Illuminating Flatland Nonlinear and Nonequilibrium Optical

Properties of Graphene

Peter John Hale

School of Physics

University of Exeter

A thesis submitted for the degree of Doctor of Philosophy in Physics

2012

Illuminating Flatland Nonlinear and Nonequilibrium Optical Properties of Graphene

Submitted by Peter John Hale to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics 2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Peter John Hale 2012

Abstract

In this thesis the nonlinear and nonequilibrium properties of graphene are experimentally investigated using degenerate four-wave mixing and time-resolved pump-probe spectroscopy. High quality exfoliated natural graphite and large area epitaxial graphene on silicon carbide are investigated with femtosecond and picosecond ultrafast pulses in the near-infrared. A bespoke technique for suspending exfoliated graphene is also presented.

In Chapter 3, the third–order nonlinear susceptibility of graphene is measured for the first time and shows a remarkably large response. Degenerate four–wave mixing at near–infrared wavelengths demonstrates an almost dispersionless emission over a broad spectral range. Quantum kinetic theory is employed to estimate the magnitude of the response and is in good agreement with the experimental data. The large susceptibility enables high contrast imaging, with a monolayer flake contrast of the order 10⁷ times higher than for standard reflection imaging.

The degenerate four-wave mixing technique is utilised in Chapter 4 to measure the interface carbon signal of epitaxially grown graphene on silicon carbide. Comparable thirdorder signal from the silicon carbide bulk prevents true interface imaging. Excluding the third-order emission from detection by elongating the emission to outside a band-pass filter range allows for pure interfacial luminescence imaging. Features within the two growth faces are investigated with Raman spectroscopy.

Nonlinear measurements are an increasingly popular tool for investigating fundamental properties of graphene. Chapter 5 investigates the influence of ultrafast pulses on the nonlinear response of graphene. High instantaneous intensities at the sample are shown to reduce the nonlinear emission by a factor or two. Comparing the Raman peak positions, widths and intensities before and after irradiation points to a huge doping of the samples, of the order 500 meV.

In Chapter 6 the relaxation of photoexcited carriers is measured via time-resolved

pump-probe spectroscopy, where a layer dependence of hot phonon decay is observed. Single layer flakes are observed to relax faster than bilayers and trilayers, with an asymptote reached at approximately four layers. Removing the substrate and measuring fully suspended samples reveals the same trend, suggesting that substrate interactions are not the cause of the enhanced decay. The decay mechanism is therefore intrinsic to graphene, perhaps due to coupling to out-of-plane, flexural phonons. The thickness dependence of epitaxial graphene on silicon carbide is compared to that of exfoliated flakes where the layer dependence is not observed. Phonon relaxation times, however, are in good agreement.

Predictions for future investigations into this novel material based on the works here are suggested in Chapter 7. Preliminary pump–probe measurements at high carrier concentrations are an example of such progress, which will offer an insight into further decay mechanisms in graphene.

Contents

Ab	Abstract							
Ac	Acknowledgements ii							
Pu	Publications							
Co	ontent	S	vii					
Lis	st of F	Figures	X					
1	Back	kground Theory	1					
	1.1	Introduction	1					
	1.2	Tight Binding Model	3					
		1.2.1 Low Energy Electronic Dispersion	7					
	1.3	Phonon Dispersion Relation	8					
	1.4	Optics						
		1.4.1 Nonlinear Optics	9					
		1.4.2 Visibility	11					
		1.4.3 Raman Spectroscopy	16					
2	Expe	erimental Techniques	23					
	2.1	Sample Fabrication	23					
		2.1.1 Mechanical Exfoliation of Natural Graphite	23					
		2.1.2 Large Area Growth Techniques	25					
		2.1.3 Suspended Graphene	27					
		2.1.3.1 Optical Lithography	27					

CONTENTS

		2.1.3.2		29					
		2.1.3.3	Reactive Ion Etching	31					
	2.1.4	Contacte	d Samples	33					
		2.1.4.1	Electrical Measurements	36					
		2.1.4.2	Electrolyte Gating	38					
2.2	Ultrafa	st Optical	Measurements	39					
	2.2.1	System (Operation	40					
		2.2.1.1	Levante Optical Parametric Oscillator	40					
		2.2.1.2	Mira 900D	41					
		2.2.1.3	Legend Elite	41					
	2.2.2	Degenera	ate Four–Wave Mixing Experimental Technique	42					
		2.2.2.1	Spectrometer	44					
	2.2.3	Time–Re	esolved Pump–Probe Measurement Technique	44					
		2.2.3.1	Pump–Probe Measurements on Graphitised Epitaxial SiC	48					
2.3	Raman	Spectroso	сору	51					
	(N T			50					
Coh	erent N	onlinear (Optical Response of Graphene	52					
Coh 3.1	erent No Introdu	onlinear (action	Optical Response of Graphene	52 52					
Coh 3.1 3.2	erent No Introdu Nonlin	onlinear (action ear Measu	Optical Response of Graphene	52 52 53					
Cohe 3.1 3.2 3.3	erent No Introdu Nonlin Emissi	onlinear (action ear Measu on Over L	Optical Response of Graphene urement urement arge Wavelength Range	52 52 53 54					
Coho 3.1 3.2 3.3 3.4	erent No Introdu Nonlin Emissi Calcula	onlinear (action ear Measu on Over L ating the M	Optical Response of Graphene urement urement Range urge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene	52 52 53 54 59					
Coho 3.1 3.2 3.3 3.4 3.5	erent No Introdu Nonlin Emissi Calcula Graphe	onlinear (action ear Measu on Over L ating the M ene and Fe	Optical Response of Graphene urement urement uarge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene ew–Layer Graphene on Dielectric Substrates	52 53 54 59 64					
Coh 3.1 3.2 3.3 3.4 3.5 3.6	erent No Introdu Nonlin Emissi Calcula Graphe Summa	onlinear (action ear Measu on Over L ating the M ene and Fe ary	Optical Response of Graphene urement urement Large Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene ew–Layer Graphene on Dielectric Substrates	52 53 54 59 64 68					
Coh 3.1 3.2 3.3 3.4 3.5 3.6	erent No Introdu Nonlin Emissi Calcula Graphe Summa	onlinear (action ear Measu on Over L ating the N ene and Fe ary itaxial Gu	Optical Response of Graphene urement urement Large Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene W-Layer Graphene on Dielectric Substrates Complete Substrates	 52 53 54 59 64 68 70 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu	onlinear (action ear Measu on Over L ating the M ene and Fe ary itaxial Gr	Optical Response of Graphene arement arge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene ew-Layer Graphene on Dielectric Substrates carphene on Silicon Carbide	 52 52 53 54 59 64 68 70 70 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1 4.2	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu Z–Scar	onlinear (action ear Measu on Over L ating the M ene and Fe ary itaxial Gr action	Optical Response of Graphene arement arge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene ew-Layer Graphene on Dielectric Substrates carphene on Silicon Carbide	 52 52 53 54 59 64 68 70 70 70 70 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1 4.2 4.3	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu Z–Scar Signal	onlinear (action ear Measu on Over L ating the M ene and Fe ary itaxial Gr action n profiles Intensity	Optical Response of Graphene urement urement uarge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene w—Layer Graphene on Dielectric Substrates cmaphene on Silicon Carbide Variation Measured by Raman Spectroscopy	 52 52 53 54 59 64 68 70 70 70 75 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1 4.2 4.3 4.4	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu Z–Scar Signal Summa	onlinear (action ear Measu on Over L ating the N ene and Fe ary itaxial Gr action n profiles Intensity T	Optical Response of Graphene urement uarge Wavelength Range Wagnitude of $\chi^{(3)}$ in Graphene Wayer Graphene on Dielectric Substrates carphene on Silicon Carbide Variation Measured by Raman Spectroscopy	 52 52 53 54 59 64 68 70 70 70 75 77 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1 4.2 4.3 4.4	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu Z–Scan Signal Summa	onlinear (action ear Measu on Over L ating the M ene and Fe ary itaxial Gr action n profiles Intensity Y ary	Optical Response of Graphene arement arge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene ew-Layer Graphene on Dielectric Substrates caphene on Silicon Carbide Variation Measured by Raman Spectroscopy	 52 53 54 59 64 68 70 70 70 75 77 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1 4.2 4.3 4.4 Mod	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu Z–Scan Signal Summa	onlinear (action ear Measu on Over L ating the M ene and Fe ary itaxial Gr action n profiles Intensity ary n of Grap	Optical Response of Graphene arement arge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene w—Layer Graphene on Dielectric Substrates cmaphene on Silicon Carbide Variation Measured by Raman Spectroscopy whene via Ultrafast Pulses	 52 52 53 54 59 64 68 70 70 70 75 77 78 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1 4.2 4.3 4.4 Mod 5.1	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu Z–Scar Signal Summa	onlinear (action ear Measu on Over L ating the M ene and Fe ary itaxial Gr action n profiles Intensity T ary n of Grap	Optical Response of Graphene urement urage Wavelength Range uarge Wavelength Range Magnitude of $\chi^{(3)}$ in Graphene wew-Layer Graphene on Dielectric Substrates carphene on Silicon Carbide Variation Measured by Raman Spectroscopy whene via Ultrafast Pulses	 52 53 54 59 64 68 70 70 70 75 77 78 78 					
Coh 3.1 3.2 3.3 3.4 3.5 3.6 Imag 4.1 4.2 4.3 4.4 Mod 5.1 5.2	erent No Introdu Nonlin Emissi Calcula Graphe Summa ging Ep Introdu Z–Scan Signal Summa	onlinear (action ear Measu on Over L ating the M ene and Fe ary itaxial Gr action n profiles Intensity T ary n of Grap action f Four–Wa	Optical Response of Graphene urement urement </td <td> 52 53 54 59 64 68 70 70 70 75 77 78 78 78 78 78 </td>	 52 53 54 59 64 68 70 70 70 75 77 78 78 78 78 78 					
	2.2	 2.1.4 2.2 Ultrafa 2.2.1 2.2.2 2.2.3 2.2 Barran 	2.1.3.3 2.1.4 Contacte 2.1.4.1 2.1.4.2 2.2 Ultrafast Optical 2.2.1 System O 2.2.1.1 2.2.1.2 2.2.1.3 2.2.2 Degener 2.2.2.1 2.2.3 Time-Re 2.2.3.1	2.1.3.3 Reactive Ion Etching 2.1.4 Contacted Samples 2.1.4.1 Electrical Measurements 2.1.4.2 Electrolyte Gating 2.1.4.2 Electrolyte Gating 2.1.4.2 Electrolyte Gating 2.2 Ultrafast Optical Measurements 2.2.1 System Operation 2.2.1.1 Levante Optical Parametric Oscillator 2.2.1.2 Mira 900D 2.2.1.3 Legend Elite 2.2.2 Degenerate Four–Wave Mixing Experimental Technique 2.2.2.1 Spectrometer 2.2.3 Time–Resolved Pump–Probe Measurement Technique 2.2.3.1 Pump–Probe Measurements on Graphitised Epitaxial SiC					

CONTENTS

	5.4	Summary	84			
6	Hot Phonon Decay in Supported and Suspended					
	Exfo	liated Graphene	85			
	6.1	Introduction	85			
	6.2	Method	86			
		6.2.1 Sample Fabrication	88			
	6.3	Coupled Rate Equation Model	89			
	6.4	Pump-Probe Spectroscopy for Few-Layer Supported Graphene	93			
	6.5	Pump-Probe Spectroscopy for Few-Layer Suspended Graphene	98			
	6.6	Pump-Probe Measurements on Graphitised Epitaxial SiC	103			
	6.7	Summary	106			
7	Conclusions and Further Work					
	7.1	Pump–Probe Spectroscopy at High Carrier Concentrations	109			
A	Subt	raction of Bulk SiC Pump–Probe Signal	113			
Re	References					