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Abstract

In this thesis, three parts, each with several chapters, are respectively

devoted to hydrostatic, viscous and inertial fluids theories and applica-

tions. In the hydrostatics part, the classical Maclaurin spheroids theory

is generalized, for the first time, to a more realistic multi-layer model,

which enables the studies of some gravity problems and direct numerical

simulations of flows in fast rotating spheroidal cavities. As an appli-

cation of the figure theory, the zonal flow in the deep atmosphere of

Jupiter is investigated for a better understanding of the Jovian gravity

field. High viscosity flows, for example Stokes flows, occur in a lot of

processes involving low-speed motions in fluids. Microorganism swim-

ming is such typical a case. A fully three dimensional analytic solution

of incompressible Stokes equation is derived in the exterior domain of

an arbitrarily translating and rotating prolate spheroid, which models a

large family of microorganisms such as cocci bacteria. The solution is

then applied to the magnetotactic bacteria swimming problem and good

consistency has been found between theoretical predictions and labora-

tory observations of the moving patterns of such bacteria under magnetic

fields. In the analysis of dynamics of planetary fluid systems, which are

featured by fast rotation and very small viscosity effects, three dimen-

sional fully nonlinear numerical simulations of Navier-Stokes equations

play important roles. A precession driven flow in a rotating channel is

studied by the combination of asymptotic analyses and fully numerical

simulations. Various results of laminar and turbulent flows are thereby

presented. Computational fluid dynamics requires massive computing

capability. To make full use of the power of modern high performance

computing facilities, a C++ finite-element analysis code is under devel-

opment based on PETSc platform. The code and data structures will be

elaborated, along with the presentations of some preliminary results.
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Nomenclature

Roman Symbols

E Eccentricity

I Identity matrix/tensor

c Focal length of a oblate/prolate spheroid

G Gravitational constant

i Unit imaginary number
√−1

s The distance from the axis in the cylindrical coordinate system

V Scalar potentials

Greek Symbols

δij The Kronecker delta

η The angular coordinate of oblate/prolate spheroidal coordinate systems

Ω Angular speed of rotation

φ The azimuthal coordinate of spherical and oblate/prolate spheroidal coordi-

nate systems

ρ Mass density

θ The angular coordinate of spherical coordinate systems

ξ The radial coordinate of oblate/prolate spheroidal coordinate systems

Other Symbols

Pm
l (ix),Qm

l (ix) Associate Legendre functions of first and second kind of imaginary

arguments

Pm
l (x),Qm

l (x) Associate Legendre functions of first and second kind
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Chapter 1

Introduction

As a branch of continuum mechanics, which models matter from a macroscopic

point of view instead of considering matter made out of discrete atoms or molecules,

fluid mechanics has been studied since ancient times. Fluids, including liquids,

gases and plasmas, are matter which must deform and flow under an applied shear

stress. The flowability distinguishes fluids from matter in the solid state. One of the

most important underlying assumption in fluid mechanics, also in general continuum

mechanics, is the continuum hypothesis that matter filling a domain is distributed

continuously. That is to say that physical quantities such as density, temperature,

pressure and velocity must be definite and spatially continuous functions within the

domain occupied by fluids. This assumption is valid if the typical geometric length

scale of the fluid is much larger than the typical distance between two adjacent atoms

or molecules. As elaborated in [Wu, 1982], under this condition, macroscopically

speaking, an infinitesimal material point still contains a sufficiently large number

of microscopic particles such that statistical fluctuations are negligible. The mean

values of statistical quantities, which represent the macroscopically localized physical

quantities, will be then sufficiently continuous among neighboring material points.

In this sense, except for such extreme occasions as spacecrafts flying in very thin

outer atmosphere and shock wave region, a lot of geophysical and astrophysical

fluid systems satisfy the continuum hypothesis and, hence, can be investigated in

the regime of fluid mechanics.

The dynamics of any fluid mechanical problem, under a velocity field u(t, x) ∈ Rn

(n = 3 throughout this thesis), can be described by the flow map, a time-dependent

orientation-preserving family of diffeomorphisms x(t, α) ∈ Rn, 0 ≤ t ≤ T (See [Lei,

2009]). The material point α ∈ Rn is deformed to the spatial position x(t, α) at time

t
dx(t, α)

dt
= u(t, x(t, α)), x(0, α) = α, (1.1)

in which α is usually called Lagrangian coordinates while x is referred to as Eulerian

coordinates. In the Lagrangian specification of a flow, one describes the kinematics

of the fluid by tracking the motion of each material point labeled by α, as in (1.1),
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and hence records the new configuration of the fluid at time t. This leads to the

Lagrangian fluid mechanics (see [Bennett, 2006]). However, in many aspects, the

Eulerian representation of flow fields is more convenient. By focusing on spatial

points rather than fluid material points, the Eulerian representation treats all the

physical quantities as scalar or vectorial fields, such as the velocity field u(t, x),

the density field ρ(t, x), the pressure field p(t, x) and the temperature field T (t, x).

Through looking into the temporal and spatial variations of the physical fields, one

then gains an overall picture of the fluid motions. In this thesis, we always work in

the Eulerian representation.

Generally, within the area of classical mechanics, flows are governed by conserva-

tion laws of mass, momentum and energy. The three fundamental principles result

in the governing equations of fluid mechanics as





∂ρ

∂t
+∇ · (ρu) = 0, The mass conservation law

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ + ρf, The momentum conservation law

ρ

(
∂E

∂t
+ u · ∇E

)
= (−pI + τ) :: σ +∇ · (k∇T ) + ρq,

The energy conservation law

τ = τ(σ), σ =
∇u+∇uT

2
, The constitutive equation,

p = p(ρ, T ), The equation of state.

(1.2)

In the equations, τ is the shear stress tensor which is a function of the strain tensor

σ; f is the external body force acting on the fluid; E is the internal energy; k is the

thermal conductivity and q is the heat generation rate. Details of derivations and

physical implications of the governing equations can be found in various classical

fluid mechanics books, e.g. [Chandrasekhar, 1981; Lamb, 1932].

In the above constitutive equation, if the shear stress τ is only linearly dependent

on components of the strain σ and the dependency curves all pass through the

origin, it is called a newtonian fluid. Non-newtonian fluids, such as raw rubber and

toothpaste, are most often seen that the shear stress can also depend on shear rate

or shear rate history (see an Oldroyd-B model formulated in [Oldroyd, 1950]). In

this thesis, all the problems we work around only involve newtonian fluids.

We introduce the deformation tensor based on (1.1)

Fij(t, x(t, α)) =
∂xi(t, α)

∂αj

. (1.3)

If detF = 1 holds, the flow map x(t, α) is said to be volume-preserving (see [Lei

et al., 2008]), which implies that the fluid is incompressible. Its counterpart in

the Eulerian representation is ∇ · u = 0. For incompressible Newtonian fluids, the
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constitutive equation is

τij = µ

(
∂uj

∂xi

+
∂ui

∂xj

)

and the momentum equation takes the appearance of the famous incompressible

Navier-Stokes equation

∂u

∂t
+ u · ∇u = −∇p

ρ
+ µ∇2u+ f,

where µ is a well defined kinematic viscosity. Incompressible fluids are good ap-

proximations of liquids whose compressibility is usually very low; also, if in some

gas problems, the compressibility can be neglected for some reasons, we still can

apply the model of incompressible fluids to them, usually achieving great simplicity

without loss of important physics. In this thesis, Chapter 2 and Chapter 3 deal

with the shape theories of rotating planets. Although giant gaseous planets enter

the analyses, we still consider the incompressible fluid settings. Relevant discussions

and validations can be found in respective chapters. Since Chapter 4 mainly con-

sists of analysis of microorganism’s motion in water, the incompressible condition is

naturally satisfied. In Chapter 5, we still explore into the incompressible flows inside

a precessing channel, which simulate outer core or mantle flows within planets with

precession. In the last chapter, however, we touch the regime of compressible fluids.

A finite-element code developed for compressible convection problems is elaborated.

However, only the first stage of the code development has been done and reported

in this thesis. We have already made a preliminary application of the code to a

polytropic model of Gaseous planets.

The research areas of fluid mechanics can be divided into hydrostatics, the study

of fluids at rest; fluid kinematics, the study of fluids in motion; and fluid dynam-

ics, the study of the interactions between fluids and force acting on them. In this

thesis, chapters are basically arranged according to the sequence from hydrostatics

to fluid dynamics. Chapter 2 and Chapter 3 are on hydrostatic planetary config-

uration problems; Chapter 4 discusses a fluid kinematical problem emerging from

bacteria swimming processes; Chapter 5 is fully engaged by the dynamics of pre-

cession driven flows in a channel geometry; Finally, Chapter 6, though not directly

linked to any dynamical problems for the time being, is devoted to future relevant

work on compressible thermal convection.

Fluid mechanics equations can often be mathematically complicated and difficult

to solve, even approximately. Sometimes, numerical methods are the best candidates

to solve such equations. With the help of modern high performance computing

facilities, providing massive parallel computing capacities, various well developed

and tested numerical schemes can be applied to fluids systems in the proper man-

ner according to the particular nature of each problem. In the sense of accuracy,

geometrical flexibility, parallelization etc., methods such as finite-difference, finite-
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volume and finite-element all have advantages and drawbacks. The comparison of

different numerical methods applied to Navier-Stokes equations can be found, for

example, in [Hesthaven and Warburton, 2008]. In this thesis, problems are solved

analytically or semi-analytically in Chapter 2–4; While the remaining two chapters

are contributed by fully numerical work. In Chapter 5, the reason why we choose

a finite-difference method to simulate precession driven flows in a rotating channel

is largely because of the regular rectangular geometry; however, in Chapter 6, the

newly developed code will be extended to thermal convection problems mainly in

spherical and spheroidal domains, in which the finite-element method we adopt can

avoid cumbersome schemes and annoying coordinates singularity problems facing

finite-difference methods.

This thesis consists of chapters that are relatively independent from one an-

other. Chapter 2 and Chapter 3, can be regarded as two different applications and

progresses of the classical Maclaurin spheroids theory (see [Chandrasekhar, 1969;

Lamb, 1932]). The Papkovich-Neuber type solutions of the incompressible Stokes

equation derived in Chapter 4 are the ensuing work of interesting discussions with

Prof. Yongxin Pan on magnetotactic bacteria swimming problems. Even though

this individual project has not much to do with the main theme of my PhD research,

namely, astrophysical fluid systems, the inter-discipline joint work with biological

people proves to be beneficial and promising. The analytical solutions have helped

precisely model the swimming behaviors of magnetotactic bacteria under externally

imposed magnetic fields. The results have a lot of potential applications in the

researches of bio-magnetotaxis and bio-mineralization. The work in Chapter 5 is

the first project I did in my PhD programme. Starting from this project, I got

myself familiarized with and impressed by modern parallel computing. After the

completion of all the numerical work in this Chapter, I became skilled and expe-

rienced in this area and could then independently work on parallel computations.

In the last chapter, an extensible finite-element code built on PETSc platform (see

[Balay et al., 2011]) is presented as a phased work. In the current stage, this code

is ready for solving 3-D time-independent general elliptic equations by a Galerkin

finite element method. Both the object-oriented-programming (OOP) methodol-

ogy and the PETSc toolkits make it much easier to extend this code to general

convection-diffusion equations and finally, the Navier-Stokes equations.

It is also worth mentioning that most of the contents of this thesis has been

published in or accepted by proper peer reviewed journals. Chapter 2 was published

in ”J. Geophys. Res.,(2010),115,E12003”; Chapter 3 has been published in ”ApJ,

(2012), 748, 143” after revisions; Chapter 4 has been published in ”International

Journal of Pure and Applied Mathematics, (2012), 75, 455”. Chapter 5 is my

contribution to the paper published in ”J. Fluid Mech., (2010), 656, 116-146”. The

last chapter currently does not contain anything published. Within each chapter,
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there are more background introductions and literature reviews. And, this thesis

only includes my independent work in the publications mentioned above, as declared

seriously in the title page.
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Chapter 2

Shapes of Two-layer Models of

Rotating Planets

2.1 Introduction

As a consequence of the interactions among the Sun, planets and satellites, many

planetary bodies are rotating non-uniformly, resulting in precession or libration of

those planets ([Tilgner, 2007a; Williams et al., 2001]). [Bullard, 1949] (see also

[Malkus, 1968]) proposed that precessionally driven flows in the spheroidal cavity of

the Earth’s core may generate and maintain the geomagnetic field. It is estimated

that there is abundant energy in rotation to sustain the generation of planetary

magnetic fields ([Kerswell, 1993]). It has been shown experimentally that the spa-

tially complex flows required for dynamo action can occur in non-uniformly rotating

spheroidal systems ([Malkus, 1968; Noir and Cardin, 2001; Noir et al., 2003b; Vanyo

et al., 2007]). Recently, it has been convincingly demonstrated that precession-

driven flows can indeed generate and sustain magnetic fields ([Tilgner, 2005a; Wu

and Roberts, 2008]). A vitally important parameter for the dynamo problem is

the geometrical shape of the fluid core, which, due to the effect of rotation, is usu-

ally in the form of an oblate spheroid with semi-major axis a0 and semi-minor axis

a0
√

1− E2
0

x2 + y2

a20
+

z2

a20(1− E2
0)

= 1, (2.1)

where 0 ≤ E0 < 1 denotes the eccentricity of the spheroidal core and z is in the

direction of rotation. It is the eccentricity of the core E0 that determines and controls

both the style and strength of fluid motion driven by the non-uniform rotation of the

planet ([Busse, 1968; Lorenzani and Tilgner, 2001; Roberts and Stewartson, 1965;

Zhang et al., 2004]).

More than two centuries ago, Colin Maclaurin solved the problem of the attrac-

tion of a homogeneous spheroid when departure from sphericity is so large that it

cannot be treated as a small perturbation, determining the relationship between
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2. Two-layer Spheroids

the eccentricity of a rotating homogeneous spheroid with density ρ0 and its angular

speed Ω. As discussed in detail in many monographs ([Chandrasekhar, 1969; Lamb,

1932]), a rotating homogeneous fluid planet is in the shape of an axisymmetric

spheroid with its eccentricity E0 given by the explicit equation:

ε0 =

√
1− E2

0

E3
0

(3− 2E2
0) sin

−1 (E0)− 3(1− E2
0)

E2
0

, (2.2)

where ε0 = Ω2/(2πGρ0) and G is the universal gravitational constant. The shape

of the body is usually referred to as the Maclaurin spheroid. In Figure 2.1, ε0

is plotted against the eccentricity E0 in the interval between 0 and 1. Simply on

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

E0

ε
0

Figure 2.1: The rotation-eccentricity relation of a classical Maclaurin spheroid

observation of the curve, we can realize that for a particular of ε0, there seems to

be two values that eccentricity can take. Both eccentricities satisfy the free surface

condition. However, only the smaller eccentricity, which minimizes the total energy,

is physically possible. The free surface condition and energy minimum principle

will be discussed in §2.3. In other words, the descending branch of the curve in

Figure 2.1 is only mathematically reasonable. A stable Maclaurin spheroid cannot

be more oblate than the shape of a critical eccentricity, about 0.93. After that,

there are several bifurcations from the Maclaurin sequence into non-axisymmetric

configuration sequences (see [Bardeen, 1971; Chandrasekhar, 1969; Chandrasekhar

and Lebovitz, 1964]).

To a first approximation, however, the interiors of many planetary bodies, such as

Mercury, the Earth and Ganymede, consist of a core and a mantle with substantially
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2. Two-layer Spheroids

different densities. Even for such a simple density distribution, the equilibrium figure

is never an exact spheroid. Mathematical explanations are presented later in the

following chapters. However, such departure from a spheroid is extremely minor, as

also verified carefully in later discussions. Therefore, the spheroidal shape is still well

applied. Evidently, the eccentricity of the interface between the core and the mantle,

which is not observable, would be different from that of the outer surface. However,

there is no exact theory of two-layer rotating planets that can determine the shape of

a spheroidal fluid core. [Zharkov et al., 1985] have developed an approximate theory

for the shape of two-layer rotating models in which departure from sphericity is

treated as a small perturbation, though the shapes of non-spherical cores were not

explicitly presented.

The primary objective of the present study is to develop a theory for the distor-

tion of a rotating, two-layer Maclaurin spheroid that determines the shapes of both

the interface and the outer free surface and does not treat departure from sphericity

as a small perturbation. The numerical approach based on direct simulation using

a spheroidal code is both difficult and computationally expensive. This is because

a spheroidal mesh for direct numerical simulation, which is unknown in the present

problem, is required prior to running the simulation. At first glance, one might ex-

pect that an analytical formula like (2.2) for the classical Maclaurin spheroid could

be derived for a two-layer Maclaurin spheroid. As we demonstrate, however, an

extension of the Maclaurin theory from a one-layer to a two-layer model is far from

straightforward. It involves the transformation between two different spheroidal co-

ordinates and multiple integrals that must be evaluated numerically in an intricate

way with the upper/lower limits of the integrals being complicated functions of the

solution of the problem. A great deal of our effort is spent evaluating the quadru-

ple integrals. This mathematical complexity probably explains why the classical

Maclaurin theory has never been extended to that of a two-layer spheroid.

In what follows, we begin by presenting the two-layer model and two different

systems of spheroidal coordinates in §2.2. The mathematical analysis and the results

are presented in §2.3, while a summary and some remarks are given in §2.4.

2.2 Spheroidal Coordinates and Model

2.2.1 Oblate Spheroidal Coordinate System

A general oblate spheroidal coordinate system can be formed by rotating a two-

dimensional elliptic coordinate system about its minor axis, which naturally intro-

duces the azimuthal coordinate φ ∈ [0, 2π]. Let the z axis be the one of rotation
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2. Two-layer Spheroids

and s =
√

x2 + y2. The relation

{
x = s cosφ

y = s sinφ
(2.3)

is to be found immediately. The other two coordinates grid in an arbitrary merid-

ional z− s cross-section is shown in Figure 2.2. The three coordinates are therefore

0.2
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0.6

−0.6

0
.8

−
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η = −1.0

0.2
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0.6

−
0.6
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−

0
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ξ = 0
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ξ = 2

ξ = 2

ẑ

ŝ

Figure 2.2: Illustration of oblate spheroidal coordinates within a meridional cross
section

ξ ∈ [0,∞),which is a radial variable, η ∈ [−1, 1], which is an angular variable mea-

suring the angle from the z-axis, and the third azimuthal variable φ. The equation

of ξ represents confocal spheroids

s2

c2(1 + ξ2)
+

z2

c2ξ2
= 1, (2.4)

while that of η gives confocal hyperboloids

s2

c2(1− η2)
− z2

c2η2
= 1. (2.5)

Eliminating s from above equations yields

z = cξη (2.6)

and similarly, eliminating z gives

s = c
√

(1 + ξ2)(1− η2), (2.7)
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which further make x and y ready to be found by virtue of Eq.(2.3). In the repre-

sentation of an oblate spheroidal coordinate system, c, the common focal length of

all the spheroidal and hyperboloidal level surfaces, is a key physical parameter. The

degenerate surface ξ = 0 is a circular disk of radius c which lies in the x, y−plane.

However, in the limit ξ → +∞, the spheroids become spheres, as shown mathemat-

ically, limξ→+∞ E = limξ→+∞ 1/
√

1 + ξ2 = 0; thus, in the spherical limit, cξ → r,

η → cos θ.

By virtue of three Lamé scaling factors





h1 = c

√
ξ2 + η2

1 + ξ2
,

h2 = c

√
ξ2 + η2

1− η2
,

h3 = c
√

(1 + ξ2)(1− η2),

the Laplace equation of a scalar potential V therefore can be written as

∂

∂ξ

[
(1 + ξ2)

∂V

∂ξ

]
+

∂

∂η

[
(1− η2)

∂V

∂η

]
+

ξ2 + η2

(1 + ξ2)(1− η2)

∂2V

∂φ2
= 0. (2.8)

Substituting of the solution of the separable form V = Ξ(ξ)H(η)Φ(φ) into (2.8)

gives rise to three equations





d

dξ

[
(1 + ξ2)

dΞ

dξ

]
+

m2Ξ

1 + ξ2
− l(l + 1)Ξ = 0, ξ ∈ [0,+∞),

d

dη

[
(1− η2)

dH

dη

]
− m2H

1− η2
+ l(l + 1)H = 0, η ∈ [−1, 1],

d2Φ

dφ2
+m2Φ = 0, φ ∈ [0, 2π).

To make the appearance of the first equation similar to that of the second, ξ is

replaced by ξ′ = iξ. Then the new set of equations becomes





d

dξ′

[
(1− ξ′2)

dΞ

dξ′

]
− m2Ξ

1− ξ′2
+ l(l + 1)Ξ = 0, Im(ξ′) ∈ [0,+∞),

d

dη

[
(1− η2)

dH

dη

]
− m2H

1− η2
+ l(l + 1)H = 0, η ∈ [−1, 1],

d2Φ

dφ2
+m2Φ = 0, φ ∈ [0, 2π),

(2.9)

in which l takes values of 0, 1, · · · and m takes values of 0, · · · , l. The solution of

the third equation of (2.9) is simply

Φm = Cm cosmφ+Dm sinmφ, φ ∈ [0, 2π)

26
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subject to a periodic boundary condition. The first two equations, on an observation,

are both associated Legendre equations and hence have analogous solutions as

{
Ξlm = A′

lmP
m
l (iξ) +B′

lmQ
m
l (iξ), ξ ∈ [0,+∞],

Hlm = AlmP
m
l (η) +BlmQ

m
l (η), η ∈ [−1, 1].

The general solution of the Laplace equation is then

V =
∞∑

l=0

l∑
m=0

ΞlmHlmΦm. (2.10)

Ξ and H are so called oblate spheroidal harmonics (see [Morse and Feshbach, 1953]

and [Smythe, 1950]).

2.2.2 Physical Model Settings

ρ1, M1

Ωẑ

S1

ρ2, M2

S2

a1

a2

Figure 2.3: A schematic of a meridional cross-section of a rotating two-layer ellipsoid.
Subscript 1 denotes variables of the core with mass M1 and density ρ1 while 2 stands
for the outer layer with mass M2 and density ρ2. The whole system rotates with a
uniform angular velocity Ω around the axis of symmetry. The semi major axis of the
interface is denoted by a1 while its semi minor axis is a1

√
1− E2

1; the semi major

axis of the outer free surface is a2 with its semi minor axis is a2
√

1− E2
2: E1 6= E2.

Consider the hydrostatic equilibrium of a rotating, two-layer planet. A schematic

of the meridional cross-section of the two-layer model is displayed in Figure 2.3. We

assume that the planet is isolated in space and rotates about a fixed axis with

angular velocity Ω and that there are no magnetic forces acting on the planet. We

also assume that the interface S1 between the core and the outer layer as well as the

outer bounding surface S2 are axisymmetric and in the shape of oblate spheroids

with different eccentricities E1 and E2. This is a reasonable assumption because the

instability of a Maclaurin spheroid takes place at the critical eccentricity Ec ∼ 0.93
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which corresponds to an extremely fast rotation that is unusual for planets. In

our two-layer model, a homogeneous fluid with mass M1 and density ρ1 is confined

within the interface surface S1 characterized by a semi-major axis a1 and a semi-

minor axis a1
√

1− E2
1. Another homogeneous fluid with different mass M2 and

different density ρ2 is confined within the outer layer confined by the interface S1

and the outer free surface S2 characterized by a semi-major axis a2 and a semi-

minor axis a2
√

1− E2
2. The whole system rotates uniformly with angular velocity

ẑΩ, resulting in substantial flattening of both the interface S1 and the outer surface

S2, which are marked by finite values of E1 and E2 with 0 < E1 < 1 and 0 < E2 < 1.

The objective of our analysis is to find the values of E1 and E2 for a given set of the

planetary parameters M1, ρ1, M2, ρ2 and Ω.

Since the interface S1 and the outer free surface S2, in general, have different focal

lengths, i.e., c1 6= c2, two different oblate spheroidal coordinates are required in the

mathematical analysis of the two-layer problem. The first spheroidal coordinates,

(ξ1, η1, φ1), are defined within the core by

x = c1

√
(1 + ξ21)(1− η21) cosφ1, (2.11)

y = c1

√
(1 + ξ21)(1− η21) sinφ1, (2.12)

z = c1ξ1η1, (2.13)

where z is along the axis of rotation and c1 is the focal length of S1 defined as the

distance from the foci of the ellipse to the center point on the major axis. In the

first spheroidal coordinates, ξ1 ∈ [0 ≤ ξ1 ≤
√

1/E2
1 − 1]. The interface S1, in terms

of the first spheroidal coordinates, is simply given by

ξ1 = ξi =
√

1/E2
1 − 1,

with its semi-major axis being a1 = c1/E1.

The second spheroidal coordinates, (ξ, η, φ), are defined based on the focal length

of the outer bounding surface S2 of the two-layer planet

x = c2
√

(1 + ξ2)(1− η2) cosφ, (2.14)

y = c2
√

(1 + ξ2)(1− η2) sinφ, (2.15)

z = c2ξη, (2.16)

where ξ ∈ [0 ≤ ξ ≤
√

1/E2
2 − 1], η ∈ [−1, 1] and φ = φ1 ∈ [0, 2π]. Because

c1 6= c2, there are no level surfaces of ξ that are coincident with the interface S1,

representing the root of the mathematical difficulties in the the two-layer problem.

With the second spheroidal coordinates (ξ, η, φ), the outer free surface S2 is simply
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given by

ξo =
√

1/E2
2 − 1

with its semi-major axis being a2 = c2/E2. The two different spheroidal coordinates,

(ξ1, η1) (blue) and (ξ, η) (black), with different focal lengths, c1 and c2, are illustrated

in Figure 2.4. For application to planetary problems, we assume that ρ1 > ρ2 and,

hence, c1 < c2.

ẑ

ŝ

Figure 2.4: Sketch of two different spheroidal coordinates: the first coordinates
(ξ1, η1) with the focal length c1 (blue) for the core while the second coordinates
(ξ, η) (black) serve as the working coordinates for the whole planet. Note that the
interface S1 must be one of the surfaces with a constant ξ1.

It is straightforward, from (2.11)-(2.13) and (2.14-2.16) to derive a transforma-

tion between the two coordinates (ξ1, η1) and (ξ, η)

ξ4 +
[
1 +

c21
c22
(η21 − ξ21 − 1)

]
ξ2 − c21

c22
ξ21η

2
1 = 0, (2.17)

η4 −
[
1 +

c21
c22
(η21 − ξ21 − 1)

]
η2 − c21

c22
ξ21η

2
1 = 0. (2.18)

In particular, our analysis requires that we express the interface S1 in terms of

the second spheroidal coordinates (ξ, η). This is achieved by eliminating η1 from
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(2.17-2.18) and using ξ1 = ξi, which gives rise to the interface S1 in terms of (ξ, η)

ξI(η) = ξi

[
c21(1 + ξ2i )− c22(1− η2)

c22(ξ
2
i + η2)

]1/2
, (2.19)

where ξi =
√

1/E2
1 − 1. That ξI is a function of η reflects the central feature of the

problem: the level surfaces of ξ cannot be coincident with the interface S1. With

the transformation (2.19), the second spheroidal coordinates (ξ, η) will be adopted

as the active coordinates for our analysis and, consequently, the first spheroidal

coordinates (ξ1, η1) will no longer be needed explicitly. However, apparently, the

transformation (2.19) is only conditionally valid when

c21(1 + ξ2i )− c22(1− η2) ≥ 0,

which categorizes two-layer rotating spheroids problems into two mathematically

different types. Depending on the locations of the interface S1 relative to the two

sets of foci, they are discussed in §2.3.3. It is the complicated transformation (2.19)

that is responsible for the conclusion that an explicit analytical expression for the

shape of a rotating two-layer planet cannot be derived.

2.3 Two-layer Maclaurin spheroids

2.3.1 Governing Equations

In the co-rotating reference frame (also called the mantle frame), the hydrostatic

equation for the core with density ρ1 is

−∇p− ρ1∇ (Vg + Vc) = 0, (2.20)

while for the outer layer with density ρ2 it is

−∇p− ρ2∇ (Vg + Vc) = 0, (2.21)

where p is the pressure, Vg denotes the gravitational potential which satisfies

∂

∂ξ

[
(1 + ξ2)

∂Vg

∂ξ

]
+

∂

∂η

[
(1− η2)

∂Vg

∂η

]
= 4πρ1 (2.22)

for the core and

∂

∂ξ

[
(1 + ξ2)

∂Vg

∂ξ

]
+

∂

∂η

[
(1− η2)

∂Vg

∂η

]
= 4πρ2 (2.23)
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for the outer layer. The centrifugal potential Vc is given by

Vc(η, ξ) = −Ω2

2

[
c22(1 + ξ2)(1− η2)

]
(2.24)

in terms of the second spheroidal coordinates. The centrifugal potential is indepen-

dent of the density distribution.

For an isolated planetary body, we assume that the pressure p vanishes on the

outer free surface S2

p(ξ, η) = 0 on S2, (2.25)

implying that the total potential, gravitational and rotational, must be constant on

S2. At the interface S1, the pressure must be continuous across S1 where the density

is discontinuous. Upon solving (2.22)–(2.23) by the method of the Green’s function,

we can derive the gravitational potential Vg for the two-layer problem which can

then be used to compute the gravitational energy of the system. The shape of

the two-layer hydrostatic equilibrium, marked by the values of E1 and E2, is then

determined by minimizing the total (gravitational and rotational) potential energy

together with the requirement of the free-surface condition on S2.

It is well known that solutions to (2.22)-(2.23) for the gravitational potential Vg

can be expressed in terms of the Green’s function

Vg(r) = −
[∫

V1

ρ1G

|r− r′| dV
′ +

∫

V2

ρ2G

|r− r′| dV
′
]
, (2.26)

where
∫
V1

denotes the volume integration over the core and
∫
V2

the volume inte-

gration over the outer layer. By expanding 1/|r − r′| in terms of oblate spheroidal

harmonics (see [Smythe, 1950])

1

|r− r′| =
1

c2





∞∑

l=0

l∑
m=0

MlmP
m
l (iξ)Pm

l (η) cosm(φ− φ′), ξ < ξ′,

∞∑

l=0

l∑
m=0

NlmQ
m
l (iξ)P

m
l (η) cosm(φ− φ′), ξ > ξ′,

(2.27)

where 



Mlm = i(2− δ0m)(−1)m(2l + 1)
[(n−m)!

(n+m)!

]2
Qm

l (iξ
′)Pm

l (η′),

Nlm = i(2− δ0m)(−1)m(2l + 1)
[(n−m)!

(n+m)!

]2
Pm
l (iξ′)Pm

l (η′),

and taking into account the underlying symmetries which lead to m = 0 and l can

only take even values, we can write the solution (2.26) as an expression in terms of
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(ξ, η) (for example, [Ansong et al., 2003]),

Vg(ξ, η) = −2πGc22

∞∑

l=0

i(2l + 1)Pl(η)

×
[
Ql(iξ)

∫ ξ

0

∫ 1

−1

[(ξ′)2 + (η′)2]Pl(η
′)Pl(iξ

′)ρ′dη′dξ′

+ Pl(iξ)

∫ ξo

ξ

∫ 1

−1

[(ξ′)2 + (η′)2]Pl(η
′)Ql(iξ

′)ρ′dη′dξ′
]
, (2.28)

where l is even, Pl(η) is the usual Legendre polynomial, Pl(iξ) is also the Legendre

polynomial but with an imaginary argument, while Ql(iξ), the Legendre function of

the second kind of imaginary argument, is not a polynomial and satisfies

d

dξ

[
(1 + ξ2)

dQl

dξ

]
+

m2Ql

1 + ξ2
− l(l + 1)Ql = 0.

For example, we have

Q0(iξ) = −i cot−1(ξ),

Q2(iξ) =
i

2

(
3ξ2 + 1

)
cot−1(ξ)− 3i

2
ξ.

At the heart of the two-layer problem is the fact that ρ′ = ρ(η′, ξ′) in the integrand

of (2.28) is a discontinuous function of both η′ and ξ′. In the expression (2.28), the

first term represents the gravitational potential resulting from the attraction of the

mass located within the level surface of the second spheroidal coordinate ξ while

the second term gives the gravitational potential due to the attraction of the mass

located between the level surface ξ and the outer free surface S2. Since some level

surfaces of the second spheroidal coordinate ξ and η must intercept the interface

S1, the double integral in (2.28) has to be broken into several integrals with some

upper/lower limits that are the solution of the problem determining the shape of S1

and S2. Making use of (2.24) and (2.28), the condition on the outer free surface at

ξ = ξo becomes

C = −Ω2

2
(1 + ξ2o)(1− η2)c22 − 2πGc22

∞∑

l=0

i(2l + 1)Pl(η)

× Ql(iξo)

∫ 1

−1

∫ ξo

0

[(ξ′)2 + (η′)2]Pl(η
′)Pl(iξ

′)ρ′dξ′dη′, (2.29)

where C is a constant.

With the gravitational potential Vg(ξ, η) given by (2.28), we can, for given values
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of M1, ρ1 and M2, ρ2, compute the total self-gravitational energy Eg (see [Lu, 2004]):

Eg(E1,E2) =
1

2

∫

V

ρ(ξ, η)Vg(ξ, η)dV

= −2π2Gc52i

∞∑

l=0

(2l + 1)

∫ +1

−1

∫ ξo

0

ρ(ξ, η)(ξ2 + η2)

× Pl(η)
[
Al(ξ)Ql(iξ) + Bl(ξ)Pl(iξ)

]
dξdη, (2.30)

where c2 is a function of M1, ρ1 and M2, ρ2 and coefficients Al(ξ) and Bl(ξ) are

Al(ξ) =

∫ 1

−1

∫ ξ

0

[(ξ′)2 + (η′)2]Pl(η
′)Pl(iξ

′)ρ′dξ′dη′,

Bl(ξ) =

∫ 1

−1

∫ ξo

ξ

[(ξ′)2 + (η′)2]Pl(η
′)Ql(iξ

′)ρ′dξ′dη′.

Similarly, with the centrifugal energy Vc(ξ, η) given by (2.24), we can compute the

total centrifugal energy Ec:

Ec(E1,E2) = −
∫

V

ρ(ξ, η)Vc(ξ, η)dV = −πΩ2c52

×
∫ +1

−1

∫ ξo

0

ρ(ξ, η)(ξ2 + η2)(1 + ξ2)(1− η2)dξdη, (2.31)

which is also a function of E1 and E2. Note that the centrifugal energy Ec also

involves a discontinuous function ρ(ξ, η) in the integrand. In hydrostatic equilibrium,

as a result of the d’Alembert’s principle in mechanics, the total potential energy of

the system, Et = Eg + Ec, should reach its minimum state which determines the

shape of the planet.

2.3.2 An illustration: Classical Maclaurin spheroids

It is the discontinuity of the density ρ(ξ, η) in the integrands of (2.30) and (2.31)

that causes the difficulties in determining the shape of a rotating two-layer planet.

To illustrate this point, let’s first remove the discontinuity by assuming a rotating

homogeneous fluid, ρ(ξ, η) = ρ0, which has the total mass M0 with the focal length

c2 = c0 and the eccentricity E2 = E0. In this case, it can be readily shown that

Al(ξ) = Bl(η) = 0 when l ≥ 4 because of the orthogonality of Legendre polynomials

in the interval [−1, 1]; and that all the integrals (2.29), (2.30) and (2.31) can be

evaluated explicitly and analytically.

By performing a straightforward integration, we can show that equation (2.29)
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with constant ρ0 becomes

C = C0(ρ0,E0) +
[Ω2c20(1 + ξ2o)

2

]
η2

− πGρ0c
2
0ξo(1 + ξ2o)

[ (
3ξ2o + 1

)
cot−1(ξo)− 3ξo

]
η2, (2.32)

where C0 is constant, only dependent upon ρ0 and E0. We can also show, from

(2.30) with ρ(ξ, η) = ρ0, that the total self-gravitational energy Eg is

Eg(E0) =
16c0

5 (−1 + E2
0) Gπ2 ρ0

2 sin−1(E0)

15E6
0

. (2.33)

Moveover, from (2.31), the centrifugal energy Ec is given by

Ec(E0) =
−4 c50

√
E−2
0 − 1π ρ0 Ω

2

15E4
0

. (2.34)

It follows, by making use of the relation

c0 = E0

[
(3M0/4πρ0)

1/3(1− E2
0)

−1/6
]
, (2.35)

that the total potential energy Et = Eg + Ec takes the form

Et(E0) = −4πρ0(3M0/4πρ0)
5/3

15E0(1− E2
0)

5/6

× [
4Gπρ0(1− E2

0) sin
−1(E0) + E0

√
1− E2

0Ω
2
]
. (2.36)

(2.35) is derived from the mass-volume formulation

M0 = ρ0 · 4π
3

(
c

E 0

)3√
1− E2

0.

For given ρ0, the state of minimum energy in the equilibrium, given by dEt(E0)/ dE0 =

0, gives rise to an equation for E0

0 =
8πρ0(3M0/4πρ0)

5/3

45E2
0(1− E2

0)
3/2

[
6Gπρ0E0(1− E2

0)

+ E3
0Ω

2 +2Gπρ0(2E
2
0 − 3)

√
1− E2

0 sin
−1(E0)

]
, (2.37)

which leads to the classical Maclaurin solution given by (2.2). It can be verified

that, with E0 given by (2.2), the free surface condition (2.32) is also satisfied. In

other words, the coefficient of η2 in (2.32) vanishes for the value of E0 given by (2.2)

with ξo =
√

1/E2
0 − 1.
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2.3.3 Two-layer case

Superficially, it appears that the approach for the classical Maclaurin solution (2.2)

might be easily extended to the more realistic two-layer problem. As we shall show,

however, determining the shape of a two-layer rotating planet is mathematically

much more complicated.

For planetary applications, it is appropriate to assume that ρ1 > ρ2 in the

hydrostatic equilibrium. In contrast to the single layer problem, the coefficients

Al(ξ) and Bl(ξ) for l ≥ 4 in the expansion (2.30) are generally non-zero. The physical

significance of this fact is that the shape of a uniformly rotating two-layered fluid

like body cannot be exactly a perfect oblate spheroid. However, because rotating

layered celestial bodies such as Jupiter are not observed to be noticeably different

from spheroids, it is reasonable to assume that the coefficients Al(ξ) and Bl(ξ) for

l ≥ 4 in the expansion are much smaller than those of A0(ξ)/B0(ξ) and A2(ξ)/B2(ξ).

This assumption will be validated later and discussed in Section 2.4, showing that

the terms neglected are indeed sufficiently small. In addition to the mathematical

difficulties involving the discontinuous density, a further complication arises from the

fact that we must distinguish between two different cases in the analysis: (i) when

either M1/M2 is sufficiently large or ε2 = Ω2/(2πGρ2) is sufficiently small that the

foci of the free surface S2 are located within the core (which will be referred to as the

”large-core” case); (ii) when either M1/M2 is sufficiently small or ε2 = Ω2/(2πGρ2)

is moderate so that the foci of the free surface S2 are located within the outer

layer (which will be referred to as the ”small-core” case). The two different cases

are illustrated in Figure 2.5. In the first case, which is shown in Figure 2.5(a),

the mathematical analysis is simpler because only the integration over the radial

direction ξ needs to be broken up across the interface S1. The transformation (2.19)

is valid for any η ∈ [−1, 1]. In the second case, where the focal length c2 is outside of

the interface S1 as shown in Figure 2.5(b), the integration over both ξ and η must be

broken up across the interface S1. This illustrates the situation that (2.19) cannot

be defined for all η but only for |η| > |ηmin|. As a consequence, the mathematical

analysis for the ”small-core” case is much more complicated and cumbersome;it is

presented in Appendix A.

Consider the ”large-core” case that is marked by ξi ≥
√

c22/c
2
1 − 1. For the pur-

pose of simplifying relevant mathematical expressions, we define

f1(ξ, η) = ξ2 + η2,

f2(ξ, η) = (ξ2 + η2)(3η2 − 1)(3ξ2 + 1),

f3(ξ, η) = (ξ2 + η2) cot−1(ξ),

f4(ξ, η) = (ξ2 + η2)(3η2 − 1)[(3ξ2 − 1) cot−1(ξ)− 3ξ].

After some manipulation using equation (2.29), the condition on the outer free
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η2 ∈ [−1, 1]ξ1 = ξ10 >

√

c2

2

c2

1

− 1

(a)

|η2|min =

√

1−
c2

1

c2

2

(1 + ξ2

10
)ξ1 = ξ10 <

√

c2

2

c2

1

− 1

(b)

Figure 2.5: Two different cases: (a) when the core is large with the foci c2 being
located within the interface S1; (b) when the core is small with the foci c2 being
located outside of the interface S1. The dashed line indicates the location of the
interface S1 at ξ = ξI. For the large core case, the interface S1 intersects all the η
surfaces while, for the small core case, the interface S1 only intersects some of the η
surfaces.

surface at ξ = ξo can be written

C = 2πGc22

{[
ρ1

∫ 1

−1

∫ ξI

0

f1(ξ
′, η′)dξ′dη′

+ ρ2

∫ 1

−1

∫ ξo

ξI

f1(ξ
′, η′)dξ′dη′

]
sin−1(E2)

+
[
ρ1

∫ 1

−1

∫ ξI

0

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ 1

−1

∫ ξo

ξI

f2(ξ
′, η′)dξ′dη′

]

× 5(3η2 − 1)

16E2
2

[
(3− 2E2

2) sin
−1(E2)− 3E2

√
1− E2

2

]}

− Ω2

2E2
2

(1− η2)c22. (2.38)
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It is vitally important to notice that the interface ξI, given by (2.19), is expressed in

terms of the second spheroidal coordinates and, hence, the upper/lower limit of the

above integrals is not only a function of η but also E1 and E2– the unknown solution

of the two-layer problem. Even though the integrands f1 and f2 are simple enough,

the integrals still have to be evaluated numerically because of their upper/lower

limits.

The evaluation of the total gravitational energy Eg is involved in the quadruple

integrals with the intriguing upper/lower limits, a result of the existence of the

discontinuous interface and the coordinate transformation. Making use of (2.30) and

taking account of the discontinuous density distribution, we can derive an integral

expression for the total gravitational energy Eg(E1,E2):

Eg(E1,E2) = −2πGc52

{

ρ1

∫ 1

−1

∫ ξI

0

f3(ξ, η)
[ ∫ 1

−1

g1(ξ, η
′)dη′

]
dξdη

+ ρ2

∫ 1

−1

∫ ξo

ξI

f3(ξ, η)
[ ∫ 1

−1

g1(ξ, η
′)dη′

]
dξdη

+ ρ1

∫ 1

−1

∫ ξI

0

f1(ξ, η)
[ ∫ 1

−1

g2(ξ, η
′)dη′

]
dξdη

+ ρ2

∫ 1

−1

∫ ξo

ξI

f1(ξ, η)
[ ∫ 1

−1

g2(ξ, η
′)dη′

]
dξdη

+
5ρ1
16

∫ 1

−1

∫ ξI

0

f4(ξ, η)
[ ∫ 1

−1

g3(ξ, η
′)dη′

]
dξdη

+
5ρ2
16

∫ 1

−1

∫ ξo

ξI

f4(ξ, η)
[ ∫ 1

−1

g3(ξ, η
′)dη′

]
dξdη

+
5ρ1
16

∫ 1

−1

∫ ξI

0

f2(ξ, η)
[ ∫ 1

−1

g4(ξ, η
′)dη′

]
dξdη

+
5ρ2
16

∫ 1

−1

∫ ξo

ξI

f2(ξ, η)
[ ∫ 1

−1

g4(ξ, η
′)dη′

]
dξdη

}
, (2.39)

where g1 is defined as

g1 = ρ1

∫ ξ

0

f1(ξ
′, η′)dξ′, ξ ≤ ξ′I;

g1 = ρ1

∫ ξ′
I

0

f1(ξ
′, η′)dξ′ + ρ2

∫ ξ

ξ′
I

f1(ξ
′, η′)dξ′, ξ > ξ′I

with

ξ′I(η
′) = ξi

[
c21(1 + ξ2i )− c22[1− (η′)2]

c22[ξ
2
i + (η′)2]

]1/2
;

37



2. Two-layer Spheroids

g2 is

g2 = ρ1

∫ ξ′
I

ξ

f3(ξ
′, η′)dξ′ + ρ2

∫ ξo

ξ′
I

f3(ξ
′, η′)dξ′, ξ ≤ ξ′I,

g2 = ρ2

∫ ξo

ξ

f3(ξ
′, η′)dξ′, ξ > ξ′I;

g3 is given by

g3 = ρ1

∫ ξ

0

f2(ξ
′, η′)dξ′, ξ ≤ ξ′I,

g3 = ρ1

∫ ξ′
I

0

f2(ξ
′, η′)dξ′ + ρ2

∫ ξ

ξ′
I

f2(ξ
′, η′)dξ′, ξ > ξ′I;

and, finally, g4 is defined as

g4 = ρ1

∫ ξ′
I

ξ

f4(ξ
′, η′)dξ′ + ρ2

∫ ξo

ξ′
I

f4(ξ
′, η′)dξ′, ξ ≤ ξ′I,

g4 = ρ2

∫ ξo

ξ

f4(ξ
′, η′)dξ′, ξ > ξ′I.

The special feature that the upper/lower limit of the above multiple integrals is

the unknown solution of the problem implies that the usual integration scheme

with a fixed mesh cannot be adopted in this problem. Meanwhile, because of the

discontinuous integrand at ξ = ξI, a global uniform integration grid is not applicable.

Cells in the grid intersected by the discontinuous interface will severely deteriorate

the global accuracy of the quadrature approximation, especially for scheme of high

algebraic order. A careful choice of the method for numerical integration is therefore

essential. We have chosen a moving mesh, as suggested in [Tornbergt, 2002], which

always captures the location of the interface ξ = ξI of the two different domains. In

order to achieve enough numerical accuracy within an acceptable running time, a

fourth-order extended Simpson method is employed in the multiple integration and

it is replaced by repeated integrations carried out dimension by dimension. The

quadrature rule (see [Press et al., 2007]) is

∫ xN−1

x0

f(x)dx = h

[
1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3+

· · ·+ 2

3
fN−3 +

4

3
fN−2 +

1

3
fN−1

]
+ O(

1

N4
).
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Similarly, we can derive the total centrifugal energy Ec from (2.31),

Ec(E1,E2) = −2πc52

{

ρ1

∫ 1

−1

∫ ξI

0

f1(ξ, η)(1 + ξ2)(1− η2)dξdη

+ ρ2

∫ 1

−1

∫ ξo

ξI

f1(ξ, η)(1 + ξ2)(1− η2)dξdη
}
. (2.40)

The total potential energy Et is given by

Et(E1,E2) = Eg(E1,E2) + Ec(E1,E2)

and the minimum of Et at the hydrostatic equilibrium is marked by the two equations

0 =
∂

∂E1

[Et(E1,E2) + λG(E1,E2)] ,

0 =
∂

∂E2

[Et(E1,E2) + λG(E1,E2)] , (2.41)

where λ is the Lagrange multiplier and G(E1,E2) is a constraint derived from the

free-surface condition (2.38):

0 = G(E1,E2)

= −Ω2 +
15πG

4

[
ρ1

∫ 1

−1

∫ ξI

0

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ 1

−1

∫ ξo

ξI

f2(ξ
′, η′)dξ′dη′

]

×
[
(3− 2E2

2) sin
−1(E2)− 3E2

√
1− E2

2

]
. (2.42)

Equations (2.41), subject to the constraint (2.42), can be solved to determine the ec-

centricities E1 and E2 of a two-layer rotating planet. In the numerical optimization,

we choose E2 as the working variable because therefore the initial guess of iterations

towards the minimum can directly utilize the value obtained from a effective classical

Maclaurin solution; also, E1 is no longer a freedom because of the constraint (2.42),

which reduces the optimization to a 1-D problem. Because the initial guesses are

always close enough to the real energy minimum, there is no concern over conver-

gence issues. A simple 1-D search algorithm is carried out to locate the minimum.

The application procedures are then summarized as below:

• Obtain the parameters Qv, ρ1, ρ2, Ω, either from observations or from some

model predictions.

• Compute the mean density ρ̄ = ρ1Qv + ρ2(1 − Qv) and the corresponding

effective ε̄ = Ω2/(2πGρ̄).
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• Evaluate the effective eccentricity Ē from the classical Maclaurin formulation

(2.2).

• Do the minimum searching iteration of E2 with the initial guess Ē. In each

iteration step, compute E1 from (2.42) and evaluate the total energy by virtue

of (2.39) and (2.40).

In evaluations of (2.38) and (2.41), we note that ξI, given by (2.19), is related to

c21/c
2
2, which represents an essential geometrical parameter of the shape. For a given

value of M1,M2, ρ1 and ρ2, we have

M1 =
4

3
πρ1

c31
E3
1

√
1− E2

1,

M2 =
4

3
πρ2

c32
E3
2

√
1− E2

2 −
ρ2M1

ρ1
,

which yields

c1(E1) =
[ 3M1

4πρ1
(1− E2

1)
−1/2

]1/3
E1

c2(E2) =
[3(ρ1M2 + ρ2M1)

4πρ1ρ2
(1− E2

2)
−1/2

]1/3
E2.

It follows that
c1
c2

=
[
Qv

√
1− E2

2√
1− E2

1

]1/3E1

E2

,

with

Qv =
ρ2M1

ρ1M2 + ρ2M1

=
V1

V1 + V2

.

Consequently, the mathematical problem for determining the shape of a rotating

two-layer planet is characterized by the three dimensionless parameters ρ1/ρ2, Qv

and ε2 = Ω2/(2πGρ2): for a given set of the three parameters, we can solve (2.41)

subject to the constraint (2.38) to determine the values of E1 and E2.

Table 2.1: Four typical solutions of the two-layer problem. The first three solutions
correspond to the “large core” case while the fourth solution with ε2 = 0.1 is for the
“small core” case. The value of E0, obtained from the classical solution (2.2) using
the mean density ρ0 = ρ1Qv + ρ2(1−Qv), is also shown for comparison.

ε2 ρ2/ρ1 M2/M1 E1 E2 E0

0.02 0.5 5 0.2242 0.2484 0.2609
0.04 0.5 5 0.3259 0.3500 0.3673
0.05 0.5 0.55 0.3762 0.3870 0.3533
0.10 0.5 5 0.1864 0.5425 0.5735

Table 2.1 shows four typical solutions from our computation of the two-layer

model. For the purpose of comparison, the single layer solution given by (2.2) with
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the mean density ρ0 = (M1+M2)/(V1+V2) is also included. The first three solutions

correspond to the “large-core” case while the fourth solution with a larger ε2 = 0.1

is for a “small-core” case, details of which are discussed in the Appendix A. In

the fourth solution, it is the faster rotation that causes substantial flattening of the

outer layer such that the foci of the outer bounding surface moves out of the core.

In this case, the value of E2 is substantially different from that of E1. We have

also performed a systematic exploration of the parameter space of the problem. In

Figure 2.6, eccentricities, E1 and E2, are shown as a function of Qv for the fixed

value of ρ2/ρ1 = 0.5 and ε2 = 0.05. The two asymptotic limits of the two-layer

problem are also indicated in the figure. When Qv ¿ 1, the two layer solution

asymptotically approaches the single layer solution given by (2.2), with ρo = ρ2

giving rise to E2 → E0 = 0.4275 at ε0 = 0.05; when (1 − Qv) ¿ 1, the two layer

solution asymptotically approaches the single layer solution with ρo = ρ1 giving

rise to E2 → E0 = 0.3042 at ε0 = 0.05. Figure 2.7 shows the dependence of the

two eccentricities, E1 and E2, on the rotation parameter ε2 = Ω2/(2πGρ2) for the

fixed value of ρ2/ρ1 = 0.5 and Qv = 0.5. As expected, the flattening of the outer

free surface, which is observable, is always slightly larger than that of the interface.

Eccentricities of the two-layer models, E1 and E2, are also shown as a function of

ρ2/ρ1 for ε2 = 0.05 and Qv = 0.5 in Figure 2.8. In the limit ρ2 → ρ1, the two-layer

solutions approach the classical solution (2.2) which is indicated by the dashed line

in the figure: E2 → E0(ρ2) = 0.4275 as ρ2/ρ1 → 1.

2.4 Summary and remarks

We have developed a hydrostatic equilibrium theory describing the shape of a two-

layer model of a rotating planet (the two-layer Maclaurin spheroid) in which depar-

ture from sphericity is not treated as a small perturbation. The theory gives two

different values of eccentricities, E1 and E2, for the interface and the outer free sur-

face of a two-layer planet. While the value of E2 represents an observable property

of a planet, the eccentricity of the interface between the core and the mantle E1

is not observable but is an important parameter for understanding the dynamics

of planetary fluid cores. We show that the shape of a rotating two-layer planet is

determined by the three dimensionless parameters ρ1/ρ2, Qv and ε2 = Ω2/(2Gρ2).

Because the interface and the outer free surface have different values of eccentricity,

two different spheroidal coordinates and the transformation between them are re-

quired in the analysis. The mathematical problem is further complicated by having

to distinguish two different cases: the large “core” with the foci of the outer bound-

ing surface located within the inner core and the small “core” with the foci of the

outer surface within the outer layer.

A key assumption in our analysis is that the coefficients Al(ξ) and Bl(ξ) for l ≥ 4
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Figure 2.6: Eccentricities of the two-layer models, E1 and E2, as a function of Qv

for ρ2/ρ1 = 0.5 and ε2 = 0.05. The dashed lines indicate the two asymptotic limits
of the problem when either Qv → 0 or Qv → 1: E0(ρ1) corresponds to the result of
(2.2) with ρo = ρ1 while E0(ρ2) for the result of (2.2) with ρo = ρ2.

in the expansion (2.30), where l is even, are sufficiently small that contributions from

the higher-order terms with l ≥ 4 are negligible. Recall that, while Al(ξ) and Bl(ξ)

for l ≥ 4 are exactly zero in the single-layer problem, they are not generally zero

for the two-layer problem. However, we have performed a careful check revealing

that the higher-order terms with l ≥ 4 are indeed negligibly small. For simple

illustration, the gravitational potential Vg given by (2.28) can be evaluated at the

outer free surface ξo,

Vg(ξo, η) =
∞∑

l=0

Cl(ξo)Pl(η), (2.43)

where l is even and the coefficients Cl(ξo) can be computed for any two-layer model.

For example, when ρ1/ρ2 = 0.5,M2/M1 = 5, ε2 = Ω2/(2πGρ2) = 0.04 with E1 =

0.326 and E2 = 0.350, we found that

∣∣∣∣
C4(ξo)

C2(ξo)

∣∣∣∣ = 1.68× 10−5,

∣∣∣∣
C6(ξo)

C2(ξo)

∣∣∣∣ = 3.41× 10−7.

In all the solutions presented in this study, the higher-order terms with l ≥ 4 can

be safely neglected in the expansion.

We apply our two-layer model to planet Earth by neglecting the effect of the
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Figure 2.7: Eccentricities of a two-layer planet, E1 and E2, as a function of ε2 for
ρ2/ρ1 = 0.5 and Qv = 0.5.

inner solid core. Taking ρ1 = 11670 kgm−3, ρ2 = 4680 kgm−3 ρ1/ρ2 = 2.49 and

M1/M2 = 0.5015, implying Qv = 0.1674, Ω = 7.27 × 10−5 s−1 and giving ε2 =

Ω2/(2πGρ2) = 0.0027, our two-layer model yields E1 = 0.071 and E2 = 0.081,

showing good agreement with the observed value E2 = 0.082 for the Earth. However,

if we use the classical formula (2.2) for the single-layer model with the average

density ρ0 = 5850 kgm−3 we obtain E0 = 0.091 which is substantially larger than

the observed value. The eccentricity of the core-mantle interface in the two-layer

model is significantly smaller than that of the surface, and it is in good agreement

with the value E1 = 7.13×10−2 inferred from seismology and geodesy ([Gwinn et al.,

1986; Morelli and Dziewonski, 1987]). This agreement is surprising in view of the

simplicity of the two-layer model. However, the observed shape of the core-mantle

boundary includes a non-hydrostatic component of about 500 m excess equatorial

radius. Also, the observed ellipticity of the core is a dynamical ellipticity, ([Mathews

et al., 1991]) not an actual geometric or shape ellipticity. The two ellipticities are

approximately equivalent, at least for a constant density core.

Application of the two-layer model to other planets in our solar system can

only be carried out in an approximate way because of both the simplicity of the

model and the uncertainties in the interior structures of the planets. We present an

illustrative calculation for Jupiter and Saturn, which rotate much faster than Earth.

The density within these gas giants increases monotonically and continuously with

depth. There is the possibility of density discontinuities in Jupiter and Saturn if
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Figure 2.8: Eccentricities of a two-layer planet, E1 and E2, as a function of ρ2/ρ1
for ε2 = 0.05 and Qv = 0.5. The dashed lines represent the asymptotic solution of
the two layer problem in the limit ρ2/ρ1 → 1: E0(ρ2) = 0.4275 for the single layer
solution.

they contain heavy element cores, but that is uncertain. Accordingly, there is no

unique way to represent the interiors of these planets with a two-layer model. The

parameter values listed in Table 2.2 are simply arbitrary values consistent with the

known properties of Jupiter and Saturn intended as illustrative two-layer models.

The interface eccentricities E1 reported in Table 2.2 have no real physical significance.

The surface eccentricities E2 listed in Table 2.2 can be compared with the observed

Eobs of the 1 bar pressure level. The model eccentricities are in reasonable agreement

with the observed values, although no attempt has been made to fine tune the model

parameters to match the observations better. The exact solution for the rotational

Table 2.2: Illustrative two-layer models of Jupiter and Saturn. The eccentricity
E0 from the single-layer formula (2.2) is also given for the purpose of compari-
son. Eobs is the observed eccentricity of the 1 bar pressure level. Data from R.A.
Jacobson (unpublished data, 2003, available from the Jet Propulsion Laboratory
(http://ssd.jpl.nasa.gov/)), [Jacobson et al., 2006], and [Lindal et al., 1981, 1985]
are summarized in Table 4 of [Helled et al., 2009].

Qv ρ̄2/ρ̄1 ε2 E1 E2 Eobs E0

Jupiter 0.5120 0.2382 0.0556 0.3659 0.3832 0.3543 0.4502
Saturn 0.1664 0.1918 0.0946 0.4046 0.4804 0.4317 0.5823
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distortion of the two-layer Maclaurin spheroid is important for its application to

terrestrial-like planets with approximate two-layer internal structures and for its

utility as a benchmark solution against which to calibrate the approximate theory

of figures and validate more complex numerical models of planetary interiors.

Making use of the available two-layer Maclaurin spheroid solutions, we can review

the existing approximation methods. As discussed in the introduction, [Zharkov

et al., 1985] established a theory on the shape of a two-layered planetary body. In

Figures (2.9)–(2.11), we compare the E2 computed by the two-layer model with the

eccentricity determined by the approximation model. Note because the approxima-

tion methods cannot determine the shape of the interface, the E1 has no counterpart

and hence is not plotted. Judged from the figure, for most planets whose rotation is
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Figure 2.9: A systematic comparison of our two-layer Maclaurin spheroid solutions
with the approximation solutions as functions of the rotation rate ε2. The com-
mon parameters are Qv = 0.5 and ρ2/ρ1 = 0.5; the approximation method gives
fairly accurate shape eccentricity but underestimate it when the rotation becomes
sufficiently fast.

not extremely fast, the approximation method indeed produces excellent eccentricity

number. However, in the planetary MHD simulation, usually, it is the eccentricity

of the interface in the two-layer model, which corresponds to the location of the

core-mantle boundary (CMB) in a realistic planet, that topographically controls the

dynamics of the flows inside the core. The approximation method has no means to

help, in this sense. Recently, following on this work, [Schubert et al., 2011] have de-

veloped a novel approximation theory on the two-layer problem with slow rotation.

The new theory has derived solutions of both the interface and the outer surface.

The validation of the approximation model is based on the exact theory presented

here. I am a coauthor of [Schubert et al., 2011].

45



2. Two-layer Spheroids

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.3

0.35

0.4

0.45

Qv

 

 

Two−layer Model
Approximation Model

Figure 2.10: A systematic comparison of our two-layer Maclaurin spheroid solu-
tions with the approximation solutions as functions of the volume percentage Qv.
The common parameters are ε2 = 0.05, ρ2/ρ1 = 0.5; the approximation method
constantly underestimates the eccentricity of the body.
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Figure 2.11: A systematic comparison of our two-layer Maclaurin spheroid solutions
with the approximation solutions as functions of the density ration ρ2/ρ1. The
common parameters are ε2 = 0.05,Qv = 0.5; when the density difference of the two
layers is small, the approximation method is subject to an accuracy deterioration.
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Chapter 3

Variation of Zonal Gravity

Coefficients of a Giant Planet

Caused by its Deep Zonal Flows

3.1 Introduction

A striking and fascinating feature of giant planets like Jupiter and Saturn is their

fast, alternating, cloud level zonal flows (e.g.,[Porco et. al., 2003]). The zonal winds

could provide valuable information about dynamical processes in the deep interiors

of Jupiter and Saturn depending on the depth to which these winds penetrate.

Despite the fact that zonal flows have been accurately measured and extensively

studied for a number of decades, their generation and maintenance still remains

highly controversial. There exist two profoundly different views of the origin of the

zonal flows. One opinion is that they are generated by thermal convection, partly

powered by internal heat, which takes place within the deep interiors of the planets

(e.g.,[Busse, 1976; Heimpel et al., 2005]). According to this view, giant planets

like Jupiter and Saturn share the same essential dynamical features: their deep

interiors are thermally unstable and fluid motion driven by thermal instabilities

is highly constrained by both rotation and spherical geometry and, consequently,

possesses close correlations that can transport momentum and effectively generate

strong zonal flows. The observed alternating jets on the surface of a giant planet

simply represent the zonal flows that are nearly independent of distance parallel to

the rotation axis and extend through the whole interior ([Busse, 1976]). The other

view is that the alternating zonal flow is largely confined to a very thin layer of

stably stratified atmosphere (e.g., [Scott and Polvani, 2008; Williams, 1976]). The

latter view is computationally much easier to model, and it is largely based on the

well-known dynamics of the Earth’s atmosphere.

If the zonal flows are primarily confined within a thin layer of the atmosphere, we

anticipate that they would have a negligible influence on the external gravity field
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of the giant planet. On the other hand, if the zonal flows represent deep thermal

convection that extends through the whole interior of the planet, we expect that its

external gravity field would be slightly modified by the strong zonal flow and that

zonal gravity coefficients, such as J2 and J4, would also be slightly altered. The

zonal gravity coefficients measured by a spacecraft circling a planet from pole to

pole might therefore reveal information about the planet’s internal dynamics. One

of the scientific objectives of the Juno spacecraft (See [NASA, 2012]), now on its

way to Jupiter, is to determine how deep the zonal flow persists by measuring the

parameters of Jupiter’s gravity field.

Deep zonal flows generate an external gravitational signature in two different

ways. One way is via dynamics-related gravitational anomalies, i.e., deep zonal

flows alter the planetary mass distribution by inducing density anomalies. This was

first studied by Hubbard in a series of the papers ([Hubbard, 1974, 1982, 1999]).

By assuming that a rotating planet is in hydrostatic equilibrium with a polytropic

index of unity in which the pressure p and the density ρ are related by

p = Kρ2,

where K is constant, and that the dimensionless rotational parameter

q =
ΩR2

GM
¿ 1,

where Ω is the angular speed of the planet, R is the radius of the planet, M is

the mass and G is the gravitational constant, [Hubbard, 1974] obtained analytically

the gravitational coefficients J2, J4 and J6 in powers of q. The analysis was then

extended to including the effect of differential rotation on the gravity harmonics and

external shape under the assumptions that the differential rotation corresponds to a

state of permanent rotation ([Hubbard, 1982]). In an important numerical study for

a planet rotating differentially on cylinders parallel to the rotation axis, [Hubbard,

1999] derived an inhomogeneous wave equation for the density,

∇2ρ+
2πG

K
ρ = − 1

2K
∇2(Vc + Vd), (3.1)

where Vc is the centrifugal potential as discussed in Chapter 2 while Vd is the ro-

tational potential related to the zonal flow. The wave equation (3.1), subject to

the boundary condition ρ = 0 at the external surface, was then solved numerically

in spherical geometry by expanding ρ in terms of spherical Bessel functions and

Legendre polynomials. It was shown that if the zonal flows persist sufficiently deep,

they would produce a detectable signature in high-degree zonal components of the

Jupiter’s gravity field. [Kaspi et al., 1999] recently extended the calculation of [Hub-

bard, 1999] by using dynamical models based on either simple thermal-wind balance
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or a full three-dimensional anelastic, non-hydrostatic, general circulation model. In

the thermal-wind model

(2Ω · ∇)(ρ̃u) = ∇ρ′ × g0, (3.2)

where ρ̃(r) is the hydrostatic radial density profile ([Guillot and Morel, 1995]) , u

is the wind velocity, g0(r) is the mean gravity vector, and ρ′ denotes the dynamic

density anomaly. For given ρ̃(r), u and g0(r) in spherical geometry, (3.2) could be

solved with an additional constraint to determine the density anomaly ρ′ and, hence,

the dynamical-related gravitational anomaly. It is shown that, to first order, both

the thermal-wind analysis and the circulation model agree with the predictions of

[Hubbard, 1999]. The second way deep zonal flows modify a planet’s gravitational

field is by redistributing mass as a result of flow-induced distortions in the shape of

the planet (e.g., [Efimov et al., 1977; Trubitsyn et al., 1976; Vasilev et al., 1978]).

The relevant results are summarized in the classical book by [Zharkov and Trubitsyn,

1978]. In this case, gravitational anomalies exist even if the density ρ within a planet

is uniform. An essential element in the theories (e.g., [Trubitsyn et al., 1976]) is

to assume that there exist two small parameters ε (measuring the speed of basic

rotation) and α (measuring the amplitude of differential rotation),

ε =
Ω2

0

2πGρ
¿ 1 and α =

(Ω2 − Ω2
0)

Ω2
0

¿ 1,

where Ω denotes the differential rotation. On the basis of the two small parameters

m and α, the shape of a planet can be expanded as

r(t) = r0

[
1 +

∞∑
n=0

r2n(r0)P2n(t)

]
,

where r2n ∼ εn with α < ε. It implies, since ε ¿ 1, that the shape of a differential ro-

tating planet is only slightly different from the perfect sphere given by r = r0. In the

spherical perturbation theory, the contribution to coefficients r2n in the expansion is

from both the basic rotation Ω0 and the differential rotation Ω. It follows that the

effect of planetary oblateness is neglected in the leading-order approximation and,

hence, spherical coordinates, which dramatically simplify the relevant mathematical

analysis, can be employed in the perturbation analysis.

All existing studies on the problem have assumed that the effect of rotational dis-

tortion is a small perturbation on a spherically symmetric state. Since the changes

in low-degree zonal gravitational harmonics in a rapidly rotating body are largely

dominated by its oblate shape, it is desirable to have a theory that relaxes the re-

striction of small rotational parameter ε ¿ 1. The present study attempts to extend

the previous theories by permitting an arbitrary size of the rotational parameter ε.
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We assume that the shape of a rapidly rotating planet can be expanded as

ξ(η) = ξo

[
1 +

∞∑
n=0

h2n(ξo)P2k(η)

]
,

where its arbitrary oblateness (ξo) is taken as the leading-order solution by making

use of spheroidal oblate coordinates (ξ, η) (See what is discussed in Chapter 2)

and the contribution to coefficients h2n is only from the effect of the differential

rotation Ω. At the expense of more complicated mathematical analysis involving

in spheroidal oblate coordinates, the spheroidal perturbation theory is capable of

dealing with large distortions of a rapidly rotating body away from a spherical

shape and offering a way of estimating the values of differential-rotation-induced

changes in low-degree zonal gravitational harmonics for arbitrarily rapidly rotating

bodies. In order to develop the spheroidal perturbation theory, a new spheroidal

polynomial – which is a function of two variables, restricted within the spheroidal

cavity and orthogonal over the spheroid – is used to describe the differential rotation

in spheroidal geometry of arbitrary eccentricity.

For the purpose of gaining insight into the key physics of the problem, we adopt

an analytical approach by assuming that a planet rotates arbitrarily rapidly and

has an effective uniform density that is defined on the basis of the observed value

of its oblateness. By using the effective density to represent the planet we correctly

account for planetary shape contributions to an observable such as the gravitational

field. Similar to the model of [Hubbard, 1982], we also assume the differential

rotation is a state of permanent rotation arising from deep thermal convection and

extending throughout the whole interior along cylinders parallel to the rotation axis

([Busse, 1976]). Two rotation configurations are considered in this study. When a

planet is in a state of rigid-body rotation (i.e., no zonal flows), its external gravity

field can be derived using the classic Maclaurin theory, which has an exact solution

(see, for example, [Lamb, 1932]), allowing us to compute its zonal gravity coefficients

J̄2n, n = 1, 2, 4, . . . . When the deep zonal flow is sufficiently strong, we can then,

based on the exact solution, develop a perturbation theory for estimating the change

in the planet’s zonal gravity coefficients, ∆J2n, n = 1, 2, 3, . . . , caused by the effect of

the deep zonal flow. In comparison with the previous theories, the shape of a planet

caused by its basic rotation is fully taken into account, enabling us to accurately

estimate not only the rotation-induced changes in high-degree zonal gravitational

harmonics but also the changes in low-degree harmonics for an arbitrarily rapidly

rotating planet.

In what follows we present the model, the mathematical analysis, and its appli-

cation to Jupiter in §3.2, while a summary and some remarks are given in §3.3.
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3.2 Model, Analysis and Application

3.2.1 Model

The controlling effect of rotation on the fluid dynamics of giant planets like Jupiter

is succinctly described by the Taylor-Proudman theorem which states that infinites-

imal steady motions in an inviscid incompressible fluid must be two dimensional

with respect to the direction of the rotation axis. The effect of viscosity can break

the rotational constraint and the resulting convective motion, as a consequence of

the combined effects of spherical geometry and rotation, is in the form of highly co-

herent small-scale, spiraling columnar flow ũ which maintains a strong mean zonal

flow U(s) = U(s)φ̂ with |ũ| ¿ |U| (see, for example, [Zhang, 1992]), where s is the

distance from the axis of rotation and φ̂ denotes a unit vector in the azimuthal direc-

tion. Because of the strong effect of rotation, the convective motion may even pen-

etrate into a stably stratified layer (see, for example, [Zhang and Schubert, 2002]).

Following the model of [Busse, 1976], we assume that the observed zonal flows at

cloud level represent the axisymmetric azimuthal component of its deep convection

that passes through the whole interior of Jupiter and is independent of the distance

parallel to the rotation axis.

We consider the hydrostatic equilibrium of a giant planet over a long timescale.

We assume that the planet is isolated in space, rotates about a fixed axis with a uni-

form angular velocity Ω, and consists of a homogeneous fluid with constant density

ρ without magnetic force acting on the zonal flows. In the interior of the planet,

we also assume that (i) |ũ| ¿ |U|, (ii) the zonal flow U is steady, i.e., ∂U/∂t = 0,

and U(s) = U(s)φ̂ ([Busse, 1976]), which can be readily derived from its observed

profile by assuming that U extends into the deep interior along cylinders parallel

to the rotation axis, and (iii) viscous effects on the mean flow U, to a first ap-

proximation, can be neglected. Under the above assumptions, a steady hydrostatic

equilibrium of the planet is governed by the following partial differential equations

in the co-rotating frame of reference:

2Ω×U = −∇P −∇Vc −∇Vg, (3.3)

∇ ·U = 0, (3.4)

where Vc is the centrifugal potential, Vg is the gravitational potential, and P is the

pressure. Here the pressure P and the zonal flow U satisfy the boundary conditions

P = 0, n̂ ·U = 0 (3.5)

at the bounding surface, S, of the planet with n̂ denoting its unit normal. Note

that U = U(s)φ̂ automatically satisfies equation (3.4) and the required boundary
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condition (3.5). We may introduce a potential, Vz, of the zonal flow, defined as,

2Ω×U = −∇Vz (3.6)

such that (3.3) can be rewritten as

∇(P + Vc + Vg + Vz) = 0. (3.7)

As indicated by (3.3) or (3.7), both the shape of the bounding surface S and the

gravitational potential Vg in the hydrostatic equilibrium state would be affected by

the presence of the zonal flow U, indicating that the zonal flow potential Vz can

modify the gravity field of a giant planet if it is sufficiently deep and strong. For

any fluid planet in the solar system, moreover, it is reasonable to assume that the

equilibrium shape of the planet is axisymmetric because the first bifurcation from

a Maclaurin spheroid takes place at the critical eccentricity Ec ∼ 0.93 (see Chapter

2), corresponding to extremely fast-rotating planets.

Since the zonal flow U is both axisymmetric with respect to the rotation axis and

symmetric with respect to the equatorial plane, the exterior gravitational potential,

Vg, can be expanded in terms of spherical harmonics P2n,

Vg(r, θ) = −GM

r

[
1−

∞∑
n=1

J2n

(
Re

r

)2n

P2n(cos θ)

]
, r ≥ Re, (3.8)

where (r, θ, φ) are spherical polar coordinates with θ = 0 being at the axis of rotation,

Re denotes the equatorial radius of the giant planet and J2, J4, J6, · · · are called zonal

gravitational field coefficients.

If there exists no deep zonal flow (the state of rigid-body rotation) within a gi-

ant planet, its outer surface would be in the shape of a Maclaurin spheroid ([Lamb,

1932]). The effect of the deep strong zonal flow, however, introduces a small mod-

ification to (i) the shape of the Maclaurin spheroid, (ii) the gravity field of the

Maclaurin spheroid and, hence, (iii) the zonal gravity coefficients of the planet.

This physical picture suggests that the mathematical problem may be tackled by a

perturbation analysis via the following expansion:

P = P0 + P1 + . . . ,

Vc = Vc0 + Vc1 + . . . ,

Vg = Vg0 + Vg1 + . . . ,

Vz = Vz1 + . . . , (3.9)

where P0, Vc0 and Vg0 denote the leading-order solution associated with U = 0

while P1, Vc1, Vg1 represent small variations caused by the zonal flow potential Vz1.
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Similarly, we also expand the zonal gravity coefficients J2n in the form

J2n = J̄2n +∆J2n + . . . , n = 1, 2, 3, . . . .

It follows that we can solve (3.7) together with the relevant boundary conditions

analytically in three stages: (i) Find the leading-order solution P0, Vc0 and Vg0 to

determine the corresponding gravity coefficients J̄2, J̄4, J̄6 · · · ; (ii) Derive the zonal

flow potential Vz in oblate spheroidal coordinates; and (iii) Carry out the perturba-

tion analysis to obtain the variations ∆J2,∆J4,∆J6, · · · . In this study, we restrict

our analysis up to J12.

3.2.2 J̄2n without the effect of the zonal flows

It is insightful and helpful to discuss briefly the Maclaurin problem, even though one

can find detailed discussion in Chapter 2, representing the leading-order solution in

our perturbation analysis. When the effect of zonal flow is neglected, i.e., U = 0,

the leading-order equation (3.7) for the hydrostatic equilibrium becomes

∇(P0 + Vc0 + Vg0) = 0. (3.10)

For an isolated planetary body, the pressure vanishes on the outer free surface, i.e.,

P0 = 0 on S, implying that the total potential, gravitational and rotational, must

be constant,

Vc0 + Vg0 = C0, (3.11)

where C0 is a constant. It should be noted that the eccentricity E of the giant planet

in the hydrostatic equilibrium is assumed to be in the range 0 < E < Ec ∼ 0.93.

The Maclaurin spheroids solution is established by using the free surface condi-

tion,

ε =

√
1− E2

E3
[(3− 2E2) sin−1 E]− 3(1− E2)

E2
, (3.12)

where ε = Ω2/(2πGρ). For planets in the solar system, E2 is usually small and, thus,

ε can be expanded as

ε =
4

15
E2 +O(E4),

which can be determined from direct observations. Substitution of the values of c2, ξ0

and 2πGρ for a planet into (2.28) yields the leading-order gravitational potential,

Vg0, in oblate spheroidal coordinates. By further projecting Vg0 onto the potential

in spherical coordinates given by (3.8), we can derive the leading-order coefficients

J̄2n, n = 1, 2, 3, . . . for rapidly rotating planets with arbitrary eccentricity E. It

should be noted, however, that our primary concern in this study is not the size

of J̄k but the variations in the gravitational coefficients caused by the effect of the

zonal flow U.
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3.2.3 Potential of the zonal flow

A crucial ingredient in the perturbation analysis involves the derivation of the zonal

flow potential Vz defined by (3.6). If the zonal flow U extends all the way from the

southern to northern hemispheres along the direction of rotation ([Busse, 1976]), Vz

can be, for a given zonal flow U, derived in a spheroid of arbitrary eccentricity.

A source of mathematical difficulty in solving the potential problem defined by

(3.6) is the conflict between the spheroidal and cylindrical polar coordinates. While

the z−independence of the zonal flows is strongly indicative of adopting cylindrical

polar coordinates, the geometry of the planet’s shape clearly suggests the use of

oblate spheroidal coordinates. This conflict points to the necessity of a special

orthogonal polynomial, denoted as Gn(s), which should possess the following three

properties. First, the polynomial must be a function of two variables η and ξ,

restricted within the spheroidal cavity, but taking only a single argument s. Second,

since the zonal flow vanishes at the axis of rotation, the polynomial must be odd, i.e.,

G2k−1(s) with k = 1, 2, 3, . . . and (2k − 1) denoting its order. Third, the zonal flow

is defined within a spheroid and the polynomial G2k−1 should be thus orthogonal

over the spheroid, i.e.,

∫

V

G2k−1(ξ, η)G2n−1(ξ, η) dV = 0, if k 6= n,

where
∫
V

denotes the volume integration over the spheroid. If such a polynomial

meeting the three requirements exists and can be found, it resolves the conflict

between the spheroidal and cylindrical coordinates, and can be then employed in the

representation of a zonal flow within a spheroid. A new Legendre-type polynomial

recently discovered for describing the zonal flow in spherical geometry ([Liao and

Zhang, 2010]) can be extended to spheroidal geometry of arbitrary eccentricity. It

can be shown that

G2k−1(ξ, η) =
1

(1− E2)
1
4

k∑
j=1

(−1)k−j[2(k + j)− 1]!!

2k−1(k − j)!(j − 1)!(2j)!!
(s/Re)

2j−1, (3.13)

where s = c
√

(1 + ξ2)(1− η2), does satisfy the three requirements. Equation (3.6)

suggests that U and Vz can be expanded as

U(ξ, η) = ΩRe

∞∑

k=1

ckG2k−1(ξ, η)φ̂, (3.14)

Vz(ξ, η) = Ω2R2
e

∞∑

k=1

ckV2k(ξ, η), (3.15)
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with

V2k(ξ, η) =
1

(1− E2)
1
4

k∑
j=1

(−1)k−j+1[2(k + j)− 1]!!

2k−1(k − j)!(j − 1)!(2j)!!j
(s/Re)

2j.

Upon using the property

∫

V

[G2k−1(ξ, η)]
2 dV =

4π(2k + 1)!!(2k − 1)!!

(4k + 1)(2k)!!(2k − 2)!!
R3

e,

we obtain an expression for the zonal flow potential Vz:

Vz(ξ, η) = ΩRe

∑

k=1

[
1∫

V
G2

2k−1dV

∫

V

U(s)G2k−1(s/Re)dV

]
V2k(s/Re), (3.16)

where U(s) can be derived from the observed profile of the zonal wind on a giant

planet. For example, Figure 3.1 depicts the observed zonal flow speed at Jovian

top atmosphere. It should be stressed that the above analysis is only possible in
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Figure 3.1: The Jovian atmospheric zonal jet speed profile, data are from [Porco et.
al., 2003]

spheroidal geometry with uniform density with the zonal flow extending all the

way along the cylinders parallel to the axis of rotation. For the analysis discussed

later, we can further expand Vz at the outer surface ξ = ξo as a series of spheroidal

Legendre polynomials

Vz(ξo, η) =
∞∑

k=0

D2kP2k(η). (3.17)
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Table 3.1: Coefficients β(2k)(2n) for the expansion of P2(η)P2k(η) in equation (3.21).

(2k)/(2n) 0 2 4 6 8
0 0 1 0 0 0
2 1/5 2/7 18/35 0 0
4 0 2/7 20/77 5/11 0
6 0 0 45/143 14/55 28/65

Table 3.2: In this table, J̄n is the value of zonal gravity coefficients in the state of
rigid-body rotation, ∆Jn represent the variation induced by the zonal flows and Jn
is the value of the zonal gravity coefficients in the presence of the zonal flows.

n J̄n Jn ∆Jn ∆Jn/J̄n

2 +2.510802× 10−2 +2.517941× 10−2 +7.139042× 10−5 0.284333%
4 −1.350884× 10−3 −1.360343× 10−3 −9.458775× 10−6 0.700191%
6 +9.421630× 10−5 +9.644272× 10−5 +2.226413× 10−6 2.363086%
8 −7.527873× 10−6 −7.351529× 10−6 +1.763433× 10−7 2.342538%
10 +6.523407× 10−7 −7.495363× 10−7 −1.401877× 10−6 214.8995%
12 −6.332729× 10−8 −6.638417× 10−7 −6.005144× 10−7 948.2712%

Furthermore, it can be demonstrated that

|Vz|
|Vc0| = O

(
Utypical

ΩRe

)

which is usually small in comparison to unity for giant planets, indicating that we

only need to consider the leading-order term in the Vz expansion (3.9) by taking

Vz = Vz1 in the perturbation analysis.

3.2.4 Perturbation analysis

Under the influence of the zonal flow potential Vz, the shape of the outer surface

of a giant planet can no longer be a perfect spheroid described by ξo =
√

1/E2 − 1.

Its distorted outer surface, ξs, in the equilibrium may be expanded in terms of

spheroidal Legendre functions:

ξs = ξo

[
1 +

∞∑

k=0

h2kP2k(η)

]
, (3.18)

where k = 0, 1, 2, . . . , and |h2k| ¿ 1. The reason why only even Legendre Polyno-

mials contribute is that the zonal flows are assumed to be symmetric with respect

to the equatorial plane.

We are now in a position to derive the next-order centrifugal (Vc1) and gravita-

tional (Vg1) potentials in the expansion (3.9). It is worth pointing out that, for the

56



3. Deep Differential Rotation

purpose of determining ∆Jn, the evaluation of the potentials, Vc1 and Vg1, is only

required at the outer surface ξs. It is straightforward to show that the centrifugal

potential perturbation Vc1 at ξs is of the form

Vc1(ξs, η)=−Ω2c2

2



1 + ξ2o

[
1 +

∞∑

k=0

h2kP2k(η)

]2




(
1− η2

)− Vc0(ξ0, η). (3.19)

A further expansion in terms of h2k yields a leading-order expression:

Vc1(ξs, η) = −2

3
Ω2c2ξ2o

{[ ∞∑

k=0

h2kP2k(η)

]
−

[ ∞∑

k=0

h2kP2k(η)

]
P2(η)

}
, (3.20)

where the terms, P2k(η)P2(η), can be written, for example, as

P0(η)P2(η) = P2(η),

P2(η)P2(η) =
1

5
P0(η) +

2

7
P2(η) +

18

35
P4(η),

P4(η)P2(η) =
2

7
P2(η) +

20

77
P4(η) +

5

11
P6(η),

P6(η)P2(η) =
45

143
P4(η) +

14

55
P6(η) +

28

65
P8(η), · · ·

which can be extended to any P2k needed in the analysis. It is then mathematically

helpful to introduce the coefficients β(2n)(2k) defined by the following relationship

P2(η)P2k(η) =
k+1∑
n=0

β(2n)(2k)P2n(η). (3.21)

Several examples of coefficients β(2n)(2k) are listed in Table 3.1. Making use of the

coefficients β(2n)(2k), the expression for Vc1(ξs, η) becomes

Vc1(ξs, η) = −2

3
Ω2c2ξ2o

[ ∞∑

k=0

h2kP2k(η)

]

+
2

3
Ω2c2ξ2o

{
[h0β00 + h2β02 + h4β04 + · · · ]P0(η)

+ [h0β20 + h2β22 + h4β24 + · · · ]P2(η)

+ [h2β42 + h4β44 + h6β46 + · · · ]P4(η) + · · ·
}
, (3.22)

where h2k will be determined by the free surface condition. Expression (3.22) may

be simply written as

Vc1 (ξs, η) =
∑

k=0

CkP2k(η), (3.23)

where Ck is a function of h2k.

While the derivation for the centrifugal potential Vc1 at ξs is relatively simple, it

is much more complicated to obtain the gravitational potential Vg1. Similar to the
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procedure discussed for the leading-order problem, we may write the gravitational

potential perturbation Vg1 as

Vg1(ξ, η) =

[
−2πGρc2i

∞∑

k=0

(4k + 1)A2kQ2k(iξ)P2k(η)

]
− Vg0, (3.24)

where the coefficients A2k are given by

A2k =

∫ 1

−1

∫ ξo[1+
∑∞

k=0 h2kP2k(η
′)]

0

(ξ′2 + η′2)P2k(η
′)P2k(iξ

′)dξ′dη′.

A major task is then to derive the analytical expression for A2k. We shall explicitly

discuss only the leading coefficients, A0, A2, A4 and A6. First, consider the special

case with k = 0 for which we have

A0 =

∫ 1

−1

∫ [ξo+ξo
∑∞

k=0 h2kP2k(η
′)]

0

(ξ′2 + η′2)dξ′dη′

=
2

3
ξo(1 + ξ2o) +

[
(2ξ2o +

2

3
)h0 +

4

15
h2

]
ξo.

This integral actually is related to the total mass of the planet which must be

conserved. Mass conservation implies that

[
(2ξ2o +

2

3
)h0 +

4

15
h2

]
= 0, (3.25)

providing a relationship between h0 and h2. Consider now the k = 1 term given by

A2 =

∫ 1

−1

∫ [ξo+ξo
∑∞

k=0 h2kP2k(η
′)]

0

(ξ′2 + η′2)P2(η
′)P2(iξ

′)dξ′dη′

= − 2

15
ξo(1 + ξ2o)−

1

105
(1 + 3ξ2o)

[
14h0 + (11 + 21ξ2o)h2 + 4h4

]
ξo,

where the first term corresponds to the leading order problem which will be sub-

tracted later. Expressions for higher-order terms, k = 2 and k = 3, are

A4 =

∫ 1

−1

∫ ξo[1+
∑∞

k=0 h2kP2k(η
′)]

0

(ξ′2 + η′2)P4(η
′)P4(iξ

′)dξ′dη′

=
[1716h2 + 1050h6 + (2535 + 5005ξ2o)h4] (3 + 30ξ2o + 35ξ4o)ξo

180180
,

and

A6 =

∫ 1

−1

∫ ξo[1+
∑∞

k=0 h2kP2k(η
′)]

0

(ξ′2 + η′2)P6(η
′)P6(iξ

′)dξ′dη′

= − [850h4 + 616h8 + (1411 + 2805ξ2o)h6] (5 + 105ξ2o + 315ξ4o + 231ξ6o)ξo
291720

,
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Similar but lengthy and more complicated equations for A2k with large k can be

derived. Substitution of A2k, k = 0, 1, 2, 3, · · · , into (3.24) yields an analytical

expression for the exterior gravitational potential Vg1:

Vg1(ξ, η) = πGρc2
{

−4

3
ξo(1 + ξ2o) cot

−1 ξ − 2

3
ξo(1 + ξ2o)[(3ξ

2 + 1) cot−1 ξ − 3ξ]P2(η)

+
2

21
ξo(3ξ

2
o + 1)[14h0 + (11 + 21ξ2o)h2 + 4h4]iQ2(iξ)P2(η)

− 18 [1716h2 + 1050h6 + (2535 + 5005ξ2o)h4] (3 + 30ξ2o + 35ξ4o)ξo
180180

[iQ4(iξ)P4(η)]

+
26 [850h4 + 616h8 + (1411 + 2805ξ2o)h6] (5 + 105ξ2o + 315ξ4o + 231ξ6o)ξo

291720

× iQ6(iξ)P6(η) + . . .
}
− Vg0(ξ, η), (3.26)

which is valid for ξ ≥ ξs. It is important to note that coefficients h2k in (3.26)

are unknown and will be determined by the boundary condition on the bounding

surface of the planet. This requires one to express the gravitational potential Vg1 at

the outer surface ξs = ξo[1 +
∑∞

k=0 h2kP2k(η)]. After making some rearrangements,

we can rewrite (3.26) at ξs in terms of P2k(η):

Vg1 (ξs, η) =
4

3
πGρc2

{
ξ2o [h0P0(η) + h2P2(η) + h4P4(η) + · · · ]

− 1

2
ξ2o

[
6ξo(1 + ξ2o) cot

−1 ξo − 6ξ2o − 4
] [

(h0β00 + h2β02 + h4β04 + · · · )P0(η)

+ (h0β20 + h2β22 + h4β24 + · · · )P2(η)

+ (h2β42 + h4β44 + h6β46 + · · · )P4(η) + · · ·
]

− 1

28
ξo(3ξ

2
o + 1)[14h0 + (11 + 21ξ2o)h2 + 4h4][(3ξ

2
o + 1) cot−1 ξo − 3ξo]P2(η)

− 27

2

[1716h2 + 1050h6 + (2535 + 5005ξ2o)h4] (3 + 30ξ2o + 35ξ4o)

180180
ξoiQ4(iξo)P4(η)

+
39

2

[850h4 + 616h8 + (1411 + 2805ξ2o)h6] (5 + 105ξ2o + 315ξ4o + 231ξ6o)

291720

× ξoiQ6(iξo)P6(η) + · · ·
}
,

which can be written in the form

Vg1 (ξs, η) =
∑

k=0

GkP2k(η). (3.27)

By imposing the free surface condition,

Vc1(ξs, η) + Vg1 (ξs, η) + Vz1 (ξs, η) = C1,
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where C1 is constant, we obtain that

Ck + Gk +Dk = 0, k = 1, 2, · · · .

This leads to a system of the following linear equations about h2k:

(
2ξ2o +

2

3

)
h0 +

4

15
h2 = 0, (3.28)

4

3
ξ2oh2 − 1

21
ξo(3ξ

2
o + 1)

[
14h0 + (11 + 21ξ2o)h2 + 4h4

] [
(3ξ2o + 1) cot−1 ξo − 3ξo

]

− 2

3
ξ2o [6ξo(1 + ξ2o) cot

−1 ξo − 6ξ2o − 4] [h0β20 + h2β22 + h4β24 + · · · ]

− 4ε

3
ξ2oh2 +

4ε

3
ξ2o [h0β20 + h2β22 + h4β24 + · · · ] + D2

πGρc2
= 0, (3.29)

− 18iA4Q4(iξo) +
4

3
ξ2oh4

− 2

3
ξ2o [6ξo(1 + ξ2o) cot

−1 ξo − 6ξ2o − 4] [h2β42 + h4β44 + h6β46 + · · · ]

− 4ε

3
ξ2oh4 +

4ε

3
ξ2o [h2β42 + h4β44 + h6β46 + · · · ] + D4

πGρc2
= 0, (3.30)

− 26iA6Q6(iξo) +
4

3
ξ2oh6

− 2

3
ξ2o [6ξo(1 + ξ2o) cot

−1 ξo − 6ξ2o − 4] [h4β64 + h6β66 + h8β68 + · · · ]

− 4ε

3
ξ2oh6 +

4ε

3
ξ2o [h4β64 + h6β66 + h8β68 + · · · ] + D6

πGρc2
= 0, (3.31)

...

which can be readily solved for determining h2k. Note that the equations for h2k

with k ≥ 4 are not explicitly given because of their length and complexity. In

practice, the infinite linear system should be truncated according to the precision of

observations of the zonal flow. The highest expansion order of Vz in (3.17) determines

the dimension of the linear system to be solved.

In summary, when the zonal flow potential Vz is sufficiently large, the perfect

spheroidal shape, described by ξ = ξo in oblate spheroidal coordinates, would be

slightly distorted. The precise departure from the perfect spheroidal shape is de-

termined by the values of h2k, k = 1, 2, · · · , a solution of the linear system (3.29)–

(3.31). After determining the distorted shape of the giant planet, which is described

by (3.18), we can then compute the gravitational potential Vg1 and the variations

∆J2,∆J4,∆J6, · · · . It should be noted that the validity of the perturbation analysis

requires only the condition Utypical/(ΩRe) ¿ 1, where Utypical denotes the typical

speed of the zonal flows.
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3.2.5 Application to Jupiter

We now apply the general perturbation theory to Jupiter. In this case, the linear

system (3.29)-(3.31) can be further simplified. Since E2 ¿ 1 and ε ¿ 1 for Jupiter,

we may simplify (3.29)-(3.31) by recognizing, for example, that

[6ξo(1 + ξ2o) cot
−1 ξo − 6ξ2o − 4][h0β20 + h2β22 + h4β24 + · · · ]

4
3
h2

∼ O(E2),

(4k + 1)πGρc2iA2kQ2k(iξo)
4
3
πGρc2ξ2oh2

∼ O(1).

It follows that the leading-order linear system (3.29)-(3.31) becomes

0 =

(
2ξ2o +

2

3

)
h0 +

4

15
h2, (3.32)

− D2

πGρc2
= −2

3
ξo(3ξ

2
o + 1)[(3ξ2o + 1) cot−1 ξo − 3ξo]h0

+

{
4

3
ξ2o −

1

21
ξo(3ξ

2
o + 1)(11 + 21ξ2o)[(3ξ

2
o + 1) cot−1 ξo − 3ξo]

}
h2

− 4

21
ξo(3ξ

2
o + 1)[(3ξ2o + 1) cot−1 ξo − 3ξo]h4, (3.33)

− D4

πGρc2
= − 1716

10010
iQ4(iξo)ξo(3 + 30ξ2o + 35ξ4o)h2

+

{
4

3
ξ2o −

1

10010
iQ4(iξo)ξo(3 + 30ξ2o + 35ξ4o)(2535 + 5005ξ2o)

}
h4

− 1050

10010
iQ4(iξo)ξo(3 + 30ξ2o + 35ξ4o)h6, (3.34)

− D6

πGρc2
=

850

11220
iQ6(iξo)ξo(5 + 105ξ2o + 315ξ4o + 231ξ6o)h4 +

{
4

3
ξ2o +

iQ6(iξo)ξo
11220

(5 + 105ξ2o + 315ξ4o + 231ξ6o)(1411 + 2805ξ2o)

}
h6, (3.35)

...

Again explicit equations for h2k with k ≥ 4 are not presented because of their length

and complexity. The above linear system can be readily solved for given ξ0, c, πGρ

and D2k.

Application of the general theory to a giant planet requires the following five

steps. First, we need to determine the effective density ρ, or the quantity πGρ,

on the left side of (3.32)–(3.35). From the observed value of E2 for Jupiter at the

one-bar pressure level, which is E2 = 0.1255 ([Seidelmann et. al., 2007]), we can

compute ε according to (3.12), which gives ε = 0.03407. Since the angular velocity

Ω of Jupiter is well known (Ω = 1.7585× 10−4s−1), the relationship ε = Ω2/(2πGρ)

can be further employed to give

πGρ =
Ω2

2ε
= 4.5376× 10−7s−1.
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3. Deep Differential Rotation

Table 3.3: In this table, up to 2k = 12, the values ofD2k and h2k for a Jupiter model
are listed. D2k has the dimension of potential in SI units. h2k is dimensionless.

k 0 1 2 3 4 5

D2k × 10−5 −1.2436 1.4940 −0.2958 0.1582 0.0960 −0.1942
h2k × 103 0.0025 −0.1379 0.0131 −0.0075 −0.0035 0.0072

In other words, we use the observed eccentricity E of Jupiter to determine its effective

density ρ. In the second step, we must compute the focal length c of oblate spheroidal

Jupiter which is also required in (3.32)–(3.35). Note that the outer surface of Jupiter

is given by ξo =
√

1/E2 − 1 = 2.6392 and, hence, the corresponding focal length

c is given by c = ReE = 2.5331 × 107 m, where Re is the equatorial radius with

Re = 7.1492 × 107 m. Thirdly, by fitting the observed profile [Seidelmann et. al.,

2007] of the Jovian zonal flow to U(s) , which is shown in Figure 3.3(a) as a function

of spheroidal latitudes η, we can compute the values of D2n according to equations

(3.16) and (3.17) in connection with the potential of the zonal flow. In the fourth

step, we make use of the values of c2, ξ0 and πGρ, via equation (2.28), to obtain the

leading-order gravitational potential, Vg0, in oblate spheroidal coordinates. This is

then projected onto the potential in spherical coordinates given by (3.8) to obtain the

leading-order coefficients J̄2, J̄4, · · · , J̄12, which are shown in Table 3.2. Finally, for

given ξ0, πGρ and D2k, the linear system of equations (3.32)-(3.35) can be solved

for h0, h2, h4, · · · , which, via equation (3.18), give rise to the modified shape of

Jupiter in the presence of the strong deep zonal flows. In Table 3.3, the first several

D2k and h2k are presented. Inserting the values of h0, h2, h4, · · · , into (3.26) yields

an analytical expression for the perturbation of the exterior gravitational potential

Vg1. By further projecting (Vg0 + Vg1) in oblate spheroidal coordinates onto (3.8) in

spherical polar coordinates, we can then derive the variation of zonal gravitational

coefficients ∆Jn caused by the Jovian zonal flows.

The results of our computation, up to ∆J12, for Jupiter are given in Table 3.2.

The departure from the spheroidal shape, caused by the deep zonal flow, is shown

in Figure 3.3(b) as a function of spheroidal latitudes η. From Table 3.2 it is seen

that the variation of J2, the most significant coefficient in the planet’s gravity field,

is about ∆J2/J̄2 = 0.3%. As a result of the latitudinally small scale of the zonal

flow, it is also anticipated that |∆J4/J̄4| would be much greater than |∆J2/J̄2|. In

fact, the shape-driven harmonic at the 10th zonal gravity coefficient becomes larger

than that of a rigidly-rotating planet, , i.e., ∆J2n ≥ J̄2n when n ≥ 5. If the zonal

flow is deep and strong enough, a giant planet like Jupiter cannot be in the shape

of a perfect spheroid ξ = ξo in oblate spheroidal coordinates. In addition to the

oblateness caused by the effect of rapid rotation, the deep zonal flow may induce

about 6 km positive height in the equatorial region and about 8 km negative height
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Figure 3.2: The potentials plotted against the angular coordinate η, the dashed
line represents the zonal flow potential Vz curve whose vertical ticks are on the left
vertical axis; the solid line depicts the centrifugal potential Vc0 with vertical ticks
on the right hand side. It is apparent that the zonal flow causes a potential two
magnitudes smaller than the rotational centrifugal potential.

in polar regions, as shown in Figure 3.3(b). For Jupiter, Utypical/(ΩRe) = 8 × 10−3

when taking the typical speed Utypical ∼ 100m s−1, consistent with the assumption

of the Vz expansion (3.9) in the perturbation analysis. In Figure 3.2, Vz1 is plotted

together with Vc0, also verify that the zonal flow only causes a small perturbation

to the uniform rotation.

3.3 Summary and some remarks

If the zonal flow of a giant planet is sufficiently deep and strong, it is capable of

changing its spheroidal shape and, hence, producing a significant perturbation to its

exterior gravitational field. We investigate, via an analytical method using oblate

spheroidal coordinates, the variation of zonal gravity coefficients caused by deep

zonal flow for an arbitrarily rapidly rotating planet. In order to develop an analyt-

ical theory, we have assumed that the planet has an effective uniform density and

that the zonal flow passes through the whole interior of the planet along cylinders

that are parallel to the axis of rotation, as proposed by [Busse, 1976; Hubbard, 1982].

Under these assumptions, we have developed a perturbation theory that can be used

to compute the variation of J2n up to J12 for arbitrarily rapidly rotating planets that

have arbitrary eccentricity and are marked by Utypical/(ΩRe) ¿ 1. In comparison to

the dynamic-related gravitational anomalies ([Hubbard, 1999; Kaspi et al., 1999]),
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Figure 3.3: (a) The profile of the Jovian zonal flow U , fitted to the observed data, as
a function of spheroidal latitudes η; (b) The corresponding dimensional departure,
c(ξ − ξo), from the shape of rigid-body rotation caused by the effect of the zonal
flow.
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3. Deep Differential Rotation

this study is only concerned with the hydrostatic-related gravitational anomalies.

It is important to point out that the changes in low-degree zonal gravitational har-

monics in a rapidly rotating planet are largely dominated by the oblate shape of

the planet. By taking the arbitrary oblateness, using spheroidal oblate coordinates,

into the leading-order solution, we are able to accurately estimate the changes in

low-degree zonal gravitational harmonics that are only induced by the effect of a

differential rotation for rapidly rotating planets. In this sense, the spheroidal the-

ory in this chapter represents a useful and significant extension comparing to the

previous spherical theories.

The primary objective of our analysis is to provide a basic understanding of how

the hydrostatic-related gravitational anomalies can be generated, via the distortion

of the shape, by the deep zonal flows without assuming a small rotational param-

eter. In order to make analytical progress we have assumed the uniform density

which represents a major weakness of the model, implying that all of the multipole

components of the gravity potential arise from the surface shape alone. Since the

density profile of Jupiter is certainly non-uniform with the outer zonal-flow region

containing low-density material and since the zonal flow may not extend through the

whole interior, our analysis would overestimate the variations that can be caused by

the Jovian zonal flows. For a realistic Jupiter or Saturn, we must take account of

both the radial variation of its density and the possible confinement of the zonal flow

to the outer low-density region of the planet. In this case, an analytical approach

similar to this study would be unlikely and, instead, a more complicated numerical

model will be needed to offer an accurate estimate on the variation of J2n caused by

the Jupiter’s or Saturn’s zonal flow.
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Chapter 4

Papkovich-Neuber Type Solution

of Stokes Flow in the Exterior

Domain of a Prolate Spheroid

4.1 Introduction

Coccobacillus, a bacterium having a nearly elongated spheroidal shape, can swim

slowly in liquid, such as water, under the influence of viscous drag forces. The

motion of swimming microorganisms is marked by a very small Reynolds number

Re (see [Purcell, 1977]), a dimensionless number defined as

Re =
U0aρ

µ
,

where U0 is the typical velocity of the bacterium, ρ is the liquid density, a denotes

the semi-major axis of the spheroid and µ is the dynamic viscosity of the liquid.

The size of Re provides a measure of the ratio of inertial to viscous forces. Since

the swimming speed U0 is very low and its characteristic dimension a is extremely

small, the Stokes’ approximation (for example, see [Lamb, 1932], [Batchelor, 1967],

[Shankar, 2007]), which neglects the inertial term in the Navier-Stokes equation in

the limit Re → 0, is usually adopted for describing the motion of microorganisms

([Koiller et al., 1996]).

Understanding the dynamics of swimming microorganisms having an elongated

spheroidal shape requires mathematical solutions of the Stokes’ flow in connection

with the movement of a spheroid with arbitrary eccentricity in an infinite expanse

of viscous and incompressible fluid. The shape of the spheroid, as depicted in Fig-

ure 4.1, may be written in the form

x2

a2(1− E2)
+

y2

a2(1− E2)
+

z2

a2
= 1, (4.1)
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4. Stokes Flow

(a) (b)

Figure 4.1: Sketch of geometry for the Stokes flow in the exterior of a prolate
spheroid: (a) driven by a spheroid moving with a speed U0 = |U0| at an arbitrary
angle of attack γ, and (b) driven by a rotating spheroid with an angular velocity Ω
marked by two rotating angles α and β. The bounding surface of the spheroid is
described by (4.1) in Cartesian coordinates or by ξ = ξ0 = 1/E in prolate spheroidal
coordinates which is discussed in Section 4.2.

where E is its eccentricity with 0 < E < 1. Two different types of movement

need to be considered. First, the spheroid makes slow translation in a viscous fluid

and, hence, drives a small-Reynolds-number flow in its exterior, which is illustrated

in Figure 4.1(a). In general, there exists an angle, γ, between the direction of

translation and the symmetry axis z, which is usually referred to as angle of attack.

Second, a flow can be also driven by a spheroid that is slowly rotating with an

angular velocity Ω, which is depicted in Figure 4.1(b). Note that the angle between

the symmetry axis z and the angular velocity Ω, denoted by α, is generally non-zero.

Mathematically, the problem of the slow flow is governed by the Stokes equation and

the equation of continuity, {
µ∇2u = ∇p,

∇ · u = 0,
(4.2)

where u is the velocity of the flow and p is the pressure, subject to the conditions

that the velocity u coincides with the bounding surface of the spheroid at each of

its points and u → 0 far away from the spheroid.

A classical, well-known Stokes flow is concerned with a sphere i.e., E = 0 in

(4.1), that is immersed in an infinite expanse of very viscous, incompressible fluid

and moving slowly (see, for example, [Batchelor, 1967]). Spherical geometry removes

the angle of attack γ as a dependent parameter and allows the introduction of a two-

dimensional stream function ψ satisfying

[
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)]2
ψ = 0, (4.3)

where (r, θ, φ), with the corresponding unit vectors (r̂, θ̂, φ̂), are spherical polar
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4. Stokes Flow

coordinates with θ = 0 at the direction of its movement and r = 0 at the center of

the sphere. Upon writing the stream function ψ as

ψ(r, θ) = f(r) sin2 θ,

the fourth-order partial differential equation (4.3) for ψ can be reduced a fourth-

order ordinary differential equation for f(r) that can be readily solved. The similar

idea was also employed to solve the Stokes problem by making use of a prolate

spheroid using spheroidal coordinates, but the earlier work focused on the symmetric

problem in that the symmetry axis of the spheroid and the uniform flow at distant

points (or the rotation axis in the case of rotational flow) is parallel, i.e., γ = 0 or

α = 0. Detailed discussion and bibliography on the earlier work about spherical or

spheroidal Stokes flows can be found in the Lamb’s book ([Lamb, 1932]).

For non-spherical geometries, there are two classes of methods. What is the most

commonly seen is called ”Coordinates Methods”, which are based on the choices

of appropriate coordinate systems to facilitate separation of the variables for the

body geometry in question. The most remarkable pieces of work include [Oberbeck,

1876], dating back to 1876 and [Edwardes, 1892], published in 1892. Oberbeck found

the analytical solution of Stokes flow driven by a triaxial ellipsoid translating in a

direction parallel to one of its axes; Edwardes solved the corresponding problem for

such an ellipsoid rotating about one of its principal axes (also see [Jeffery, 1922],

[Happel and Brenner, 1983] and [Lamb, 1932] for more reviews on related work

in early times). All these studies are based on the use of ellipsoidal coordinates

and on some complicated analyses of ellipsoidal harmonics. More recently, [Payne

and Pell, 1960] considered the Stokes problem in which the configuration of various

obstacles has an axis of symmetry and the uniform flow at distant points is parallel

to the symmetry axis (see also, for example, [Taseli and Demiralp, 1997]). In other

words, the Stokes flows around a prolate spheroid are assumed to be axisymmetric

with the attack angle γ = 0 as illustrated in Figure 4.1(a). By expanding the

stream function ψ in terms of the products combining Gegenbauer functions of

various degrees, [Dassios and Vafeas, 2008] studied the Stokes flow passing a spheroid

under the assumption that it moves parallel to the symmetry axis (γ = 0) and,

hence, the flow is axisymmetric. However, by virtue of ”Coordinates Methods”,

there hasn’t been any progress in general Stokes flows, around a prolate spheroid,

without good symmetry. For a non-zero angle of attack, 0 < γ < 900, or an off-axis

angular velocity, Stokes flows become fully three-dimensional and, consequently, the

approach of employing a scalar stream function ψ seems to be difficult.

The other class of methods are called ”Singularity Methods”, which utilize such

singularities as ”Stokeslet” and so on. [Chwang and Wu, 1975] successfully employed

a singularity method to construct exact solutions to the Stokes-flow problem for a

spheroid translating or rotating in a viscous fluid, but the form of the solution
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with cartesian coordinates is inconvenient for the study of our bacteria swimming

problem.

Upon recognizing similarity between the governing equations for an elastic ma-

terial and a Stokes flow, [Tran-Cong and Blake, 1982] applied the Papkovich-Neuber

formulation ([Papkovich, 1932], [Neuber, 1934]) to the problem of Stokes flows. They

showed that the general solution of the Papkovich-Neuber type for the Stokes prob-

lem (4.2) can be written in the form

{
u = ∇(r ·Ψ+ χ)− 2Ψ,

p = 2µ(∇ ·Ψ),
(4.4)

where r is the position vector, Ψ, a vector harmonic function, satisfies ∇2Ψ = 0

and χ, a scalar harmonic function, is a solution to ∇2χ = 0. They also provided

a mathematical proof of the existence and completeness for the general solution

(4.4). The powerful Papkovich-Neuber formulation (4.4) has been then successfully

applied to the three-dimensional Stokes flow within two infinite cones with coinci-

dent apices ([Hall et al., 2009]) and to the three-dimensional Stokes flow between

concentric spheres ([Shankar, 2009]). However, the Papkovich-Neuber formulation

– which would produce the analytical solution in terms of prolate spheroidal coor-

dinates appropriate for describing the swimming motion of bacteria – has not been

applied to deriving a three-dimensional solution for the spheroidal Stokes flow with

arbitrary angles of α, β and γ. The mathematical complication and difficulty of

deriving such a solution with the Papkovich-Neuber formulation stem from both

spheroidal geometry/coordinates and three-dimensionality that make the relevant

analysis lengthy and cumbersome.

It is thus desirable to apply the Papkovich-Neuber formulation to deriving the

three-dimensional solution that describes the Stokes flow driven by the translation

of a prolate spheroid with arbitrary eccentricity E at an arbitrary angle γ shown in

Figure 4.1(a) or driven by a rotating spheroid with arbitrary angles α and β illus-

trated in Figure 4.1(b). The primary objective of the present study is to obtain, via

the Papkovich-Neuber formulation (4.4), an analytical three-dimensional solution

for the Stokes flow driven by either a translating prolate spheroid at an arbitrary

angle of attack γ or a rotating spheroid with arbitrary angles α and β in an infinite

expanse of viscous and incompressible fluid. We shall also derive an expression for

the corresponding drag and torque on the spheroid as a function of α, β, γ and E. In

what follows we shall begin in §4.2 by presenting briefly prolate spheroidal coordi-

nates used in our analysis. This is followed by deriving three-dimensional solutions

for the spheroidal Stokes flow in §4.3 and by obtaining an expression for the drag

and torque in §4.4. The chapter closes in §4.5 with a summary and some remarks.
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4.2 Prolate spheroidal coordinates

It would be helpful to provide a brief introduction to prolate spheroidal coordinates

that are to be used in our analysis. Similar to the oblate spheroidal coordinates
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Figure 4.2: The sketch of a prolate spheroidal coordinate system at a meridional
cross-section, the prolate spheroidal coordinate system can be compared with the
oblate one plotted in Figure 2.2.

defined and intensively used in Chapter 2 and Chapter 3, our prolate spheroidal co-

ordinates are defined by three sets of orthogonal level surfaces: the radial coordinate

ξ ∈ [1,∞) characterizes spheroidal surfaces

z2

c2ξ2
+

x2 + y2

c2(ξ2 − 1)
= 1,

the angular coordinate η ∈ [−1, 1] determines hyperboloids

z2

c2η2
− x2 + y2

c2(1− η2)
= 1,

and, finally, the third coordinate is azimuthal angle φ which is the same as that

in spherical polar coordinates. Figure 4.2 depicts the meridional cross section of

the sketch of a prolate spheroidal coordinate system. Here c is the common focal
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length for all the spheroids and hyperboloids, the bounding surface of the spheroid

is described by ξ = ξ0 = 1/E and the domain of the Stokes flow concerned in this

paper is defined in {ξ0 ≤ ξ < ∞, −1 ≤ η ≤ 1, 0 ≤ φ ≤ 2π}. In the spherical limit,

we have E → 0, c → 0 but cξ0 → a along with cξ → r, η → cos θ and φ → φ.

The transformation between prolate spheroid coordinates (ξ, η, φ) and the cor-

responding Cartesian coordinates (x, y, z) is given by





x = c
√

(ξ2 − 1)(1− η2) cosφ,

y = c
√

(ξ2 − 1)(1− η2) sinφ,

z = cξη.

(4.5)

We shall use (ξ̂, η̂, φ̂) to denote the unit vectors of prolate spheroid coordinates

(ξ, η, φ) while (x̂, ŷ, ẑ) for the Cartesian unit vectors. With the above transforma-

tion, we can derive, for example, the following differential operators needed in our

analysis:

∇V = ξ̂
1

c

√
ξ2 − 1

ξ2 − η2
∂V

∂ξ
+ η̂

1

c

√
1− η2

ξ2 − η2
∂V

∂η
+ φ̂

1

c

1√
(ξ2 − 1)(1− η2)

∂V

∂φ
,

∇2V =
1

c2(ξ2 − η2)

{
∂

∂ξ

[
(ξ2 − 1)

∂V

∂ξ

]
+

∂

∂η

[
(1− η2)

∂V

∂η

]}

+
1

c2(ξ2 − 1)(1− η2)

∂2V

∂φ2
,

∇ · F =
1

c(ξ2 − η2)

{
∂

∂ξ

[
ξ̂ · F

√
(ξ2 − 1)(ξ2 − η2)

]
+

∂

∂η

[
η̂ · F

√
(1− η2)(ξ2 − η2)

]}

+
1

c
√

(ξ2 − 1)(1− η2)

∂

∂φ
φ̂ · F,

where V is a scalar function while F denotes a vector function.

4.3 3D spheroidal Stokes flow, drag and torque

4.3.1 Scalar and vector prolate spheroidal harmonics

The Papkovich-Neuber formulation (4.4) requires a solution to the scalar harmonic

equation

∇2χ = 0. (4.6)

This part of the analysis is relatively straightforward as, by standard separation of

variables,

χ(ξ, η, φ) = Ξ(ξ)H(η)Φ(φ),
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one can readily show that the harmonic equation (4.6) gives rise to the three equa-

tions

d

dξ

[
(1− ξ2)

dΞ

dξ

]
− m2

1− ξ2
Ξ + l(l + 1)Ξ = 0, ξ > 1;

d

dη

[
(1− η2)

dH

dη

]
− m2

1− η2
H + l(l + 1)H = 0, −1 ≤ η ≤ 1;

d2Φ

dφ2
+m2Φ = 0, 0 ≤ φ ≤ 2π,

whose solutions are associated with Legendre functions of the first (Pm
l ) and second

(Qm
l ) kind defined outside the unit circle in the complex plane. Ξ, H are so called

prolate spheroidal harmonics. Applying the conditions at ξ → ∞ and η = ±1, it can

be shown that the general solution for (4.6) in terms of prolate spheroidal harmonics

is

χ(ξ, η, φ) =
∞∑

l=0

l∑
m=0

(Dlm cosmφ+D′
lm sinmφ)Qm

l (ξ)P
m
l (η), ξ > ξ0, (4.7)

where Dlm and D′
lm are unknown coefficients to be determined by the non-slip

condition at the bounding surface ξ = ξ0.

An essential but much more difficult task is to solve the vector harmonic equation

∇2Ψ = 0 (4.8)

in prolate spheroidal coordinates. To derive the component form of (4.8), we have

to find the identities





ξ̂ = ξ

√
1− η2

ξ2 − η2
cosφx̂+ ξ

√
1− η2

ξ2 − η2
sinφŷ + η

√
ξ2 − 1

ξ2 − η2
ẑ,

η̂ = −η

√
ξ2 − 1

ξ2 − η2
cosφx̂− η

√
ξ2 − 1

ξ2 − η2
sinφŷ + ξ

√
1− η2

ξ2 − η2
ẑ,

φ̂ = − sinφx̂+ cosφŷ,

(4.9)
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and

∂ξ̂

∂ξ
=

η
√

1− η2

(ξ2 − η2)
√

ξ2 − 1
η̂,

∂η̂

∂ξ
= − η

√
1− η2

(ξ2 − η2)
√

ξ2 − 1
ξ̂,

∂φ̂

∂ξ
= 0,

∂ξ̂

∂η
=

ξ
√

ξ2 − 1

(ξ2 − η2)
√

1− η2
η̂,

∂η̂

∂η
= − ξ

√
ξ2 − 1

(ξ2 − η2)
√

1− η2
ξ̂,

∂φ̂

∂η
= 0,

∂ξ̂

∂φ
= ξ

√
1− η2

ξ2 − η2
φ̂,

∂η̂

∂φ
= −η

√
ξ2 − 1

ξ2 − η2
φ̂,

∂φ̂

∂φ
= −ξ

√
1− η2

ξ2 − η2
ξ̂ + η

√
ξ2 − 1

ξ2 − η2
η̂. (4.10)

Then, evidently, the vector equation (4.8) can be cast into the three components in

spheroidal coordinates:

0 = ∇2(ξ̂ ·Ψ)− 2

c2(ξ2 − η2)

[ξ2(ξ2 − 1) + (1− η2)

(ξ2 − 1)(ξ2 − η2)
ξ̂ ·Ψ

+
η
√

(ξ2 − 1)(1− η2)

ξ2 − η2
∂η̂ ·Ψ
∂ξ

+
ξ
√

(ξ2 − 1)(1− η2)

ξ2 − η2
∂η̂ ·Ψ
∂η

− ξη

ξ2 − η2

√
ξ2 − 1

1− η2
η̂ ·Ψ

+
ξ

ξ2 − 1

√
ξ2 − η2

1− η2
∂φ̂ ·Ψ
∂φ

]
, (4.11)

0 = ∇2(η̂ ·Ψ)− 1

c2(ξ2 − η2)

[(ξ2 − 1) + 2η2(1− η2)

(1− η2)(ξ2 − η2)
η̂ ·Ψ

− 2η

√
(ξ2 − 1)(1− η2)

ξ2 − η2
∂ξ̂ ·Ψ
∂ξ

− 2ξ

√
(ξ2 − 1)(1− η2)

ξ2 − η2
∂ξ̂ ·Ψ
∂η

− 2ξη

ξ2 − η2

√
1− η2

ξ2 − 1
ξ̂ ·Ψ

− 2η

1− η2

√
ξ2 − η2

ξ2 − 1

∂φ̂ ·Ψ
∂φ

]
, (4.12)

0 = ∇2(φ̂ ·Ψ)− 1

c2(ξ2 − η2)

[ ξ2 − η2

(ξ2 − 1)(1− η2)
φ̂ ·Ψ

− 2ξ

ξ2 − 1

√
ξ2 − η2

1− η2
∂ξ̂ ·Ψ
∂φ

+
2η

1− η2

√
ξ2 − η2

ξ2 − 1

∂η̂ ·Ψ
∂φ

]
. (4.13)

It is clear that finding an analytical solution to (4.11)–(4.13) in prolate spheroidal

coordinates is not straightforward. It is significant to note that, however, because of

spheroidal geometry and the non-slip condition, all the quantities in the Papkovich-
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Neuber formulation (4.4) are required to be expressed in prolate spheroidal coordi-

nates.

After making several different attempts, it is unveiled that a mathematically

convenient way of tackling (4.8) is to adopt a Cartesian system first and, then,

transform it to the prolate spheroidal system by using the transformation which is

the inverse of (4.9),





x̂ = ξ

√
1− η2

ξ2 − η2
cosφξ̂ − η

√
ξ2 − 1

ξ2 − η2
cosφη̂ − sinφφ̂,

ŷ = ξ

√
1− η2

ξ2 − η2
sinφξ̂ − η

√
ξ2 − 1

ξ2 − η2
sinφη̂ + cosφφ̂,

ẑ = η

√
ξ2 − 1

ξ2 − η2
ξ̂ + ξ

√
1− η2

ξ2 − η2
η̂.

(4.14)

If we consider Ψ = Ψx(ξ, η, φ)x̂+Ψy(ξ, η, φ)ŷ+Ψz(ξ, η, φ)ẑ, then the three compo-

nents respectively satisfy the scalar harmonic equation





Ψx(ξ, η, φ) =
∞∑

l=0

l∑
m=0

(Alm cosmφ+ A′
lm sinmφ)Qm

l (ξ)P
m
l (η),

Ψy(ξ, η, φ) =
∞∑

l=0

l∑
m=0

(Blm cosmφ+B′
lm sinmφ)Qm

l (ξ)P
m
l (η),

Ψz(ξ, η, φ) =
∞∑

l=0

l∑
m=0

(Clm cosmφ+ C ′
lm sinmφ)Qm

l (ξ)P
m
l (η).

(4.15)

We find that the general solution to (4.11)–(4.13) in prolate spheroidal coordinates,

satisfying the conditions at ξ → ∞ and η = ±1, is given by

ξ̂ ·Ψ = Ψxξ

√
1− η2

ξ2 − η2
cosφ+Ψyξ

√
1− η2

ξ2 − η2
sinφ+Ψzη

√
ξ2 − 1

ξ2 − η2

=
∑

l

∑
m

[
ξ

√
1− η2

ξ2 − η2
cosφ(Alm cosmφ+ A′

lm sinmφ)

+ ξ

√
1− η2

ξ2 − η2
sinφ(Blm cosmφ+B′

lm sinmφ)

+ η

√
ξ2 − 1

ξ2 − η2
(Clm cosmφ+ C ′

lm sinmφ)
]
Qm

l (ξ)P
m
l (η), (4.16)
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η̂ ·Ψ = −Ψxη

√
ξ2 − 1

ξ2 − η2
cosφ−Ψyη

√
ξ2 − 1

ξ2 − η2
sinφ+Ψzξ

√
1− η2

ξ2 − η2

=
∑

l

∑
m

[
− η

√
ξ2 − 1

ξ2 − η2
cosφ(Alm cosmφ+ A′

lm sinmφ)

− η

√
ξ2 − 1

ξ2 − η2
sinφ(Blm cosmφ+B′

lm sinmφ)

+ ξ

√
1− η2

ξ2 − η2
(Clm cosmφ+ C ′

lm sinmφ)
]
Qm

l (ξ)P
m
l (η), (4.17)

φ̂ ·Ψ = −Ψx sinφ+Ψy cosφ

=
∑

l

∑
m

[
− sinφ(Alm cosmφ+ A′

lm sinmφ

+ cosφ(Blm cosmφ+B′
lm sinmφ

]
Qm

l (ξ)P
m
l (η). (4.18)

By using the vector harmonic function Ψ given by (4.16)–(4.18), we can now derive

r ·Ψ and ∇ ·Ψ needed in the Papkovich-Neuber formulation:

r ·Ψ = c

∞∑

l=0

l∑
m=0

[√
(ξ2 − 1)(1− η2) cosφ(Alm cosmφ+ A′

lm sinmφ)

+
√

(ξ2 − 1)(1− η2) sinφ(Blm cosmφ+B′
lm sinmφ)

+ ξη(Clm cosmφ+ C ′
lm sinmφ)

]
Qm

l (ξ)P
m
l (η) (4.19)

and

∇ ·Ψ =
1

c

∞∑

l=0

l∑
m=0

{√
(ξ2 − 1)(1− η2)

ξ2 − η2

(
ξ
dQm

l (ξ)

dξ
Pm
l (η)− η

dPm
l (η)

dη
Qm

l (ξ)

)

× [cosφ(Alm cosmφ+ A′
lm sinmφ) + sinφ (Blm cosmφ+B′

lm sinmφ)]

+
1

ξ2 − η2

[
η(ξ2 − 1)

dQm
l (ξ)

dξ
Pm
l (η) + ξ(1− η2)

dPm
l (η)

dη
Qm

l (ξ)

]

× (Clm cosmφ+ C ′
lm sinmφ)− m√

(ξ2 − 1)(1− η2)
Qm

l (ξ)P
m
l (η)

×
[
sinφ(−Alm sinmφ+ A′

lm cosmφ) + cosφ(−Blm sinmφ

+ B′
lm cosmφ)

]}
. (4.20)

All coefficients in the above expressions, such as Alm and A′
lm, have to be determined

as a function of three characteristic angles α, β and γ of the problem. Our remaining

task is, according to whether a prolate spheroid is in the movement of translation or

rotation, to derive a three-dimensional solution for the Stokes flow by determining

all the unknown coefficients.
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4.3.2 Flow driven by translation at an arbitrary angle γ

Consider first a solid prolate spheroid of eccentricity E that moves slowly with the

speed of U0 = |U0| at an angle of attack 0 < γ ≤ 90o. Geometry of the problem,

together with the coordinate system, is illustrated in Figure 4.1(a). Without loss of

generality, we shall assume the translation velocity U0 has only x and z components,

i.e., the spheroid is always moving within xoz plane.

We are considering a spheroid translating in a vast static fluid, which leads to

u(η, ξ → ∞, φ) = 0. The no-slip boundary condition at the bounding surface of the

spheroid ξ = ξ0 imposes that

u(η, ξ = ξ0, φ) = U0 sin γx̂+ U0 cos γẑ

= [∇(r ·Ψ+ χ)− 2Ψ] (η, ξ = ξ0, φ)

= U0

(
cos γ

√
ξ20 − 1

ξ20 − η2
η + sin γ

√
1− η2

ξ20 − η2
ξ0 cosφ

)
ξ̂

+ U0

(
cos γ

√
1− η2

ξ20 − η2
ξ0 − sin γ

√
ξ20 − 1

ξ20 − η2
η cosφ

)
η̂

− U0 (sin γ sinφ) φ̂, (4.21)

where ∇χ(η, ξ = ξ0, φ) can be obtained from (4.7) while ∇r · Ψ(η, ξ = ξ0, φ)

and Ψ(η, ξ = ξ0, φ) can be derived from (4.16)–(4.19). By noticing that P0(η) =

1,P1(η) = η and P 1
1 (η) =

√
1− η2, we can deduce from (4.21) that

Alm = A′
lm = Blm = B′

lm = Dlm = D′
lm = 0, if m ≥ 2 and l ≥ 2.

In consequence, the expressions (4.8) and (4.16)–(4.20) can be simplified as

χ(ξ, η, φ)/c = D00Q0(ξ) +D10Q1(ξ)η

+(D11 cosφ+D′
11 sinφ)Q

1
1(ξ)

√
1− η2, (4.22)
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ξ̂ ·Ψ =

(
ξ

√
1− η2

ξ2 − η2
cosφA00 + ξ

√
1− η2

ξ2 − η2
sinφB00 + η

√
ξ2 − 1

ξ2 − η2
C00

)
Q0(ξ)

+

(
ξ

√
1− η2

ξ2 − η2
cosφA10 + ξ

√
1− η2

ξ2 − η2
sinφB10 + η

√
ξ2 − 1

ξ2 − η2
C10

)
Q1(ξ)η

+

[
ξ

√
1− η2

ξ2 − η2
cosφ(A11 cosφ+ A′

11 sinφ)

+ ξ

√
1− η2

ξ2 − η2
sinφ(B11 cosφ+B′

11 sinφ)

+ η

√
ξ2 − 1

ξ2 − η2
(C11 cosφ+ C ′

11 sinφ)

]
Q1

1(ξ)
√

1− η2, (4.23)

η̂ ·Ψ =

(
−η

√
ξ2 − 1

ξ2 − η2
cosφA00 − η

√
ξ2 − 1

ξ2 − η2
sinφB00 + ξ

√
1− η2

ξ2 − η2
C00

)
Q0(ξ)

+

(
−η

√
ξ2 − 1

ξ2 − η2
cosφA10 − η

√
ξ2 − 1

ξ2 − η2
sinφB10 + ξ

√
1− η2

ξ2 − η2
C10

)
Q1(ξ)η

+

[
−η

√
ξ2 − 1

ξ2 − η2
cosφ(A11 cosφ+ A′

11 sinφ)

− η

√
ξ2 − 1

ξ2 − η2
sinφ(B11 cosφ+B′

11 sinφ)

+ ξ

√
1− η2

ξ2 − η2
(C11 cosφ+ C ′

11 sinφ)

]
Q1

1(ξ)
√

1− η2, (4.24)

φ̂ ·Ψ = (− sinφA00 + cosφB00)Q0(ξ) + (− sinφA10 + cosφB10)Q1(ξ)η

+ [− sinφ(A11 cosφ+ A′
11 sinφ) + cos(φ)(B11 cosφ

+ B′
11 sinφ)]Q

1
1(ξ)

√
1− η2, (4.25)

r ·Ψ/c =
√

(ξ2 − 1)(1− η2) (cosφA00 + sinφB00 + ξηC00)Q0(ξ)

+
√

(ξ2 − 1)(1− η2) (cosφA10 + sinφB10 + ξηC10)Q1(ξ)η

+
[√

(ξ2 − 1)(1− η2) cosφ(A11 cosφ+ A′
11 sinφ)

+
√

(ξ2 − 1)(1− η2) sinφ(B11 cosφ+B′
11 sinφ)

+ξη(C11 cosφ+ C ′
11 sinφ)

]
Q1

1(ξ)
√

1− η2, (4.26)

which now contain only 16 unknown coefficients.

To determine the 16 unknown coefficients in (4.22)–(4.25), we first look at the
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(a) (b)

(c) (d)

Figure 4.3: Flow structure in the xz−plane for a spheroid of eccentricity E = 0.8,
computed from (4.34)–(4.36), is plotted for four different angles of attack: (a) γ = 0;
(b) γ = 30o; (c) γ = 60o; and (d) γ = 90o. The symmetry axis of the spheroid is
vertical with the dashed line indicating the direction of translation. For the sake of
better presentation, we plot the flows as seen in a co-translating reference system.

azimuthal component, the simplest of the three components, of (4.21):

φ̂ · u(ξ = ξo) =
1√

(ξ2 − 1)(1− η2)

∂

∂φ

(
r ·Ψ+ χ

c

)
− 2φ̂ ·Ψ

= [− sin 2φA11 + cos(2φ)A′
11 + cos 2φB11 + sin 2φB′

11]Q
1
1(ξ)

√
1− η2

+
ξη√
ξ2 − 1

(−C11 sinφ+ C ′
11 cosφ)Q

1
1(ξ)

+
1√

ξ2 − 1
(−D11 sinφ+D′

11 cosφ)Q
1
1(ξ)

+(A00 sinφ−B00 cos(φ))Q0(ξ) + (A10 sinφ−B10 cosφ)Q1(ξ)η

+2[sinφ(A11 cosφ+ A′
11 sinφ)

− cosφ(B11 cosφ+B′
11 sinφ)]Q

1
1(ξ)

√
1− η2

= U0 (sin γ sinφ) ,
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which immediately leads to

A10 = A11 = A′
11 = B00 = B10 = B11 = B′

11 = C11 = C ′
11 = D′

11 = 0 (4.27)

and

A00Q0(ξ0)−D11
Q1

1(ξ0)√
ξ20 − 1

= −U0 sin γ. (4.28)

In other words, of the 16 unknown coefficients in (4.22)–(4.25) ten of them are zero.

Other 6 coefficients are determined by examining the ξ̂ and η̂ components of (4.21),

which are

ξ̂ · u(ξ = ξo) =

√
ξ2 − 1

ξ2 − η2
∂

∂ξ

(
r ·Ψ+ χ

c

)
− 2ξ̂ ·Ψ

=

√
ξ2 − 1

ξ2 − η2

{(
ξ

√
1− η2

ξ2 − η2
cosφA00 + ηC00

)
Q0(ξ)

+
(√

(ξ2 − 1)(1− η2) cosφA00 + ξηC00 +D00

) dQ0(ξ)

dξ

+ C10Q1(ξ)η
2 + (ξηC10 +D10)η

dQ1(ξ)

dξ
+D11

dQ1
1(ξ)

dξ

√
1− η2 cosφ

}

−2

(
ξ

√
1− η2

ξ2 − η2
cosφA00 + η

√
ξ2 − 1

ξ2 − η2
C00

)
Q0(ξ)

− 2η

√
ξ2 − 1

ξ2 − η2
C10Q1(ξ)η

= U0

(
cos γ

√
ξ20 − 1

ξ20 − η2
η + sin γ

√
1− η2

ξ20 − η2
ξ0 cosφ

)
(4.29)

and

η̂ · u(ξ = ξo) =

√
1− η2

ξ2 − η2
∂

∂η

(
r ·Ψ+ χ

c

)
− 2η̂ ·Ψ

= (−C00ξQ0(ξ) +D10Q1(ξ))

√
1− η2

ξ2 − η2

+
(
A00

√
ξ2 − 1Q0(ξ)−D11Q

1
1(ξ)

) η cosφ√
ξ2 − η2

= U0

(
cos γ

√
1− η2

ξ20 − η2
ξ0 − sin γ

√
ξ20 − 1

ξ20 − η2
η cosφ

)
. (4.30)

From (4.29)–(4.30) we can deduce that

C10 = D00 = 0
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and

C00

(
ξ0
dQ0(ξ0)

dξ
−Q0(ξ0)

)
+D10

dQ1(ξ0)

dξ
= U0 cos γ, (4.31)

C00

(
ξ0
dQ0(ξ0)

dξ
−Q0(ξ0)

)
+D10

dQ1(ξ0)

dξ
= U0 cos γ, (4.32)

A00

(
ξ20 − 1

ξ0

dQ0(ξ0)

dξ
−Q0(ξ0)

)
+D11

√
ξ20 − 1

ξ0

dQ1
1(ξ0)

dξ
= U0 sin γ. (4.33)

Solving the linear system of equations (4.28) and (4.31)–(4.33) gives the 4 non-zero

coefficients:

A00 = U0 sin γ

[
ξ20 − 3

4
ln

ξ0 + 1

ξ0 − 1
− ξ0

2

]−1

,

C00 = U0 cos γ

[
−ξ20 + 1

2
ln

ξ0 + 1

ξ0 − 1
+ ξ0

]−1

,

D10 = U0 cos γ

[
ξ20 + 1

2ξ20
ln

ξ0 + 1

ξ0 − 1
− 1

ξ0

]−1

,

D11 = U0 sin γ

[
ξ20 − 3

2(ξ20 − 1)
ln

ξ0 + 1

ξ0 − 1
− ξ0

ξ20 − 1

]−1

.

It follows that the explicit three-dimensional solution describing a Stokes flow driven

by the translation of a prolate spheroid of arbitrary eccentricity E at an angle of

attack γ is

ξ̂ · u
U0

=

√
ξ2 − 1

ξ2 − η2




1
2
ln ξ+1

ξ−1
+ ξ

ξ2−1

ξ20+1

2
ln ξ0+1

ξ0−1
− ξ0

+

1
2
ln ξ+1

ξ−1
− ξ

ξ2−1

ξ20+1

2ξ20
ln ξ0+1

ξ0−1
− 1

ξ0


 η cos γ

+

√
1− η2√
ξ2 − η2


 − ξ

2
ln ξ+1

ξ−1
− 1

ξ20−3

4
ln ξ0+1

ξ0−1
− ξ0

2

+

ξ
2
ln ξ+1

ξ−1
− ξ2−2

ξ2−1

ξ20−3

2(ξ20−1)
ln ξ0+1

ξ0−1
− ξ0

ξ20−1


 cosφ sin γ, (4.34)

η̂ · u
U0

=

√
1− η2√
ξ2 − η2




ξ
2
ln ξ+1

ξ−1

ξ20+1

2
ln ξ0+1

ξ0−1
− ξ0

+

ξ
2
ln ξ+1

ξ−1
− 1

ξ20+1

2ξ20
ln ξ0+1

ξ0−1
− 1

ξ0


 cos γ

+
1√

ξ2 − η2




√
ξ2−1

2
ln ξ+1

ξ−1

ξ20−3

4
ln ξ0+1

ξ0−1
− ξ0

2

−

√
ξ2−1

2
ln ξ+1

ξ−1
− ξ√

ξ2−1

ξ20−3

2(ξ20−1)
ln ξ0+1

ξ0−1
− ξ0

ξ20−1


 η cosφ sin γ, (4.35)

φ̂ · u
U0

=




1
2
ln ξ+1

ξ−1

ξ20−3

4
ln ξ0+1

ξ0−1
− ξ0

2

−
1
2
ln ξ+1

ξ−1
− ξ

ξ2−1

ξ20−3

2(ξ20−1)
ln ξ0+1

ξ0−1
− ξ0

ξ20−1


 sinφ sin γ, (4.36)

p

µU0

= −2

c

[ ξ

ξ2 − η2

√
1− η2

ξ2 − 1

sin γ
ξ20−3

4
ln ξ0+1

ξ0−1
− ξ0

2

cosφ

+
η

ξ2 − η2
cos γ

− ξ20+1

2
ln ξ0+1

ξ0−1
+ ξ0

]
. (4.37)
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Computed from the expressions (4.34)–(4.36), Figure 4.3 depicts flow structure in

the xz−plane for a spheroid of eccentricity E = 0.8 at four different angles of attack,

γ = 0, 30o, 60o and 90o. It can be seen that, while the spatial axisymmetry of the

flow is clearly displayed when γ = 0, the Stokes flow becomes fully three-dimensional

when γ 6= 0.

It may be worth mentioning that the classical solution for spherical geometry

can be recovered by taking the limits in (4.34)–(4.37),

E → 0, γ → 0, cξ0 → a = r0, η → cos θ, cξ → r,

which yield 



r̂ · u =

(
3r0
2r

− r30
2r3

)
U0 cos θ,

θ̂ · u =

(
3r0
4r

+
r30
4r3

)
U0 sin θ,

φ̂ · u =0,

p =
3

2r2
µr0U0 cos θ,

(4.38)

in spherical polar coordinates, where r0 = a denotes the radius of the sphere.

4.3.3 Flow driven by rotation at arbitrary angles

Consider now the three-dimensional Stokes flow driven by a spheroid rotating with

the angular velocity Ω in the form

Ω

Ω0

= sinα cos βx̂+ sinα sin βŷ + cosαẑ

=

(
sinα cos βξ

√
1− η2

ξ2 − η2
cosφ+ sinα sin βξ

√
1− η2

ξ2 − η2
sinφ+ cosαη

√
ξ2 − 1

ξ2 − η2

)
ξ̂

+

(
− sinα cos βη

√
ξ2 − 1

ξ2 − η2
cosφ− sinα sin βη

√
ξ2 − 1

ξ2 − η2
sinφ+ cosαξ

√
1− η2

ξ2 − η2

)
η̂

+ (− sinα cos β sinφ+ sinα sin β cosφ) φ̂, (4.39)

where α ∈ [0, π] and β ∈ [0, 2π]. The geometry of the problem, as well as the

definition of α and β, is shown in Figure 4.1(b).

In this case, the no-slip boundary condition imposes the following condition at
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(a) (b)

(c) (d)

Figure 4.4: Flow structure in the plane perpendicular to, and viewed from, the
axis of rotation with a spheroid of eccentricity E = 0.8 is plotted at β = 0 for four
different angles of α: (a)α = 0, (b)α = 30, (c)α = 60 and (d) α = 90.
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the bounding surface, ξ = ξ0, of the spheroid:

u(η, ξ = ξ0, φ) = [∇(r ·Ψ+ χ)− 2Ψ] (η, ξ = ξ0, φ)

= (Ω× r) |ξ=ξ0

= cΩ0

{
(− sinα cos β sinφ+ sinα sin β cosφ)η

√
1− η2

ξ20 − η2
ξ̂

+ (sinα cos β sinφ− sinα sin β cosφ)ξ0

√
ξ20 − 1

ξ20 − η2
η̂

+
[− (sinα cos β cosφ+ sinα sin β sinφ)ξ0η

+ cosα
√

(ξ20 − 1)(1− η2)
]
φ̂
}
. (4.40)

Here ∇χ(η, ξ = ξ0, φ) can be obtained from (4.7), while ∇r · Ψ(η, ξ = ξ0, φ) and

Ψ(η, ξ = ξ0, φ) can be derived from (4.16)–(4.19). Similar to the translation prob-

lem, we can also deduce from (4.40) that

Alm = A′
lm = Blm = B′

lm = Dlm = D′
lm = 0, if m ≥ 2 and l ≥ 2.

It follows there exist also 16 unknown coefficients to be determined by the non-slip

condition (4.40) at ξ = ξo. First, the azimuthal component of (4.40) gives rise to

the equation

[− sin 2φA11 + cos 2φA′
11 + cos 2φB11 + sin 2φB′

11]Q
1
1ξ
√

1− η2

+
ξη√
ξ2 − 1

(−C11 sinφ+ C ′
11 cosφ)Q

1
1(ξ) +

1√
ξ2 − 1

(−D11 sinφ+D′
11 cosφ)Q

1
1(ξ)

+ (sinφA00 − cosφB00)Q0(ξ) + (sinφA10 − cosφB10)Q1(ξ)η

+
[
sin 2φA11 + 2 sin2 φA′

11 − 2 cos2 φB11 − sin 2φB′
11

]
Q1

1ξ
√

1− η2

= cΩ0

[− sinα cos β cosφξ0η − sinα sin β sinφξ0η

+ cosα
√

(ξ20 − 1)(1− η2)
]
, (4.41)

from which we can obtain that

A00 = B00 = D11 = D′
11 = 0

and

−B10
Q1(ξ0)

ξ0
+ C ′

11

Q1
1(ξ0)√
ξ20 − 1

= − sinα cos βΩ0c, (4.42)

A10
Q1(ξ0)

ξ0
− C11

Q1
1(ξ0)√
ξ20 − 1

= − sinα sin βΩ0c, (4.43)

A′
11

Q1
1(ξ0)√
ξ20 − 1

−B11
Q1

1(ξ0)√
ξ20 − 1

= cosαΩ0c. (4.44)

83



4. Stokes Flow

From the ξ−component of (4.40), we obtain the equation

√
ξ2 − 1Q1(ξ)√
ξ2 − η2

(A10 cosφ+B10 sinφ)− ξQ1
1(ξ)√

ξ2 − η2
(C11 cosφ+ C ′

11 sinφ)

− C00

√
1− η2ξQ0(ξ)√
ξ2 − η2

+
D10

√
1− η2Q1(ξ)√
ξ2 − η2

= (sinα cos β sinφ− sinα sin β cosφ)ξ0

√
ξ20 − 1

ξ20 − η2
,

which, after making use of (4.42) and (4.43), leads to

C00 = D10 = 0.

Finally, the ξ−component of (4.40) yields the equation:

1√
ξ2 − η2

{
− ηQ1(ξ)

[
C10η

√
ξ2 − 1 + A10ξ

√
1− η2 cosφ+B10ξ

√
1− η2 sinφ

]

−Q1
1(ξ)

[
C11η

√
ξ2 − 1

√
1− η2 cosφ+ A11ξ(1− η2) cos2 φ+B′

11ξ(1− η2) sin2 φ

+ (A′
11 +B11)ξ sinφ cosφ(1− η2) + C ′

11η
√

1− η2
√

ξ2 − 1 sinφ
]

+D00

√
ξ2 − 1

dQ0(ξ)

dξ
+ C10η

2ξ
√

ξ2 − 1
dQ1(ξ)

dξ

+ A10η
√

1− η2(ξ2 − 1) cosφ
dQ1(ξ)

dξ

+B10η
√

1− η2(ξ2 − 1) sinφ
dQ1(ξ)

dξ
+ C11η

√
1− η2ξ

√
ξ2 − 1 cosφ

dQ1
1(ξ)

dξ

+C ′
11η

√
1− η2ξ

√
ξ2 − 1 sinφ

dQ1
1(ξ)

dξ
+ A11(ξ

2 − 1)(1− η2) cos2 φ
dQ1

1(ξ)

dξ

+(A′
11 +B11)(ξ

2 − 1)(1− η2) sinφ cosφ
dQ1

1(ξ)

dξ

+ B′
11(ξ

2 − 1)(1− η2) sin2 φ
dQ1

1(ξ)

dξ

}

= cΩ
{
(− sinα cos β sinφ+ sinα sin β cosφ)η

√
1− η2

ξ20 − η2
,

which gives

A11 = B′
11 = C10 = D00 = 0,

A′
11 +B11 = 0, (4.45)

84



4. Stokes Flow

and

A10

[
(ξ20 − 1)

dQ1(ξ0)

dξ
− ξ0Q1(ξ0)

]
+ C11

√
ξ20 − 1

[
ξ0
dQ1

1(ξ0)

dξ
−Q1

1(ξ0)

]

= sinα sin βΩc, (4.46)

B10

[
(ξ20 − 1)

dQ1(ξ0)

dξ
− ξ0Q1(ξ0)

]
+ C ′

11

√
ξ20 − 1

[
dQ1

1(ξ0)

dξ
−Q1

1(ξ0)

]

= − sinα cos βΩc. (4.47)

The remaining six non-zero coefficients are determined by solving the linear system

of equations (4.42)–(4.47):

A10 = sinα sin βΩc/

(
1

2ξ0
− ξ20 + 1

4ξ20
ln

ξ0 + 1

ξ0 − 1

)
, (4.48)

A′
11 = cosαΩc/

(
− 2ξ0
ξ20 − 1

+ ln
ξ0 + 1

ξ0 − 1

)
, (4.49)

B10 = sinα cos βΩc/

(
− 1

2ξ0
+

ξ20 + 1

4ξ20
ln

ξ0 + 1

ξ0 − 1

)
, (4.50)

B11 = cosαΩc/

(
2ξ0

ξ20 − 1
− ln

ξ0 + 1

ξ0 − 1

)
, (4.51)

C11 = sinα sin βΩc/

(
ξ0

ξ20 − 1
− 1

2

ξ20 + 1

ξ20 − 1
ln

ξ0 + 1

ξ0 − 1

)
, (4.52)

C ′
11 = sinα cos βΩc/

(
− ξ0
ξ20 − 1

+
1

2

ξ20 + 1

ξ20 − 1
ln

ξ0 + 1

ξ0 − 1

)
. (4.53)

Substitution of them into (4.4) yields the explicit three-dimensional solution de-

scribing the Stokes flow driven by the rotation of a prolate spheroid of arbitrary

eccentricity E with rotating angles α and β:

ξ̂ · u
Ω0c

= −η

√
1− η2

ξ2 − η2




1
2
ln ξ+1

ξ−1

ξ20+1

4ξ20
ln ξ0+1

ξ0−1
− 1

2ξ0

−
ξ

ξ2−1
+ 1

2
ln ξ+1

ξ−1

1
2

ξ20+1

ξ20−1
ln ξ0+1

ξ0−1
− ξ0

ξ20−1




× sinα sin (φ− β), (4.54)

η̂ · u
Ω0c

=

√
ξ2 − 1√
ξ2 − η2




1
2
ξ ln ξ+1

ξ−1
− 1

ξ20+1

4ξ20
ln ξ0+1

ξ0−1
− 1

2ξ0

−
1
2
ξ ln ξ+1

ξ−1
− ξ2

ξ2−1

1
2

ξ20+1

ξ20−1
ln ξ0+1

ξ0−1
− ξ0

ξ20−1




× sinα sin (φ− β), (4.55)

φ̂ · u
Ω0c

= η




1
2
ξ ln ξ+1

ξ−1
− ξ2

ξ2−1

1
2

ξ20+1

ξ20−1
ln ξ0+1

ξ0−1
− ξ0

ξ20−1

−
1
2
ξ ln ξ+1

ξ−1
− 1

ξ20+1

4ξ20
ln ξ0+1

ξ0−1
− 1

2ξ0


 sinα cos (φ− β)

+

1
2
ln ξ+1

ξ−1
− ξ

ξ2−1

1
2
ln ξ0+1

ξ0−1
− ξ0

ξ20−1

√
(ξ2 − 1)(1− η2)Ωc cosα, (4.56)

p

µΩ0

= − 2η

ξ2 − η2

√
(ξ2 − 1)(1− η2)

sinα sin (φ− β)
ξ20+1

4
ln ξ0+1

ξ0−1
− ξ0

2

. (4.57)
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Figure 4.4 shows the flow structure computed from (4.54)–(4.56), in the plane pass-

ing z = 0 and perpendicular to the axis of rotation Ω, with four different angles of

α at β = 0 for a spheroid of eccentricity E = 0.8. It can be seen in Figure 4.4 that,

while the flow at α = 0 is axisymmetric, it becomes fully three-dimensional when

α 6= 0.

As discussed in the previous section, the classical solution for spherical geometry

can be also recovered by taking the limits E → 0, γ → 0 and cξ0 → a = r0 in

(4.54)–(4.57), which yield

r̂ · u = 0,

θ̂ · u = −r20
r2
Ω0r0 sinα sin (φ− β),

φ̂ · u = −r20
r2
Ω0r0 cos θ sinα cos (φ− β) +

r30
r3
Ωr0 sin θ cosα,

p = 0.

Since the Stokes equation (4.2) is linear, the solution of the general flow, driven by

both the translation and rotation of a spheroid, can be written as a linear combina-

tion of (4.34)–(4.36) and (4.54)–(4.56).

4.4 Drag and torque

On the basis of two three-dimensional solutions given by (4.34)–(4.36)and (4.54)–

(4.56), we can compute two important quantities, the drag force D and the torque

T on a spheroid due to its translation and rotation. For practical applications,

such as to the dynamics of swimming microorganism, it is usually useful to express

components of D and T in the Cartesian coordinate system.

Consider first the drag force D on a translating spheroid at an angle of attack

γ. We may write D in the form

D =

∫

S

f dS = c2
√

ξ20 − 1

∫ 2π

0

∫ 1

−1

√
ξ20 − η2

(
fξξ̂ + fηη̂ + fφφ̂

)
dη dφ,

where
∫
S
denotes the surface integration over the bounding surface S of a prolate

spheroid, f in tensor notation is

fi = (−pδij + 2µσij)nj,

with nj being unit normal at the bounding surface S and

σij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

The below analysis, with the help of (4.10), for the tensor σij is lengthy in prolate
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spheroidal coordinates:

∇u =

(
ξ̂

c

√
ξ2 − 1

ξ2 − η2
∂

∂ξ
+

η̂

c

√
1− η2

ξ2 − η2
∂

∂η
+

φ̂

c

1√
(ξ2 − 1)(1− η2)

∂

∂φ

)

⊗
(
uξξ̂ + uηη̂ + uφφ̂

)

=
1

c

√
ξ2 − 1

ξ2 − η2
ξ̂ ⊗

[(
∂uξ

∂ξ
− uη

η
√

1− η2

(ξ2 − η2)
√

ξ2 − 1

)
ξ̂

+

(
∂uη

∂ξ
+ uξ

η
√

1− η2

(ξ2 − η2)
√

ξ2 − 1

)
η̂ +

∂uφ

∂ξ
φ̂

]

+
1

c

√
1− η2

ξ2 − η2
η̂ ⊗

[(
∂uξ

∂η
− uη

ξ
√

ξ2 − 1

(ξ2 − η2)
√

1− η2

)
ξ̂

+

(
∂uη

∂η
+ uξ

ξ
√

ξ2 − 1

(ξ2 − η2)
√

1− η2

)
η̂ +

∂uφ

∂η
φ̂

]

+
1

c

1√
(ξ2 − 1)(1− η2)

φ̂⊗
[(

∂uξ

∂φ
− uφξ

√
1− η2

ξ2 − η2

)
ξ̂

+

(
∂uη

∂φ
+ uφ

√
ξ2 − 1

ξ2 − η2

)
η̂

+

(
∂uφ

∂φ
+ uξξ

√
1− η2

ξ2 − η2
− uηη

√
ξ2 − 1

ξ2 − η2

)
φ̂

]
, (4.58)

where ⊗ denotes the tensor product of two vectors. On the surface of the spheroid,

the normal vector n = ξ̂ and we therefore can compute the shear stress

(∇u+∇uT
) · ξ̂

= (∇u) · ξ̂ +
(
ξ̂
T · ∇u

)T

= ξ̂
2

c

√
ξ2 − 1

ξ2 − η2

(
∂uξ

∂ξ
− uη

η
√

1− η2

(ξ2 − η2)
√

ξ2 − 1

)

+ η̂

[
1

c

√
1− η2

ξ2 − η2

(
∂uξ

∂η
− uη

ξ
√

ξ2 − 1

(ξ2 − η2)
√

1− η2

)

+
1

c

√
ξ2 − 1

ξ2 − η2

(
∂uη

∂ξ
+ uξ

η
√

1− η2

(ξ2 − η2)
√

ξ2 − 1

)]

+ φ̂

[
1

c

1√
(ξ2 − 1)(1− η2)

(
∂uξ

∂φ
− uφξ

√
1− η2

ξ2 − η2

)
+

1

c

√
ξ2 − 1

ξ2 − η2
∂uφ

∂ξ

]

, fξξ̂ + fηη̂ + fφφ̂. (4.59)

By virtue of the expressions for u given by (4.34)–(4.36) and the expression for p

given by (4.37) and, then, by evaluating them at the bounding surface ξ = ξ0, we
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can obtain f as a function of η and φ from (4.59).

f =

{
−p+

2µ

c

√
ξ2 − 1

ξ2 − η2

[
∂ξ̂ · u
∂ξ

− (η̂ · u)η
√

1− η2

(ξ2 − η2)
√

ξ2 − 1

]}
ξ̂

+

{
µ

c

√
1− η2

ξ2 − η2

[
∂ξ̂ · u
∂η

− (η̂ · u)ξ
√

ξ2 − 1

(ξ2 − η2)
√

1− η2

]

+
µ

c

√
ξ2 − 1

ξ2 − η2

[
∂η̂ · u
∂ξ

+ uξ
(ξ̂ · u)η

√
1− η2

(ξ2 − η2)
√

ξ2 − 1

]}
η̂

+

{
µ

c
√

(ξ2 − 1)(1− η2)

[
∂ξ̂ · u
∂φ

− (φ̂ · u)ξ
√

1− η2

ξ2 − η2

]

+
µ

c

√
ξ2 − 1

ξ2 − η2
∂φ̂ · u
∂ξ

}
φ̂,

which can be then transformed into the corresponding Cartesian coordinate

f =

{
ξ̂ · f

√
1− η2

ξ2 − η2
ξ cosφ− η̂ · f

√
ξ2 − 1

ξ2 − η2
η cosφ− φ̂ · f sinφ

}
x̂

+

{
ξ̂ · f

√
1− η2

ξ2 − η2
ξ sinφ− η̂ · f

√
ξ2 − 1

ξ2 − η2
η sinφ+ φ̂ · f cosφ

}
ŷ

+

{
ξ̂ · fη

√
ξ2 − 1

ξ2 − η2
+ (η̂ · f)ξ

√
1− η2

ξ2 − η2

}
ẑ. (4.60)

After a further integration over the spheroidal surface, we are able to derive an

analytical formula for the drag force D on a moving spheroid:

D

2πµU0

= −

8 + 4(ξ20 − 1)

(
−2 + ξ0 ln

ξ0+1
ξ0−1

)

2ξ0 − (ξ20 − 3) ln ξ0+1
ξ0−1

+
2ξ20 − ξ0(ξ

2
0 − 1) ln ξ0+1

ξ0−1

ξ0
2
− ξ20−3

4
ln ξ0+1

ξ0−1


 c sin γx̂

−

4ξ20(ξ

2
0 − 1)

(
2− ξ20−1

ξ0
ln ξ0+1

ξ0−1

)

2ξ0 − 2ξ30 + (ξ40 − 1) ln ξ0+1
ξ0−1

+
(ξ20 − 1)

(
2− ξ0 ln

ξ0+1
ξ0−1

)

ξ0
4
− ξ20+1

4
ln ξ0+1

ξ0−1


 c cos γẑ,

(4.61)

which is valid for a prolate spheroid of arbitrary eccentricity E and for an arbitrary

angle of attack γ. It can be demonstrated that the general formula (4.61) in the

spherical limit E → 0 becomes

D = −6πµr0U0(sin γx̂+ cos γẑ),

consistent with the classical result for a sphere.

Table 4.1 shows various values of D/(Uoµ) with a = 1, computed from formula
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Table 4.1: The values of D/(Uoµ) and |D|/(Uoµ), computed from (4.61), for a = 1
and γ = 30o as a function of eccentricity E.

e x̂ ·D/(Uoµ) ẑ ·D/(Uoµ) |D|/(Uoµ)
0.9000000 -6.0965387 -8.9913082 10.8633055
0.8526842 -6.6360387 -10.1181591 12.1001716
0.8053684 -7.0631336 -11.0311030 13.0985911
0.7580526 -7.4178095 -11.8015304 13.9391542
0.7107368 -7.7201962 -12.4662984 14.6632202
0.6634211 -7.9820636 -13.0473907 15.2953503
0.6161053 -8.2109703 -13.5591593 15.8515246
0.5687895 -8.4120920 -14.0115690 16.3428075
0.5214737 -8.5891394 -14.4118497 16.7772086
0.4741579 -8.7448645 -14.7654189 17.1607182
0.4268421 -8.8813600 -15.0764333 17.4979255
0.3795263 -9.0002464 -15.3481365 17.7924065
0.3322105 -9.1027937 -15.5830878 18.0469798
0.2848947 -9.1900036 -15.7833174 18.2638789
0.2375789 -9.2626660 -15.9504341 18.4448727
0.1902632 -9.3213992 -16.0857028 18.5913506
0.1429474 -9.3666784 -16.1900982 18.7043830
0.0956316 -9.3988555 -16.2643445 18.7847647
0.0483158 -9.4181734 -16.3089426 18.8330454
0.0010000 -9.4247751 -16.3241877 18.8495488

(4.61) at the attack angle γ = 30o, for different values of eccentricity E. Of particular

interest is that the drag force |D| on a spheroid with E = 0.9 is nearly half of that

for a sphere with the same polar radius. In the spherical limit E → 0, (4.61) gives

D/(Uoµ) = −9.4247780x̂− 16.3241943ẑ, |D|/(Uoµ) = 18.8495559.

Our results suggest that the drag force |D| on prolate spheroids of different E with

the same polar radius attains its maximum in the spherical limit E → 0 at any

angles of γ.

Finally, consider the torque T on a rotating spheroid

T =

∫

S

r× f dS,

where f can be derived by using the expression (4.60) but with u given by (4.54)–

(4.56) evaluated at the spheroidal surface ξ = ξ0. After a lengthy analysis analogous
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to that for the drag force, the torque T on a rotating spheroid is found to be

T =

{
−8ξ20

−2ξ0 + (ξ20 + 1) ln ξ0+1
ξ0−1

[
2π(ξ20 − 1) tanh−1 1

ξ0

ξ0
+

2π

3

]

− 2π

3

(ξ20 − 1)
[
−4 + 6ξ20 − 3ξ0(ξ

2
0 − 1) ln ξ0+1

ξ0−1

]

− ξ0
2
+

ξ20+1

4
ln ξ0+1

ξ0−1





× Ωµc3 (sinα cos βx̂+ sinα sin βŷ)

+
1

3

[
32πc3Ωµ(ξ20 − 1)

−2ξ0 + (ξ20 − 1) ln ξ0+1
ξ0−1

cosα

]
ẑ, (4.62)

which is valid for a prolate spheroid of arbitrary eccentricity E rotating with any

angles of α and β. It can be also demonstrated that (4.62) in the spherical limit

E → 0 (cξ0 → r0) gives rise to

T = −8πµr30Ω0(sinα cos βx̂+ sinα sin βŷ + cosαẑ),

which is consistent with the classical result for spherical geometry.

Table 4.2 shows the various values ofT/(Ωoµ) and |T|/(Ωoµ) for a = 1, computed

from formula (4.62), with rotating angles α = 30o and β = 0 for different values

of eccentricity E. Note that (4.62) in the spherical limit E → 0 with α = 30o and

β = 0 yields

T/(Ωoµ) = −12.5663706x̂− 21.7655924ẑ, |T|/(Ωoµ) = 25.1327412.

It is of interest to notice that the torque |T| on a spheroid with E = 0.9 and α = 30o

is only about 20% of that on a sphere. Moreover, the torque |T| on spheroids of

different E at any rotating angles α and β attains its maximum in the spherical limit

E → 0.

What is also worth mentioning is that the net torque has been verified to be zero

for a pure translation motion of a prolate spheroid; and the total drag force is also

zero for a pure rotational motion. In other words, translation and rotation are two

decoupled motions. The drag force will not produce torque to change the rotation

and vice versa.

4.5 Summary and some remarks

This work is primarily motivated by the desire to understand the dynamics of slowly

swimming microorganism that has the shape of an elongated prolate spheroid. On

the basis of the Papkovich-Neuber formulation (4.4) together with prolate spheroidal

coordinates, we have obtained, for the first time, the three-dimensional solution for

the Stokes flow driven either by translation at an arbitrary angle γ or by rotation
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Table 4.2: The various values of T/(Ωoµ) and |T|/(Ωoµ), computed from (4.62),
for a = 1 with rotating angles γ = 30o and β = 0 as a function of eccentricity E.

e x̂ ·D/(Ωoµ) ẑ ·D/(Ωoµ) |D|/(Ωµ)
0.9000000 -3.5254670 -3.2402146 4.7883095
0.8526842 -4.5556942 -4.8409623 6.6475007
0.8053684 -5.4994100 -6.4329125 8.4632071
0.7580526 -6.3674815 -7.9956578 10.2213191
0.7107368 -7.1661988 -9.5137719 11.9107624
0.6634211 -7.8999458 -10.9749500 13.5225246
0.6161053 -8.5721112 -12.3690549 15.0490734
0.5687895 -9.1854721 -13.6875615 16.4839995
0.5214737 -9.7423803 -14.9232064 17.8217862
0.4741579 -10.2448633 -16.0697530 19.0576543
0.4268421 -10.6946841 -17.1218265 20.1874518
0.3795263 -11.0933790 -18.0747942 21.2075751
0.3322105 -11.4422820 -18.9246770 22.1149094
0.2848947 -11.7425432 -19.6680817 22.9067842
0.2375789 -11.9951406 -20.3021503 23.5809394
0.1902632 -12.2008898 -20.8245194 24.1354991
0.1429474 -12.3604505 -21.2332907 24.5689513
0.0956316 -12.4743319 -21.5270076 24.8801329
0.0483158 -12.5428961 -21.7046388 25.0682186
0.0010000 -12.5663605 -21.7655664 25.1327137

with arbitrary angles α and β. We have also derived, using the analytical expression

for the flow, two useful formulas for the drag and couple of a spheroid as a function

of E, α, β and γ.

With the formulas for the drag vector D given by (4.61) and the toque vector

T given by (4.62), we are now in a position to write down the governing equations

for the motion of spheroidal, magnetotactic swimming microorganism that has the

shape of prolate spheroid. Since main geometric and physical parameters of the

microorganism are known, we would be capable of comparing the observed trajec-

tories of microorganism in laboratories to those computed from a dynamic model

and, hence, offering some helpful insight into the complex dynamics of swimming mi-

croorganism. As introduced in Chapter 1, originally, this work was motivated by the

studies of magnetotactic bacteria, which can swim along the external magnetic field

lines. In the laboratory of Institute of Geophysics and Geology, Chinese Academy

of Sciences, we did experiments and observed the trajectories of the motions of

spheroidal bacteria under time-varying magnetic fields. The Figure 4.5 contains two

typical examples of such trajectories. We also present the orbits predicted by the

dynamical model incorporating our drag and torque theories. Quantitatively, the

theoretical trajectories are consistent with the observations, which further validate

our Stokes flow formulations. The manuscript [Cui et al.] discussing the bacte-

ria swimming, has been submitted to Fluid Dynamics Research and is now in the
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revision stage.
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Figure 4.5: The comparison between observed and theoretical swimming paths of
magnetotactic bacteria (courtesy of Z. Cui), in both panels, the left-hand-side is
the realistic trajectories captured by a CCD camera while the right-hand-side is the
numerical paths obtained by solving solid body dynamical equations. In both cases,
the scale markers in the observed photos are 10µm in length while the units in the
numerical plots are meter. The magnetic field in (a) is switched from a constant
field to a rotational field. Only one bacterium is captured in the microscope; the
magnetic field in (b), however, keeps rotating uniformly, bringing several bacteria
into circular swimming.
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Chapter 5

Fluid Flows in Precessing Narrow

Annular Channels

5.1 Introduction

It has been conjectured that precessionally driven flows in the Earth’s fluid core

may be sufficiently strong and complex to be responsible for generating and main-

taining the geomagnetic field ([Bullard, 1949]). This conjecture has been supported

by laboratory and numerical experiments demonstrating that wavelike instabilities

and transition to turbulent flows can occur in precessing spherical/spheroidal sys-

tems (see, for example, [Hollerbach and Kerswell, 1995; Kerswell, 1993; Malkus,

1968; Noir et al., 2001, 2003a; Tilgner, 1999; Tilgner and Busse, 2001; Vanyo et al.,

1995]) and in precessing cylinders (see, for example, [Gans, 1970; Kobine, 1995;

Malkus, 1989; Manasseh, 1992; Meunier et al., 2008]), by the theoretical estimate of

abundant precessional energy (see, for example, [Kerswell, 1996]) and by convincing

numerical experiments showing that precession-driven flows can indeed generate and

sustain magnetic fields (see, for example, [Tilgner, 2005b, 2007b; Wu and Roberts,

2008, 2009]). Although the timescale of precessionally driven flows is usually much

shorter compared with that of planetary convection, the persistent nature of pre-

cession makes it significant in many problems of geophysical and astrophysical fluid

dynamics.

Motivated by the desire to understand the fundamental dynamics and physics,

[Mason and Kerswell, 2002] carried out an important study of precessionally driven

flow in planar geometry, the simplest of all existing models of the precessional prob-

lem. They consider a viscous, incompressible fluid confined between two infinitely

extended parallel plane boundaries that rotate rapidly about their normal with an-

gular velocity Ω that itself precesses slowly about a horizontal axis fixed in space

with angular velocity Ωp. It should be noted that there is no essential loss of general-

ity in assuming that Ω is perpendicular to Ωp because any component of Ωp parallel

to Ω may be absorbed into a redefined Ω ([Wu and Roberts, 2009]). In unbounded
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planar geometry, the precessional motion of the two parallel boundaries drives flows

against viscous dissipation. When the precessional rate increases, their numerical

simulation shows that the precessionally driven flow changes from two-dimensional

laminar to three-dimensional chaotic. To avoid the thin viscous boundary layers on

the top and bottom of the plane layer, which are numerically expensive to resolve,

the stress-free boundary condition is employed in their numerical study. In a further

development of the same planar geometry model, [Wu and Roberts, 2008] include

the effects of a self-generated magnetic field, demonstrating that, if the fluid is suffi-

ciently electrically conducting, the precessing flow at a sufficiently large precessional

rate can support dynamo action.

Motivated by possible geophysical and astrophysical applications, annular geom-

etry has been widely employed to study/mimic fluid motion taking place in the equa-

torial region or low latitudes of rotating spherical shells (see, for example, [Busse,

1994; Eccles et al., 2009; Gilman, 1973; Jones et al., 2003]). There are several rea-

sons why annular geometry has been used in modelling rotating flows. First, in com-

parison to either spherical-shell geometry or unbounded planar geometry, rotating

annular configuration is readily experimentally realizable (see, for example, [Busse,

1994; Davies-Jones and Gilman, 1971; Eccles et al., 2009]). Second, as a consequence

of rapid rotation, the key dynamics in the equatorial region would be different from

that in the polar regions in rotating spherical shells. Third, the mathematical de-

generacy characterizing unbounded planar geometry is removed by the presence of

two lateral sidewalls (see, for example, [Davies-Jones and Gilman, 1971]). At the

same time, the mathematical simplicity and clarity of planar geometry–using local

cartesian coordinates–remain unchanged in annular geometry when the gap-width

of an annulus is sufficiently small in comparison with its radius. This narrow-gap

approximation has been usually employed in the theoretical studies of fluid dynam-

ics in a rotating annulus (see, for example, [Busse, 2005; Davies-Jones and Gilman,

1971; Jones et al., 2003]). A major advantage of neglecting the curvature effect in

a narrow annulus is that a relatively simple analytical description of fluid motion

is permitted, offering a helpful insight into the essential dynamics of rotating flows

(see, for example, [Busse, 2005; Liao et al., 2006]). This approximation is supported

by both the numerical and experimental studies on convection in a rotating annulus,

demonstrating that the primary features of the flows in a narrow-gap annulus with

the curvature effect are captured by a narrow-gap annulus that uses the narrow-gap

approximation to neglect the curvature effect (see, for example, [Busse, 1994; Li

et al., 2008]). Although this study is primarily motivated by possible geophysical

and astrophysical applications, the problem of precessionally driven flows in annu-

lar/cylindrical geometry may have industrial applications because propellant tanks

in a flying spacecraft can be subject to the precessional forcing (see, for example,

[Vanyo, 1993]).
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The primary objective of the present study is to understand, through both

asymptotic and numerical analysis, the fundamental dynamics of the precessionally

driven flow of a viscous, incompressible fluid confined in a rotating narrow annulus

using the narrow-gap approximation, the same geometry proposed by [Davies-Jones

and Gilman, 1971] and [Gilman, 1973] (see also[Busse, 2005]). The narrow annular

channel rotates rapidly about its axis of symmetry with angular velocity Ω that

itself precesses slowly about an axis that is fixed in space and perpendicular to

Ω. A non-slip velocity boundary condition, appropriate for experimental studies of

the problem, will be used. A major advantage of the narrow annular configuration

is that it is approximately realizable in laboratory experiments ([Davies-Jones and

Gilman, 1971; Gilman, 1973]). A major disadvantage of the realistic non-slip con-

dition is that the thin Ekman boundary layers are numerically expensive to resolve.

This is, however, rewarded by the benefits that the non-slip precessing solutions are

directly comparable with experimental results and, perhaps more significantly, that

the Ekman boundary layers associated with the non-slip condition play a central

role at resonance ([Roberts and Stewartson, 1965]).

In addition to the Ekman number E and the Poincaré number ε in the planar

precessional problem ([Mason and Kerswell, 2002; Wu and Roberts, 2008]), the

existence of four rigid walls in channel geometry not only introduces a new parameter

Γ, the aspect ratio of the depth to the width of a channel, but also introduces new

dynamics into the precessional problem. Depending upon the size of the aspect ratio

Γ, the precessing flow in a channel can be divided into three different categories: (a)

a single principal inertial mode is at exact resonance with the Poincaré forcing; (b)

two principal inertial modes are at exact resonance with the Poincaré forcing; and (c)

multiple inertial modes are excited at non-resonance. When the precessional forcing

is small, we shall derive three asymptotic expressions that describe precessionally

driven flows of the three different types in a channel with the non-slip boundary

condition. The asymptotic analysis was done by Prof. Keke Zhang in [Zhang et al.,

2010]. We shall demonstrate that the viscous boundary layers, in connection with

the non-slip boundary condition, are physically and mathematically important in

determining the primary properties, such as the amplitude, of a precessing flow at

exact resonance. We shall also perform 2D linear numerical analysis, conducted by

Prof. Xinhao Liao also in [Zhang et al., 2010], and fully 3D nonlinear simulation,

showing a satisfactory quantitative agreement between the asymptotic expressions

and the numerical analyses for small and moderate Reynolds numbers. Moreover,

we shall study the transition from 2D precessing flow to 3D small-scale turbulence

for large Reynolds numbers, revealing a breakdown of the laminar flow to small-scale

turbulence at a moderate precessional rate at exact resonance.

In what follows we shall begin by presenting the mathematical equations of

the problem in §5.2. The asymptotic analysis for the three types of precessionally
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driven flows is discussed briefly in §5.3 while the 2D linear numerical analysis and

3D nonlinear simulation are presented in §5.4. A summary and some remarks are

given in §5.5.

5.2 Mathematical Formulation

Consider a viscous, incompressible fluid occupying an annular channel with inner

radius rid, outer radius rod and depth d. A parameter Γ is introduced to denote

the aspect ratio of the channel Γ = (rod − rid)/d. When the gap of the annulus is

sufficiently small, i.e., Γ/ro ¿ 1, which will be referred as a narrow annular channel

([Busse, 2005]), the effect of the curvature can be neglected by using the small-gap

approximation with the periodic condition along the channel ([Busse, 2005; Gilman,

1973]). The configuration of the narrow annular channel will be adopted in the

present study of precessionally driven flows.

The narrow annular channel rotates rapidly with angular velocity ẑΩ about its

axis of symmetry and precesses slowly about an axis that is perpendicular to ẑ

and fixed in space, which is similar to that in the precessional problem of planar

geometry ([Mason and Kerswell, 2002; Wu and Roberts, 2008]). In this article, we

shall call the ẑ−direction ”vertical” while the x− and y−directions, perpendicular

to ẑ, are termed ”horizonal” ([Wu and Roberts, 2008]). We shall also adopt a frame

of reference that is attached to the precessing channel and in that the boundaries

of the channel are at rest (herein referred to as the body or mantle frame). In

the body frame of reference, we choose a Cartesian coordinate system in which the

fluid cavity of the channel is defined by 0 ≤ y ≤ Γd, 0 ≤ z ≤ d and −∞ < x <

∞. The four walls of the channel are: y = 0 located at one vertical wall (called

“outer sidewall”), y = Γd at the another vertical wall (called “inner sidewall”)

while z = 0 at one horizonal wall (called “bottom”) and z = d at the another

horizontal wall (called “top”). Moreover, the x−direction, which is parallel to the

four walls, will be termed “azimuthal”. The above terminology is introduced because

of its correspondence with an annular channel under the small-gap approximation

([Busse, 2005; Gilman, 1973]). In the body frame of reference, the precessionally

driven flow in an incompressible fluid is governed by the two equations (see, for

example, [Greenspan, 1968])

∂u

∂t
+ u · ∇u+ 2(Ωẑ+Ωp)× u = −1

ρ
∇p+ ν∇2u+ r× [Ωp × (Ωẑ)] , (5.1)

∇ · u = 0, (5.2)

where t is time, ρ is the fluid density, Ωp represents the precession vector which

is fixed in space, p is a reduced pressure and r is the position vector, u is the

three-dimensional velocity field u = (ux, uy, uz) with the corresponding unit vectors
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(x̂, ŷ, ẑ). The last term on the right-hand side of (5.1) is known as the Poincaré

forcing which drives precessional flows against viscous dissipation. In the Cartesian

coordinates attached to the channel, the precession vector Ωp is time-dependent and

given by

Ωp = (εΩ) (x̂ cosΩt− ŷ sinΩt) , (5.3)

whose amplitude is |Ωp| = εΩ. We shall employ the depth d as the length scale, Ω−1

as the unit of time and ρd2Ω2 as the unit of pressure, which lead to the dimensionless

governing equations ([Mason and Kerswell, 2002; Wu and Roberts, 2008]):

∂u

∂t
+ u · ∇u+ 2ẑ× u+∇p = E∇2u+ 2εu× (x̂ cos t− ŷ sin t)

+ 2εz (x̂ cos t− ŷ sin t) , (5.4)

∇ · u = 0, (5.5)

where the Ekman number, E = ν/Ωd2, provides the measure of relative importance

between the typical viscous force and the Coriolis force, and the Poincaré number

ε = |Ωp|/Ω quantifies the strength of the precessional forcing ([Wu and Roberts,

2008]). In comparison with the pressure in (5.1), the pressure p in (5.4) is modified

by including a potential term ε(xz cos t − yz sin t) from the Poincaré forcing. We

shall also introduce the Reynolds number Re ([Meunier et al., 2008]) defined as

Re =
(εΩ)d2

ν
=

ε

E
.

In the body frame, the flow on the bounding surface of a precessing channel is at

rest, which requires

n̂ · u = n̂× u = 0 (5.6)

on the four boundaries of a channel – the bottom at z = 0, the top at z = 1, the

outer sidewall at y = 0 and the inner sidewall at y = Γ – where n̂ denotes the unit

normal of the bounding surface. The problem defined by (5.4)-(5.5) subject to the

boundary conditions (5.6) will be solved asymptotically for an arbitrarily small but

fixed E with small and moderate Reynolds numbers in §3 and numerically for both

weakly and strongly precessing flows in §4.

5.3 Asymptotic analysis

When the Poincaré number ε is sufficiently small at a fixed small E, we may assume

that the higher-order terms in (5.4), u · ∇u and εu × (x̂ cos t − ŷ sin t), can be

neglected, leading to

∂u

∂t
+ 2ẑ× u+∇p = E∇2u+ 2εz (x̂ cos t− ŷ sin t) , (5.7)
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∇ · u = 0, (5.8)

solutions of which, as we shall demonstrate later, provide a satisfactory quantitative

agreement with the fully nonlinear solutions in the range 0 < Re ≤ O(102) for

the exactly resonant precessing flow and in the range 0 < Re ≤ O(103) for the

non-resonant flow. Because the asymptotic analysis was done by Prof. Keke Zhang

(see [Zhang et al., 2010]), in this thesis, we only include selected formulations and

expressions for a better presentation of the physical aspect of the dynamics.

In the asymptotic analysis, we postulate the following underlying physics and

dynamics for a weakly precessing flow in a channel: the precessing flow can be

approximated by either a single inviscid inertial mode or several inviscid inertial

modes which is/are selected by a combined influence of the geometric factor (Γ) and

the spatial-temporal structure of the Poincaré forcing, modified by viscous effects

mainly via the viscous boundary layers on the four bounding surfaces and energeti-

cally driven by precession against viscous dissipation. It follows that our asymptotic

analysis with the non-slip boundary condition will be based on three hypotheses:

(i) the weakly precessing flow is oscillatory and axisymmetric (∂/∂x = 0) since the

Poincaré forcing, the final term in (5.4), is oscillatory and independent of the az-

imuthal variable x; (ii) the leading-order interior precessing flow can be represented

by either a single inertial mode or by a combination of several inertial modes whose

explicit analytical expressions in the inviscid limit are available; and (iii) there exist

strong viscous boundary layers on the bounding surface of the channel that either

control (in the case of resonant excitation) or modify (in the case of non-resonant

excitation) the leading-order precessing flow. In connection with hypothesis (ii), an

axisymmetric inertial mode in the inviscid limit is governed by the two equations

2iσjnujn + 2ẑ×ujn +∇pjn = 0, (5.9)

∇ · ujn = 0, (5.10)

where i =
√−1 and σjn is the half-frequency of an inertial mode, subject to the

condition of vanishing normal flow

n̂ · ûjn = 0 (5.11)

at the bounding surface of the channel. Two integer numbers, j and n, describe the

radial and vertical structure of an inertial mode, respectively. The half-frequency of

an axisymmetric inertial mode in (5.9), σjn, is given by

σjn =
n√

n2 + (j/Γ)2
, for j = 1, 2, · · · ;n = ±1,±2, · · · , (5.12)

satisfying the bound 0 < |σjn| < 1 (see, for example,[Liao and Zhang, 2009]), while

98



5. Precessional Annular Channel

explicit solutions for the pressure pjn and the velocity ujn can be written in the

complex form

pjn(y, z) = cos

(
jπy

Γ

)
cosnπz, (5.13)

x̂ · ujn(y, z) =
jπ

2Γ(1− σ2
jn)

[
sin

(
jπy

Γ

)
cosnπz

]
, (5.14)

ŷ · ujn(y, z) =
iσjnjπ

2Γ(1− σ2
jn)

[
sin

(
jπy

Γ

)
cosnπz

]
, (5.15)

ẑ · ujn(y, z) = − inπ

2σjn

[
cos

(
jπy

Γ

)
sinnπz

]
. (5.16)

In (5.13)-(5.16), the aspect ratio Γ represents a key parameter in controlling the

primary character of precessionally driven flows. We shall concentrate on the regime

of moderate aspect ratio with E1/2 ¿ Γ ≤ O(1).

It follows that, as the aspect ratios Γ varies at a fixed small E, precessionally

driven flows may be divided into three different categories: (i) the single-inertial-

mode resonance at Γ =
√
3 where only a single inertial mode (j = 3, n = 1) is

significant at exact resonance, for which the higher modes like (j = 9, n = 3) make a

negligible contribution, (ii) the double-inertial-mode resonance at Γ = 1/
√
3 where

two principal inertial modes, (j = 1, n = 1) and (j = 3, n = 3), are significant at

exact resonance with the Poincaré forcing, and (iii) multiple-inertial-mode excitation

at non-resonance when |Γ − 1/
√
3| À E1/2 or |Γ − √

3| À E1/2, in which a large

number of inertial modes may be excited by the Poincaré forcing. We shall not

consider the weak resonance taking place when Γ À 1 with large values of n and j.

Evidently, the simplest asymptotic solution is offered by the single-mode resonance

at Γ =
√
3, which will be discussed first.

5.3.1 Single-inertial-mode resonance

In a precessing channel with aspect ratio Γ =
√
3, an asymptotic solution u for a

weakly precessing flow with ε ¿ 1 at a fixed small E can be, following the three

hypotheses, separated into a single-inertial-mode interior flow u31 and the corre-

sponding boundary-layer correction ũ31, together with a weak geostrophic flow uG.

An asymptotic expansion for the velocity u and the reduced pressure p takes the

form

u(y, z, t) = [(uG + ũG) + (C31u31 + û) + ũ31] e
it, (5.17)

p(y, z, t) = [(pG + p̃G) + (C31p31 + p̂) + p̃31] e
it, (5.18)

where C31 is an unknown complex number to be determined in the second-order prob-

lem, |uG| = O(ε) denotes the interior geostrophic flow while |ũG| = O(ε) corresponds
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to its boundary correction, the single inertial mode (u31, p31) for the interior precess-

ing flow, given by (5.13)-(5.16) with j = 3 and n = 1 and with |C31u31| = O(ε/E1/2),

is corrected by the viscous boundary layer (ũ31, p̃31) with |ũ31| = O(ε/E1/2), which

generates, through the boundary flux, the secondary interior flow, (û, p̂), where

|û| = O(ε). The interior geostrophic flow, uG, is independent of z [see, for example,

Greenspan, 1968].

An analytical expression for the weakly precessing flow at exact resonance satis-

fying the non-slip boundary condition is then obtained:

u = (uG + ũG)− 96(ε/
√
E)eit

π4
{
9
√
2[(1 +

√
3) + (1−√

3)i] + 32
√
3π2

√
E
}

×
{(

π sin
√
3πy

2
√
3

){[
4 cos πz − exp

(
−
√
6(1 + i)z

2
√
E

)
− 3 exp

(
−
√
2(1− i)z

2
√
E

)

+ exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ 3 exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
x̂

+ i

[
2 cos πz + exp

(
−
√
6(1 + i)z

2
√
E

)
− 3 exp

(
−
√
2(1− i)z

2
√
E

)

− exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ 3 exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
ŷ

}
− iπ sin πz

×
[
cos

√
3πy − exp

(
−
√
2(1 + i)y

2
√
E

)
+ exp

(
−
√
2(1 + i)(Γ− y)

2
√
E

)]
ẑ

}
, (5.19)

which is valid for moderate values of the Reynolds number Re for Γ =
√
3. Note that

the real part of (5.19) represents the required asymptotic solution for the precessing

flow.

In the asymptotic solution (5.19), the oscillatory geostrophic flow satisfying the

non-slip boundary condition can be derived by a similar procedure. The leading-

order expression takes the form:

uG + ũG =
iε

2

{[
−2 + exp

(
−
√
6(1 + i)z

2
√
E

)
+ exp

(
−
√
2(1− i)z

2
√
E

)

+ exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
x̂

+ i

[
− exp

(
−
√
6(1 + i)z

2
√
E

)
+ exp

(
−
√
2(1− i)z

2
√
E

)

− exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
ŷ

+ 2

[
exp

(
−
√
2(1 + i)y

2
√
E

)
+exp

(
−
√
2(1− i)(Γ− y)

2
√
E

)]
x̂

}
eit,(5.20)
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Figure 5.1: Contours of (a) ux, (b) uy and (c) uz (upper panels) in a vertical yz plane
for the asymptotic solution computed from the analytical expression (5.19)(courtesy
of Prof. Keke Zhang); contours of (d) ux, (e) uy and (f) uz (middle panels) computed
from the 2D numerical analysis(courtesy of Prof. Xinhao Liao); contours of (g) ux,
(h) uy and (i) uz (lower panels) from direct 3D numerical simulation. The parameters
for all three solutions are ε = 5× 10−4 and Γ =

√
3 at E = 5× 10−5.

which is valid for any value of the aspect ratio Γ. To measure the strength of the

resonant precessing flow, we introduce the averaged kinetic energy, Ekin, defined as

Ekin =
1

2π

∫ 2π

0

1

2V

[∫

V

|Re(u)|2dV
]
dt, (5.21)

where V denotes the volume of the channel. Using the analytical expressions (5.19)

and (5.20), we obtain

Ekin =
1

4


 6144(ε/

√
E)2

π6
{
9
√
2[(1 +

√
3)] + 32

√
3π2

√
E
}2

+ 162(1−√
3)2]

+ ε2


 , (5.22)

where the small contribution from the viscous boundary layers is not included. The

asymptotic solution represented by the analytical expressions (5.19) and (5.22) will

be compared directly to the result of 2D and 3D numerical simulations.

The typical structure of the weakly precessing flow satisfying the non-slip bound-

ary condition, computed directly from the analytical expression (5.19), is illustrated

in Figure 5.1(a,b,c) for ε = 5 × 10−4, Γ =
√
3 and E = 5 × 10−5. Also dis-

played in Figure 5.1, for the purpose of easy comparison, are the 2D numerical

solution (Figure 5.1(d,e,f)) and the fully 3D nonlinear simulation (Figure 5.1(g,h,i))

obtained at exactly the same parameters. Evidently, there are no noticeable differ-

ences among the three solutions obtained via three fundamentally different meth-
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ods. Furthermore, the kinetic energy Ekin computed from the expression (5.22)

for ε = 5.0 × 10−4 and Γ =
√
3 is Ekin = 5.11 × 10−6 while the 2D numerical

analysis yields Ekin = 4.95 × 10−6 and our direct 3D nonlinear simulation gives

Ekin = 4.47 × 10−6 ( the details of the numerics will be discussed in §5.4). For

a larger Poincaré number ε = 10−3, the asymptotic expression (5.22) gives rise to

Ekin = 2.05 × 10−5 for E = 5 × 10−5 while the corresponding 2D numerics yields

Ekin = 1.98× 10−5 and the 3D nonlinear simulation gives Ekin = 1.80× 10−5.

A satisfactory quantitative agreement between the asymptotic analysis and the

2D and 3D numerical simulation is achieved for small and moderate Reynolds num-

bers. This not only validates the asymptotic analysis but also confirms the crucial

role played by viscosity at exact resonance. Comparison between the asymptotic

and numerical results also indicates that the asymptotic solution (5.19) offers a

reasonably good approximation to the fully nonlinear 3D simulation in the range

0 < E1/2Re < O(1), which will be discussed further.

5.3.2 Double-inertial-mode resonance

Consider now a precessing channel with aspect ratio Γ = 1/
√
3 which is also at

exact resonance with the Poincaré forcing. In this case, while the principal inertial

mode u11 is predominant, the secondary resonant mode u33 makes a substantial

contribution and, hence, should be included. An asymptotic solution u describing

a weakly precessing flow for E ¿ 1 and Γ = 1/
√
3 can be written in the form

u(y, z, t) = [(uG + ũG) + (C11u11 + C33u33) + û+ ũ] eit, (5.23)

p(y, z, t) = [(pG + p̃G) + (C11p11 + C33p33) + p̂+ p̃] eit, (5.24)

where C11 and C33 are complex coefficients to be determined, the two inviscid

resonant inertial modes, (u11, p11) and (u33, p33), whose expressions are given by

(5.13)-(5.16), must be corrected by the viscous boundary layer ũ on the four bound-

ing surfaces of the channel, and the secondary interior flow, [û, p̂], where |û| ¿
|C11u11+C33u33|, is induced by the viscous effects. The expression for the geostrophic

flow, uG and ũG given by (5.20), remains unchanged.

An analytical expression for the precessing flow at the double-mode resonance

at Γ = 1/
√
3 is

u = (uG + ũG) +V11 +V33, (5.25)

where the geostrophic flow (uG+ũG) is still given by (5.20) while V11, in association
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Figure 5.2: Contours of (a) ux, (b) uy and (c) uz in a vertical yz plane computed
from the asymptotic solution (5.25)-(5.27) (upper panels); (d) ux, (e) uy and (f) uz

for the 2D numerical solution (middle panels); (g) ux, (h) uy and (i) uz for direct
3D nonlinear numerical simulation (lower panels). The parameters for the three
solutions are ε = 5× 10−4, Γ = 1/

√
3 and E = 5× 10−5.
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with the primary resonant mode u11, takes the form

V11 = − 288(ε/
√
E)eit

π4
{
3
√
2[(7 + 3

√
3) + (7− 3

√
3)i] + 32

√
3π2

√
E
}

×
{(

π sin
√
3πy

2
√
3

){[
4 cos πz − exp

(
−
√
6(1 + i)z

2
√
E

)
− 3 exp

(
−
√
2(1− i)z

2
√
E

)

+ exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ 3 exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
x̂

+ i

[
2 cos πz + exp

(
−
√
6(1 + i)z

2
√
E

)
− 3 exp

(
−
√
2(1− i)z

2
√
E

)

− exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ 3 exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
ŷ

}
− iπ sin πz

×
[
cos

√
3πy − exp

(
−
√
2(1 + i)y

2
√
E

)
+ exp

(
−
√
2(1 + i)(Γ− y)

2
√
E

)]
ẑ

}
, (5.26)

and V33, in association with the secondary resonant mode u33, is given by

V33 = − 288(ε/
√
E)eit

π4
{
3
√
2[(7 + 3

√
3) + (7− 3

√
3)i] + 288

√
3π2

√
E
}

×
{(

π sin 3
√
3πy

54
√
3

){[
4 cos 3πz − exp

(
−
√
6(1 + i)z

2
√
E

)
− 3 exp

(
−
√
2(1− i)z

2
√
E

)

+ exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ 3 exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
x̂

+ i

[
2 cos 3πz + exp

(
−
√
6(1 + i)z

2
√
E

)
− 3 exp

(
−
√
2(1− i)z

2
√
E

)

− exp

(
−
√
6(1 + i)(1− z)

2
√
E

)
+ 3 exp

(
−
√
2(1− i)(1− z)

2
√
E

)]
ŷ

}
− i

π

27
sin 3πz

×
[
cos 3

√
3πy − exp

(
−
√
2(1 + i)y

2
√
E

)
+ exp

(
−
√
2(1 + i)(Γ− y)

2
√
E

)]
ẑ

}
. (5.27)

Note that the secondary resonant mode, u33, makes about 5% contribution towards

the amplitude of the precessing flow. The total kinetic energy of the flow including

the geostrophic flow is given by

Ekin =
512(ε/

√
E)2

π6





27[
3
√
2(7 + 3

√
3) + 32π2

√
3E

]2
+ 18(7− 3

√
3)2

+
1

27
[
3
√
2(7 + 3

√
3) + 288π2

√
3E

]2
+ 486(7− 3

√
3)2





+
ε2

4
, (5.28)
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where the small contribution from the viscous boundary layers is excluded.

The analytical expressions (5.25) and (5.28) are compared directly to the 2D

numerical analysis and fully 3D direct numerical simulations. The spatial structure

of the precessing flow for Γ = 1/
√
3, computed from the expression (5.25), is dis-

played in Figure 5.2(a,b,c) for ε = 5× 10−4 and E = 5× 10−5. Also displayed in the

figure are the 2D numerical solution (Figure 5.2(d,e,f)) and the direct 3D nonlinear

simulation (Figure 5.2(g,h,i)) obtained at exactly the same parameters. There are

no significant differences among the three solutions obtained in completely different

ways. Moreover, the kinetic energy Ekin computed from the asymptotic expression

(5.28) is Ekin = 2.28× 10−5 for ε = 5.0× 10−4 and Γ = 1/
√
3 at E = 5× 10−5 while

the 2D numerical analysis yields Ekin = 2.13 × 10−5 and the direct 3D nonlinear

simulation gives Ekin = 2.01 × 10−5. For a larger Poincaré number ε = 10−3, the

expression (5.28) gives Ekin = 9.15× 10−5 for Γ = 1/
√
3 at E = 5× 10−5 while the

corresponding 2D numerics yields Ekin = 8.54 × 10−5 and the direct 3D nonlinear

simulation produces a similar 2D precessing flow with Ekin = 8.16× 10−5.

Our results again support the hypothesis that the viscous effect, which is pri-

marily from the viscous boundary layers, is essential in determining both the struc-

ture and amplitude of weakly precessing flows at exact resonance. The asymp-

totic solution given by (5.25)-(5.27) offers reasonably accurate approximation to

the direct fully 3D nonlinear simulation for the range 0 < Re < O(E−1/2). When

Re = O(E−1/2), i.e., ε ≈ 7 × 10−3 for E = 5 × 10−5, however, the nonlinear effect

becomes important and leads to a fully three-dimensional precessing flow, which will

be discussed later.

5.3.3 Multiple-inertial-mode excitation at non-resonance

Finally, consider a precessing channel with non-resonant aspect ratios, i.e., |3nΓ −√
3j| À E1/2 for moderate integers n and j, where n is odd, at an asymptotically

small E. In this case, it is anticipated that a large number of inertial modes would be

excited by the precessional forcing. An asymptotic solution for a weakly precessing

flow, u and p, can be still separated, at leading order, into the interior flow and the

boundary-layer flow in the form

u(y, z, t) =

[
(uG + ũG) +

(∑
j,n

Cjnujn

)
+ û+ ũ

]
eit, (5.29)

p(y, z, t) =

[
(pG + p̃G) +

(∑
j,n

Cjnpjn

)
+ p̂+ p̃

]
eit, (5.30)

where Cjn are unknown complex coefficients, uG and ũG are the interior and bound-

ary geostrophic flow, (ujn, pjn) represent inertial modes given by (5.13)-(5.16), ũ is

the viscous boundary layer while [û, p̂] represents the secondary interior flow with
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Figure 5.3: Contours of (a) ux, (b) uy and (c) uz in a vertical yz plane from the
non-resonant asymptotic solution (5.31) (top panels) ; (d) ux, (e) uy and (f) uz

from the 2D numerical analysis (middle panels); (g) ux, (h) uy and (i) uz from the
3D direct simulation (lower panels). The parameters are ε = 5 × 10−4, Γ = 1 and
E = 5× 10−5.
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|û| ¿ |∑j,n Cjnujn|.
An asymptotic solution with the non-slip boundary condition for a non-resonant

channel can be written in the form

u = ũ+ (uG + ũG) +
∑
j,n

[
4εj2

n2π3(j2 + n2Γ2)1/2

]

×
{

[1− (−1)j][1− (−1)n]

[(j2 + n2Γ2)1/2 − nΓ][(j2 + n2Γ2)1/2 − 2nΓ]

}

×
{
−(j2 + n2Γ2)1/2

j
sin

jπy

Γ
cosnπz

[
x̂ sin t+ ŷ

nΓ cos t

(j2 + n2Γ2)1/2

]

+ ẑ

[
cos

jπy

Γ
sinnπz cos t

]}
, (5.31)

valid for an asymptotically small E with non-resonant aspect ratios Γ. Note that the

analytical expression (5.31) is non-singular because of the non-resonant condition.

In the asymptotic solution (5.31), while the geostrophic flow (uG+ ũG) is still given

by (5.20), the viscous boundary layer ũ is given by

ũ = −
∑
j,n

i2εj2[1− (−1)j][1− (−1)n]eit

n2π3(j2 + n2Γ2)[(j2 + n2Γ2)1/2 − nΓ][(j2 + n2Γ2)1/2 − 2nΓ]

×
{
(−x̂+ iŷ)

[
j(j2 + n2Γ2)1/2

(j2 + n2Γ2)1/2 + nΓ
sin

jπy

Γ

]
exp

(
−
√
6(1 + i)z

2
√
E

)

− (x̂+ iŷ)

[
j(j2 + n2Γ2)1/2

(j2 + n2Γ2)1/2 − nΓ
sin

jπy

Γ

]
exp

(
−
√
2(1− i)z

2
√
E

)

+ (−1)n(−x̂+ iŷ)

[
j(j2 + n2Γ2)1/2

(j2 + n2Γ2)1/2 + nΓ
sin

jπy

Γ

]
exp

(
−
√
6(1 + i)(1− z)

2
√
E

)

− (−1)n(x̂+ iŷ)

[
j(j2 + n2Γ2)1/2

(j2 + n2Γ2)1/2 − nΓ
sin

jπy

Γ

]
exp

(
−
√
2(1− i)(1− z)

2
√
E

)

+ ẑi
[
2(j2 + n2Γ2)1/2

]
sinnπz

×
[
exp

(
−
√
2(1 + i)y

2
√
E

)
+ (−1)j exp

(
−
√
2(1 + i)(Γ− y)

2
√
E

)]}
. (5.32)

It should be mentioned that we have carefully compared the numerical solution for

the equation which contains all the viscous terms, to the explicit analytical solution

(5.31) for E ¿ 1: the difference between them is negligibly small at a non-resonant

Γ. On the basis of the explicit asymptotic solution (5.31), we can also derive an

analytical expression for the kinetic energy of the precessing flow

Ekin =
ε2

4
+
∑
j,n

8ε2[1− (−1)j][1− (−1)n]

n4π6[(j2 + n2Γ2)1/2 − nΓ]2[(j2 + n2Γ2)1/2 − 2nΓ]2
, (5.33)

where the contribution from the boundary layers is again neglected.
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ε Re Ekin(Asymptotic) Ekin(2D numerics) Ekin(3D simulation)

10−4 2× 100 8.666× 10−9 8.670× 10−9 8.616× 10−9(2D flow)
5× 10−4 1× 101 2.167× 10−7 2.168× 10−7 2.152× 10−9(2D flow)
10−3 2× 101 8.666× 10−7 8.670× 10−7 8.603× 10−7(2D flow)
5× 10−3 1× 102 2.167× 10−5 2.168× 10−5 2.151× 10−5 (2D flow)
10−2 2× 102 8.666× 10−5 8.670× 10−5 8.563× 10−5(2D flow)
5× 10−2 1× 103 2.167× 10−3 2.168× 10−3 2.189× 10−3(2D flow)
7.5× 10−2 1.5× 103 (3D flow)

Table 5.1: Kinetic energies, Ekin, computed from the asymptotic expression (5.33)
(courtesy of Prof. Keke Zhang), along with the corresponding values calculated from
the 2D numerical analysis (courtesy of Prof. Xinhao Liao) and direct 3D nonlinear
numerical simulation for Γ = 1 and E = 5× 10−5.

For a given ε and non-resonant Γ, we can compute the spatial structure of a pre-

cessing flow satisfying the non-slip boundary condition from the expressions (5.31),

which is shown in Figure 5.3(a,b,c) for ε = 5×10−4 and Γ = 1 at E = 5×10−5. It can

be then directly compared with the 2D numerical solution shown in Figure 5.3(d,e,f)

and the 3D nonlinear simulation in Figure 5.3(g,h,i) at exactly the same parame-

ters. There are no significantly noticeable differences in the spatial structure of the

three solutions. Furthermore, kinetic energies, Ekin, computed from the analytical

formula (5.33) for several different values of ε at Γ = 1 are given in Table 5.1, along

with the corresponding values calculated from the 2D and 3D numerical analysis.

Evidently, the asymptotic solution (5.31) offers an accurate approximation to the

fully three-dimensional nonlinear simulation up to Re ≤ O(103), which corresponds

to ε = 5 × 10−2 for E = 5 × 10−5. When Re increases further, the precessing

flow becomes fully three dimensional and the asymptotic solution (5.31) becomes

physically irrelevant.

5.4 Numerical simulation

5.4.1 2D linear numerical analysis

In [Zhang et al., 2010], we also undertake a linear numerical analysis which is valid

for any value of Ekman number E and any size of the aspect ratio Γ. The idea is

that because the weak precession driven flows are 2-D, we may expand a velocity in

terms of two potentials, Ψ and Φ, in the form

u = {∇ × [Ψ(y, z)x̂] + Φ(y, z)x̂} eit.

Ψ and Φ are then substituted into the linearized equation

∂u

∂t
+ 2ẑ× u+∇p = E∇2u+ 2εz (x̂ cos t− ŷ sin t) .
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Finally, the governing equations of Ψ and Φ are solved numerically by a spectral

method.

How and when a precessionally driven 2D flow becomes fully three-dimensional

at a large Reynolds number remains an open question which must be answered by

direct 3D nonlinear simulation of the problem.

5.4.2 Fully 3D nonlinear simulation

In comparison to the plane-geometry problem ([Mason and Kerswell, 2002]) which

permits periodic boundary conditions in both the x− and y−direction, the preces-

sional problem in channel-geometry with the non-slip boundary condition is numer-

ically more challenging. It would be difficult, because of the existence of the two

vertical sidewalls, to employ the widely-used pseudo-spectral method with Fourier

series. We choose to tackle the fully three-dimensional, nonlinear problem by em-

ploying a finite difference code “NaSt3DGP” developed by the research group in

the Division of Scientific Computing and Numerical Simulation at the University

of Bonn (see [Griebel et al., 1998]). We mainly modified the code by adding to it

the Coriolis and the Poincaré force terms. “NaSt3DGP” is parallelized by MPI and

implements a first-order temporal discretization along with a second-order finite dif-

ference scheme based on the Chorin-type projection scheme ([Chorin, 1968]), which

decouples the momentum and continuity equations. The projection scheme leads to

the time discretization of equations (5.4)-(5.5) in the form

(um − un)

∆t
= E∇2un − un · ∇un − 2ẑ× un + 2εz (x̂ cos tn − ŷ sin tn)

+2εun × (x̂ cos tn − ŷ sin tn) , (5.34)

where un represents the velocity at the n−th time step t = tn while um denotes the

velocity at an intermediate time between t = tn and t = tn+1. The solution of (5.34)

gives rise to the intermediate velocity um which is then used to solve the Poisson

equation for the pressure pn+1 at the (n+ 1)−th time step t = tn+1,

∇2pn+1 =
1

∆t
∇ · um. (5.35)

After solving (5.35), we can readily compute the velocity field un+1 at t = tn+1 by

un+1 = um −∆t∇pn+1. (5.36)

No spatial symmetries are imposed on our direct 3D numerical simulation which

usually starts with an arbitrary 3D initial condition, even though the nonlinear

solution for moderate values of Re is not only two dimensional (independent of x)

but also possesses spatial symmetries in the y− and z− direction. Our numerical

method is largely similar to that used by ([Wu and Roberts, 2008]) although their
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Figure 5.4: Kinetic energies, Ekin, of the 2D precessing flow resulting from 3D
direct numerical simulation are plotted against time for several different values of ε:
(a) for the strongly resonant case with Γ = 1/

√
3 at E = 5 × 10−5 and (b) for the

non-resonant case with Γ = 1 at E = 5× 10−5.
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Figure 5.5: Kinetic energies, Ekin, of the 3D precessing flow from the 3D direct
numerical simulation are plotted against time (a) for the resonant case with Γ =
1/
√
3 at E = 5× 10−5, (b) for the non-resonant case with Γ = 1 at E = 5× 10−5.
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time integration is a third order scheme while our scheme is of first order.

In addition to the physical parameters like the Ekman number E and the Poincaré

number ε, a new parameter enters into the 3D nonlinear simulation: the size of the

computational box defined by the upper and lower non-slip surfaces at z = 0, 1, by

the two vertical non-slip sidewalls at y = 0,Γ and by the periodic boundary condi-

tion at x = 0, L, where L may be regarded as an additional parameter for the 3D

simulation. A thin computational box with L ¿ 1 is computationally inexpensive,

but it may be incapable of capturing the crucial spatial scales of 3D instabilities; a

very wide box with L À 1, on the other hand, is computationally too expensive or

may be unnecessary in the understanding of key nonlinear dynamics. On a balance

between the computational cost and the essential physics, we choose L = 1, which

equivalently imposes the periodic boundary conditions u(x = 0) = u(x = 1) and

p(x = 0) = p(x = 1), for all our direct 3D nonlinear simulation.

While our 3D numerical code was carefully validated by comparing with the

asymptotic solutions, the accuracy of the 3D simulation was also carefully checked

by computing the nonlinear solutions at exactly the same parameters but using dif-

ferent spatial resolutions. The time advancing step is self adaptive and restricted by

proper CFL conditions. It should be noted that we do not anticipate, physically and

mathematically, boundary-layer type structure in the x−direction along the chan-

nel, implying that |∂/∂x| ¿ |∂/∂z| and |∂/∂x| ¿ |∂/∂y|. Our primary concern is

with the viscous boundary layers located on the four bounding surfaces of a channel,

in connection with the spatial resolution in the y− and z−direction. It is found that

there are no significant differences between the nonlinear solutions simulated with

either 300 or 200 grids in the z−direction for E ≥ 5× 10−5. Consequently, we have

typically used, for example at Γ =
√
3, the spatial resolution with a grid system

[50 × 350 × 200] covering 0 ≤ x ≤ 1, 0 ≤ y ≤ Γ and 0 ≤ z ≤ 1 for our direct 3D

simulations, providing a reasonable numerical accuracy for the moderately strong

nonlinear solutions presented in this chapter.

The finite-difference equations (5.34)-(5.36), treated as an initial-value problem,

are integrated forward in time, starting from an arbitrary 3D flow, until the numer-

ical solution attains an oscillatory or a chaotic state, usually taking up to O(102)

non-dimensional time units. While a 3D simulation for a 2D weakly nonlinear flow is,

because of relatively large ∆t, usually less expensive, simulating a strongly nonlinear

flow, however, would typically take a three-week runtime to integrate (5.34)-(5.36),

with ∆t = O(10−4), to the O(102) time units using 60 processors (each processor

with 3612 MHz) on an IBM parallel computer. Throughout this project, as declared

in the acknowledgement page of this thesis, we ran our jobs on various supercom-

puting facilities and a large amount of data has been accumulated.

Consider first the exact resonance for Γ = 1/
√
3 at which the strongest precess-

ing flow occurs for a given ε. The primary objectives of our direct 3D nonlinear
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Figure 5.6: Snapshots of a 3D precessing flow at three different instants in a
horizontal xy plane: contours of ux at z = 1/4 are displayed in (a)-(c), contours of
uy at z = 1/4 are displayed in (d)-(f), and contours of uz at z = 1/2 are displayed in
(g)-(i). The parameters for this nonlinear solution are ε = 7.5× 10−3 and Γ = 1/

√
3

at E = 5× 10−5.
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Figure 5.7: Snapshots of 3D solutions in a horizontal xy plane at three different
instants: contours of ux at z = 1/4 are displayed in (a)-(c); contours of uy at
z = 1/4 are displayed in (d)-(f); contours of uz at z = 1/2 are displayed in (g)-
(i). The parameters for this nonlinear solution are ε = 5 × 10−2 and Γ = 1/

√
3 at

E = 5× 10−5.
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simulation are twofold: to check the validity of the asymptotic expression (5.25) for

moderate Reynolds numbers and to identify the transition regimes from 2D laminar

flow to 3D turbulence for large Reynolds numbers at fixed small Ekman number

E = 5 × 10−5. For a small or moderate value of Re, although a numerical simu-

lation starts with an arbitrary 3D initial flow, the final solution after the transient

period of the simulation always reaches an x-independent state, i.e., ∂u/∂x = 0 and

∂p/∂x = 0. Different simulations with various values of L, either L > 1 or L < 1,

confirm that the x-independent nonlinear solution is the only physically realizable

flow for small and moderate Reynolds numbers. The time dependence of the 2D pre-

cessing flows resulting from the 3D nonlinear simulation is displayed in Figure 5.4(a)

with Γ = 1/
√
3. Since the initial transient period of a nonlinear simulation depends

upon an arbitrary initial condition and, hence, is of less significance, only the final

state of the simulation is shown in the figure. A typical structure of the weakly pre-

cessing flow obtained from the 3D simulation is depicted in Figure 5.2(g,h,i), along

with the asymptotic solution given by (5.25). The result of the 3D simulation shows

a satisfactory agreement with the analytical expressions (5.25) and (5.28) in the

approximate range (ReE1/2) < O(1). This is consistent with the scaling provided

by the asymptotic expression (5.25). The amplitude of the resonant precessing flow

with Γ = 1/
√
3 is |u| ∼ ε/E1/2, giving rise to the nonlinear term |u · ∇u| ∼ ε2/E

and the Coriolis force |ẑ×u| ∼ ε/E1/2. It follows that, when the rotational effect is

dominant, |ẑ× u| > |u · ∇u| or 0 < (ReE1/2) < O(1), we would anticipate that the

asymptotic solution (5.19) provides a reasonably good approximation and that the

precessing flow remains two dimensional. In Figure 5.8, the isosurfaces of velocity

components intuitively illustrate the 2D flow independent of x. It reinforces the

view that the viscous effect, which is primarily linked with the viscous boundary

layers, determines the key property of weakly precessing flows at exact resonance.

A large effort is then made to identify the critical value of Re at which the

2D precessing flow becomes fully three dimensional in a channel with Γ = 1/
√
3.

By carrying out many 3D simulations at different values of Re, we found that the

instabilities that introduce the x−dependence and lead to a fully 3D precessing

flow take place at ε ≈ 7.0 × 10−3, or ReE1/2 ≈ 1 for Γ = 1/
√
3 and E = 5 × 10−5.

Figure 5.5(a) shows the time dependence of the 3D precessing flows for three different

Re, where the transient behavior is not displayed. In the range 1.5 × 102 ≤ Re ≤
5× 102, the nonlinear precessing flow is fully three dimensional but remains largely

laminar. A long timescale temporal modulation can be clearly seen in Figure 5.5(a)

while the spatial modulation in the x−direction is shown in Figure 5.6 and 5.9 for

ε = 7.5×10−3 or Re = 1.5×102. When Re increases to about Re = 103, however, the

laminar 3D flow breaks down, leading to the small-scale disordered turbulence shown

in Figure 5.7 and 5.10. In short, three different regimes are identified with increasing

Re: (i) 2D oscillatory and laminar flow that is in quantitative agreement with the
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(a) (b)

(c)

Figure 5.8: 3D illustration of two dimensional solutions in the channel of Γ = 1/
√
3:

brown isosurfaces denote positive level values while blue ones represent negative
values. The physical parameters in the calculations are ε = 5 × 10−4 and E =
5× 10−5. (a) ux, (b) uy and (c) uz are all x independent.
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(a) (b)

(c)

Figure 5.9: 3D illustration of three dimensional laminar solutions in the channel of
Γ = 1/

√
3: brown isosurfaces denote positive level values while blue ones represent

negative values. The parameters in the calculation are ε = 7.5 × 10−3 and E =
5× 10−5. (a) ux, (b) uy and (c) uz are all x dependent but still smooth.
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(a) (b)

(c)

Figure 5.10: 3D illustration of three dimensional turbulent solutions in the channel
of Γ = 1/

√
3: brown isosurfaces denote positive level values while blue ones represent

negative values. The parameters in the calculation are ε = 5×10−2 and E = 5×10−5.
(a) ux, (b) uy and (c) uz are all turbulent.
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Figure 5.11: Snapshots of a 3D precessing flow at three different instants in a
horizontal xy plane: contours of ux at z = 1/4 are displayed in (a)-(c), contours of
uy at z = 1/4 are displayed in (d)-(f), and contours of uz at z = 1/2 are displayed
in (g)-(i). The parameters for this nonlinear solution are ε = 7.5× 10−2 and Γ = 1
at E = 5× 10−5.

analytical expression (5.25), (ii) 3D spatial-temporally modulated 3D precessing flow

and (iii) small-scaled disordered turbulence.

Finally, we consider a typical non-resonant case with Γ = 1 also at E = 5×10−5.

In comparison with the resonant case Γ = 1/
√
3, our simulations starting with

an arbitrary 3D flow show that the precessing flows remain two dimensional, i.e.,

∂u/∂x = 0; ∂p/∂x = 0, within a much larger range 0 < Re ≤ 103. A satisfactory

quantitative agreement between the 3D simulation and the analytical expression

(5.31) is achieved for 0 < Re ≤ 103, which is shown in Table 5.1, where the physically

preferred flow is 2D, oscillatory and laminar. While the time-dependence of the 2D

oscillatory flow resulting from the 3D simulation is shown in Figure 5.4(b) for Γ = 1

and E = 5 × 10−5, the typical spatial structure of the flow obtained from the 3D

nonlinear simulation is displayed in Figure 5.3(g,h,i), along with the asymptotic

solution. Figure 5.13 also confirms the 2D flow by isosurfaces plot. An extensive 3D

simulation for different values of ε, which is shown in Figure 5.5(b), indicates that

the 2D precessing flow becomes unstable to 3D instabilities at Re ≈ 1.5× 103 (ε =
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Figure 5.12: Snapshots of a 3D precessing flow at three different instants: contours
of ux in a horizontal xy plane at z = 1/4 are displayed in (a)-(c); contours of uy

at z = 1/4 are displayed in (d)-(f); contours of uz at z = 1/2 are displayed in
(g)-(i). The parameters for this nonlinear solution are ε = 5 × 10−1 and Γ = 1 at
E = 5× 10−5.
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(a) (b)

(c)

Figure 5.13: 3D illustration of two dimensional solutions in the channel of Γ = 1:
brown isosurfaces denote positive level values while blue ones represent negative
values. The parameters in the calculation are ε = 5 × 10−4 and E = 5 × 10−5. (a)
ux, (b) uy and (c) uz are all x independent.

7.5×10−2), in contrast toRe ≈ 1.5×102 in the resonant case Γ = 1/
√
3. The strongly

precessing flow at Re = 1.5×103 becomes fully three dimensional and is spatially and

temporally modulated. Its temporal modulation is shown in Figure 5.5(b) while the

spatial modulation in the x−direction is depicted in Figure 5.11 and 5.14. When ε

increases further to 5×10−1, i.e., Re = 104, the precessing flow breaks down, leading

to the small-scale disordered flow which is shown in Figure 5.12 and 5.15.

There exist two major differences between the non-resonantly and resonantly

precessing flows at exactly the same precessional rate. For resonantly precessing

flows, the effect of viscosity, via both the Ekman boundary layers and interior vis-

cous effects, plays a critical role while, for non-resonantly precessing flows, the effect

of viscosity is of secondary importance. The amplitude of the precessing flow at

resonance is O(ε/E1/2) with E ¿ 1 while the amplitude of a non-resonant precess-

ing flow is O(ε). It suggests the different underlying dynamics which is explicitly
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(a) (b)

(c)

Figure 5.14: 3D illustration of three dimensional laminar solutions in the channel
of Γ = 1: brown isosurfaces denote positive level values while blue ones represent
negative values. The parameters in the calculation are ε = 7.5 × 10−2 and E =
5× 10−5. (a) ux, (b) uy and (c) uz are all x dependent but still smooth.
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(a) (b)

(c)

Figure 5.15: 3D illustration of three dimensional turbulent solutions in the channel
of Γ = 1: brown isosurfaces denote positive level values while blue ones represent
negative values. The parameters in the calculation are ε = 5×10−1 and E = 5×10−5.
(a) ux, (b) uy and (c) uz are all turbulent.
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exhibited by the asymptotic expressions (5.25) and (5.31). Since the amplitude of

the flow is dramatically enhanced by resonance, the critical value of ε at which the

three-dimensional turbulence sets in is hugely different between the non-resonantly

and resonantly precessing flows.

5.5 Summary and remarks

We have studied, through both asymptotic analysis and numerical simulation, pre-

cessionally driven flows in a narrow annular channel that rotates rapidly about its

axis of symmetry with angular velocity Ω that itself precesses slowly about an axis

fixed in an inertial frame. This precessional problem is not only experimentally

realizable ([Davies-Jones and Gilman, 1971]) but also retains the mathematical sim-

plicity and clarity of plane geometry. The essential asymptotic idea used for this

study is in some ways similar to that developed for the convection problem in ro-

tating fluid spheres ([Zhang and Liao, 2004]). Our asymptotic analysis reveals that,

depending upon the aspect ratio Γ of a channel, there exist three different regimes

of precessing flows for which we have derived the three asymptotic expressions. At

the single-inertial-mode resonance with Γ =
√
3 for which the contribution from

higher inertial modes is insignificant and the viscous effect in connection with the

viscous boundary layer largely controls the precessing flow, a simple analytical solu-

tion satisfying the non-slip boundary condition is given by the expression (5.19). At

the double-inertial-mode resonance with Γ = 1/
√
3 for which the viscous effect also

plays an essential role in controlling the amplitude of the precessing flow, a slightly

more complicated expression satisfying the non-slip boundary condition is given by

(5.25). For other values of Γ, non-resonant precessing flows are described by the

analytical expression (5.31) satisfying all the required non-slip boundary condition

in which, however, the viscous effect no longer plays a critical role in determin-

ing the character and amplitude of the precessing flow. A satisfactory agreement

between the three asymptotic solutions and the linear/nonlinear numerical simu-

lation has been achieved for small and moderately large Reynolds numbers at an

asymptotically small E.

An interesting nonlinear phenomenon found in the strongly resonant precessing

flow in a precessing channel is a sudden breakdown of the large-scale 3D laminar flow

to small-scale disordered turbulence. Our asymptotic and numerical analysis sug-

gests the following transition scenario at exact resonance: the physically realizable

flow in 0 < Re < O(E−1/2) is 2D, oscillatory and laminar, which becomes unstable to

three-dimensional instabilities at Re = O(E−1/2) leading a spatial-temporally mod-

ulated 3D flow; when Re increases slightly after the onset of the three-dimensional

instability, the 3D modulated flow suddenly collapses towards small-scaled disor-

dered turbulence. Similar sudden breakdowns of the precessing flows were observed

123



5. Precessional Annular Channel

in various precessional experiments for spherical and cylindrical geometries ([Eloy

et al., 2003; Gans, 1970; Malkus, 1989]).
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Chapter 6

An Extensible Finite Element

Code Built on PETSc Platform

6.1 Introduction

As a typical G2V main sequence star, the Sun is a very dynamic object mainly

consisting of a radiative core and a convective envelope. Unveiled by both the direct

multi-wavelength observations of its surface and indirect helioseismological investi-

gations (See [Christensen-Dalsgaard, 2003; Gough and Toomre, 1991]) into its deep

interior, complex flows, from turbulence at viscous dissipation scale (about 1cm for

the Sun, see [Miesch, 2005]) up to giant granulation cells as large as ∼ 100Mm, exist

in the convective region of the Sun. Solar convection combined with the rotational

effects generates patterns of magnetic activities, for example, the 11-year cycle,

through dynamo mechanisms. To understand the solar activities is so crucial for

human beings because our Earth is largely subject to influences from the Sun. Even

for pure scientific purposes, nowhere else can we observe the complex interactions

between turbulent plasmas and magnetic fields with comparable details. As the gov-

erning equations of fluids flows and magnetic fields are mathematically difficult to

solve, numerical methods are the only powerful means to look into solar convection

and dynamo problems. However, modelling the flows and magnetic fields inside the

convection envelope is so challenging because of the extreme parameter regimes. The

molecular viscosity in the solar interior is estimated by ν ∼ 1.2×10−16T 5/2ρ−1cm2s−1

([Parker, 1985]). This yields ν ∼ 1cm2s−1 in the upper convection region. If we con-

sider the giant granulation cells whose scale is 102Mm, the Reynolds number can be

as large as 1014, which implies a strongly nonlinear and hence extremely turbulent

flows. Similarly, the thermal and magnetic dissipation scales are also well beyond

the resolution a global numerical simulation can achieve. As pointed out in [Miesch,

2005], the dynamics over a wide range of scales, which can be 10 orders different, are

not self-similar and are even coupled. This poses huge difficulties to any numerical

schemes which try to resolve the full dynamics of solar convective motions. Mean-
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while, the range of temporal scales is of the same situation as that of spatial scales,

from a few minutes in the case of acoustic waves, up to centuries in such famous

events as the Maunder minimum ([Usoskin and Mursula, 2003]). Therefore, it is

also too ambitious to involve all the relevant processes in any single model. In other

words, any feasible model must take into account proper approximations to capture

flow structures at some scales and carefully parameterize or model the subgrid-scale

(SGS) processes.

There are many high-resolution local simulations of solar convection focusing ei-

ther on small scale surface layer phenomena or on dynamical processes taking place

throughout the convection zone ([Hurlburt et al., 2002; Parchevsky and Kosovichev,

2007; Rincon et al., 2005; Robinson et al., 2003; Stein and Nordlund, 1998, 2000;

Vögler et al., 2005; Weiss et al., 1996, 2002]). The commonly known numerical

method in local simulations is the hybrid of spectral methods and finite-difference

methods. Usually, fast Fourier transforms are efficient in the horizontal dimen-

sions in the Cartesian coordinates and the vertical discretization is finite-difference

schemes. Although local simulations can demonstrate characteristics of compressible

convection such as granules and turbulent plumes, however, the large scale, global

motions, such as giant granules, differential rotation, meridional flows and solar ac-

tivity cycles, must be studied by global models. The difficulties with the vast range of

spatial and temporal scales of the dynamics unavoidably enter the numerical regimes.

For intermediate or even high resolution simulations, SGS turbulence can be reliably

considered as effective diffusions (See [Ham et al., 2010; Miesch, 2005]). In other

words, effective eddy viscosity, thermal diffusivity, and magnetic diffusivity are many

orders of magnitude larger than the corresponding molecular values. There are also

other more promising SGS models reviewed in [Foias et al., 2001; Lesieur and Métais,

1996]. Whatever SGS treatment adopted, currently, all the simulations fall into the

class of so called large-eddy simulations (LES). Global solar convection simulations

reported in the literatures were performed mainly by a few different codes. Because

of the poor geometrical flexibility and difficult singularity problems, finite-difference

schemes are not quite suitable for global simulations. One of well-known successful

codes is the Anelastic Spherical Harmonic (ASH) code developed by [Clune et al.,

1999]. Instead of fully compressible fluid equations or Boussinesq approximation,

ASH code solves the equations of the anelastic approximation, which splits all vari-

ables into their horizontally mean values and fluctuations. The reference state of

convection is then a 1D model ([Miesch, 2005]).Anelastic approximation filters out

acoustic waves and linearize the relations between fluctuating thermal dynamical

variables ([Latour et al., 1976]). ASH code is designed for spherical geometries and

has been applied to such areas as global convection, tachocline and dynamo studies

(see [Brown et al., 2010; Miesch, 2005] and references therein). A general-purpose

hydrodynamical code mainly based on anelastic approximation as well is EULAG
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(as reviewed in [Prusa et al., 2008]), whose applications to solar physics include [El-

liott and Smolarkiewicz, 2002; Ghizaru et al., 2010]. More recently, a finite volume

code called CharLES based on a fully compressible model was presented in [Ham

et al., 2010]. CharLES solves convection-dominated fluid equations on 3D unstruc-

tured meshes. There are several beneficial features brought about by CharLES (see

[Olshevsky et al., 2010]): unstructured grids offer the opportunity of resolving the

thin tachocline and the sub-photospheric shear layers together with the whole con-

vective zone in a single simulation domain; the fully compressible model can handle

high specific-entropy gradient.

To tackle difficult fluid dynamics equations, such as the fully compressible con-

vection model, a good numerical code should efficiently and intensively make use

of the capability of massive parallel computing facilities. Efforts must be made to

design a scheme of higher accuracy, stability, scalability, flexibility and extensibil-

ity. However, it is unlikely that all the good features are fulfilled simultaneously.

We have to carefully study various numerical methods to make a suitable choice

according to the specific demands of the interesting aspects of the full dynamical

system.

Spectral methods, in the ASH code for example, generally don’t have satisfy-

ing scalability, which limits its applications to high-resolution global simulations in

which tens of thousands of CPUs may be involved. Secondly, the geometry flex-

ibility is poor for spectral methods. The algorithm implemented in ASH code is

only applicable in spherical geometries because all the variables are assumed to be

expanded horizontally by spherical harmonics. Placing grids points at correspond-

ing Gaussian abscissae further reduces the freedom of mesh generations (See [Clune

et al., 1999] for more technical details). As already discussed in previous para-

graphs, finite-difference methods are also not quite suitable for global simulations of

solar convective motions mainly because of its difficulties in dealing with irregular

boundaries and coordinates singularities ([Mohseni and Colonius, 2000]).

Finite-volume methods directly solve the integral equations of parabolic and

hyperbolic conservation laws and hence are naturally adapt to fully compressible

fluids equations. The spatial domain is divided into and filled with cells which

can have generally irregular shapes (hexahedra, tetrahedra etc.). The accuracy

order of a finite-volume scheme is determined partly by how many cells involved

in the interface-value reconstructions ([Shu, 1997]). To deal with large advection

terms, another big issue is the choice of stencils and numerical fluxes. Essentially

Non-Oscillatory (ENO) and Weighted ENO (WENO) schemes are high order, TVD

schemes which greatly ensure the numerical accuracy and stability for highly turbu-

lent flow or even discontinuous shock waves (for example, [Liu et al., 1994; Shu, 1997;

Shu and Osher, 1988; Shu et al., 1992]). The CharLES code introduced above has

incorporated the WENO with an explicit Runge-Kutta time advancing scheme. The
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explicit non-oscillatory schemes also have drawbacks. Both ENO and WENO will

do harm to scalability. ENO adopt self-adaptive stencil choices in the regions where

the solutions have large gradient while WENO allows several stencils to contribute,

together, in a weighted manner, to the reconstructions. Therefore, compared with

fixed-stencil schemes, ENO and WENO intensify the data exchanges among mesh

blocks distributed to different CPUs. This implies that finite-volume schemes which

benefit from the stability and accuracy resulting from advanced reconstruction tech-

niques essentially cost their scalability under the circumstance of fine meshes and

massive number of parallel processes.

Another class of well developed and widely applied numerical PDE solving meth-

ods are finite-element methods (hereafter FEM). Classical Galerkin FEM , based on

the minimization of the energy norm, solve the variational form of PDEs by Galerkin

approximation. General theories of FEM can be found in a huge number of refer-

ences, in which [Brenner and Ridgway Scott, 2008] is strongly recommended and

a detailed historical review of the evolution of FEM is in [Felippa, 2001]. Briefly

speaking, as an illustration of FEM, we shall introduce the variational formulation

of the elliptic boundary value problem

Lu = f in Ω, u = 0 on ∂Ω, (6.1)

where Ω is a bounded open subset of Rd (hereafter d = 3) and u : Ω → R is the

unknown function in some infinite dimensional function space V . Here f : Ω → R
is a given function and L denotes the uniformly elliptic partial differential operator

possibly of the form

Lu = −∂i(aij(x)∂ju) + bi(x)∂iu+ c(x)u.

. The related variational problem is

a(u, v) =< f, v >,

where

a(u, v) =

∫

Ω

aij∂iv∂ju+ vbi∂iu+ cvudx (6.2)

is a bilinear form. v is a test function and the variational form is obtained by

multiplying v to both sides of (6.1) and then doing integration by part in Ω. The

Galerkin finite-element approximation of the variational problem is then to find

uh ∈ Vh, where Vh is a finite dimensional subspace of V , such that

a(uh, vh) =< f, vh >, ∀vh ∈ Vh.

Suppose that {φ1, φ2, · · · , φN} is a basis for Vh. Usually, the basis functions can be
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nodal interpolating polynomials and the order of local truncation error of a scheme is

hence determined by the order of these piecewise polynomials. Then it is equivalent

that

a(uh, φi) =< f, φi >, i = 1, 2, · · · , N.

Writing uh in the form

uh =
N∑
i=1

ziφi,

we are led to the system of equations

a(φj, φi)zj =< f, φi >, i = 1, 2, · · · , N,

which we can write in the matrix-vector form as

Az = b. (6.3)

A typical implementation of a finite-element scheme consists of four steps: first, a

polyhedron mesh (e.g. tetrahedron triangulations) is generated to fill the whole sim-

ulation domain; second, element-wise matrices and right-hand-side (RHS) vectors

are constructed; third, the global linear system is built by gathering element matri-

ces and vectors; finally, the linear equations are solved globally, usually by Krylov

subspace (KSP) iteration methods.

Classic FEM have proved successful and efficient in applications to symmetric,

self-adjoint problems such as solid mechanics equations and diffusion type equa-

tions. However, the existence of convection terms prevents standard Galerkin FEM

from being effectively applied to general convection-diffusion equations, especially

the convection-dominated problems. This is because the non-symmetric convection

operator leads to the loss of the best approximation property in energy norm of

the Galerkin method. Various alternatives to standard FEM, e.g. the Streamline-

Upwind Petrov-Glerkin (SUPG) method (see [Donea and Huerta, 2003]), have al-

ready been well studied to cope with convection-dominated problems. Generally,

these FEM are called stabilized finite-element schemes, which make great break-

through in modelling fluid dynamics problems. A finite-element scheme with a

grad-div stabilization technique has been successfully applied to incompressible vis-

cous flows and corresponding planetary dynamo problems ([Chan et al., 2001, 2007,

2010]).

There are many advantages in FEM. The first of all is the great flexibility. Geo-

metrically, due to the general unstructured elements in the mesh, FEM are adapted

to any arbitary physical domains with Lipschitz continuous boundaries. The refine-

ment and non-uniform mesh grading are also simple to conduct. This property is

extremely helpful in the presence of thin shear layers or viscous boundary layers, in

which smaller mesh sizes are in need to resolve small-scale motions. Mathematically,
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unlike finite-difference and finite-volume methods, which require local operations

within wide stencils containing adjacent nodes or cells, the key implementations of

FEM algorithms are localized into elements. Interpolations, integrations and local

assembly are all done within elements. There is no explicit inter-element data ex-

changes at all. Then it is understandable why FEM have good hp-adaptivity – mesh

refinement or elements merging are straightforward; changing the order of a scheme

simply means adopting higher/lower order elements which contain more/less nodes;

even changing element types only leads to small amount of code rewriting. By

contrast, for instance, if the order of the scheme is changed, substantial global mod-

ifications must be done for finite-difference/finite-volume codes because the choice

of stencils directly affects interior nodes/cells, boundary conditions implementations

and communications among processes. The great flexibility is precious in any sense.

In the code developing stage, we can always start from the simplest equation, such

as Poisson equation, the simplest linear tetrahedral element and the simplest mesh

partition, like Element-by-Element (EBE) technique. Such primitive code is quick

to debug and validate. The ensuing extensions of the code can result in a lot of

variants adapted for different dynamical problems, e.g. incompressible flows and

compressible flows.

Another concern is the scalability. Generally speaking, the reason why we cannot

simulate fluid dynamical processes on grids of very high resolution often is not be-

cause there are not enough CPUs available but there is no speedup at all if too many

CPUs are used. Ideas of parallelization of fluid dynamics simulations are all mainly

based on the decomposition of the global domain into subdomains. Smaller size

local problems on subdomains are then distributed to a number of processes. These

processes run simultaneously on different processors. If all the subdomain-problems

were independent of one another, the parallelization would be fully scalable – the

overall speed is doubled if the number of processes is doubled, which is called a

“strong scalability”. However, strong scalability is never achieved or even expected

in fluid dynamics simulations because the physical interactions among fluid in dif-

ferent subdomains are inevitable. Numerically, data exchanges among processes,

which pass the physical interactions, must happen and will limit the overall running

speed if such communications are very intensive. Practically, high resolution grids

or meshes mean vast number of grid nodes or degrees of freedom. If one employs

more processors in the hope of reducing subdomain-problems, it must result in more

subdomains and larger specific area of interfaces. Because information exchanges

take place on interfaces, communications become more intensive. After some point,

the slowdown owing to communications certainly will outweigh the speedup due to

massive parallelization. Specifically speaking, for FEM, as schemes end up with a

linear equations system like (6.3). During the parallel solving process, communica-

tions take place in such operations as matrix-vector products. The communications
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are indirectly (but still essentially) related to underlying physical interactions among

neighboring subdomains. The scalability of a parallel linear equations solver can be

improved by elegant algebraic and geometric optimizations.

There are two major ideas to address the scalability dilemma. The first one is

a hardware-level solution. If the bandwidth and clock-frequency of inter-processor

communications could be comparable to the commands execution and data pro-

cessing speed of CPUs, the communications would no longer become the bottle

neck, which is unlikely in a near future. The other feasible option is better algo-

rithms. Within the FEM framework, the development of numerical methods for

large algebraic systems is central in the development of efficient codes. The domain-

decomposition-methods (DDM) based on the matrix space decomposition has long

been studied since 1980s (see [Chan and Mathew, 1994; Smith et al., 1996; Toselli

and Widlund, 2005; Xu and Zou, 1998]). DDM are aimed to achieve so called “weak

scalability” – the overall running time remains unchanged if the local workload

on individual processors does not vary. Successful DDM schemes ensure that the

convergence rate in solving the linear system resulting from FEM formulations is

independent of the typical mesh size h. Abstract overlapping domain-decomposition

methods such as the additive Schwarz method and its generalizations can be conve-

niently incorporated in various finite-element and implicit finite-difference/volume

schemes (see [Aitbayev et al., 1999; Cai, 1990, 2005, 2009; Cai and Zou, 2002; Cai

et al., 2002; Luo et al., 2011; Yang and Cai, 2011]). The other large class of DDM

are the non-overlapping substructuring methods including dual methods, primal

methods and hybrid dual-primal methods (see chapters in [Toselli and Widlund,

2005] and references therein). Generally speaking, according to [Kong, 2011], op-

timal implementations of substructuring methods are closely related to underlying

properties of every particular equation and spatial domain. There has not been any

standard/univeral implementation of such promising methods as FETI-DP. Never-

theless, there do exist quite a few applications, e.g. [Farhat et al., 2000; Klawonn and

Rheinbach, 2010; Li, 2005]. DDM, theoretically, can guarantee the weak scalability

of a finite-element scheme, which implies the potential of conducting unprecedent-

edly high resolution simulations.

Currently, a finite-element code for 3D fully compressible fluids convection is

under development. This code finally will implement a SUPG finite element scheme

with an abstract Additive Schwarz Preconditioner. Also, we will build the code on

PETSc platform ([Balay et al., 2011]). PETSc is a parallel library assisting users by

reducing their workload in managing communications. The carefully designed data

structures and routines ensure the optimized quality of communications. Therefore,

user defined codes can mainly focus on the delicate algorithm. PETSc provides

interfaces to a number of optional external software packages and toolkits such as

SuperLU, ParMetis and Parstix. It also supports various modes of parallelization
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such as MPI, shared memory pthreads, and NVIDIA GPUs, as well as hybrid MPI-

shared memory pthreads or MPI-GPU parallelism. The intensive error checking

mechanism and friendly output format lead to very effective debugging. The code

writing was launched in November 2011 and the code development is scheduled into

four major phases.

• Stage 1 : The code is solving second order general elliptic equations on a 3D

tetrahedra mesh in the spherical/spheroidal domain. The objectives are to

build the general data structures and to implement a standard finite-element

scheme. All data abstraction and interfaces are ready for further extensions.

• Stage 2 : The model will be extended to a general scalar convection-diffusion

equation, which requires the SUPG finite element scheme to cope with the

large convective term. At this stage, the code can model some transport

processes with prescribed velocities.

• Stage 3 : Fully compressible Navier-Stokes equations will be solved and inter-

mediate resolution simulations of solar convection can be carried out.

• Stage 4 : DDM will be incorporated in the code to challenge high-resolution

simulations.

As a large project, it is impossible to complete the fully functional code in the short

final stage of my PhD degree work. So far, the first stage has been completed. The

code descriptions will be presented in this chapter. Meanwhile, we will also report

the validation of the code and its application to a simple planetary mass distribution

problem.

In the following sections, the declarations and public interfaces of important

classes will be discussed in §6.2. A quick application will be found in §6.3. This

chapter will be closed by concluding remarks in §6.4.

6.2 PETSc Finite Element Code for 3D Second

Order Elliptic Equations

6.2.1 General Pictures

We are solving the second order elliptic equation in an oblate spheroidal domain

whose equatorial radius is unity.

−∇2u+ λu = f, u|∂Ω = g, (6.4)

Note that if λ > 0, the equation is the linearized Poisson-Boltzmann equation

(LPBE) while if λ < 0, it is then the Helmholtz equation. The equation degen-

erates to a Poisson equation at λ = 0. If the 10-node tetrahedral elements are
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adopted to form the mesh triangulations, the standard Galerkin FEM lead to the

linear system (6.3). The degrees of freedom (Dof) can be split into two sets, interior

Dof which are nodal values defined on interior nodes, and Dirichlet boundary Dof

which are nodal values defined on Dirichlet boundary nodes. The matrix A and

RHS b can also undertake such decomposition. Then the (6.3) can be fully written

(
AII AIB

ABI ABB

)(
zI

zB

)
=

(
bI

bB

)
, (6.5)

where the subscripts I and B respectively denote the “interior” and “boundary”

components. Because the Dirichlet boundary conditions impose the values on bound-

ary Dof zB, it can be shown that the linear system taking into account of Dirichlet

boundary conditions is

AIIzI = bI − AIBzB (6.6)

(See [Toselli and Widlund, 2005]). In other words, only the interior Dof are solved.

We call the data “equation-mode data” if they are stored globally according to the in-

dices of unknowns, which are directly linked to the global numbering of elements and

mesh nodes; on the other hand, “element-mode data” are stored locally on elements

and indexed according to the local numbering of nodes inside elements. FEM imple-

mentations require lots of gather/scatter processes between equation-mode data and

element-mode data. Because of the parallelization, the indices mapping between two

modes frequently take place among processes, which induces communications. In

the coding, major efforts are done at three levels: the global parallel linear system,

the local elementwise operations and data gather/scatter.

The code is written in C++, which is an Object-Oriented Programming (OOP)

language. OOP has such modern features as data abstraction, encapsulation, poly-

morphism and inheritance. OOP became the dominant programming methodology

since mid 1990s as the classical Process-Oriented Programming was no longer able

to cope with and maintain codes of great complexity. The data abstraction of OOP

indicates that objects containing data and corresponding actions are considered to

be a new data type from an external point of view. For example, the element can be

abstracted to be a type of data. Any object of the “element” type will self-contain

its data and operations that represent properties a realistic element should hold.

OOP mechanism also makes sure that users can manipulate and interact with an

object only via its public interfaces. All the other data and operations are encap-

sulated and protected from any external access. The encapsulation not only is the

means to realize the data abstraction but also is a guarantee of modularity. We

shall still use the “element” type data as an example. An “element” object should

be able to return a locally assembled matrix. However, how this object assembles

its local matrix is encapsulated and invisible to its users. Users do not necessarily
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know the matrix construction approach but only need to take away the matrix via

some data-obtaining routine. It is apparent, if we switch from a tetrahedral element

to a hexahedral one, for example, the local matrix construction part must be rewrit-

ten, but the users of the matrix do not have to make any little bit change because

they are not affected and cannot see any difference, from an external point of view.

A code with such good modularity would be extensible because improvements and

updates are only localized into separate modules. Inheritance and polymorphism

are also crucial in a good extensibility. Overloading and dynamic binding make it

possible to determine at runtime the particular version of routines that should be

activated or applied. In this sense, we are able to produce one unique user interface

for different tasks under different conditions. This functionality will be well illus-

trated by the Calc class of this code. In what follows, the most important several

classes will be introduced one by one.

6.2.2 ParallelEnv Class

The class ParallelEnv initializes the parallel environment. The declarations of

members of this class are in ParallelEnv.h and function members are defined in

ParallelEnv.cpp. ParallelEnv class encapsulates also a series of MPI toolkits.

Although PETSc handles the majority of communications, we still have to explic-

itly call MPI functions to conduct some auxiliary communications. ParallelEnv

class hence is also a supplementary module of parallelization. We will discuss a few

important data and interfaces.

ParallelEnv::ParallelEnv(int *, char ***, char *, char *):
The constructor initializes the global parallelization by PetscInitialize(int *argc,

char ***argv, char *file, char *help). The global communicator

PETSC COMM WORLD is then established. The index of each process is assigned

and the total number of processes within the communicator is recorded. The con-

structor of the ParallelEnv object is the first function called in the programme at

runtime.

ParallelEnv::∼ParallelEnv():
The destructor finalizes the parallel environment at the end of the programme run-

ning. It is the last command in the execution.

void ParallelEnv::BCast(varargin):
This interface broadcasts data from a root process to others. Depending on different

arguments passed to it, the function is overloaded for broadcasting integer/double

variables/arrays. For example, “BCast(PetscReal *p);” will broadcast a double pre-

cision variable *p, while “BCast(PetscInt *Begin, PetscInt *End);” results in the

broadcasting of an integer array from the address “Begin” to “End-1”.

void ParallelEnv::Reduce(varargin):
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Similar to BCast(), Reduce() is also multi-overloaded. It utilizesMPI Reduce()

andMPI Allreduce() to apply such reducing operations as MPI SUM, MPI MAX,

etc., to variables/arrays.

6.2.3 Element Class

Element class is one of the most central modules of the FEM code. In this ver-

sion, Element class is an abstraction of a mixed 4-node linear/10-node quadratic

isoparametric tetrahedral element, as depicted in the Figure 6.1(a). It contains not

only geometrical data, such as nodes indices, nodes coordinates, boundary nodes,

locations of Gaussian abscissae, etc., but also algebraic structures including local

Dof, local Matrix, local RHS vector and so on. All relevant operations on these

data are also contained within the scope of the class. The members declarations

are in Element.h and corresponding definitions and implementations are in Ele-

ment.cpp.

Important Private Data Members

GNum: GNum is an integer vector. The indices of GNum represent the local

numbering of nodes within the element. Its components are the global numbering.

Coor: Coor stores the Cartesian coordinates of the ten nodes in the element. It

is of a composite-vector type, namely, vector< vector<PetscReal> >.

DiriBdNode: This member contains the global indices of nodes located on the

Dirichlet boundary. It can be an empty integer vector if the element does not inter-

sect the boundary.

Neighbor: Because FEM implementations generally end up with a large sparse

linear system, in PETSc, the knowledge of the non-zero pattern is required in the

pre-allocation stage. Neighboring elements contribute to non-zeros in the global

matrix. Therefore, we need such member holding a list of elements adjacent to this

element.

LocMat: Elementwise Local matrix is computed by carrying out local integration

of the bilinear form (6.2). It is worth mentioning that the dimension of LocMat is

(NOD×NDOF)×(NOD×NDOF), where NOD and NDOF are two macros respec-

tively denote the total number of nodes in an element and total number of Dof

defined on each node. In the current code, NOD is ten as elements in the mesh are

all quadratic ones; NDOF is one because we are solving a single scalar equation. To

extend the code into multi-equation, vectorial-function mode, we simply change the

macro NDOF.

LocRHS:LocRHS is the local RHS vector of the dimension NOD×NRHS. NRHS

is another macro indicating the number of forcing components defined on each node.

Usually, NRHS is equal to NDOF.
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Key Private Implementation Functions

void Element::SetLocMat():
Let the elementwise matrix be Ae and an element domain be K. Its components

are computed as

A
(e)
ij =

∫

K

∇φi · ∇φj + λφiφjdτ. (6.7)

Note the indices i, j here are all “element-mode” numbering.However, we always

do the integration by Gaussian quadrature in a barycentric coordinate system (see

[Coxeter, 1969]). In the tetrahedral element, we have four barycentric coordinates

L1, L2, L3 and L4, three of which are independent. Due to the coordinates trans-

formations inside the element.

x =
4∑

i=1

xiLi, y =
4∑

i=1

yiLi, z =
4∑

i=1

ziLi,

where xi, yi, zi are the Cartesian coordinates of the four vertices of the tetrahedron,

we can compute the Jacobian matrix

J =




∂x

∂L1

∂y

∂L1

∂z

∂L1

∂x

∂L2

∂y

∂L2

∂z

∂L2

∂x

∂L3

∂y

∂L3

∂z

∂L3



,

and its inverse J−1. The nodal interpolating basis functions can also be written in

barycentric coordinates

φi = Li(2Li − 1), i = 1, 2, 3, 4,

φ5 = 4L1L2, φ6 = 4L1L3, φ7 = 4L1L4,

φ8 = 4L2L3, φ9 = 4L2L4, φ10 = 4L3L4

.

In the implementation, we compute (6.7) by

A(e) =

∫ 1

0

∫ 1

0

∫ 1

0

[
(J−1∇LN)T (J−1∇LN) + λNNT

]|J|dL1dL2dL3,

where

N = {φ1, φ2, · · · , φ10}T
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and

∇LN =




∂φ1

∂L1

,
∂φ2

∂L1

, · · · , ∂φ10

∂L1

∂φ1

∂L2

,
∂φ2

∂L2

, · · · , ∂φ10

∂L2

∂φ1

∂L3

,
∂φ2

∂L3

, · · · , ∂φ10

∂L3



.

void Element::SetRHS():
Similar to setting local matrix, we compute a local integration to obtain the local

RHS vector b(e). Using the notations introduced above, we have

b(e) =

∫ 1

0

∫ 1

0

∫ 1

0

f(L1, L2, L3)N|J|dL1dL2dL3.

void Element::SetDiriBC():
This function applies the boundary conditions according to (6.6). It extracts Loc-

MatII,LocMatIB and modifies LocRHS into LocRHSI. After the execution of

SetDiriBC(), the local matrix and RHS vector are ready to be gathered into their

global locations.

Public User Interfaces

Majority of the public functions are data passing services and, hence, are declared

with the inline directive due to their simplicity. Through these functions, constant

references of private data members such as GNum, LocMatII, LocRHSI, etc.,

are fetched and passed to external users. The public interfaces also include a few

other functional routines doing some elementwise quantities computations, which

are useful in the post-processing. The data updating interfaces for future time-

dependent problems are also placed without implementations in the current code.

6.2.4 Mesh Class

The Mesh class is global-level abstraction of the geometry and mesh grids. A Mesh

object stores the mesh and partitioning data. The tetrahedral mesh is generated by

NetGen ([Schöberl, 2004]) while a balanced partition is done by utilizing the parallel

graph/mesh partitioning tool ParMetis ([Karypis and Schloegel, 2011]). The global

mesh sketch in an oblate spheroidal domain is shown in the Figure 6.1(b). A proper

partition is essential in minimizing the specific area of interfaces among substructures

distributed onto different processes. As the convention, the declarations are all

put in Mesh.h and corresponding definitions and implementations are placed in

Mesh.cpp.
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Figure 6.1: The sketch of a single ten-node tetrahedral element and the oblate
spheroidal mesh, in the panel(a), the local numbering of nodes in the element is
presented. A linear tetrahedral element only involves the four vertices while all the
ten nodes will enable a quadratic element.

Important Public Data Members

Mat Coord: Mat is a PETSc matrix object. Mat type supports serial/parallel

dense/sparse formats. Coord is a parallel dense matrix, namelyMATMPIDENSE

type. The Cartesian coordinates of all the mesh nodes are stored in this matrix.

PETSc manages the storage of data over the communicator and all processes access

the data via the routine MatGetValues().

Mat ENod: Also as a parallel denseMat object, ENod is a NEles×NOD matrix

containing the global numbering of nodes in elements. NEles is the total number

of elements in the mesh. Each row of ENod records an element by its ten nodes.

Elementwise data GNum is the local portion of ENod.

Vec NdSurf : Vec is a PETSc vector object. Similar to the Mat object, Vec

type also support both serial and parallel formats. NdSurf is a vector of boundary

nodes indices. Element objects use the information to apply boundary conditions

to the linear system.

AO Node2Unknown: Application Ordering (AO) is a very useful PETSc

object. It is used to realize the mapping between “element-mode” indices and

“equation-mode” ones. Only via the routinesAOApplicationToPetsc() andAOPetsc-

ToApplication() can the gather/scatter operations be done.

Usually, in OOP, data members should not be parts of the public interface. Here,

in the Mesh class, however, we allow public access to the above four data mem-

bers. It is safe because these PETSc objects can only be used via PETSc routines.

Any access attempts in the manner of using objects of C++ built-in type fails at

compiling time.
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Key Private Implementation Functions

void Mesh::MeshGeneration():
This function generates the finite-element mesh at the pre-processing stage. Cur-

rently, the mesh is read in from mesh files exported by NetGen. It is also possible to

generate the volume mesh through API of mesh generating libraries such as nglib

and tetgen. In any case, the mesh generation is an independent module. Altering

the means of mesh generation never causes modifications to the rest of the code.

void Mesh::MeshPartition():
Mesh partitioning divides the whole spatial domain into subdomains, which respec-

tively are assigned to processes in the communicator. A subdomain is not necessarily

an intact one piece. It is numerically feasible to form a subdomain by picking up

elements randomly regardless of their spatial locations. Element-by-Element (EBE)

schemes usually, either explicitly or implicitly, implement such irregular mesh par-

titioning. However, as we have discussed, irregular partitioning will result in much

larger specific area of interfaces among subdomains, which leads to a very poor scal-

ability. A non-trivial partition is to cut the whole domain into blocks consisting of

similar number of elements and minimize the total contacting area among blocks.

In other words, mesh partitioning balances the workload on processes and reduces

communications. In this code, ParMetis is employed via PETSc MatPartitioning

object. After the partitioning, the vector<PetscInt> type data member EleIdx

will contain the indices of elements assigned to the current process and ENod will

contain fill-reducing ordering of mesh nodes.

6.2.5 SubDomain Class

The SubDomain class is called sub-level abstraction. It acts as the bridge between

global objects and local Element objects. A SubDomain object is the user of

Mesh and Element objects. SubDomain objects are initialized by aMesh object,

from which relevant geometrical data are collected. A list of Element objects are

then built. A few important public interfaces are provided, enabling the cross-

process global linear system assembly in the Calc class.

Important Private Data Member

list<Element> EleList: The list<T> is a C++ standard sequence con-

tainer. Element objects are pushed back into the list one by one. Because of the

convenient components moving, insertion and removal in a double-linked list, the

self-adaptive mesh with dynamic refinement and merging will be easier implemented

in the future.

Mesh& MeshObj: The SubDomain class only includes a reference of aMesh

object instead of a copy of it.
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Important Public Interfaces

void SubDomain::GatherGlobalMatrix(Mat &)
Consider a local matrix component A

(e)
ij . This function firstly determine its corre-

sponding location in the global matrix (I, J) by virtual of the AO object contained

in MeshObj. Then the value of A
(e)
ij is sent to the global matrix by calling the

PETSc routine MatSetValues(). After the loop over all elements, the global ma-

trix will be properly assembled.

void SubDomain::GatherGlobalRHS(Vec &)
The procedures of gathering the global RHS vector b is quite similar to those in

the matrix gathering. b
(e)
i is gathered from each element and added to the global

component bI .

6.2.6 Calc Class and the Derived Classes

Calc class is the top application-level module. This class is expected to implement

the PDE solving and post-processing. However, different types of PDEs always

requires quite different schemes to solve. For the sake of extensibility, the code should

tell the common features of numerical schemes from those problem-dependent ones.

The inheritance mechanism of OOP plays an important role. Calc class, as the

base class, only contains data and function members which are universally needed

in any PDE solving scheme. For a particular PDE model, however, a corresponding

derived class is defined. The derived class inherits the public and protected members

from the base class and meanwhile defines more necessary members. It is also worth

mentioning the concept “virtual function”, which is one of features of polymorphism.

In the base class, some functions are declared to be virtual functions such that they

are allowed to have different implementations in the derived classes. We firstly make

some explorations into the base class Calc.

Important Public and Protected Members of Calc Class

ParallelEnv *Par: Any parallel PDE solver must involve this parallel environ-

ment.

Mesh *MeshObj: A mesh object is also an essential component in any PDE

solver. Together with *Par, *MeshObj initializes the SubDomain object.

SubDomain *SubObj: The SubDomain object is certainly one of the key

data. The *SubObj use *MeshObj via its reference.

virtual void Calc::SolveIt() and

virtual void Calc::PostProcess(const PetscInt):
The two functions respectively carry out the PDE solving and the post-processing.

However, as discussed above, these two functions are no more than virtual inter-

faces. The real implementations depend on specific derived classes. The significance
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of virtual functions is the guarantee of unique user interfaces. Through dynamic

binding between the base-class pointer and derived-class objects, users are able to

employ different versions of functions by invoking common function names. This

dynamic binding feature is illustrated in the function main().

The Derived Class for Solving Helmholtz Equation

We will take an Helmholtz equation solver as an example of a typical class derived

from the Calc class. The descriptions of a few important data and function mem-

bers are as following.

Mat A: A is the global matrix, which is a PETSc parallel sparse matrix. It

is assembled by calling SubObj ->GatherGlobalMatrix(A)

Vec x,b: The two PETSc parallel vectors have the identical storage pattern. x

is the unknown vector which finally stores the solution. b is the global RHS vector

built by SubObj ->GatherGlobalRHS(b).

KSP ksp: KSP type is the PETSc implementations of Krylov-subspace-methods.

It provides uniform and efficient access to all of the package’s linear system solvers,

including direct and iterative. A KSP object is initialized by A,x and b and more

options of solvers can be specified at runtime.

HelmholtzCalc::HelmholtzCalc(int, char **, char *, char *):
When a HelmholtzCalc object is defined, the members of the base class are firstly

initialized by the constructor of Calc class. Because Calc class does not have a

default initialization, in the constructor of Helmholtz class, we then have to ex-

plicitly invoke Calc(int, char **, char *,char *) in the initialization list.

void HelmholtzCalc::SolveIt():
This is the HelmholtzCalc-class version of PDE solving routine. It can be called

via a Calc * type pointer or a Calc & type reference. To solve the Helmholtz equa-

tion, SolveIt() calls several private functions successively. The calling sequence is

HelmholtzCalc::SetupGlbMat(); // Matrix A assembly

HelmholtzCalc::SetupGlbRhs(); // RHS b assembly

HelmholtzCalc::SetupPc(); // Preconditioner construction, N.A. currently

HelmholtzCalc::SetupKsp(); // Initializing KSP object

HelmholtzCalc::Solving(); // Invoking PETSc KSPSolve(ksp,b,x)

6.2.7 Function main()

By carefully designing the levels of data abstraction, the main function of the code

is very compact. The dynamic binding takes place because we point a Calc * type

pointer to a HelmholtzCalc object. At runtime, the SolveIt() and PostPro-

cess() are then both the version in the derived class.
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Main.cpp:

//Macros are passed to the compiler by –D options.

#include “Calc.h”

#include “HelmholtzCalc.h”

#ifdef PETSC

#include “PetscInclude.h”

#endif

using namespace std;

static char help[ ] = “ This is a PETSc 3D Helmholtz equation solver.\n”;

int main(int argc, char **argv) {
Calc *CalcObj=new HelmholtzCalc(argc,argv,static cast<char *>(0),help);

CalcObj ->SolveIt();

CalcObj ->PostProcess(POSTLEVEL);

delete CalcObj;CalcObj=PETSC NULL;

return(0);

}

6.2.8 Code Validation

We validate the inhomogeneous Helmholtz equations solver by construction of an

exact solution in the oblate spheroidal domain. Let the oblateness be denoted by

the eccentricity of the boundary E. We construct an exact solution, in oblate

spheroidal coordinates (see Chapter 2,3), satisfying the zero boundary condition

u(ξ =
√

1/E2 − 1, η, φ) = 0,

u = − 1

12
(r̃3 − 2r̃2 + 1)(1− η2) sin 2φ, (6.8)

where

r̃ = c

√
(1 + ξ2)(1− η2) +

ξ2η2

1− E2
.

Substitution of (6.8) into (6.4), we can compute the artificial RHS forcing term.

We then insert the artificial force to the code and solve the numerical solutions uh

on meshes of different element sizes. The correct implementation should observe

the second order numerical accuracy, namely ||u − uh||2 ∼ O(h2), where h is the

typical size of elements in the mesh. In the Table 6.1 and Figure 6.2, we list the

numerical results of the validating simulations. The proper validated code is ready
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for applications.

Table 6.1: The Helmholtz equations solver validation, the inhomogeneous Helmholtz
equation is solved on four meshes of different typical mesh size h. The λ of (6.4)
takes a general value -1.25. The relative error roughly follows the second order
convergence rate. It is worth mentioning that because no DDM preconditioner is
applied, the condition number of the global matrix is of O(h−2). This is shown
by the increase in number of iterations. More Dof and more iterations lower the
efficiency of high-resolution simulations.

Mesh h Dof KSP Iterations KSP Time (s) ||u− uh||2/||u||2
1 0.1 2169 49 0.039151 1.534525e-01
2 0.05 14705 100 0.120296 4.426556e-02
3 0.025 107745 199 2.005602 1.264994e-02
4 0.0125 823745 397 34.773177 3.610184e-03

Figure 6.2: The illustration of the constructed analytic solution in an oblate
spheroidal domain, the pattern on the spheroidal surface has nothing to do with
any physics.

6.2.9 Comments

In this section, we have demonstrated the code by solving a second order elliptic

PDE. We have picked up and discussed the most essential modules. Other sup-

porting features and more detailed implementations can be found in the DVD-ROM

attached to this thesis, in which, the complete source files are submitted as an ap-

pendix (Appendix B). The code licensing is included in all the files and may change

in the future versions.
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6.3 An Application to Rotating Gaseous Planets

The fluid in the envelope of stars and gaseous planets are closely related to the

polytrope of index one (see [Anderson et al., 1974; Chandrasekhar, 1967; Hubbard

and Horedt, 1983]). The equation of state (EOS) is

p = Kρ2, (6.9)

where p is the gas pressure and ρ is the density. The hydrostatic equilibrium state

of a polytrope without rotation is established by well known Lane-Emden equation

([Lane, 1870], and also see[Chandrasekhar, 1939, 1967; Eddington, 1926; Horedt,

1986]). In one of a series of papers, [Chandrasekhar, 1933], firstly studied a polytrope

in a rotational equilibrium state by an asymptotic analysis assuming the rotational

parameter ε = Ω2/(2πGρ) (see Chapter 2) is small. According to [Anderson, 2012],

if we introduce the small parameter

q =
Ω2R3

GM
,

where R is the radius of the planet and M is its total mass, to the first order, the

coefficient K in (6.9) can be uniquely determined by

K =
2GR2

π

(
1− 4q

π2

)
. (6.10)

If we adopt the physical parameters of Jupiter, we can compute that

K = 200570Pam6kg−2.

On the other hand, if we consider the momentum equation for gas in rotational

hydrostatic equilibrium

− ∇p

ρ
−∇Vg −∇Vc = 0, (6.11)

where Vg and Vc are respectively the gravitational potential and the centrifugal

potential (see Chapter 2, 3). Making the substitution of (6.9) into (6.11) yields

− 2K∇ρ−∇Vg −∇Vc = 0. (6.12)

If we apply ∇· to both sides of (6.12), taking into account of ∇2Vg = 4πGρ and

Vc = −1
2
Ω2s2, the equation can be reduced to

K∇2ρ+ 2πGρ = −Ω2. (6.13)

Note the boundary condition of (6.13) is homogeneous, namely ρ = 0 on the surface
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of the planet. We can further scale the dimensional equation by

r → rRJ ,

ρ → ρ
MJ

R3
J

,

where RJ = 69894km is the mean radius of Jupiter at a one-bar level in its atmo-

sphere, and MJ = 1.8986 × 1027kg is the Jovian total mass ([Williams, November

16, 2004]). Finally, the dimensionless equation is derived to be

∇2ρ+ αρ = β, (6.14)

which is an inhomogeneous Helmholtz equation with two dimensionless parameters

α =
2πGR2

J

K
and β = −Ω2R5

J

MJK
. We then can solve (6.14) by virtual of our 3D Helmholtz

solver in an oblate spheroidal domain. The eccentricity of the spheroidal mesh

matches exactly the observed shape of Jupiter. The radial density and pressure

distributions are shown in Figure 6.3(a) and (b), respectively. The illustration of

the density in a meridional cross-section is in Figure 6.4. In [Chandrasekhar, 1933],
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Figure 6.3: The density and pressure profiles of a Jupiter-like polytrope of index
one

for a rotating polytrope of index one, the relation between the mean density and its

central density, to the first order of the rotational parameter ε, is given by

ρc = ρ̄× 3.2899(1 + 0.710ε), (6.15)

where ρc is the density in the core and ρ̄ is the mean density. For Jupiter, the

mean density is ρ̄ = 1326kg/m3 and ε = 0.0556, we can compute the central density

of Jupiter to be ρc = 4535kg/m3 by (6.15). It can be seen, quantitatively, our

direct 3D simulation reproduces and verifies the central density predicted by the

approximation method. The two curves in Figure 6.3 are also consistent with the

results given in [Anderson, 2012], which solves the density and pressure profiles

analytically in a spherical geometry.
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Figure 6.4: The density distribution of a Jupiter-like polytrope of index one in a
meridional cross-section, the numbers by the side of the color bar are the density
values in the unit kg/m3.

It is important to point out that in our numerical analysis, the shape of the

simulation domain is not part of the solution but an assumption. Just the same as

[Anderson, 2012] where a spherical geometry is assumed, our density solution is also

not a physical one. More precisely, we have studied a model of polytropic gas which

is of an oblate shape as a result of the rotational hydrostatic equilibrium. Because we

adopt such physical parameters of Jupiter, the shape of Jupiter enters our analysis

as an empirical assumption. If the interior of Jupiter does not depart too much from

the convective equilibrium, then our polytrope solution well represents the realistic

Jupiter.

6.4 Summary and Remarks

We have demonstrated a parallel finite-element code in this chapter. Though it is

in a very preliminary stage, it has already been applied to a planetary structure

problem. As we have discussed a lot in the main text, the code must be extended

and finally applied to compressible convection and solar dynamo problems. There

are still plenty of efforts to be made, which may account for another one to two

PhD degree projects. In this sense, the following work is no longer included into the

thesis. On the other hand, we can continue exploring into the planetary structure

problems. By means of the Helmholtz equation solver at hand, we are able to
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generalize the two-layer problem discussed in Chapter 2 and the differential rotation

problem presented in Chapter 3 to compressible gas configurations, which are better

models for giant planets such as Jupiter, Saturn and most exsoplanets discovered so

far.
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Chapter 7

Conclusions

In this thesis, a few classical research areas of fluid mechanics are revisited. The

figure of a self-gravitational system is one of such fundamental problems because it

is closely related to the formation and evolution of celestial bodies. Stars, brown

dwarves and planets are formed by collapse of interstellar gas clouds due to Jeans

instability. As the result of the conservation of angular momentum, the formed

celestial bodies generally are spinning. In the geological time scale, most of celestial

bodies are “fluid-like”, even for the terrestrial planets like our Earth. It is well

known and simple to establish that an isolated static fluid under self-gravity must

be in a perfect spherical shape. However, if rotation and some other internal flows

are present, the fluid cannot withstand the shear stress as a consequence of the

centrifugal force. Therefore, it must deform into some different geometry. As we have

discussed in Chapter 2, 3 and 6, basically, the fluid body becomes an oblate spheroid.

The spheroidal shapes of rotating stars and planets attracted so many notables

such as Maclaurin, d’Alembert, Clairaut, Euler, Laplace, Legendre, Poisson, Gauss,

and Chandrasekhar. The figure of a planet or a star is an important parameter

controlling the interior flows and structures. On the other hand, in turn, the flows

such as differential rotation and such structures as core-mantle-boundary (CMB)

modify the equilibrium figure. In the corresponding chapters, we have looked into

these complex fluid systems and made several breakthroughs. To summarize, we

have mainly studied the feedback of interior structures and weak flows. The results

will be generally useful in inversions of some non-observable properties of planets

and stars. Currently, our figure models for two-layer spheroids and weak differential

rotation are based on incompressible fluids. The involved mathematical analyses

are relatively clear-cut and definite. In Chapter 6, however, we have attempted to

study such more realistic compressible fluids models for gaseous planets and stellar

bodies. We definitely will continue working on relevant theories and computations.

Another quite classical problem we tackle in this thesis is the Stokes flow theories.

Unlike a lot of geophysical and astrophysical fluid systems in which flows are all with

large Reynolds number, Stokes flow is a typical model for highly viscous cases. Flows

driven by tiny and slow-moving bodies usually can be well approximated by Stokes
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flow models. Such problems are commonly seen in many biological fluid systems,

for example, the microswimming process of microorganism. An interesting frontier

of the biomagnetism research is the magnetotaxis of a family of bacteria. The

magnetotactic bacteria are closely related to the bio-mineralization of iron. It is also

believed that the abilities of magnetotaxis seen in such advanced animals as pigeons

and sea turtles actually have origins in the magnetotactic bacteria. As a result,

lots of biologists are devoted to modelling the behaviors of magnetotactic bacteria

under external magnetic fields. In all the models available nowadays, the bacteria

are approximated by spherical shape such that the classical Stokes formulations

of drag force and rotational torque can be applied. However, with more and more

accurate and precise observations available, the spherical approximation is no longer

satisfactory enough. In Chapter 4, we firstly consider the shape of bacteria to be

elongated prolate spheroid, which perfectly matches most of Cocci and Bacilloses.

The Stokes flow driven by such prolate spheroids are formulated fully analytically in

prolate spheroidal coordinates, which enables the better modelling of dynamics of

magnetotaxis. As the ensuing application of our theories, a manuscript on swimming

magnetotactic bacteria has recently been submitted. We expect that our work will

facilitate relevant research.

Computational fluid dynamics (CFD), without any doubt, is one of the most

important means in analyses of flows and forces acting on them. Numerical work is

also a major part of this thesis. In Chapter 5, we employ modern high performance

parallel computers to help model the precession driven flows in channels. The astro-

physical background is the fluid inside a precessing planet. Precession is a common

phenomenon in the universe. Because of the interactions with other objects, any

rotating celestial body is precessing. A good example is our own Earth, which is

precessing slowly due to the torque imposed by the Sun and the Moon. Every about

25800 years, the rotational axis of the Earth completes a precessional cycle. Pre-

cession drives interior flows, which can be very strong in some occasions. The flows

then may generate and maintain magnetic fields via dynamo processes. In our work,

the flows inside precessing channels are found to be controlled by the strength of

precession as well as the geometrical aspect ratio of the channel. For some particular

aspect ratio, inertial modes can be resonant with the precessional forcing and hence

produce strong and complex interior flows. The numerical analyses are done by

a finite-difference scheme which is efficiently parallelized. The intensive numerical

experiments have resulted in plenty of results, which confirm theoretical asymptotic

analyses done by Prof. Keke Zhang. The channel precession problem does give an

insight into the precession driven flows. However, further extensions of the studies

into cylindrical and spherical geometries will be crucial for fully understanding the

geomagnetic significance of precessions.

Projects discussed above all have ended up with publications in proper journals.
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Chapter 6, however, only contains a mile stone in a large project. A finite-element

code is under development for modelling fully compressible convection problems.

The code is expected to be efficient, highly scalable and robust in solving 3D con-

vection dominated Navier-Stokes equations. There is no straightforward approach

to create such a big code. We have to gradually equip our code with more func-

tionalities and finally build the complete code. At the current stage, the code is

able to be applied to 3D general elliptic equations. The code has been designed

to be flexible for extensions. We have studied the structure of rotating polytrope

by virtue of this code and the results are shown and discussed in Chapter 6. This

application has two significant aspects. First, the code is validated and hence is

ready for further extensions. Second, it opens the studies of planetary structures in

the regime of compressible fluids. Both the directions are promising scientifically.

To summarize, this thesis mainly reports the research work on several astrophys-

ical fluid mechanical problems. The particular inter-discipline project linked to a

biological fluid system is also of lots of importance. The thesis then is closed by this

concluding remark.

150



Appendix A

The “Small Core” Case of a

Two-layer Spheroid

Consider the more complicated case of the “small core” planet–when either the core

is sufficiently small or the rotation rate Ω is fast enough that the foci of the free

surface is located within the outer layer. We introduce a special level surface of the

confocal hyperboloid given by

ηm =

√
1− c21

c22
(1 + ξ2i ),

which is tangent to the equator of the interface S1; the hyperboloid is illustrated

in Figure 2.5. Since the foci c2 are located outside of the interface ξi and since the

second coordinates are used as the working coordinates, the multiple integration

over both the ξ and η directions must be broken up as a result of the discontinuous

density across the interface. Compared to the “large core” case, this results in an

even more complicated upper/lower limit of the multiple integration, although the

general approach and method are similar to the “large core” case. Here we present

the mathematical expressions for the condition on the outer free surface and the

gravitational energy Eg that are needed in determining the shape of “small-core”

planets.

After some manipulation using equation (2.29), the condition on the outer free
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surface at ξ = ξo for the “small core” case can be expressed as

C = 2πGc22

{[
ρ1

∫ 1

ηm

∫ ξI

0

f1(ξ
′, η′)dξ′dη′

+ ρ1

∫ −ηm

−1

∫ ξI

0

f1(ξ
′, η′)dξ′dη′

+ ρ2

∫ 1

ηm

∫ ξo

ξI

f1(ξ
′, η′)dξ′dη′

+ ρ2

∫ −ηm

−1

∫ ξo

ξI

f1(ξ
′, η′)dξ′dη′

+ ρ2

∫ ηm

−ηm

∫ ξo

0

f1(ξ
′, η′)dξ′dη′

]
sin−1 E2

+
[
ρ1

∫ 1

ηm

∫ ξI

0

f2(ξ
′, η′)dξ′dη′

+ ρ1

∫ −ηm

−1

∫ ξI

0

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ 1

ηm

∫ ξo

ξI

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ −ηm

−1

∫ ξo

ξI

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ ηm

−ηm

∫ ξo

0

f2(ξ
′, η′)dξ′dη′

]

× 5(3η2 − 1)

16E2
2

[
(3− 2E2

2) sin
−1 E2 − 3E2

√
1− E2

2

]}

− Ω2

2
(1 + ξ2o)(1− η2)c22. (A.1)

Similarly, the total self-gravitational energy Eg can be written as a sum of several
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quadruple integrals with the complicated upper/lower limits

Eg(E1,E2) = −2πGc52

{

ρ1

∫ 1

ηm

∫ ξI

0
f3(ξ, η)

[ ∫ 1

ηm

g1(ξ, η
′)dη′ +

∫ −ηm

−1
g1(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f1(ξ

′, η′)dξ′dη′
]
dξdη

+ρ1

∫ −ηm

−1

∫ ξI

0
f3(ξ, η)

[ ∫ 1

ηm

g1(ξ, η
′)dη′ +

∫ −ηm

−1
g1(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f1(ξ

′, η′)dξ′dη′
]
dξdη

+ρ2

∫ 1

ηm

∫ ξo

ξI

f3(ξ, η)
[ ∫ 1

ηm

g1(ξ, η
′)dη′ +

∫ −ηm

−1
g1(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f1(ξ

′, η′)dξ′dη′
]
dξdη

+ρ2

∫ −ηm

−1

∫ ξo

ξI

f3(ξ, η)
[ ∫ 1

ηm

g1(ξ, η
′)dη′ +

∫ −ηm

−1
g1(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f1(ξ

′, η′)dξ′dη′
]
dξdη

+ρ2

∫ ηm

−ηm

∫ ξo

0
f3(ξ, η)

[ ∫ 1

ηm

g1(ξ, η
′)dη′ +

∫ −ηm

−1
g1(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f1(ξ

′, η′)dξ′dη′
]
dξdη

+ρ1

∫ 1

ηm

∫ ξI

0
f1(ξ, η)

[ ∫ 1

ηm

g2(ξ, η
′)dη′ +

∫ −ηm

−1
g2(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξo

ξ
f3(ξ

′, η′)dξ′dη′
]
dξdη

+ρ1

∫ ηm

−1

∫ ξI

0
f1(ξ, η)

[ ∫ 1

ηm

g2(ξ, η
′)dη′ +

∫ −ηm

−1
g2(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξo

ξ
f3(ξ

′, η′)dξ′dη′
]
dξdη

+ρ2

∫ 1

ηm

∫ ξo

ξI

f1(ξ, η)
[ ∫ 1

ηm

g2(ξ, η
′)dη′ +

∫ −ηm

−1
g2(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξo

ξ
f3(ξ

′, η′)dξ′dη′
]
dξdη

+ρ2

∫ −ηm

−1

∫ ξo

ξI

f1(ξ, η)
[ ∫ 1

ηm

g2(ξ, η
′)dη′ +

∫ −ηm

−1
g2(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξo

ξ
f3(ξ

′, η′)dξ′dη′
]
dξdη

+ρ2

∫ ηm

−ηm

∫ ξo

0
f1(ξ, η)

[ ∫ 1

ηm

g2(ξ, η
′)dη′ +

∫ −ηm

−1
g2(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξo

ξ
f3(ξ

′, η′)dξ′dη′
]
dξdη

+
5ρ1

16

∫ 1

ηm

∫ ξI

0
f4(ξ, η)×

[ ∫ 1

ηm

g3(ξ, η
′)dη′ +

∫ −ηm

−1
g3(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f2(ξ

′, η′)dξ′dη′
]
dξdη

+
5ρ1

16

∫ −ηm

−1

∫ ξI

0
f4(ξ, η)×

[ ∫ 1

ηm

g3(ξ, η
′)dη′ +

∫ −ηm

−1
g3(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f2(ξ

′, η′)dξ′dη′
]
dξdη

+
5ρ2

16

∫ 1

ηm

∫ ξo

ξI

f4(ξ, η)×
[ ∫ 1

ηm

g3(ξ, η
′)dη′ +

∫ −ηm

−1
g3(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f2(ξ

′, η′)dξ′dη′
]
dξdη

+
5ρ2

16

∫ −ηm

−1

∫ ξo

ξI

f4(ξ, η)×
[ ∫ 1

ηm

g3(ξ, η
′)dη′ +

∫ −ηm

−1
g3(ξ, η

′)dη′ + ρ2

∫ ηm

−ηm

∫ ξ

0
f2(ξ

′, η′)dξ′dη′
]
dξdη

+
5ρ2

16

∫ ηm

−ηm
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0

[
3ξ2 − 1) cot−1 ξ − 3ξ

]
f2(ξ, η)×

[ ∫ 1

ηm

g3(ξ, η
′)dη′ +

∫ −ηm

−1
g3(ξ, η

′)dη′

+ ρ2

∫ ηm

−ηm

∫ ξ

0
f2(ξ

′, η′)dξ′dη′
]
dξdη

+
5ρ1

16

∫ 1

ηm
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0
f2(ξ, η)

[ ∫ 1

ηm

g4(ξ, η
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∫ −ηm

−1
g4(ξ, η

′)dη′ + ρ2
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−ηm
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f4(ξ

′, η′)dξ′dη′
]
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+
5ρ1

16

∫ −ηm

−1
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ηm
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5ρ2
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−ηm
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ξ
f4(ξ

′, η′)dξ′dη′
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dξdη

+
5ρ2
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∫ ηm
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f2(ξ, η)
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ηm

g4(ξ, η
′)dη′ +

∫ −ηm
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−ηm

∫ ξo
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′, η′)dξ′dη′
]
dξdη

}
,

(A.2)

where the functions gn, n = 1, 2, 3, 4 are the same as those for the “large core” case.

The expression for the centrifugal energy Vc remains the same as in the “large core”

case. Also, as in the case of the “large core”, for a given set of the three parameters,

we can solve (2.41) with the the gravitational energy Eg given by (A.2) and the
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centrifugal energy given by (2.40), together with the following constraint

0 = G(E1,E2)

= −Ω2 +
15πG

4

[
ρ1

∫ 1

ηm

∫ ξI

0

f2(ξ
′, η′)dξ′dη′

+ ρ1

∫ −ηm

−1

∫ ξI

0

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ 1

ηm

∫ ξo

ξI

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ −ηm

−1

∫ ξo

ξI

f2(ξ
′, η′)dξ′dη′

+ ρ2

∫ ηm

−ηm

∫ ξo

0

f2(ξ
′, η′)dξ′dη′

]

×
[
(3− 2E2

2) sin
−1 E2 − 3E2

√
1− E2

2

]
, (A.3)

which is derived from (A.1).
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Appendix B

The 3D Helmholtz Equation

Solver: Source Code

In the root directory of the DVD-ROM, the folder named Helmholtz3D can be

found. There are four folders and one Makefile file inside it. To compile and link

the code on a linux platform, one should firstly configure a stable version of PETSc

with the following configuration options:

./configure

--PETSC DIR= <dir>

--with-clanguage=C++

--with-c++-support=1 --with-c-support=1

--with-fortran=1 --with-fortran-interfaces=1

--with-large-file-io=1

--with-scalar-type=real --with-precision=double

--with-ar=ar --with-ranlib=ranlib

--with-mpi=1

--with-blas-lib= <dir> --with-lapack-lib= <dir>

--with-parmetis=1 --with-parmetis-dir= <dir>

--with-parmetis-include= <dir> --with-parmetis-lib= <dir>

The required packages such as ParMetis, MPICH2, BLAS&LAPACK also should

be installed in prior. After successful compiling and linking the C++ source files in

the src folder, the executable is put into the directory bin. By typing the command

line make run, the mpiexec will be invoked to launch the parallel processes and

all outputs are redirected to jobs. Note the Makefile is machine-dependent. One

should properly modify the Makefile to enable the proper functionalities. Tetrahe-

dral meshes for computations should be all put into mesh directory.
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