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Abstract

Electron transport at low temperatures in two-dimensional electron systems is

governed by two quantum corrections to the conductivity: weak localisation and

electron-electron interaction in the presence of disorder. We present the first ex-

perimental observation of these quantum corrections in graphene, a single layer of

carbon atoms, over a temperature range 0.02 - 200 K. Due to the peculiar proper-

ties of graphene, weak localisation is sensitive not only to inelastic, phase-breaking

scattering events, but also to elastic scattering mechanisms. The latter includes

scattering within and between the two valleys (intra- and inter-valley scattering,

respectively). These specifics make it possible, for example, to observe a transition

from weak localisation to antilocalisation. Our work reveals a number of surprising

features. First of all the transition occurs not only as the carrier density is varied,

but also as the temperature is tuned. The latter has never been observed in any

other system studied before. Second, due to weak electron-phonon interaction in

graphene, quantum interference of electrons survives at very high temperatures, up

to 200 K. For comparison, in other two-dimensional (2D) systems the weak locali-

sation effect is only seen below 50 K.

The electron-electron interaction correction is also affected by elastic scattering.

In a two-valley system, there are two temperature regimes of the interaction cor-

rection that depend on the strength of inter-valley scattering. In both regimes the

correction has its own expression. We show that because of the intra-valley scatter-

ing, a third regime is possible in graphene, where the expression for the correction

takes a new form. The study of weak localisation demonstrates that the third regime

is realised in our experiments. We use the new expression to determine the Fermi-

liquid parameter, which turns out to be smaller than in other 2D systems due to

the chirality of charge carriers.

At very low temperatures (below 100 mK) we observe a saturation of the electron

dephasing length. We study different mechanisms that could be responsible for the

saturation and discuss in detail two of them – spin-orbit interaction and electron

scattering off vacancies. We determine the spin coherence length from studies of

weak localisation and the temperature dependence of the conductivity and found

good agreement between the two types of experiments. We also show the way to
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tune the spin coherence length by an order of magnitude by controlling the level

of disorder. However, experiment shows contradictions with theory both in values

of the spin coherence length and the type of spin relaxation. We speculate about

another spin-related mechanism, spin flip by vacancies.

We also present electron transport in graphene irradiated by gallium ions. De-

pending on the dosage of irradiation the behavior of electrons changes. Namely,

electron localisation can be tuned from weak to strong. At low dosages we observe

the weak localisation regime, where the mentioned quantum corrections to the con-

ductivity dominate at low temperatures. We found the electron scattering between

the valleys to be enhanced, attributing it to atomically sharp defects (kicked out

carbon atoms) produced by ion irradiation. We also speculate that gallium ions

can be embedded in the substrate or trapped between silica and graphene. We draw

this conclusion after investigation of the spin-orbit interaction in irradiated samples.

At high dosages electrons become strongly localised and their transport occurs via

variable-range hopping.
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Introduction

The year 2004 was marked by the “discovery” of a fascinating material – graphene.

It is a sheet of carbon only one atom thick. Since then it has triggered a huge

number of research activities aimed at uncovering what this material is capable of.

Finally, in 2010 its discoverers were awarded the Nobel Prize for Physics. Six years

after its discovery, graphene has already shown itself to be the strongest material

in nature, the best ever conductor of heat and an excellent conductor of electricity.

These properties are already leading to graphene becoming part of our everyday lives

in the near future. For example, it is an excellent candidate for touch screens and

thin and flexible monitors. Apart from practical applications, graphene has become

a test bed to study fundamental physical phenomena. Many interesting properties

of graphene have already been shown, but many still remain to be revealed. Our

research is aimed at uncovering and understanding new physics in the conduction of

electrons in graphene. The project is about how electrons move and interact with

their surroundings.

In our every day lives we deal with objects that can be touched and seen with

the naked eye. Such objects obey classical laws of physics. But as we shrink the size

of a system, the properties of materials deviate from those observed in ‘classical’

objects, and quantum physics comes into play. For example, in the presence of im-

perfections of the crystal structure electron waves scatter off the potential created by

the imperfections and interfere with each other. This gives rise to many interesting

phenomena, such as quantum corrections to the conductivity: weak localisation and

antilocalisation of charge carriers and electron-electron interaction in the presence

of disorder. Investigation of the quantum correction in graphene under different

experimental conditions is this main focus of the thesis.

The structure of the thesis is the following.
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In Chapter 1 we start with basic concepts and describe interesting properties of

graphene, which we use throughout the thesis.

In Chapter 2 we discuss different quantum phenomena and highlight remarkable

differences between graphene and other two-dimensional systems. In this chapter

we explain the origins of these phenomena and provide the theoretical background

needed to understand the physics in graphene.

In Chapter 3 fabrication techniques and equipment for measurements are pre-

sented. Here we show how graphene can be produced by mechanical exfoliation

of graphite using adhesive tape. Graphite can be imagined as a stack of graphene

layers being held together by weak Van der Waals forces. The exfoliation technique

involves peeling off the layers and depositing them on top of a substrate. However,

their number in a sample can not be controlled. We discuss the ways of identifying

flakes of a certain thickness and show different methods of determining the num-

ber of layers. Field-effect transistors are produced from the flakes and loaded in

low-temperature cryostats for measurements. We discuss principles of operation of

different cryostats and show specifics of each of them.

In Chapter 4 we discuss our measurements of the quantum corrections to the

conductivity: weak localisation and electron-electron interaction in the presence of

disorder. We start with low temperatures, 5 K, and show a transition from weak

localisation to antilocalisation as a function of the carrier density and temperature.

We raise the temperature to 200 K and surprisingly still observe quantum inter-

ference. We discuss the reasons behind this by studying the dephasing time. This

is the time during which an electron loses information about its phase. It plays a

very important role in the interference of electron waves. The quantum corrections

depend similarly on temperature. Therefore, in order to study them, they have

to be separated. We present different methods of separating the two corrections

and compare them with each other. The electron-electron interaction correction

is then studied in different samples at temperatures between 0.25 and 40 K. We

show a new form of the expression for the interaction correction compared to other

two-dimensional systems and determine the Fermi-liquid parameter.

In Chapter 5 we study the quantum corrections at temperatures between 20 mK

and 4 K. In addition to the methods of their separation described in the previous

chapter, we demonstrate one more method. In the studies of weak localisation at
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temperatures below 0.1 K we observe a saturation of the dephasing length. We

consider possible origins of this saturation and discuss in detail two of them: spin-

orbit interaction and electron scattering off vacancies. Here we also determine the

spin coherence length in graphene, which despite many theories turns out to be

very short. We try to explain why this is so and show how it can be overcome.

We also demonstrate how to tune the spin coherence length by controlling the level

of disorder. The spin coherence length is also determined from the temperature

dependence of the conductivity. Its values are found to be in good agreement with

those extracted from the weak localisation studies.

In Chapter 6 we intentionally irradiate graphene samples with gallium ions and

study electron transport through such devices. The results are compared with those

obtained before ion bombardment. We show that as we increase the dosage of

irradiation, we move from weak to strong localisation regime. In the former case

electron transport at low temperatures is governed by the quantum corrections,

and in the latter case by variable range hopping. We also investigate how elastic

scattering is affected by irradiation.

In the last chapter we summarise all our findings.
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Chapter 1

Basic concepts

In this chapter we discuss basic concepts, which are necessary since they will be used

throughout the thesis. We start with the crystal structure of monolayer graphene

and use the tight-binding approximation to derive the linear dispersion relation –

one of the unusual properties of this material. Other properties of electrons in

graphene include chirality of charge carriers and the Berry phase. Each of these will

be discussed in detail.

1.1 Crystal structure of monolayer graphene

Graphene is a monolayer of carbon atoms arranged in a honeycomb structure [1],

Fig. 1.1(a). Its crystal lattice consists of two interpenetrating triangular sublattices,

the atoms of which are denoted by A and B in the figure. The lattice vectors,

which are the vectors between neighboring carbon atoms in a given sublattice, are

a⃗1 = (0; a) and a⃗2 = (a
√
3/2; a/2), where a = 1.42 ×

√
3 = 2.46 Å and the

carbon-carbon distance is 1.42 Å. The vectors between any two atoms (irrespective

of sublattice) are the nearest-neighbor vectors: b⃗1 = (−a/2
√
3; a/2), b⃗2 = (a/

√
3; 0)

and b⃗3 = (−a/2
√
3; − a/2) . Atoms A and B form a unit cell, a minimal number

of atoms whose repetition in space produces a crystal lattice, shown by the dashed

diamond in the figure. In reciprocal space, this leads to two inequivalent points

K and K′ in the Brillouin zone, Fig. 1.1(b), which are called Dirac points. The

reciprocal lattice vectors are δ⃗1 = (1/a
√
3; − 1/a) and δ⃗2 = (−2/a

√
3; 0).
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Figure 1.1: (a) Graphene crystal lattice consists of two sublattices A (red triangle)
and B (blue triangle). The unit cell (dashed diamond) has two atoms. Vectors a⃗1
and a⃗2 are the lattice unit vectors, b⃗1, b⃗2 and b⃗3 are the nearest-neighbor vectors.
(b) The corresponding Brillouin zone. K and K′ are the Dirac points.

1.2 Energy dispersion relation

The band structure of graphene is calculated [2] using the tight binding approxi-

mation. Graphene’s honeycomb crystal lattice is not a Bravais lattice, but the two

triangular sublattices, which it consists of, are. As there are two atoms in the unit

cell, A and B, electron wave functions that correspond to A and B are


φA = 1√

N

∑
A

e2πik⃗r⃗Aχ(r⃗ − r⃗A)

φB = 1√
N

∑
B

e2πik⃗r⃗Bχ(r⃗ − r⃗B)

, (1.1)

where r⃗A and r⃗B are the positions of atoms A and B, respectively, N is the number

of the unit cells in the crystal, and χ(r⃗) is the wave function of electrons on isolated

carbon atoms. To form φA and φB we take χ in N unit cells, which differ by a

phase factor e2πik⃗r⃗A/B , and then sum over the lattice vectors r⃗A and r⃗B of the whole

crystal.

The wave function of electrons in the solid is expressed by a linear combination

of functions φA and φB:

Ψ = φA + λφB , (1.2)

where λ is a coefficient to be optimised to minimize the energy E. The eigenvalues
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E of the function Ψ are calculated from the Schrödinger equation: HΨ = EΨ. We

multiply this equation by Ψ∗ from both sides and integrate:

E =
⟨Ψ|H|Ψ⟩
⟨Ψ|Ψ⟩

=

∫
Ψ∗HΨdr⃗∫
Ψ∗Ψdr⃗

. (1.3)

In this equation H represents the kinetic energy of an electron: H = p2/m. Substi-

tution of Ψ from equation (1.2) into (1.3) gives

E =

∫
(φ∗

A + λφ∗
B)H(φA + λφB)dr⃗∫

(φ∗
A + λφ∗

B)(φA + λφB)dr⃗
. (1.4)

We neglect the overlap between electrons on different atoms:
∫
φAφB = 0. Then

E =

∫
(φ∗

AHφA + λ2φ∗
BHφB + λφ∗

BHφA + λφ∗
AHφB)dr⃗∫

(φ∗
AφA + λ2φ∗

BφB)dr⃗
. (1.5)

Introducing the so called transfer integralsHAA =
∫
φ∗
AHφAdr⃗,HBB =

∫
φ∗
BHφBdr⃗,

HAB =
∫
φ∗
AHφBdr⃗, HBA =

∫
φ∗
BHφAdr⃗ and overlap integrals S1 =

∫
φ∗
AφAdr⃗,

S2 =
∫
φ∗
BφBdr⃗ and taking into account that S1 = S2 = S, HAA = HBB and

HAB = H∗
BA we get:

E =
HAA + λ2HBB + λ(HAB +HBA)

S(1 + λ2)
=

1

S

[
HAA +

2λ

1 + λ2
HAB

]
. (1.6)

To find the values of λ that give the minimum of E, we take the derivative of E

with respect to λ and equate it to zero, E ′
λ = 0 :

E ′
λ =

2(1 + λ2)− 2λ · λ
(1 + λ2)2

= 0 .

From this equation we find λ = ±1 and the minimised value of E is therefore:

E =
1

S
(HAA ±HAB) . (1.7)

We assume that the atomic wave function is normalised [3], such that S = 1. To

calculate HAA and HAB we substitute the wave functions of electrons from different
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sublattices, equations (1.1), to HAA =
∫
φ∗
AHφAdr⃗ and HAB =

∫
φ∗
AHφBdr⃗ :

HAA =
1

N

∑
A, A′

e−2πik⃗(r⃗A−r⃗A′ )

∫
χ∗(r⃗ − r⃗A)Hχ(r⃗ − r⃗A′)dr⃗ , (1.8)

HAB =
1

N

∑
A, B

e−2πik⃗(r⃗A−r⃗B)

∫
χ∗(r⃗ − r⃗A)Hχ(r⃗ − r⃗B)dr⃗ , (1.9)

where r⃗A − r⃗B = a⃗/
√
3 is the distance between two neighboring carbon atoms, A

and A′ are two carbon atoms in sublattice A.

The maximum contribution to HAA in equation (1.8) comes from r⃗A = r⃗A′ .

This gives the energy of the isolated atom E0 =
∫
χ∗(r⃗)Hχ(r⃗)dr⃗. The next order

contribution comes from r⃗A = r⃗A′ − a⃗1, where a⃗1 is a vector between two neighbors

in sublattice A (it can also be a⃗2), and gives γ′0 = −
∫
χ∗(r⃗ − a⃗1)Hχ(r⃗)dr⃗.

Similarly, in equation (1.9) the maximum contribution arises when A and B are

nearest neighbors. Then γ0 = −
∫
χ∗(r⃗ − b⃗1)Hχ(r⃗)dr⃗, where b⃗1 is a vector between

atoms A and B (in can also be b⃗2).

Now we can rewrite equations (1.8) and (1.9):

HAA = E0 − 2γ′0(cos 2πkya+ 2 cos πkxa
√
3 cos πkya) .

Similarly,

HAB = −γ0(e−2πikx(a/
√
3) + 2 cos πkya · e2πikx(a/2

√
3)) .

Then

HAB = γ0

√
1 + 4 cos2 πkya+ 4 cos πkya cosπkx

√
3a .

Thus, the energy is (see equation (1.7))

E = E0 − 2γ′0(cos 2πkya+ 2 cos πkxa
√
3 cos πkya)±

±γ0
√

1 + 4 cos2 πkya+ 4 cos πkya cosπkx
√
3a . (1.10)
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Figure 1.2: Energy spectrum of graphene.

E = E0 + 3γ
′

0 ±
√
3πγ0|⃗k − K⃗|a− 3π2γ

′

0|⃗k − K⃗|2a2 , (1.11)

where |⃗k − K⃗| means that we deal with wave vectors with respect to the K point.

Taking into account only nearest carbon neighbors (γ
′
0 = 0) we get the energy

dispersion relation in graphene:

|E − E0| = ±
√
3πγ0a|⃗k − K⃗| , (1.12)

where ‘+’ corresponds to electrons and ‘-’ corresponds to holes. The energy disper-

sion law with γ0, γ
′
0 ̸= 0 is shown in Fig. 1.2.

From equations (1.10) and (1.12) one can see that if only nearest neighbors are

taken into account, then the energy dependence on the wave vector is symmetric

and linear in the vicinity of the K and K′ points. However, if γ
′
0 ̸= 0, then the energy

dispersion relation becomes assymetric and non-linear.

In order to find the form of the Hamiltonian for electrons in graphene, we write

it using creation and annihilation field operators a+ and a, respectively, for sublat-

tice A. Similarly one can define creation and annihilation operators, b+ and b, for
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sublattice B. Then the Hamiltonian takes the form [4–6]:

H = −γ0
∑
r⃗

3∑
j=1

a+(r⃗)b(r⃗ + b⃗j) + b+(r⃗)a(r⃗ + a⃗j) . (1.13)

Here we neglected the contribution from the next-nearest neighbors, i.e. γ′0 = 0.

The Fourier transforms of the creation and annihilation operators are

a+(r⃗) =

∫
d2k⃗

(2π)2
e−ik⃗r⃗a+(k⃗) , b+(r⃗) =

∫
d2k⃗′

(2π)2
e−ik⃗′r⃗b+(k⃗′) ,

a(r⃗) =

∫
d2k⃗

(2π)2
eik⃗r⃗a(k⃗) , b(r⃗) =

∫
d2k⃗′

(2π)2
eik⃗

′r⃗b(k⃗′) . (1.14)

Combining equations (1.13) and (1.14) we get:

H = −γ0
∑∑∫

d2k⃗

(2π)2
e−ik⃗r⃗a+(k⃗)

∫
d2k′

(2π)2
eik⃗

′(r⃗+b⃗j)b(k⃗′)−

−γ0
∑∑∫

d2k⃗′

(2π)2
e−ik⃗′r⃗b+(k⃗′)

∫
d2k⃗

(2π)2
eik⃗(r⃗+a⃗j)a(k⃗) =

= −γ0
∫

d2k⃗

(2π)2
a+(k⃗)

∫
d2k⃗′

(2π)2

∑
ei(k⃗

′−k⃗)r⃗

3∑
j=1

eik⃗
′⃗bjb(k⃗′) + c. c. , (1.15)

where c. c. stands for complex conjugate. Taking into account that
∑
r⃗

ei(k⃗
′−k⃗)r⃗ =

2π2δ(k⃗′ − k⃗), integration over k⃗′ gives:

H = −γ0
∫

d2k⃗

(2π)2

[
a+(k⃗)

3∑
j=1

eik⃗⃗bjb(k⃗) + b+(k⃗)
3∑

j=1

e−ik⃗a⃗ja(k⃗)

]
. (1.16)

Now we can write our Hamiltonian in the form [4–6]

H =

∫
d2k⃗

(2π)2
ψ+(k⃗)H̃ψ(k⃗) , (1.17)

where ψ+(k⃗) =
(
a+(k⃗), b+(k⃗)

)
, ψ(k⃗) =

(
a(k⃗), b(k⃗)

)T
and

H̃ =


0 −γ

3∑
j=1

eik⃗⃗bj

−γ
3∑

j=1

eik⃗a⃗j 0

 . (1.18)
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The Hamiltonian can be simplified near the K and K′ points. In this case it

takes the following form:

H = ~νF (α1kx + α2ky) , (1.19)

where the Fermi velocity νF =
√
3aγ0/2~ and

α1 =

σi 0

0 −σi

 , (1.20)

σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 (1.21)

are the Pauli matrices.

Thus, for electrons in the K valley the Hamiltonian is

H = ~νF

 0 kx − iky

kx + iky 0

 . (1.22)

Since kx = −i ∂
∂x

and ky = −i ∂
∂y
, then

H = −i~νF

 0 i ∂
∂x

+ ∂
∂y

−i ∂
∂x

+ ∂
∂y

0

 . (1.23)

Representing the wave function as a two component column

Ψ =

ϕ
χ

 (1.24)

we arrive at the system of equations that comes from the Schrödinger equation:−i~νF
(

∂χ
∂x

− i∂χ
∂y

)
= Eϕ

−i~νF
(

∂ϕ
∂x

+ i∂ϕ
∂y

)
= Eχ

. (1.25)
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We substitute χ from the second equation into the first one and get:

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= − E2

~2ν2F
ϕ . (1.26)

The solution of this wave equation is ϕ = (1/
√
2) eikxx+ikyy. We substitute this

solution in the second equation in (1.25):

χ =
~νF (kx + iky)

E

1√
2
eikxx+ikyy = ±(kx + iky)√

k2x + k2y

1√
2
eikxx+ikyy =

= ±eiθ 1√
2
eikxx+ikyy, (1.27)

where θ = arctan(ky/kx) and +/− corresponds to electrons/holes.

Thus, the two component electron wave function takes the form:

Ψ =
1√
2

 1

±eiθ

 eikxx+ikyy . (1.28)

1.3 Properties of electrons in graphene

1.3.1 Density of States

Due to the linear dispersion relation, equation (1.12) and Fig. 1.3(a), the density of

states (DOS – the number of states per unit volume and per unit energy) in graphene

is different compared to that in conventional two-dimensional systems, which have a

parabolic dispersion relation. Indeed, the total number of states is Ns = gV Vϕ/V1,

where g is the spin and valley degeneracy, Vϕ is the phase volume, V1 is the phase

volume per one state and V is the volume in the coordinate space. Substituting

Vϕ = πp2 = π(~k)2 and V1 = (2π~)2 we get Ns = gV k2/4π. Since E = ~kνF , the

DOS is

ν(E) =
1

V

dNs

dE
=

1

V

dNs

dk

dk

dE
=

g

4π

2k

~νF
=

gE

2π(~νF )2
=

2εF
π(~νF )2

, (1.29)

where εF is the Fermi energy. Thus, the DOS in graphene depends linearly on energy

(Fig. 1.3(b)). For comparison, the DOS in 2D-systems with a parabolic dispersion

relation is ν(E) = gm/π~2 (it is calculated similarly with the only difference being
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E = ~2k2/(2m), where m is the electron mass), i.e. it is constant, Fig. 1.3(c).

K

k

E

DOS

E

DOS

E(a) (b) (c)

Figure 1.3: (a) K valley and the linear dispersion relation. (b) and (c) The DOS in
graphene and 2D-systems with a parabolic dispersion relation, respectively.

Using the expession for the DOS we can calculate the carrier density in graphene:

n =

∫ εF

0

ν(E)f(E) dE =

∫ εF

0

2E

π(~νF )2
dE =

ε2F
π(~νF )2

=
k2F
π
, (1.30)

where f(E) is the Fermi-Dirac distribution. The carrier density is calculated at zero

temperature, for which f(E) = 1 and the limits of integration are 0 and εF .

1.3.2 Chirality of charge carriers

Due to the crystal structure of graphene, electrons in this material have a number of

unique properties, which results in a number of interesting quantum phenomena. In

order to reflect the fact that there are two sublattices in graphene, a new quantum

number was introduced - pseudospin [7]. It has an ‘up’ state for one sublattice and

‘down’ state for the other one. The existence of the sublattices, Fig. 1.1(a), leads

to the Dirac-like Hamiltonian of electrons, equation (1.22):

H =

 0 νF (px − ipy)

νF (px + ipy) 0

 = νF σ⃗ · p⃗ , (1.31)

where p⃗ is momentum.

As it was shown in the previous section, electrons in graphene have a linear
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k

E

ξ= 1- ξ= 1+

Figure 1.4: The two valleys K and K′ in graphene. The valence (E < 0) and
conduction bands (E > 0) cross each other at the so called Dirac point. Arrows
indicate the direction of the pseudospin. The projection of the pseudospin on the
direction of the wave vector (chirality) is positive, ξ = +1, for electrons in the K
valley and negative, ξ = −1, for electrons in the K′ valley.

dispersion relation:

E = ±νF |p⃗| , (1.32)

where the + sign correspond to electrons and the − sign to holes. Taking into

account the Schrödinger equation HΨ = EΨ and combining Eq. (1.31) and (1.32)

we arrive at the following relation:

σ⃗ · p⃗ = ±|p⃗| . (1.33)

Now we can introduce the so called chirality:

ξ = σ⃗
p⃗

|p⃗|
= ±1 . (1.34)

Mathematically, chirality is a projection of the pseudospin on the direction of

motion. In Fig. 1.4 arrows show the direction of the pseudospin in each valley. One

can see that for electrons (at E > 0) in the K valley the chirality is +1, because the

pseudospin is parallel to the momentum. Electrons in the K′ valley have the opposite

chirality of -1. Therefore, the chirality is conserved for electrons that are elastically

scattered within one valley. Certain kinds of scattering centres can transfer electrons

between the valleys, breaking the chirality.
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We meet the concept of chirality every day. The most prominent example is our

hands. An object is called chiral if it can not be superimposed with its mirror image.

For example, our right hand is a mirror image of the left hand, and they can not be

superimposed. In graphene the situation is similar. In Fig. 1.1(a) one can see that

one sublattice is a mirror image of the other one (red and blue triangles): the two

sublattices are not superimposable. The chirality has a profound effect on quantum

phenomena in graphene, which will be discussed in Chapter 2.

1.3.3 Berry phase

Another interesting property of electrons in graphene, which is important for under-

standing the quantum phenomena, also comes from the presence of the two sublat-

tices. It is called the Berry phase. By a gauge tranformation [6] the wave function

(equation (1.28)) around the K point can be rewritten as:

Ψ ∝

e−iθ/2

eiθ/2

 eip⃗·r⃗ . (1.35)

The Berry phase is the phase that the electron wave function acquires when

the electron completes a full circle. When this happens, the momentum vector of

the electron rotates by φ = 2π. Substituting this relation into the electron wave

function, equation (1.35), we have

Ψ → Ψ

e−iπ

eiπ

 . (1.36)

As one can see the phase of the wave function changes by π. This is the Berry

phase. In Chapter 2 a consequence of the Berry phase π will be discussed in detail.
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Theoretical background

In this Chapter we consider different quantum phenomena, such as the weak local-

isation and electron-electron interaction corrections to the conductivity, spin-orbit

interaction, quantum Hall effect, Shubnikov-de Haas effect, etc. More specifically,

we give theoretical explanation of the origin of these phenomena in two-dimensional

systems with parabolic dispersion relation and emphasise the differences of their

manifestation in graphene. We also discuss different methods of sample characteri-

sation, e.g. atomic force microscopy and Raman spectroscopy.

2.1 Classical and quantum Hall effect

Consider a sample with an electron gas confined in two dimensions. Suppose a

magnetic field B is applied perpendicular to the 2D plane. The trajectories of the

electrons are bent by a Lorentz force: F⃗L = −e[ν⃗× B⃗], where ν⃗ is the velocity and e

is the absolute value of the electron charge. This force makes electrons move along

cyclotron orbits with radius R = mν/(eB), where m is the electron mass, and the

Larmor frequency

ωc =
eB

m
. (2.1)

In the presence of an external electric field an electron will experience an electric

force F⃗e = −eE⃗, which induces a net drift velocity of the electron gas perpendicular

to E⃗ and B⃗. In Fig. 2.1 an electric field has been applied between source and drain,

inducing a drift velocity in the X-direction. At the same time the Lorentz force F⃗L
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Vxy

Vxx

j e-

x

y

Source Drain

B

Figure 2.1: The circuit for the Hall effect measurements. The current j⃗ flows from
source to drain and four voltage contacts (shaded areas) allow the measurements of
the voltage along, Vxx, and across the sample, Vxy. Electrons (circles with a minus
sign) move with velocity ν⃗ in the direction opposite to the current. In the presence
of the perpendicular magnetic field electron trajectories bend (shown in the figure)
and accumulation of the negative charge occurs on one edge of the sample and the
positive charge on the other one. Accumulation stops when the Lorentz force equates
the electric force. In this equilibrium state the transverse or Hall voltage, Vxy, can
be measured.

pushes it along the Y-axis. The total force exerted on the electron is F⃗ = F⃗L + F⃗e

The equation of motion in this case takes the form:

dp⃗

dt
= −e

(
E⃗ + [ν⃗ × B⃗]

)
− p⃗

τ
, (2.2)

where τ is the relaxation time and p⃗/τ is the friction force that comes from electron

scattering off impurities. In equilibrium the current flowing along the sample is

constant, which means dp⃗/dt = 0. Then

−e
(
E⃗ + [ν⃗ × B⃗]

)
=
p⃗

τ
. (2.3)

Since the current density j⃗ = −enν⃗, then ν⃗ = −j⃗/(en) and p⃗ = −mj⃗/(en). Substi-

tuting the last two relations into equation (2.3) we get:

e

(
E⃗ +

[
− j⃗

en
× B⃗

])
=
mj⃗

enτ
. (2.4)
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From this equation we get an expression for the electric field:

E⃗ =
m

e2nτ
j⃗ +

1

en

[
B⃗ × j⃗

]
. (2.5)

Its projections on X and Y axes are:Ex = m
e2nτ

jx +
B
en
jy =

m
e2nτ

jx

Ey =
m

e2nτ
jy − B

en
jx = − B

en
jx

. (2.6)

In equilibrium the Lorentz force balances the electric force and the net current

perpendicular to the sample edge is zero, jy = 0.

Since Eα = ραβjβ, then ρxx = m
e2nτ

ρyx = − B
en

. (2.7)

Negative and positive charge in our system accumulate on the sample edges and

a voltage drop Vxy = B
en
Ix = RHIx builds up. Here RH is the Hall coefficient and

Ix is the current passing along the sample. The voltage drop Vxy is also called the

Hall voltage. This is the nature of the classical Hall effect - accumulation of the

positive and negative charges on the sample edges in the presence of the perpen-

dicular magnetic field. Thus, in the classical description the Hall voltage is linearly

proportional to the applied magnetic field, and the longitudinal magnetoresistivity

ρxx is independent of the magnetic field.

In 1980 Klaus von Klitzing carried out an experiment on the Hall effect [8] and

found deviations from the classical expectations. First of all, there are plateaus

in the Hall voltage, which correspond to quantised values of ρxy = h/νe2, where

ν = 1, 2, 3, .... Second, when ρxy shows a plateau, ρxx goes to zero, whereas according

to the classical picture ρxx is finite and constant, equation (2.7).

Consider a 2D gas of Ne non-interacting electrons at zero magnetic field. The

Hamiltonian of such a system is

H =
Ne∑
i=1

p⃗i
2

2m
. (2.8)

34



Chapter 2: Theoretical background

The density of states (DOS) is m/π~2 (per spin/valley, see Chapter 1) and does not

depend on energy.

In the presence of the magnetic field

H =
Ne∑
i=1

(
p⃗i + eA⃗(r⃗i)

)2
2m

, (2.9)

where A⃗(r⃗i) is the magnetic vector potential, B⃗ = ∇ × A⃗. In order to solve the

Schrödinger equation we take the Landau gauge A⃗ = (0, Bx, 0) and the single par-

ticle Hamiltonian takes the form:

H =
p2x + p2y + 2pyeBx+ e2B2x2

2m
=
p2x + (py + eBx)2

2m
. (2.10)

Then the Schrödinger equation is

[
p2x
2m

+
1

2m
(~k + eBx)2

]
Ψ(x) = EΨ(x) . (2.11)

Introducing the magnetic length lB =
√

~
eB

and using the expression for the Larmor

frequency (equation (2.1)), we can rewrite the previous equation in the following

form:

[
p2x
2m

+
mω2

c

2

(
kl2B + x

)2]
Ψ(x) = EΨ(x) . (2.12)

The magnetic length lB has a physical meaning of an area πl2B that is threaded

by half of the magnetic flux quantum: 2πl2BB = Φ0 =
h
e
.

From equation (2.12) we get the energy spectrum of electrons in the magnetic

field:

EN = ~ωc(N +
1

2
) , (2.13)

where N = 0, 1, 2, .... This is the case for a two-dimensional electron gas with a

parabolic dispersion relation. We will see that the spectrum for graphene is quite

different.

The energy levels (equation (2.13)) are called Landau levels (LLs), which are
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Figure 2.2: (a) The density of states in a conventional (with a parabolic dispersion
relation) two-dimensional system at zero magnetic field. (b) For a non-zero magnetic
field the DOS in an ideal 2D system is a series of δ - functions separated by ~ω/2.
(c) Same as in (b) but in the presence of disorder that broadens the peaks in the
DOS. The hatched area corresponds to the localised states and the gray area to the
extended states. The solid vertical line is a position of the Fermi level εF .

k⃗-independent. The magnetic field transforms the constant density of states of a 2D

electron gas into a series of δ - functions separated by ~ωc (see equation (2.13) and

Fig. 2.2(a,b)).

For a sample of area S the number of states in each LL is

NΦ =
S

2πl2B
=
eBS

2π~
. (2.14)

The factor ‘2’ in equation (2.14) takes into account the fact that at high magnetic

fields each LL is split into two. Each of the two LLs has half the number of electrons

than without splitting. The filling factor ν – the number of filled LLs – is equal to

the total number of electrons, Ne, divided by the number of states in one LL, NΦ:

ν =
Ne

NΦ

=
2Neπ~
eBS

=
Φ0

B

Ne

S
=
nΦ0

B
. (2.15)

For the integer quantum Hall effect (QHE) the filling factor is an integer.
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In a perfect system at high magnetic fields, the density of states is a series of δ -

functions located at energies En = ~ωc(N+ 1
2
), which have the NΦ - fold degeneracy.

However, real samples have imperfections in their crystal lattice or impurities. This

disorder lifts the degeneracy of the LLs and broadens them transforming them into

bands with a width inversely proportional to the mean scattering time, Fig. 2.2(c).

Two types of states appear: localised and extended. There is no current through

the localised states. Suppose the magnetic field is fixed and the Fermi level is tuned.

If the Fermi level lies in the area of localised states, then only the states below the

Fermi level contribute to the resistivity. In other words ν filled Landau levels give

rise to ρxy = h/νe2 and plateaus appear in the transverse (Hall) resistivity. At the

same time ρxx = 0. If the Fermi level lies within the band of the extended states,

the carrier density in these states changes from 0 to NΦ when εF passes through

the extended states. This situation corresponds to a transition region between the

plateaus in ρxy. The longitudinal resistivity is finite in this case.

Similarly to the resistivity tensor ρ̂ (equations (2.7)) one can define the conduc-

tivity tensor jα = σαβEβ. Using equations (2.6) we get:

σ̂ = ρ̂−1 =
1

ρ2xx + ρ2xy

 ρxx ρxy

−ρxy ρxx

 (2.16)

In the quantum Hall effect regime when ρxy = h/νe2 and ρxx = 0, the transverse

conductivity equals σxy = 1/ρxy = e2ν/h, which follows from equation (2.16).

The QHE in graphene is quite different due to its unique electronic properties.

The quantised energy levels at non-zero magnetic field are no longer determined by

equation (2.13), but are given by [9, 10]

EN = ±νF
√
2e~BN , (2.17)

where +/− refers to electrons/holes.

The quantised Hall conductivity in conventional 2D systems (with parabolic

dispersion relation) is σxy = 4e2/h ν, where the factor 4 comes from the double

valley and double spin degeneracy, whereas in graphene σxy = 4e2/h (ν+1/2) [9,10].

Equation (2.17) shows that in graphene there is a level at zero energy, whereas

in 2D systems with parabolic dispersion relation this level is absent.
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2.2 Shubnikov-de Haas effect

When the magnetic field is not large enough (ωcτ < 1) for the Hall plateaus to

develop, the longitudinal resistivity experiences oscillations as a function of the

magnetic field or the Fermi energy. These oscillations are called Shubnikov-de Haas

oscillations (SdH). In the presence of a magnetic field the density of states is a series

of localised and extended states, Fig. 2.2(c). Since the field is not very high, the

energy levels are close to each other and overlap, equation (2.13). IfB is fixed and the

Fermi energy is tuned, then as εF passes through the peaks in the DOS, the resistivity

is maximal. When εF passes through the dips in the DOS, the resistivity is minimal.

The situation is similar when the Fermi energy is fixed and B is tuned. In this case

the distance between two adjacent LLs, ∆EN = EN+1 − EN = ~ωc = ~eB/m (see

equation (2.13)), increases when the magnetic field increases.

The SdH effect is a good tool to determine the carrier density in a system. In the

case of graphene, suppose a magnetic field B1 is applied and the N th LL coincides

with the Fermi energy: EN = νF
√
2e~B1N = εF . Keeping the Fermi level fixed let

us decrease the magnetic field to B2, so that the (N+1)th LL coincides with εF . We

get the system of equations:νF
√
2e~B1N = ~kFνF

νF
√

2e~B2(N + 1) = ~kFνF
. (2.18)

We extract N from the first equation and (N + 1) from the second one:

N =
~k2F
2eB1

N + 1 =
~k2F
2eB2

. (2.19)

Subtracting the first equation from the second one we get:

1 =
~πn
2e

(
1

B2

− 1

B1

)
. (2.20)

The carrier density is

n =
4e

h

1(
1
B2

− 1
B1

) . (2.21)
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Thus, in order to determine the carrier density in graphene, one has to measure

the longitudinal magnetoresistivity, determine the magnetic fields that correspond

to any two adjacent LL’s and use equation (2.21) to calculate the carrier density.

2.3 Weak localisation of charge carriers

Consider a classical electron (a particle) that travels from point A to point B and

scatters off different scattering centres, Fig. 2.3(a). There are many paths along

which the electron can travel, and we consider two of them for simplicity. The

probability, P , for the electron to get to point B will be the sum of the squared

probability amplitudes along each path: P = |A1|2 + |A2|2.

A

B

A

B

(a) (b)

A1

A2

Figure 2.3: Various paths, (a) and (b), for an electron (blue circle) to go from point
A to point B. Probability amplitudes along each path are A1 and A2. Black circles
correspond to scattering centres.

In quantum mechanics electrons are treated as waves. In this case the two waves

of the electron can travel in opposite directions along a closed loop and interfere

at the point of intercept. Depending on the phase difference of the two waves the

interference can be either constructive or destructive. If they meet in phase, then

constructive interference takes place, increasing the probability to find the electron

at the point of intercept: P = |A1|2 + |A2|2 + 2|A1||A2|. The total conductivity

decreases and the electron becomes weakly localised [11, 12].

If the two waves meet in anti-phase, they interfere destructively. The probability

for the electron to appear at the point of intercept decreases: P = |A1|2 + |A2|2 −

39



Chapter 2: Theoretical background

2|A1||A2|, and the total conductivity increases. This phenomenon is called weak

antilocalisation.

In conventional two-dimensional systems (with parabolic dispersion relation) the

two paths are identical, and the two waves meet in phase. Therefore, weak localisa-

tion (WL) of electrons is expected. In graphene due to the Berry phase of π the two

waves meet in anti-phase and weak antilocalisation (WAL) is expected [13]. This is

unusual, because in conventional 2D-systems WAL is possible only in the presence

of strong spin-orbit interaction [11, 14–17], and in graphene WAL takes place even

without it.

When we talk about WL, electron backscattering is important, i.e. when the

momentum of an electron rotates by π after it has traveled along a closed loop.

In this case the phase of one electron wave changes by π/2 (it changes by π when

the electron momentum rotates by 2π - Berry phase, see equation (1.36)). The

phase of the other wave changes by −π/2. They meet with a phase difference of

π/2 − (−π/2) = π and interfere destructively. Thus, weak antilocalisation takes

place.

Another way to understand why quantum interference of electrons waves leads

to antilocalisation is to calculate the probability of backscattering. The initial (im-

mediately before entering the closed loop) and the final (after backscattering) states

of the electron are

|i⟩ ∝

e−iφ/2

eiφ/2

 |f⟩ ∝

−e−iφ/2

eiφ/2

 . (2.22)

The initial state, |i⟩, is the electron wave function, equation (1.35). The final

state, |f⟩, is its wave function after φ → φ + π. The probability of backscattering

is therefore

⟨i|f⟩ =
(
eiφ/2 e−iφ/2

)−e−iφ/2

eiφ/2

 = −1 + 1 = 0 . (2.23)

As we discussed before, destructive interference decreases the probability to find

the electron at the point of intercept. Thus, the calculated zero probability means
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weak antilocalisation.

In experiment, weak localisation can be detected by applying a low magnetic

field perpendicular to the current. In this case the amplitudes of the probability

to pass the closed loop clockwise and counterclockwise acquire an additional phase

factor:

A1 → A1 exp

(
i
e

~

∮
A⃗d⃗l

)
= A1 exp

(
ieBS

~

)
= A1 exp

(
iπBS

Φ0

)
, (2.24)

A2 → A2 exp

(
−iπBS

Φ0

)
, (2.25)

where A⃗ is the magnetic vector potential, d⃗l is an infinitesimal vector element of the

closed loop, Φ =
∮
A⃗d⃗l = BS is the magnetic flux, S is the area of the closed loop

and Φ0 = h/2e is the quantum of magnetic flux. Thus, a magnetic flux threading

the closed trajectories adds a phase difference to the two electron waves

∆φ = 2π
Φ

Φ0

(2.26)

and destroys the interference.

When the two electron waves meet in phase, they interfere constructively, and

the total conductivity decreases (WL). The magnetic field decreases the probability

for the electron to stay at the point of intercept, and increases the total conductiv-

ity leading to positive magnetoconductivity (MC): ∆σ(B) = σ(B)− σ(B = 0) > 0.

When the two electron waves meet in anti-phase, they interfere destructively, and

the total conductivity increases due to WAL. The magnetic field decreases the con-

ductivity and leads to negative MC, ∆σ(B) < 0.

Thus, in experiment the conductivity is measured as a function of low magnetic

field. The sign of the MC allows one to determine the behavior of an electron system:

WL or WAL.

The situations described above take place in ‘clean’ samples. However, in real

ones there are different kinds of imperfections, which affect quantum interference

of electron waves. Unlike conventional 2D systems, WL in graphene is sensitive

not only to inelastic scattering, but also to elastic scattering mechanisms [13, 18].
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Electrons lose their energy during inelastic collisions, which also break their phase

coherence. Such processes are characterised by the dephasing time τφ. Elastic (en-

ergy conserving) scattering can be of two types due to the presence of the two valleys.

Processes that scatter electrons within one valley require a smooth scattering poten-

tial, which can be produced by, for example, ripples or dislocations [13,19,20]. Such

processes are characterised by the scattering time τs. Since the chirality suppresses

backscattering within one valley (see e.g. equation (2.23)), such scattering sup-

presses WL. Weak localisation can also be destroyed by so called trigonal ‘warping’,

characterised by the time τw. Trigonal warping appears when next-nearest-neighbor

carbon atoms are taken into account (γ′0 ̸= 0) to calculate the energy spectrum

of electrons in graphene. In this case the Fermi surface is no longer circular, but

triangular in shape. Therefore, when an electron is backscattered within one valley,

then k⃗ → −k⃗, but there is no such k-state due to the distortion of the Fermi surface.

This leads to the loss of coherence and destruction of interference. The combined

effect of the described processes is characterised by the intra-valley scattering time

τ∗: τ
−1
∗ = τ−1

s + τ−1
w .

Atomically sharp defects, such as edges of samples or missing carbon atoms, can

scatter electrons between the valleys. Such scattering processes are characterised by

the inter-valley scattering time τi. They break the chirality and allow the interference

of electron waves. Thus, inter-valley scattering restores WL.

Electron waves traveling along a closed loop scatter (elastically or inelastically)

off impurities. These impurities can break the phase of the waves. Therefore, the

size of the closed loop can not exceed a certain length in order for the waves to

stay coherent and interfere. This length is called the electron dephasing length,

Lφ =
√
Dτφ, where D is the diffusion coefficient, and is a very important quantity

in the WL effect. The dephasing length limits the size of the closed trajectories.

This characteristic length decreases if the temperature increases [21,22]. When the

closed loops become smaller the strength of WL is reduced. Therefore, quantum

interference is usually observed at low temperatures (less than ∼ 50 K) [23–33].

The theory [13] predicts the following MC in graphene:
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Figure 2.4: Limiting cases to observe WL or WAL in graphene. The upper curve
corresponds to WL and the situation when τ−1

∗ ≫ τ−1
φ ∼ τ−1

i . The bottom curve is

the case of a clean sample (no intra- or inter-valley scattering), τ−1
φ ≫ τ−1

i , τ−1
∗ .

Under certain conditions no weak localisation can be observed (middle curve):
τ−1
∗ ≫ τ−1

φ ≫ τ−1
i .

.

∆σ(B) =
e2

πh
·

(
F

(
τ−1
B

τ−1
φ

)
− F

(
τ−1
B

τ−1
φ + 2τ−1

i

)

−2F

(
τ−1
B

τ−1
φ + τ−1

i + τ−1
∗

))
. (2.27)

Here F (z) = ln z + ψ(0.5 + z−1) is a monotonically increasing function, ψ(x) is the

digamma function, τ−1
B = 4eDB/~ and D = νF lp/2, lp is the mean free path. (The

theory assumes that the momentum relaxation rate τ−1
p is the highest in the system

and comes from charged impurities, and does not affect the electron interference.)

Negative MC corresponding to antilocalisation is described by the second and third

(negative) terms. In the absence of intra- and inter-valley scattering, τi,∗ → ∞,

∆σ(B) is totally determined by the third term – this situation would correspond

to defect-free graphene samples (clean samples), Fig. 2.4. In the opposite case of

strong intra- and inter-valley scattering (small τ∗ and τi), the negative terms are

suppressed and the first (positive) term dominates, which corresponds to electron

localisation. It is this situation that was realised in recent experiments [34, 35] on
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mechanically exfoliated graphene where the negative terms, originating from the

chirality of electrons, were not large enough to change the sign of the low-field MC.

Analysis of equation (2.27) shows that in order to observe WAL, it is not nec-

essarily to have a clean sample. Indeed, using the fact that the function F (z) is

quadratic at small z ≪ 1, F (z) = z2/24, we can simplify equation (2.27):

∆σ(B) =
e2

24πh
·
(
4eDBτϕ

~

)2(
1− 1

(1 + 2τϕ/τi)2
− 2

(1 + τϕ/τi + τϕ/τ∗)2

)
. (2.28)

The expression in brackets determines the sign of the MC. Figure 2.5 shows the

diagram, in which a curve ∆σ(B) = 0 separates regimes of positive MC (above the

curve) and negative MC (below the curve). The points on the curve correspond to

the absence of the quantum correction. Along the X- and Y-axis the ratios τφ/τi

and τφ/τ∗, respectively, are plotted. A condition τφ/τ∗, τφ/τi ≪ 1 corresponds to

the case of a clean system (no inter- and intra-valley scattering). As we already

discussed, WAL is expected (see the origin of Fig. 2.5). In the opposite case,

τφ/τ∗, τφ/τi ≫ 1, electrons are elastically scattered within a valley and between

the valleys many times before they loose their phase coherence (strong inter- and

intra-valley scattering).
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Figure 2.5: Conditions to observe WL and WAL in graphene. Orange curve corre-
sponds to ∆σ(B) = 0 in equation (2.28). The ratios of τφ/τ∗ and τφ/τi, for which
∆σ(B) > 0 (area above the curve), indicate WL. In the opposite case (area below
the curve) they indicate WAL.

.
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As one can see from the diagram, WAL can be observed when intra- and inter-

valley scattering are present in the system. The numbers of the ratios when WAL

is expected in real samples say that elastic scattering can be stronger or at least

comparable to inelastic scattering. The ratios can be tuned by varying the temper-

ature and carrier density. In Chapters 4 and 5 we discuss the consequences of such

tuning.

Interference of electron waves leads to another quantum phenomenon, universal

conductance fluctuations (UCF) [36–39], which will also be present in the experi-

ments described in this work. Electrons moving along many different trajectories

in a sample will experience interference. The probability of an electron to traverse

the sample within a certain time will therefore contain an interference term, which

depends on the phase difference of the electron waves (as was discussed earlier). If

this term fluctuates under changing surrounding conditions, then the probability,

and therefore the conductance, will also fluctuate. One such ‘condition’ is a change

of the impurity configuration. For example, let us consider many macroscopically

identical samples, which differ only in their arrangement of impurities. The conduc-

tance averaged over these samples is ⟨G⟩ = G0. But due to different configuration

of impurities, the conductance G = G0 + δG in each of the samples will be slightly

different (will fluctuate from sample to sample). The amplitude of the conductance

fluctuations is universal and of the order of δG = e2/h. It has been shown [36, 37]

that instead of taking many samples, one can take a single sample and measure the

conductance as a function of magnetic field or the Fermi energy, which will be equiv-

alent to changing the impurity configuration. The fluctuations are reproducible and

aperiodic and seen in small samples, whose length is comparable to the dephasing

length, and at low temperatures.

Since in this work we study magnetoconductivity and the dependence of the

conductivity on the Fermi energy, the UCF should be suppressed by averaging the

conductance values over the magnetic field or the Fermi energy for other quantum

effects to be investigated.
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2.4 Electron-electron interaction in the presence

of disorder

In the previous section we considered a single-particle effect: an electron interferes

with itself and becomes weakly localised. Interference is also possible when many

electrons interact in the presence of disorder. The interaction occurs via the Coulomb

potential and gives rise to another quantum effect - electron-electron interaction

correction (EEI) to the conductivity [40].

Consider a gas of non-interacting electrons with a single charged impurity. Inter-

action of the electrons with the impurity leads to oscillations of the charge density

around it, which are called the Friedel oscillations [41]:

δn(r⃗) ∝ sin(2k⃗F r⃗)

r2
, (2.29)

where r⃗ is the distance from the impurity, and k⃗F is the Fermi wave vector,

If we turn on the interaction between the electrons, this will create the oscillating

scattering potential, which can be represented as a Hartree term [42,43]:

VH(r⃗) =

∫
dr⃗′V (r⃗ − r⃗′)δn(r⃗′) , (2.30)

where V (r⃗ − r⃗′) = e2/|r⃗ − r⃗′| is the Coulomb potential, and n(r⃗′) is the electron

density. Electron waves scattering off the impurity itself and the oscillating potential

(Friedel oscillations) interfere with each other. The interference is most important

when the electron waves are backscattered. Suppose one electron wave follows path

A, the other one follows path B (Fig. 2.6). On B the wave acquires an additional

phase due to the difference in distances of A and B. The wave vector changes by

2k⃗F (due to electron backscattering), and an additional distance is R⃗ - the radiusf

of the Friedel oscillation. Therefore, the phase difference is 2k⃗F R⃗. This phase is

canceled by the phase of the Friedel oscillation −2k⃗F R⃗ (equation (2.29)) leading to

the constructive interference and a decrease of the conductivity.

This picture of the EEI correction is valid in the ballistic regime, i.e. when

kBTτp/~ > 1, which means the time of electron interaction ~/kBT is smaller than
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A

B

R

Figure 2.6: Nature of the electron-electron interaction correction. Electron waves
following paths A and B scatter off an impurity (black ball) and the Friedel oscilla-
tions (semicircles) and interfere constructively.

.

the momentum relaxation time τp. In the diffusive regime, kBTτp/~ < 1, when two

interacting electrons experience many collisions with impurities during the time of

their interaction, the picture is slightly different. In this case there are many impu-

rities and interference takes place not only when electron waves are backscattered,

but also when they are scattered by any angle [43]. The origin of the EEI correction

is the same as in the ballistic regime: electron waves are scattered off impurities and

Friedel oscillations and interfere with each other.

Note that for the EEI correction to exist, two conditions must be fulfilled: the

presence of at least one impurity to create the Friedel oscillations, and Coulomb

interaction to transform the oscillations of charge density into oscillations of the

scattering potential. The Friedel oscillations can be created by non-interacting elec-

trons, but it is the Coulomb interaction that creates the oscillations of the scattering

potential. This potential is then scattered off by electrons waves.

The theory [40] predicts the following expression for the EEI correction in the

diffusive regime:

δσEEI(T ) = −A(F σ
0 )

e2

2π2~
ln

~
kBTτp

, (2.31)

where A(F σ
0 ) is the coefficient that depends on the Fermi-liquid constant F σ

0 . The

Fermi-liquid constant is a function of the so-called rs parameter, which shows the
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strength of EEI:

rs =
UC

EF

, (2.32)

where UC and EF are the Coulomb and Fermi energies, respectively.

Investigation of the EEI correction to the conductivity can give information

about the Fermi-liquid constant F σ
0 . In non-chiral systems, F σ

0 is given by the

interaction potential averaged over all possible scattered momenta [40,43]:

Fnorm = −ν⟨U(|p⃗− p⃗′|)⟩ = −ν
∫
dθ

π
U

(
2kF sin

θ

2

)
, (2.33)

where ν is density of states per spin/valley component, U(q) is the Fourier compo-

nent of the interaction, θ is the scattering angle, and kF is the Fermi wave vector. In

chiral systems (e.g. graphene) chirality conservation suppresses the scattering am-

plitude [44] by the factor cos(θ/2), and therefore one has to use a slightly different

expression:

Fchiral = −ν
∫
dθ

π
U

(
2kF sin

θ

2

)
cos2

θ

2
. (2.34)

For a simple estimate of the Fermi-liquid constant, we use [45] the Thomas-Fermi

approximation writing the Fourier image of the screened 2D Coulomb potential in

the form

U(q) =
2πe2∗
q + κ

, (2.35)

where e∗ is the effective charge, e2∗ = 2e2/(ϵ + 1), that includes the suppression of

the Coulomb potential by the SiO2 substrate, ϵ = 3.9, κ = N ·2πνe2∗ is the screening

parameter, N is the total number of spin/valley channels per electron (this factor

is due to the Thomas-Fermi screening which is provided by all possible channels).

Therefore,

U(q) =
2πe2∗

q + 2πe2∗Nν
, (2.36)
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Then, the Fermi-liquid constant can be expressed in terms of rs, which for graphene

is equal to rs = UC/EF = e2∗/(r~νFkF ) = e2∗/(~νF ) with r = 1/
√
πn being the

distance between two interacting electrons, and N . Thus, we find [45] for a non-

chiral 2D electron gas (2DEG)

Fnorm = −rs
2
Φ

(
Nrs
2

)
, (2.37)

where the function Φ(a) is

Φ(a) =

∫ π

0

dθ

π

1

sin θ
2
+ a

=


1

π
√
1−a2

ln 1+
√
1−a2

1−
√
1−a2

a < 1

2
π
√
1−a2

arctan
√
a2 − 1 a > 1

. (2.38)

For rs = 0.88 and N = 2 (as in GaAs), this gives F σ
0 = −0.18.

For a chiral 2DEG, one can relate the integral to the same function Φ, thus

finding

Fchiral = −rs
2
Φc

(
Nrs
2

)
, (2.39)

with

Φc(a) = (1− a2)Φ(a) + a− 2

π
. (2.40)

For rs = 0.88 and N = 4 (graphene), this gives F σ
0 = −0.10.

Thus, the theory predicts F σ
0 to be the smallest in graphene among all other

systems due to the chirality of charge carriers. The approximation (2.40) which

neglects effects of strong interaction, such as the Fermi velocity and Z-factor renor-

malisations [46], is expected to be valid for rs ≤ 1, which is the case for graphene.

Note that due to the linear dispersion relation, EF = ~kFνF , in graphene, rs

does not depend on the carrier density. For comparison, in conventional 2D systems

it does depend on the carrier density as 1/
√
n (see e.g. [47]). Therefore, in graphene

the EEI correction in the diffusive regime is independent of the carrier density.

In Chapters 4 and 5 we compare this theory with experiment.

49



Chapter 2: Theoretical background

2.5 Methods of separation of the quantum cor-

rections

Both WL and EEI corrections to the conductivity depend logarithmically on tem-

perature [11,40]. Therefore, in order to study them, it is necessary to separate their

contributions. In this section we discuss in detail the methods for separating the

two quantum corrections.

From the previous section we know that the EEI correction depends logarith-

mically on temperature, equation (2.31). To find the temperature dependence of

the WL correction at zero magnetic field, we use the definition of WL: a 2D system

is in the weak localisation regime if at infinitely large magnetic field B → ∞, MC

is positive ∆σ(B) > 0. This means that ∆σ(B) = δσ(B → ∞) − δσ(B = 0) =

−δσ(B = 0) ≡ −δσWL(T ). The WL correction δσ(B → ∞) = 0, because at large

magnetic field electron interference is suppressed, equation (2.26). Using equation

(2.27) and the fact that F (z) = ln z at large z ≫ 1, we arrive at the WL correction

to the conductivity at zero magnetic field [13]:

δσWL(T ) = − e2

2π2~

[
ln (1 + 2τφ(T )/τi)− 2 ln

(
τφ(T )/τp

1 + τφ(T )/τi + τφ(T )/τ∗

)]
(2.41)

As clearly seen from equations (2.41) and (2.31) both corrections are logarith-

mically dependent on temperature. Therefore, in experiment it is difficult to distin-

guish between the two. There are several methods of separation of the WL and EEI

corrections.

1) Using the standard theoretical model, equation (2.27) and [13], the three

characteristic times are determined from the low-field MC studies: the dephasing

time τφ, the elastic times of inter-valley scattering τi and intra-valley scattering τ∗.

These times are used to determine the WL correction at zero magnetic field, equation

(2.41), which is then subtracted from the experimental temperature dependence of

the conductivity.

2) The EEI correction can be isolated by applying a perpendicular magnetic

field: a magnetic flux adds a phase difference to the two electron waves and destroys

interference (equation (2.26)). The suppression of WL is expected at magnetic fields,
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which are much larger than the so-called ‘transport’ field [48–50], Btr = ~/2el2p,

where lp is the mean free path. At the same time these magnetic fields should be

small in order not to affect the EEI correction due to the Zeeman effect [11]. The

effect is expected at higher fields that satisfy the following condition: g∗µBB > kBT ,

where g∗ is the Landé g-factor, which in graphene is 2 (see e.g. [51]), and µB is the

Bohr magneton.

3) The correction due to electron-electron interaction can be determined directly

from the Hall coefficient studies [40]. In this case the transverse magnetoresistivity

ρxy(B) is measured in the Hall regime to determine the Hall coefficient RH :

RH =
ρxy
B

. (2.42)

The advantage of this method is that WL does not contribute to the transverse

resistivity, i.e. δρWL
xy = 0. But it does to the longitudinal, σxx, and transverse, σxy,

conductivities. The EEI correction enters only σxx:σxx = σ0 + δσWL + δσEEI

σxy = σ0µB + δσWL

(2.43)

where

σ0 =
enµ

1 + (µB)2
(2.44)

is the Drude conductivity, µ is the mobility of electrons, n is the electron density, e

is the absolute value of the electron charge.

Converting the conductivities, equations (2.43), into the resistivities using the

following relations:

ρxx =
σxx

σ2
xx + σ2

xy

ρxy =
σxy

σ2
xx + σ2

xy

(2.45)

and expressing the Hall coefficient as RH = R0
H+δRH , where R

0
H is the classical Hall

coefficient and δRH is the correction to R0
H , we arrive at the following expression
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for δRH :

δRH(T )

R0
H

= −2δσEEI(T )

σ0
(2.46)

and

ρxx =
1

σ0
− δσEEI

σ2
0

(
1− (µB)2

)
. (2.47)

Equation (2.46) shows that the study of the Hall coefficient gives the magnitude

of the EEI correction directly. There is no need to consider the WL correction in

this method. Equation (2.47) gives the values of the Drude conductivity, σ0, at

B = 1/µ. The classical Hall coefficient is R0
H = 1/ne. The carrier density n can be

determined from the Shubnikov-de Haas oscillations (as was discussed in Chapter

1).

Realisation of methods 1 and 2 is given in Chapter 4 and realisation of method

3 in Chapter 5.

2.6 Electron-phonon interaction

There are several contributions to the temperature dependence of the conductivity.

Depending on a studied temperature range some of the contributions can be ne-

glected. At low temperatures the quantum corrections to the Drude conductivity

dominate, and at high temperatures electron-phonon interaction is the main con-

tribution to σ0. At intermediate temperatures both the quantum corrections and

electron-phonon interaction are important. At these temperatures in order to study

the corrections, the phonon contribution has to be subtracted. In the following

chapters we discuss each of these temperature ranges. For example, we determine

the EEI correction at both low- and intermediate T and compare the results.

There are different types of phonons that can contribute to the resistivity of

graphene on the SiO2 substrate [52–56]: phonons coming from the substrate and

those in a graphene sheet. The latter includes acoustic and optical phonons as well

as flexural phonons. At temperatures below 100 K only acoustic phonons contribute

to the resistivity [52,53,57], because optical phonons are difficult to excite at these
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temperatures and the effect of flexural phonons is suppressed due to the presence

of the substrate [55, 56]. The Boltzmann transport theory gives [45, 52, 53] the

following expression for the electron-acoustic phonon contribution to the resistivity

in graphene:

ρA(T ) =
1

π

D2
aE

2
F

ρsυph~3υ3F

π∫
0

TBG

T
cos2

θ

2
sin4 θ

2
× sinh−2

(
TBG

T
sin

θ

2

)
dθ, (2.48)

where Da is the deformation potential, TBG = 2υphEF/(~kBυF ) is the Bloch-

Grüneisen temperature, θ is the scattering angle, ρs = 7.6 × 10−7 kg m−2 is the

density of graphene, υph = 2 × 104 m s−1 is the speed of sound, υF = 106 m s−1 is

the Fermi velocity of carriers and EF is the Fermi energy. In the high-temperature

limit, T ≫ TBG, the phonon contribution to the resistivity is

ρA(T ) =

(
h

e2

)
π2D2

akBT

2h2ρsυ2phυ
2
F

. (2.49)

At temperatures below the Bloch-Grüneisen temperature ρA(T ) ∝ T 4

For graphene it was found that Da = 18 ± 1 eV [57], 18 and 21 eV [58] for

electron and holes, respectively, and 25± 5 eV [59].

At temperatures above 100 K optical phonons coming from the Si/SiO2 substrate

become important [54,57], which give the following contribution to the resistivity:

ρOp(Vg, T ) = 0.607
h

e2
V −1.04
g

(
1

e(59meV )/kBT − 1

+
6.5

e(155meV )/kBT − 1

)
. (2.50)

In order to analyse the experimental temperature dependence of the resistivity

at high T , the phonon contribution is represented as a sum of two terms:

ρe−ph = ρA + ρOp , (2.51)

where the deformation potential Da is the only fitting parameter.
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2.7 Spin-orbit interaction

When an electron moves with relativistic velocity in an electric field, in the rest

frame of the electron the electric field transforms into the magnetic field (Lorentz

transformation):

B⃗ = − [ν⃗ × E⃗]

c2
, (2.52)

where ν⃗ is the velocity, E⃗ is the electric field the electrons travel through, c is the

speed of light. Coupling of the electron motion to this field gives rise to spin-orbit

interaction (SOI). The origin of the electric field can be different: the electric field

from the atomic nuclei or that coming from the crystal or band structure of the

solid. The electron spin can only interact with the magnetic field, which can be

created by the spin-orbit interaction or by an external source.

Since our interest is quantum interference, it is important to understand the

mechanisms of electron dephasing (for a review see [60]). These mechanisms will be

discussed in details in Chapters 4 and 5. One of them can be the SOI. So far we

have not considered the electron spin when we talked about interference of the two

electron waves traveling along a closed loop. In fact, the phase difference of the waves

depends on the spin. In case of strong SOI the spin of the electron that propagates

along a closed trajectory rotates with respect to its original orientation. This will

lead to the destructive interference of the two waves and weak antilocalisation of

charge carriers [11, 14–17]. If the SOI is not that strong, it can only lead to the

suppression of weak localisation.

In 2DEGs moving electrons interact with their surroundings, such as impurities,

phonons, internal and external electric and magnetic fields. All of this can flip

the electron spin and therefore lead to the dephasing of electron waves. Thus,

electron spin and dephasing are linked. We will focus our investigation of SOI on

the possible mechanisms of spin dephasing. In graphene two types of spin dephasing

are relevant: Elliot-Yafet [61,62] (EY) and Dyakonov-Perel [63,64] (DP). In the EY

mechanism the direction of the electron spin changes during scattering events that

cause momentum relaxation, like electron scattering off impurities or phonons, Fig.
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2.7(a). The Hamiltonian for electrons in this case is

HSO =
~

4m2
0c

2
p⃗ · (σ⃗ × ∇⃗V ) , (2.53)

where m0 is the free electron mass, p⃗ is the momentum, V is the scalar electric

potential and σ⃗ = (σx, σy, σz) is a vector, whose components are the Pauli matrices:

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 . (2.54)

In the presence of the magnetic field, B⃗ = [∇⃗ × A⃗], the momentum p⃗ is replaced by

P⃗ = p⃗+ eA⃗.

For the EY mechanism the time during which the electron keeps memory about

the spin original orientation, spin coherence time, τSO, depends linearly on the mean

free path, lp. The characteristic spin coherence length LSO =
√
DτSO ∝

√
lplp ∝ lp.

In the DP mechanism of spin dephasing the effective magnetic field produced

by the SOI causes the spin to precess, Fig. 2.7(b). The magnetic field changes

its direction during the electron scattering. For this mechanism the spin coherence

time is inversely proportional to the mean free path τSO ∝ l−1
p . Therefore, LSO is

independent of lp.

(a) (b)

Figure 2.7: (a) Elliot-Yafet mechanism of spin dephasing: the direction of spin (red
arrow) changes every time an electron (blue circle) scatters off impurities (black
circles) or phonons. (b) Dyakonov-Perel mechanism: the SOI induces a magnetic
field that changes its direction randomly during electron scattering

Different dependences of the spin coherence length on the mean free path for

the two mechanisms allow one to distinguish between the EY or DP types of spin

dephasing in the experiment.
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2.8 Variable-range hopping

In very disordered systems electron states are localised [65]. This means that elec-

trons wave functions are localised in a limited area and decay exponentially:

Ψ = f(r)e−r/ξ , (2.55)

where ξ is the localisation radius or localisation length. The limited area is roughly

equal to the localisation radius.

Due to the presence of the exponential factor in equation (2.55) electron wave

functions overlap, therefore there is a finite probability 1/τij for electrons to tunnel

(hop) from one site to another [66]. The tunneling is possible by means of phonons:

1

τij
∝ f(Ei)(1− f(Ej))[1 + n(Eij)]

∫
|M(q)|2δ(~qs− Eij)d

3q . (2.56)

This equation means that an electron in the initial state i with the Fermi distribution

f(Ei) =
1

e
Ei−µ

T + 1
,

where µ is the chemical potential, tunnels to the final state j with the Fermi distri-

bution f(Ej). For the tunneling to take place the final state has to be empty. This

fact is described by a factor (1 − f(Ej)). Hopping of electrons from one state i to

the other j occurs via phonon assisted tunneling. This means that electrons emit

or absorb phonons during hopping. The phonon distribution function is the Bose

function

n(Eij) =
1

e
Eij
T − 1

,

where Eij is the difference in energies of the initial and final states Eij = Ei − Ej.

The δ - function is necessary to fulfil the energy conservation law: phonons are

emitted or absorbed in order to compensate the energy difference Eij. M(q) and s

are the electron-phonon coupling constant and the speed of sound, respectively.

In 2D systems the hopping length is R0 = (a/3) (T0/T )
1/3 and it increases with

decreasing temperature [67]. Here T0 = β(ν(εF )ξ
2)−1, ν(εF ) is the density of states
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at the Fermi level, β is a numerical factor. The conductivity obeys Mott’s law

σ(T ) = σ0(T )e
−(T0

T )
1/3

, (2.57)

where σ0(T ) is a prefactor that depends on the electron-phonon coupling. At T ≪ T0

the exponent in equation (2.57) dominates. This is the variable-range hopping

regime. In the opposite case, T ≫ T0, σ0(T ) dominates, which gives a power law

dependence.

In Chapter 6 we describe a way to produce strong disorder in graphene that will

lead to the variable-range hopping conductivity.

2.9 Atomic force microscopy

Scanning probe microscopy (SPM) is a powerful method to study morphology and

local properties of solids with high spatial resolution [68]. Investigation of the sur-

faces is carried out with the help of a probe with a tip at the end of the probe. The

tips have a radius that varies from one atom to tens of nanometers. The probe is

moving along the surface at a typical distance of 0.1 - 10 nm from the surface.

The principle of operation of scanning probe microscopes is based on different

types of interaction between the tip and the surface. Therefore, there are different

kinds of the microscopes, such as scanning tunneling (STM) or atomic force (AFM)

microscopes. The operation of the STM [69] is based on the tunneling current

between the tip and a conducting surface. The AFM operation [70] is based on

the force interaction between the tip and a surface. In both types of SPM there is

a parameter that characterises the interaction between the tip and the surface. It

can be current (STM) or force (AFM). This parameter depends on the tip-surface

distance and can be used to make a feedback system (FB). An operator sets the

original value of the parameter, and the FB system keeps it fixed. If during scanning

the tip-surface distance changes, then the parameter also changes. The FB system

approaches or withdraws the tip from the surface until the value of the parameter

becomes equal to its original value. The computer records the changes of the tip-

sample distance as a function of the tip position and reconstructs a profile of the

surface.
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In this work a room temperature AFM was used to characterise graphene sam-

ples. The fabrication process of graphene (see the next chapter) does not allow

to control the thickness of the samples. Therefore, once the sample is found, it is

necessary to verify the number of layers. This can be done by scanning the surface

of graphene and the underlying substrate by the AFM tip. As a result the height

of the samples with respect to the substrate will be determined. The thickness of

a single layer graphene is known to be 0.34 nm [2]. Thus, one can easily determine

the number of layers [71].

2.10 Raman spectroscopy

When atoms and molecules are illuminated with light, photons are elastically scat-

tered off them. This process is called Rayleigh scattering. Electrons absorb photons

and get excited to a higher energy level. After relaxation the electrons return to

their original state emitting photons.

However, photons can also scatter inelastically. In this case the energy of scat-

tered photons is different compared to that of incident photons or in other words

the frequency of light is shifted after scattering. This process is called Raman scat-

tering [72]. There are two types of Raman scattering: Stokes and anti-Stokes. If

the energy of emitted photons is smaller, than that of absorbed photons, then this

corresponds to Stokes scattering. In the opposite case, when emitted photons are

more energetic, then anti-Stokes scattering takes place.

Raman spectroscopy is a fast and non-destructive technique that uses the Raman

scattering effect to study doping, defects, strain, edges, etc [73–80] A sample is

illuminated with a laser beam. The reflected light consists of both elastic and

inelastic components. The elastically scattered light is filtered out and the rest is

collected by a detector. The analysis of the light intensity as a function of frequency

can give information about the imperfections in the solid.

Raman spectroscopy is widely used to determine the number of layers of graphene

and characterise the defects in it [74–78, 81, 82]. The Raman spectrum of graphene

consists of several peaks in reflected intensity at certain frequencies [83]. Each of

them can give information on different features in the samples. First we consider

electron scattering off photons within one valley. Electron can absorb a photon and
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get excited from the valence into the conduction band leaving a hole behind (Fig.

2.8(a)). There it first relaxes to a virtual level and then recombines with a hole

producing a photon with smaller energy. This process gives rise to peak G. The

electron can relax via phonon scattering to a real level in the conduction band after

excitation (Fig. 2.8(b)). Then it recombines with the hole via defect scattering.

This gives rise to the D′ peak. And finally the electron can relax to a real level

in the conduction band, then to a real level in the valence band, and eventually it

recombines with the hole (Fig. 2.8(c)). This is a two-phonon process and it gives

rise to the 2D′ peak. There are two other peaks, which appear when the electron

is scattered between the valleys. The D peak appears similarly as the D′ does with

an exception that the electron relaxes to a real level in the other valley and then

it recombines with the hole via defect scattering (Fig. 2.8(d)). The 2D peak is an

analogue of the 2D′ peak in that the electron is scattered between the valleys (Fig.

2.8(e)).

K K K

K K’ K K’

G peak D peak’ 2D peak’

D peak 2D peak

(a) (b)

(d)

(c)

(e)

Figure 2.8: Scattering processes that take place in the Raman effect giving rise to (a)
intra-valley one-phonon G peak, (b) defect-assisted intra-valley D′ peak (c) intra-
valley two-phonon 2D′ peak, (d) defect-assisted inter-valley D peak, (e) inter-valley
two-phonon 2D peak.

The D peak appears only if there are defects (e.g. missing atoms) in the system.

In a defect-free graphene the D peak is absent. In order to determine the number

of layers of graphene, one should study the shape of the 2D peak. For monolayer

graphene the width of the 2D peak at half-maximum should be ∼ 30 cm−1 and the

peak itself is symmetric.
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If the number of graphene layers is more than 1, then the width of the 2D peak

gets broadened and becomes asymmetric [81,82,84–87].
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Chapter 3

Fabrication, sample

characterisation and

instrumentation

In this Chapter we go through the fabrication process of graphene devices starting

from deposition of graphene on top of a substrate and finishing with loading graphene

transistors into low-temperature cryostats. At different stages of this routine we can

determine the number of graphene layers in samples we work with. We consider a

number of different methods to determine the number of layers. We also discuss

the principles of operation of low-temperature cryostats, which are used for electron

transport measurements presented in this thesis.

3.1 Fabrication of graphene transistors

Fabrication of graphene devices starts with a few millimeter sized piece of natural

graphite. Graphite has a layered structure [88]. The crystal structure of a single

layer was discussed in Chapter 1. The separation between graphene planes is 0.34

nm, therefore a few millions of them will make up a millimeter thick graphite crystal.

In order to remove one layer of carbon atoms from graphite, a mechanical exfoli-

ation technique is used [1]. An adhesive tape is used repeatedly to cleave a graphite

piece into thinner layers. At the final stage of exfoliation, the tape with graphite

flakes on it is placed face down and pushed onto the silicon/silicon dioxide (Si/SiO2)
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Figure 3.1: An optical image of monolayer graphene (encircled area) on top of
Si/SiO2.

substrate. A substrate is necessary, because graphene itself was predicted not to ex-

ist in the free state [89–92]. After deposition the substrates with flakes are covered

with a layer of resist (polymethylmethacrylate, PMMA). At first, this layer pro-

tects graphene from surrounding atmosphere, which lowers the quality of samples

by doping, and then it is used to make contacts using electron-beam lithography [93].

The exfoliation technique does not allow control of the number of graphene layers

in individual flakes. Flakes deposited on top of Si/SiO2 consist of different number of

layers, and it is therefore necessary to search for a sample with a required thickness.

This is done with an optical microscope. Although graphene is one atom thick, it

is possible to see it under the microscope (Fig. 3.1) due to contrast of graphene

with respect to the underlying substrate [94]. The graphene contrast is due to

interference of light waves scattered from graphene itself and the bottom edge of

SiO2. Depending on the thickness of SiO2, one should use different filters in order

to maximise the contrast difference. For example, a green filter makes graphene

visible on top of 300 nm SiO2. Almost all samples that are described in the thesis

are deposited on the 300 nm thick silica.

Experiments discussed in the following chapters were performed on monolayer

graphene and the green filter was used to find the flakes. At this stage one can

verify that the found flakes are single-layers, which can be done by measuring the

Raman spectra. After the flakes have been located, electron beam lithography is
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Figure 3.2: Schematic of the transistor. The carrier density is tuned by applying
a voltage, Vg, between the n-doped silicon and graphene. The current is driven
between contacts 1 and 2, the longitudinal resistivity ρ is measured between 3 and
4 (or 5 and 6), and the transverse resistivity between 3 and 5 (or 4 and 6).

used to pattern contacts on top of them. This procedure finishes with removing the

exposed regions of the resist (‘developing’). After that 5 nm of chrome (Cr) and 40

nm of gold (Au) are evaporated on top of the substrate covering its entire surface.

A subsequent process called ‘lift-off’ removes the resist from the substrate together

with the evaporated metal. Metal only remains in areas exposed to the electron

beam. The final step of graphene device fabrication is to connect samples on the

substrate to electrical contacts of a chip carrier using an ultrasonic wire bonding

technique.

The procedure described creates a graphene transistor (Fig. 3.2), in which a

silicon layer, being highly doped, acts as one metal plate (gate) of a plane ca-

pacitor and the graphene flake as the other one. Applying a voltage to the gate

changes the carrier density in the sample (field effect). Electron-beam lithogra-

phy is used to make multiterminal devices, which allows measurements of the four-

terminal resistance. All measurements are performed in a constant current regime.

The current is driven between contacts 1 (source) and 2 (drain). The longitudinal

resistance, Rxx, is measured between 3 and 4 (or 5 and 6), and the transverse resis-

tance, Rxy, between 3 and 5 (or 4 and 6). The conductivities are then calculated:

σxx = 1/ρxx = (1/Rxx)(L/W ), where ρ is the resistivity, L and W are the length

and the width of a sample, respectively, and σxy = 1/Rxy.

The capacitance of a such capacitor is C = ϵrϵ0S/d, where ϵ0 is the electric

constant, ϵr is the relative permittivity, S is the area of plates and d is the distance
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between the plates (thickness of SiO2). On the other hand C = Q/Vg, where Q

is the charge of a plate and Vg is the voltage applied to the plates (gate voltage).

From the two equations we get: ϵrϵ0S/d = Q/Vg. The charge Q can be expressed

as Q = eN , where e is the electron charge and N is the number of electrons in

a plate. Thus, applying a voltage to the gate increases the electron density by

n = N/S = (ϵrϵ0/de)Vg. For 300 nm thick SiO2 , n = 7.2 · 1010Vg (cm−2 V −1).

After the contacts to graphene have been made, a sample can be loaded into a

low-temperature cryostat to perform electron transport measurements. At this stage

it is also possible to verify that the sample is monolayer graphene by measuring the

quantum Hall effect, QHE (Chapter 2). Apart from measurements of the Raman

spectrum and the QHE, the number of layers can be determined using an atomic

force microscope. This should be done when graphene is deposited on top of Si/SiO2

but before it is covered with PMMA, or when a graphene transistor is made.

3.2 Determining the number of layers

We consider three methods to determine the number of graphene layers in a sample.

They are based on measurements of the Raman spectrum of graphene, QHE and

AFM topography. Examples for each of the methods will be shown.

3.2.1 Raman spectrum

The use of the Raman spectrum to determine the number of layers in a sample is

based on analysis of the G and 2D peaks. The Raman data are recorded by using

a laser with a wavelength of 532 nm. The power of the excitation laser is restricted

to 5 mW in order to avoid sample damage by heating.

Figure 3.3 shows an example of such a spectrum for graphene. As expected

(e.g. [83]) the G and 2D peaks appear at 1580 and ∼2700 cm−1, respectively. The

2D peak is symmetric and its width at half maximum can be determined by fitting

the peak with a Lorentzian function (see inset in Fig. 3.3). The fit gives 30 cm−1.

One can also see that the intensity of the 2D peak is higher than that of the D peak.

Thus, the studied samples are monolayers graphene.

Note that the D peak, which is expected at 1350 cm−1, is very small. This
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Figure 3.3: The Raman spectrum of graphene. The symmetric 2D peak, G peak
and the defect-assisted D peak are shown. The inset shows a fit of the 2D peak with
the Lorentzian function. The fit gives the width of the peak at half maximum of
∼ 30 cm−1, which indicates that the studied sample is monolayer graphene.

indicates high quality of the graphene sample and absence of sharp defects.

3.2.2 Quantum Hall effect

As we discussed in the previous chapter the QHE in graphene is different compared

to that in 2D-systems with parabolic dispersion relation. The quantised values

of the conductivity, σ = 4νe2/h, appear at integer filling factors in conventional

systems and at half-integer ν in graphene. Therefore, the QHE measurements can

give information about the number of layers in a studied sample. In this work we

study the QHE at a temperature of 4.2 K and in a magnetic field of 14 T. The

longitudinal and transverse resistivities, ρxx and ρxy, are measured as a function of

the carrier density. These are then used to calculate the transverse conductivity:

σxy = ρxy/(ρ
2
xx + ρ2xy). Figure 3.4 shows the results of the QHE measurements. One

can see that the plateaus appear at half integer filling factors, which shows that

the samples are monolayers [9, 10]. The same result was obtained for all samples

described in the thesis.
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Figure 3.4: Quantum Hall effect measured at 4.2K and 14T. Plateaus at half-integer
filling factors prove that the studied samples are monolayers.

Figure 3.5: (a) Atomic force microscopy image of graphene and (b) a profile taken
along a blue line in (a). The profile shows a clear step in height of < 1 nm, which
indicates that the sample is single layer graphene.

3.2.3 AFM topography

An atomic force microscope can be used to construct a profile of the surface of

the substrate and a sample. This profile in turn can be used to determine the

height of the sample with respect to Si/SiO2. As was mentioned earlier the distance

between graphene layers in graphite is 0.34 nm. Therefore, the height of 0.34 nm is

expected for monolayer graphene. However, due to the presence of contaminations,

e.g. residues of PMMA or dirt from the atmosphere, the actual height, h, can be

larger. Experience shows that h . 1 nm is usually observed. Figure 3.5 shows an

AFM profile of graphene on Si/SiO2. The measured height of the sample turns out
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Figure 3.6: (a) Shubnikov-de Haas oscillations at four different carrier densities,
which are denoted as regions I, II, III and IV. These regions correspond to 0.2, 1.15,
2.6 and 3.5 · 1012 cm−2, respectively. The measurements are performed at 4.2 K. (b)
SdH oscillations shown for region II as a function of 1/B. Red crosses correspond
to the positions of the peaks in the resistance.

to be < 1 nm, which indicates that it is monolayer graphene.

3.3 Determining the carrier density in graphene

from SdH oscillations

Despite the fact that the Si/SiO2 substrates are grown with a nominal oxide thickness

of oxide of 300 nm, there can be variations in the manufacturing process, which vary

the thickness and quality of the layer. These contaminations can form a charged

layer, which can screen the electric field between silicon and sample when the gate

voltage is applied. In both cases the carrier density calculated theoretically (n =

7.2 ·1010Vg cm−2) can be different from the real one. To avoid this the Shubnikov-de

Haas oscillations can be used to determine the carrier density at each studied gate

voltage using equation (2.21). Below is an example of such measurements that show

that the real thickness of the oxide is 280 nm.

The longitudinal resistance is measured at a fixed gate voltage as a function of

the magnetic field Rxx(B) (Fig. 3.6(a)). Then it is plotted as Rxx(1/B), which

shows oscillations equidistant from each other (an example for region II is shown in

Fig. 3.6(b)). The positions of two closest peaks are determined and equation (2.21)

is used to calculate the carrier density. The resultant n is divided by the value of
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Figure 3.7: The dependence of the coefficient γ as a function of magnetic field for
regions II and III in Fig. 3.6(a). The averaged value of γ is 7.7 · 1010.

the gate voltage to calculate the coefficient γ (n = γVg). When this is done for all

peaks in the resistance, the obtained values of γ are averaged. This result is shown

in Fig. 3.7.

Analysis of the SdH oscillations has shown that n = (7.7± 0.2) · 1010Vg (cm−2),

which corresponds to the thickness of SiO2 of 280± 10 nm.

3.4 Instrumentation and measurements

In order to study quantum phenomena, low temperatures are required. Low tem-

peratures are obtained by pumping on a liquid bath. Depending on the sort of liquid

the lowest temperature upon pumping can be different. In this chapter we consider

such low-temperature cryostats as the 3He system and the dilution refrigerator.

3.4.1 Helium-3 cryostat

We start with the 3He cryostat. The choice of liquid to be pumped can be different.

In case of liquid helium-4 (4He) pumping makes it possible to achieve ∼ 1.2 K,

whereas the lowest limit for 3He is 0.25 K. The reasons for the difference in the lowest

achievable temperatures (base temperatures) for 3He and 4He are the following [95].

The vapour pressure of 3He is always higher than that of 4He, because the zero point
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motion is higher for the lighter 3He atom. Also, the 3He superconducting film is

absent. Therefore there is no heat link between liquid 3He and parts of the cryostat,

which have higher temperatures.

At low temperature when 3He is liquid, there is vapour above it, which can be

treated as an ideal gas. In this case one can write the Clausius-Clapeyron equation:

dP

dT
=

LP

RT 2
, (3.1)

where P is the vapour pressure, L is the latent heat of evaporation, R is the universal

gas constant. From this equation one can find the vapour pressure:

P ∝ e−L/RT . (3.2)

Equation (3.2) shows that the vapour pressure of 3He decreases during cooldown.

Since the mass flow is proportional to P , the cooling power decreases when 3He

temperature goes down. At some point the cooling power equates the external heat

link and an equilibrium temperature settles. For the 3He cryostat this temperature

is 0.25 K.

In this section we discuss the Oxford Instruments 3He top loading (TL) system,

Heliox TL. Top loading means that a probe with a sample is loaded from the top of

the cryostat and immersed into the liquid 3He.

There are three working parts in the 3He system that are used to cool the sample

down to the base temperature (Fig. 3.8). The first part is the sorption pump (sorb).

When it is cold, it acts as a pump and absorbs the He gas. When it is heated, it

releases all the gas that has been absorbed. The second part is the 1 K Pot. This

is a small vessel located below the sorb, which is filled with liquid 4He via a needle

valve. The needle valve connects the 1 K Pot with the main bath, which is filled with

liquid 4He. The main bath has to be refilled regularly. The 1 K Pot is connected to

a rotary pump, which cools the 1 K Pot down to ∼ 1.2 K. And the last part is the

sample space, which is located at the bottom of the cryostat. The sample space is a

place where the sample is lowered to and liquid 3He is collected. When the sample

is inserted into the system, the sorb is heated to 30 K to release the 3He gas. The
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IVC
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Figure 3.8: Principle of operation of the 3He system. Picture of the left: the sorb at
30 K releases 3He gas, which condenses passing through the 1 K Pot at 1.2 K. Liquid
3He at 1.2 K is collected in the sample space. Picture on the right: When all 3He
has been condensed, the sorb temperature should be reduced to 2 K for it to start
pumping the vapour above liquid 3He. The pumping decreases the temperature of
3He down to 0.25 K.

gas passing through the 1 K Pot is condensed, collected in the sample space and

cools the sample to the temperature of the 1 K Pot, which is ∼ 1.2 K. When all gas

is condensed in the sample space, the sorb should be cooled down. Then it starts

pumping the vapour pressure above liquid 3He, and the sample temperature drops

to the base temperature.

The three working parts are located in the inner vacuum chamber (IVC) to

provide thermal isolation from the main bath. To prevent quick evaporation of liquid

4He from the main bath it is surrounded by the outer vacuum chamber (OVC).

The Oxford Instruments Heliox TL used in this work allows measurements in a

wide range of temperatures (0.25 - 300 K) and high magnetic fields (0 - 15 T).

3.4.2 Dilution refrigerator

The principle of operation of the dilution refrigerator is based on the use of the

mixture of 3He and 4He. As it was already mentioned pumping the vapour pressure

above liquid 4He reduces the temperature to 1.2 K and above 3He – to 0.25 K.

The mixture of the two isotopes of helium makes it possible to achieve much lower

temperatures.

When the temperature of the mixture drops down to a certain temperature, it

separates into two phases: the concentrated phase rich in 3He and the diluted phase

rich in 4He. The diluted phase is heavier than the concentrated one, therefore the 3He
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Figure 3.9: Schematic diagram of the dilution refrigerator.

rich phase is above the 4He rich phase. When atoms of 3He from the concentrated

phase move across the boundary to the diluted phase, the cooling is produced. In

the dilution refrigerator this process is continuous due to the circulation of 3He by

pumping.

The work of the dilution refrigerator [95] starts with the mixture coming from the

dump to the condenser, where the 1 K Pot at a temperature of 1.2 K condenses the

gas (Fig. 3.9). The liquid then enters the mixing chamber (MC). The circulation

starts by pumping with a rotary pump. The osmotic vapour pressure gradient

drives the liquid to the still, where its temperature decreases further down to ∼ 0.8

K. This cooling is possible due to the higher vapour pressure of 3He compared to

4He. Therefore, it is 3He that circulates.

The phase separation occurs at temperature below 0.86 K and is called the

tricritical temperature. At this stage the heat is applied to the still to increase the

gas circulation rate. Between the mixing chamber and the still there are the still

heat exchanger and step heat exchangers. The still heat exchanger allows cooling

the mixture to 0.8 K after it has passed the condenser. Therefore, the liquid enters

the MC at 0.8 K. When 3He atoms cross the phase boundary, the temperature of

the mixture drops below 0.8 K. On its way to the still the step heat exchanger cools

the mixture coming from the condenser and the still heat exchanger further down.

This procedure is repeated as long as there is gas circulation and cools the mixture

in the mixing chamber down to the base temperature.

The sample to be measured is mounted below the MC and a direct thermal link

cools the sample to the base temperature.
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We use the Oxford Instruments Kelvinox 300 dilution refrigerator. The temper-

ature in this system can be varied between 20 mK and 4 K and an incorporated

superconducting magnet can produce magnetic fields of up to 18 T.
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Quantum corrections to the

conductivity at high temperatures

In this chapter we discuss the experimental results of the investigation of the weak

localisation and electron-electron interaction corrections at temperatures between

5 and 200 K. We begin with measurements and analysis of magnetoconductivity

in graphene and determine the characteristic lengths responsible for WL. We show

that WL in graphene is very unusual compared to conventional 2D systems. For

example, quantum interference in graphene survives at temperatures up to 200 K,

whereas in systems with a parabolic dispersion relation WL is usually observed below

50 K. Depending on experimental conditions, temperature and carrier density, we

observe a transition from weak localisation to antilocalisation. Before the advent of

graphene, such a transition was only observed as a function of the gate voltage.

The transition can be observed in both MC and the temperature dependence

of the conductivity. In the latter there is also the EEI correction, which we study

separately and determine the value of the Fermi-liquid constant.

We also show for both quantum corrections the importance of the elastic scat-

tering.

4.1 Field effect in graphene

The studied graphene sample S1, being 22.5 µm long and 2 µm wide, was pro-

duced by mechanical exfoliation of graphite as described previously. Electron-beam

lithography was used to make a six-terminal device. This allowed measurements
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of the longitudinal and transverse resistance using the 4-terminal van der Pauw

method [96] without taking into account the resistance of the contacts. The de-

vice was then loaded into the low-temperature cryostat. Before cooling down, the

sample was annealed in vacuum (∼ 10−6 mbar) at 140◦C for two hours to remove

contaminations, e.g. water, from the surface of the sample.

In this experiment [97] we measure magnetoconductivity at different tempera-

tures and carrier densities. The latter can be changed by applying a voltage to the

gate. The measurements are performed in a constant current regime (I = 10, 50 or

100 nA depending on the carrier density and temperature). The typical dependence

of the resistance on the gate voltage, R(Vg), or the carrier density is shown in Fig.

4.1. At a certain gate voltage the resistance has the largest value (the peak in the

dependence). This point is called the electro-neutrality (NP) or the Dirac point and

corresponds to the point where the conduction and valence bands cross each other

(Fig. 1.3(a)). In pristine graphene (with no contaminations) the NP is at zero gate

voltage [9,98]. Here the resistivity is expected to be very large, because the density

of states is very small (Fig. 1.3(b)). The behavior of charge carriers at the Dirac

point is a delicate issue and it is beyond the scope of this thesis. In real samples the

resistivity at this point is finite [7] and the position of the NP is always shifted in

the gate voltage due to unintentional doping by e.g. water or chemicals left during

fabrication, etc. The annealing procedure removes some part of these contaminants

and moves the NP closer to Vg = 0.

The NP divides the R(Vg) dependence into two branches (Fig. 4.1). The left

(negative carrier density) branch corresponds to adding holes to the system and the

right (positive carrier density) to adding electrons. In both cases, as expected, the

resistance drops.

The passage of an electrical current through a sample causes Joule heating [99],

which is proportional to the current squared and the resistance. This heating can

warm the sample and so its effective temperature can differ from what a temper-

ature controller shows. The heating of the sample changes its resistance, which is

temperature-dependent [57–59, 100, 101]. To prevent this from happening we mea-

sure the gate voltage dependences of the resistance at different source-drain currents.

If the electrons are overheated by current, then when it is decreased, one would see

that the resistance changes (e.g. increases at low temperatures). At some point
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Figure 4.1: The resistance of the sample as a function of the carrier density or the
gate voltage. The point where the resistance is maximum is the electro-neutrality
point (NP). Regions I, II and III correspond to the carrier densities 0.2, 1.15 and
2.6·1012 cm−2, respectively, where weak localisation is studied.

the resistance stops changing and the current that this resistance corresponds to is

suitable for measurements. In this experiment the current was varied between 1 and

100 nA depending on the carrier density and temperature (these two parameters

affect the resistance of the sample). For example, at low T and n, small currents are

required. At high n or high T the current can be increased. A more detailed analy-

sis (with examples) of electron overheating in experiments will be given in Chapter

5 where the quantum corrections are studied at temperatures down to 20 mK, at

which the overheating is more topical.

4.2 Weak localisation

We study WL in three different regions of the carrier density indicated in Fig. 4.1

by red bars. These regions named I, II and III correspond to 3, 16 and 36 V with

respect to the NP.

One of the ways to detect weak localisation is to apply a low magnetic field

perpendicular to a sample and measure the conductivity (MC) [11]. The magnetic

field adds a phase difference to the two electron waves and destroys interference

between them (see equation (2.26) and Fig. 2.3).

The studied sample is relatively small, therefore at low temperatures the UCF
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Figure 4.2: (a) The resistance of the sample as a function of the gate voltage mea-
sured at 5 K in a narrow window of Vg (shown for region II as an example). For
simplicity only four curves, which correspond to different magnetic fields, are shown.
(b) The result of averaging of the curves in (a).

can be noticeable and they have to be averaged out in order to study the WL more

carefully. Figure 4.2 shows how the averaging is performed. The resistance of the

sample in each region is measured as a function of the gate voltage in a narrow

window of Vg: for region I the window is ∆Vg = 1 V, for region II ∆Vg = 3 V and

for region III ∆Vg = 4 V. The resistance is then averaged over this window. Then the

magnetic field B is increased by a few milli Tesla and the resistance is measured in

the same range of the gate voltages. The gate voltage window should on one hand be

small in order not to change the resistance too much, otherwise the studied system

will be different. On the other hand, the range should be large for it to consist

of many periods of the UCF. The measurements and averaging are performed for

both positive and negative values of the magnetic field between -30 and 30 mT. As

a result of averaging, a set of points, which correspond to the resistance at different

magnetic fields, will appear (Fig. 4.2(b)). One can see that the dependence in the

figure is slightly asymmetric due to the mixture of the longitudinal and transverse

resistances [102]. The symmetric part, Rs, of the curve is extracted using a relation

Rs(B) = (R(B)+R(−B))/2. It is then converted to the magnetoconductivity (MC)

∆σ(B) = σ(B)−σ(B = 0) = −(L/W )∆Rs(B)/[Rs(B)Rs(B = 0)]. When the above

is done at a given temperature, it is changed and the measurements and analysis

are repeated. The obtained MC curves are then analysed using equation (2.27) and
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Figure 4.3: Evolution of the magnetoconductivity as a function of the carrier density
shown at three different temperatures. The solid curves are fits to equation (2.27).

the three characteristic lengths, Lφ, Li and L∗, are extracted.

4.2.1 Transition from weak localisation to antilocalisation

In order to study the effect of experimental conditions on WL, we carry out two

types of experiment. In the first experiment we fix the temperature and study

the MC at different carrier densities. The result of measurements and averaging is

shown in Fig. 4.3 for three different temperatures: 5, 14 and 27 K. It is seen that

at the lowest temperature the MC is positive at all studied carrier densities n. This

is an indication that WL takes place under these experimental conditions. As we

increase n, WL becomes stronger (the dip in the MC becomes narrower), because of

the increasing dephasing length due to adding more electrons to the system, which

screen the impurities (see Chapter 2). At T = 14 and 27 K one can see that with

decreasing electron density the MC changes its sign from positive (region III) to

negative (region I).

The analysis of the MC curves using equation (2.27) shows that the dips in the

dependences at small B are mainly controlled by τφ, whereas the bendings of the

curves are determined by τi and τ∗. As in the previous experiments on WL [34]

the elastic times τi and τ∗ are temperature independent and the dephasing time

decreases with increasing temperature and decreasing carrier density. A transition

from WL to WAL is observed, because the ratio of the characteristic times is seen

to enter the region of antilocalisation as shown in Fig. 2.5. At T = 5 K the value of

τφ is larger, therefore one cannot achieve the transition from WL to WAL because

of the large values of τφ/τ∗ and τφ/τi.

77



Chapter 4: Quantum corrections to the conductivity at high temperatures

-8

-4

0

4

 

 

 

a)

0

10

20

30

 5 K
 14 K
 27 K
 54 K

 

b)

 

 

0

15

30

45

c)

 

 

0 10 20 30

-2

-1

0

 109 K
 163 K
 204 K

 

 

B (mT)

region I

0 10 20 30

-2

-1

0

 

 

xx
 (

S)
xx

 (
S)

B (mT)

region II

-30 -20 -10 0

0

1

2

3

 B (mT)

region III

Figure 4.4: Evolution of the magnetoconductivity as a function of the temperature.
The bottom panel is a zoomed-in view for high temperatures. The solid curves are
fits to equation (2.27).

In the second experiment we fix the carrier density and measure the MC at

different temperatures. The measurements and averaging are performed in the same

way as for the first experiment. The result is shown in Fig. 4.4 for regions I, II and

III. At 5 K we observe a positive MC (WL). As the temperature is increased the

dip in the MC becomes wider until the dependence flattens at ∼ 10 K in region I

(not shown) and at 27 K in region II. At higher temperatures the sign of the MC

changes to negative and a peak (instead of a dip) in the dependences is observed,

Table 4.1: The inter- and intra-valley scattering times (in ps) extracted from the
analysis of the MC. Errors come from the fitting procedure.

Region τi τ∗
I 14.0± 3.0 0.45± 0.05
II 3.0± 0.4 0.30± 0.02
III 1.0± 0.2 0.35± 0.02
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Figure 4.5: Conditions to observe WL and WAL in graphene. Orange curve corre-
sponds to ∆σ(B) = 0 in equation (2.28). The ratios of τφ/τ∗ and τφ/τi, for which
∆σ(B) > 0 (area above the curve), indicate WL. In the opposite case (area below
the curve) they indicate WAL. Point are experimental values found from the analysis
of the magnetoconductivity.

indicating a transition from WL to WAL. At T > 100 K the width of the peak

increases (electron interference is being suppressed) due to dephasing of electron

waves until the MC curve flattens again at 200 K in region II. In region III there is

no transition from WL to WAL. The absence of the transition is again due to the

large values of τφ/τ∗ and τφ/τi. Since Lφ is larger at lower temperatures the WL

correction is the strongest at 5 K for all regions. Similarly to the experiment shown

in Fig. 4.3, the observed transition from positive MC to negative MC is explained

due to the variations in the ratios τφ/τi and τφ/τ∗ (Fig. 4.5). The values of τi and

τ∗ obtained from the MC are given in Table 4.1.

The two described experiments show that in graphene there is a transition from

WL to WAL as a function of the carrier density and the temperature. The latter has

never been observed in any other systems before. The transition has been observed

as a function of the gate voltage [103,104], where the applied Vg tuned the strength

of the spin-orbit interaction.

Unusually, the quantum interference in graphene survives at very high temper-
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Figure 4.6: Temperature dependence of the dephasing rate. Solid lines are expecta-
tions from electron-electron interaction found as a sum of equations (4.1) and (4.3):
(a) α = 1.5, β = 0; (b) α = 1.5, β = 2.5; (c) α = 0, β = 2.5. Dotted lines are
dephasing rates calculated using equation (4.2).

atures, up to 200 K (Fig. 4.4(a)). In conventional 2D systems WL is usually not

observed above ∼ 50 K [23–33] because of strong electron-phonon scattering.

4.2.2 Temperature dependence of the dephasing rate

In order to understand why the electron interference in graphene can be seen at such

high temperatures, we investigate the temperature dependence of the dephasing rate

τ−1
φ .

We consider two mechanisms that can cause electron dephasing [21,22]: electron-

electron and electron-phonon interactions. In the previous studies of τ−1
φ the depen-

dence was found to be linear as a function of temperature [34] corresponding to

electron-electron scattering in the diffusive regime [21]:

τ−1
φ = α

kBT

2εF τp
ln

(
2εF τp
~

)
, (4.1)

where εF is the Fermi energy, τp is the momentum relaxation time and α is a coeffi-

cient of the order of unity. This regime corresponds to the condition kBTτp/~ < 1,

which means that two interacting electrons experience many collisions with impuri-

ties during the time of their interaction, ~/kBT . Figure 4.6 shows the temperature

80



Chapter 4: Quantum corrections to the conductivity at high temperatures

dependence of the dephasing rate in regions I, II and III. The values of τ−1
φ were

obtained from the analysis of the MC using equation (2.27). At temperatures above

120 K in region I and 60 K in regions II and III the values of τφ become smaller

than the mean free time. This is not physical, therefore the range of temperatures

in Fig. 4.6 is reduced compared to that shown in Fig. 4.4. The expected rates due

to electron-electron and electron-phonon scattering are shown by solid and dashed

lines, respectively. Phonons give the following contribution to the dephasing rate:

τ−1
e−ph =

1

~3
εF
4ν2F

D2
a

ρms2
kBT , (4.2)

whereDa is the deformation potential constant, ρm is the density of graphene, s is the

speed of sound, and νF is the Fermi velocity. (In plotting the electron-phonon rate

we have used the values ρm = 7.6× 10−7 kg m−2, s = 2× 104 m s−1, νF = 106 m s−1

and Da ≈ 18 eV which were used in the analysis of the temperature dependence

of the classical conductance [57].) One can see that the electron-phonon rate is

much smaller than the experimental dephasing rate. Moreover, the experimental

dependence is not linear in regions II and III. This excludes not only electron-

phonon but also electron-electron scattering in the diffusive regime as the main

dephasing mechanisms. The alternative inelastic scattering mechanism is electron-

electron scattering in the ballistic regime, which is realised at kBTτp/~ > 1, when

electrons interact with each other without multiple impurity scattering. This gives

a parabolic temperature dependence of the dephasing rate [22]:

τ−1
φ = β

π

4

(kBT )
2

~εF
ln

(
2εF
kBT

)
. (4.3)

Coefficients α and β in equations (4.1) and (4.3) are fitting parameters and according

to the theory they should be of order unity. A transition temperature, T0, between

diffusive and ballistic regimes is determined from the condition kBT0τp/~ ∼ 1: be-

low T0 the regime is diffusive, above T0 it is ballistic. In region I the transition

temperature is high, T0 ∼ 80 K, and the dephasing rate can be explained by the

diffusive electron-electron interaction, equation (4.1). In regions II and III with

T0 ∼ 60 K and 40 K, respectively, the dephasing rate can be represented as a sum

of the two rates, equations (4.1) and (4.3). Therefore, our results show that it is
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electron-electron scattering which is the main source of high-temperature dephasing

in graphene. Thus, it is the weakness of electron-phonon interaction that makes it

possible to observe the quantum interference in graphene at very high temperatures.

Equation (4.2) that was used in the analysis of the temperature dependence of

the dephasing rate represents the quantum time, τq, which is the time between any

two scattering events. It is not the same as the momentum relaxation time τp, which

is the time during which the momentum of a particle changes significantly (large-

angle scattering contributes to τp). The quantum time represents any scattering

regardless of angle. For short-range scatterers the two times are equal, because

this type of scattering dominantly induces large-angle deflections. For long-range

scattering τp > τq. In order to use equation (4.2) to fit the dephasing rate, it is

necessary that τe−ph ≡ τq ∼ τφ. In graphene the use of this equation is justified. To

prove it we first compare τq and τp.

The wavelengths of electrons and phonons are λe and λph, respectively:

λe =
2π

kF
λph =

2π

q
,

where kF and q are electron and phonon wave vectors, respectively. The ratio of the

two wavelengths at T > 10 K in all studied regions is

λe
λph

=
q

kF
=
kBT

εF

νF
s

& 1 ,

where s is the speed of sound. This equation means that electron scattering off

phonons is large-angle scattering. Therefore, τq ∼ τp.

Now we can estimate how much the electron phase changes during the time

τe−ph [105]. During a collision the energy of the electron changes by ∆ε and its

phase by ∆φ = ∆ετe−ph/~. The energy and momentum conservation laws give the

following change of the electron energy: ∆ε ∼ εF s/νF . Thus, after a collision the

phase of the electron changes by

∆φ =
∆ετe−ph

~
∼ τe−phεF

~
s

νF
∼ 1 .

In this estimation the values of τe−ph from Fig. 4.6 were taken. One can see that
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Figure 4.7: The gate voltage dependence of the resistivity measured at 5.4 K for
three studied samples S1, S2 and S3. The EEI correction to the conductivity is
studied in regions I, II and III.

the electron phase changes by an amount of the order of unity, which means that

during the time τe−ph electrons lose their coherence, i.e. τe−ph = τφ.

In summary, we show that electron antilocalisation in graphene, a consequence of

the Berry phase π, can be realised experimentally. This occurs when the dephasing

time is small compared with the elastic inter- and intra-valley scattering times.

We also demonstrate that quantum interference in graphene can exist at very high

temperature due to suppressed electron-phonon scattering.

4.3 Electron-electron interaction

The weak localisation correction to the conductivity also contributes to the temper-

ature dependence of the conductivity at zero magnetic field. In addition, there is

another correction coming from electron-electron interaction in the presence of dis-

order. Since the two quantum corrections depend logarithmically on temperature,

in order to study the electron-electron interaction correction to σ0 it is necessary to

separate the two.

We study several samples with different levels of disorder (Table 4.2), which is

indicated by the electron mobilities, in a temperature range 0.25 – 40 K. We focus on

the same carrier densities as in the studies of magnetoconductivity (see the previous

section): regions I, II and III (Fig. 4.7).
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First, the resistivity ρ is measured as a function of the gate voltage at all studied

temperatures. Each studied region of the carrier density (gate voltage) is chosen

with respect to the NP (Fig. 4.1). At low T in each region ρ is averaged over a

small range of the gate voltages ∆Vg to reduce the effect of the UCF and noise. The

range ∆Vg is different in regions I, II and III and is chosen in such a way that ρ is

linear within ∆Vg. This range varies from sample to sample, because of the different

level of disorder, which affects the shape of the ρ(Vg) curves (e.g. the curves can

be narrower or wider). Apart from that, the dependence of the resistivity on the

gate voltage is different if long-range or short-range impurities are the dominant

scatterers [9, 98]. In the current experiment in region I ∆Vg = 0.5 V, in region II

∆Vg = 1-3 V and in region III ∆Vg = 3-6 V (at high carrier densities a range of

gate voltages is given because the three samples have different levels of disorder, as

can be seen in Fig. 4.7).

As an example, the resistivity measured in region II at different temperatures

in a small range of gate voltages is shown in Fig. 4.8(a). One can see that at low

temperatures, due to the presence of the UCF and noise, ρ should be averaged over

the shown window of Vg. At high T this procedure is not necessary. The result of

averaging in each region at different temperatures is shown in Fig. 4.8(b-d). Note

that at high temperatures the position of the NP can fluctuate at different T by a

small amount of 0-0.5 V (Fig. 4.9(b)). A simple check shows that the position of

the NP should be determined accurately (δVg = 0.03 − 0.05 V), because an error

of 0.1 V leads to large errors in the temperature dependence of the resistivity. The

best (reproducible) results are achieved when parts of the ρ(Vg) curves near the NP

are fitted with a Gaussian function (Fig. 4.9(a)). Usually the parts of the curves

between ρNP and 0.5 − 0.8ρNP (where ρNP is the resistivity at the NP) are fitted,

Table 4.2: Electron mobility µ (in cm2V−1s−1 ) at 5 K for three regions of the carrier
density in samples S1, S2 and S3. Characteristic scattering times τi and τ∗ (in ps)
are also shown for sample S1.

S1 S2 S3
Region µ τi τ∗ µ µ

I 17500 14 0.45 9300 12500
II 11500 3 0.3 5400 11000
III 9700 1 0.35 4500 9500
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II at different temperatures. (b)-(d) The resistivity as a function of temperature for
sample S1 for the three studied regions. The solid line in (d) is a fit to equation
(2.51). The fit gives Da = 18 eV.

and the position of the NP as well as the value of ρNP (if necessary) are determined.

It is important that the same parts of the curves are fitted at all temperatures and

magnetic fields. For example, if the lower fitting border is 0.5ρNP , then only this

border should be used while a sample is being measured. In the next chapter we will

see that at temperatures between 20 mK and 4.2 K the NP is stable and there is no

need to determine its position at each temperature using the Gaussian function.

One can see from Fig. 4.8(a) that at low T the resistivity decreases as the temper-

ature increases. At high T the resistivity increases. There are several contributions

to ρ that give such a dependence. At low temperatures the quantum corrections

dominate: the WL and EEI corrections lead to a logarithmically decreasing re-

sistivity. The WAL correction leads to the increase of ρ. At high temperatures
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electron-phonon interaction gives the main contribution to ρ. The figure shows that

at these temperatures the experimental dependence is not linear, suggesting that

apart from the linearly-dependent electron-acoustic phonon contribution, there is a

contribution from other types of phonons, mainly coming from the substrate [57].

And finally, the temperature independent contribution, which arises from electron

scattering off impurities, gives a T -independent offset of the experimental depen-

dence of ρ(T ).

We will limit the studied temperature range to 50 K in order not to take into

account optical phonons from the substrate. However, at 20-50 K acoustic phonons

are significant and have to be dealt with. Therefore, before we start investigating

the quantum corrections, we determine the electron-acoustic phonon contribution

to ρ and subtract [49] it.

4.3.1 Effect of electron-phonon interaction

As we know from the previous section, at high carrier densities positive MC is

observed (no antilocalisation) and the quantum interference survives at lower tem-

peratures than at low carrier densities. Thus, at high carrier densities and high

temperatures the dominant contribution to ρ(T ) is due to electron-phonon interac-

tion, ρe−ph. Due to the linear dispersion relation, this contribution is independent of
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n [52,53]. Therefore, we determine ρe−ph in region III and subtract it in all studied

regions of carrier density.

Since at T > 100 K optical phonons from the substrate also contribute to ρ(T ),

we fit the experimental temperature dependence of the resistivity to the sum of

two contributions [57]: acoustic phonons in graphene and optical phonons in silica,

equation (2.51). This equation has only one fitting parameter, the deformation

potential Da. The fitting procedure (Fig. 4.8(d)) gives Da = 18 ± 1 eV. Using

this value of Da we can determine the acoustic phonon contribution to ρ(T ) using

equation (2.48) and subtract it.

Figure 4.10(a) shows the ρ(T ) dependence and the electron-acoustic phonon con-

tribution on the same graph for the three studied regions. The result of subtraction

is shown in Fig. 4.10(b) as ∆σ(T ) = σ(T ) − σ(T0), where T0 is the lowest studied

temperature, σ(T ) = [ρ(T ) - ρA(T )]
−1.

4.3.2 Separation of the quantum corrections

In order to separate the quantum corrections, we combine the measurements of

magnetoconductivity with those of the temperature dependence of the conductivity.

The separation is performed using two methods. In the first method, used to analyse

the results of samples S1 and S3, the low-field perpendicular magnetoconductivity

has been measured in order to determine the characteristic times responsible for WL:

the inelastic dephasing time τφ(T ), the elastic time of inter-valley scattering τi, and

the elastic time τ∗ which describes intra-valley suppression of quantum interference.

This analysis is done using the theoretical model (equation (2.27)) following the

method described in the previous section and [34, 97]. These times are used to

determine the WL correction, equation (2.41), which is then subtracted.

In the second method, used to analyse sample S2, the EEI correction has been

isolated by suppressing WL by a perpendicular magnetic field of 1 T. As will be seen

later this magnetic field is large enough to suppress interference without affecting

the EEI correction [11]. Both methods lead to close results for the magnitude of

the EEI correction in the studied samples, which proves the robustness of the first

method based on equation (2.27).

In Fig. 4.10(b) the solid lines show the WL correction determined using the first
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Figure 4.10: (a) Resistivity as a function of temperature for sample S1 in the three
studied regions (see Fig. 4.8). The dashed line indicates the contribution from
electron-acoustic phonon interaction calculated using equation (2.48) (shifted for
convenience) with Da = 18 eV. (b) The conductivity after the phonon contribution
has been subtracted. The solid lines show the WL correction to the conductivity.

method. One can see that the two types of quantum correction, WL and EEI, are

of similar magnitude. The solid lines clearly show that in regions I and II there

is a transition from weak localisation, an increase of ∆σ(T ), to antilocalisation, a

decrease of ∆σ(T ). (Earlier, such a transition was detected in the change of the

sign of magnetoconductivity (see the previous section and [97]), with the transition

temperatures of ∼ 10 K in region I and ∼ 25 K in region II, which is in agreement

with this experiment.)

Figure 4.11(a) shows the temperature dependence of the resistivity in sample S2

in the temperature range 0.25 - 40 K. The dashed line shows the electron-phonon

contribution with a deformation potential of 18 eV. This contribution, equation
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Figure 4.11: (a) Resistivity as a function of temperature for sample S2, shown
for three regions. The dashed lines indicate the magnitude of the acoustic phonon
contribution calculated using equation (2.48) (shifted for convenience) with Da = 18
eV. (b) The conductivity ∆σ(T ) = σ(T ) − σ(T0) at different magnetic fields (the
contribution of acoustic phonons with Da = 18 eV has been subtracted).

(2.48), is subtracted in regions II and III. The remaining quantum correction to

the conductivity is presented in Fig. 4.11(b), for different magnetic fields. One

can see that with increasing B there is a decrease in the slope of the temperature

dependence until a saturation is reached. This is a signature that the WL correction

has been suppressed.

As we discussed in Chapter 2, the suppression of the WL correction is expected

at magnetic fields much larger than the transport magnetic field, Btr. For sample

S2, Btr are 120, 70 and 45 mT for regions I, II and III, respectively. Therefore, it

is not surprising that 1 T is enough to suppress WL. It is also important to make

sure that this magnetic field does not affect the EEI correction due to the Zeeman

splitting. The condition g∗µBB > kBT is fulfilled at magnetic fields higher than
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Figure 4.12: The electron-electron interaction correction to the conductivity. (a)
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1 T, therefore the range of applied fields to suppress WL does not affect the EEI

correction.

Figures 4.10(a) and 4.11(a) show that the relative magnitude of the phonon

contribution depends both on the carrier density and sample quality (mobility).

In region I, for all studied samples, this accounts for less than 5% of the change

in ρ(T ) for temperatures below 50 K and the subtraction procedure is not neces-

sary. In region III, where the carrier density is high and the resistivity is low, the

phonon contribution is important and the value of the electron-electron interaction

correction becomes sensitive to the choice of Da. In region II it is significant in the
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high-mobility sample S1 and less important in the low-mobility sample S2.

The result of the separation of the EEI correction using the two methods is shown

in Fig. 4.12, where the interaction correction is also shown for sample S3 in region

I. To check how the EEI correction is affected by the phonon contribution, we also

subtract the phonon contribution with Da = 21 eV. The two sets of points in each

graph in Fig. 4.12 correspond to different values of the deformation potential, 18

and 21 eV. One can see that at low carrier density (region I) in sample S1 and all

densities in sample S2 the uncertainty in the coefficient A is negligibly small. Since

the mobility of electrons in sample S1 is larger than that in sample S2 (see Table

4.2) the effect of phonons is weaker in S2. That is why the results under mentioned

conditions are stable for different values of Da. Thus, in low-mobility samples, where

the effects of phonons are very small, the error in determining the EEI correction

is minimal. The figure also shows that the EEI correction is indeed logarithmic in

temperature as expected. The coefficient A is 0.6± 0.15 for the majority of regions

of the carrier densities in the studied samples.

To interpret the obtained value of A, we note that the theory [40] distinguishes

between the contributions from different quantum states of two interacting electrons,

commonly referred to as ‘channels’. The coefficient A takes the form A = 1 +

c (1− ln(1 + F σ
0 )/F

σ
0 ), where F

σ
0 is the Fermi-liquid constant. While the first term in

this relation represents the universal contribution of the ‘singlet’ channel, the second

(Hartree) term describes the contributions of c ‘triplet’ channels. For example, in

a single-valley 2D system (such as in GaAs) the coefficient c = 3 due to identical

contributions of three spin triplet states. (When this degeneracy is lifted by a

magnetic field [40], the two components become suppressed, resulting in c = 1.)

In two-valley 2D systems (e.g., in Si-MOSFETs [106,107]) the situation is more

complicated. In the absence of inter-valley scattering, the valley index v = ± is a

good quantum number. In this case the overall number of channels is 16, due to

four-fold spin degeneracy of two interacting electrons and an additional four-fold

degeneracy due to the two valleys. This gives the prefactor c = 15. This result also

holds if the inter-valley scattering is weak, kBT ≫ ~/τi, i.e. when the typical electron

energy is larger than the characteristic rate of inter-valley scattering. However, at

low temperatures, kBT ≪ ~/τi, strong inter-valley scattering mixes the valleys and

A takes the same form as in the single-valley case.
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Unlike in Si-MOSFETs, in graphene the valley dynamics is governed by two

characteristic times, the inter-valley scattering time τi and intra-valley dephasing

time τ∗ [13]. In our experiments, the inter-valley scattering rate ~/τi is of the

order of 3 K, while the intra-valley dephasing rate is above 20 K (see Table 4.2).

Thus the intermediate regime, ~/τi < kBT < ~/τ∗, becomes possible. In this case,

the channels with two electrons from different valleys give no contribution. (This

situation is similar to the one that occurs for universal conductance fluctuations in

graphene [108,109].) As there are two spin states per electron and two states for two

electrons in the same valley, there are eight remaining channels, one of which is both

spin and valley singlet, so that c = 7. Thus we arrive at the following expression for

A in equation (2.31):

A(F σ
0 ) = 1 + 7 (1− ln(1 + F σ

0 )/F
σ
0 ) . (4.4)

This analysis is confirmed by standard diagrammatic calculations [101], where a

common assumption was used that all channels except for the singlet are described

by the same Fermi-liquid parameter.

Using equation (4.4) and the experimental values of A, Fig. 4.12, we find the

values of F σ
0 to be between -0.07 and -0.14. It is interesting to note that the value of

F σ
0 found in GaAs and Si systems at rs ∼ 1 is between -0.15 and -0.2 [49, 106, 107].

In Chapter 2 it was shown that the Fermi-liquid constant is smaller in graphene

compared to other 2D-systems due to the chirality of charge carriers. The theory

predicts F σ
0 = −0.10, which is in agreement with our measurements. Our result is

in agreement with the value of F a
0 in [46] for the studied range of charge densities.

(To compare F σ
0 with F a

0 in [46], one has to take into account that these quantities

are related as F a
0 = 2F σ

0 .)

In summary, we show that electron-electron interaction plays an important role

in the low-temperature conductivity of carriers in graphene. Unexpectedly for the

EEI correction, its magnitude is affected by the intra-valley decoherence rate due to

elastic scattering. We find the value of the interaction parameter F σ
0 in graphene,

which is lower than in other 2D systems studied previously.
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Quantum corrections to the

conductivity at low temperatures

In the previous chapter we studied the quantum corrections to the conductivity at

temperatures between 5 and 200 K. We observed a transition from weak localisation

to antilocalisation as a function of temperature and carrier density. The quantum

interference in graphene was found to survive at temperatures up to 200 K due to

weak electron-phonon interaction. The electron-electron interaction correction was

shown to depend logarithmically on temperature (as predicted by theory) and to

be affected by elastic scattering. Due to the chirality of charge carriers the Fermi-

liquid parameter F σ
0 was found to be smaller in graphene compared to conventional

2D-systems.

In this chapter we study the quantum corrections between 20 mK and 5 K. In

the magnetoconductivity measurements we observe a saturation of the dephasing

length below 100 mK. We discuss the possible mechanisms responsible for such a

saturation and focus on the spin-orbit interaction and spin-flip processes by resonant

scatterers. We determine the spin coherence length and find its values to be much

smaller than theory predicts. We also demonstrate how this length can be tuned by

controlling the level of disorder.

5.1 Weak localisation

In Chapter 4 we described one method of measurements of WL: the magnetic field

was fixed and the conductivity was measured in a narrow window of gate voltages,
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Figure 5.1: The resistance measured in sample SS1 as a function of magnetic field
shown for region I at 30 mK. Three curves correspond to three close values of the
gate voltage.

over which σ was averaged. The magnetic field was then changed by a few milli

Tesla and the measurements were repeated.

Here we show a slightly different approach. The resistance, R(B), is measured

as the magnetic field is varied over a range of 20 mT at a fixed gate voltage. This

measurement is then repeated at three close values of Vg (Fig. 5.1) and R(B) is

averaged. At very low temperatures, ∼20 mK, the dephasing length is expected

to be very large. Therefore, the WL peak in the MC is very narrow. In order to

resolve the peak one has to sweep the magnetic field very slowly. Therefore we limit

the values of Vg, over which the averaging is performed, to three. This is enough to

reduce the effect of the UCF by 1/
√
3. The slight asymmetry in the R(B) curves

is eliminated as described in the previous chapter and the result is converted to the

magnetoconductivity (MC), ∆σ(B).

We study three different samples of different size and disorder (see Table 5.1).

Since samples SS1 and SS2 are large, the UCF at 20 mK are not expected to be

very large. Sample SS3 was measured at a higher temperature at which the UCF

were also small.

The MC measurements are performed at carrier densities marked by red circles in

Fig. 5.2(a). The temperature dependence of the conductivity is measured in regions
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Figure 5.2: (a) The resistivity dependence on the gate voltage, RVg, measured at
30 mK in sample SS1. Red circles represent regions where magnetoconductivity is
measured. The temperature dependence of the conductivity is measured in regions
I, II and III. The left inset shows the gate voltage dependence of the conductivity
for the same sample at 30 mK. The right inset shows the valence and conduction
bands filled with electrons up to the Fermi energy, εF , which is much larger than
kBT in all studied regions. (b) The RVg curves measured in a temperature range 20
mK - 4.2 K. The left inset shows a zoomed-in region near the neutrality point. The
right inset shows the resistivity in a narrow range of the gate voltages in region I.

I, II and III. At all carrier densities the studied system of electrons is degenerate, as

could be deduced from the fact that the Fermi energy is much larger than kBT .

Figure 5.3 shows the MC curves measured at different temperatures. One can

see positive MC at all T , which is indicative of the weak localisation correction

to the conductivity. Analysis of WL is performed using the standard theoretical

model [13]:

πh

e2
·∆σ(B) = F

(
τ−1
B

τ−1
φs

)
− F

(
τ−1
B

τ−1
φs + 2τ−1

i

)
− 2F

(
τ−1
B

τ−1
φs + τ−1

i + τ−1
∗

)
. (5.1)

Table 5.1: Sample parameters: dimensions (in µm) of the samples and mobilities µ
(in cm2V−1s−1) in regions I, II and III.

Sample L×W µI µII µIII

SS1 40.6×17.5 13400 9800 7700
SS2 15×7 5300 4700 4200
SS3 4×1 4100 2000 1300
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Figure 5.3: Magnetoconductivity measured in regions I, II, III and IV at different
temperatures.

Here τ−1
φs = τ−1

φ + τ−1
s , τφ and τs are the electron dephasing and spin coherence

times.

Analysis of the MC curves is performed similarly to that at high temperatures:

equation (5.1) is used to fit the experimental dependences and extract the three

characteristic lengths: Lφs, Li and L∗. As in the previous studies of WL, in this

experiment we obtained Li ∼ 1 µm and L∗ ≪ 1 µm.

5.1.1 Temperature dependence of the dephasing length

The temperature dependence of the dephasing length is shown in Fig. 5.4 for three

regions. One can see that above∼ 1K the dephasing length, Lφs =
√
Dτφs, decreases

as the temperature increases and agrees with the theory of dephasing due to electron-

electron interaction in the diffusive regime [21]:

τ−1
φ = α

kBT

2εF τp
ln

(
2εF τp
~

)
. (5.2)

This regime corresponds to the condition kBTτp/~ < 1, which is always fulfilled

under the studied experimental conditions. We use equation (5.2) to fit the exper-
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Figure 5.4: The temperature dependence of the dephasing length in sample SS1
extracted from MC in regions I, II and III. Different symbols represent different
experimental runs. The dotted line shows the saturated value of Lφs. Solid curve is
the expected behavior of the dephasing length due to electron-electron interaction.
Error bars at each temperature indicate values of Lφs, which can be used to fit the
MC curves.

imental temperature dependence of Lφs(T ) at T > 1 K to find α, which is of the

order of unity (in agreement with the theory) at all carrier densities.

At temperatures below 1 K the experimental values of the dephasing length de-

viate from theory and eventually saturate. The value of the saturated Lφs increases

with carrier density (Fig. 5.4).

5.1.2 Mechanisms of the saturation of the dephasing length

This saturation results from the temperature-independent contribution to Lφs(T )

related to the electron spin. However, before we can draw this conclusion there are

three other mechanisms that could be responsible for such a saturation [60] that we
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heating for 1 and 0.1 nA (this is true also for sample SS1). The inset is a zoomed-in
region shown in the main graph by a rectangle.

need to take into account: (i) sample size [34], (ii) electron overheating [99], and

(iii) magnetic impurities [110].

(i) Dephasing of electrons can occur in the source and drain contacts of the

sample, and therefore the maximum possible dephasing length is the sample length,

L. Since the saturated value of the dephasing length Lsat
φs ≪ L this mechanism can

be dismissed.

(ii) Measurements performed at different source–drain currents show that 1 nA

does not cause overheating. For example, in Fig. 5.5 the resistance measured as a

function of the gate voltage increases as the current is decreased from 10 nA to 1 nA

and then saturates for smaller currents [99]: there is no difference in passing 1 or

0.1 nA through the samples. Therefore, 1 nA is low enough not to cause overheating.

Moreover, as we will see in the next section the conductivity decreases logarithmi-

cally as a function of temperature down to 20mK (see Fig. 5.6). Both facts prove

that there is no electron overheating and the applied current can be ruled out as a

source of dephasing.

(iii) As far as magnetic impurities are concerned, the three studied samples were

fabricated from different sources of natural graphite. All of them have different level

of disorder, which can be seen from the electron mobilities (see the table in Fig. 1).
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As we will see later, the values of the saturated dephasing length, Lsat
φs , extracted

in these samples are systematic and all lie along the same line in Fig. 5.10. If

magnetic impurities were responsible for the saturation, then their concentration

would vary randomly from sample to sample and one would expect random values

of Lsat
φs . Therefore, the observed saturation of the dephasing length can not be caused

by magnetic impurities [60].

Between the experimental runs, sample SS1 was thermally cycled to room tem-

perature and back to the base temperature a few times. The cycles caused only a very

small shift (∼ 5%) of the Dirac point. If there were impurities that could cause elec-

tron dephasing, then their amount and distribution along the sample would change

over the thermal cycles. This, in turn, would lead to a noticeable shift of the Dirac

point, because graphene was shown to be sensitive even to single molecules [111].

In this case, values of Lφs measured in different experimental runs would not be in

agreement with each other. High stability of the Dirac point and good agreement

between the runs means that there are no such impurities.

Thus, the only origin of the saturation is related to the electron spin and the

values of Lsat
φs are the values of Ls. We consider two spin-related phenomena: spin-

orbit interaction and spin-flip scattering by resonant localised states in the vicinity

of the Dirac point.

5.2 Temperature dependence of the conductivity

The weak localisation correction also manifests itself in the temperature dependence

of the conductivity, σ(T ), at zero magnetic field, which is measured similarly to the

high-T conductivity (Chapter 4). The resistivity is measured as a function of the

gate voltage at different temperatures, 20 mK - 4.2 K, Fig. 5.2(b), which is then

averaged over a small range of Vg in each of the three regions (I, II and III). The

averaging is more important at low temperatures due to the presence of the UCF

and noise (right inset in Fig. 5.2(b)). The resultant resistivity is converted to the

conductivity and plotted as ∆σ = σ(T ) − σ(T0), where σ(T ) = 1/ρ(T ) and T0 is

the lowest studied temperature. At low temperatures the position of the NP in the

ρ(Vg) curves is stable as can be seen from Fig. 5.2(b) (left inset), therefore there is

no need to determine it at each temperature. The result of averaging is plotted in
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Figure 5.6: The temperature dependences of the conductivity, ∆σ(T ) = σ(T ) −
σ(T0), where T0 is the lowest studied temperature. The dependences in the main
graphs are shown for sample SS1 for (a) region I, (b) region II and (c) region III.
Insets show ∆σ(T ) in sample SS2. The solid curves are fits to equation (5.3).
The values of the spin coherence lengths in each region are shown for sample SS1.
Different symbols in the insets correspond to different experimental runs.

Fig. 5.6.

In addition to the WL correction, there is also the EEI correction:

∆σ = δσWL + δσEEI . (5.3)

Only δσWL contains information about SOI and spin-flip scattering by vacancies, so

we measure the EEI correction explicitly by two independent methods: by studying

the temperature dependence of the Hall coefficient, and suppressing WL by a per-

pendicular magnetic field. These measurements were used to determine the value

of A which we found to be A = 0.5 − 0.6 (see subsection 5.2.1) in agreement with

earlier studies [101].

The WL correction to the conductivity is given by the following relation:

δσWL = − e2

2π2~

[
ln

(
1 +

2τφ
τi

+
τφ
τs

)
− ln

(
1 +

τφ
τs

)

−2 ln

(
τφ/τp

1 + τφ/τi + τφ/τ∗ + τφ/τs

)]
. (5.4)

Figure 5.6 shows the temperature dependence of the conductivity of two samples.

The conductivity, ∆σ(T ) = σ(T )−σ(T0) = 1/ρ(T )−1/ρ(T0), where T0 is the lowest

studied temperature, decreases logarithmically down to 20 mK. The dependences

are fitted by equation (5.3). From the MC analysis we determine the inter-valley
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Figure 5.7: The EEI correction to the conductivity isolated by applying a perpen-
dicular magnetic field of 1 T. The left- and right-hand side graphs correspond to
regions III and IV.

and intra-valley scattering lengths. Since Li ∼ 1 µm and L∗ ≪ 1 µm, and both

are much smaller than Lφ, they have a negligible effect on the form of σ(T ). The

values of Lφ at temperatures below 1 K are calculated using equation (5.2), where

the prefactor α is determined from the higher temperature (T > 1 K) dependence of

Lsat
φs , Fig. 5.4. Since the EEI correction is determined separately, the spin coherence

length, Ls, is the only fitting parameter in equation (5.3). The result of fitting is

shown for samples SS1 and SS2 in Fig. 5.6.

5.2.1 Electron-electron interaction correction

We isolate the EEI correction to the conductivity by suppressing WL in a per-

pendicular magnetic field and by studying the temperature dependence of the Hall

coefficient. The suppression of WL by a magnetic field is done in the same way as

in Chapter 4. A magnetic field of 1 T was enough to isolate the EEI correction (Fig.

5.7).

Figure 5.8 shows the studies of the Hall coefficient, RH , in graphene. In order

to determine the EEI correction from RH , one has to know the Drude conductivity

σ0 and the classical Hall coefficient R0
H (see equation (2.46)). We determine σ0 by

measuring the longitudinal resistivity as a function of the magnetic field at temper-

atures 0.11, 1.8 and 4.2 K (Fig. 5.8(a)). The figure shows three curves crossing each

other at B = 0.75 T. The correspondent resistivity is ρxx = 2.27 kΩ. The expected
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Figure 5.8: (a) The longitudinal magnetoresistivity measured in region I at differ-
ent temperatures. Fitting solid curves are used to determine the resistivity at the
crossing point. The inset shows the same curves after the EEI correction has been
subtracted. (b) The transverse magnetoresistivity at different temperatures. The
group of lines in the main graph corresponds to raw data and that in the inset
shows ρxy without the EEI correction. (c-d) The temperature dependences of the
Hall coefficient shown for regions I and III. The solid lines are linear fits. Different
points at each temperature correspond to different magnetic fields.

value of the magnetic field at the crossing point is B0 = 1/1.34 ≈ 0.75 T. The found

value of ρxx is used to calculated the Drude conductivity σ0 = 1/ρxx.

The classical value of the Hall coefficient is given by the relation R0
H = 1/ne. The

carrier density, n, is determined from the Shubnikov-de Haas oscillations (Chapter

3). The proportionality coefficient between the carrier density and the gate voltage

is found to be γ = 7.7× 1010 V−1 (n = γVg cm−2).

The Hall coefficient is determined from the slope of the transverse magnetore-

sistivity: RH = ρxy/B. The group of curves in the main graph in Fig. 5.8(b) shows

ρxy(B) at different temperatures. The curves are fitted with a straight line and

the ratio ρxy/B is calculated at different B. The temperature dependence of the

Hall coefficient is shown in Fig. 5.8(c-d) for regions I and III. The slope of this

dependence gives the EEI correction (equation (2.46)), Fig. 5.9. The values of A
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Figure 5.9: The EEI correction to the conductivity determined from the temperature
dependence of the Hall coefficient for regions I-IV.

determined from the two methods are in agreement with each other.

The EEI correction determined from the Hall coefficient studies is then sub-

tracted from σxx and the longitudinal and transverse resistivities are recalculated

from the inverted conductivity tensor, equation (2.45). The insets in Fig. 5.8(a)

and Fig. 5.8(b) show ρxx and ρxy without the EEI correction, respectively. In both

cases all curves collapse into one, which proves that the EEI correction is determined

correctly.

5.3 A comparison of Ls determined from MC and

σ(T )

In Chapter 2 we discussed that the two relevant mechanisms of spin dephasing in

graphene depend differently on the mean free path. Therefore, we plot Ls, deter-

mined from from the MC and σ(T ), as a function of lp for the studied samples (Fig.

5.10). In samples SS1 and SS2 we covered a range of mean free paths from 60 to 180

nm. In order to extend this range to lower lp, we irradiate (see Chapter 6 for details)
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Figure 5.10: The spin coherence length as a function of the mean free path deter-
mined from the MC analysis (circles, squares and hexagons) and the temperature
dependence of the conductivity, equation (5.3) (diamonds and triangles). Circles
and diamonds correspond to sample SS1, squares and triangles - to sample SS2,
hexagons - to sample SS3. The solid line is a linear fit to experimental data shown
by red circles. Error bars show possible values of Ls that can be used to fit the
experimental dependences.

sample SS3 with gallium ions. This increases disorder in graphene and reduces the

mean free path to 20 nm. The spin coherence length determined from the MC in

sample SS3 is also shown in Fig. 5.10. The spin coherence length increases linearly

as the mean free path increases suggesting the Elliot-Yafet type of spin decoherence.

The values of Ls determined from the MC and σ(T ) studies and in different samples

are consistent and all lie on the same line. The significance of the Elliot-Yafet type

of spin decoherence could be inferred from Fig. 5.3, where only WL is observed at

all studied temperatures and carrier densities. For the Dyakonov-Perel mechanism

one would observe weak antilocalisation of electrons.
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Figure 5.11: The dependence of the spin coherence length on the mean free path
determined by different experimental groups [112–114].

5.3.1 Spin-related phenomena in previous papers on weak

localisation

In the previous papers [34,97,101] where WL in graphene was studied SOI or spin-

flip scattering were not taken into account. This is justified for the reason that

at temperatures above 1 K the dephasing length is much smaller than the spin

coherence length. Therefore the effect of the spin-related phenomena on WL is

negligible. In the first paper to study WL in detail [34], the saturation of Lφs at

temperatures below 1K was shown to be due to the length of the sample, i.e. the

condition Lφ = L was met.

5.3.2 Comparison of Ls determined by different experimen-

tal groups

Figure 5.11 compares the values of the spin coherence length found in the three stud-

ied samples (circles, squares and hexagons) with those found by other experimental

groups [112–114]. These groups studied spin transport using non-local spin valve

measurements, so the methods to determine Ls are completely different to ours. As

can be seen from the figure, however, all methods lead to a more or less consistent
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Figure 5.12: The dependence of the ratio Ls/lp on the carrier density for the three
studied samples.

picture. (The slightly smaller spin coherence lengths determined from the spin-valve

experiments possibly result from the presence of the layer of Al2O3, which acts as a

source of additional spin dephasing.) Interestingly, the found spin coherence lengths

are very small compared to theoretically predicted values [115–119].

5.3.3 Speculations about the short spin coherence length

The momentum relaxation time in graphene is mainly controlled by remote Coulomb

scatterers, which can be deduced from the almost linear dependence of the conduc-

tivity on carrier density (see the inset in Fig. 5.2(a)). Nevertheless, the correlation

between Ls and lp does not inherently imply that spin decoherence is caused by

the same scatterers. We compare [125], in Table 5.2, the density dependence of

Table 5.2: Approximate dependence on electronic density n of the ratio of the spin
coherence length to the mean free path Ls/lp using estimates from recent literature
[120–124].

weak
short-range

strong
short-range

long-range
Coulomb

intrinsic SOI
√
n

√
n

√
n

short-range SOI 1 1/
√
n 1/

√
n
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Figure 5.13: The dependence of the ratio Ls/lp on the inter-valley scattering length
for the three studied samples.

the mean free path lp = νF τp with that of the spin coherence length Ls for various

assumptions about the nature of disorder and type of SOI, taking into account that

Ls/lp ∝
√
τs/τp. The data shown in Fig. 5.10 are taken at different carrier densities

ranging from 0.2 to 5.5×1012 cm−2 and, therefore, it is clear from the proportion-

ality seen in the figure that there is no dependence of Ls/lp on the carrier density.

(One can also plot the dependence of Ls/lp on n, see Fig. 5.12) This indicates that

both SOI and momentum relaxation are controlled by a weak, short-range correlated

disorder (see Table 5.2), which contradicts the observed dependence of the conduc-

tivity on carrier density. Therefore, we attribute [125] the observed saturation of

Lφs to spin-flip scattering from resonant localised states in the vicinity of the Dirac

point, which can be produced by e.g. vacancies, boundaries or hydrocarbons [120].

Such states would lead to the spin coherence time τs ∝ εF , which would result in

Ls/l ∝
√
τs/τ independent of carrier density in the sample.

We can go further by looking at the correlation of Ls with the inter-valley scat-

tering length Li. Inter-valley scattering occurs on atomically sharp defects but is

not affected by long-range impurities. Figure 5.13 shows that in each sample with

increasing carrier density Li decreases due to an increase in the density of states.
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At the same time Ls also increases (in agreement with the fact that τs ∝ εF ). This

result confirms that it is strong short-range disorder arising from resonant scatter-

ers that leads to the short spin coherence length such that Ls/lp is independent

of n. The same correlation between Ls and Li is observed also in sample S2 and

ion-irradiated sample SS3.
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Chapter 6

Electron transport in ion

irradiated graphene

In the previous chapter we studied the quantum corrections to the conductivity

at temperatures down to 20 mK. We determined the spin coherence length and

plotted it as a function of the mean free path lp. To extend the range of lp, we

irradiated sample SS3 with ions. Irradiation introduced more disorder in the sample

and significantly decreased the mean free path.

In this chapter we study electron transport through sample SS3. We compare the

results of measurements before and after irradiation and find a number of interesting

features. We also show experimental results of measurements of the temperature

dependence of the resistivity performed in other ion bombarded samples, each having

different dosages of irradiation.

6.1 Light irradiation. Weak localisation regime

Quantum transport through non-irradiated graphene samples was discussed in detail

in Chapters 4 and 5. Sample SS3 (see Table 5.1) was studied at temperatures 0.25

- 40 K in the same way as in these two chapters starting from the fabrication and

finishing with the investigation of the two quantum corrections.

Before bombarding a sample with ions, all contacts to it are grounded to prevent

charge accumulation in graphene during irradiation. The sample is then placed in

a vacuum chamber at 10−5mbar and exposed to a 5 keV focused gallium ion beam

at room temperature for a given time. The ion current is 15 pA. Depending on the
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Figure 6.1: The gate voltage dependence of the resistivity measured at different
temperatures in sample SS3 after irradiation. The two insets are zoomed-in regions
shown in the main graph by rectangles.

time of exposure τexp we can tune the level of disorder. After irradiation the sample

is annealed at 140◦C for a few hours in a helium atmosphere before being transferred

to a cryostat for measurements.

For ‘light’ irradiation, τexp < 4 s, a slight increase of the resistivity (compared

to non-irradiated samples) at the Dirac point is observed, Fig. 6.1. The figure

also shows that ρ decreases as T increases at any carrier density in the entire range

of studied temperatures. Transport at low temperatures is found to still be gov-

erned by the quantum corrections to the conductivity that logarithmically depend

on temperature, Fig. 6.2.

6.1.1 Weak localisation and electron-electron interaction

corrections

We combine measurements of the magnetoconductivity (MC) and the temperature

dependence of the conductivity at zero magnetic field in order to study the weak

localisation (WL) and electron-electron interaction corrections (EEI) to the con-

ductivity. The MC is measured in regions I and II (Fig. 6.3(a, b)) and analysed

using equation (2.27). The three characteristic lengths, Lφ, Li, L∗, extracted from
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Figure 6.2: (a) The R(Vg) curve at 4 K. Arrows indicate the studied regions of the
gate voltage (carrier density). (b) The temperature dependence of the resistivity
shown for region II. The solid line is the electron–acoustic phonon contribution to ρ
with the deformation potential of 30 eV. (c - i) The temperature dependence of the
conductivity in seven regions of the gate voltage plotted in the semilogarithmic scale.
Regions I, II and III correspond to 3, 16 and 36 V with respect to the neutrality
point, respectively, and regions IV, V and VI to -3, -16 and -36 V with respect to
the NP. The measurements are shown for two experimental runs. Solid lines in the
∆σ(T ) dependences are linear fits.

the analysis are used to determine the WL correction to the conductivity at zero

magnetic field, equation (2.41) (most of the experimental points were obtained at

high temperatures where Lφ < LSO; therefore, the effect of spin can be neglected).

The temperature dependence of the conductivity in regions II and III is then fitted

with equation (5.3), in which A is the only fitting parameter. The EEI correction

(Fig. 6.3(c, d)) is found to be the same as in non-irradiated samples (see [101]

and Chapters 4 and 5): the coefficient A from equation (2.31) is 0.6 ± 0.1. (The

electron–acoustic phonon contribution [52, 53] is negligibly small compared to the

experimental temperature dependence of the resistivity, Fig. 6.2(b). To compare

the two we used the largest value of the deformation potential Da = 30 eV reported
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so far [59]. Therefore, the phonon contribution was not taken into account.)

6.1.2 Inter-valley scattering length

From the analysis of MC we found that the inter-valley scattering length was sig-

nificantly reduced after irradiation and became comparable to the mean free path,

which varied between 20 and 80 nm depending on the region. In non-irradiated

samples Li ∼ 1µm. Small values of Li show that atomic scale defects were being

introduced into the graphene by the ion bombardment. Additional remote impuri-

ties were also introduced in the irradiation procedure as gallium became embedded

in the silicon dioxide substrate.
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Figure 6.4: The resistivity as a function of the gate voltage measured after ion
bombardment at different temperatures. The curves are shifted to zero gate voltage.

6.2 Heavy irradiation. Strong localisation regime.

Variable-range hopping

Investigation of electron transport through graphene samples irradiated with larger

dosages of ions is presented for another sample. For ‘heavy’ irradiation, τexp ≥ 4 s,

the resistivity at the Dirac point becomes of the order of 106 Ω at low temperatures,

Fig. 6.4. A comparison between ρ(T ) before and after bombardment is given in

Fig. 6.5. One can see that before irradiation at low temperatures ρ decreases due

to the quantum corrections. The following increase of the resistivity up to 100 K

at the NP and in region I is due to weak antilocalisation of charge carriers (as we

discussed in Chapter 4 the electron–acoustic phonon contribution is negligibly small

at low carrier densities). In regions II and III the increase of ρ(T ) is due to electron-

acoustic phonon scattering. Above 100 K the contribution from optical phonons

in SiO2 becomes significant. A decrease of ρ(T ) above 200 K at the NP is due to

thermal activation of charge carriers.

After irradiation the resistivity decreases as a function of temperature at all

carrier densities in the entire range of studied temperatures. In this case ρ(T ) is

best described by the variable-range hopping mechanism of the resistivity (Fig. 6.6).

Similar effects at large dosages of irradiation were observed by other experimental
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groups [57,126].

We varied the time of exposure, τexp, between 2 and 4 s, and compared the results

of measurements before and after irradiation (Table 6.1).

The energy of the ion beam and the current are minimal for our focused ion

beam system. Smaller values of these parameters would lead to a more precise

control of the irradiation dosage (the time τexp would be larger). Therefore, it would

be possible to decrease the mean free path below 20 nm and, at the same time, stay

in the weak localisation regime. Such control would make it possible to achieve

values of Ls smaller than 0.8µm (Chapter 4).

In summary, we show that irradiation of graphene by ions changes the behavior

of electrons. At low dosages we found a significant decrease of the inter-valley

scattering length. The low temperature transport is still governed by the quantum

corrections to the conductivity. At high dosages electrons become strongly localised

leading to the variable-range hopping mechanism of the conductivity.
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Table 6.1: Sample parameters before and after ion bombardment. The resistiv-
ity is given at the neutrality point at different temperatures and the mobility (in
cm2V−1s−1) at 20 V with respect to the NP. The exposure time for irradiation is
also shown.

Sample No Before bombardment After bombardment

1
ρ(295K) = 2.35 kΩ
ρ(4.2K) = 3.2 kΩ
µ(295K) = 20000

Exposure time: 16 s
Sample does not
conduct

2
ρ(260K)= 3.7 kΩ
ρ(4.2K) = 3.2 kΩ
µ(260K) = 10000

Exposure time: 4 s
ρ(260K) = 72 kΩ
ρ(20K) = 720 kΩ
µ(260K) = 70

3
ρ(260K)= 1.7 kΩ
ρ(4.2K) = 1.9 kΩ
µ(260K) = 7900

Exposure time: 2 s
ρ(260K) = 1.9 kΩ
ρ(4.2K) = 2.8 kΩ
µ(260K) = 6400

4
ρ(260K)= 4.8 kΩ
ρ(4.2K) = 5.4 kΩ
µ(260K) = 2600

Exposure time: 3 s
ρ(260K) = 16.9 kΩ
ρ(4.2K) = 127.4 kΩ
µ(260K) = 490
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Chapter 7

Conclusions

In this thesis we investigate the conductivity of graphene at different temperatures,

carrier densities and magnetic fields. There are different contributions to the conduc-

tivity at different temperatures: the weak localisation and electron-electron interac-

tion corrections, electron-phonon interaction and temperature-independent (Drude)

conductivity caused by electron scattering off impurities. In this thesis we measure

and analyse each of them separately.

Our main focus is the quantum corrections to the Drude conductivity. We report

the first experimental observation of these corrections in graphene in a wide range of

temperatures (20 mK - 200 K). Due to the presence of the two valleys and the Berry

phase of π, weak localisation in graphene is sensitive to both inelastic and elastic

scattering mechanisms leading to a theoretically predicted transition from WL to

WAL. In experiments we find that with increasing temperature from 5 to 200 K or

decreasing carrier density from 2.6 · 1012 to 0.2 · 1012 cm−2 this transition indeed

takes place. Moreover, surprisingly, quantum interference can survive at unusually

high temperatures, up to 200 K, due to weak electron-phonon scattering.

The transition can be observed not only in the magnetoconductivity studies, but

also in the temperature dependence, σ(T ), of the conductivity. In both cases the

transition temperatures for different carrier densities are in good agreement with

each other. In the σ(T ) dependence there is the electron-electron interaction correc-

tion, which depends on T similarly to the WL correction. Therefore, investigation of

the quantum corrections requires their separation, which we perform using several

methods. All of them yield the same magnitude of the EEI correction.
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Chapter 7: Conclusions

The analysis of the interaction correction can give information about the Fermi-

liquid constant, F σ
0 . In two-valley systems with parabolic dispersion relation the

dependence of the EEI correction on F σ
0 is sensitive to the strength of inter-valley

scattering. Interestingly, in graphene the strength of intra-valley scattering is also

important leading to a new expression for the EEI correction. We use this expression

to determine the value of the Fermi-liquid constant, which turns out to be smaller

than in other two-dimensional systems due to the chirality of charge carriers.

The magnitude of the WL correction goes up as the temperature is decreased

due to increasing the dephasing length. At T < 100 mK the dephasing length, Lφs,

saturates. We study several mechanisms that could be responsible for such satura-

tion and focus on the effect of the spin-orbit interaction and spin-flip by resonant

scatterers, attributing the saturated value of Lφs to the spin coherence length, Ls.

We demonstrate that the strength of this effect can be tuned experimentally by

showing a direct proportionality between the spin coherence length and the mean

free path. We further show that spin decoherence is dominated by resonant scat-

terers in a graphene sheet and that they are responsible for the short values of the

coherence length compared to those expected theoretically.
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