant to small defects on the shape.

Using β = 13.0 causes measure C3D
∞ (S, β) to be very sensitive to small deviations

from a perfect cube. With only 10% of erosion C3D
∞ (S, β = 13.0) = 0.793 and it

continues to decrease rapidly while more voxels are eroded away from the cube.

This behaviour may be preferred if the objective is to detect defects on a cube.

5.5.4 Classification using GC(β) graphs

The experiments in this section illustrate how the mean-graphs introduced in section

5.3.2 can be used for classification purposes. Two different methods were used, each

of them illustrated by a simple classification example using a subset of 5 classes from
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the McGill database: C1 : chair (23 shapes); C2 : four leg (31 shapes); C3 : human

(29 shapes); C4 : snake (25 shapes); and C5 : teddy (20 shapes).

The first experiment in this section used the GC(β) to select the value of β which

provided better separation between classes and subsequently the measure C3D
∞ (S, β)

with the selected value of β was used as a feature in a k-nearest neighbours (knn)

classifier (with k = 5). Values of k ∈ [1, 10] were tested and k = 5 was selected

because it produced the best results.

Additionally to the C3D
∞ (S, β) measures, the knn classifier used the following 3

moment invariants (Mamistvalov, 1998):

J1(S) = µ2,0,0(S) + µ0,2,0(S) + µ0,0,2(S)

J2(S) = µ2,0,0(S) · µ0,2,0(S) · µ0,0,2(S)− µ1,1,0(S)2 − µ1,0,1(S)2 − µ0,1,1(S)2

J3(S) = µ2,0,0(S) · µ0,2,0(S) · µ0,0,2(S) + 2 · µ1,1,0(S) · µ1,0,1(S) · µ0,1,1(S)

−µ2,0,0(S) · µ0,1,1(S)2 − µ0,2,0(S) · µ1,0,1(S)2 − µ0,0,2(S) · µ1,1,0(S)2

The 5 classes were divided into a training and test sets, using 85% for training and

15% for test respectively. The knn classifier was trained using the training set and

tested over the test set and the classification accuracy was recorded.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

 

 

chairs
four
humans
snakes
teddy

Figure 5.7: Mean-graphs GC(β) for five classes used in this experiments.

Figure 5.7 shows the mean-graphs for the 5 classes used in this experiment.

From these graphs, the values of β were selected so that the distance between these

graphs was maximised, i.e. a β0 was selected such that the distance between GC1
(β0),

GC2
(β0), GC3

(β0), GC4
(β0) and GC5

(β0) was maximised. The selected values 1 of β

were: β = −0.9, β = −0.8, β = −0.6 and β = 1.5. Table 5.4 shows the classifi-

cation accuracy rates obtained by using the knn classifier with different number of

1The values of β were selected manually, but this process could be automated
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descriptors used as input. As it can be seen from the table, using moment invariants

only, yields a classification accuracy of 66.67% but this classification accuracy was

improved to 80.95% when four C3D
∞ (S, β) measures were used in conjunction with

the moment invariants.

Descriptors Accuracy

J1(S), J2(S), J3(S) 66.67%

J1(S), J2(S), J3(S), C3D
∞ (S, β = 1.5) 71.42%

J1(S), J2(S), J3(S), C3D
∞ (S, β = −0.9), C3D

∞ (S, β = 1.5) 76.19%

J1(S), J2(S), J3(S), C3D
∞ (S, β = −0.9), C3D

∞ (S, β = −0.8),
80.95%

C3D
∞ (S, β = −0.6), C3D

∞ (S, β = 1.5)

Table 5.4: Classification accuracy using measure C3D
∞ (S, β) with values of β selected

from the mean-graphs in Figure 5.7.

The mean-graphs themselves can be used as features for classification purposes.

As it was shown in Figure 5.2 the graphs of GC(β) are taken as the GS(β) graph which

is most representative of a certain class. The graph GS(β) for objects belonging to

a given class C would not differ very much from the GC(β) graph of this class.

For the purpose of this experiment, the difference between a graph GS(β) of a

given object and a graph GC(β) of a given class is measured as the area between

these graphs. This is illustrated in Figure 5.8. The area between two graphs which

are similar will be smaller than the area between two graphs which greatly differ.

Notice that in accordance with equation (5.13) the GS(β) graphs will tend to

1 as β → 0. This means that in the proximity of β = 0, the GS(β) graphs will

be very similar for any given shape S. Similarly happens for β → ∞, where in

accordance with equation (5.14) the GS(β) graphs tend 0. Therefore these values

have been ignored and the graphs GS(β) and GC(β) are only considered in the

interval β ∈ [−0.9,−0.1] ∪ [2.5, 5.0]. These intervals were selected by preliminary

experimentation, having tried a number of different intervals. However a more

exhaustive search for optimum intervals might yield even better results.

Following these considerations, the difference used between the graph GS(β) of

a given object and the graph GC(β) of a given class is computed as follows:

darea =
√

(d[−0.9,−01])2 + (d[2.5,5.0])2

where d[a,b] is the area between GS(β) and GC(β) in the interval [a, b] normalised by

dividing by the length of the interval.
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0 2 4
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Figure 5.8: The difference (darea) between the graph GS(β) of a given object and the

graph GC(β) of a given class is considered to be the area between these two graphs.

The same 5 classes as in the previous experiment (C1 : chair ; C2 : four leg ;

C3 : human; C4 : snake; and C5 : teddy) were used in this experiment. The mean-

graphs for each class were generated from the training set, and then the shapes on

the test set were classified using the mean-graphs: an object S was assigned to the

class C which yielded the smallest darea value. This experiment achieved 88.28%

classification accuracy. This is a remarkable result, especially considering that no

additional descriptors were used for the classification process.

5.5.5 Experiments for C3D
∞ (S, γ, δ) measure

In this experiment the measure C3D
∞ (S, γ, δ) is applied to some geometrical and real

world shapes, using different combinations of γ and β. Figure 5.9 shows the 3D

shapes used in this experiment and their C3D
∞ (S, γ, δ) scores are summarised in Table

5.5.

(a) (b) (c) (d) (e)

Figure 5.9: Several 3D geometric objects and 3D models of real world objects.

From equation (5.16) it can be seen that γ and δ influence the shape of the cuboid

along the y and z axes respectively. A low value of γ or δ would stretch the cuboid

W(γ, δ) along the corresponding axis, and high values of γ or δ would compress it

in the corresponding direction. Take for example the cuboid W(γ = 0.1, δ = 0.1):
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(γ, δ) (0.1, 0.1) (0.1, 0.5) (0.1, 1.5) (0.5, 1.5) (1.5, 2.0) (2.0, 2.0)

(a) 0.394 0.608 0.545 0.900 0.969 0.974

(b) 0.961 0.584 0.453 0.700 0.701 0.690

(c) 0.345 0.531 0.476 0.800 0.891 0.877

(d) 0.579 0.482 0.373 0.630 0.735 0.765

(e) 0.636 0.435 0.340 0.530 0.607 0.620

Table 5.5: Measure C3D
∞ (S, γ, δ) for shapes in Figure 5.9.

this cuboid would be equally stretched out along both axes resembling a tile or a

pizza box. From this it seems reasonable that the object (b) in Figure 5.9 has the

highest score for C3D
∞ (S, γ = 0.1, δ = 0.1) measure.

5.5.6 Shape retrieval using C3D
∞ (S, γ, δ) measure

The previous section illustrates how the measure C3D
∞ (S, γ, δ) changes its behaviour,

producing different scores for different (γ, δ) pairs. These different scores provide

additional information which can be used for particular applications such as image

retrieval from a database.

The following example illustrates how measure C3D
∞ (S, γ, δ) can be used as an

additional descriptor for an image retrieval application. Normally, having more de-

scriptors can improve the performance of a retrieval application since the descriptor

being added contributes more information to the system.

For this example, a 3D shape retrieval application was built. The retrieval system

takes a query 3D shape and computes a feature vector using 3 shape descriptors

described in Chapter 4: C3D
∞ (S), C3D

fit−∞(S) and Cd(S). Using this feature vector,

the shape is represented in a feature space. All shapes in the database are also

represented in this feature space. The shapes which are closest to the query shape

in the feature space are assumed to be similar in shape. The 5 closest shapes are

retrieved and presented as the top 5 matching shapes. For an illustration of the

structure of the retrieval system see Figure 1.2.

In order to demonstrate that the addition of measure C3D
∞ (S, γ, δ) actually im-

proves the retrieval performance, the query is performed twice using the same query

shape: the first time using only the 3 descriptors from Chapter 4; and the second

time with an additional C3D
∞ (S, γ, δ) measure.

Figure 5.10 shows an example of the improved retrieval performance. The air-

plane in the box to the left is used as query shape. The shapes on the right are the
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Figure 5.10: Retrieval example using airplane shape as query image. The first row

uses descriptors: C3D
∞ (S), C3D

fit−∞(S) and Cd(S). The second row uses descriptors:

C3D
∞ (S), C3D

fit−∞(S), Cd(S) and C3D
∞ (S, γ = 1.5, δ = 1.5).

top 5 matches given by the retrieval system: the first row gives the results obtained

using C3D
∞ (S), C3D

fit−∞(S) and Cd(S). The second row gives the results obtained us-

ing C3D
∞ (S), C3D

fit−∞(S), Cd(S) and C3D
∞ (S, γ = 1.5, δ = 1.5). The selected values of

(γ = 1.5, δ = 1.5) create a cuboid W(γ = 1.5, δ = 1.5) which would be a square

based prism. The measure C3D
∞ (S, γ = 1.5, δ = 1.5) seems to be taking into account

the elongated shape of the airplane body (probably penalising the presence of the

wings). The second query eliminates the ant and chair in the first query, but brings

a cup in its place which is not necessarily desirable.

Figure 5.11: Retrieval example using fish shape as query image. The first row uses

descriptors: C3D
∞ (S), C3D

fit−∞(S) and Cd(S) The second row uses descriptors: C3D
∞ (S),

C3D
fit−∞(S), Cd(S) and C3D

∞ (S, γ = 0.1, δ = 0.5).

Figure 5.11 shows another example of the retrieval system performance. For this

experiment a fish is used as the query shape. In this case the selected values of

(γ = 0.1, δ = 0.5) create a cuboid W(γ = 0.1, δ = 0.5) which is a cuboid elongated

along both y-axis and z-axis, but the elongation along the y-axis is greater. This

matches with the flat and elongated nature of the fish, producing a better result
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when the C3D
∞ (S, γ = 0.1, δ = 0.5) measure is included.

5.6 Conclusions

In this chapter, the descriptors introduced in Chapter 4 were modified to incorporate

tuning parameters. Position-dependant compactness and cubeness were developed

in this way. Position-dependant cubeness was taken a step further by developing the

idea of C3D
∞ (S, β) graphs for each object and mean-graphs for each class. Although

this concept was only explored for cubeness, it could easily be applied to compactness

as well. Furthermore, different axis weighting was applied to cubeness as well,

extending the concept from cube similarity to cuboid similarity.

Experiments in section 5.5 illustrate the behaviour of all the new descriptors.

Different possible applications are analysed: defect detection, classification and re-

trieval.

Two different approaches are used for shape classification: for the first approach,

several cubeness measures are combined (along with moment invariants) to create a

feature vector (as described in Figure 1.2); a knn classifier uses this feature vector to

classify the object. The second approach uses GS(β) graphs to classify the objects;

the distance between two objects is given by the area between the GS(β) graphs of

the objects.

The cuboid similarity measure is used in conjunction with other descriptors in a

small shape retrieval application. Again, the descriptors are used to create a feature

vector. The distance between feature vectors is calculated and the 5 closest vectors

define the top 5 images retrieved.

As mentioned in Chapter 4, new shape descriptors can be incorporated to the

descriptor set used by shape retrieval applications. The measures presented in this

chapter could also be incorporated to such applications. Furthermore, the classifica-

tion using GS(β) graphs presents a new approach for shape classification and shape

retrieval.
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Additional 3D Descriptor

6.1 Introduction

Chapter 4 and Chapter 5 introduced a range of different 3D shape descriptors.

These chapters give some examples of specific scenarios where each of these de-

scriptors could be applied. As was mentioned before, an increase in the number of

descriptors used for any given application usually yields an improvement in perfor-

mance. Section 5.5.6 shows an example where the descriptors from Chapter 4 and

Chapter 5 are combined to achieve an improved retrieval performance.

Generally speaking, having a large range of shape descriptors is preferable in

most situations. As is mentioned by Vranić and Saupe (2001), there is a trade-off

between the computational cost of using additional descriptors and the resulting

performance: using more descriptors requires more resources (e.g. processing time

and storage) and normally gives better results.

This chapter introduces another 3D shape descriptor, similar to the ones intro-

duced in Chapter 4. As before, the new descriptor is expected to outperform the

already known descriptors in certain scenarios and may be outperformed in other

scenarios. This descriptor could then be combined with other descriptors in an

image processing application and achieve an overall increase in performance.

6.2 Basic concepts

Chapter 4 introduced two 3D shape descriptors, C3D
2 (S) and C3D

∞ (S). These two

descriptors are constructed in a very similar way but using different distance metrics.

As was mentioned in Chapter 4, a wide variety of distance metrics is available in

the literature. Section 4.2.3 shows how different unit disks can be constructed when
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different metrics are used to measure the distance of points to the origin. Different

distance metrics will create variously shaped unit disks and potentially different 2D

and 3D shape descriptors could be derived from these metrics. This section looks

at another distance metric and the unit disk constructed by this metric, leading to

the definition of a new 3D shape descriptor.

6.2.1 City block distance

This popular distance metric is also known as l1-distance, taxi cab distance or Man-

hattan distance. Using this metric, the distance between two points it given by the

sum of the absolute differences of their coordinates. It is known as taxi cab distance

because to get from point P to point Q the shortest path would be following straight

horizontal and vertical lines, as a taxi would in the grid of a big city like New York.

More formally, the distance between two n-dimensional points P = (p1, p2, ..., pn)

and Q = (q1, q2, ..., qn) is given by:

l1(P,Q) = |p1 − q1|+ |p2 − q2|+ ...+ |pn − qn| (6.1)

6.2.2 Unit disk under l1-distance metric

Section 4.2.3 shows how unit disks are constructed using Euclidean (l2) and chess-

board (l∞) distances. Equations (4.3) and (4.4) show how these unit disks can be

expressed. Similarly, using l1-distance metric, a unit disk situated in the origin O

can be constructed as:

c1(r) = {P = (x, y, z) : l1(P,O) ≤ r} (6.2)

In 2D space, the disk c2(r) (using l2-distance) is a circle of radius r while the

disk c∞(r) (using l∞-distance) is a square of side 2r, aligned with the coordinate

axes. Similarly, the disk c1(r) would be a square, with its vertices intersecting the

coordinate axes at the points (r, 0), (0, r), (−r, 0) and (0,−r) respectively (see Figure

6.1(a)). Figure 6.1 show c1(r) with r = 1, r = 2 and r = 3 in 2D and 3D space.

Assuming a scale invariant 2D shape descriptor was derived using l1-distance, it

would be equivalent to a 2D shape descriptor derived using l∞-distance, since both

distance metrics produce squares as their unit disks (although rotated 45◦).

In 3D space, the unit disk c2(r) is a sphere and the unit disk c∞(r) is a cube.

However, instead of a cube, c1(r) is a octahedron with its vertices intersecting the

coordinate axes at the points (r, 0, 0), (0, r, 0), (0, 0, r), (−r, 0, 0), (0,−r, 0) and

(0, 0,−r) respectively (see Figure 6.1(b)).
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A 3D shape descriptor derived using l1-distance would function as a similarity

measure between a given shape and a octahedron, unlike C3D
∞ (S) derived using l∞-

distances which is a similarity measure between a given shape and a cube.

O
r=

3r=
2

r=
1

(a)

(b)

Figure 6.1: Most compact shapes using city block distance. (a) show the most

compact shapes in 2D (a square) while (b) show the most compact shape in 3D (a

octahedron). See also Figure 4.1.

6.3 3D octahedroness measure

In a similar way to how measures C3D
2 (S) and C3D

∞ (S) are derived in section 4.3 and

section 4.4, in this section the octahedron similarity measure is derived. Following a

similar methodology as in the previous cases, we begin by showing that the quantity

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz

reaches its minimum value
7

9
only when the given shape is an octahedron with its

vertices intersecting the coordinate axes. Notice that, once again for simplicity, all

shapes presented here are assumed to have unit volume. Just as a reminder, the

volume of an octahedron is:

V =

√
2h3

3

115



Chapter 6. Additional 3D Descriptor

where h is the length of the edges of the octahedron. Alternatively, the volume of

an octahedron may be calculated as:

V =
4a3

3

where a is the distance from the vertices to the centre of the octahedron.

Theorem 6.1. Given a 3D shape S, let R(S, θ, φ) denote the rotation of S along

the x-axis by an angle θ and along the y-axis by an angle φ. And let Ω(a) denote

an octahedron centred in the origin and with its vertices intersecting the coordinate

axes at points: (a, 0, 0), (0, a, 0), (0, 0, a), (−a, 0, 0), (0,−a, 0) and (0, 0,−a). Then,

∫∫∫
S

(|x|+ |y|+ |z|)dxdydz
µ0,0,0(S)4/3

≥ 7

9
(6.3)∫∫∫

S

(|x|+ |y|+ |z|)dxdydz
µ0,0,0(S)4/3

=
7

9
⇐⇒ S = Ω

((
3 · µ0,0,0(S)

4

)1/3
)

(6.4)

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz

µ0,0,0(S)4/3
=

7

9
⇐⇒ S is an octahedron. (6.5)

Proof. Let S be a given 3D shape centred in the origin and let Ωfit denote an

octahedron as stated in the Theorem: Ω(a), where a = (3 · µ0,0,0(S)/4)1/3. Thus we

have:

(a) The set differences S \ Ωfit and Ωfit \ S have equal volume;

(b) The points from Ωfit \ S are closer to the origin (in terms of l1-distance) than

the points from S \ Ωfit. More formally:

(u, v, w) ∈ (S \Ωfit) and (x, y, z) ∈ (Ωfit\S)⇒ (|u|+ |v|+ |w|) > (|x|+ |y|+ |z|)

(see. Figure 6.2).

From items (a) and (b) it is easily deduced that:∫∫∫
S\Ωfit

(|x|+ |y|+ |z|)dxdydz ≥
∫∫∫
Ωfit\S

(|x|+ |y|+ |z|)dxdydz. (6.6)
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To prove equation (6.3), we derive:∫∫∫
S

(|x|+ |y|+ |z|) dxdydz = 8 ·
∫∫∫

(x,y,z)∈S
x,y,z≥0

(x+ y + z) dxdydz

= 8 ·
a∫

0

a−x∫
0

a−x−y∫
0

(x+ y + z) dxdydz =
7

9
· a4,

which proves equation (6.3) since a = (3µ0,0,0(S)/4)1/3.

The proof of equation (6.4) comes from the fact that inequality (6.6) is strict

except when S and Ωfit are identical.

To prove equation (6.5) assume θ0 and φ0 to be the angles which minimise the

quantity
∫∫∫

R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz such that:

∫∫∫
R(S,θ0,φ0)

(|x|+ |y|+ |z|)dxdydz = min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz

It is only possible for the quantity∫∫∫
R(S,θ0,φ0)

(|x|+ |y|+ |z|)dxdydz

µ0,0,0(S)4/3

to reach its minimum value of 7/9 if R(S, θ0, φ0) = Ω(a), which implies that S and

Ω(a) may only differ in their orientation and therefore S is an octahedron.

(a) Ωfit and S (b) S \ Ωfit (c) Ωfit \ S

Figure 6.2: (a) shows a given shape S and the octahedron Ωfit which has the same

volume as S and both shapes are centred at the origin. (b) and (c) show S \ Ωfit

and Ωfit \ S respectively. Any point from Ωfit \ S is closer to the origin than any

point from S \ Ωfit.

The following definition is given for the octahedron similarity measure (octahe-

droness):
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Definition 6.1. Given a shape S, the octahedroness measure C3D
1 (S) is defined as:

C3D
1 (S) =

7

9

(
3

4

)4/3

· µ0,0,0(S)4/3

min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz (6.7)

The measures C3D
2 (S) and C3D

∞ (S) have a series of desirable properties. Likewise,

measure C3D
1 (S) has very similar properties, summarised in the following Theorem:

Theorem 6.2. The octahedroness measure C3D
1 (S) has the following properties:

(a) C3D
1 (S) ∈ (0, 1] for any shape S;

(b) C3D
1 (S) = 1 ⇔ S is a octahedron;

(c) C3D
∞ (S) is invariant with respect to the similarity transformations.

Proof. The proof of items (a) and (b) follows directly from Theorem 6.1.

Item (c) is also easily verified: rotation invariance comes from the fact that

both quantities min
θ,φ∈[0,2π]

∫∫∫
R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz and µ0,0,0(S) are such invariants;

translation invariant comes straight from the definition, since all shapes are assumed

to be centred at the origin; scale invariance can also be easily verified by applying a

scaling factor r to a given shape S:

C3D
1 (r · S) =

7

9

(
3

4

)4/3

· µ0,0,0(r · S)4/3

min
θ,φ∈[0,2π]

∫∫∫
r·R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz

=
7

9

(
3

4

)4/3

· (r3 · µ0,0,0(S))4/3

r4 · min
θ,φ∈[0,2π]

∫∫∫
·R(S,θ,φ)

(|x|+ |y|+ |z|)dxdydz = C3D
1 (S)

which proves that C3D
1 (S) is scale invariant.

6.4 Comparable 3D descriptors

Spheres and cubes are very natural shapes as they are commonly found in art, archi-

tecture and nature. Octahedra on the other hand are not as commonly encountered,

despite it being a well known platonic solid. This is probably the reason why, to the
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best of the author’s knowledge, there are no existing octahedron similarity measures

in the existing literature.

In order to have a reference measure to compare C3D
1 (S) with, the following

octahedron fitting method is defined, in a similar way to the cube and sphere fitting

methods previously defined in section 4.5.2:

Definition 6.2. Let S be a given 3D shape and Ωfit be a octahedron as in the

statement of Theorem 6.1. The measure C3D
fit−1(S) is defined as:

C3D
fit−1(S) = max

θ,φ∈[0,2π]

V olume(S ∩R(Ωfit, θ, φ))

V olume(S ∪R(Ωfit, θ, φ))
(6.8)

6.5 Experiments

In this section some simple experiments are presented to illustrate the behaviour of

measure C3D
1 (S). These experiments are similar to the experiments in Chapter 4

and Chapter 5 in that they portrait minimal scenarios to demonstrate the potential

use of the presented measures in more complex scenarios.

6.5.1 Basic experiments

The first experiment in this section shows the values produced for a set of geometrical

shapes and 3D models of real world objects. Figure 6.3 shows this set of 3D shapes

and Table 6.1 shows the produced values for measures C3D
1 (S) and C3D

fit−1(S) for

these shapes.

(a) (b) (c) (d) (e) (f)

Figure 6.3: 3D models of geometric and real world objects.

It seems reasonable that shapes (a) and (b) (the sphere and the cube) are given

a high C3D
1 (S) score; these two shapes are most compact when l2- and l∞-distance

metrics are used, so it seems reasonable that they also have a high compactness

when l1-distance metric is used.
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C3D
1 (S) C3D

fit−1(S)

(a) 0.978 0.731

(b) 0.966 0.440

(c) 0.959 0.670

(d) 0.883 0.400

(e) 0.865 0.331

(f) 0.200 0.016

Table 6.1: Measures C3D
1 (S) and C3D

fit−1(S) for shapes in Figure 6.3. Objects are in

descending order according to measure C3D
1 (S).

Notice also that the shape (f) is given a very low C3D
fit−1(S) score. This indicates

that the intersection between shape (f) and its fitting octahedron Ωfit has a relatively

low volume. The next example provides a more detailed explanation of a similar

situation.

As mentioned before, shape fitting methods like C3D
fit−1(S), and the measures

C3D
fit−2(S) and C3D

fit−∞(S) introduced in Chapter 4, will produce scores of zero for

any shape where the shape and its fitting shape (Ωfit in the case of C3D
fit−1(S)) do

not intersect. When measure C3D
fit−1(S) is applied to a multi-component shape this

can easily be the case, thus making measure C3D
fit−1(S) unsuitable for such a class

of shapes. The measure C3D
1 (S) does not have this disadvantage and would still

produce different values depending on the relative position of the different elements

of the multi-component shape.

Figure 6.4 illustrates the behaviour of measure C3D
1 (S) when applied to multi-

component shapes. These multi-component shapes are composed of 8 spheres of

equal volume with their centroids located on the vertices of a cube1. The volume

and relative position of these spheres remains constant throughout the experiment,

but the distance between the spheres is increased.

Table 6.2 shows the values produced by measures C3D
1 (S) and C3D

fit−1(S). The

values produced by measure C3D
fit−1(S) rapidly become zero; even for shape (b) the

given score is already very close to zero. Contrary to this, measure C3D
1 (S) produces

different scores for every shape in Figure 6.4. As it can be seen in Table 6.2 the

scores given by measure C3D
1 (S) become lower as the distance between the spheres

increases.

1A cube was used because it is the dual polyhedron of the octahedron, so the intersection with
Ωfit would disappear quickly.
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(a) (b) (c) (d) (e)

Figure 6.4: Multi-component shapes composed of 8 spheres located on the vertices

of an imaginary cube. The distance between the spheres increases in each shape but

the volume of the spheres and their relative position remain constant.

C3D
1 (S) C3D

fit−1(S)

(a) 0.881 0.476

(b) 0.489 0.018

(c) 0.332 0.000

(d) 0.202 0.000

(e) 0.113 0.000

Table 6.2: Values produced by measures C3D
1 (S) and C3D

fit−1(S) for multi-component

shapes in Figure 6.4.

6.5.2 Classification experiment

The final experiment in this section shows how the measure C3D
1 (S) can be used in

conjunction with other shape descriptors for classification tasks. The classification

process used in this experiment is very similar to the one previously introduced in

section 5.5.4.

The same classes as in the previous classification experiment were used: C1 :

chair (23 shapes); C2 : four leg (31 shapes); C3 : human (29 shapes); C4 : snake

(25 shapes); and C5 : teddy (20 shapes). Again a knn classifier was used, with the

value k = 5 as in the previous experiment. The data set was once again divided

into training and test sets, using the first to train the knn classifier and the second

to evaluate the classification accuracy. The value of k and the split in the data were

kept the same in order to be consistent with the previous experiment.

The knn classifier was trained using a feature set produced by combining the

two descriptors introduced in this chapter (C3D
1 (S) and C3D

fit−1(S)) and other shape

descriptors previously introduced. These shape descriptors were the 3 moment in-

variants J1(S), J2(S), J3(S) and the measures C3D
2 (S) and C3D

∞ (S). Different combi-
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nations of these descriptors were used and their classification accuracy was recorded.

Table 6.3 shows the classification accuracy obtained by different combinations.

Descriptors Accuracy

J1(S), J2(S), J3(S) 66.67%

J1(S), J2(S), J3(S), C3D
∞ (S) 71.43%

J1(S), J2(S), J3(S), C3D
2 (S), C3D

∞ (S) 71.43%

C3D
2 (S), C3D

∞ (S), C3D
1 (S) 76.19%

C3D
2 (S), C3D

∞ (S), C3D
1 (S), C3D

fit−1(S) 80.95%

Table 6.3: Classification accuracy using measure C3D
1 (S) in conjunction with other

shape descriptors.

As seen before, the combination of moment invariants produces a classification

accuracy of 66.67%. This classification rate is improved to 71.43% when measure

C3D
∞ (S) is added to the mix. Adding measure C3D

2 (S) does not yield any improvement

in performance of the classifier. However, when the moment invariants are replaced

by measure C3D
1 (S) the classification accuracy improves to 76.19%. The best clas-

sification accuracy is achieved by the combination of C3D
2 (S), C3D

∞ (S), C3D
1 (S) and

C3D
fit−1(S), reaching 80.95% accuracy, which is equivalent to the best classification

rate obtained by the knn classifier in section 5.5.4.

6.6 Conclusion

This chapter introduced another shape descriptor, derived in a similar way as the

compactness and cubeness measures introduced in Chapter 4. Instead of Euclidean

or chessboard distance, city block distance is used to derive this measure. The most

compact shape using this distance metric is an octahedron. The new descriptor

works as a similarity measure with an octahedron and is named octahedroness.

The examples in section 6.5.1 illustrate the behaviour of the octahedroness mea-

sure and compares it with a simple fitting shape method. The octahedroness measure

developed, overcomes some of the problems encountered with the fitting method:

the shape fitting method fails when it is applied to shapes with deep concavities,

like the goblet on Figure 6.3(f) or to multi-component shapes like those in Figure

6.4. The developed octahedroness measure overcomes this problem and still gives

different scores to such shapes.
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The examples in section 6.5.2 show how the octahedroness measure can be com-

bined with other descriptors to improve classification accuracy. Different combi-

nations of descriptors produce different classification accuracies. As it has been

mentioned before, a feature selection algorithm can be implemented to determine

which set of descriptors produces best results.

Different weighting parameters could be incorporated to the octahedroness de-

scriptor in the same way as 3D compactness and cubeness in Chapter 5. However,

none of these modifications were included in the scope of this thesis and are an area

of future research.

In the same way as the measures in Chapter 4 and Chapter 5, the measures

presented in this chapter can be used as additional features for image retrieval ap-

plications like those presented by Funkhouser et al. (2003), Tangelder and Veltkamp

(2004) and Bustos et al. (2005). As with the measures from Chapter 4 and Chapter

5, the inclusion of additional features is expected to improve performance.
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Chapter 7

Conclusions

The focus of the research presented in this thesis was to develop new 2D and 3D

shape descriptors suitable for implementation of 2D and 3D image processing ap-

plications. This thesis is not a conclusion to that work, but a catalogue of the

descriptors developed at the present moment. Also, these descriptors are not (and

do no intend to be) a one-size-fits-all solution, but rather should be considered to

be additional tools in the image processing tool box: the adequate combination of

tools should be selected to meet the specific needs of each application.

The experiments in this thesis utilise only a handful of shape descriptors to illus-

trate the use of these descriptors. More realistic applications would be considerably

more complex and may utilise dozens of shape descriptors to achieve specific tasks.

7.1 Thesis summary and future work

The following section outlines the basic structure of this thesis, highlighting the main

points of interest in each of the previous chapters. Some suggestions for further work

are also given.

Chapter 1 gives a general introduction to shape descriptors and applications.

Some well known descriptors from the literature are presented in this chapter. Figure

1.2 gives the basic structure of image processing applications; this basic stucture is

considered on the experiments in the rest of the chapters.

In Chapter 2 some existing shape orientation methods are modified by including

additional weighting parameters. This modification allows certain degree of control

on the behaviour of the orientation methods: specific features can be given higher

or lower relevance depending on the desired effect.

Chapter 3 introduced the linearity 2D descriptor. A set of illustrative experi-
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ments is also given. The presented linearity measure provides a reasonable alter-

native to the existing methods found in the literature. This measure overcomes

some of the shortcomings of the existing methods. One of the key features of the

developed linearity measure is that the measure L(∂S) is designed to be applied to

open curve segments, but by carefully selecting a start-and-finish-point, it can also

be applied to closed curves. The points closest and furthest away from the shape

centroid are suggested as start-and-finish-points, thus giving the measures Lmax(∂S)

and Lmin(∂S). Experimental results indicate that Lmax(∂S) is a more informative

measure and might be preferable to use this measure for most applications.

The 3D compactness and cubeness measures were introduced in Chapter 4. These

two measures and the octahedroness measure from Chapter 6 share a common pro-

cess for their derivation: they all measure the compactness of shapes under different

distance metrics. A line of future research is to follow the same approach, using

yet another distance metric. One possibility is too use Mahalanobis distance (Ma-

halanobis, 1936), which would lead to having ellipsoids as its most compact shape.

Because Mahalanobis distance uses the covariance of the data to calculate the dis-

tance, the distribution of the data would play an important role in the computed

measure.

The measures C3D
∞ (S) and C3D

1 (S) require an additional step for finding the angles

θ and φ which provide optimal orientation to the shape. This additional step is very

computationally intensive which makes it desirable to have alternative methods to

compute such optimal orientation. One possibility which could be explored is to

rotate the shape following a spherical spiral path; the orientation of the shape could

be given by the a vector (x, y, z) given by:

(x, y, z) =

(
cos t√

1 + a2t2
,

sin t√
1 + a2t2

,
−at√

1 + a2t2

)
where a is a constant. The orientation vector depends on a single parameter t (as

opposed to the angles θ and φ) which may lead to a reduction in complexity of the

algorithms to compute C3D
∞ (S) and C3D

1 (S).

Figure 4.11 shows a feature space given by measures C3D
2 (S) and C3D

∞ (S). In this

very simple example, two different kinds of objects are separated in two groups using

a parabolic decision boundary. In this example the decision boundary was drawn

manually, however it was done only to illustrate the idea of class separation. A

similar decision boundary could be easily generated by a properly trained classifier

such as a neural network or a support vector machine.

In Chapter 5 the C3D
2 (S) and C3D

∞ (S) methods are modified by incorporating

additional parameters. These modifications allow the measures to modify their be-
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7.1. Thesis summary and future work

haviour, capturing different features depending on the given parameters. A larger

set of shape features can then be used in the classification process to improve classifi-

cation performance as it was shown in the experiments in section 5.5.4. The number

of features in these examples is still quite limited and manually selecting features is

still possible, however automatic feature selection algorithms could be applied for a

larger number of features (Nguyen and de la Torre, 2010).

The modifications introduced to measure C3D
2 (S) are not the same as those intro-

duced to measure C3D
∞ (S): for example the creation of GC(β) graphs is only applied

to measure C3D
∞ (S, β). This does not imply that any kind of modification is exclusive

to one measure or another: the same process of generating GC(β) graphs could be

applied to measure C3D
2 (S, β); or the different axis weighting in section 5.4 could be

applied to create a ellipsoid similarity measures. These are possible lines of research

to be followed at a later stage and were unfortunately out of the scope of this thesis.

Finally Chapter 6 introduced the basic octahedroness measure. None of the

modifications from Chapter 5 were applied to the octahedroness measure. However

it is in fact possible to extend measure C3D
1 (S) by adding weighting parameters,

creating mean-graphs, adding different axis weighting, etc. These modifications are

also possible lines for future research.

The experiment in section 6.5.2 mixes measure C3D
1 (S) with 3D moment in-

variants and the basic measures C3D
2 (S) and C3D

∞ (S). The basic definition of 3D

compactness and cubeness were used in this experiment instead of their weighted

versions for simplicity reasons: it was easier to select a subset of descriptors from

an already small group of descriptors; using the weighted versions would imply the

additional process of selecting the best weighting parameters. Because the data set

used was also fairly simple, such a small subset of descriptors would be sufficient to

classify it.

Once weighted and mean-graph versions of compactness, cubeness and octahe-

droness are available, a large set of features can be created. Such set of features

could then be applied to a larger, more complex data set. It is expected that the

classification accuracy achieved in this scenario will improve with the addition of

more descriptors. Of course, other factors which influence the performance of the

application as a whole will be the feature selection algorithm and the classifier used.

Another possible line of research is to decompose a given shape into more sim-

ple geometric shapes and apply the proposed shape descriptors to these individual

components. Some approaches like pyramid decomposition (Svensson and di Baja,

2002) could be used to break down a complex object into more simple components.

Using such methods, an object can be decomposed into increasingly complex levels.
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Chapter 7. Conclusions

Shape descriptors could then be applied and objects compared at each level; objects

which are similar in the lower levels of resolution may be found to be different at

higher levels of resolution. This could be used for shape matching.

128



References

Atmosukarto, I., Wilamowska, K., Heike, C., and Shapiro, L. G. (2010). 3d object

classification using salient point patterns with application to craniofacial research.

Pattern Recognition, 43(4):1502–1517. 25

Benhamou, S. (2004). How to reliably estimate the tortuosity of an animal’s path::

straightness, sinuosity, or fractal dimension? Journal of Theoretical Biology,

229(2):209–220. 24, 52, 58, 61, 64

Bors, A. G. (2006). Watermarking mesh-based representations of 3-d objects using

local moments. IEEE Transactions on Image Processing, 15(3):687–701. 21

Bors, A. G., Kechagias, L., and Pitas, I. (2002). Binary morphological shape-based

interpolation applied to 3d tooth reconstruction. IEEE Trans. Med. Imaging,

21(2):100–108. 18

Bribiesca, E. (2000). A measure of compactness for 3d shapes. Computers & Math-

ematics with Applications, 40:1275–1284. 24

Bribiesca, E. (2008). An easy measure of compactness for 2d and 3d shapes. Pattern

Recognition, 41(2):543–554. 24

Bustos, B., Keim, D. A., Saupe, D., Schreck, T., and Vranić, D. V. (2005).
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