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Abstract 

Optical Tomography is a medical imaging modality that can be used to non-

invasively image functional changes within the body.  As near-infrared light 

is highly scattered by biological tissue, the process of image reconstruction is 

ill-posed and, in general is also under-determined.  As such, model based 

iterative image reconstruction methods are used.  These methods require an 

accurate model of light propagation through tissue, also known as the 

forward model. 

 The diffusion approximation (DA) to the radiative transport equation is 

one of the most widely used forward models.  It is based on the assumption 

that scattering events dominate over absorption events resulting in a diffuse 

light distribution.  This is valid in cases with low absorption coefficients or 

large geometries (greater than a few scattering lengths).   In many cases, 

however, such as in small animal imaging where the source-detector 

separation is small, this assumption is not valid and so a higher-ordered 

approximation is required. 

 In this thesis, a three-dimensional frequency domain forward model 

based on the simplified spherical harmonics (SPN) approximation to the 

radiative transport equation is introduced.  By comparison with a Monte-

Carlo model, the SPN approximation is shown to be more accurate than the 

DA, especially in regions near to the sources and detectors and the increase in 

accuracy is greater in cases with stronger absorption.  This is particularly 

important for bioluminescent imaging of small animals which involve both 

small geometries and strong absorption.  Due to the asymptotic nature of the 
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SPN approximation, the highest ordered model was not necessarily the most 

accurate, but all models with N>1 were more accurate than the DA.   

 The SPN based forward model has also been implemented into an image 

reconstruction algorithm.  Despite the fact that the SPN approximation does 

not combine the scattering coefficient and anisotropy factor into a single 

variable, as is the case in the DA, it was found that it is not possible to 

reconstruct them uniquely.  The SPN based models were shown to be able to 

reconstruct optical maps with greater accuracy than the DA.  However, due to 

the increased number of unknowns to be recovered, the SP7 based 

reconstructed images contained significant artefact and cross-talk.  

 Finally, a SPN-Diffusion hybrid model was developed in which the SPN 

model was used in the regions near to the source and the DA elsewhere.  This 

model provides the increase of accuracy of the SPN models in the regions 

where the DA is insufficient, whilst retaining the computational efficiency of 

the DA.  It was shown that the hybrid model leads to increased accuracy not 

only in the regions solved using the SPN model, but also in the DA based 

regions where as in a pure DA model, the errors near the source were 

propagated throughout the domain.  It is also shown that the hybrid model 

can be solved in half the time of the full SPN model. 
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Chapter 1 - Introduction 

 

1.1 Background 

The development of three-dimensional (3D) medical imaging techniques have 

revolutionised the way illnesses and diseases are both diagnosed and treated.  

The ability to see inside the body with techniques such as X-ray computed 

tomography (CT) or magnetic resonance imaging (MRI), have allowed 

physicians to both identify problems as they develop and also to directly 

observe the effects of various treatments.   

 Imaging contrast is provided by the interactions between the probing 

radiation and tissues within the body.  In the case of CT imaging, for example, 

incident X-rays undergo Compton type scattering effects with free-electrons 

in the tissue (Wolbarst 1999).  As such, CT images indicate the electron 

densities of different tissue types.  MRI imaging, however, probes the tissue 

with a strong magnetic field, causing the magnetic moments of protons 

within the body to align with it.  A radio-frequency field is then applied, 

causing the alignment of the protons to change.  When this field is switched 

off, the protons will re-align with the magnetic field, emitting a detectable 

signal (Wolbarst 1999).  The contrast in an MRI image is therefore determined 

by the varying relaxation times of protons in different tissues.  

 Diffuse Optical tomography (DOT) is a relatively new imaging modality 

that uses low-energy near-infrared light to probe the body.  The use of optical 

techniques in medical diagnosis and research can be dated as far back as 1929, 

when Cutler et al used transillumination as an aid in detecting breast legions 
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(Cutler 1929).  This technique involved illuminating one side of the breast and 

observing shadows cast by large lesions, Figure 1.1.  In recent years, however, 

significant advances have been made in the areas of light sources, light 

detection, photon transport theory and numerical modelling, allowing optical 

imaging to develop into a 3D, functional imaging tool. 

 

Figure 1.1 The appearance of (a) a healthy breast and (b) the shadow cast by a solid tumour 
on transillumination (Cutler 1929) 

 

Unlike X-rays which pass through the body almost linearly, near infrared 

(NIR) light is highly scattered in biological tissue.  NIR photons can also be 

absorbed by the sample, but this process is much less probable than scattering 

events.  Contrast in DOT is provided by the differing absorption and 

scattering properties of various chromophores, such as water, oxy-

haemoglobin and deoxy-haemoglobin and, as such, is able to provide 

functional information such as blood volume and oxygenation levels (Gibson 

et al. 2005).  
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One of the current applications of DOT is in the detection of breast cancer.  

Current screening methods involve x-ray mammography for women over the 

age of fifty.  There is no routine screening as mammography of pre-

menopausal breasts is less effective due to high absorption in dense breasts .  

As tumours are known to result in increased vascularisation (Rice and Quinn 

2002), they are detectable using optical methods. 

 DOT imaging has also been shown to be beneficial in imaging the 

haemodynamic response to brain function (Bluestone et al. 2001).  This type of 

imaging is particularly relevant to neonates, as they can be susceptible to 

brain injuries that can lead to permanent damage and disabilities.   Also, as 

the heads of newborn infants are small, light can penetrate into deeper 

regions of the brain. 

 In recent years, the application of optical methods to functional imaging 

in small animals with endogenous contrast has grown considerably 

(Nziachristos 2006).  Targeted bioluminescent or fluorescent markers can be 

injected into the body to be activated or absorbed only by specific cell types or 

functional states.  This allows imaging of physiology at the molecular level.  

Imaging in small animals, however, introduces specific challenges for optical 

methods.  The small tissue volumes encountered, for example, limit the 

accuracy of currently used light propagation models.  Small animal studies, 

however, are still a useful tool for research and pre-clinical studies.   

 DOT has several advantages over traditional imaging modalities.  One of 

the most important of these is that, unlike x-ray CT or radionuclide imaging, 

the probing radiation is non-ionising.  This means that repetitive imaging can 

be performed with no risk of complications.  The equipment required is also 

relatively inexpensive when compared to modalities such as MRI.  The 
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equipment is also compact and can be fitted into a single trolley allowing 

imaging at the bedside with fast acquisition times.   However, due to the 

highly scattering nature of near-infrared light in tissue, spatial resolution is 

low.  As scattering increases with depth, the resolution decreases.  At the 

centre of the domain, it is estimated that objects no smaller than 10% of the 

domains external diameter can be detectable (Pogue et al. 2006). 

 

1.2 Aims & Motivation 

This thesis discusses the development of a model of light propagation in 

tissue, an important problem in the field of DOT.  At present, the Diffusion 

Approximation (DA) to the Radiative Transport Equation (RTE) is widely 

used.  Whilst accurate in many human tissues for large geometries, the DA is 

known to be inadequate in many cases.  In the case of small animal imaging, 

for example, the separation between light sources and detectors is small.  As a 

result, photons may not have undergone sufficient scatters to create a diffuse 

distribution before reaching the detector.  In bioluminescent imaging of small 

animals, the light source takes the form of a light-emitting protein that has a 

peak emission at a wavelength corresponding to strong absorption by 

haemoglobin.  Both of these factors mean that the diffusion approximation is 

not valid.  The aim of this thesis is to develop a model for light propagation 

through soft tissue that can overcome the limitations of the diffusion 

approximation, particularly those encountered in the bioluminescent imaging 

of small animals. 

 The model developed in this thesis makes use of the Simplified Spherical 

Harmonics (SPN) Approximation to the Radiative Transport Equation, which 

is discussed in detail in Chapter 2.  This model has delivered an increase in 
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accuracy over the commonly used Diffusion Approximation whilst incurring 

lower computational costs than other higher-ordered approximations. 

The structure of this thesis is as follows: 

 

Chapter 2 provides an introduction to the principles behind tissue optics, and 

in particular the optical properties encountered in small animals. 

 

Chapter 3 introduces the instrumentation required for optical tomography 

and discusses some of the current applications. 

 

Chapter 4 discusses some of the existing medical imaging modalities that are 

currently used in both clinical and research environments. 

 

Chapter 5 introduces the forward problem in which the propagation of light 

through soft tissue is modelled. 

 

Chapter 6 introduces the inverse problem of the image reconstruction process. 

 

Chapter 7 introduces a new model of light propagation based on the 

Simplified Spherical Harmonics approximation to the radiative transport 

equation.  The implementation and validation of the approximation is 

discussed. 

 

Chapter 8 investigates the use of the SPN approximation in image 

reconstruction.  The sensitivities to optical parameters are tested and a series 

of reconstructions are performed. 
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Chapter 9 introduces a SPN – Diffusion hybrid model.  This hybrid model uses 

the SPN approximation in the regions near to sources and detectors where the 

DA is known to be inaccurate.  In the remaining regions of the domain, i.e. 

beyond a few scattering lengths from the sources and detectors, the diffusion 

approximation can be used.  The hybrid model aims to overcome the 

inaccuracies of the diffusion approximation whilst minimising the increase in 

computational load introduced with the use of higher-ordered models. 

 

Chapter 10 provides a conclusion to the thesis and a discussion of possible 

directions for future work. 
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Chapter 2 - Tissue Optics 

 

2.1  Introduction 

The propagation of light through the body is governed by the optical 

properties of the various tissues encountered.  Light with wavelengths 

between 600-900nm is capable of passing deep into tissue due to a window of 

low absorption, Figure 2.1. The varying interactions between the probing light 

and common chromophores such as oxy and deoxy-haemaglobin and water 

provide contrast in DOT images.  The changes in contrast due to changes in 

the relative concentrations of these chromophores allows the reconstruction of 

functional information such as blood volume and oxygenation levels (Gibson 

et al. 2005). 

 In this section, the basic principles behind the interactions of near infrared 

(NIR) light and tissue will be introduced.   

 

2.2  Scattering 

Unlike X-rays which pass through the body almost linearly, near infrared 

(NIR) light is highly scattered in biological tissue.  It has been empirically 

shown that the scattering spectrum fits well with Mie scattering theory which 

which describes the scattering of light by a series of spherical particles (van 

Staveren et al. 1991; Mourant et al. 1997), Figure 2.2.   The probability that a 

photon will undergo a scattering event whilst travelling through a unit length 

of a medium is given by the scattering coefficient 

 
 

! 

µs = "s# s (2.1) 
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where 

! 

"s is the volume density, with units of 

! 

cm"3  of scattering particles and 

! 

" s is the scattering cross section of the particles with units of 

! 

cm2 .  The mean 

free path between scattering events, which is the average distance travelled 

by a photon before being scattered, is the inverse of the scattering coefficient. 

 

Figure 2.1 Absorption coefficients for oxyhaemoglobin, deoxyhaemoglobin and water at 
varying wavelengths based on data from Prahl (Prahl 2001) 

 

Figure 2.2 Spectrum of reduced scattering coefficient based on data from Prahl (Prahl 2001). 
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The probability of a photon being scattered from a direction ŝ  to a new 

direction s!ˆ , given by the phase function ( )ss !ˆ,ˆf , can be thought of as a 

probability distribution and therefore normalised such that  

 

! 

f ˆ s ,ˆ " s ( )
4#$ d% =1  (2.2) 

 
where 

! 

d"  is a differential solid angle in the direction of ŝ .  The choice of 

phase function is an important one as it determines how well the model can 

describe the nature of scattering events.  The most basic assumption would be 

that scattering is wholly isotropic and thus 

 

( )
!4
1ˆ,ˆ ="ssf  (2.3) 

 
meaning scattering in all directions is equally probable.  In reality, however, 

scattering in biological tissue tends to be biased towards a particular direction 

and is therefore anisotropic.  In this case, the Henyey-Greenstein phase 

function proves to be an accurate description and is commonly applied 

(Kienle et al. 2001; Sharma and Banerjee 2003) 

 

! 

f (cos") =
1# g2

4$ 1+ g2 # 2gcos"( )
3
2

 (2.4) 

 
where the anisotropy factor, g, is defined as the average cosine of the 

scattering angle 

! 

" .  In general, human tissue tends to forward scattering with 

typical values of g ranging between 0.8 and 0.9 (Jacques et al. 1987; Yoon et al. 

1987; Cheong et al. 1990). 

 When modelling light propagation with the diffusion approximation, 

which will be discussed in chapter 5, the reduced scattering coefficient is 

commonly applied and is defined by 

! 

µs
" = (1# g)µs.  According to Mie theory, 
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the reduced scattering coefficient is dependent upon the wavelength of the 

photon and is given by 

 

! 

µs
" = a#$b  (2.5) 

 
The scatter amplitude and scatter power are defined by 

! 

a  and 

! 

b respectively 

and both depend on the scattering cross section and number density of 

particles.  Larger scatterers generally have lower 

! 

a  and 

! 

b values whilst 

smaller scatterers tend to have higher 

! 

a  and 

! 

b values (Dehghani et al. 2008).  

These parameters are likely to vary with tissue composition and various 

cellular structures/densities (Wang et al. 2006b) and so variations in reduced 

scatter coefficient may indicate variations in tissue structure.  

 

2.3 Absorption 

In the absence of scattering, the attenuation coefficient can be calculated using 

the Beer-Lambert Law.  This law states that the intensity of a beam of light 

travelling through an attenuator, Figure 2.3, will reduce exponentially 

depending on the width of the attenuator, equation 2.6.   

 

! 

I = I0e
"µa x  (2.6)           (1.2) 

 
where 

! 

I  is the measured intensity, 

! 

I0  is the incident intensity, x is the 

thickness of the attenuator and 

! 

µa  is the absorption coefficient, also with units 

of 

! 

mm"1. By plotting the ratio of incident and exciting intensities against the 

attenuator thickness, as shown in Figure 2.4, the absorption coefficient will be 

equal to the rate of decay. 
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Figure 2.3 Attenuation of an incident light beam through a non-scattering slab. 

  

 
Figure 2.4  The gradient of a plot of logged ratio of transmitted and incident intensities 

against the sample thickness determines the absorption coefficient. 

  

 In biological tissues, a number of chromophores with varying absorption 

spectra, see Figure 2.1, will be present in varying concentrations.    The 

relationship between the tissue’s total absorption coefficient and its 

chromophore composition is defined by 

 
  

! 

µa "( ) = #i "( )ci
n
$  (2.7)              (1.3) 

 
where 

! 

n  is the number of chromophores present in the tissue, 

! 

"i #( )  is the 

extinction coefficient of a particular chromophore at wavelength

! 

"  and 

! 

c  is 

the concentration of the chromophore.  The product of the extinction 
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coefficient and concentration gives the absorption coefficient of a particular 

chromophore at a given wavelength. 

 In highly scattering media, the Beer-Lambert law must be modified to 

include the effects of scattering.  When a photon undergoes scattering as it 

passes through a tissue, its path length is increased.  The actual distance that a 

photon travels through a tissue, the differential path length (DP), is related to 

the thickness of the tissue, 

! 

x , by 

 
 

! 

DP = x "DPF  (2.8)          (1.4) 
 

where 

! 

DPF  is the differential path length factor.  The DPF for a tissue can be 

determined by measuring the mean time of flight.  To do this, a picosecond 

pulse of light is generated and split.  One part of the light is led directly to the 

detector.  The remaining part of the pulse passes through a tissue sample with 

an accurately measured thickness.  By measuring the time difference between 

the two pulses arriving at the detector, the differential path length can be 

calculated as 

 

 

! 

DPF =
vt
d

 (2.9) 
 

where 

! 

v  is the speed of light in the tissue, 

! 

t  is the time difference between the 

arrival of two pulses.  The attenuation, A, can then be determined using the 

modified Beer-Lambert Law  

 

 

! 

A = ln I0
I

" 

# 
$ 

% 

& 
' = µa ( x (DPF +G  (2.10)        (1.5) 

 
where G is a constant relating to the scattering losses, dependent on the 

geometry of the measurement system and the scattering coefficient of the 

tissue being studied.  The value of G, however, is not known and so an 

absolute value of absorption coefficient cannot be measured.  If it is assumed 
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that G remains constant throughout a series of measurements, it is possible to 

determine changes in absorption coefficient using 

 

! 

A1 " A0 = µ
a

1 "µ
a

0( ) # x #DPF  (2.11) 
 

where 

! 

A0 and 

! 

µa
0 are the attenuation and absorption coefficients in an initial 

state and 

! 

A1 and 

! 

µa
1  are the attenuation and absorption coefficients in a 

perturbed state. 

 

2.3  Refractive Index 

The speed of light in tissue is determined by the refractive index as 

 

! 

v =
c
n

 (2.12) 
 

where c is the speed of light in free space in ms-1 and n is the refractive index 

of the tissue.  Accurate measurements of refractive index are difficult to make 

in vivo, and as such, the absolute values of refractive index are still under 

investigation.  Bolin, et al found the refractive index of a range of tissues to lie 

in the 1.38-1.44 range, independent of species (Bolin et al. 1989).   Many 

models, however, use a value between 1.33-1.6 (Brooksby et al. 2003).  The 

lower values are justified by the high water content of many tissues, which 

would suggest its refractive index is close to that of water. 

2.4  Measuring Optical Properties 

The actual optical properties of a tissue can be determined either directly or 

indirectly.  Direct methods basically measure the attenuation of light through 

thin slabs and use the Beer-Lambert law to determine the total attenuation 

coefficient 

! 

µt .  The accuracy of this method, however, is limited by the 
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inability to separate direct, un-scattered light and scattered light that has 

scattered back on to the measurement axis.   

 Alternatively, the optical properties can be determined indirectly by 

comparing measurements of transilluminated light to those calculated using a 

photon transport model, typically a time-resolved Monte Carlo model (Peters 

and et al. 1990; Simpson and et al. 1998).  Many measurements of extinction 

coefficients of tissue samples have been performed in vitro.  It is not known, 

however, whether these properties would be the same in vivo. 

 
Figure 2.5 Schematic diagram of an Integrating Sphere used to measure bulk optical 

properties 

 

Bulk optical properties of tissues can be measured in vivo with the use of an 

integrating sphere. The integrating sphere consists of a spherical chamber, 

which has a highly reflective inner surface, and a window that allows 

collection of light, Figure 2.5.  As the collected light is reflected around the 

sphere, the distribution becomes diffuse and can be measured with a single 
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optic fibre.  Depending on whether the integrating sphere is placed on the 

same side of the sample as the light source or on the opposite side, 

measurements can be made of either reflectance or transmission (Jacquez and 

Kuppenheim 1955; Edwards et al. 1961).  Alternatively, a double integrating 

sphere system can be used which places the sample between two spheres 

(Pickering et al. 1993).  This allows simultaneous measurements of reflectance 

and transmittance meaning the effects of external conditions, e.g. heating, on 

reflectance and transmission can be measured.  Measurements of reflectance 

and transmission can then be converted into values of scattering coefficient, 

absorption coefficient and anisotropy factor using the inverse adding-

doubling method (Prahl et al. 1993).  

 A full review of tissue optical properties was compiled by Cheong et al 

(Cheong et al. 1990).  The website of Scott Prahl also provides a useful 

resource with spectra of several tissue types, contrast agents and 

chromophores (Prahl 2001).   In general, the absorption coefficient of most 

biological tissues tends to be somewhere in the range of 0.01-0.5cm-1 at 

wavelengths greater than 625nm with scattering coefficients ranging from 10-

200cm-1.  Scattering in tissue is generally forward peaked, with typical 

anisotropy factors ranging between 0.5 and 0.95, depending on the type of 

tissue.  

 As the optical properties of a tissue are dependent on the wavelength of 

incident light, the choice of light source is important.  Wavelengths are 

generally chosen from a window between 650 nm and 900 nm as below 650 

nm, absorption due to haemoglobin prevents light of lower wavelength from 

penetrating the tissue whilst absorption due to water prevents the use of 

higher wavelengths, Figure 2.1.  
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2.5 Optical Contrast Between Healthy & Diseased States 

In order for optical methods to be clinically useful, they must be capable of 

differentiating between normal and diseased states.  Contrast in optical 

imaging is provided by differing concentrations of chromophores, such as oxy 

and deoxyhaemoglobin and water, that each have unique absorption spectra.  

In order for diseased states to be detectable using optical methods, they must 

result in a change in optical properties. 

 In the brain, a number of conditions can lead to changes in optical 

properties.  Haematomas or haemorrhages are caused by ruptured blood 

vessels leading to a pooling of blood and, therefore, an increase in the total 

blood volume (Grubb et al. 1977).  Cerebral ischemia is classified as a 

reduction in the blood flow to parts of the brain caused by haemorrhages, 

constrictions or obstructions to blood vessels.  The result is a lack of sufficient 

oxygen supply to areas beyond the obstruction leading to an increase in 

deoxyhaemoglobin and a decrease in oxyhaemoglobin concentrations (Wolf et 

al. 1997; Culver et al. 2003b; Abookasis et al. 2009).  The total volume of blood 

can also be seen to decrease.  Optical methods may also be useful in detecting 

the degeneration of brain tissues, such as demyelination of nerves, as such 

changes lead to changes in scattering properties (Radhakrishnan et al. 2005; 

Senapati et al. 2005). 

 The optical properties of both healthy and diseased breast tissue has been 

widely investigated (Peters and et al. 1990; Tromberg et al. 1997; Ghosh et al. 

2001; Durduran and et al. 2002).  It has been shown that optical contrast exists 

between healthy and diseased states as tumour containing tissues tend to 

have increased absorption and scatter coefficients (Tromberg et al. 1997; 

Chernomordik et al. 2001). 
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Optical imaging studies of small animals have been conducted using both 

endogenous and exogenous contrast.  In recent years, studies utilising 

endogenous contrast have been mainly focussed on blood oximetry to 

investigate both cerebral ischemia and haemodynamic responses in the brain 

(Hielscher 2005).  In both of these applications, contrast is provided by 

varying concentrations of oxyhaemoglobin, deoxyhaemoglobin and total 

blood volume.  In these cases, it has been shown that, rather than first 

reconstructing for 

! 

µa  and 

! 

µs at multiple wavelengths, it is more efficient to 

directly reconstruct the chromophores concentrations (Corlu et al. 2003; Li et 

al. 2004).   

 Contrast in small animal imaging can also be provided by exogenous 

agents such as fluorescent or bioluminescent markers.  Fluorescent markers 

emit light when excited by an external light field but at a wavelength higher 

than that of the excitation field.  Alternatively, bioluminescent markers, such 

as luciferase, can be used which emit light when they encounter certain 

molecular environments.  The main drawback of using bioluminescent 

luciferase is that it has a peak emission at approximately 570nm (Li et al. 2004) 

which corresponds to a region of strong absorption making the commonly 

used diffusion approximation, which will be discussed in Chapter 5, invalid. 
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Chapter 3 - Diffuse Optical Tomography 

Instrumentation & Applications  

 

3.1  Introduction 

The equipment required to build a DOT system is, in principle, well 

established (Gibson et al. 2005).  An imaging system generally consists of a 

light source, which is commonly guided to the boundary of the imaging 

domain by a series of optic fibres.  However, a number of systems exist that 

utilise a non-contact light source which allows the imaging of objects with 

arbitrary shapes (Schulz et al. 2003; Yu et al. 2003; Joshi et al. 2006).  

Measurements can then be made of either the transilluminated or reflected 

light using a number of detectors.  These measurement can then be used to 

reconstruct 3D maps of the optical property distribution within the domain, 

or in the case of multi-wavelength systems, chromophore concentrations can 

be reconstructed. 

 This chapter describes the types of imaging system that can be used and 

some of the methods of improving image contrast or accuracy.  Some of the 

existing small animal imaging systems are then discussed. 

3.2   Imaging modes 

DOT imaging systems can be classified into one of three source operation 

modes.  In a continuous wave system, the target is illuminated continuously 

with a light source of constant intensity.  In a frequency domain system, the 

target is also continuously illuminated, but the intensity of light is modulated 

at radio frequencies.  In a time-domain system, light is delivered in a short 
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pulse of the order of several pico-seconds.   Each of these three operating 

modes will be discussed in more detail below. 

 

3.2.1 Continuous Wave 

Continuous wave systems provide a relatively simple and inexpensive 

technique for implementing optical tomography.  A beam of light of constant 

intensity is transmitted between two points on the surface of the subject and 

the intensity of the exiting light is detected, Figure 3.1a.  This basic technique 

has been in use, in more primitive forms, since the nineteenth century when it 

was used to study the head, testes and breast by simply observing trans-

illuminated light (Bright 1831; Curling 1843; Cutler 1929).  With increasing 

understanding of the interactions between light and tissue, the technique has 

more recently been used to observe haemodynamic and oxygenation changes 

in superficial tissues and of outer regions of the brain by detecting reflected 

diffuse light.  The University of Washington in St Louis, for example, have 

developed a continuous wave system that has been used to image the adult 

visual cortex (Zeff et al. 2007a). 

 Whilst continuous wave systems can provide useful information for 

relatively low cost, they suffer from the problem of non-uniqueness.  As 

previously mentioned, chapter 2, light can interact with tissue in either 

scattering events or absorption events.  An increase in either the scattering 

coefficient alone, the absorption coefficient alone or a smaller increase in both 

the absorption and scattering coefficients could lead to exactly the same 

reduction in the intensity of light measured at the boundary, resulting in a 

non-unique measurement.  It is therefore, not possible to reconstruct distinct 

maps of absorption and scattering coefficient using intensity measurements of 
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a given wavelength alone (Arridge and Lionheart 1998).  However, Culver et 

al have developed a hybrid frequency-domain/continuous wave system that 

has the benefits of a continuous wave system, i.e. ease of measurement and 

low cost, but the frequency domain data can be used to separate absorption 

and scattering effects (Culver et al. 2003a). 

 Continuous wave systems are also very sensitive to variations in the 

surface coupling, meaning measurements could be significantly different 

depending on the amount of contact between the source fibre and the skin.  

The effects of varying surface coupling can be accounted for by including 

coupling coefficients as unknowns in the image reconstruction process (Boas 

et al. 2001). 

 Another disadvantage to CW systems is that they are inherently more 

sensitive to the regions directly below the source/detector fibres due to the 

banana-shaped photon density measurement function (PDMF) (Arridge 

1995b).  The PDMF maps the sensitivity of boundary measurements to a point 

within the domain and is effectively a measurement of the probability of a 

detected photon having passed through that point.  Sensitivity mapping will 

be discussed in more detail in chapter 6. 

3.2.2 Time Domain 

Time domain systems utilise light sources, e.g. lasers, that are capable of 

producing very short pulses of light.  Some of the photons will pass through 

the domain to the detector directly, without scattering and are known as 

ballistic photons.  Some photons will also be weakly scattered in a forward 

direction, following a similar path to the ballistic photons.  The remainder of 

the photons will undergo many scattering events and are known as diffuse 

photons.  As these different categories of photons travel through the medium 
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with a wide range of path lengths, the time to reach the detector, the time of 

flight, will vary.  As a result, the initial short pulse will be broadened by the 

time it is detected, Figure 3.1b. For a input pulse of the order of pico-seconds, 

this Temporal Point Spread Function (TPSF) can extend over several nano-

seconds after passing through several centimetres of tissue (Hiraoka et al. 

1993; Gibson et al. 2005).  The shape of the TPSF, if measured accurately 

enough, can provide information about the attenuation properties of the 

medium.  By integrating the TPSF, the intensity can be calculated which gives 

the same information as a continuous wave system.  The mean time of flight 

of photons, i.e. the time it takes for a photon to travel between the source and 

detector, can then be used to estimate the photon’s path length and 

distinguish between absorption and scattering effects.  
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Figure 3.1 Signal measured at the boundary for (a) a continuous wave source, (b) a pulsed, 

time-domain source, and (c) an intensity modulated, frequency domain, source (Hebden et al. 
1997). 

 

Further information can be obtained using time-gating techniques to 

distinguish between early and late arrival photons (Ntziachristos et al. 2005; 

Niedre et al. 2008; Leblond et al. 2009).  The early arriving photons pass 

almost straight through the medium and are affected predominantly by 

absorption whereas the late photons are affected by both absorption and 

scatter.  As well as improving spatial resolution, the use of early photons can 

reduce the ill-posed nature of the image reconstruction problem.  This 
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technique, however, is limited by the number of photons which have a 

sufficiently short path-length and therefore short flight times.  Another 

disadvantage of taking measurements in the time-domain is that high 

temporal resolution equipment required can be very expensive. 

 Time domain systems tend to use time-correlated single photon counting 

(TCSPC) methods to record a histogram of the time of flight of individual 

photons relative to a reference pulse (Eda et al. 1999; Arridge et al. 2000a).  

Whilst these methods are slow, they generally have a high efficiency making 

them suitable for situations where the input beam travels through a thick 

medium resulting in a low intensity output beam (Becker 2005). 

 

3.2.3 Frequency domain 

Time domain data can also be expressed in the frequency domain, using 

Fourier transforms to switch between the two.  The frequency-domain data 

can also be measured directly by measuring the exiting amplitude and phase 

shifts of an amplitude-modulated source beam, Figure 3.1c.   

 The quality of frequency domain data is dependent upon the choice of 

source modulation frequency.  A review of phase measurements by Chance et 

al (Chance et al. 1998) showed that, for noise free data, the measurable phase 

shift increases with modulation frequency.  In the presence of noise, however, 

the signal-to-noise ratio starts to decrease at higher frequencies.  Pogue et al 

(Pogue et al. 1997) found the optimal modulation frequency to lie within the 

range of 50-250 MHz.  In small animal imaging, however, the resultant phase 

shift is much smaller so a higher frequency is necessary (Kim et al. 2008). 

 The equipment necessary for frequency domain measurements is 

significantly less complex, and therefore, less expensive than that needed for 
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time domain systems making it advantageous (Pogue and Patterson 1994; 

Pogue and et al. 1995; McBride et al. 2001; Orlova et al. 2008).  Frequency 

domain systems are also relatively easy to develop and are capable of 

processing data quickly making them very well suited to situations where the 

output beam has a reasonably high intensity and data is required quickly. 

3.3 Spectroscopy 

The aim of a DOT imaging system is to provide a map of the optical 

properties within the sample tissue.  If data is taken at a range of 

wavelengths, it is then possible to derive the various chromophore 

concentrations in a post-processing step by performing a least squares fit to 

the Beer’s Law, equation 2.6.  It is assumed that oxy-haemoglobin, deoxy-

haemaglobin and water are the main sources of absorption and their molar 

absorption spectra have been measured experimentally (Prahl 2001; 

Srinivasan et al. 2003).  The scatter amplitude and scatter power can be 

calculated from Mie theory, equation 2.5. 

 If data is obtained for multiple wavelengths simultaneously, it is possible 

to directly reconstruct for chromophore concentrations and scatter properties 

directly (Corlu et al. 2003; Srinivasan et al. 2006).  This reduces the problem of 

reconstructing 14 unknowns, for example (based on reconstructing both 

! 

µaand 

! 

µs at 7 wavelengths), to that of just 5 unknowns (oxy-haemoglobin, 

deoxy-haemoglobin, water and scatter power and amplitude) at each spatial 

location within the volume (Dehghani et al. 2008).  The use of multiple 

wavelengths has also been shown to make the reconstruction process less 

sensitive to noise, which can potentially provide better contrast and reduce 

cross-talk between parameters (Srinivasan et al. 2005). 
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3.4  Molecular Imaging 

Whilst the absorption and scattering properties of a tissue can provide 

functional information on a macroscopic level, the use of exogenous contrast 

agents can allow functional   information on a molecular level.  Molecular 

imaging using small animals has now become a growing field of interest 

(Schulz et al. 2004; Nziachristos 2006; Kumar et al. 2008; Zinn et al. 2008; 

Okawa and Yamada 2010). 

 Fluorescent imaging, for example, makes use of fluorescent probes that 

attach to a specific biological target or activate only when they encounter a 

specific chemical environment.  When these markers are illuminated by an 

external light source at a specific excitation wavelength 

! 

"x , they re-emit light 

with a emission wavelength 

! 

"m .  The fluorescence imaging problem is 

generally modelled in two stages.  Firstly, the light field from the external 

light source is commonly modelled using the diffusion approximation to the 

radiative transport equation, see Chapter 5.  The result of this diffusion 

equation is then used as a source term in a second diffusion equation which 

models the distribution of fluorescent light.  Whilst the majority of models to 

date have utilised the diffusion approximation, a few transport based models 

have been developed (Klose and Larsen 2003; Klose et al. 2005).   Fluorescence 

tomography has been applied with promising results in a number of studies 

(Chang et al. 1997; Lee and Sevick-Muraca 2002; Kepshire et al. 2008) 

including observations of physiology such as protease activity (Ntziachristos 

et al. 2002a) and tumor localisation (Chen et al. 2003).  Davis et al have also 

combined a fluorescence imaging system with an MRI system to allow image-

guided fluorescence tomography (Davis et al. 2008). 
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 An alternative to fluorescent agents would be to use bioluminescent 

markers.  As in the case of fluorescence imaging, a light emitting protein is 

attached to a specific cell type or biological target.  The most commonly used 

light emitting protein is luciferase, which has a peak emission at 

approximately 560nm, Figure 3.2a.  This corresponds to a region of strong 

absorption due to haemoglobin (Figure 3.2b), and so the DA is no longer valid 

as the condition !>> sa µµ does not apply.  As such, there is a need for higher 

ordered approximations to the RTE.  The strong absorption also limits 

bioluminescent studies to relatively superficial regions and more sensitive 

and expensive detectors are required (Hielscher 2005).   

 The location of the bioluminescent source in 3D is complicated by the fact 

that emission spectrum is dependent on the depth of the source due to the 

wavelength dependent nature of tissue optical properties (Chaudhari et al. 

2005).  It has been shown, however, that the use of multi-spectral data can 

greatly improve the accuracy of image reconstruction (Cong and Wang 2005). 

By labelling luciferase labelled HeLa cells into immuno-deficient mice, 

bioluminescent images were used to study the growth and metastasis of lung 

tumours (Edinger et al. 1999).  It has also been shown that bioluminescence 

imaging can result in sensitivities comparible to PET (Iyer et al. 2002; Kuo et 

al. 2007).   
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Figure 3.2 (a) Measured emission spectrum of luciferase, (b) absorption spectra of oxy and 

deoxy-haemoglobin and water. 
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3.7 Applications 

3.7.1 Breast Imaging 

The current method for breast cancer screening is based upon traditional x-

ray mammography.  The NHS system currently provides women over the age 

of fifty with regular mammograms every three years.  Below the age of fifty, 

however, there is no routine screening system as mammograms are less 

effective in pre-menopausal breasts as their high density results in a low 

contrast between tumours and healthy tissue (Warren 2001).  X-ray 

mammography involves the use of ionising radiation and as such the risks 

may outweigh the benefits, especially in younger women.   

 Tumours are known to be associated with an increased vascularisation 

(Rice and Quinn 2002).  The subsequent changes in levels of Hb and HbO 

means that they can be imaged using optical methods. One of the main 

concerns of using DOT as a screening system is the limited spatial resolution 

that it can provide.  As tumors grow beyond 1cm in diameter, the associated 

mortality rates rise rapidly (Webb et al. 2004).  Any reliable screening method 

should therefore be able to detect tumors smaller than 1cm.  Whilst optical 

tomography may not yet be ready to replace x-ray mammography, it may 

well prove to be useful as a complementary screening method which could 

also be used in younger women.   

 A number of DOT breast imaging systems have been developed in the 

last ten years.  The Dartmouth group, for example, have built a frequency-

domain system based on 16 sources (with a modulation frequency of 100 

MHz) and 16 detectors arranged in a circular geometry (Pogue et al. 1997).  
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The system has also been coupled to a MRI scanner to allow simultaneous MR 

and DOT images allowing MRI-guided DOT (Brooksby et al. 2004).   

 One of the advantages of the  circular source-detector arrangement as 

used by the Dartmouth group is that a large volume of tissue is sampled 

allowing good 3D reconstructions.  However, due transmission through large 

volumes of tissue is relatively low and so measured intensities will be small.   

 The University of Pensylvannia have developed an alternative system 

that uses a compressed slab geometry (Choe et al. 2005).  The patient’s breast 

is compressed to a thickness of 5.5 to 7.5cm within a box that is then filled 

with a matching solution to create the slab geometry. The hybrid system uses 

six different light frequencies, four of which are intensity modulated, to allow 

simultaneous detection of continuous wave and frequency domain data 

(Konecky et al. 2008).   

 

3.7.2 Imaging the neo-natal brain 

Brain imaging in pre-term or term infants can lead to permanent disability or 

even death (Gibson et al. 2005).  Conditions such as intraventricular 

haemorrhage, periventricular leucomalacia or hypoxic-ischaemic brain injury 

result in a disruption in the blood and therefore oxygen supply to areas of the 

brain. Whilst portable ultrasound systems are very effective at detecting 

haemorrhages, they cannot provide functional information about hypoxic 

ischaemic injuries (Hebden 2003).  Near infrared spectroscopy has been 

applied to monitor changes in cerebral oxygenation and haemodynamics for 

over 30 years (Jobsis 1977), but does not provide any spatial information.  

Instead, optical tomography can be used to give functional information 

throughout the brain. 
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 The first optical tomographic system for neonatal brain imaging was 

developed by Benaron et al (Hintz et al. 1998; Hintz et al. 1999; Benaron et al. 

2000). They imaged two neonates, one with a stroke and one a control.  

Significant differences were seen between the two images at locations that 

agreed with CT images.  This system, however, consisted of just one detector 

meaning measurement at each collection fibre were collected sequentially.  

Imaging times were in the order of several hours.  More recent imaging 

systems utilize multiple channels to reduce scan times.   

 The UCL group, for example have built a 32 channel time-domain system 

that use custom made helmets to couple source and detector fibres to the 

infant head (Hebden et al. 2002).  The system has been used to image the 

brain of a premature infant with a cerebral haemorrhage.  The system has also 

been used for differential imaging, removing the need for calibration 

measurements.  Large changes in absorption were measured as the partial 

pressures of oxygen and carbon dioxide were varied via a ventilator (Hebden 

et al. 2004). 

 Zeff et al developed a high-density optical tomography system that 

measures reflected light with a wide range of source-detector separations, 

where the different source-detector separations provide information at 

various depths (Zeff et al. 2007b).  This system has been used to image 

neonatal brain.  In response to a visual stimulus, increases in oxy and total 

haemoglobin were observed, along with decreases in deoxyhaemoglobin 

(Liao et al.). 
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3.7.3 Small animal imaging 

In recent years, interest has grown in the optical imaging of small animals 

(Culver et al. 2003b; Bluestone et al. 2004a; Bluestone et al. 2004b; 

Ntziachristos et al. 2004), as progress in transgenic manipulation of small 

animals has allowed the development of models for human diseases 

(Hielscher 2005).  Imaging can be performed using both endogenous and 

exogenous contrast with either bioluminescent or fluorescent markers. 

 As mentioned in Section 2.5, many of the studies utilising endogenous 

contrast have focussed on blood oxymetry in relation to ischemia and 

functional response.  For example, Bluestone et al monitored the response to 

various degrees of hypercapnia and saw variations in oxy and 

deoxyhaemoglobin concentrations as the levels in inhaled CO2 were varied.  

The same group also studied the effects of unilateral carotid artery occlusions, 

Figure 3.3.     

 Siegel et al investigated the neuro-response in rat brains to electrical 

stimulation of the paw in a comparative study with fMRI (Siegel et al. 2003).  

As shown in Figure 3.4, they observed increases in oxyhaemoglobin and 

deoxyhaemoglobin during stimulation.  They found that the DOT system was 

able to provide temporal information on the haemodynamic response that 

was similar to that of fMRI. 
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Figure 3.3 Coronal cross sections of rat brain showing changes in (a)-(c) oxy, deoxy and total 

haemoglobin after induced unilateral carotid artery occlusion on the left and (d)-(f) right 
sides (Hielscher 2005) 

 

 
Figure 3.4 Temporal response of oxy (HbO2), deoxy (HbR) and total (HbT) haemoglobin in 

response to electrical stimulus.  The black bars represent the duration of the stimulation 
(Siegel et al. 2003) 

 

Bioluminescence tomography promises to be an extremely useful tool in 

cancer research.  Figure 3.5, for example, shows an image of a mouse in which 
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human breast cancer cells were implanted.  The cells were expressing the 

luciferase gene, emitting light which was used to determine the size of the 

tumour.  This corresponded well with physical measurements (Zinn et al. 

2008).  Wang et al similarly injected a mouse with human prostate cancer cells 

expressing luciferase in order to observe the development of metastases 

(Wang et al. 2006a). 

 

 
Figure 3.5 Image of a breast tumour in a mouse, expressing the luciferase gene.  Light 

emission was found to be proportional to the tumour size (Zinn et al. 2008) 

 

Chen et al used a frequency domain imaging system to reconstruct the 

distribution of a fluorescent marker which targets the enhanced tumour 

glycolysis.  In doing so, they were able to locate tumours up to 2cm below the 

surface of the mouse with an accuracy of 2-3mm (Chen et al. 2003).  

Ntziachristos et al used fluorescent beacons to obtain three dimensional 

images of a protease in gliomas.  They were able to identify the location of the 

fluorophores with high degrees of accuracy in deep tissues (Ntziachristos et 

al. 2002a).   
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 The results of the studies discussed suggest that molecular tomographic 

imaging could be extremely beneficial in studying biological function.  It 

could be used to observe physiology, develop models of cancer development 

or monitor the efficacy of drugs and therapies. 
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Chapter 4 - Current Medical Imaging Methods 

 

4.1 Introduction 

Optical tomography is a relatively new imaging technique and is not yet in 

regular clinical use.  This chapter will describe some of the existing imaging 

methods, both anatomical and functional, that are currently used.  Their 

advantages and disadvantages will be discussed.   

4.2  X-ray Radiography and Computed Tomography 

X-ray radiography was one of the earliest forms of medical imaging having 

been in use since as early as 1895 (Glasser 1993).  Traditional x-ray 

radiography involves placing a film screen behind the patient to detect 

transmitted rays, resulting in a 2D map of the anatomy within the field.  As x-

ray absorption, via the photoelectric effect, is proportional to electron density, 

bone and other dense materials provide good contrast while soft tissue is 

almost transparent to x-rays. 

 In many cases, a 3D information is required, which is not possible with 

standard radiography.  Early attempts at 3D imaging began with focal plane 

tomography in which a x-ray source and detector were moved in opposite 

directions either side of the patient, with each point within the patient being 

mapped onto the detector.  Depending on the speed of motion, only one plane 

within the patient would remain in focus.  Signals from the rest of the patient 

are then smeared across the detector.   

 More modern Computed Tomography (CT) uses a fan beam of x-rays 

which is rotated around the patient.  Unlike conventional radiography, CT 



56 

measurements do not directly result in a useful image.  Instead, a series of 

projections is recorded at all angles around the patient.  These projections can 

then be used to reconstruct a map of attenuation coefficients throughout the 

patient using the back-projection method where the attenuation profile 

recorded at each angle is projected back across the imaging space and 

summed (Buzug 2008).  The basic back-projection method, however, results in 

a ‘foggy’ image containing strong artefacts, Figure 4.1.  Reconstructed images 

can be greatly improved by using filtered back-projection, where the 

attenuation profiles for each angle are convolved with a filter function in 

fourier space, and then summed as before. 

 
Figure 4.1 The reconstruction of an object (a) via backprojection results in star shaped artefact 

and a general fogging as projections (b)-(d) are summed 

 

 CT is primarily used to provide high resolution anatomical information, 

Figure 4.2.  Some physiological information is possible, however, by 

monitoring the distribution of contrast agents with time.  The development of 

desktop micro CT systems has led to in vivo, molecular imaging studies of 
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small animals at microscopic scales (Holdsworth and Thornton 2002; Ritman 

2002; Sasov 2002).   

 
Figure 4.2 Example CT image of a small animal 

 

One of the main strengths of x-ray CT imaging over optical tomography, is 

the ability to capture high resolution anatomical images with short acquisition 

times.  The ionising nature of x-rays, however, is a major disadvantage as 

there is the probability of causing radiation related complications, which is 

not a problem with the near-infrared light used in optical tomography.  

Differential imaging of contrast agents, however, can only provide relative 

changes in physiological states.  DOT, however, has the ability to provide 

absolute values of biological conditions such as oxygen saturation, 

haemoblogin concentrations or water content. 

4.3  Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) provides an alternative imaging 

modality.  The principle of magnetic resonance imaging relies on the spinning 
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nature of certain nuclei within the patient.  When in pairs, sub-atomic 

particles tend to spin at the same rate but in opposite directions.  For nuclei 

with even mass numbers, there is an even number of nucleons and so half 

spin in one direction, and half spin in the other direction; the nucleus 

therefore has no net spin.  Nuclei with odd mass numbers, such as hydrogen, 

however, do have a net spin and are known as active nuclei.   

 When a strong external magnetic field, B0, is applied to the active nuclei, 

their spins will attempt to align with the field.  Most of the nuclei will align 

parallel with B0, but a smaller number will align anti-parallel, resulting in a 

net magnetization parallel to the external magnetic field, Figure 4.3.  The 

individual protons within the nuclei also precess around B0 at the Larmor 

frequency, 

! 

" 0 ,which is given by 

 

! 

" 0 = B0#  (4.1) 
 

where 

! 

B0 is the external magnetic field strength and 

! 

" is the gyro-magnetic 

ratio. 

 
Figure 4.3 Alignment of nuclei with external magnetic field B0 results in a net magnetization 

vector parallel to B0 (Westbrook and Roth 2005) 

 

 If a radio frequency (RF) pulse with frequency 

! 

" 0  is applied 

perpendicular to B0, the nuclei resonate and can gain energy causing some of 
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the parallel spins to flip to an anti-parallel spin.  This has the effect of moving 

the net magnetization out of alignment with B0 and will eventually become 

perpendicular.  When the RF pulse is turned off, the nuclei begin to return to 

their original state, known as relaxation, which can be detected as a voltage in 

a surrounding coil (Westbrook and Roth 2005 ). 

 If the external magnetic field B0 has a gradient, i.e., its strength varies 

through the patient, the Larmor frequency will vary for each plane.  

Therefore, by applying a RF pulse with a single frequency, only one plane is 

activated.  By collating data from each of the planes, a 3D dataset can be 

constructed. 

 The magnetic properties of haemoglobin can vary, depending on whether 

it is oxygenated or de-oxygenated.  Oxy-haemoglobin results in a magnetic 

field aligned with B0, while deoxy-haemoglobin results in a field that is anti-

parallel to B0.  The perturbations in the magnetic field due to deoxy-

haemoglobin is known as the blood oxygen level dependent (BOLD) signal.  

Functional MRI (fMRI) can be used to observe physiological function by 

studying the BOLD signal.  The fMRI signal is often overlaid onto a structural 

MRI image to provide context, as shown in Figure 4.4. 
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Figure 4.4 Example fMRI image overlaid on structural MRI.  Red regions indicate active 

regions i.e. greater oxygen consumption and blue regions indicate less active regions 

 

4.4  Radionuclide Imaging 

In radionuclide imaging, clinical information is obtained by observing the 

distribution of a function or cell specific pharmaceutical within the body.  

Before being ingested or injected into the patient, the pharmaceutical is 

tagged with a gamma-emitting radionuclide which can be detected by an 

external gamma camera (Sharp et al. 2005).  The detected radiation can then 

be used to produce either a planar image of the radiopharmaceutical 

distribution or a reconstructed, 3D distribution map. 

 Technetium-99m is a commonly used radionuclide in radionuclide 

imaging.  It is an ideal tracer as it has a short half-life of approximately 6 

hours, minimising the radiation dose to the patient.  The short half-life, 

however, means that it is difficult to transport.  Instead, molybdenum-99 

generators are produced which decay into Technetium-99m with a half-life of 

around 67 hours.  One of the major disadvantages of radionuclide imaging is 



61 

the need to purchase molybdenum generators on a regular basis, which are 

produced in just a small number of facilities worldwide.  When one of these 

facilities becomes inoperable, as in the case at the time of writing, the global 

demand for molybdenum can cause drastic shortages (Perkins and Vivian 

2009). 

4.4.1 Single Photon Emission Computed Tomography  

Single photon emission computed tomography (SPECT) is a method of 

producing 3D images and has been in use since the late 1960s.  The SPECT 

process is very similar to standard planar radionuclide imaging in that a 

gamma camera is used to record the emitted radiation.  In SPECT, however, 

the gamma camera head is rotated around the subject to record projections at 

all angles.  Modern gamma cameras are now double-headed allowing pairs of 

projections to be recorded simultaneously, halving the acquisition time.  

Image reconstruction methods, such as the filtered back projection approach 

used in CT, can then be used to reconstruct 3D images. 

 

4.4.2 Positron Emission Tomography 

Positron emission tomography (PET) differs from SPECT in that the 

radionuclide used does not directly emit gamma rays, but emits positrons 

instead.  As the emitted positrons move away from the source, they are likely 

to meet an electron at which point they will be annihilated, emitting a pair of 

511keV gamma rays in exactly opposite directions.  A ring of detectors 

surrounding the patient is used to detect only coincident gamma rays that 

originate from a single positron annihilation.  Images are again reconstructed 

by using filtered back-projection methods.  The distance that a positron can 
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travel before being annihilated limits the spatial resolution of PET images.  An 

example PET image is given in  

 
Figure 4.5 Example whole body PET scan of the same animal as in Figure 4.2 

 

 The positron source used in PET is commonly used to label 

fludeoxyglucose (FDG), a type of sugar, and is therefore preferentially 

absorbed by regions of increased metabolism.  As it is known that cancer cells 

have a higher metabolic rate than healthy cells, the distribution of FDG can 

then be used to identify tumours.   

4.5 Multi-modality Imaging 

At present, there is no one imaging modality that can provide the perfect 

combination of high resolution structural imaging as well as functional 

information simultaneously.  As such, multi-modality imaging systems are 

often sought.   

 The poor resolution of PET imaging, for example, makes their images 

almost un-readable to the untrained eye, Figure 4.6.  As such, the majority of 

PET imaging is now performed using dual modality PET-CT scanners.  As the 

patient is passed through both scanners, both structural and functional 

imaging is obtained for the same patient geometry and the two images can be 



63 

later fused.  The CT data can also be used to perform attenuation correction 

on the PET data.  The synergy of these two imaging modalities has led to 

improved diagnosis (Tsukamoto and Ochi 2006). 

 
Figure 4.6 A fused PET/CT image resulting from overlaying Figure 4.5 onto Figure 4.2 

 

A number of MRI – optical tomography systems have also been developed.   

In  these systems, the MRI data not only provides structural information, but 

it can also be used to improve the accuracy of the optical data (Davis et al. 

2008; Thayer et al. 2010).  The use of such structural information in image 

reconstruction is discussed further in chapter 6.  A number of Optical-

radionuclide hybrid systems have also been developed for small animal 

molecular imaging (Huber et al. 2001; Luker et al. 2002; Celentano et al. 2003; 

Ray et al. 2003; Alexandrakis et al. 2005; Proud et al. 2005). 

 To assist in the development of multi-modality imaging, several mouse 

atlases, such as the digimouse (Dogdas et al. 2007), have been developed.  The 

digimouse was constructed using CT and cryosection data.  The various 

organs were then segmented and labelled with optical properties and x-ray 
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attenuation coefficients, Figure 4.7.  This allows image reconstruction for any 

of the imaging modalities to be performed using the same model.  A 

comparison of the imaging modalities performed using the digimouse model 

is shown in Figure 4.8. 

 
Figure 4.7 The Digimouse model, an atlas of the mouse showing segmented organs such as 

the brain, eyes, lungs, liver, stomach etc… labelled with optical absorption and scatter 
properties and x-ray attenuation coefficients (Dogdas et al. 2007) 

 

 
Figure 4.8 Comparison of (a) PET and (b) bioluminescence reconstructions based on a data set 

simulated using the digimouse.  (c)  shows a fusion of the PET and bioluminescence 
reconstructions 
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4.5  Discussion 

Imaging modalities can be broadly classified into one of two groups: 

structural and functional.  Functional modalities such as CT and MRI are 

capable of providing high spatial resolution images of anatomy.  MRI can 

give good soft-tissue contrast but it requires very expensive hardware.  The 

strong magnetic field also means that it is unsuitable for patients with 

pacemakers and its use is therefore limited.  X-ray CT is less expensive than 

MRI, but it uses ionising radiation which can pose a risk to the patient as well 

as hospital staff.  The hardware required for both MRI and CT imaging is very 

large and immobile.  This means that imaging can only be performed in a 

fixed location, which makes it unsuitable for continuous monitoring of 

patients. 

 Functional imaging modalities provide the clinician with information 

about the physiology within the imaged region.  This is often achieved by 

imaging the uptake of some form of tracer which, in the case of SPECT and 

PET, takes the form of a possibly damaging radionuclide.  As well as being 

potentially harmful, the radionuclide tracers introduce a logistical problem as 

supplies can be variable.   For example, in recent years, there has been a 

shortage in the supply of Tc99, a commonly used radionuclide.  As a result, 

many potentially vital scans were delayed or cancelled. DOT allows similar 

functional information to be obtained but without the need for radioactive 

tracers.  Maps of optical properties or chromophore concentrations provide 

information on physiology and can be obtained by tomographic 

measurements alone.  However, the use of fluorescent or bioluminescent 

agents allows optical imaging at the molecular scale.   
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As with MRI and CT, radionuclide imaging is limited to a fixed location the 

detectors used are large.  This is not the case with DOT.  The hardware 

required for an optical imaging system is relatively simple and it is possible to 

be mounted onto a transportable trolley.  This makes it possible to perform 

bedside imaging and, as it uses non-ionising radiation, it could be used for 

regular monitoring. 

 As DOT suffers from limited spatial resolution, it is unlikely to become a 

standalone replacement for existing imaging modalities.  However, as it is 

relatively inexpensive and can provide absolute functional information with a 

transportable imaging system, it is likely to be a useful addition to the existing 

range of imaging systems. 
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Chapter 5 - The Forward Problem 

 

5.1  Introduction 

The process of recovering images from DOT boundary measurements consists 

of two problems, Figure 5.1.  The forward problem aims to calculate the 

boundary data that would be measured for a given set of optical properties 

within a known geometry and measurement system.  Conversely, the inverse 

problem aims to calculate the optical property distribution within a known 

geometry given a set of boundary measurements.  Due to the non-linear 

nature of the forward problem, see chapter 6, the inverse problem is generally 

solved by iteratively solving the forward model with the aim of minimizing 

the discrepancy between the resultant predicted data and experimental data.  

As such, model based image reconstruction algorithms are heavily dependent 

on an accurate forward model.   

 
Figure 5.1 Illustration of the forward and inverse problems.  Known information is listed in 

the upper boxes whilst the data to be recovered is listed in the lower boxes. 

 

 This chapter will focus on the forward problem with the aim of 

developing a model for accurate light propagation in tissue which will 

provide an improvement over existing models in cases where the Diffusion 

Approximation is not valid.  The chapter consists of two parts, the first 
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introducing modelling of photon transport through soft tissue, and the second 

discussing numerical techniques used to solve the partial differential 

equations introduced in part 1.  The inverse problem is discussed later in 

chapter 6. 

 

5.1 Modelling Photon Transport in Soft Tissue 

5.1.1 The Radiative Transport Equation 

By modelling light as particles, the propagation of light through biological 

tissue can be accurately described by the Radiative Transport Equation (RTE), 

a linearized version of the Boltzmann equation (Case and Zweifel 1967).   

Transport based problems have been extensively studied in a wide range of 

fields such as neutron transport in nuclear reactor problems and radiative 

transfer in stellar atmospheres and many other problems.  By treating light as 

particles, however, the RTE neglects any wave effects and so light with 

wavelengths much smaller than the size of the subject of interest must be 

used.  The RTE also assumes that all particles travel at the same speed and 

thus the refractive index of the subject must be homogenous (Case and 

Zweifel 1967; Gibson et al. 2005).  It is possible, however, to extend the RTE to 

include spatially varying refractive index (Premaratne et al. 2005). 

 The RTE for frequency domain problems is  

 

! 

i"
c

I r,",ˆ s ( ) + ˆ s # $I r,",ˆ s ( ) + µa + µs( )I r,",ˆ s ( )

= µs f ˆ s , ˆ s '( )I r,",ˆ s '( )d2ˆ s '
4%& + q r,",ˆ s ( )

 (5.1) 

 
where ( )sr ˆ,,!I  is the radiance at point r, frequency ! and in the direction of 

unit vector ŝ.  The aµ and sµ  parameters are the absorption and scattering 
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coefficients respectively, and c is the speed of light in the medium, which is 

dependent on the refractive index, often assumed to be homogeneous within 

the medium.  The ( )ss !ˆ,ˆf term is the scattering phase function, which 

characterizes the intensity of a beam which is scattered from direction s!ˆ into 

direction ŝ (Arridge and Hebden 1997).  Equation 5.1 is most accurately 

solved in conjunction with the vacuum boundary condition, which simply 

dictates that all photons arriving at the external boundary are completely 

absorbed and lost. The RTE for the time domain can be easily obtained by 

replacing the 

! 

i" c terms with t!! / , equation 5.2 

 

! 

"
"t

I r, t,ˆ s ( ) + ˆ s # $I r, t,ˆ s ( ) + µa + µs( )I r,t,ˆ s ( )

= µs f ˆ s , ˆ s '( )I r,t,ˆ s '( )d2ˆ s '
4%& + q r,t,ˆ s ( )

 (5.2) 

 
 The RTE can essentially be thought of as a balance equation between the 

mechanisms that lead to an increase in photon density and those that decrease 

photon density.  A very small number of photons will pass through the 

medium undergoing no or few scattering events, resulting in the streaming 

term ( )!,ˆ,ˆ srs I"# .  The majority of photons will undergo multiple scattering 

events and follow a random walk until they are either absorbed or pass 

through the boundary of the medium( ) ( )sr ˆ,,!µµ Isa + .  Scattering can also 

lead to increases in photon density if scattered photons are re-directed back 

towards the position under question, expressed as

! 

µs f ˆ s , ˆ s '( )I r,",ˆ s '( )d2ˆ s '
4#$ .  

The remaining term, ( )sr ˆ,,!! I
c
i , accounts for variations in photon density 

due to the modulation of the external light source.  These events can be 

schematically generalized as shown in Figure 5.2. 
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Figure 5.2 Schematic of photon-tissue interaction mechanisms. Blue – Small number of 
streaming photons pass through un-scattered; Red – scattering causes photon to cross 

boundary, leaving the domain; Green – photon is absorbed; Black – photons scattered back 
towar 

 

 The phase function, ( )ss !ˆ,ˆf , which describes the amount of light scattered 

from the direction of unit vector ŝ  to s!ˆ , can be thought of as a probability 

distribution and therefore normalised such that  

 

! 

f ˆ s ,ˆ " s ( )
4#$ d% =1 (5.3) 

 
The phase function then becomes the probability that a photon will be 

scattered from one direction to another, as discussed in chapter 2. 

5.1.1 Approximations to the Radiative Transport Equation 

One of the complexities in solving the radiative transport equation lies in the 

integration over the angular terms.  The calculations can be simplified by 

discretising the angular terms.  One of the methods of doing this, known as 

the discrete ordinates (SN) approximation, Figure 5.3b, is to divide all of the 

possible angles into a finite number of components (eg 360 components, each 

of 1o) (Case and Zweifel 1967).  Although the SN approximation does simplify 

the calculation of the radiative transport equation, a system of N(N+2) 

equations (Klose and Larsen 2006), where N is the number of discrete 

ordinates) is required, leading to significant increases in computation time.  
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For example, a three dimensional model with 20,000 unknowns and 360 

angular components would require 6102.7 ! unknowns to be calculated. 

 

Figure 5.3 Angular terms can be represented using (a) spherical harmonics of order 

! 

Yl
m  or (b) 

discrete ordinates method 

  

The spherical harmonics (PN) approximations provide an alternative method 

of angular discretisation.  Spherical harmonics, 

! 

Yl
m , are the angular solution to 

the Laplace equation in spherical coordinates and could be used to represent 

directional terms as represented in Figure 5.3a.  The solution of the radiative 
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transfer equation could be simplified by expanding it into a set of spherical 

harmonics.  The radiance and source terms would then become: 
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where 

! 

Yl
m ˆ s ( ) is a spherical harmonic function of degree 

! 

l and order 

! 

m . 

Expanding to a higher order would give a better representation of the angular 

distribution but would result in additional terms to be solved.  The number of 

equations required by a PN approximation, however, grows with (N+1)2 

where N is the number of Legendre Polynomials (Case and Zweifel 1967) 

5.1.3 The Diffusion Approximation  

The diffusion approximation (DA), a P1 approximation, makes the 

assumption that the light distribution within the region of interest is isotropic.  

This tends to be true when scattering effects within a region of interest are 

dominant over absorption effects i.e. as µµ >>' , where )1(' gss != µµ . 

 The diffusion approximation can be derived from the radiative transport 

equation by defining the radiance within the medium as an isotropic fluence 

rate, ( )t,r! , and a small forward flux, ( )tJ ,r . 

 
( ) ( )! ! "=#

$4
ˆ,ˆ,, ssrr dtIt  (5.8) 

 
( ) ( )! ! "=

#4
ˆ,ˆ,, srsrr dtItJ  (5.9) 

 
The radiance can then be expanded into first order spherical harmonics.  

Integrating over all solid angle then gives 

 



73 

( ) ( ) ( ) srrsr ˆ,
4
3,

4
1ˆ,, !+"= tJttI

##
 (5.10) 

 
By substituting the fluence rate, ( )t,r! , and the forward flux, ( )tJ ,r  into 

equation 5.10 and integrating over all solid angles, a continuity equation for 

the photon flux can be reached: 

 

( ) ( ) ( )tSttJ
t
t

c a ,ˆ,,ˆ,,)ˆ,,(1
0 rsrsrsr

+!"=#$+
%

!%
µ  (5.11) 

 
By multiplying by ŝ  and integrating over all angles leads to: 
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1
c
"J(r, t)
"t

= #
1
3
$% r,t( ) # 1

3&
J r, t( )  (5.12) 

 
where 

! 

"  = 1/[3( aµ  + 

! 

µs
")] is the diffusion coefficient; !

sµ is the reduced 

scattering coefficient and ss g µµ )1( !=" , where g is the anisotropic factor (the 

average cosine of all scattering angles, ≈0.9 in tissue).  Since the time 

derivative of the flux is, under most conditions, significantly less than 

collision frequency, equation 5.12 can be simplified, leading to Fick’s law: 

 

! 

J r, t( ) = "#$% r, t( )  (5.13) 
 

Substituting equation 5.13 into equation 5.11 then leads to the diffusion 

equation :  

 

! 

1
c
"# r, t( )
"t

$% &'%# r, t( ) + µa# r, t( ) = S0 r, t( )  (5.14) 
 

in the time domain, or  

 

! 

i"
c
# r,"( ) $% &'%# r,"( ) + µa# r,"( ) = S0 r,"( ) (5.15) 

 
in the frequency domain where 

! 

"  is the source modulation frequency.  The 

DA is currently the most widely used light propagation models.  It can be 
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accurately applied when the condition 

! 

µa << µs
"is true and is therefore 

commonly applied to problems with large tissue geometries such as the 

human head or breast (Ntziachristos et al. 2000; Dehghani et al. 2003c; Choe et 

al. 2005; Enfield et al. 2007). 

   

5.1.4 Beyond the Diffusion Approximation 

Whilst the DA can be accurately applied to many biological tissues, there are 

several applications in which the DA is not accurate.  In small geometries of 

less than a few scattering lengths, for example, the light distribution within 

the region of interest will be forward biased due to the presence of the light 

source.  This effect is also present in large geometries in the regions near to 

the source.  A recent paper by Tarvainen et al (Tarvainen et al. 2005), 

proposed a radiative-transfer – diffusion hybrid model for these problems.  

This hybrid uses the RTE to model the light distribution in the vicinity of the 

source and the DA elsewhere.  A Dirichlet boundary condition is then used to 

model the interface between the radiative-transport and diffusion regions.  

This method has been found to produce accurate results with little increase in 

computation time.  However, as this method uses analytical solutions of the 

radiative transfer and diffusion equations, it is only capable of handling basic 

geometries. 

 The accuracy of the DA is also known to be limited in regions of low or 

zero scattering.  Such conditions are likely to be encountered when imaging 

the brain in the clear cerebrospinal fluid (CSF).  A possible solution to this 

problem was suggested by Firbank et al (Firbank et al. 1996) and later by 

Arridge et al (Arridge et al. 2000b), which used a radiosity-diffusion hybrid 

model which uses the diffusion equation in highly scattering regions and 
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radiosity equations in non-scattering regions (Riley et al. 2000).  The beam 

intensity used in the non-scattering regions is calculated from the outgoing 

radiance from the scattering region and is then used as the source term for the 

next scattering region.   

 The search for higher ordered light propagation models is particularly 

important for whole body imaging of small animals.  As well as the problem 

of small geometries, the presence of highly vascularised organs, such as the 

liver or heart, within the field of view result in regions of strong absorption at 

wavelength between 500 – 650 nm.  The use of bioluminescent markers in 

small animals is becoming increasingly widespread and introduce further 

limitations to the DA, due to signal emission at these lower wavelengths 

where the absorption of deoxy-haemoglobin is very high. 

 In Bioluminsecent imaging, a light emitting protein is attached to a 

pharmaceutical which is absorbed by specific types of cells.  This allows the 

monitoring of disease progression or drug effectiveness.  The most commonly 

used light emitting protein is luciferase, which has a peak emission at 

approximately 560nm, see Chapter 3.  This corresponds to a region of strong 

absorption due to haemoglobin and so the DA is no longer valid as the 

condition 

! 

µa << µs
"does not apply.  As such, there is a need for higher ordered 

approximations to the RTE.  Klose et al, for example, have proposed a method 

that utilises the SP3 approximation (see chapter 6) for the forward model.  The 

measurements of the exiting bioluminescent light are then co-registered with 

CT & MRI data which enables the use of prior information (Klose and Beattie 

2008; Klose et al. 2010).  In this study, the forward model was solved using the 

Finite Difference Method and a blocking off method was used to enable 
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curved boundaries to be modelled.  An Finite Element Method based solver, 

however, would be beneficial for solving arbitrary complex geometries. 

5.2 Solution Methods 

The solution of the RTE is a highly complex problem which has been the 

subject of much research over the past 10 years.  This section introduces some 

of the analytical and numerical methods of solving the RTE and some of the 

practical considerations relating to them.  

5.2.1 Analytical Models 

An analytical solution to the RTE initially appears to be an attractive 

approach.  In reality, analytical solutions exist only for very simple geometries 

e.g. one-dimensional and so are of limited use in image reconstruction.  

However, analytical solutions for a range of geometries, such as the infinite-

space, infinite slab or finite cylinders, have been published for the DA.  

Solutions also exist for simple geometries containing a single spherical 

inclusion (Boas et al. 1994).  Existing solutions can, however, be extended to 

more complex geometries such as layered slabs (Martelli et al. 2002).  Such 

models have been used as forward models in image systems involving 

geometries that can be approximated as layered slabs or infinite half-spaces 

(Culver et al. 2003c; Li et al. 2004). 

   

5.2.2 Stochastic Models 

Light propagation through tissue can be accurately modelled by using 

statistical methods.  The Monte Carlo (MC) method, for example, models the 

path of individual photons as they propagate through the object of interest.   
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 Figure 5.4 outlines the basic steps of a typical MC model, and example of 

which has been used for model verification in Chapter 7.  Initially, a grid of 

‘bins’ in which photons are permitted to land is defined across the geometry 

being modelled.  The optical properties, and therefore photon transport rules, 

are defined at each of these bins a series of probability density functions 

(PDFs).  Roulette probabilities are also defined to determine the likelihood of 

a photons being absorbed or scattered. 

 Photons begin their walk through the geometry at the designated source 

point and are allocated a ‘weight’.  A random number generator is then used 

to sample the optical property PDFs to determine the direction and length of 

the initial step.  The photon’s new location is then calculated.  If it falls outside 

the boundary of the geometry, the path length is truncated so that it lands on 

the boundary.  If the angle of incidence to the boundary is below the critical 

angle, the new direction is calculated and the photon is moved along this 

angle for the remainder of the initial step length.  If the angle of incidence is 

lower than the critical angle, however, Fresnel’s law is used to determine the 

reflectivity coefficient.  This is then used to determine the reduction in the 

photon’s ‘weight’ and the amount recorded as exitance.   

 At the new photon location, the photon weight is reduced to account for 

absorption.  The weight reduction is then added to the fluence in the bin on 

which the photon has landed.  If at any point the weight of the photon falls 

below a pre-determined threshold, a random number generator is used to 

decide whether the photon continues on its path or is totally absorbed.  When 

the weight falls to zero, either due to absorption or scattering across the 

boundary, the photon path is ended and a new photon is launched (Wang et 

al. 1995).  A good introduction to Monte Carlo methods is provided by the 
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Oregon Medical Laser Center website (Prahl 2007) which gives solutions to 

problems of increasing complexity. 

   With sufficiently large number of photons, MC models prove to be 

highly accurate.   The requirement of large numbers of photons, however, 

leads to lengthy computation times.  As such, MC models are have been 

commonly used as validation for faster numerical models in the absence of 

experimental data (Dehghani et al. 2003a) or for problems in which standard 

models are inadequate, e.g. non-diffuse problems (Boas et al. 2002).  A 

number of recent reports, however, have introduced parallelised Monte Carlo 

algorithms that can run on the computer’s GPU (Fang and Boas 2009; Ren et 

al. 2010).   Even with a low cost-graphics card, this has improved computation 

times by over 300 compared with traditional CPU based calculations. 

 

5.2.3 Numerical Methods 

A number of numerical solution techniques exist in which the spatial terms of 

the forward model are discretised in order to simplify the problem and are 

commonly used in engineering problems.  In this section, some of the 

methods more commonly used in optical imaging will be discussed.  The 

methods are described in terms of the RTE but are equally applicable to the 

DA.  

5.2.3.1 Finite Difference Method  

The finite difference method (FDM) approximates the solution to the RTE by 

replacing derivative terms with difference quotients which are approximately 

equivalent.  The difference quotients can be defined in terms of either the 
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forward difference, equation 5.16(a), backwards difference, equation 5.16(b) 

or the central difference, equation 5.16(c).  

 

 
Figure 5.4 Schematic flowchart detailing the general process used in Monte Carlo algorithms 
for a model with scattering coefficient 

! 

µs , absorption coefficient 

! 

µa  anisotropy coefficient g 
where v defines the direction of travel of a photon. 
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Where f(x) is the solution at spatial location x and h is the uniform spatial 

distance. The FDM requires the domain of interest to be discretised into a 

uniform grid of points as demonstrated in Figure 5.5. The RTE can then be 

solved at each point of the grid using one of the above difference equations in 

place of the derivative terms.  An approximate solution to the RTE over the 

whole domain can then be found by collating each of the difference equations 

into a set of matrices of size number of nodes × number of nodes.  As each 

node is dependent only on its neighbouring nodes, the matrices involved tend 

to be sparse and banded. 

 The requirement of a uniform grid for the FDM limits its ability to 

accurately model complex geometries.  In its basic form, the FDM is limited to 

rectangular or cubic geometries.  The advantages of the FDM are that it is 

relatively easy to implement. The FDM has been used to solve the forward 

problem in both transport and diffusion based problems (Hielscher et al. 1998; 

Hielscher et al. 1999; Culver et al. 2003a). 
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Figure 5.5 Example of a FDM discretisation of a circle in both (a) coarse and (b) fine 

resolutions 

 

5.2.3.3 Finite Element Method (FEM) 

The finite element method can be used to solve the forward problem over a 

domain Ω, by discretising it into a series of D elements connected by V vertex 

nodes, Figure 5.6.  The fluence, )(r!  is then approximated by the piecewise 

continuous polynomial function  

 

! 

"h (r,w) = "iui(r)#
h

i

V
$  (5.17) 
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where h! is a finite dimensional subspace spanned by a shape function ( )riu .  

The shape functions describe how the function )(r! varies over each element 

and can take several forms, Figure 5.7.  A simple piecewise constant shape 

function, for example, assumes that there is no variation in the function 

! 

"i  

over the elements.  This, however, results in a discontinuous field 

! 

"h (r) .  

Alternatively, a piecewise linear shape function allows the function to vary 

linearly between nodes of an element.  Higher ordered elements can also be 

used which have the effect of smoothing the solution (Schweiger and Arridge 

2003).  

 
Figure 5.6 Example of a (a) coarse and (b) fine FEM mesh for basic circular geometry 
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Figure 5.7 Representation of the various types of FEM shape functions (Hillman 2002) 

 

The FEM formulation of the Diffusion Approximation, for example, can be 

found by multiplying equation 5.14 (for time domain) or equation 5.15 (for 

frequency domain) by a test function 

! 

u j  and integrating over 

! 

" 

 

! 

u j
1
c
"# r, t( )
"t

$%& D%# r,t( ) + µa# r,t( )
' 

( 
) 

* 

+ 
, d-. = u j. S0 r,t( )d-  (5.18) 

 
Integrating by parts and re-arranging then leads to the matrix equation 

 

! 

K +C( )"+ B" =Q (5.19) 
 

where the elements of the matrices K, C, B, and Q are defined as 

! 

Ki, j = " r( )#u j r( )$ #ui r( )d%& ; (5.20) 
 

! 

Ci, j = µa r( )u j r( )" ui r( )d#$ ; (5.21) 
 

! 

Bi, j =
i"
c
u j r( )# ui r( )d$% ; (5.22) 

 

! 

Qj r,"( ) = u j r( )q0 r,"( )d#$  (5.23) 
 

The K, C and B matrices are V by V elements in size where V is the number of 

nodes in the FE mesh.  These matrices tend to be sparse and banded as entries 

are non-zero only for nodes that are part of the same element. 

 Whilst the FEM elements can take any shape, they generally take the form 

of triangles for two dimensional problems or tetrahedrals for three 
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dimensional problems.  The use of triangular elements enables the FEM to 

model complex geometries accurately.  Unlike in the FDM, the FEM mesh 

does not require the nodes to be equally spaced.  The accuracy of the mesh in 

regions in which rapid changes are expected can be improved by increasing 

mesh resolution in these areas whilst a coarse mesh is used elsewhere for 

computational efficiency. 

 Due to its ability to efficiently and accurately model arbitrary geometries, 

the FEM has been widely used in the forward problem of Optical 

Tomography (Arridge et al. 1993; Arridge and Schweiger 1995; Jiang and 

Paulsen 1995; Gao et al. 1998; Jiang 1998; Dehghani et al. 2003c). 

 

5.2.3.3 Boundary Element Method  

The boundary element method (BEM), is a method of solving PDEs that have 

been formulated in the form of boundary integrals.  The main advantage of 

the BEM over the FEM or FDM is that it requires only the boundary of the 

domain to be discretised, Figure 5.8.  This allows higher mesh resolutions 

with no additional computational cost.  The lack of internal elements, 

however, limits the BEM to problems involving homogeneous distributions of 

optical properties, or a very small number of homogeneous regions.   

 One of the drawbacks of the BEM is that it tends to involve fully 

populated system matrices.  The FEM and FDM, by contrast, involve sparse, 

banded matrices.  For high mesh resolutions, the storage requirements of 

BEM matrices can rapidly increase as can computation times. 

 The BEM has been applied to region-based DA problems in which the 

imaging volume is divided into piecewise constant regions determined using 

prior information (Zacharopoulos et al. 2006; Srinivasan et al. 2007). 
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Figure 5.8 Example of a (a) coarse and (b) fine BEM mesh for basic circular geometry. 

 

5.3  Existing Models 

 

The majority of light propagation models are currently based on the DA 

which has been solved using a range of numerical methods.  The NIRFAST 

package, for example, contains a FEM based frequency domain DA solver 

originally developed by Dehghani et al (www.nirfast.org).  The source is 
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modelled as a distributed Gaussian which aims to model the intensity profile 

at the end of an optic fibre.  The DA, however, assumes that the source is 

spherically isotropic and good matches between theory and experimental 

data have been found when the source is moved one scattering length into the 

domain.  The boundary conditions are modeled by a Robin type condition.  

The TOAST package, which also uses the FEM, was originally developed at 

UCL to solve the time-domain DA, although can now do frequency domain 

too (Schweiger et al. 1995; Schweiger 2008).   

 The University of Pennsylvania group have used the FDM to solve the 

frequency domain DA in a study of 3D breast imaging (Culver et al. 2003a).  

By compressing the breast with a pair of parallel plates, a slab geometry was 

created, which makes the FDM a suitable solution method.   

 Srinivasan has developed a BEM method to solve the frequency domain 

DA for image-guided optical tomography.  Based on prior anatomical data, 

the domain is divided into a number of regions in which the optical 

properties are assumed to be homogeneous.  In doing so, the DA can be 

expressed as a modified Helmholtz equation that can be solved using the 

BEM (Brebbia and Dominguez 1992).  The model uses a point source placed 

one scattering distance inside the domain and a robin type boundary 

condition.    

 Elisee et al have developed a combined FEM/BEM method for layered 

media.  A volume mesh is created for a region of interest which is then solved 

using the FEM.  In the remainder of the geometry, optical properties are 

assumed to be homogeneous and are solved using the BEM.  This approach 

has been shown to agree well with analytical solutions (Elisee et al. 2010). 



87 

 In order to overcome the limitations of the DA, Dorn, developed a model 

based on the time dependent RTE which was solved using the finite 

difference method and the discrete ordinates method (Dorn 1998).  In 

numerical studies, using artificial data, the model was shown to be capable of 

reconstructing scattering and absorption inhomogeneities.  However, this 

model did not allow for the presence of void-like regions. 

 Heilscher et al (Hielscher et al. 1998) also developed a discrete ordinates, 

finite difference approximation to the RTE called DANTSYS. This was used to 

highlight the limitations of the DA in large heterogeneous media. It was 

found that when the conditions for diffusion theory (mu_a<<mu_s) were 

violated, the DA tended to overestimate absorption effects. This was also seen 

in regions in void like regions with low absorption and scatter, such as in the 

CSF surrounding the brain. It was also noted that, in large domains, small 

discrepancies between diffusion theory and transport theory could 

accumulate resulting in significant differences at large distances from the 

source. 

 More recently, Klose et al developed a similar model that again used the 

upwind FDM and discrete ordinates (32 discrete ordinates per calculation) 

method to solve the RTE in two dimensions (Klose et al. 2002).  Unlike the 

Dorn model, this was validated using experimental data.  Measurements of 

fluence from homogeneous phantoms were shown to agree well with those 

predicted by the forward model. 

 A higher ordered FEM-Pn approximation to the RTE in two dimensions, 

was developed by Aydin et al (Aydin et al. 2002; Aydin et al. 2004). This 

model was used to investigate light propagation using a very simple model of 

the head. The effects of anisotropic scattering and void-like regions were also 
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investigated. Large differences of up to 100% were seen between the DA and 

RTE, even at large source-detector separations. It was also noted that, while 

the choice of anisotropy factor was found to be important in absorbing 

homogeneous media, it was almost negligible in heterogeneous media 

containing void-like structures. 

 Wright et al (Wright et al. 2006) presented a forward model and 

corresponding inverse model based on the PN approximation for N = 1, 3, 5 & 

7. The model was applied to problems involving low levels of scatter in which 

the diffusion approximation was invalid. It was shown that the higher order 

models resulted in more accurate reconstructions of target volumes as well as 

lower levels of artefact. This work, however, was limited to solving two 

dimensional problems. The expansion of the 2D PN equations to 3D problems 

is non-trivial; a much larger set of equations is required. 

 

5.4  Discussion 

In this chapter, the forward problem of optical tomographic imaging has been 

introduced, and some of the existing models have been discussed.  Whilst a 

full description of light transport in tissue can be achieved using the Radiative 

Transport Equation, solutions are computationally expensive.  As such, the 

Diffusion Approximation to the RTE is commonly used and is known to be 

accurate in large geometries in which scattering effects are dominant over 

absorption effects.   

 The forward model can be solved in a number of ways.  Most typically, 

numerical models such as the FEM or FDM are used.  While Monte Carlo 

methods provide an accurate model of photon transport, their long 

computation times generally limit them to validation studies.  
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Chapter 6 - The Inverse Problem and Image 

Reconstruction  

 

6.1 Introduction 

The aim of the inverse problem in imaging is to calculate the distribution of 

optical properties within a known geometry given a set of boundary 

measurements.  In x-ray CT imaging, the boundary measurements are a set of 

projections measured over a range of angles.  Although x-rays undergo some 

scattering in tissue, it can be assumed that they predominately pass through 

in straight lines.  This greatly simplifies the inverse problem and allows 

simple methods such as filtered back projection to be used (Curry et al. 1990). 

 In frequency domain optical tomographic imaging systems, boundary 

data consists of a number of amplitude and phase measurements of trans-

illuminated light.  Unlike the case of x-ray imaging, photons at the 

wavelengths used in optical imaging undergo heavy scattering and take 

random paths through tissue.  This means that simple back-projection 

methods cannot be used and, in general, model based iterative image 

reconstruction (MOBIIR) techniques are used (Hielscher 1997).  These 

MOBIIR methods involve making an initial guess at the optical property 

distribution and using a forward model to estimate the boundary 

measurements.  The aim of the inverse problem is then to minimize the 

difference between the measured data "M  and data calculated by the forward 

model "C.  This chapter will discuss the solution of the inverse problem and 

introduce an image reconstruction algorithm based on the simplified 

spherical harmonics approximation. 
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6.2 Perturbation Method 

If we have an estimate of the optical properties, 

! 

µ0 , that is close to the true 

optical properties throughout the domain, 

! 

µ  the non-linear forward problem, 

! 

I = F µ( ) , can be linearised.  As a result, the measured data, 

! 

I , will be close to 

the predicted data 

! 

I0  (Arridge 1999).  The forward model can then be 

expanded via a Taylor expansion 

 

  

! 

I µ r( ),"( ) = I µ0 r( ),"( ) + # F µ0( ) µ r( ) $µ0 r( )[ ] +K

# # F µ0( ) µ r( ) $µ0 r( )[ ]2K
 (6.1) 

 
where 

! 

" F  and 

! 

" " F  are the first and second derivatives of the forward model 

with respect to the optical properties (commonly referred to as the Jacbian 

and Hessian respectively)(Hielscher et al. 1999), 

! 

µ0 r( ) is the initial estimate of 

the optical properties and 

! 

µ r( )  is the measured optical properties. 

The perturbation approach involves neglecting terms of the second order and 

higher.  The problem then becomes 

 

! 

I µ r( ),"( ) = I µ0 r( ),"( ) + J µ r( ) #µ0 r( )[ ]  (6.2) 
 

which can be rearranged as 

 

! 

"I = J"µ  (6.3) 
 

where 

! 

"I  is the difference between modelled and measured data, J is the 

Jacobian matrix and 

! 

"µ  is the optical property update vector.  The optical 

property update vector can then be found by inverting the Jacobian matrix, 

i.e. 

! 

"µ = J#1"I .  The optical properties of the domain can then be found by 

iteratively solving the inverse problem to minimise 

! 

"I  with optical properties 

for each iteration taking the values 

! 

µi = µi"1 + #µ .   
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6.3 Calculating the Jacobian Matrix 

6.3.1 Perturbation Method 

The rows of the Jacobian matrix represent the sensitivity in boundary data for 

a source-detector pair after an infinitesimal change in the optical properties 

and is known as a photon density measurement function (Arridge 1995a).   

The Jacobian for an optical property 

! 

µ has the structure 

 

  

! 
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 (6.4) 

 
where 

! 

" ln I j "µr are sub-matrices that define changes in the jth measurement 

of log amplitude due to a change in optical properties at point r, and 

! 

"# j "µr define changes in the jth measurement of phase due to changes in 

optical properties at point r.  The total Jacobian consists of two kernels  

 

! 

J = [Jµa
J" ] (6.5) 

 
where 

! 

Jµa
 and 

! 

J"  are the Jacobians due to changes in the absorption 

coefficient and diffusion coefficient respectively, and have the form 

 

! 

J" =
# log I
#"

; #$
#"

% 

& ' 
( 

) * 
 (6.6a) 
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! 

Jµa
=
" log I
"µa

; "#
"µa

$ 

% 
& 

' 

( 
)  (6.6b) 

 
 The perturbation method of building the Jacobian involves perturbing the 

optical properties, either 

! 

µa  or 

! 

µs
" (and therefore 

! 

" ) , by a small fraction 

(<0.1%) and measuring the changes in boundary measurements, in relation to 

a set of reference data, for each source-detector pair.  Each of these 

measurements represents an element in the Jacobian matrix.  This method, 

however, is computationally inefficient.  For a FEM mesh with 1000 nodes 

and 16 sources, the forward model would need to be solved 32000 times 

(number of nodes ! number of sources ! number of optical properties). 

 

6.3.2 Adjoint Method 

Assuming a domain with a single source and a single detector located on the 

boundary, Figure 6.1, the light distribution that would result is known as the 

Direct field.  The principle of reciprocity states that if the source were located 

at point n and measurements were taken at the detector at point j, an identical 

measurement would be made if the detector were placed at point n and the 

source at point j.  The field measured when the source and detector locations 

are interchanged is known as the Adjoint field.  This holds true, regardless of 

the initial source position.   
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Figure 6.1 A domain with a single source and detector with an internal point of interest n 

 

Now if the source was located at position i, and the detector at position j, the 

sensitivity to any changes to the optical properties would be affected by a 

combination of both the direct and adjoint fields.  The probability of a photon 

travelling from the source to point n is given by 

! 

Pdirect  and the probability of a 

photon travelling from an adjoint source at point j (the detector) to point n is 

given by 

! 

Padj .  As the probability of a photon travelling from point n to the 

detector at point j is also given by 

! 

Padj , the probability of measuring a photon 

that has passed through point n, and therefore the sensitivity to changes at 

point n, is then given by 

! 

Pdirect " Padj .  The reciprocity theorem can then be used 

to determine the Jacobian entries (based on the DA) to be 

 

! 

Jµa
i, j( ) ="i #" j

Adj  (6.7) 
 
for absorption coefficient, and 

 

! 

J" i, j( ) =#$i %#$ j
Adj  (6.8) 

 
for the diffusion coefficient.  The implication of the reciprocity approach is 

that, rather than solving the forward model once for every node in the mesh 

but only recording the change at the position of the detector, the forward 
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model needs to be solved just twice, once for the direct field and once with an 

adjoint source located at the detector (Arridge and Schweiger 1995).  Using 

the same example as for the perturbation method, a 1000 node mesh with 16 

sources and detectors would require just 32 solutions of the forward model, 

16 for the direct field and 16 for the adjoint field. 

 

6.3.3 Normalisation & Regularisation 

The magnitude of the entries in the Jacobian matrix are dependent on the data 

type and optical property to which they refer.  The entries with greater 

sensitivities will tend to over power those with lower sensitivities, which 

negatively affects the reconstructed image (Eames and Dehghani 2008).  To 

overcome this problem, the Jacobian can be normalised.  One approach is to 

normalise the by either the rows or columns of the Jacobian to their 

minimum, maximum or mean values.  This ensures that each row or column 

has an equal contribution to the update vector.  This works well when 

maximum sensitivity is required from all regions of the model, but it can lead 

to artefact.  A more effective approach is to normalise by optical properties.   

This method ensures that both 

! 

µa  and 

! 

µs
" have equal contributions and can be 

well separated. 

 Due to the highly scattering nature of light in tissue, the maximum 

sensitivity occurs in the regions nearest the sources and detectors, and 

becomes very small with increasing distance (Yalavarthy et al. 2006).  As the 

sensitivity in these regions is so small, they have very little effect on the 

update vector, but their presence in the Jacobian increases the computational 

time required to solve the inverse problem.  However, it has been shown that 



95 

these regions can be removed with little effect on the results, but greatly 

improving computation times (Eames et al. 2007). 

6.4 Tikhonov Minimization 

The goal of the inverse problem is the recovery of the optical properties, µ, by 

minimizing the difference between the measured data "M and data calculated 

by the forward model "C using a modified Tikhonov minimization approach 

given by (Dehghani et al. 2008) 

 

! 

" 2=
µ

min

#M $#C( )
2

+ % µ j $µ0( )
2

j=1

NN

&
i=1

NM

&
' 
( 
) 

* ) 

+ 
, 
) 

- ) 
 (6.9) 

 
where  NM is the number of measurements, NN is the number of nodes in the 

FEM, µ0 is an initial estimate of the optical properties and # is the Tikhonov 

regularization parameter.  By considering only the first order terms and 

applying the Levenberg-Marquardt procedure, this leads to an update vector  

 

! 

"µ = JT J + # I( )
$1
JT"% (6.10) 

 
where 

! 

" = 2"  and is systematically reduced after each iteration.  

 Image reconstruction is an ill-posed problem, which means that either no 

true solution exists, there is no unique solution or the solution is not 

continuously dependent on the data.  The Jacobian matrix tends to be under-

determined as there are fewer measurements than unknowns to be solved.  

The Jacobian also tends to be ill-conditioned.  Combined with the fact that the 

data is contaminated by noise, a small change in optical properties can lead to 

large changes in boundary data, meaning the update vector may not be 

accurate.  This effect can be reduced by regularising the Jacobian before 

inversion with the Tikhonov regularisation parameter.  The best value for the 



96 

regularisation parameter can be found by plotting the difference between 

measured and calculated data against the difference in optical properties to 

get an ‘L-curve’.  The best value for the regularization parameter is the one 

that produces the vertex of the L-curve (Calvetti et al. 2000). 

  

 6.5 Inclusion of Prior Anatomical Information 

One of the significant advances in optical tomography has been the inclusion 

of prior anatomical information, generally in the form of a structural MRI 

image, into the image reconstruction process.  A multimodality imaging 

system can provide high-resolution, functional images.  Schweiger and 

Arridge (Schweiger and Arridge 1999) incorporated prior information using a 

two step reconstruction process.  The tissue properties were first 

reconstructed for a number of non-overlapping regions that were defined 

using the prior anatomical data.  A full reconstruction onto the FEM basis was 

then performed, based on the results of the region-based reconstruction.  

Ntziachristos et al (Ntziachristos et al. 2002b) used MRI information to 

segment the imaging domain into a small number of regions pertaining to 

different tissue types.  Each node within a region was then assumed to have 

the same optical properties.  This greatly reduced the number of unknowns to 

be calculated whilst the number of measurements remains the same.  This 

results in an over-determined system which can be solved to a higher degree 

of accuracy. 

 In general, the use of spatial priors involves one of two methods, soft 

priors or hard priors.  These two methods will be discussed in the following 

sections 
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6.5.1 Soft Priors 

The soft priors method, spatial prior information is incorporated into the 

Tikhonov minimization as a penalty term resulting in a Laplacian type 

regularization matrix, equation 6.9. 

 

! 

"µ = JT J +#LTL( )
$1
JT"% (6.11) 

 
where the constant 

! 

"  balances the effect of the prior with the model-data 

mismatch (Brooksby et al. 2005).  The prior MRI data is used to define a 

number of regions within the FEM mesh relating to different tissue types.  

The L matrix relates each node of the model to all other nodes.  Therefore, for 

a given node 

! 

i , it’s relationship to another node 

! 

j  can be defined as 

(Brooksby et al. 2005) 

 

! 

Li, j =

0 if i and j are in different regions
"1/N if i and j are in the same region

1 if i = j

# 

$ 
% 

& 
% 

 (6.12) 

 
where N is the number of nodes within the FEM mesh.  The 

! 

LTL  

regularization term acts as a smoothing operator within each region by 

averaging the updates within the region. 

6.5.3 Hard Priors 

The hard priors approach involves reducing the number of unknown 

parameters to a number of regions segmented from the prior anatomical 

information.  Within each of the regions, it is assumed that the optical 

properties are homogeneous.  The number of unknown parameters can then 

be reduced by multiplying the Jacobian matrix by an a-priori matrix such that 

 

! 

J* = JK  (6.13) 
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where K is a NN!NR matrix with values 

 

  

! 

K =

k1,1 k1,2 L k1,NR
k2,1 k2,2 L k2,NR
M M O M

kNN ,1 kNN ,2 L kNN ,NR

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

 (6.14) 

 
where  

 

! 

ki, j =
1, i " Rn

0, i # Rn

$ 
% 
& 

 (6.15) 

 
and 

! 

Rn  represents region n (Dehghani et al. 2003b).  Applying the a-priori 

matrix reduces the Jacobian from dimensions NM!NN to NM!NR, where NR 

is the number of regions segmented from the structural information.  In the 

case of a 1000 node mesh, the number of parameters to be determined can be 

reduced from 2000 (

! 

µa  and 

! 

µs at each node) with 32 boundary measurements 

(phase & amplitude at 16 detectors) to just 4 (

! 

µa  and 

! 

µs in two regions) with 

the same number of measurements.  This reduction in parameters, greatly 

improves the computational efficiency of the Jacobian inversion and results in 

an over-determined problem.   Even though the number of parameters is 

reduced, however, the problem may still be ill-posed (Arridge 1999), and so 

the optical properties are calculated using the Levenburg-Marquardt 

approach (Yalavarthy et al. 2007).   

 

6.6 Conjugate Gradients Method 

One of the drawbacks of the Levenberg-Marquardt algorithm is that it 

requires the Jacobian to be repeatedly created and inverted.  As the size of the 

problem becomes large, the creation and inversion of the Jacobian can be 

computationally expensive .  An alternative approach is to use gradient 
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methods, such as the conjugate gradients, in which the gradient of the 

objective function is calculated using the adjoint method, where the objective 

function is defined as  

 

! 

" #( ) =
y j,i $ y j ,i

c( )
2

2% j,i
2

i=1

M j

&
j=1

S

&  (6.16) 

 
where the first sum is over all sources and the second is over all measurement 

positions, 

! 

y j,i is a measurement due to source 

! 

j  at detector 

! 

i , 

! 

y j,i
c  is the 

calculated data and 

! 

" j,i is the standard deviation.  The gradient of the 

objective function with respect to the optical properties is given by 

 

! 

d"
dµ

=
d"
dy j ,i

c

#y j ,i
c

#µi

M j

$
j

S

$  (6.17) 

 
Once the gradient has been calculated, an iterative line minimization is 

performed in the direction of the gradient.  This step involves repeated 

calculations of the forward model in which the optical properties are varied.  

Once the minimum along the line has been found, the gradient is re-

calculated and another line minimization is performed along a new direction.  

This is repeated until the objective function is minimised (Hielscher et al. 

1999).  

  

6.7 Summary 

The image reconstruction problem in optical tomography is ill-posed and 

under-determined.  In general, images are reconstructed by iteratively solving 

the forward model whilst using methods such as Tikhonov minimization to 

reduce the difference between measured and model data. 
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 The sensitivity of boundary measurements to changes in optical 

properties throughout the imaging domain can be mapped using the Jacobian 

matrix.  The sensitivity profile between a source detector pair tends to take on 

a banana shape, with strong sensitivity near the source and detector with a 

lower, but broader sensitivity at depth. 

 The under-determined nature of the inverse problem can be reduced with 

the use of prior information.  Prior anatomical information can be used to 

determine regions of similar tissue type.  By assuming the optical properties 

within these regions will be homogeneous, the number of unknowns to be 

determined is significantly reduced.   

 The development of an image reconstruction algorithm based on the SPN 

approximation will be introduced in chapter 8. 
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Chapter 7 – The Simplified Spherical Harmonics 

Approximation 

7.1  Introduction 

The PN and SN approximations, discussed in section 5.3, provide an 

approximation to the RTE by discretising the angular dependence of the 

angular flux. One of the drawbacks common to both the PN and SN 

approximations is that it they can be computationally expensive to solve; the 

set of coupled equations to be solved increases with (N+1) 2 for the PN 

approximation and N(N+2) for the SN approximation. As such, it is clear that a 

photon transport model that could achieve a higher level of accuracy than the 

DA whilst being computationally efficient would be desirable. 

 Gelbard (1968), who was working on neutron transport problems, 

developed a heuristic simplification of the PN equations which he called the 

simplified PN (SPN) approximation. His derivation involved the simple 

assumption that the differential operators occuring in the 1D PN equations 

with their 3D counterparts. In the case of the P1 (diffusion) approximation this 

expansion is exact which means that the P1 and SP1 approximations are 

equivalent. At higher orders, however, this equivalence does not apply. 

Whereas the PN and SN approximations converge on the true RTE solution as 

! 

N "# , the SPN approximations asymptotically approach the RTE solution. 

 The theoretical foundation for Gelbard’s derivation, however, was weak 

and, as such, not widely adopted.  In the 1990s however, Larsen et al  (Larsen 

1993; Larsen et al. 1996) developed a much more theoretically sound 

derivation based on an asymptotic analysis, although this method did not 

include the appropriate boundary conditions. It was found that the SPN 
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approximation could provide greater accuracy than the DA whilst requiring 

less computation time than the SN. Although the SPN approximations do not 

converge on the RTE, it was found that they also overcame the ray effect 

artifacts that are common to the SN.  

The 1990s also produced a derivation of the SPN equations and their boundary 

conditions based on a variational analysis and it was shown that the SPN 

approximation produced better results than the P1 or diffusion approximation 

(Tomasevic and Larsen 1996; Brantley and Larsen 2000).  All of the 

derivations, however, resulted in a similar set of equations as found by 

Gelbard in 1960s.   

 The SPN approximation has previously been applied to a range of particle 

and heat transfer problems (Kotiluoto 2001) (Ciolini 2002; Larsen 2002). The 

problems found in the nuclear industry, however, have some distinct 

differences to those found in tissue optics. Neutron transport models, for 

example, generally consider systems that are driven by internal sources. In 

tissue optics, however, the system is generally driven by an external source on 

the surface of the tissue.  

 Neutron transport models generally consider systems driven by internal 

sources whereas tissue optics involve external sources. Light transport 

models, in general, involve a partially reflective boundary condition as some 

photons are reflected back into the tissue. This reflection does not occur in 

neutron transport problems and so different boundary conditions are 

required. 

 Josef (1996) developed an SPN model for electron transport problems 

which generally involve more forward-peaked scattering which suggests that 

the SPN approximations are appropriate for the anisotropic scattering found in 
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tissue optics. The SPN approximation was first used to model light 

propagation in biological tissue by Klose et al (2006). In this work, the 

mathematical framework for the approximation was developed for 

continuous wave problems and models were demonstrated for N=1,3,5 & 7. 

The resulting equations were implemented using a FDM and were compared 

against a validated SN model. Whilst this publication presented only 2D data, 

it was noted that one of the advantageous features of the SPN equations is that 

the same set of equations apply to both 2D & 3D problems. The SP3 model 

was later applied to the problem image reconstruction in bioluminescence 

problems (Klose and Beattie 2008).  

 More recently, the SPN approximation has been applied to time-domain 

problems {Dominguez, 2010 #423}. An FEM solution was developed which 

resulted in fluence distributions that closely reproduce Monte Carlo 

simulations. It was also shown that the SPN model was better able to 

determine changes in absorption of small insertions in comparison to the 

diffusion approximation. Liemert et al (2010) have developed an analytical 

solution to the SPN equations and, again, found that they result in better 

agreement with Monte Carlo data than the diffusion equation. 

 In this thesis, the SPN equations for frequency domain tissue optics 

problems have been derived for the first time, section 7.2. They are also 

implemented using the FEM which allows a much greater degree of flexibility 

in modeling complex geometries compared to the FDM which has been used 

in previous studies. Although similar studies have been presented in the past, 

such as Wright et al (2006), the use of the SPN approximation results in 

significant advantages. Firstly, the computational cost of implementing the 

SPN approximation is significantly lower than for the PN approximation. The 
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SPN approximation results in a set of diffusion-like equations which can be 

easily solved using existing diffusion solvers whereas the PN equations are far 

more complex. The number of equations to be solved is also significantly less 

for the SPN approximation, particularly at high N, further improving the 

computational efficiency. 

 In this chapter, the SPN equations will be derived using Gelbard’s original 

method. The implementation of the SPN approximation using the FEM will be 

discussed and the validation against Monte Carlo data and an existing 

diffusion based model is presented. 

 

7.2  Deriving the SPN Equations 

The derivation of the SPN equations for applications in optical imaging was 

first shown by Klose and Larsen for continuous wave problems(Klose and 

Larsen 2006).  In this work, the SPN equations have been implemented for 

frequency domain problems (Chu et al. 2008).  More recently, the time 

domain SPN equations have been shown (DomÌnguez and BÈrubÈ-LauziËre 

2010). 

Gelbard’s derivation of the SPN equations first requires the RTE to be 

expressed for a planar geometry 

! 

"
#$
#x

x,"( ) + µt x( )$ x,"( ) = µs x,", % " ( )$ x, % " ( )d % " +
Q x( )
2&1

1
'  (7.1) 

 

where 

 

! 

µs x,", # " ( ) =
2n +1
2

µs x( )gnPn "( )Pn # " ( )
n= 0

$

%  (7.2) 
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To obtain the 1D PN approximation, for 

! 

n " 0 , the Legendre moments of the 

radiance are defined as 

 

! 

"n x( ) = Pn #( )$ x,#( )d#
%1

1
&  (7.3) 

 
and the nth order absorption coefficients are defined as 

 

! 

µan x( ) = µa x( ) + µs x( ) 1" gn( )  (7.4) 
 

The operator ( )() !! dPn"# $
1

1
 is then applied to equation 7.1 for 

! 

n " 0 , resulting in 

 

! 

n +1
2n +1

d"n+1

dx
x( ) +

n
2n +1

d"n#1
dx

x( ) + µan x( )"n x( ) = $n0Q x( ) (7.5) 
 

with 

! 

"#1 = 0 .  To close this system with the PN approximation, we select an 

odd positive integer N and take  

 

! 

" x,#( ) $ 2n +1
2

%n x( )Pn #( )
n= 0

N

&  (7.6a) 

 
which is equivalent to setting  

 

! 

"n x( ) = 0  , 

! 

N < n < ". (7.6b) 
 

Equation 7.6(b) is then substituted back into equation 7.5 with the 

requirement that the result holds for Nn !!0 .  The N+1 unknown functions 

( )xn!  results in a closed system of N+1 first order differential equations.  

Algebraically eliminating the odd-ordered moments of equation 7.5 gives 

 

( ) ( ) ( )!"
#
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&
+

+
+
+

'= '+ x
n
nx

n
n

dx
dx nn

an
n 11 1212

11
((

µ
(  (7.7) 

 
for Nn !!1 and n odd.  This result can then be used to eliminate the odd-

ordered moments in the rest of equation 7.5 results in the following system of 

equations, constituting the PN approximation for planar geometries 
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The SPN equations can then be found by replacing the 1D diffusion terms 

( )
( )x

dx
d

xdx
d

an

!
µ
1  with their 3D counterparts 
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Equation 7.8 becomes 
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For convenience, these equations can be re-written in terms of the composite 

moments of fluence ! : 

 

! 

"1 = #0 + 2#2 (7.11a) 

! 

"2 = 3#2 + 4#4  (7.11b) 

! 

"3 = 5#4 + 6#6 (7.11c) 

! 

"4 = 7#6 (7.11d) 
 
 

The SPN equations for N=7 can then be found by expanding equation 7.10 into 

the following set of coupled equations.  
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where, Q is the source term, " is the modulation frequency, µs is the scattering 

coefficient and µan is the nth order absorption coefficient given by  

 
( ) ( ) ( ) n

stan gxxx µµµ !=  (7.13) 
 

The total fluence ! is then given by 

 

4321 35
16

15
8

3
2

!!!!" #+#=   (7.14) 

 
The SP1 approximation can then be found by setting 0246 === !!!  and 

solving the first equation.  The SP3 approximation can be found by solving the 

first two equations with 046 == !!  and the SP5 approximation can be found 

by setting 06 =!  and solving the first three equations.  It can then be seen that 

the SP1 case simplifies to the diffusion equation as 
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where 

! 

µa1 = µa + µs 1" g( )  and 

! 

"1 = #  which leads to the diffusion equation 
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 The resulting equations are not the same as the multi-dimensional PN 

approximation.  The full PN approximation for 3D problems involves 

expanding the angular terms into higher spherical harmonic functions which 

involve two scalar angles as apposed to one.  The resulting equations have a 

much higher complexity with many more unknowns for a given N (Klose and 

Larsen 2006). 

7.2.1 Boundary Conditions 

Depending on the angle of incidence, photons attempting to cross the 

boundary 

! 

"#, at 

! 

r " #$, will either pass through at a refracted angle defined 

by Snell’s law or will be reflected back into the domain.  The probability of a 

photon being reflected is given by 
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where #' is the internal angle, #'' is the refracted angle and #c is the critical 

angle. 

 In the derivation of the boundary conditions, several angular moments of 

the reflectivity are encountered which are defined as 
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The boundary conditions for SP7 are then found to be 
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The An……Hn coefficients used in these equations are related to various 

orders of reflectivity and are defined in Appendix A. 

  An attractive feature of the SPN method is that the result consists of a set 

of diffusion-like equations.  These equations can be easily solved using any 

existing DA solvers with very little modification.  An important characteristic 

of the SPN method, however, is that the solution is asymptotic to the RTE 
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solution whereas the PN and SN solutions converge as !"N  (Klose and 

Larsen 2006).  The result of this behaviour is that the most accurate SPN 

solution is not always found using the highest ordered approximation.  It can 

be shown, however, that the SPN method with N>1 always leads to an 

improvement over the standard diffusion approximation (Chu et al. 2008). 

 

7.3  Implementation of the SPN Approximation 

The composite moments of fluence, n! , as defined in equation 7.11, can be 

calculated with a set of coupled diffusion equations, equation 7.12(a)-(d).  

These can then be solved using a number of well-established numerical 

methods as discussed in Chapter 5. 

 In cases involving homogeneous optical properties, or a small number of 

homogeneous regions, the boundary element method (BEM) can be utilized.  

The BEM is an attractive option as only the surface of the imaging volume 

needs to be discretised.  The internal fluence is then calculated based on 

measurements of light passing through the surface mesh.  In cases of simple 

geometries, the BEM is computationally efficient.  BEM calculations, however, 

tend to involve fully populated matrices, and as such, the memory 

requirements grow with the square of the number of elements in the problem.  

The BEM has been applied to region-based problems in which the imaging 

volume is divided into piecewise constant regions determined using prior 

information (Zacharopoulos et al. 2006; Srinivasan et al. 2007). 

 Inhomogeneous problems can be solved using the finite difference (FDM) 

(Hielscher et al. 1998; Klose et al. 2002) or finite elements (FEM) (Arridge et al. 

1993; Jiang and Paulsen 1995; Schweiger et al. 1995; Gao et al. 1998; Jiang 1998; 

Dehghani et al. 2003a)  methods.  The FDM involves replacing the differential 
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terms in a PDE with equivalent difference quotients.  Whilst it is relatively 

easy to implement, the FDM is limited in the complexity of geometries that it 

can accurately model.  In its basic form, the FDM is limited to problems 

consisting of rectangular or cubic geometries which is of limited use in clinical 

applications.  By comparison, the FEM makes use of triangular or tetrahedral 

elements, for 2D and 3D problems respectively, thus providing a much more 

flexible solver as complex geometries can be easily modelled.  

 To date, the SPN approximation has only been implemented using the 

Finite Difference Method for continuous wave systems (Klose and Larsen 

2006).  In this thesis, the frequency domain SPN approximation has been 

implemented into NIRFAST (Dehghani et al. 2008) package, an FEM based 

diffusion solver.  

7.3.1 FEM Implementation 

As discussed previously, the finite element discretisation of a domain $  can 

be obtained by subdividing the domain into D elements joined at V vertex 

nodes. The fluence, )(r!  is then approximated by the piecewise continuous 

polynomial function  

 
! "#=#

V

i
h

ii
h ruwr )(),(  (7.20) 

 
where h! is a finite dimensional subspace spanned by basis functions ( )riu .  

The basis functions describe how the function )(r! varies over each element 

and can take several forms e.g. piecewise constant, piecewise linear, piecewise 

quadratic etc.  In this case, a piecewise linear basis function was used, in 

which case, i! takes the form of a continuous linear function. 
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 The FEM then reduces the problem of solving for "h to one of sparse 

matrix inversion.  In NIRFAST, this is done using a bi-conjugate gradients 

iterative solver.  Equation 7.12(a)-(d) can then be represented in matrix form.   

 
( ) ( ) ( ) ( ) 413312211111 !!!! ICHCGCQFCK +++"++=++  (7.21a) 

 

( ) ( ) ( )

( ) 4298

327612122543 3
2
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++++
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( ) ( ) ( )

( ) 34151413

249814344191817167 35
16

!

!!!

ICCC

HCCGCQFCCCCK

++++

++"++"=+++++  (7.21d) 

 
where the Kn and Cn matrices are given by 

 

! 

Kn,ij = "n r( )#ui r( ) $ #u j r( )
%
& dnr  (7.22a) 

 

! 

Cn,ij = µan r( ) +
i"
c

# 

$ 
% 

& 

' 
( ui r( )u j r( )

)
* dnr  (7.22b) 

 

The boundary terms, given by matrices Fn, Gn, Hn and In have entries of the 

form 

 

! 

Fij = ui r( )u j r( )dn"1r
#
$  (7.23) 

 
And the source vector Q has terms 

 

! 

qi = ui r( )q r( )dnr
"
#  (7.24) 

 
Where the i, j indices refer to each node of the FEM mesh with 

mnji ....1, = where nm is the total number of nodes.  The K, C, F, G, H and I 

matrices are all of mm nn ! in size.   
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Equations 7.21(a)-(d) can then be rearranged into a single matrix equation of 

the form: 
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where the Mij matrices, as defined below, are also of size mm nn ! , and 

represent combinations of the system matrices.  This allows the solution for 

composite moments 1! , 2! , 3!  and 4!  to be found simultaneously with just one 

matrix inversion.  The large M matrix is often referred to as the Mass matrix. 

 

1111 FCKM ++= , (7.26a) 
 

( )1112 GCM +!= , (7.26b) 
 

1213 HCM += , (7.26c) 
 

( )1314 ICM +!= , (7.26d) 
 

254321 FCCKM +++= , (7.26e) 
 

( )2122 GCM +!= , (7.26f) 
 

( )27623 HCCM ++!= , (7.26g) 
 

29824 ICCM ++= , (7.26h) 
 

3121110531 FCCCKM ++++= , (7.26i) 
 

3232 GCM += , (7.26j) 
 

( )37633 HCCM ++!= , (7.26k) 
 

( )315141334 ICCCM +++!= , (7.26l) 
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419181716741 FCCCCKM +++++=  (7.26m) 
 

( )4342 GCM +!= , (7.26n) 
 

49843 HCCM ++=  (7.26o) 
 

( )415141344 ICCCM +++!=  (7.26p) 
 

7.3.2 Optimization through matrix re-ordering 

The computational cost associated with solving sparse matrix problems 

depends not only on their size and sparsity but also on the distribution of the 

non-zero elements within the matrix.  To minimize the fill-in phenomenon 

due to the decomposition of the Mass matrix in equation 7.25, the rows of the 

matrix are reordered (‘optimized’) using Symmetric Approximate Minimum 

Degree Permutation (AMD) so that produces a matrix with a sparser 

Cholesky factor as compared to the original matrix. Typical distributions of 

the non-zero elements in the Mass matrix before and after reordering are 

shown in Figure 7.1, using MATLAB’s implementation of functions for sparse 

matrix operations (symamd) (Amestoy et al. 2004). 
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Figure 7.1 Pattern of non-zeros in the SP7 MASS matrix (a) before and (b) after 
reordering/optimzation. The x and y axes correspond to the length of the Mass matrix, which 

is 169,544 (nm × 4, the number of composite moments of flux). 

  
To illustrate the benefits of matrix optimization, equation 7.23 was solved 

both with and without re-ordering for a Mass matrix consisting of 

17851785! elements.  For comparison, the matrix inversion was performed 

using the Gaussian elimination method as well as the bi-conjugate gradient 

stabilized iterative method.  The computation times for each method are 

shown in Figure 7.2.  It can be seen that, when using the Gaussian elimination 

method, optimization of the Mass matrix has resulted in a 56% reduction in 

computation time.  Optimization also led to a 42% decrease in computation 

time when using the iterative matrix inversion method. 

 In the case of a small Mass matrix, there is little difference in computation 

time between the Gaussian elimination method and the iterative BCGS 

method.  This is not the case with larger Mass matrices, however.  Equation 

7.25 was solved again with a Mass matrix, consisting of 

236250236250! elements, to determine the benefits of optimization in larger 

problems encountered when using higher mesh resolutions for better 

numerical accuracy or in the case of the SPN approximation where the Mass 

matrix is mm nn 44 ! in size.  Even before optimization, it can be seen that the 

Gaussian elimination is less efficient than the BCGS method, taking 

approximately 5% longer.  After optimization, the computation time for the 

Gaussian elimination actually increased by 15%.  It is with the iterative 

method, however, that the benefits of optimization are greatest.  The solution 

of the optimized system was dramatically quicker, an 85% improvement. 
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Figure 7.2 The computational time required to solve equation 7.25 using Gaussian 

Elimination and Biconjugate gradient stabilized (BCGS) methods for both a small (1785 !1785 
nodes) and large (236250 ! 23650 nodes) Mass matrix.  Blue bars show times before 

optimization, red bars show times for optimized matrices. 

7.3.3 Running the forward model 

In order to solve a forward problem, the femdata_spn function, which is 

provided in Appendix B, is used, where n=1,3,5 or 7.  The function requires 

two input variables.  The first, the FEM mesh, is stored as a structured 

variable containing information such as node coordinates and element 

linking, source/detector locations, optical properties, region number and an 

index to determine whether or not a node lies on the boundary.  The second 

variable is the modulation frequency.  In frequency domain problems, this is 

the frequency at which the intensity of the light source is modulated.  

Continuous Wave problems can be solved by simply setting the frequency to 

zero.  The solver then outputs a structured variable containing boundary data 

for both phase and amplitude measurements as well as the internal fluence.  

The process of running the forward model is documented in Figure 7.3. 

 As higher order models are used, the size of the FEM problem increases 

correspondingly.  This leads to an increase in the computational load required 



117 

to solve the problem.  The computation time required to solve a 3D problem 

are listed in Table 7.1. The models were run on a 3.0 GHz 64 bit Linux system 

with 8GB of physical memory using Matlab R2007b. The SP5 and SP7 models 

required the use of swap space and as such the computation time was 

considerably slower than expected. 

 

Table 7.1 The computation times of the SPN models using an FEM mesh consisting of 42,386 
nodes forming 235,869 tetrahedral elements and a Monte Carlo (MC) model simulating 106 

photons. 

Forward Model Computation Time 
(minutes) 

SP1 4.2 
SP3 12.6 

SP5 31.7 

SP7 69.7 

MC 28 
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Figure 7.3 Flowchart outlining the process of running the forward model (Dehghani et al. 
2008).  A separate femdata routine exists for each of the SPN orders. 

7.4 Validation  

7.4.1 Investigation of Mesh Resolution 

The accuracy of the FEM is heavily dependent on mesh resolution as the 

numerical solution approaches the true solution as the element size 

approaches zero.  In order for quantitative studies to performed, a 

numerically accurate mesh is vital.  The choice of mesh resolution, however, 

tends to be based on a compromise between numerical accuracy and the 

computational expense of solving the problem.   

 In order to determine the optimal mesh resolution, a 11! cm mesh with a 

single source located at the centre of one edge, Figure 7.4, was constructed.  

The resolution of the mesh was varied so that node spacing ranged from 

0.3mm in the coarsest mesh down to 0.03mm in the finest mesh.  After each 

increase in mesh resolution, the percentage difference in fluence data along a 

cross section, as indicated in Figure 7.4, was calculated and plotted in Figure 

7.5. 

 It was determined that the optimal node spacing for quantitative studies 

would be approximately 0.11mm.  The increase in accuracy of a higher 

resolution mesh would be small at just 1.5%, but would incur a significant 

increase in computation time. 
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Figure 7.4 A 1cm × 1cm square geometry with 

! 

µa = 0.001 mm-1, 

! 

µs = 1 mm-1 and a single 
source was used to test the effects of mesh resolution on forward model accuracy.  A sample 

of the fluence was taken along the blue dashed line and compared to data obtained with 
higher mesh resolution.  

 

 
Figure 7.5 Percentage difference in fluence data between varying node spacings (resolution). 
Blue line: 0.3-0.17mm; red line: 0.17-11mm; green line 0.11-0.08mm; black line: 0.08-0.03mm 
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7.4.2 Monte Carlo Modelling 

Monte Carlo (MC) models are capable of providing highly accurate results, 

provided that a sufficiently large number of photons are recorded.  This 

requirement for large numbers of photons, however, leads to prohibitively 

lengthy computation times.  Whilst the MC method may be of limited use as 

part of an image reconstruction algorithm, they are commonly used as ‘gold 

standards’ by which other forward solvers are tested.   

 An existing Monte Carlo model to simulate propagation of light in a semi-

infinite turbid medium was extended to photon propagation in a stratified 

medium as described previously (Wang et al. 1995; Vishwanath et al. 2002). 

Briefly, the turbid-medium was modelled as having layers of finite thickness 

(along the z-axis) with specified transport coefficients and refractive indices in 

each layer. Photons were incident normally at the top face of the turbid 

medium. For every scattering event where the calculated step-size (along a 

particular direction) caused a photon to cross a boundary, the photon was 

first propagated to the point where its trajectory intersected the boundary via 

a shortened step-size. The angle of incidence with respect to ± z-axis 

(depending on the direction of photon travel) was computed and used to 

determine if the photon suffered total internal reflection (from Snell’s law). If 

the photon was internally reflected, then the z-component of the photon’s 

travel direction was reversed and the photon completed the remainder of the 

step in the same layer, otherwise the reflection coefficient from Fresnel’s 

equations was computed and compared against a uniformly generated 

random number. For every sampling of the random number that was less 

than the reflection coefficient, the photon underwent total internal reflection, 
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otherwise it was transmitted to the next layer (or escaped from the domain). 

On transmission into a different layer the final spatial location of the photon 

was calculated by propagating the photon by a distance that was adjusted in 

length (to account for the difference in transport coefficients between the two 

layers) and its direction corrected to consider refraction. All photons 

emanating from the top-layer of the turbid medium were spatially and 

temporally binned to calculate the reflectance from a turbid medium.  

Photons passing the surface were recorded in a series of concentric rings 

centred on the source. The transmittance is then divided by the area of the 

collection ring and by the number of injected photons so that the resulting 

measurement in terms of a probability per unit area. The MC data is obtained 

in the time domain with a pulse width of 10ns.  The resulting temporal data 

was then Fourier transformed to give frequency-domain estimates of the 

amplitude and phase shift as a function of distance, in order to match the type 

of data used in our work. 

7.4.3 Validating against MC data 

In the following sections, we compare results from the developed SPN model 

(N = 1, 3, 5 and 7) and MC model for a simple 3D slab of either homogenous 

or layered optical properties. For the MC results, the number of simulated 

photons was 1!106, with a total execution time of approximately 30 minutes 

(Table 7.1). All calculations were performed on a dual core 3.0 GHz 64bit 

Linux system with 8GB physical memory.   

 The validity of the diffusion approximation, and hence the SP1 model in 

large medium problems and in cases where scattering dominates absorption 

have been previously shown demonstrating its validity by use of phantom 

data (Dehghani et al. 2003c) as well as Monte Carlo data (Dehghani et al. 
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2003a).  The work presented here, therefore, concentrated on small volume 

domains and in cases of strong absorption, whereby the diffusion 

approximation is less valid. 

 The model domain used was a 3D slab of width and length of 40 mm (x 

coordinates) with a thickness of 20 mm (y coordinates) and depth of 30 mm (z 

coordinates), Figure 7.6. The source was placed at the center of the top most 

surface boundary and boundary reflectance measurements were made at 1 

mm distances from 3 to 10 mm away from source. The source was modeled as 

a point source on the surface of the external boundary to most appropriately 

match the MC model, which used a collimated source located on the surface. 

The FEM mesh used in this study contained 42,386 nodes corresponding to 

235,869 linear tetrahedral elements. The resolution of the mesh was increased 

in the areas surrounding the source in order to increase the numerical 

accuracy of the solution whilst minimizing the computational resources 

required.  

 Three individual cases were considered using both MC and SPN models. 

In the first case, a homogenous medium with optical properties of µa = 0.001 

mm-1, µs = 2.0 mm-1, g = 0.5 and n = 1.37.   The computation times for the SP1, 

SP3, SP5 and SP7 calculations as well as the Monte Carlo computation time are 

shown in Table 7.1. The calculated amplitude and phase of the reflectance 

boundary data, from the 3D model (Figure 7.6) and the semi-infinite MC 

model are shown in Figure 7.7. The calculated 3D fluence from SP7 and SP1 

were also used to calculate the percentage error map (error = 100×($SP1-$SP7)/ 

$SP7), with the 2D cross-section at y = 0mm shown in Figure 7.7(c). As shown, 

the largest errors are seen near the source and detectors with errors as high as 

60%. 



123 

 Figure 7.8(a) shows the percentage error between amplitude data 

calculated by the SPN approximations and the MC data  at each of the detector 

positions. It can be seen that the SP1 approximation underestimates the 

amplitude at all distances from the detector. The higher order models, 

however, initially overestimate the amplitude but underestimate at distances 

greater than 4 cm from the source. In all models, however, it can be seen that 

the percentage error increases with distance from the source. This is due to 

the propagation of error throughout the domain and has been previously 

reported in other studies (Hielscher et al. 1998). The mismatch between SPN 

and MC phase data is displayed in Figure 7.8(b).  

 The average percentage error and RMS mismatch in phase data for each 

SPN order is listed in Table 7.2.  In this case, the SP5 approximation provides 

the lowest degree of error in both amplitude (-4.1%) and phase (0.7o) with 

respect to the MC data. The SP3 data provides the next best fit with an average 

error of -5% in amplitude data compared to -5.7% for the SP7 data. The SP3 

and SP7 data, however, provide the same degree of accuracy in phase. The SP1 

or diffusion approximation results in the poorest match in both sets of data 

with an average -13.1% error in amplitude and RMS phase mismatch of 1.6o, 

approximately twice as large as the errors seen in the higher ordered data.  

 It should be noted that as the derivation of the SPN approximation 

removes the requirement for the modeled data to approach the true solution 

at increasing orders, the highest ordered approximation will not necessarily 

result in the most accurate solution. As such, the most accurate ordered 

approximation will be dependent upon the system being modeled.  
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Figure 7.6 3D mesh used for the calculation of data using the SPN models (a) 3D view of the 
surface nodes and (b) 2D representation of the top surface. Red circle represents location of 

the source and blue cross represent location of the detectors. 
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Figure 7.7 The calculated boundary data (a) log amplitude and (b) phase for SPN and Monte 
Carlo model for uniform optical properties of µa = 0.001 mm-1, µs = 2.0 mm-1, g = 0.5 and nm = 
1.37. (c) is the cross sectional percentage error between SP7 and SP1 for the calculated fluence 

at y = 0 mm corresponding to the plane at which the source is placed. 

 

 

 

Table 7.2: Summary of errors in SPN data relative to MC data 

 Average % Error in Amplitude RMS mismatch in phase data (o) 

SP1 -13.1 1.6 
SP3 -5.0 0.9 
SP5 -4.1 0.7 
SP7 -5.7 0.9 
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Figure 7.8: (a) Percentage error beween SPN and MC data with increasing distance from the 
source for the results displayed in Figure 7.7 (b) the mismatch in SPN and MC phase data 

 

 Using a second homogenous model with optical properties of µa = 0.01 

mm-1, µs = 2.0 mm-1, g = 0.5 and n = 1.37 the boundary measurements and 

internal fluence were also calculated and compared, Figure 7.9. The 

percentage error in amplitude and phase mismatch at each detector position 

is plotted in Figure 7.10. As in the previous case, the SP5 approximation 

provides the closest match to the MC data with average errors of -2.8% and 



128 

1.3o in amplitude and phase data respectively. The SP3 approximation, again, 

provides a better match to the MC amplitude data than SP7 but, in this case, a 

slightly poorer match in phase data. The SP1 approximation again shows a 

significantly larger error of -11.4% in amplitude data and the largest phase 

mismatch at 2o.  As shown in Figure 7.9c, errors of up to 60% are again seen 

between SP1 and SP7 fluence data, specifically near the source. 
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Figure 7.9 Same as Figure 7.7, but for uniform optical properties of µa = 0.01 mm-1, µs = 2.0 

mm-1, g = 0.5 and nm = 1.37 

 

 

 

Table 7.3: Summary of error in SPN data relative to MC data for case 2 

 Average % Error in Amplitude RMS mismatch in phase data (o) 

SP1 -11.4 2.0 
SP3 -3.7 1.6 
SP5 -2.8 1.3 
SP7 -4.8 1.4 
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Figure 7.10: (a) Percentage error beween SPN and MC data with increasing distance from the 
source for the results displayed in Figure 7.9, (b)the mismatch in SPN and MC phase data 
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Figure 7.11 Schematic of the 3D layered model. Layer 1 and layer 3 have optical properties of 
µa = 0.001 mm-1, µs = 1.0 mm-1, g = 0 and nm = 1.37 and layer 2 has optical properties of µa = 
0.2 mm-1, µs = 2.0 mm-1, g = 0.5 and nm = 1.37. The arrow indicates the location of the point 

source on the boundary 

 

In order to investigate the effects of a layered heterogeneous model of varied 

optical properties, the same 3D geometry as previous cases where used, but 

containing 3 layers, as shown in Figure 7.11. In this case, the model represents 

a 3 layered case, whereby each layer has a thickness of 10 mm with the 

middle layer having a much stronger absorption (contrast of 200 in 

absorption) and scatter (contrast of 2 in scatter and increased anisotropic 

factor, g) as compared to the top and bottom layer. The results from both the 

SPN and MC solution are shown in Figure 7.12. The SP5 and SP7 model 

provides the best match with MC for both the amplitude and phase. The cross 

section of the percentage error between SP1 and SP7, Figure 7.12c, again shows 

the largest error near the sources as well as the regions with and beyond the 

strong absorbing layer (layer 2). In this case, errors of up to 85% are seen with 

layer 2, indicating that the solution of SP1 to be dramatically different to that 

of SP5 and SP7. 
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Figure 7.12 Same as Figure 7.7, but for the layered model as shown in Figure 7.11. 

 

7.5 Discussion 

In this chapter, the SPN equations have been derived and presented for 

frequency domain problems.  These equations are then implemented using 

the FEM for both 2D and 3D problems.  The SPN approximation was then 

validated using Monte Carlo data using a slab geometry for a range of optical 

properties. 

 The calculated boundary data using MC and developed 3D frequency 

domain modified simplified spherical harmonics expansion for 3 cases have 

been compared.  It should be noted that the MC model does not provide an 

exact replication of the conditions modelled by the SPN-FEM model. Whereas 

the SPN data was obtained using a diffuse source, modelled by positioning it 

one scattering distance into the domain, the MC model uses a collimated 

source positioned on the boundary. As such, a small degree of mismatch is to 

be expected. As all of the SPN data was obtained with the same source 

conditions, however, the discrepancies will be constant between all orders. To 
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avoid artificially biasing the results towards one of the SPN orders, however, 

in all of the results presented, the data has not been scaled, nor any offset 

added, therefore providing the best means of comparison between different 

models and methods.    

 In the first case, whereby the scattering properties were much higher than 

absorption (µa = 0.001 mm-1, µs = 2.0 mm-1, g = 0.5 and nm = 1.37), it was found 

that the SP5 approximation provided the best match to the MC data with an 

average error in amplitude of -4.1% and an RMS phase mismatch of 0.7o. The 

SP1 approximation provided the poorest fit to the MC data with an average 

error of -13.1%, more than double that of the next best SPN order (SP7). The 

error in amplitude data appeared to increase with distance from the source as 

small errors are amplified. Conversely, the error in phase data, which is more 

dependent upon scattering properties, reduced with increasing distance from 

the source. This is expected as photons reaching the furthest detectors have 

undergone more scattering events resulting in an effectively diffuse 

distribution. In order to analyse the degree of error between N = 1 and N = 7, 

the percentage error between the total fluence calculated is shown for a cross-

section of the 3D model at y = 0 mm (directly under the source), Figure 7.7(c). 

It is seen that the largest error (as large as 60%) is seen near the source, 

indicating that the suitability of the SPN method lies within regions of close 

proximity to the source. 

 In the second case, whereby the absorbing properties were increased (µa = 

0.01 mm-1, µs = 2.0 mm-1, g = 0.5 and nm = 1.37), the SP5 approximation again 

results in the closest match to the MC data in both phase and amplitude data. 

The SP3 and SP7 approximations provide a similar level of accuracy in both 

sets of data. The SP1 data, however, results in a significantly higher error in 
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amplitude data at 11.4%, again, more than double the largest error found in 

the higher ordered models. Whilst the SP1 phase data also provides the 

poorest match, the relative difference is not as significant as in amplitude.  

 As in the previous case, the errors in amplitude data increased with 

distance from the source. The phase data, however, showed the opposite 

trend to the previous case with errors increasing further from the source. This 

is most likely due to fewer photons reaching these areas, due to the increased 

absorption coefficient, resulting in poorer statistics in the MC data. 

 In order to evaluate the effect of layered models with much higher 

absorption, data using a layered MC and SPN model are shown in Figure 7.12. 

As with previous cases, the calculated data using N = 1 provides the least 

accurate solution as compared to MC. Figure 7.12c shows the calculated error 

between the total fluence as obtained using N = 1 and N = 7. It is seen that the 

magnitude of error is largest not only near the source, but also at the interface 

of two boundaries whereby the absorption coefficient increases. This is of 

importance given that some biological tissue, such as the liver which has a 

much higher blood content, will have a much greater absorption and 

appropriate modelling of such a situation is of paramount importance in 

small animal imaging. Similar results showing the effect of increased 

absorption within a medium have been shown in 2D (Klose and Larsen 2006). 

 It is important to point out, that due to the asymptotic nature of the 

problem, no single order (N) will provide the most accurate solution. 

However, it is demonstrated here that the use of higher order approximations 

(N>1) provides a much more accurate solution, specifically near source 

locations, which may be of importance when dealing with imaging of small 

volumes. Whilst it was seen that the SPN data matched the MC data more 
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closely than the diffusion data, they did not match perfectly.  In order to make 

a like for like comparison, the data in all three cases has been shown without 

scaling or offsetting and as such, small differences between the two 

independent methods are unsurprising.  

 The amplitude and phase data in all three cases was studied only for the 

first 10mm away from the source only.  This has led to errors between the 

SPN>1 and SP1 data in cases even when scattering dominates over absorption 

since the light distribution is still forwardly biased near the source.  As stated 

earlier, the validity of the diffusion approximation has been previously 

demonstrated for larger source/detector separation using both phantom data 

(Dehghani et al. 2003c) as well as Monte Carlo data (Dehghani et al. 2003a), 

and this work has concentrated in situation where the diffusion 

approximation is known to be inaccurate. 

 The timings for the SPN and Monte Carlo models are displayed in Table 

7.1.  It can be seen that the run-time of the Monte Carlo model was just seven 

times that of the SP1 model and was in fact quicker than the SP5 and SP7 

models which was unexpected.  Due to the very large number of nodes in the 

FEM mesh, however, the Mass matrices were correspondingly large and their 

inversions required large amounts of memory.  In the SP5 and SP7 cases, the 

memory requirements exceeded the physical memory available and therefore 

had to use ‘swap space’ which drastically increased the computation times.  

Also, the Monte Carlo data was obtained based on the paths of just 106 

photons.  While this was enough to obtain smooth data, this is a relatively 

small number of photons for Monte Carlo studies.  A more quantitative study 

may use over ten times this number of photons leading to significantly longer 

computation times.  In studies using meshes of lower resolutions where the 
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use of swap space was not required, it was found that the SP5 and SP7 models 

took approximately 5td and 8td respectively where td is the computation time 

of the SP1 model.  

7.6 Conclusions 

It is well known that the accuracy of the diffusion approximation is limited in 

regions of strong absorption and within regions before the NIR light becomes 

diffuse (i.e. near source locations).  In such cases higher ordered 

approximations, such as the PN and SN methods are required and whilst these 

methods have already been applied to tissue optics with promising results 

(Boas et al. 1994; Aydin et al. 2002), they both introduce a prohibitively large 

number of unknowns making them computationally expensive to solve.  The 

SPN approximation has the advantage of providing an increase in accuracy 

over the diffusion approximation whilst requiring fewer unknowns. 

 In this study, a three-dimensional frequency domain light transport 

model based on the Simplified Spherical Harmonics approximation has been 

developed.  The model was used to calculate data for three individual cases 

with the results being compared to data obtained using a Monte Carlo model. 

In each of the three cases presented, the SPN approximations with N > 1 were 

shown to provide an increase in accuracy over the SP1 approximation in both 

the phase and amplitude of the boundary data.  Comparisons of the fluence 

data from the SP1 and SP7 models showed that there is a significant difference 

in the regions surrounding the source where the light distribution is 

forwardly biased.  The final case highlighted the limitations of the diffusion 

approximation in handling regions of strong absorption.  Whilst the fluence 

data showed good agreement in the initial diffuse region, major differences of 

up to 85% were evident when the absorption was increased. 



139 

 It was observed that the most accurate solution to a given problem was 

not necessarily provided by the highest ordered approximation, which has 

also been noted in previous studies into SPN methods (Klose and Larsen 

2006). This is due to the fact that unlike other methods which converge on the 

RTE solution as !"N , the SPN approximation only asymptotically 

approaches the RTE solution as N increases.   

 The effect of anisotropy has been previously demonstrated to be 

significant in highly absorbing media and must be modelled accurately using 

techniques presented here (Klose and Larsen 2006).  The impact of modelling 

anisotropic scattering on image reconstruction is a subject of ongoing studies. 

 The SPN methods would be of particular importance in imaging systems 

that utilize wavelengths approaching the visible region where absorption due 

to both oxygenised and deoxygenised haemoglobin is strong.  As the SPN 

methods require fewer equations they are a more favourable forward model 

for image reconstruction.   

 The Monte Carlo model used in this study only calculated intensity data 

at a series of detectors located on the surface meaning comparisons of internal 

fluence were not possible.  Modifications to the Monte Carlo model to include 

the recording of internal fluence data are left for future work. 
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Chapter 8 - Image Reconstruction Using the SPN 

Approximation 

 

8.1  Introduction 

As discussed in chapter 6, the aim of the inverse problem is to calculate the 

distribution of optical properties within a domain from a set of boundary 

measurements.  In frequency domain DOT, this boundary data consists of 

amplitude and phase measurements of the exiting light at a number of 

detector locations.  

 The inverse problem is generally solved using model based iterative 

image reconstruction (MOBIIR) techniques which involve estimating the 

optical property distribution and iteratively running the forward model with 

the aim of minimising the difference between the measured data "M  and data 

calculated by the forward model "C.   

 This chapter will discuss the solution of the inverse problem and 

introduce an image reconstruction algorithm based on the simplified 

spherical harmonics approximation.  In sections 8.2 – 8.4, the Jacobian matrix 

is constructed using the perturbation method to ensure accuracy.  In the 

remaining sections, the reciprocity approach, which has been previously 

validated using the perturbation method for the DA (Arridge and Schweiger 

1995), was used. 
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8.2  Mapping Sensitivity to Changes in Optical Properties 

In the commonly used DA, the scattering coefficient and anisotropy factor are 

combined into the reduced scattering coefficient.  As such, image 

reconstruction using the diffusion approximation generally aims to recover 

maps of absorption coefficient and reduced scatter coefficient throughout the 

imaging domain.  There has been some discussion, however, over whether or 

not it would be possible during image reconstruction to separate between the 

scattering coefficient and anisotropy.  As the implementation of the SPN 

approximation, as discussed in chapter 7, does not combine the two values, it 

may be possible to reconstruct them individually. 

 The sensitivity of the SP7 models to changes in optical properties were 

studied using a circular geometry of 43 mm radius with 16 equally spaced 

and collocated sources and detectors as shown in Figure 8.1.  The Jacobian 

was constructed using the perturbation method before being mapped onto 

the mesh coordinates to produce a map of sensitivity to changes in optical 

properties.  The reference data was calculated using homogeneous optical 

properties of µa  = 0.01 mm-1, µs  = 10 mm-1, g = 0.9 and refractive index (n) = 

1.33 using a modulation frequency of 100MHz. The sources were modelled as 

point sources located at 1 mm inside the boundary, to correspond with one 

reduced scattering distance as in DA. 
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Figure 8.1 FEM mesh, of 43mm radius, containing 1785 nodes and 3418 linear triangular 
elements.  Circles represent location of sources, crosses represent location of detectors. 

 

The total sensitivity of log amplitude for all sources and detectors pairs to 

changes in absorption coefficient is mapped in Figure 8.2a.  Areas of high 

sensitivity exist in the regions surrounding the sources and detectors with a 

much lower background sensitivity decreasing, as expected, towards the 

centre of the domain.  The negative magnitudes of sensitivity confirm that 

increases in absorption lead to reductions in measurements of intensity.  

Figure 8.2b shows the sensitivity of same data-type to scattering coefficient 

and of similar trend to the previous case.  The sensitivity scale for scattering is 

again negative but has a much lower magnitude than that of absorption.  

Figure 8.2c shows that the sensitivity of intensity measurements to changes in 

anisotropy factor and is again highly localized to the sources and detectors.  

The magnitude of sensitivity of g is several orders lower than that of both 

absorption and scattering. 

 Figure 8.2a-b show that increases in both the absorption and scattering 

coefficients lead to decreases in intensity measurements.  This suggests that it 
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is not possible to distinguish between the two effects using intensity data 

alone.  A decrease in intensity, for example, could be caused by either a small 

increase in absorption or a large increase in scattering. 

 Figure 8.3a shows the sensitivity of phase measurements to changes in 

absorption coefficient.  It is evident that the sensitivity is greater in the regions 

surrounding the sources and detectors as compared to the regions in between 

them. Additionally, the sensitivity although increasing to a maximum at a few 

scattering depths inside, it then decreases towards the centre of the domain, 

which is consistent with previous findings (Arridge 1995a).  The scattering 

sensitivity map, Figure 8.3b, shows regions of very high sensitivity near the 

sources and detectors with much lower sensitivity elsewhere.  The magnitude 

of scattering sensitivity is again much lower than that of absorption but with a 

positive scale.  Sensitivity of phase measurements to changes in anisotropy 

factor is again limited to the regions surrounding the sources and detectors 

with a much lower magnitude as compared to absorption and scatter. 

 The results show that using log amplitude data alone, it is not possible to 

separate changes due to perturbations in absorption and scatter properties 

since both result in the same effect (i.e. increase in either absorption or scatter 

results in a decrease in log amplitude measurements).  With the introduction 

of phase data, however, it can be seen that changes in amplitude and scatter 

have opposite effects on such data and so it is possible to distinguish between 

perturbations in absorption or scatter. However, since scattering and 

anisotropy factor have opposite sensitivities for both data-types, an increase 

in one parameter can be compensated by a decrease in the other and vice-

versa. Therefore the problem appears non-unique for reconstruction of scatter 

and anisotropy factor. 
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Figure 8.2 Maps of sensitivity of log Amplitude data to changes in a) absorption, b) scattering 
and c) anisotropy 



145 

Figure 8.3 Maps of sensitivity of phase data to changes in a) absorption, b) scattering and c) 
anisotropy 
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8.3 Uniqueness of boundary data 

Next the uniqueness of the imaging problem is analyzed.  The problem of 

non-uniqueness arises when more than one set of optical property 

distributions lead to an identical set of boundary data, in which case, the 

simultaneous recovery of multiple optical properties, such as the absorption 

and scattering coefficients, is not possible (Arridge and Lionheart 1998).  

 The previously used circular mesh, Figure 8.1, was used to test the 

uniqueness of the SP7 equations.  A circular anomaly, with radius 10 mm, was 

inserted into the mesh as shown in Figure 8.4.  The optical properties within 

the anomaly were perturbed with either the absorption coefficient ranging 

between 0.0125mm-1 to 0.0375mm-1, scattering coefficient ranging between 

10mm-1 to 30mm-1 and anisotropy factor ranged between 0 and 1 and 

corresponding boundary data for all possible combinations were calculated.  

These wide range of values are chosen in order to allow a comprehensive 

study of their effect on problem uniqueness. Reference data was also 

calculated using the optical properties of µa = 0.025 mm-1, µs = 20 mm-1 and g = 

0.9.  The absolute error (L1 norm) for each data-type between the reference 

and each set of perturbed data was the defined as  

 

! 

" = #ref $#µ( )%  (8.1) 
 

where ref! is the reference homogeneous unperturbed boundary data (either 

phase or log amplitude) and µ! is the perturbed data.  Figure 8.5a shows the 

map of error (equation 8.1) in amplitude data for each combination of µa and 

µs.  A large band of optical property combinations exists for which the error 

between the reference data and perturbed data falls to zero.  These equivalent 
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combinations lead to identical amplitude data at the boundary and, as such, 

amplitude data alone is insufficient to recover both absorption and scattering 

properties simultaneously.  By introducing phase measurements, however, 

the number of non-unique solutions can be minimized.  Figure 8.5b shows the 

error map of phase measurements for the same range of optical properties.  In 

this case, the optical property combinations leading to identical boundary 

data lie within a much more localized region.  By combining the two data 

types, however, Figure 8.5c, the solution can converge on a smaller range of 

optical properties that lead to the perturbed boundary data.   

 The study was then repeated with varying absorption coefficients and 

anisotropy factors.  Figure 8.6a shows that a large band of non-unique optical 

property combinations exists for amplitude measurements.  The errors in 

phase measurements, Figure 8.6b, show an even larger range of equivalent 

combinations.  When combining the two data types, however, it can be seen 

that the number of aµ and g combinations leading to the reference data 

actually falls within a smaller narrow region, Figure 8.6c. 

 The map of error in amplitude measurements with varying µs and g, are 

also shown in Figure 8.7. Figure 8.7a, shows a large band of equivalent 

combinations of the two parameters for log amplitude data.  The error in 

phase data actually shows two large regions of non-unique optical property 

combinations.  The band of equivalent combinations in the amplitude error 

map is parallel to one of the bands in the phase error map.  As such, even 

when combining the two data types, a large band of equivalent combinations 

still exists, Figure 8.7c, and therefore, even with both phase and amplitude 

data, it is not possible to distinguish between changes due to sµ and g. 



148 

 By direct visual comparison between Figure 8.6c and Figure 8.7c, it is 

evident that there exists a large range of absorption, scatter and anisotropy 

factor that would give rise to the same boundary measurements, even when 

considering both data-types, and hence indicating the non-uniqueness of the 

problem to reconstruct all three parameters. 

 
Figure 8.4 Circular mesh with a single inclusion of 10mm radius used to test uniqueness of 

boundary measurements. 

 



149 

 
Figure 8.5 Error maps of SP7 data with varying optical properties with arbitrary units of 

error.  (a) map of log(Amplitude)  with varying µa (y axis) and µs (x axis), (b) same as (a) but 
for phase  and (c) error map of combined log(Amplitude) and Phase data. 
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Figure 8.6 Same as Figure 8.5, but for  (a) map of log(Amplitude) data with varying g and µa, 

(b) same as (a) but for phase, (c) sum of (a) and (b) 
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Figure 8.7 : Same as Figure 8.6, but for  (a) map of log(Amplitude) data with varying g and µs, 

(b) same as (a) but for phase, (c) sum of (a) and (b). 
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8.4  Uniqueness with the introduction of higher order terms 

The use of higher ordered SPN approximations introduces a number of new 

variables, 

! 

µan , which are defined as in equation 7.4.  These higher ordered 

absorption coefficients are dependent on both 

! 

µs and g and as such, may 

make it possible to separate the effects due to changes in the two parameters, 

if it is assumed that the composite moments of the boundary data can be 

measured. 

 To test the uniqueness of the higher absorption orders, the values of 

! 

µan  

for n=1:4 (as available for SP5) were calculated using optical properties of 

µa=0.01 mm-1, µs = 20 mm-1 and g = 0.5 as a reference.  The values of 

! 

µan  were 

then re-calculated with values of the scattering coefficient ranging from 1mm-1 

to 40mm-1 and the anisotropy factor ranging from 0.1 to 0.9.   

 Figure 8.8a shows the L1-norm between the reference value of 

! 

µa1 and 

those calculated for each combination of scattering coefficient and anisotropy 

factor.  There is a large band of optical property combinations for which the 

residual falls to zero and therefore result in the same value of 

! 

µa1.  Figure 8.8b 

shows the same differences between values of 

! 

µa2.  There is still a large 

number of scattering coefficient / anisotropy factor combinations that lead to 

the same value in this case, although slightly smaller than for 

! 

µa1.  Figure 8.8c-

d show similar plots for 

! 

µa3 and 

! 

µa4  respectively.  It can be seen that as higher 

order moments of absorption are considered, the number of scattering 

coefficient / anisotropy factor combinations leading to the same value 

reduces, but does not converge to a particular combination.  As such, the 

scattering coefficient and anisotropy factors cannot be simultaneously 

identified.  
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Figure 8.8 Maps of residuals between (a) µa1, (b) µa2, (c) µa3 and (d) µa4 for a range of 
scattering coefficients and anisotropy factors as compared to a set of reference values.  The 

range of anisotropy factors is listed on the x-axes whilst the y-axes represent the range of 
scattering coefficients. 

 

8.5 Multi-parameter image reconstruction using the SPN 

approximation 

Image reconstruction algorithms were developed for N=1, 3, 5 and 7.  

Depending on the order, N, the SPN based forward models calculate a number 

of complex moments of fluence as defined by equations 7.11(a)-(d).  The 

development of the image reconstruction algorithms was based on the 

assumption that these complex moments of fluence were physically 

measurable.  The boundary data then included phase and amplitude values 
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for each of these moments.  When considering all of the moments of fluence, 

the number of optical properties to be reconstructed also increases to include 

the various orders of the absorption coefficient, as defined by equation 7.13, 

and various combinations of these to create diffusion-like terms. The optical 

properties to be calculated for each order are listed in Table 8.1.  In order to 

reconstruct all of these optical parameters, the inverse problem, 

! 

Jµ =" , then 

takes the form 
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where 

! 

"n  are measurements of the complex moments of fluence, the kernels 

! 

Jµ
" n  are individual Jacobian matrices mapping the sensitivity of measurement 

! 

"n  to changes in optical property 

! 

µ with the form 

 

! 

Jµa1

"1 =
# log"1
#µa1

; #$1
#µa1

% 

& 
' 

( 

) 
*  (8.3) 

 
  The terms 

! 

"1 = 1
3µa1

, 

! 

"3 = 1
7µa 3

 and 

! 

"5 = 1
11µa 5

 are analogous to the diffusion 

coefficient in the DA.  For ease of notation, the terms 

! 

µando not strictly refer to 

the orders of absorption coefficient defined in equation 7.13, but various 

combinations and fractions of these orders.  The multiple entries per row of 

the Jacobian account for the inter-dependency of the fluence moments.  

 For computational efficiency, the individual Jacobian kernels were 

constructed using the reciprocal method, discussed in Chapter 6, where 
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! 

J"1
#1 i, j( ) =$#1i %$#1 j  (8.4a) 

! 

J" 3
# 2 i, j( ) =$#2i %$#2 j  (8.4b) 

! 

J" 5
# 3 i, j( ) =$#3i %$#3 j  (8.4c) 

! 

Jµa1

"1 i, j( ) ="1i #"1 j  (8.4d) 

! 

Jµa 2

" 2 i, j( ) ="2i #"2 j  (8.4e) 

! 

Jµa 3

" 3 i, j( ) ="3i #"3 j  (8.4f) 

 

  The Jacobians were also separately built using the perturbation method as a 

means of validation.  Prior to inversion, the Jacobians were normalised by 

optical properties (Dehghani et al. 2008). 

 Test boundary data was generated using the same circular geometry, 

Figure 8.1, with µa = 0.01 mm-1, µs = 10 mm-1, g = 0.9 and n = 1.33. A highly 

absorbing anomaly, with µa = 0.02 mm-1 and a highly scattering anomaly with 

µs = 20 mm-1, were inserted into the mesh as shown in Figure 8.9.  Both 

anomalies have the same anisotropic factor and refractive index as the 

background. 

 Each of the SPN reconstruction algorithms (for N = 1, 3, 5 and 7) was 

capable of reconstructing different optical properties, depending on the order 

N.  In order to test the capability of each of the SPN models, the optical 

properties listed in Table 8.1 were reconstructed, and from these, values of µa 

and µs were extracted. For the inverse model, the same mesh as the forward 

model was used without added noise, often known as the inverse crime. This 

was done intentionally to ensure that any errors in the reconstructed optical 

maps were only due to the complexity of the higher ordered approximations.  

Each of the algorithms were allowed to continue until there was less than a 

0.1% change in successive iterations. The initial regularization parameter % 

(equation 6.10) for all algorithms was set to 10 times the maximum diagonal 
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of the matrix JTJ and was reduced by a factor of 100.25 at each iteration 

(Dehghani et al. 2008). 

 Figure 8.10a shows the reconstructed images generated using an SP1 

based reconstruction algorithm and SP1 forward data.  The location of the two 

anomalies has been accurately reconstructed.  The background optical 

properties have been accurately recovered although the values of the two 

anomalies have been over-estimated.  The reconstructed image shows a 

maximum absorption coefficient of 0.0249 mm-1 and a maximum scattering 

coefficient of 23.9 mm-1.  The SP1 reconstruction required 32 iterations at 3.1 

second per iteration to recover the two relevant unknowns. 

 

 
Figure 8.9 FEM model with one highly absorbing target and one highly scattering target. 

 

Table 8.1 Reconstructed values of SPN image reconstruction algorithms where the diffusion 
terms 

! 

"n = 1
Aµan( ) where A is a constant. 

Reconstruction model Forward data used Unknown parameters 
SP1 SP1 !1, µa 
SP3 SP3 !1, !3, µa1, µa2 
SP5 SP5 !1, !3, !5, µa1, µa2, µa4 
SP7 SP7 !1, !3, !5, !7,µa1, µa2, µa4, µa6 
 

 The SP3 reconstruction (using SP3 data) Figure 8.10b has also accurately 

recovered the location and shape of the two anomalies.  The recovered 
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absorption and scattering coefficients have underestimated the target values, 

returning 0.0189mm-1 and 17.3mm-1 respectively.  Unlike the SP1 image, the 

SP3 reconstruction shows signs of cross talk between the absorption and 

scattering images.  The SP3 reconstruction required 13 iterations at 7.3 second 

per iteration to recover the four relevant unknowns.  

 Reconstruction using the SP5 model (using SP5 data) is shown in Figure 

8.10c.  In this case, the optical properties have again been overestimated with 

a maximum absorption coefficient of 0.0224mm-1 and a maximum scattering 

coefficient of 21.4mm-1.  The cross talk between the absorption and scattering 

images is still present.  The SP5 reconstruction required 34 iterations at 54 

second per iteration to recover the six relevant unknowns. 

 The optical maps generated by the SP7 model (using SP7 data), Figure 

8.10d contains artifact throughout the domain.  The location of the highly 

absorbing target has been recovered with poor size and contrast accuracy.  

The reconstruction failed to recover the highly scattering target.  It is likely 

that the failure of the SP7 reconstruction is due to the highly under-

determined nature of the problem.  The SP7 model requires 8 unique variables 

to be calculated at each node, i.e. 14280 unknowns, based on just 1920 

boundary measurements.  The SP7 reconstruction required 20 iterations at 52 

second per iteration to recover the eight relevant unknowns. 

 It should be noted that Figure 8.10(a)-(d) are plotted with varying scales 

and, as such, the size of the recovered anomolies may appear to vary. If a 

fixed scale were to be used on all figures, the artifact that appears in the lower 

orders would be artificially surpressed.  
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Figure 8.10 Reconstructed optical maps using a) SP1, b) SP3, c) SP5, d) SP7 based 

reconstruction algorithms 
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As mentioned above, the data shown in Figure 8.10 was generated by 

committing the inverse crime. To make the problem less trivial, the 

reconstructions were repeated using forward data obtained with a mesh 

containing 20% more nodes than the reconstruction mesh, Figure 8.11. It can 

be seen that these reconstructed optical property maps contain a greater 

degree of noise, particularly in the regions close to the boundaries.  

To quantitatively analyse the reconstructions, a cross section through the 

reconstructed optical property maps was taken along the y=0 axis. Figure 8.12 

shows the cross section through the µa map. The SP1 approximation 

overestimates the value of the highly absorbing insertion by approximately 

25% with a peak value of 0.025 mm-1. The size of the insertion, however, is 

underestimated  with a FWHM of 13.7mm compared to the target value of 

20mm. The SP3 approximation, however, most closely recovers the insertion 

with a peak value of 0.019 mm-1 and closely recovers the size of the anomaly 

with a FWHM of 17.4mm.  The SP5 and SP7 approximations shows a similar 

level of accuracy with peak values of 0.0185mm-1 and 0.0184mm-1 respectively. 

The SP7 approximation, however, underestimates the size of the insertion at 

13.8mm and shows a highly absorbing region outside of the target. There is 

also a significant level of cross talk where the highly scattering insertion 

appears in the absorption image. 

 Figure 8.13 shows the cross section through the scattering image. The SP1 

approximation again overestimates the target value by approximately 20% 

whereas the SP3, SP5, and SP7 approximations underestimate the target by 

13%, 10% and 21% respectively. The higher ordered reconstructions also show 

signs of cross talk with the highly absorbing insertion. 
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Figure 8.11: As Figure 8.10 with forward data obtained with a mesh containing 20% more 
nodes than in reconstruction mesh 
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Figure 8.12: Cross section through reconstructed µa maps shown in Figure 8.11. 

 

Figure 8.13: As Figure 8.12 for µs 
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The uniformity of the background regions in the absorption and scattering 

images was calculated as 

! 

Uniformity =100% "
(max value -  min value)
(max  value +  min value)

 

and is listed in Table 8.2. The SP5 approximation results in the most uniform 

background in the absorption image, indicating good suppression of noise, 

whereas the SP3 approximation results in the best uniformity in the scattering 

image. Due to the underdetermined nature of the SP7 problem, the resulting 

image has poor uniformity in both the absorption and scattering images. 

Table 8.2: The uniformity of the background regions in the reconstructed optical property 
maps 

Uniformity (%)  
µa µs 

SP1 16 18 
SP3 20 12 
SP5 11 14 
SP7 34 20 

 

8.6 Multi-parameter image reconstruction and hard priori 

information 

The previous study was repeated using region-based reconstruction for the 

SPN methods with N=1, 3 and 5.  The domain was divided into 3 regions, one 

for each of the anomalies shown in Figure 8.9 and a third which encompassed 

the remainder of the domain.  This information was then included in the 

reconstruction using the hard priors method discussed in Chapter 6.  The SP7 

model has been omitted from further studies as the increase in accuracy over 

the SP5 model has been shown to be very small and neglectable (Klose and 

Larsen 2006). 
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 It can be seen (Figure 8.14) that the use of prior information, whereby 

instead of reconstruction the unknown parameters at each spatial variable, 

homogeneous values are estimated for each unknown region (in this case 3) 

has enabled the SP5 reconstruction (when using SP5 forward data) to 

accurately recover both targets. This is due to the vast reduction in the 

number of unknowns from 6 times the number of nodes (10710) to 6 times the 

number of regions (18). The same findings (not shown) were found for SP1 

and SP3 cases. 

 
Figure 8.14 Recovered optical map generated using SP5 reconstruction with prior 

information. 

 

8.7 Diffusion based image reconstruction using the SPN 

approximation 

As discussed earlier, the SPN approximations, equations 7.12(a)-(d), are based 

on composite moments of fluence with the total flux calculated using 

equation 7.14. The SPN reconstruction algorithms introduced so far were 

therefore based on various moments of the phase and amplitude boundary 

data which attempted to recover all moments of absorption and scattering 

coefficients.  In practice, however, there are no experimental methods to easily 

measure the angular components of amplitude and phase and so image 

reconstructions must be based on total values of fluence.   
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 A new reconstruction algorithm was developed that used only the 

absolute fluence calculated using the SP5 approximation.  The complex 

moments were first calculated using the SP5 algorithm and then summed 

according to equation 7.14 to find the total fluence.  The boundary data 

therefore consisted of a single set of amplitude and phase measurements for 

each source-detector pair.  In eliminating the composite moments of fluence, 

however, it is only possible to reconstruct for µa. and µs (assuming g = 0.9).  

The inverse problem then took the form  

 

! 

Jµs
Jµa[ ]
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where the individual kernels of the Jacobian are calculated using the 

reciprocal method where  
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and have the form 
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 This new reconstruction algorithm is tested using SP5 forward data and 

the resulting optical map is shown in Figure 8.15a.  The reconstruction has 

performed well recovering the optical parameters within 10% of the target 

values.  For comparison, the same forward data is also used to reconstruct 

optical parameters using the DA based algorithm, Figure 8.15b.  In this case, 

the target values have been over-estimated and boundary artifact has been 

introduced, indicating the maximum errors seen from high order model 
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mismatch, is as expected near the source / detector positions, which lead to 

image inaccuracy and artefacts. 

 

Figure 8.15 Diffusion based images from SP5 data using (a) SP5 based Jacobian and (b) SP1 
based Jacobian. 

 

8.8  Discussions and Conclusions 

Forward models for image reconstruction based on the simplified spherical 

harmonic approximation have been presented. Sensitivity maps for amplitude 

and phase data are calculated, Figure 8.2 and Figure 8.3, using SP7 and it is 

shown that the sensitivity of measured boundary data for changes in the 

anisotropy factor are many orders of magnitude lower than those of 

absorption and scattering coefficients. It is also shown that the sensitivity to 

both scattering coefficient anisotropy factor is highly localized to the regions 

adjacent to the source and detector (Figure 8.2 and Figure 8.3).  This suggests 

that beyond a few scattering lengths, the light distribution is fully diffuse and 
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as such, distant changes in scattering and anisotropy factors have little effect 

on measured data. Although it is possible to normalize the sensitivity maps 

prior to use in image reconstruction (Eames and Dehghani 2008), it is also 

evident that an increase in scattering parameter will have an effect on 

boundary data which is opposite of that due to anisotropy factor. This in turn 

indicates that an increase in one parameter can be compensated by a decrease 

on the other and vice-versa. This effect is unlike that seen for absorption and 

scattering, whereby the two parameters can be separated using log amplitude 

and phase data, but it is unclear whether all 3 parameters can be resolved 

using these 2 data-types. 

 Through the use of error maps, whereby the difference in some reference 

data with respect to data in the presence of an anomaly is calculated, it is 

shown that using frequency domain data, it is possible to distinguish, with 

some accuracy, the absorption and scattering properties of the medium, 

Figure 8.5, which has also been presented previously (Arridge 1999). The 

same principles have been applied to higher order models and additionally 

the effect of the anisotropy factor has been studied as well as the optical 

absorption and scatter. It is demonstrated, Figure 8.6 and Figure 8.7, that 

using frequency domain data, a large and non-unique range of all three 

optical properties can lead to the same measured data, indicating that it is not 

possible to reconstruct all three parameters using only 2 data-types. This 

finding is in line with earlier results, Figure 8.3, and demonstrate that it is 

difficult to separate for both scattering and anisotropic factors simultaneously 

using frequency domain data. Further work is needed to investigate whether 

other data-types, for example using time resolved data, and / or spectral data, 

would allow separation of these variables. 
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 Residual maps for different orders of absorption coefficient (µan) as 

available using SPN models have been calculated to investigate the possibility 

of resolving scattering and anisotropy factors, if µan coefficients can be 

measured and calculated. It is shown, Figure 8.8, that even if all higher 

moments of the absorption coefficients can be calculated, there still exists a 

large range of scattering and anisotropy factors that would lead to the same 

µan values, thus indicating that these cannot be easily resolved. 

 Reconstruction algorithms based on the SPN approximation have been 

developed and tested.  For image reconstruction, the same FEM model as for 

the forward data was used and no noise was added. The inverse crime has 

been strictly committed, since we are concerned with the accuracy of each 

model in determining the unknown parameters associated with each model. 

Additionally, noise free data have only used to only highlight the error seen 

due to model mismatch, rather than the effects of noise within the data, which 

can show similar trends. It is important to note that the asymptotic expansion 

of the transport equation used to verify the SPN equations (Larsen 1993)  

considers an optically thick system in which scatter dominates. As such, the 

resulting SPN equations are still of a diffuse nature (Josef 1996), although the 

higher orders provide corrections to the DA in partially non-diffuse problems. 

As such, the SPn approximation has not been tested for fully non-diffuse 

problems.  

 It was shown, Figure 8.10a-c, that for N=1, 3 and 5 the reconstructions 

performed well, with the reconstructed values being within 24% of expected 

values with the worse results being obtained from SP1 and absorption 

coefficient. This accuracy could be further improved by the optimization of 

the regularization parameter and stopping criteria. The N=7 model, however, 
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failed to accurately recover the target values, Figure 8.10d. The absorption 

coefficient, although located, is extremely over estimated, with some cross-

talk from the scattering value. The reconstructed scatter image contains high 

valued artifacts and can be considered inaccurate. By limiting the presented 

results to these larger domain, it is also worth noting that the majority of 

image artifacts are seen at the boundary, near the source locations, where SP1 

solution is known the be less accurate. It is therefore expected that the errors 

seen due to the lack of higher order approximations to be substantially more 

significant in small geometry imaging experiments. The poor performance of 

the SP7 model was most likely due to the under-determined nature of the 

problem. As stated earlier, the SP7 model contains 8 unique unknown 

variables which need to be calculated at each spatial location (FEM node), i.e. 

14280 unknowns, based on just 1920 boundary measurements (240 log 

amplitude and 240 Phase, based on 16 co-located source and detectors and 4 

composite moments of fluence).  

 The reconstructions described above were also repeated using forward 

data obtained using a FEM mesh with a 20% higher resolution, Figure 

8.11.(a)-(d). It was seen that the optical properties of the highly absorbing and 

scattering inserts being recovered to within 25% of the expected values. The 

background regions of these reconstructions, however, showed a greater level 

of noise, particularly near the boundaries. It was found that the SP5 

approximation provided the best combination of accurate recovery of target 

values while surpressing background noise. 

 In order to eliminate the large degree of freedoms, the accuracy of the 

reconstruction algorithms was further improved by creating a better 

determined problem.  This was achieved for the SP1, SP3 and SP5 
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approximations with the use of prior information.  The prior information was 

used to identify a number of homogeneous regions, reducing the number of 

properties to be recovered.  This simplification of the problem led to 

improvements in all three of the reconstructions (for N = 1, 3 and 5).  Both the 

absorbing and scattering targets were accurately recovered by all models to 

within 2%, Figure 8.14. 

 The SPN equations are based on composite moments of fluence, equation 

7.11(a)-(d).  In reality, however, experimental systems can only measure the 

total fluence at the boundary of the domain and so the full SPN reconstruction 

algorithms are of limited use in image reconstruction where all composite 

moments are needed.  An alternative method has been proposed in which the 

forward models are based on absolute fluence but the Jacobian matrix was 

calculated using the SP5 model to allow the calculation of absorption (µa) and 

scattering (µs) coefficient only.  The diffusion parameter based images 

reconstructed from simulated SP5 data whereby the Jacobian is based on 

either SP1 or SP5, Figure 8.15, indicate that although both models can be used, 

the higher order model is more accurate both in terms of quantitative and 

qualitative analysis. The target values of the test problem calculated using SP5 

are recovered with more accuracy as compared to the SP1 based model with 

much less artifact.  Additionally, eliminating the use of complex moments 

also results in decreased computation time and memory requirements. 

 The results presented in this work indicate that for image reconstruction 

whereby the DA is less valid, in for example, small animal imaging and / or 

where the absorption coefficient is more dominant, the higher order models 

based on simplified spherical harmonics can be used to generate the 

sensitivity matrix for diffusion based image reconstruction, without the 
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additional computation complexity in terms of the number of unknown 

parameters. The incorporation of these more accurate models can however 

allow for a better accuracy in terms of light propagation models. 
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Chapter 9 - Development of a SP5 – Diffusion Hybrid 

Model 

 

9.1 Introduction 

In Chapter 7, the SPN approximation was shown to provide an accurate model 

of light propagation in tissue.  The higher ordered models were shown to 

have improved accuracy over the DA, particularly in regions in close 

proximity to the source.  Although the SPN approximation leads to a lower 

computational load than either the SN or PN approximations, the number of 

unknowns to be solved is still several times larger than for the DA.  As the 

light distribution within a tissue becomes effectively diffuse within a few 

scattering distances, it is possible to minimise the computational load by 

using a higher-ordered approximation to model light propagation in the 

regions surrounding the source and the diffusion approximation elsewhere. 

 In this chapter, some of the existing hybrid models will be discussed and 

the development of a novel SP5-SP1 hybrid model will be introduced. 

 

9.1.1 Existing Hybrid Models 

Tarvainen et al, developed a hybrid model that solved the RTE in the regions 

surrounding the source and the DA elsewhere (Tarvainen et al. 2005).  Their 

approach was to divide a domain 

! 

" into two sub-domains 

! 

"rte , in which the 

RTE is used, and 

! 

"da  in which the DA is used, Figure 9.1.  The RTE is then 

solved for the domain 

! 

"be  that is larger than 

! 

"rte  and is marked by a dashed 

line in Figure 9.1.  The radiance at the interface between 

! 

"rte  and 

! 

"da  as 
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calculated by the RTE is then used as a Dirichlet boundary condition, 

effectively a distributed source, for the DA forward model in 

! 

"da . 

 

 

Figure 9.1 Geometry used for the hybrid model by Tarveinen et al (2005). The domain is 
divided into a number of sub-domains, one in which the RTE is used, and one in which the 

DA is used. 

 Other hybrid models have used Monte Carlo methods to model the 

regions near the source (Wang and Jacques 1993; Alexandrakis et al. 2000).  

These approaches generally involve determining a critical depth z, below 

which, the DA is assumed to be accurate.  At depths above z, a Monte Carlo 

model is used to record the track of sufficient numbers of photons to provide 

good statistics.  Any photons that cross the critical depth are treated as 

isotropic sources, which are then applied to the DA calculations.  These 

methods have been shown to give good agreement with full MC models but 

with solution times which are several hundred times faster. 

 Hybrid models are also of interest for applications involving imaging of 

the brain.  The accuracy of the diffusion approximation is known to be limited 

in regions of low scattering.  Whilst the brain tissue itself may meet the 

requirements for the DA, it is surrounded by a layer of clear cerebrospinal 

fluid (CSF) in which the DA is not accurate.  In these non-scattering regions, 

light transport can be modelled using radiosity theory (Cohen and Wallace 
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1993).  The radiosity theory calculates the irradiance on a surface due to a 

source point at a given angle and distance.  A radiosity-diffusion hybrid 

model has been developed by Arridge et al, in which the DA is used to model 

light transport in all scattering regions, with radiosity theory used in non-

scattering regions which has been shown to give good agreement with both 

Monte Carlo and experimental results (Firbank et al. 1996; Arridge et al. 

2000b).  The radiosity-diffusion hybrid has also been applied to image 

reconstruction problems and has been shown to provide accurate optical 

maps for non-scattering layers of  ~1mm or less (Dehghani et al. 2000). 

 The radiosity approach requires the CSF to be modelled as a non-

scattering region.  In reality, however, the CSF layer contains fine arachnoid 

trabeculae which is likely to cause scattering (Okada and Delpy 2003b; Okada 

and Delpy 2003a).  By modelling the fine anatomy of the brain using a MC 

model, Okada and Delpy (Okada and Delpy 2003b) found that the reduced 

scattering coefficient of the CSF layers actually lies between 0.16-0.32 mm-1.  

This result suggests that neither the radiosity model or the diffusion 

approximation are valid in the CSF region.  Instead, Hayashi et al (Hayashi et 

al. 2003) have developed a Monte Carlo – diffusion hybrid for non-scattering 

regions.  The use of the MC method allows the CSF layer to be modelled as a 

region with low scattering, rather than the assumption of zero scattering.  As 

the MC method is only used for the thin CSF layer, it is several times faster 

than a full MC model whilst maintaining much of the accuracy.  

 The SPN based forward models presented in chapter 3 are capable of 

overcoming the limitations of the DA.  These models use the higher ordered 

approximation throughout the entire domain, leading to an increase in the 

number of variables at each node of the FEM mesh.  The corresponding 
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increase in computational load can be prohibitively large, especially at higher 

mesh resolutions.  An alternative approach is to use a higher ordered model 

in the regions surrounding the sources and detectors and the diffusion 

approximation elsewhere.  This allows the light distribution to be modelled 

more accurately whilst minimising the number of computations required. 

9.2 Hybrid SP5 - SP1 model 

The existing hybrid models, discussed above, require two independent steps. 

The higher accuracy model is first solved in the regions surrounding the 

source.  The results of this initial model are then used as source terms or 

boundary conditions in the solution of the DA in the remaining regions.   

 The SPN models introduced in chapter 7 are solved using the finite 

element method.  If the SP5 approximation is used in the regions close to the 

source with the rest of the domain being modelled using the SP1 

approximation, the two regions will have a corresponding and related mass 

matrix.  By coupling these two mass matrices, it is possible to create a hybrid 

model that can be solved in a single step.  Such a method has been developed 

for problems involving discontinuities in refractive index (Dehghani et al. 

2003a). 

9.2.1 Meshing 

The SP5-SP1 hybrid model requires the test geometry to be split into two 

separate meshes, one in which the SP5 model will be used and another in 

which the SP1 model will be used.  The hybrid model was initially tested on a 

20!10mm slab geometry with a single source and detector, Figure 9.2(a) 

which was divided into two separate FEM meshes.  The two meshes met at a 

boundary 

! 

"#SP 5 /#SP1
.  The first half of the geometry was solved using the SP5 
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approximation whilst the remainder was solved using the SP1 approximation. 

The nodes lying on 

! 

"#SP 5 /#SP1
 were duplicated as shown in Figure 9.2(b).  

This was necessary in order to couple the SP5 and SP1 fields. 

 

 
Figure 9.2 (a) 10×20mm slab geometry with a single source and detector used to test the 

hybrid model with a dashed line marking the boundary between the SP5 and SP1 regions  (b) 
a close up of the nodes lying on the boundary between the SP5 and SP1 regions were 

duplicated 

 

In this simple slab geometry, the area surrounding the source was solved 

using the SP5 model whilst the region near the detector was solved using the 

SP1 model.  

9.2.2 The Mass Matrix 

The mass matrix of the SP1 model has dimensions of NN!NN whereas the 

mass matrix of the SP5 model is (3NN)!(3NN).  In order to allow the solution 

of the hybrid model in a single step, the two mass matrices relating to each 

region were combined into one matrix as shown in Figure 9.3.  
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Figure 9.3 The layout of the SP5-SP1 hybrid mass matrix 

 

The fluence across the boundary between the SP5 and SP1 regions should be 

continuous.  In other words 

 

! 

"SP1 = "SP5  (9.1) 
 

This condition was enforced by manipulating the hybrid mass matrix.  The 

nodes lying on 

! 

"#SP 5#SP1
contained duplicate entries within the hybrid mass 

matrix, one row within the SP1 segment and 3 rows within the SP5 segment 

(referring to the compound moments described in equations 7.11(a)-(c)).  In 

order to establish a relationship between these nodes, the contents of the SP5 

entries were moved to the SP1 row and the SP5 entries were then set to zero in 

order to avoid duplicating the contribution of the boundary nodes. 

 In setting the entire row to zero, however, the relationship of the co-

located node with itself was also removed.   In order to reinstate this 

relationship, the element located on the diagonal was set to 1 which, for node 

i, defined 

! 

"
1

i ="
1

i , 

! 

"2
i ="2

i  and 

! 

"3
i ="3

i .  For each co-located node, there was 

also a relationship between the various other orders.  These relationships 

were determined by re-arranging equation 7.14 to find the relationship 

between each moment of fluence with the remaining moments.  These 

relationships were applied in the form of a scaling variable to the values of 
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the mass matrix elements that linked the orders of fluence for node i.  The 

correct values were found when the fluence, determined by running the 

forward model, at the co-located nodes was found to be identical.  By re-

arranging equation 7.14, the relationships are found to be 

 

! 

"1 = #$ +
2
3
"2 #

8
15
"3 (7.2) 

 

! 

"2 =
3
2
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3
2
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"1 +
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4
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Using the basic mesh in Figure 9.4, for example, the nodes 4,5, and 6 are co-

located with nodes 7, 8 and 9.  The resulting hybrid mass matrix has the form 

shown in Figure 9.5, which labels each row with its corresponding node 

number.  The entries for node 3 and node 5, for example, refer to the same 

point in space and so the fields should be coupled.  The matrix entries 

referring to node 5 are moved to row 3 of the mass matrix and then each of 

the rows referring to node 5 are set to zero.  The diagonal elements referring 

to node 5 are then set to 1 to re-establish its relationship with itself.  The 

relationship with the other orders of fluence were then established.  To 

enforce equation 7.2 for node 5, for example, the element linking 

! 

"1 and 

! 

"  in 

row 5 was set to -1, the element linking 

! 

"1 and 

! 

"2 was set to 

! 

2
3 and the 

element linking 

! 

"1 and 

! 

"3 was set to 

! 

" 8
15. 

 In order to run a hybrid problem, the two individual meshes, along with a 

list of the duplicated nodes is input into the hybrid model.  The model then 

identifies each of the rows relating to a duplicated node and performs the 

coupling process described above.  The two individual meshes are combined 
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into one single slab mesh.  The fluence at all points is then calculated and 

mapped onto this single mesh. 

 
Figure 9.4 A highly simplified example of a hybrid mesh containing 2 pairs of co-located 

nodes. 

 
Figure 9.5 Hybrid mass matrix. Numbers on left identify the node from figure 9.3 relating to 
that row. SP5 and SP1 fields are coupled by moving SP5 entries to SP1 row and setting the 

original rows to zero. The   

! 

o, 

! 

•and 

! 

" entries relate to the 

! 

"1, 

! 

"2  and 

! 

"3moments of fluence as 
defined by equations 7.11(a)-(d) 

 

9.3 Results 

The SP5 hybrid model was used on the mesh used in figure 9.1(a) for a range 

of optical property combinations.  An equivalent single mesh was constructed 

and used to obtain full SP5 and SP1 solutions.  A cross-section of the field was 

taken along the line linking the source and detector.   
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Figure 9.6 shows the cross sectional fluence obtained for optical properties of  

! 

µa = 0.01mm"1, 

! 

µs =10mm"1, 

! 

g = 0.9, and 

! 

n =1.33.  It can be seen that the hybrid 

data is almost identical to the full SP5, diverging only at the last few 

millimetres.  The SP1 data, however, is consistently lower than the SP5 data.  

The percentage error in the hybrid and SP1 results, in reference to the SP5 data 

is shown in figure 1b.  It can be seen that the SP1 data has an error of over 70% 

near the source and approximately 15% near the detector.  The hybrid data, 

however, has almost 0% error through the majority of the domain, although it 

increases to around 10% within 1mm of the detector.   

 The same geometry was then modelled with increased scattering 

coefficients of 

! 

µs =15, Figure 9.7, and 

! 

µs = 20, Figure 9.8.  The results for the 

hybrid model were similar to those seen for the initial case.  The error in the 

SP1 data, however, fell more rapidly than in the previous case. 
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Figure 9.6 (a) Cross section of fluence through a slab geometry with optical properties of 

! 

µa = 0.01mm"1, 

! 

µs = 10mm"1 , 

! 

g = 0.9 , and 

! 

n = 1.33 (b) the percentage error of hybrid and SP1 
data compared to SP5 along the same cross section. 
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Figure 9.7 As in figure 9.6, but with increased scattering coefficient of 

! 

µs = 15mm"1 
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Figure 9.8 As in figure 9.6, but with increased scattering coefficient of 

! 

µs = 20mm"1  

 

In order to observe the effect of the hybrid model in less diffuse conditions, 

the absorption coefficient was increased to 

! 

µa = 0.05mm"1.  The percentage 

errors for scattering coefficients of 

! 

µs =10, 15 and 20mm"1 are displayed in 
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Figure 9.9.  Figure 9.9(a), which refers to optical properties of 

! 

µa = 0.05mm"1 

and 

! 

µs =10mm"1 again shows that the hybrid model has only a very small 

error near the source whilst the error near the detector rises to approximately 

10%.  A small increase in error is visible around 10mm into the slab, which 

relates to the boundary between the SP5 and SP1 regions. As the scattering 

coefficient increases, Figure 9.9(b)-(c), this error at the boundary decreases.   

As the absorption coefficient is further increased to 

! 

µa = 0.1mm"1, the error at 

the SP5-SP1 boundary becomes more pronounced and is present even at 

higher scattering coefficients, Figure 9.10.  The hybrid data results in an error 

of approximately 15% near to the boundary, compared to the 20% error in SP1 

data at the same point. 
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Figure 9.9 Percentage error of hybrid and SP1 data compared to SP5 for optical properties of 

! 

µa = 0.05mm"1 and (a) 

! 

µs = 10mm"1  (b) 

! 

µs = 15mm"1 and (c) 

! 

µs = 20mm"1  
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Figure 9.10 Percentage error of hybrid and SP1 data compared to SP5 for optical properties of 

! 

µa = 0.1mm"1 and (a) 

! 

µs = 10mm"1  (b) 

! 

µs = 20mm"1  
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At all optical property combinations, it was noted that the error in the hybrid 

model started to increase near the detector.  This suggested that the SP5 model 

was required in these regions also.  To test this hypothesis, a circular mesh 

with radius of 25mm was constructed.  The outer layer, up to a depth of 

10mm, is solved using the SP5 approximation, and the SP1 approximation was 

used in the inner layer, Figure 9.11. 

 

Figure 9.11 Circular hybrid mesh with a total radius of 25mm.  The SP5 approximation was 
used in the first 10mm, whilst the remainder was solved using the SP1 approximation. 

 

This geometry was then modelled using the same optical property 

combinations as used in the slab geometry above and a cross section of data 

was taken through the centre of the domain. In the first case, with 

! 

µa = 0.01mm"1, 

! 

µs =10mm"1, 

! 

g = 0.9, and 

! 

n =1.33, Figure 9.12, the error in the 

hybrid model is almost zero near to the source.  The error gradually increases 

throughout the centre portion of the circle in which the SP1 approximation is 

used to a maximum of approximately 4%.  In the final 10mm, which is again 

modelled using the SP5 approximation, the error remains constant.  By 
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comparison, the SP1 data sees an error of over 50% at the source.  The error 

then falls to around 6% before increasing to approximately 14% near the 

detector. 

 

Figure 9.12 Percentage error of hybrid and SP1 data compared to SP5 for a cross section 
through the circular geometry shown in figure 9.10 with optical properties of 

! 

µa = 0.01mm"1 , 

! 

µs = 10mm"1, 

! 

g = 0.9  and 

! 

n = 1.33 

 

In the case with strong absorption, e.g. 

! 

µa = 0.1mm"1 and 

! 

µs = 20mm"1, Figure 

9.13, the error at the end of the SP1 region reaches a peak of approximately 

30%.  In the second SP5 region, the error begins to fall to around 25% at the 

boundary. 
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Figure 9.13 Percentage error of hybrid and SP1 data compared to SP5 for a cross section 
through the circular geometry shown in Figure 6 with optical properties of 

! 

µa = 0.1mm"1 , 

! 

µs = 20mm"1, 

! 

g = 0.9  and 

! 

n = 1.33 

 

As in the slab geometry, there was a notable artefact at the SP5 SP1 boundary 

when the absorption coefficient was increased as the domain becomes less 

diffuse.  To overcome this artefact, the boundary between the two regions 

could be determined automatically for each individual mesh.  Ideally, only 

one mesh would be required and the SP5 region would be determined 

automatically. 

9.3.1 Efficiency 

The hybrid mass matrix has dimensions of 

! 

NNSP1
+ 3NNSP5

where 

! 

NNSP1
is the 

number of nodes in the SP1 part of the hybrid mesh and 

! 

NNSP1
 is the number 

of nodes in the SP5 part.  As in this case, the SP1 and SP5 meshes are of equal 

size, this is equivalent to 

! 

4nSP5 .  If the whole domain were to be modelled 

using the SP5 approximation, the mass matrix would have dimensions of 

! 

8nSP5  
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 The reduction in the size of the mass matrix results in savings in the time 

it takes to invert the mass matrix.  Table 9.1 shows the time taken to invert the 

mass matrix for the SP1, SP5, and hybrid models.  It was seen that the hybrid 

model was almost 50% faster than the full SP5 model whilst delivering almost 

identical results. 

 

Table 9.1 Mass matrix inversion times for SP1, SP5 and hybrid models 

 
Mass Matrix Inversion Time (s) 

SP1 0.74 

SP5 6.4 

Hybrid 3.5 

  

9.4  Discussion & Conclusion 

A novel SP5/SP1 hybrid model has been presented and has been tested using 

both a layered slab and circular geometries, both involving a single source 

and detector.  The SP5 region is used only in regions where the DA is likely to 

be inaccurate.  In the slab geometry, the SP5 approximation is used in the first 

layer, closest to the source, whilst the remainder is solved using the DA.  The 

circular geometry is also divided into two layers.  The outer region is solved 

using the SP5 approximation and the inner region is solved with the DA.  

Unlike existing hybrid models which require two steps to obtain a set of 

calculated boundary data (Wang and Jacques 1993; Alexandrakis et al. 2000; 

Okada and Delpy 2003b; Tarvainen et al. 2005), the presented model requires 

just a single step. 

 After running the hybrid model on the slab and circular meshes for a 

range of optical properties, a cross section through the domain was taken and 
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compared with the SP5 and DA models and, using the SP5 data as a gold 

standard, a percentage error was calculated. 

 In cases involving the slab geometry with low absorption coefficients, the 

hybrid and SP5 data was almost identical.  The percentage error was 

negligible throughout the majority of the domain, although the error 

increased to approximately 10% at the detector.  The SP1 data, by comparison 

showed large errors were seen near the source, and these errors appeared to 

propagate through the domain.  As the scattering coefficient increased, 

however, the SP1 data improved, although large errors were still present near 

the source and detector, while the hybrid data was unaffected.  The error in 

the hybrid data near the detector, suggested these regions would also benefit 

form the higher ordered model. 

 As the absorption coefficient was increased, the hybrid data showed an 

increase in error at the SP5/SP1 boundary, which was more pronounced at 

lower scattering coefficients.  This error was to be expected as greater depths 

are required for a sufficient number of scattering events to occur to create a 

diffuse light distribution.  In these cases, the SP5 region would need to be 

larger in order to accurately model the problem. 

 The circular mesh used the SP5 approximation in the regions surround 

both the source and detector.  In this case, the SP1 data showed errors of up to 

60% at the source although this did fall to approximately 5% before rising to 

around 15% at the detector.  The hybrid data, however showed almost 0% 

error near the source.  The error began to increase in the SP1 region, before 

flattening off near the detector.  Similar results were seen when a much larger 

absorption coefficient was used, although they were much more pronounced.  
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The results do, however, confirm that the higher order model is necessary in 

the regions surrounding both the source and detector. 

The hybrid model was shown to provide the same degree of accuracy as the 

SP5 model but with a significant speed increase of approximately 50%.  These 

time savings, however, are a conservative estimate.  The mesh used in this 

problem divided the slab geometry into two meshes of equal size.  In reality, 

the region in which the SP5 model would be necessary would be considerably 

smaller than the whole geometry.  This would mean that the mass matrix 

would be considerably smaller and computation times would be more in line 

with the SP1 model. 

 In the preliminary development of the hybrid model, two meshes must be 

created separately.  Although this only needs to be performed once for a 

given geometry, it does not offer much flexibility for use with new geometries 

and varying critical depths.  In future, it would be beneficial for a single mesh 

to be used with a routine capable of identifying nodes within a pre-

determined distance of the source and duplicating the nodes on the boundary 

automatically.   

 At present, the process of manipulating the mass matrix in order to 

couple the SP5 and SP1 fields is performed by an external routine written as a 

MATLAB m-file.  This is currently an inefficient process as it loops over large 

number of options.  This could be drastically improved by simply re-writing 

the routine in a c based code. 
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Chapter 10 - Summary 

 

Diffuse Optical Tomography (DOT) is an emerging imaging modality that can 

be used to non-invasively observe physiological function by probing tissue 

with near-infrared light.  DOT promises to be a useful tool in a wide range of 

applications, including breast imaging, functional brain imaging and, with the 

use of fluorescent or bioluminescent contrast agents, molecular imaging in 

small animals.  There are a range of alternative functional imaging modalities 

in existence that could have similar applications, such as fMRI or PET, but 

these have drawbacks such as high costs, or the use of ionising radiation.  

DOT has the ability to provide absolute functional information with relatively 

low costs using non-harmful near-infrared light. 

 The reconstruction of an image from experimental boundary data is an ill-

posed and under-determined problem.  The process generally involves a 

forward problem, in which the propagation of light through tissue is 

modelled, and an inverse problem in which the forward problem is 

repeatedly solved whilst the optical property map is updated iteratively.  The 

accuracy of the final image is therefore dependent on an accurate forward 

model. 

 At present, the majority of forward models employ the diffusion 

approximation to the more accurate radiative transfer equation.  This 

approximation has been shown to be acceptable in problems where the light 

distribution is fully diffuse.  Such conditions could be encountered in large 

domains where photons undergo a large number of scattering events take 

place before reaching the detectors, or in domains involving scattering 
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coefficients that are much larger than the absorption coefficient.  There are, 

however, many situations in which this approximation is no longer valid.   

One of the rapidly growing applications of DOT is in the bioluminescent 

imaging of small animals.  Commonly used bioluminescent agents emit light 

at a wavelength of approximately 560nm.  This corresponds to strong 

absorption due to haemoglobin, which makes the DA invalid.  The small 

geometries encountered in small animal imaging also limit the accuracy of the 

DA.   

 In this thesis, the development of a forward model based on the 

Simplified Spherical Harmonics approximation has been introduced.  Before 

this work, just one other SPN based model existed, which was solved using the 

finite difference method for continuous wave systems and was applied only 

to 2D geometries (Klose and Larsen 2006).  The FDM, however, is limited to 

solving only simple geometries as a uniform grid of nodes is required.  The 

model presented in this work, however, is solved for frequency domain 

systems using the Finite Element Method, which uses triangular or 

tetrahedral elements and can be used for complex 2D or 3D geometries.  The 

model has been validated using a Monte Carlo model and was shown to give 

good agreement for a range of optical properties.  It has also been shown that, 

for all orders N, the SPN approximation provides an increase in accuracy over 

the commonly used DA while incurring a lower computational load than 

existing transport based models, such as the spherical harmonics or discrete 

ordinates method. 

 One of the features of the DA is that it combines the scattering coefficient 

and anisotropy factor into a single variable, the reduced scattering coefficient.  

As such, it is impossible to reconstruct the two properties individually.  The 
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SPN approximation, however, does not use the reduced scattering coefficient 

suggesting that both the scattering coefficient and anisotropy factor may be 

recoverable.  Sensitivity mapping, however, showed that the sensitivity to 

changes in anisotropy factor is orders of magnitude lower than for absorption 

or scattering.  By plotting a range of error maps, it was also shown that it was 

not possible to uniquely recover both scattering coefficient and anisotropy, 

even with higher SPN orders. 

 The SP7 based multi-parameter image reconstruction algorithm was 

found to be somewhat unstable due to the presence of strong artefacts and 

cross talk due to the under-determined nature of the problem.  In order to 

reduce the number of unknowns, a SPN region-based image reconstruction 

algorithm was implemented, using prior information which led to great 

improvements for orders N=1, 3 and 5. 

 The multi-parameter image reconstruction algorithms are based on the 

assumption that various orders of fluence are measurable at the boundary.  In 

reality, this is not the case, and so a diffusion-based reconstruction algorithm 

was developed.  This approach aimed to recover just two parameters per 

node, the absorption and scattering coefficients and is based on 

measurements of absolute fluence which were calculated using the SP5 

approximation.  This approach was shown to recover optical property 

distributions with greater accuracy and less artefact than an equivalent model 

based on the DA. 

 In chapter 9, a novel SPN- DA hybrid model was presented.  Although a 

number of hybrid models have been developed to overcome the deficiencies 

of the DA, most of these required two independent steps in order to obtain a 

solution whereas the hybrid model presented here obtains results in a single 
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step.  The SPN model is used in the regions close to the sources and detectors 

where the DA is known to be less accurate and the DA is solved in the 

remaining regions.    It was shown, for a range of optical properties, that the 

hybrid model could produce data of similar accuracy to the full SP5 model 

whilst providing an increase in efficiency.  Due to the reduction in the size of 

the mass matrix, the inversion was completed up to 50% faster using the 

hybrid model.  At present, however, the process of linking the two regions is 

performed using a MATLAB loop.  As this is an inefficient process, the overall 

computation time for the hybrid is currently longer than for the full SP5 

model.  Re-writing the region linking algorithm in C, however, will 

drastically reduce the computation time and the true efficiency savings of the 

hybrid model will be seen. 

 The newly developed SPN models have been validated using Monte Carlo 

methods and have been compared to a previously validated DA model.  The 

image reconstruction algorithms were tested using noise-free data in order to 

observe the effects of the various forward models alone.  The sensitivity of the 

SPN approximation to noisy data has not yet been studied.   

The SPN approximation would be particularly applicable to the field of 

bioluminescent imaging in small animals.  Whereas the presented models 

have only been tested using sources located on the boundary, the aim of a 

bioluminescent imaging is to recover the distribution of internal light sources.  

It would be an interesting development to study the effects of the SPN based 

models on this problem. 
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 The SPN toolbox developed in this work has now been included in the 

latest release of the NIRFAST package which is freely downloadable 

(www.nirfast.org).  As NIRFAST currently has a wide user base, it is hoped 

that the SPN based models will be applied to a wide range of experimental 

studies. 
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Appendix A – Boundary Coefficients 
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Appendix B – SPN Code 

The code developed for the SP7 model is included.  The full NIRFAST toolbox, 

including the SPN based models, can be found at www.nirfast.org 

 
 
function [mesh] = load_mesh(fn,plotflag) 
 
% load_mesh NIRFAST mesh loading function 
%   mesh = load_mesh(fn) 
%   Loads meshes from specified root name fn 
%   Must contain *.nodes, *. elem, *.param 
%   Optional *.source, *.meas, *.link, *.region, *.excoeff 
%   Mesh can be either: 
%               standard 'stnd' 
%               Fluorescence 'fluor', 
%          spn 'stnd_spn', 
%               Spectral 'spec', 
%               Fluorescence Spectral 'spec_fluor' 
% 
%   mesh = load_mesh(fn,1) 
%   where the last argument is optional 
%   Plots boundary nodes and the location of sources and detectors 
 
 
% Set mesh name 
mesh.name = fn; 
 
%********************************************** 
%Read mesh nodes 
if exist([fn '.node']) == 0 
  disp([fn '.node file is not present']); 
  mesh = []; 
  return 
elseif exist([fn '.node']) == 2 
  [mesh.nodes] = myload([fn '.node']); 
  mesh.bndvtx = mesh.nodes(:,1); %sets 1 if boundary node, 0 if internal 
  mesh.nodes = mesh.nodes(:,2:end); 
end 
 
%********************************************** 
%Read mesh element 
if exist([fn '.elem']) == 0 
  disp([fn '.elem file is not present']); 
  mesh = []; 
  return 
elseif exist([fn '.elem']) == 2 
  mesh.elements = myload([fn '.elem']); 
  [junk,dim]=size(mesh.elements); 
  mesh.dimension = dim-1; 
  if mesh.dimension == 2 
    mesh.nodes(:,3) = 0; 
  end 
end 
 
%********************************************** 
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%Read appriopriate mesh parameters 
if exist([fn '.param']) == 0 
  disp([fn '.param file is not present']); 
  mesh = []; 
  return 
   
  % Loading up mesh parameters from fn.param 
elseif exist([fn '.param']) == 2 
   
  param = importdata([fn '.param']); 
  % Convert from Version 1 
  if isfield(param,'textdata') == 0 
    [junk,pa] = size(param); 
    % Convert old standard 
    if pa == 3 
      p.data = param; 
      p.textdata = cellstr('stnd'); 
      % Convert old Fluorescence 
    elseif pa == 8 
      p.data = param; 
      p.textdata = cellstr('fluor'); 
    else 
      disp('Error in *.param file'); 
      mesh = []; 
      return; 
    end 
    clear param; param = p; 
    clear pa junk p 
  end 
   
  if isfield(param,'textdata') == 1 
    % Load standard Nirfast Mesh 
    if strcmp(param.textdata(1,1),'stnd') == 1 
      mesh.type = 'stnd'; 
      param = param.data; 
      mesh.mua = param(:,1); 
      mesh.kappa = param(:,2); 
      mesh.ri = param(:,3); 
      mesh.mus = ((1./mesh.kappa)./3)-mesh.mua; 
       
    % Load standard Fluorfast Mesh 
    elseif strcmp(param.textdata(1,1),'fluor') == 1 
      mesh.type = 'fluor'; 
      param = param.data; 
      mesh.muax = param(:,1); 
      mesh.kappax = param(:,2); 
      mesh.musx = ((1./mesh.kappax)./3)-mesh.muax; 
      mesh.ri = param(:,3); 
      mesh.muam = param(:,4); 
      mesh.kappam = param(:,5); 
      mesh.musm = ((1./mesh.kappam)./3)-mesh.muam; 
      mesh.muaf =  param(:,6); 
      mesh.eta =  param(:,7); 
      mesh.tau =  param(:,8); 
      clear param 
       
    % Load SPN Mesh 
    elseif strcmp(param.textdata(1,1),'stnd_spn') == 1 
      mesh.type = 'stnd_spn'; 
      param = param.data; 
      mesh.mua = param(:,1); 
      mesh.mus = param(:,2); 
      mesh.g=param(:,3); 
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      mesh.ri = param(:,4); 
       
    % Load spectral Mesh 
    elseif strcmp(param.textdata(1,1),'spec') == 1 
      mesh.type = 'spec'; 
      mesh.chromscattlist = param.textdata(2:end,1); 
      % Get Scatter Amplitude 
      ind = find(strcmpi(mesh.chromscattlist,'S-Amplitude')); 
      if isempty(ind) 
 disp('Scatter Amplitude not present in *.param file') 
 mesh = []; 
 return 
      else 
 mesh.sa = param.data(:,ind); 
      end 
      % Get Scatter Power 
      ind = find(strcmpi(mesh.chromscattlist,'S-Power')); 
      if isempty(ind) 
 disp('Scatter Power not present in *.param file') 
 mesh = []; 
 return 
      else 
 mesh.sp = param.data(:,ind); 
      end 
      % Get Chromophore concentrations 
      mesh.conc = []; 
      k = 1; 
      for i = 1 : length(mesh.chromscattlist) 
 if strcmpi(mesh.chromscattlist(i),'S-Amplitude') == 0 & ... 
    strcmpi(mesh.chromscattlist(i),'S-Power') == 0 
   mesh.conc(:,k) = param.data(:,i); 
   k = k + 1; 
 end 
      end 
      clear k 
       
      % Get extintion coefficient values 
      if exist([fn '.excoef']) ~= 0 
 excoef = importdata([fn '.excoef']); 
      else 
 excoef = importdata('excoef.txt'); 
      end 
      mesh.wv = excoef.data(:,1); 
      k = 1; 
      for i = 1 : length(mesh.chromscattlist) 
 if strcmpi(mesh.chromscattlist(i),'S-Amplitude') == 0 & ... 
    strcmpi(mesh.chromscattlist(i),'S-Power') == 0 
   ind = find(strcmpi(excoef.textdata,mesh.chromscattlist(i,1))); 
   if isempty(ind) 
     disp(['The Chromophore ' char(mesh.chromscattlist(i,1)) ... 
    ' is not defined in extinction coefficient file']); 
     mesh = []; 
     return; 
   else 
     mesh.excoef(:,k) = excoef.data(:,ind+1); 
     k = k + 1; 
   end 
 end 
      end 
    end 
  end 
end 
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%********************************************** 
if exist([fn '.region']) ~= 0 
  region = myload([fn '.region']); 
  mesh.region = region; 
elseif exist([fn '.region']) ~= 2 
  mesh.region = zeros(length(mesh.nodes),1); 
end 
 
%********************************************** 
% Load source locations 
if exist([fn '.source']) == 0 
  disp([fn '.source file is not present']); 
elseif exist([fn '.source']) == 2 
  source = importdata([fn '.source']); 
  if isfield(source,'textdata') == 0 
    mesh.source.fixed = 0; 
    [ns,nc]=size(source); 
    if nc == mesh.dimension 
        mesh.source.fwhm = ones(ns,1).*3; 
        mesh.source.coord = source; 
    elseif nc == mesh.dimension+1 
        mesh.source.fwhm = source(:,mesh.dimension+1); 
        mesh.source.coord = source(:,1:mesh.dimension); 
    end 
    if strcmp(mesh.type,'stnd') == 1 
      mus_eff = mesh.mus; 
    elseif strcmp(mesh.type,'fluor') == 1 
      mus_eff = mesh.musx; 
    elseif strcmp(mesh.type,'spec') == 1 
      [mua,mus] = calc_mua_mus(mesh,mesh.wv(1)); 
      mus_eff = mus; 
      clear mua mus 
    end 
    disp('Moving Sources'); 
    [mesh]=move_source(mesh,mus_eff,3); 
  elseif isfield(source,'textdata') == 1 
    mesh.source.fixed = 1; 
    [ns,nc]=size(source.data); 
    if nc == mesh.dimension 
        mesh.source.coord = source.data; 
        mesh.source.fwhm = ones(ns,1).*0; 
    elseif nc == mesh.dimension+1 
        mesh.source.fwhm = source.data(:,mesh.dimension+1); 
        mesh.source.coord = source.data(:,1:mesh.dimension); 
    end 
    disp('Fixed Sources'); 
    if mesh.dimension == 2 
      [ind,int_func] = tsearchn(mesh.nodes(:,1:2),... 
  mesh.elements,... 
  mesh.source.coord(:,1:2)); 
    elseif mesh.dimension == 3 
      [ind,int_func] = tsearchn(mesh.nodes,... 
  mesh.elements,... 
  mesh.source.coord); 
    end 
    if any(isnan(ind)) == 1 
      disp('Sources outside mesh'); 
    end 
  end 
  clear source mus_eff 
end 
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%********************************************** 
% Load detector locations 
if exist([fn '.meas']) == 0 
  disp([fn '.meas file is not present']); 
elseif exist([fn '.meas']) == 2 
  meas = importdata([fn '.meas']); 
  if isfield(meas,'textdata') == 0 
    mesh.meas.fixed = 0; 
    mesh.meas.coord = meas; 
    disp('Moving Detectors'); 
    [mesh]=move_detector(mesh); 
  elseif isfield(meas,'textdata') == 1 
    mesh.meas.fixed = 1; 
    mesh.meas.coord = meas.data; 
    disp('Fixed Detectors'); 
    if mesh.dimension == 2 
      [ind,int_func] = tsearchn(mesh.nodes(:,1:2),... 
  mesh.elements,... 
  mesh.meas.coord(:,1:2)); 
    elseif mesh.dimension == 3 
      [ind,int_func] = tsearchn(mesh.nodes,... 
  mesh.elements,... 
  mesh.meas.coord); 
    end 
    if any(isnan(ind)) == 1 
      disp('Detectors outside mesh'); 
    else 
      mesh.meas.int_func = [ind int_func]; 
    end 
  end 
  clear meas 
end 
 
%********************************************** 
% Load link list for source and detector 
if exist([fn '.link']) == 0 
  disp([fn '.link file is not present']); 
elseif exist([fn '.link']) == 2 
  mesh.link = myload([fn '.link']); 
end 
 
%********************************************** 
% Load identidity list if exists for the internal RI boundary nodes 
if exist([fn '.ident']) == 2 
  mesh.ident = myload([fn '.ident']); 
end 
 
%********************************************** 
% speed of light in medium 
% If a spectral mesh, assume Refractive index = 1.33 
if strcmp(mesh.type,'spec') == 1 
  mesh.ri = ones(length(mesh.nodes),1).*1.33; 
end 
mesh.c=(3e11./mesh.ri); 
 
% Set boundary coefficient using definition of A using the Fresenel's law: 
if strcmp(mesh.type,'stnd_spn') ~= 1 
  f=0.9; 
  Ro=((mesh.ri-1).^2)./((mesh.ri+1).^2); 
  thetac=asin(1./mesh.ri); 
  cos_theta_c=abs(cos(asin(1./mesh.ri))); 
  A=((2./(1-Ro)) - 1 + cos_theta_c.^3) ./ (1 - cos_theta_c.^2); 
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  mesh.ksi=1./(2*A); 
end 
 
%********************************************** 
% area of each element 
if mesh.dimension == 2 
  mesh.element_area = ele_area_c(mesh.nodes(:,1:2),... 
   mesh.elements); 
  mesh.support = mesh_support(mesh.nodes(:,1:2),... 
       mesh.elements,... 
       mesh.element_area); 
elseif  mesh.dimension == 3 
  mesh.element_area = ele_area_c(mesh.nodes,mesh.elements); 
  mesh.support = mesh_support(mesh.nodes,... 
       mesh.elements,... 
       mesh.element_area); 
end 
 
%********************************************** 
if nargin == 1 
  plotflag = 0; 
end 
if plotflag == 1 % will plot source/detector positions 
  figure; 
  ind = find(mesh.bndvtx==1); 
  if mesh.dimension == 2 
    plot(mesh.source.coord(:,1),... 
  mesh.source.coord(:,2),'ro','LineWidth',2,'MarkerSize',8); 
    hold on; 
    plot(mesh.meas.coord(:,1),... 
  mesh.meas.coord(:,2),'bx','LineWidth',2,'MarkerSize',8); 
    plot(mesh.nodes(ind,1),mesh.nodes(ind,2),'c.'); 
    axis equal; 
    legend('Source','Detector'); 
  elseif mesh.dimension == 3 
    plot3(mesh.source.coord(:,1),... 
   mesh.source.coord(:,2),... 
   mesh.source.coord(:,3),'ro',... 
   'LineWidth',2,'MarkerSize',8); 
    hold on; 
    plot3(mesh.meas.coord(:,1),... 
   mesh.meas.coord(:,2),... 
   mesh.meas.coord(:,3),'bx',... 
   'LineWidth',2,'MarkerSize',8); 
    plot3(mesh.nodes(ind,1),... 
   mesh.nodes(ind,2),... 
   mesh.nodes(ind,3),'c.'); 
    axis equal; 
    legend('Source','Detector'); 
  end 
end 

 

function [data,mesh]=femdata_sp7(mesh,frequency) 
 
% [data,mesh]=femdata_sp7(mesh,frequency) 
% Calculates boundary data (phase and amplitude) for  
% each complex moment of fluence (eq. 7.11) and total fluence 
% for a given spn mesh at a given frequency (MHz). 
% outputs phase and amplitude in structure data 
% and mesh information in mesh 
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% If not a workspace variable, load mesh 
if ischar(mesh)== 1 
  mesh = load_mesh(mesh); 
end 
 
% modulation frequency 
omega = 2*pi*frequency*1e6; 
nvtx=length(mesh.nodes); 
 
% Calculate boundary coefficients 
[f1,f2,f3,f4,g1,g2,g3,g4,h1,h2,h3,h4,i1,i2,i3,i4] = ksi_calc_sp7(mesh); 
 
% Create FEM matrices 
if mesh.dimension==2 
 
  [i,j,k1,k3,k5,k7,c,c23,c49,c64,c8,c16,c32,c128,c256,c2_59,c2_16,c2_49,... 
    c2_8,c2_32,c2_64,c4_9,c4_54,c4_324,c6_13,B,F1,F2,F3,F4,G1,G2,G3,G4,... 
    H1,H2,H3,H4,I1,I2,I3,I4,ib,jb]=gen_matrices_2d_sp7(mesh.nodes(:,1:2),... 
    sort(mesh.elements')',... 
    mesh.bndvtx,... 
    mesh.mua,... 
    mesh.mus,... 
    mesh.g,... 
    f1,... 
    f2,... 
    f3,... 
    f4,... 
    g1,... 
    g2,... 
    g3,... 
    g4,... 
    h1,... 
    h2,... 
    h3,... 
    h4,... 
    i1,... 
    i2,... 
    i3,... 
    i4,... 
    mesh.c,... 
    omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
K7= sparse(i(1:nz_i),j(1:nz_i),k7(1:nz_i)); 
C = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23 = sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49 = sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64 = sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
C16 = sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C32 = sparse(i(1:nz_i),j(1:nz_i),c32(1:nz_i)); 
C128 = sparse(i(1:nz_i),j(1:nz_i),c128(1:nz_i)); 
C256 = sparse(i(1:nz_i),j(1:nz_i),c256(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
C2_8 = sparse(i(1:nz_i),j(1:nz_i),c2_8(1:nz_i)); 
C2_32 = sparse(i(1:nz_i),j(1:nz_i),c2_32(1:nz_i)); 
C2_64 = sparse(i(1:nz_i),j(1:nz_i),c2_64(1:nz_i)); 
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C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
C4_54 = sparse(i(1:nz_i),j(1:nz_i),c4_54(1:nz_i)); 
C4_324 = sparse(i(1:nz_i),j(1:nz_i),c4_324(1:nz_i)); 
C6_13 = sparse(i(1:nz_i),j(1:nz_i),c6_13(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
 
[i,j]=size(C); 
nz_i = length(nonzeros(ib)); 
F1 = sparse(ib(1:nz_i),jb(1:nz_i),F1(1:nz_i)); 
F2 = sparse(ib(1:nz_i),jb(1:nz_i),F2(1:nz_i)); 
F3 = sparse(ib(1:nz_i),jb(1:nz_i),F3(1:nz_i)); 
F4 = sparse(ib(1:nz_i),jb(1:nz_i),F4(1:nz_i)); 
G1 = sparse(ib(1:nz_i),jb(1:nz_i),G1(1:nz_i)); 
G2 = sparse(ib(1:nz_i),jb(1:nz_i),G2(1:nz_i)); 
G3 = sparse(ib(1:nz_i),jb(1:nz_i),G3(1:nz_i)); 
G4 = sparse(ib(1:nz_i),jb(1:nz_i),G4(1:nz_i)); 
H1 = sparse(ib(1:nz_i),jb(1:nz_i),H1(1:nz_i)); 
H2 = sparse(ib(1:nz_i),jb(1:nz_i),H2(1:nz_i)); 
H3 = sparse(ib(1:nz_i),jb(1:nz_i),H3(1:nz_i)); 
H4 = sparse(ib(1:nz_i),jb(1:nz_i),H4(1:nz_i)); 
I1 = sparse(ib(1:nz_i),jb(1:nz_i),I1(1:nz_i)); 
I2 = sparse(ib(1:nz_i),jb(1:nz_i),I2(1:nz_i)); 
I3 = sparse(ib(1:nz_i),jb(1:nz_i),I3(1:nz_i)); 
I4 = sparse(ib(1:nz_i),jb(1:nz_i),I4(1:nz_i)); 
     
elseif mesh.dimension==3 
  [i,j,k1,k3,k5,k7,c,c23,c49,c64,c8,c16,c32,c128,c256,c2_59,c2_16,c2_49,... 
    c2_8,c2_32,c2_64,c4_9,c4_54,c4_324,c6_13,B,F1,F2,F3,F4,G1,G2,G3,G4,... 
    H1,H2,H3,H4,I1,I2,I3,I4,ib,jb]=gen_matrices_3d_sp7(mesh.nodes,... 
    sort(mesh.elements')',... 
    mesh.bndvtx,... 
    mesh.mua,... 
    mesh.mus,... 
    mesh.g,... 
    f1,... 
    f2,... 
    f3,... 
    f4,... 
    g1,... 
    g2,... 
    g3,... 
    g4,... 
    h1,... 
    h2,... 
    h3,... 
    h4,... 
    i1,... 
    i2,... 
    i3,... 
    i4,... 
    mesh.c,... 
   omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
K7= sparse(i(1:nz_i),j(1:nz_i),k7(1:nz_i)); 
C = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23 = sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49 = sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64 = sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
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C16 = sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C32 = sparse(i(1:nz_i),j(1:nz_i),c32(1:nz_i)); 
C128 = sparse(i(1:nz_i),j(1:nz_i),c128(1:nz_i)); 
C256 = sparse(i(1:nz_i),j(1:nz_i),c256(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
C2_8 = sparse(i(1:nz_i),j(1:nz_i),c2_8(1:nz_i)); 
C2_32 = sparse(i(1:nz_i),j(1:nz_i),c2_32(1:nz_i)); 
C2_64 = sparse(i(1:nz_i),j(1:nz_i),c2_64(1:nz_i)); 
C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
C4_54 = sparse(i(1:nz_i),j(1:nz_i),c4_54(1:nz_i)); 
C4_324 = sparse(i(1:nz_i),j(1:nz_i),c4_324(1:nz_i)); 
C6_13 = sparse(i(1:nz_i),j(1:nz_i),c6_13(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
F1 = sparse(i(1:nz_i),j(1:nz_i),F1(1:nz_i)); 
F2 = sparse(i(1:nz_i),j(1:nz_i),F2(1:nz_i)); 
F3 = sparse(i(1:nz_i),j(1:nz_i),F3(1:nz_i)); 
F4 = sparse(i(1:nz_i),j(1:nz_i),F4(1:nz_i)); 
G1 = sparse(i(1:nz_i),j(1:nz_i),G1(1:nz_i)); 
G2 = sparse(i(1:nz_i),j(1:nz_i),G2(1:nz_i)); 
G3 = sparse(i(1:nz_i),j(1:nz_i),G3(1:nz_i)); 
G4 = sparse(i(1:nz_i),j(1:nz_i),G4(1:nz_i)); 
H1 = sparse(i(1:nz_i),j(1:nz_i),H1(1:nz_i)); 
H2 = sparse(i(1:nz_i),j(1:nz_i),H2(1:nz_i)); 
H3 = sparse(i(1:nz_i),j(1:nz_i),H3(1:nz_i)); 
H4 = sparse(i(1:nz_i),j(1:nz_i),H4(1:nz_i)); 
I1 = sparse(i(1:nz_i),j(1:nz_i),I1(1:nz_i)); 
I2 = sparse(i(1:nz_i),j(1:nz_i),I2(1:nz_i)); 
I3 = sparse(i(1:nz_i),j(1:nz_i),I3(1:nz_i)); 
I4 = sparse(i(1:nz_i),j(1:nz_i),I4(1:nz_i)); 
 
end 
 
clear i* j* k* c* omega nz_i  
 
% Add complex component to absorption moments due to  
% frequency dependence 
C=C+B; 
C23=C23+B; 
C49=C49+B; 
C64=C64+B; 
C8=C8+B; 
C16=C16+B; 
C32=C32 +B; 
C128 = C128+B; 
C256=C256+B; 
C2_59=C2_59+B; 
C2_16=C2_16+B; 
C2_49=C2_49+B; 
C2_8=C2_8+B; 
C2_32=C2_32+B; 
C2_64=C2_64+B; 
C4_9=C4_9+B; 
C4_54 = C4_54+B; 
C4_324 = C4_324+B; 
C6_13 = C6_13+B; 
 
M1=K1+C+F1; 
M2=K3+C49+C2_59+F2; 
M3=K5+C64+C2_16+C4_9+F3; 
M4=K7+C256+C2_64+C4_324+C6_13+F4; 
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%========================================== 
 
if isfield(mesh,'ident') == 1 
  disp('Modifying for refractive index') 
  M = bound_int(MASS,mesh); 
  MASS = M; 
  clear M 
end 
 
% Now calculate source vector 
% NOTE last term in mex file 'qvec' is the source FWHM 
[nnodes,junk]=size(mesh.nodes); 
[nsource,junk]=size(mesh.source.coord); 
qvec = spalloc(nnodes,nsource,nsource*100); 
if mesh.dimension == 2 
  for i = 1 : nsource 
    if mesh.source.fwhm(i) == 0 
        qvec(:,i) = gen_source_point(mesh,mesh.source.coord(i,1:2)); 
    else 
      qvec(:,i) = gen_source(mesh.nodes(:,1:2),... 
    sort(mesh.elements')',... 
    mesh.dimension,... 
    mesh.source.coord(i,1:2),... 
    mesh.source.fwhm(i)); 
    end 
  end 
elseif mesh.dimension == 3 
  for i = 1 : nsource 
    if mesh.source.fwhm(i) == 0 
        qvec(:,i) = gen_source_point(mesh,mesh.source.coord(i,1:3)); 
    else 
    qvec(:,i) = gen_source(mesh.nodes,... 
    sort(mesh.elements')',... 
    mesh.dimension,... 
    mesh.source.coord(i,:),... 
    mesh.source.fwhm(i)); 
    end 
  end 
end 
 
% Build Source term 
qvec=[qvec;(-2/3)*qvec;(8/15)*qvec;(-16/35)*qvec]; 
 
% Build system matrix eq. 7.23 
MASS=[M1 -(C23-G1) +(C8-H1) -(C16-I1);... 
     -(C23-G2) M2 -(C16-C2_49-H2) (C32+C2_8-I2);... 
     (C8-G3) -(C16+C2_49-H3) M3 -(C128+C2_32+C4_54-I3);... 
     (-C16-G4) (C32+C2_8-H4) -(C128+C2_32+C4_54-I4) M4]; 
 
% ====================================== 
% Optimise MASS matrix 
[MASS_opt,Q_opt,invsort]=optimise(MASS,qvec);  
 
%======================================= 
 
% Calculate fluence 
phi_all=get_field(MASS_opt,mesh,Q_opt); 
 
% Re-order elements 
phi_all=phi_all(invsort,:); 
 
% Extract complex moments of fluence 
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data.phi1=phi_all(1:nvtx,:); 
data.phi2=phi_all((nvtx+1):(2*nvtx),:); 
data.phi3=phi_all(((2*nvtx)+1):3*nvtx,:); 
data.phi4=phi_all(((3*nvtx)+1):4*nvtx,:); 
 
% Calculate total fluence 
data.phi = data.phi1 - (2/3).*data.phi2+... 
        (8/15).*data.phi3-(16/35).*data.phi4; 
clear phi* 
 
% Calculate boundary data 
[data.complex1]=get_boundary_data(mesh,data.phi1); 
[data.complex2]=get_boundary_data(mesh,data.phi2); 
[data.complex3]=get_boundary_data(mesh,data.phi3); 
[data.complex4]=get_boundary_data(mesh,data.phi4); 
[data.complex]=get_boundary_data(mesh,data.phi); 
 
% Map complex data to amplitude and phase 
 
% Phi 1 
data.amplitude1 = abs(data.complex1); 
data.phase1 = atan2(imag(data.complex1),... 
     real(data.complex1)); 
data.phase1(find(data.phase1<0)) = data.phase1(find(data.phase1<0)) + (2*pi); 
data.phase1 = data.phase1*180/pi; 
data.paa1 = [data.amplitude1 data.phase1]; 
 
% Phi 2 
data.amplitude2 = abs(data.complex2); 
data.phase2 = atan2(imag(data.complex2),... 
     real(data.complex2)); 
data.phase2(find(data.phase2<0)) = data.phase2(find(data.phase2<0)) + (2*pi); 
data.phase2 = data.phase2*180/pi; 
data.paa2 = [data.amplitude2 data.phase2]; 
 
% Phi 3 
data.amplitude3 = abs(data.complex3); 
data.phase3 = atan2(imag(data.complex3),... 
     real(data.complex3)); 
data.phase3(find(data.phase3<0)) = data.phase3(find(data.phase3<0)) + (2*pi); 
data.phase3 = data.phase3*180/pi; 
data.paa3 = [data.amplitude3 data.phase3]; 
 
% Phi 4 
data.amplitude4 = abs(data.complex4); 
data.phase4 = atan2(imag(data.complex4),... 
     real(data.complex4)); 
data.phase4(find(data.phase4<0)) = data.phase4(find(data.phase4<0)) + (2*pi); 
data.phase4 = data.phase4*180/pi; 
data.paa4 = [data.amplitude4 data.phase4]; 
 
% Total 
data.amplitude = abs(data.complex); 
data.phase = atan2(imag(data.complex),... 
     real(data.complex)); 
data.phase(find(data.phase<0)) = data.phase(find(data.phase<0)) + (2*pi); 
data.phase = data.phase*180/pi; 
data.paa = [data.amplitude data.phase]; 
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gen_matrices.c  
 
calculates  FEM matrices.  Implemented in c for efficiency and compiled within MATLAB. 
 
#include <stdio.h> 
#include <math.h> 
#include <mex.h> 
double gradphi(double g[3][2], double kappa[3], double val[3][3]); 
double phidotphi(double g[3][2], double mua[3], double val[3][3]); 
double boundary_int(double g[3][2], double bnd_index[3], 
      double ksir[3], double valr[2][2]); 
double bound2(double g[2][2], int il, int im, double ksir[2], double *val); 
 
/* -------- Heart of the mex file----------- */ 
/* Define variables to be used:  f – i relate to boundary conditions, k_n are diffusion terms, */ 
/* C_n are various orders and fractions of absorption coefficient */ 
 
void mainloop(double *nodes, 
       double *elements, double *bndvtx, 
       double *mua,double *mus, 
       double *g,double *f1, 
       double *f2,double *f3, 
double *f4, 
double *g1, 
double *g2, 
double *g3, 
double *g4, 
double *h1, 
double *h2, 
double *h3, 
double *h4, 
double *i1, 
double *i2, 
double *i3, 
double *i4, 
double *c,double *omega, 
int nodem, 
int noden, 
int elemm, 
int elemn, 
double *I, 
double *J, 
double *K1, 
double *K3, 
double *K5, 
double *K7, 
double *C, 
double *C23, 
double *C49,double *C64, 
double *C8, 
double *C16, 
double *C32, 
double *C128, 
double *C256, 
double *C2_59, 
double *C2_16, 
double *C2_49, 
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double *C2_8, 
double *C2_32, 
double *C2_64, 
double *C4_9, 
double *C4_54, 
double *C4_324, 
double *C6_13, 
double *B, 
double *F1, 
double *F2, 
double *F3, 
double *F4, 
double *G1, 
double *G2, 
double *G3, 
double *G4, 
double *H1, 
double *H2, 
double *H3, 
double *H4, 
double *I1, 
double *I2, 
double *I3, 
double *I4, 
double *X, 
double *Y 
) 
 
{ 
    int ele, i, j, index[3], k,b; 
    double indextmp, tri_vtx[3][2]; 
    double bnd_index[3], kappa1_index[3], kappa3_index[3],kappa5_index[3], 
kappa7_index[3]; 
    double mus_index[3], g_index[3]; 
    double c_index[3], mua_index[3],mua2_59_index[3], mua23_index[3],mua49_index[3]; 
    double mua64_index[3], 
mua8_index[3],mua16_index[3],mua32_index[3],mua128_index[3],mua256_index[3]; 
    double 
mua2_16_index[3],mua2_49_index[3],mua2_8_index[3],mua2_32_index[3],mua2_64_index[3]; 
    double mua4_9_index[3],mua4_54_index[3],mua4_324_index[3],mua6_13_index[3]; 
    double 
f1_index[3],f2_index[3],f3_index[3],f4_index[3],g1_index[3],g2_index[3],g3_index[3],g4_index
[3]; 
    double 
h1_index[3],h2_index[3],h3_index[3],h4_index[3],i1_index[3],i2_index[3],i3_index[3],i4_index
[3]; 
 
    double k1_val[3][3],k3_val[3][3], k5_val[3][3],k7_val[3][3],b_val[3][3]; 
    double c_val[3][3],c23_val[3][3],c49_val[3][3],c64_val[3][3],c8_val[3][3],c16_val[3][3]; 
    double c32_val[3][3],c128_val[3][3],c256_val[3][3]; 
    double c2_59_val[3][3], 
c2_49_val[3][3],c2_8_val[3][3],c2_16_val[3][3],c2_32_val[3][3],c2_64_val[3][3]; 
    double c4_9_val[3][3],c4_54_val[3][3],c4_324_val[3][3],c6_13_val[3][3]; 
    double f1_valr[2][2], f2_valr[2][2],f3_valr[2][2],f4_valr[2][2]; 
    double g1_valr[2][2], g2_valr[2][2],g3_valr[2][2],g4_valr[2][2]; 
    double h1_valr[2][2], h2_valr[2][2],h3_valr[2][2],h4_valr[2][2]; 
    double i1_valr[2][2], i2_valr[2][2],i3_valr[2][2],i4_valr[2][2]; 
     
/* For each element, calculate optical properties at nodes */ 
 
    k = 0; 
    for (ele=0; ele<elemm; ++ele){ 
        for (i=0; i<elemn; ++i){ 
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            indextmp = *(elements+(ele+(i*elemm))); 
            index[i] = indextmp; 
        } 
         
        for (i=0; i<elemn; ++i){ 
            mua_index[i] = *(mua+(index[i]-1)); 
            mus_index[i] = *(mus+(index[i]-1)); 
            g_index[i] = *(g+(index[i]-1)); 
            mua23_index[i] = (2./3.)*mua_index[i]; 
            mua49_index[i] = (4./9.)*mua_index[i]; 
            mua64_index[i] = (64./225.)*mua_index[i]; 
            mua8_index[i] = (8./15.)*mua_index[i]; 
            mua16_index[i] = (16./45.)*mua_index[i]; 
            mua32_index[i] = (32./105.)*mua_index[i]; 
            mua128_index[i]= (128./525.)*mua_index[i]; 
            mua256_index[i]= (256./1225.)*mua_index[i]; 
            mua2_59_index[i] = (5./9.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i]))); 
            mua2_16_index[i] = (16./45.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i]))); 
            mua2_49_index[i] = (4./9.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i])));    
            mua2_8_index[i]=(8./21.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i])));    
            mua2_32_index[i]=(32./105.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i])));    
            mua2_64_index[i]=(64./245.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i])));    
            mua4_9_index[i] = (9./25.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i]*g_index[i]*g_index[i])));    
            mua4_54_index[i]=(54./175.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i]*g_index[i]*g_index[i])));    
            mua4_324_index[i]=(324./1225.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i]*g_index[i]*g_index[i])));    
            mua6_13_index[i] = (13./49.)*((mua_index[i]+mus_index[i])-
(mus_index[i]*(g_index[i]*g_index[i]*g_index[i]*g_index[i]*g_index[i]*g_index[i])));   
            kappa1_index[i] = (1./(3.*((mua_index[i]+mus_index[i])-(mus_index[i]*g_index[i])))); 
            kappa3_index[i] = (1./(7.*((mua_index[i]+mus_index[i])-
(mus_index[i]*g_index[i]*g_index[i]*g_index[i])))); 
            kappa5_index[i] = (1./(11.*((mua_index[i]+mus_index[i])-
(mus_index[i]*g_index[i]*g_index[i]*g_index[i]*g_index[i]*g_index[i])))); 
            kappa7_index[i] = (1./(15.*((mua_index[i]+mus_index[i])-
(mus_index[i]*g_index[i]*g_index[i]*g_index[i]*g_index[i]*g_index[i])))); 
             
c_index[i] = *omega / *(c+(index[i]-1)) * -1; 
             
            for (j=0; j<noden; ++j){ 
                tri_vtx[i][j] = *(nodes+(index[i]-1+(j*nodem))); 
            } 
             
        } 
         
  /* Apply shape functions to each variable*/ 
        gradphi(tri_vtx,kappa1_index,k1_val); 
        gradphi(tri_vtx,kappa3_index,k3_val); 
        gradphi(tri_vtx,kappa5_index,k5_val); 
     gradphi(tri_vtx,kappa7_index,k7_val); 
        phidotphi(tri_vtx,mua_index,c_val); 
        phidotphi(tri_vtx,mua23_index,c23_val); 
        phidotphi(tri_vtx,mua49_index,c49_val); 
        phidotphi(tri_vtx,mua64_index,c64_val);         
        phidotphi(tri_vtx,mua8_index,c8_val);         
        phidotphi(tri_vtx,mua16_index,c16_val); 
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        phidotphi(tri_vtx,mua32_index,c32_val); 
        phidotphi(tri_vtx,mua128_index,c128_val); 
        phidotphi(tri_vtx,mua256_index,c256_val); 
        phidotphi(tri_vtx,mua2_59_index,c2_59_val); 
        phidotphi(tri_vtx,mua2_16_index,c2_16_val); 
        phidotphi(tri_vtx,mua2_49_index,c2_49_val); 
        phidotphi(tri_vtx,mua2_8_index,c2_8_val); 
        phidotphi(tri_vtx,mua2_32_index,c2_32_val); 
        phidotphi(tri_vtx,mua2_64_index,c2_64_val); 
        phidotphi(tri_vtx,mua4_9_index,c4_9_val);         
        phidotphi(tri_vtx,mua4_54_index,c4_54_val);   
        phidotphi(tri_vtx,mua4_324_index,c4_324_val);   
        phidotphi(tri_vtx,mua6_13_index,c6_13_val);   
        phidotphi(tri_vtx,c_index,b_val); 
         
/* Add element contribution to Mass matrix */ 
         
        for (i=0; i<3; ++i){ 
            for (j=0; j<3; ++j){ 
                I[k] = index[i]; 
                J[k] = index[j]; 
                K1[k] = k1_val[j][i]; 
                K3[k] = k3_val[j][i]; 
                K5[k] = k5_val[j][i]; 
        K7[k] = k7_val[j][i]; 
                C[k] = c_val[j][i];                 
                C23[k] = c23_val[j][i]; 
                C49[k] = c49_val[j][i]; 
                C64[k] = c64_val[j][i]; 
                C8[k] = c8_val[j][i]; 
                C16[k] = c16_val[j][i];   
                C32[k] = c32_val[j][i];   
                C128[k] = c128_val[j][i];   
                C256[k] = c256_val[j][i];   
                C2_59[k] = c2_59_val[j][i]; 
                C2_16[k] = c2_16_val[j][i]; 
                C2_49[k] = c2_49_val[j][i];                 
                C2_8[k] = c2_8_val[j][i]; 
                C2_32[k] = c2_32_val[j][i]; 
                C2_64[k] = c2_64_val[j][i]; 
                C4_9[k] = c4_9_val[j][i]; 
                C4_54[k] = c4_54_val[j][i]; 
                C4_324[k] = c4_324_val[j][i]; 
                C6_13[k] = c6_13_val[j][i]; 
                B[k]= b_val[j][i]; 
                ++k; 
            } 
        } 
    } 
     
/* Calculate contribution to boundary conditions for each element */ 
    k = 0; 
    for (ele=0; ele<elemm; ++ele){ 
        for (i=0; i<elemn; ++i){ 
            indextmp = *(elements+(ele+(i*elemm))); 
            index[i] = indextmp; 
        } 
        for (i=0; i<elemn; ++i){ 
            bnd_index[i] = *(bndvtx+(index[i]-1)); 
            f1_index[i] = *(f1+(index[i]-1)); 
            f2_index[i] = *(f2+(index[i]-1)); 
            f3_index[i] = *(f3+(index[i]-1)); 
            f4_index[i] = *(f4+(index[i]-1)); 
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            g1_index[i] = *(g1+(index[i]-1)); 
            g2_index[i] = *(g2+(index[i]-1)); 
            g3_index[i] = *(g3+(index[i]-1)); 
            g4_index[i] = *(g4+(index[i]-1));             
            h1_index[i] = *(h1+(index[i]-1)); 
            h2_index[i] = *(h2+(index[i]-1)); 
            h3_index[i] = *(h3+(index[i]-1)); 
            h4_index[i] = *(h4+(index[i]-1)); 
            i1_index[i] = *(i1+(index[i]-1)); 
            i2_index[i] = *(i2+(index[i]-1)); 
            i3_index[i] = *(i3+(index[i]-1)); 
            i4_index[i] = *(i4+(index[i]-1)); 
             
            for (j=0; j<noden; ++j){ 
                tri_vtx[i][j] = *(nodes+(index[i]-1+(j*nodem))); 
            } 
        } 
        if (bnd_index[0]+bnd_index[1]+bnd_index[2] != 0){ 
             
            boundary_int(tri_vtx, bnd_index, f1_index, f1_valr); 
            boundary_int(tri_vtx, bnd_index, f2_index, f2_valr); 
            boundary_int(tri_vtx, bnd_index, f3_index, f3_valr); 
            boundary_int(tri_vtx, bnd_index, f4_index, f4_valr); 
            boundary_int(tri_vtx, bnd_index, g1_index, g1_valr); 
            boundary_int(tri_vtx, bnd_index, g2_index, g2_valr); 
            boundary_int(tri_vtx, bnd_index, g3_index, g3_valr); 
            boundary_int(tri_vtx, bnd_index, g4_index, g4_valr); 
            boundary_int(tri_vtx, bnd_index, h1_index, h1_valr); 
            boundary_int(tri_vtx, bnd_index, h2_index, h2_valr); 
            boundary_int(tri_vtx, bnd_index, h3_index, h3_valr);             
            boundary_int(tri_vtx, bnd_index, h4_index, h4_valr); 
            boundary_int(tri_vtx, bnd_index, i1_index, i1_valr); 
            boundary_int(tri_vtx, bnd_index, i2_index, i2_valr); 
            boundary_int(tri_vtx, bnd_index, i3_index, i3_valr);             
            boundary_int(tri_vtx, bnd_index, i4_index, i4_valr);             
 
/* Add contribution to system Boundary Condition matrix depending on which nodes are on 
boundary*/ 
 
            if (bnd_index[0]==1 && bnd_index[2]==1){ 
                int index1[2]; 
                index1[0] = index[0]; 
                index1[1] = index[2]; 
                for (i=0; i<2; ++i){ 
                    for (j=0; j<=i; ++j){ 
                        X[k] = index1[i]; 
                        Y[k] = index1[j]; 
                        F1[k] = f1_valr[i][j]; 
                        F2[k] = f2_valr[i][j]; 
                        F3[k] = f3_valr[i][j]; 
                        F4[k] = f4_valr[i][j]; 
                        G1[k] = g1_valr[i][j]; 
                        G2[k] = g2_valr[i][j]; 
                        G3[k] = g3_valr[i][j]; 
                        G4[k] = g4_valr[i][j]; 
                        H1[k] = h1_valr[i][j]; 
                        H2[k] = h2_valr[i][j]; 
                        H3[k] = h3_valr[i][j]; 
                        H4[k] = h4_valr[i][j]; 
                        I1[k] = i1_valr[i][j]; 
                        I2[k] = i2_valr[i][j]; 
                        I3[k] = i3_valr[i][j]; 
                        I4[k] = i4_valr[i][j];                 
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                        ++k; 
                    } 
                } 
            } 
            else if (bnd_index[0]==1 && bnd_index[1]==1){ 
                int index1[2]; 
                index1[0] = index[0]; 
                index1[1] = index[1]; 
                for (i=0; i<2; ++i){ 
                    for (j=0; j<=i; ++j){ 
                        X[k] = index1[i]; 
                        Y[k] = index1[j]; 
                        F1[k] = f1_valr[i][j]; 
                        F2[k] = f2_valr[i][j]; 
                        F3[k] = f3_valr[i][j]; 
                        F4[k] = f4_valr[i][j]; 
                        G1[k] = g1_valr[i][j]; 
                        G2[k] = g2_valr[i][j]; 
                        G3[k] = g3_valr[i][j]; 
                        G4[k] = g4_valr[i][j]; 
                        H1[k] = h1_valr[i][j]; 
                        H2[k] = h2_valr[i][j]; 
                        H3[k] = h3_valr[i][j]; 
                        H4[k] = h4_valr[i][j]; 
                        I1[k] = i1_valr[i][j]; 
                        I2[k] = i2_valr[i][j]; 
                        I3[k] = i3_valr[i][j]; 
                        I4[k] = i4_valr[i][j]; 
                        ++k; 
                    } 
                } 
            } 
            else if (bnd_index[1]==1 && bnd_index[2]==1){ 
                int index1[2]; 
                index1[0] = index[1]; 
                index1[1] = index[2]; 
                for (i=0; i<2; ++i){ 
                    for (j=0; j<=i; ++j){ 
                        X[k] = index1[i]; 
                        Y[k] = index1[j]; 
                        F1[k] = f1_valr[i][j]; 
                        F2[k] = f2_valr[i][j]; 
                        F3[k] = f3_valr[i][j]; 
                        F4[k] = f4_valr[i][j]; 
                        G1[k] = g1_valr[i][j]; 
                        G2[k] = g2_valr[i][j]; 
                        G3[k] = g3_valr[i][j]; 
                        G4[k] = g4_valr[i][j]; 
                        H1[k] = h1_valr[i][j]; 
                        H2[k] = h2_valr[i][j]; 
                        H3[k] = h3_valr[i][j]; 
                        H4[k] = h4_valr[i][j]; 
                        I1[k] = i1_valr[i][j]; 
                        I2[k] = i2_valr[i][j]; 
                        I3[k] = i3_valr[i][j]; 
                        I4[k] = i4_valr[i][j]; 
                        ++k; 
                    } 
                } 
            }    
        } 
    } 
 



217 

 
 
return; 
} 
 
/* Shape function for diffusion terms */ 
double gradphi(double g[3][2], double kappa[3], double val[3][3]) 
{ 
    int ii, jj; 
    static int L[2][3] = {{-1.0,1.0,0.0}, \ 
{-1.0,0.0,1.0}}; 
static double w[3] = {1.0/6.0,1.0/6.0,1.0/6.0}; 
static double ip[3][2] = {{1.0/2.0,0.0},{1.0/2.0,1.0/2.0},{0.0,1.0/2.0}}; 
double Jt[2][2], dJt, iJt[2][2], S[3], G[2][3], GG[3][3], tmp; 
double x0 = g[0][0]; double x1 = g[1][0]; 
double x2 = g[2][0]; 
double y0 = g[0][1]; double y1 = g[1][1]; 
double y2 = g[2][1]; 
double k0 = kappa[0]; double k1 = kappa[1]; 
double k2 = kappa[2]; 
 
Jt[0][0] = L[0][0]*x0 + L[0][1]*x1 + L[0][2]*x2; 
Jt[0][1] = L[0][0]*y0 + L[0][1]*y1 + L[0][2]*y2; 
 Jt[1][0] = L[1][0]*x0 + L[1][1]*x1 + L[1][2]*x2; 
Jt[1][1] = L[1][0]*y0 + L[1][1]*y1 + L[1][2]*y2; 
 
dJt = (Jt[0][0]*Jt[1][1]) - (Jt[0][1]*Jt[1][0]); 
 
iJt[0][0] = +(Jt[1][1])/dJt; 
iJt[0][1] = -(Jt[0][1])/dJt; 
iJt[1][0] = -(Jt[1][0])/dJt; 
iJt[1][1] = +(Jt[0][0])/dJt; 
 
dJt = sqrt(dJt*dJt); 
 
G[0][0] = iJt[0][0]*L[0][0] + iJt[0][1]*L[1][0]; 
G[0][1] = iJt[0][0]*L[0][1] + iJt[0][1]*L[1][1]; 
G[0][2] = iJt[0][0]*L[0][2] + iJt[0][1]*L[1][2]; 
G[1][0] = iJt[1][0]*L[0][0] + iJt[1][1]*L[1][0]; 
G[1][1] = iJt[1][0]*L[0][1] + iJt[1][1]*L[1][1]; 
G[1][2] = iJt[1][0]*L[0][2] + iJt[1][1]*L[1][2]; 
 
GG[0][0] = G[0][0]*G[0][0] + G[1][0]*G[1][0]; 
GG[0][1] = G[0][0]*G[0][1] + G[1][0]*G[1][1]; 
GG[0][2] = G[0][0]*G[0][2] + G[1][0]*G[1][2]; 
GG[1][0] = G[0][1]*G[0][0] + G[1][1]*G[1][0]; 
GG[1][1] = G[0][1]*G[0][1] + G[1][1]*G[1][1]; 
GG[1][2] = G[0][1]*G[0][2] + G[1][1]*G[1][2]; 
GG[2][0] = G[0][2]*G[0][0] + G[1][2]*G[1][0]; 
GG[2][1] = G[0][2]*G[0][1] + G[1][2]*G[1][1]; 
GG[2][2] = G[0][2]*G[0][2] + G[1][2]*G[1][2]; 
 
for (ii=0; ii<3; ++ii){ 
    for (jj=0; jj<3; ++jj){ 
        val[ii][jj]=0; 
    } 
} 
 
for (ii=0; ii<3; ++ii){ 
    S[0] = 1-ip[ii][0]-ip[ii][1]; 
    S[1] = ip[ii][0]; 
    S[2] = ip[ii][1]; 
    tmp = k0*S[0] + k1*S[1] + k2*S[2]; 
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    tmp = tmp*w[ii]; 
    val[0][0] += GG[0][0]*tmp; 
    val[0][1] += GG[1][0]*tmp; 
    val[0][2] += GG[2][0]*tmp; 
    val[1][0] += GG[0][1]*tmp; 
    val[1][1] += GG[1][1]*tmp; 
    val[1][2] += GG[2][1]*tmp; 
    val[2][0] += GG[0][2]*tmp; 
    val[2][1] += GG[1][2]*tmp; 
    val[2][2] += GG[2][2]*tmp; 
} 
for (ii=0; ii<3; ++ii){ 
    for (jj=0; jj<3; ++jj){ 
        val[ii][jj] = val[ii][jj]*dJt; 
    } 
} 
 
return; 
} 
 
/* Shape function for absorption terms */ 
double phidotphi(double g[3][2], double mua[3], double val[3][3]) 
{ 
    int ii, jj; 
    static int L[2][3] = {{-1.0,1.0,0.0}, \ 
{-1.0,0.0,1.0}}; 
static double w[3] = {1.0/6.0,1.0/6.0,1.0/6.0}; 
static double ip[3][2] = {{1.0/2.0,0.0},{1.0/2.0,1.0/2.0},{0.0,1.0/2.0}}; 
double Jt[2][2], dJt, S[3], tmp; 
double x0 = g[0][0]; double x1 = g[1][0]; 
double x2 = g[2][0]; 
double y0 = g[0][1]; double y1 = g[1][1]; 
double y2 = g[2][1]; 
double k0 = mua[0]; double k1 = mua[1]; 
double k2 = mua[2]; 
 
Jt[0][0] = L[0][0]*x0 + L[0][1]*x1 + L[0][2]*x2; 
Jt[0][1] = L[0][0]*y0 + L[0][1]*y1 + L[0][2]*y2; 
Jt[1][0] = L[1][0]*x0 + L[1][1]*x1 + L[1][2]*x2; 
Jt[1][1] = L[1][0]*y0 + L[1][1]*y1 + L[1][2]*y2; 
 
dJt = (Jt[0][0]*Jt[1][1]) - (Jt[0][1]*Jt[1][0]); 
 
dJt = sqrt(dJt*dJt); 
 
for (ii=0; ii<3; ++ii){ 
    for (jj=0; jj<3; ++jj){ 
        val[ii][jj]=0; 
    } 
} 
 
for (ii=0; ii<3; ++ii){ 
    S[0] = 1-ip[ii][0]-ip[ii][1]; 
    S[1] = ip[ii][0]; 
    S[2] = ip[ii][1]; 
    tmp = k0*S[0] + k1*S[1] + k2*S[2]; 
    tmp = tmp*w[ii]; 
    val[0][0] += S[0]*S[0]*tmp; 
    val[0][1] += S[1]*S[0]*tmp; 
    val[0][2] += S[2]*S[0]*tmp; 
    val[1][0] += S[0]*S[1]*tmp; 
    val[1][1] += S[1]*S[1]*tmp; 
    val[1][2] += S[2]*S[1]*tmp; 
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    val[2][0] += S[0]*S[2]*tmp; 
    val[2][1] += S[1]*S[2]*tmp; 
    val[2][2] += S[2]*S[2]*tmp; 
} 
for (ii=0; ii<3; ++ii){ 
    for (jj=0; jj<3; ++jj){ 
        val[ii][jj] = val[ii][jj]*dJt; 
    } 
} 
return; 
} 
 
 
double boundary_int(double gg[3][2], double bnd_index[3], double ksir[3], \ 
double valr[2][2]) 
{ 
    double ksirtmp[2]; 
    int i, j; 
    double g[2][2], val; 
     
    for (i=0; i<2; ++i){ 
        for (j=0; j<2; ++j){ 
            valr[i][j]=0; 
        } 
    } 
     
    if (bnd_index[0]==1 && bnd_index[2]==1){ 
        ksirtmp[0] = ksir[0]; 
        ksirtmp[1] = ksir[2]; 
        g[0][0] = gg[0][0]; 
        g[0][1] = gg[0][1]; 
        g[1][0] = gg[2][0]; 
        g[1][1] = gg[2][1]; 
        for (i=0; i<2; ++i){ 
            for (j=0; j<=i; ++j){ 
                bound2(g, i, j, ksirtmp, &val); 
                valr[i][j] = val; 
            } 
        } 
    } 
    else if (bnd_index[0]==1 && bnd_index[1]==1){ 
        ksirtmp[0] = ksir[0]; 
        ksirtmp[1] = ksir[1]; 
        g[0][0] = gg[0][0]; 
        g[0][1] = gg[0][1]; 
        g[1][0] = gg[1][0]; 
        g[1][1] = gg[1][1]; 
         
        for (i=0; i<2; ++i){ 
            for (j=0; j<=i; ++j){ 
                bound2(g, i, j, ksirtmp, &val); 
                valr[i][j] = val; 
            } 
        } 
    } 
    else if (bnd_index[1]==1 && bnd_index[2]==1){ 
        ksirtmp[0] = ksir[1]; 
        ksirtmp[1] = ksir[2]; 
        g[0][0] = gg[1][0]; 
        g[0][1] = gg[1][1]; 
        g[1][0] = gg[2][0]; 
        g[1][1] = gg[2][1]; 
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        for (i=0; i<2; ++i){ 
            for (j=0; j<=i; ++j){ 
                bound2(g, i, j, ksirtmp, &val); 
                valr[i][j] = val; 
            } 
        } 
    } 
    return; 
} 
double bound2(double g[2][2], int il, int im, double ksir[2], \ 
double *val) 
{ 
    static double w[2] = {1.0/2.0,1.0/2.0}; 
    static double ip[2] = {0.21132486540519,0.78867513459481}; 
    double dJt, S[2], tmp, tmpval; 
    int ii; 
    double x0 = g[0][0]; double x1 = g[1][0]; 
    double y0 = g[0][1]; double y1 = g[1][1]; 
    double k0 = ksir[0]; double k1 = ksir[1]; 
     
    dJt = sqrt(((g[1][0]-g[0][0])*(g[1][0]-g[0][0])) + \ 
    ((g[1][1]-g[0][1])*(g[1][1]-g[0][1]))); 
     
     
    tmpval = 0.0; 
    for (ii=0; ii<2; ++ii){ 
        S[0] = 1-ip[ii]; 
        S[1] = ip[ii]; 
        tmp = k0*S[0] + k1*S[1]; 
        tmp = tmp*w[ii]; 
        tmpval += S[il]*S[im]*tmp; 
    } 
    *val = tmpval*dJt; 
} 
/* -------- Gate-way to matlab  ------------ */ 
 
void mexFunction(int nlhs, 
mxArray *plhs[], 
int nrhs, 
const mxArray *prhs[]) 
 
{ 
    double *nodes,*elements,*bndvtx,*mua, *mus, *g; 
    double *f1,*f2,*f3,*f4,*g1,*g2,*g3,*g4,*h1,*h2,*h3,*h4,*i1,*i2,*i3,*i4; 
    double *c,*omega; 
    int nodem,noden,elemm,elemn,nzmax; 
    double *I,*J,*K1,*K3,*K5,*K7, *B, *X, *Y; 
    double *C,*C23, *C49,*C64,*C8,*C32,*C128,*C256; 
    double *C2_16, *C2_49, *C16,*C2_59,*C2_8,*C2_32,*C2_64; 
    double *C4_9,*C4_54, *C4_324,*C6_13; 
    double *F1,*F2,*F3,*F4,*G1,*G2,*G3,*G4,*H1,*H2,*H3,*H4,*I1,*I2,*I3,*I4; 
     
  /* Error checking  */ 
     
    if (nrhs < 24 ) 
        mexErrMsgTxt(" There are not enough input arguments"); 
     
    if(nlhs!=44) 
        mexErrMsgTxt("This routine requires 44 ouput arguments"); 
     
/* define input parameters */ 
    nodes=mxGetPr(prhs[0]);          /*  nodes of mesh */ 
    elements=mxGetPr(prhs[1]);       /*  elements of mesh */ 
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    bndvtx=mxGetPr(prhs[2]);         /*  boundary nodes */ 
    mua=mxGetPr(prhs[3]);            /*  absorption, nodal */ 
    mus=mxGetPr(prhs[4]);         /*  scattering*/ 
    g=mxGetPr(prhs[5]);           /*  anisotropy */ 
    f1=mxGetPr(prhs[6]);           /*  reflection parameters, nodal  */ 
    f2=mxGetPr(prhs[7]);           
    f3=mxGetPr(prhs[8]);   
    f4=mxGetPr(prhs[9]); 
    g1=mxGetPr(prhs[10]);           
    g2=mxGetPr(prhs[11]);            
    g3=mxGetPr(prhs[12]); 
    g4=mxGetPr(prhs[13]); 
    h1=mxGetPr(prhs[14]); 
    h2=mxGetPr(prhs[15]); 
    h3=mxGetPr(prhs[16]); 
    h4=mxGetPr(prhs[17]); 
    i1=mxGetPr(prhs[18]); 
    i2=mxGetPr(prhs[19]); 
    i3=mxGetPr(prhs[20]); 
    i4=mxGetPr(prhs[21]); 
    c=mxGetPr(prhs[22]);              /*  speed of light in tissue, nodal */ 
    omega=mxGetPr(prhs[23]);          /*  modulation frequency */ 
     
     
    nodem=mxGetM(prhs[0]);          /*  Number of of nodes */ 
    noden=mxGetN(prhs[0]);          /*  Number of node freedom */ 
    elemm=mxGetM(prhs[1]);          /*  Number of elements */ 
    elemn=mxGetN(prhs[1]);          /*  Number of nodes per elements */ 
     
 
    nzmax = elemm*(elemn*(elemn+1)); 
 
/*define output parameters */  
    plhs[0]=mxCreateDoubleMatrix(nzmax,1,mxREAL);    /* i */ 
    plhs[1]=mxCreateDoubleMatrix(nzmax,1,mxREAL);    /* j */ 
    plhs[2]=mxCreateDoubleMatrix(nzmax,1,mxREAL);    /* Diffusion terms */ 
    plhs[3]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[4]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[5]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[6]=mxCreateDoubleMatrix(nzmax,1,mxREAL);    /* Absorption terms */ 
    plhs[7]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[8]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[9]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[10]=mxCreateDoubleMatrix(nzmax,1,mxREAL);  
    plhs[11]=mxCreateDoubleMatrix(nzmax,1,mxREAL);   
    plhs[12]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[13]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[14]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[15]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[16]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[17]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[18]=mxCreateDoubleMatrix(nzmax,1,mxREAL);     
    plhs[19]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[20]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[21]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[22]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[23]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[24]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[25]=mxCreateDoubleMatrix(nzmax,1,mxCOMPLEX); 
    plhs[26]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[27]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[28]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[29]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
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    plhs[30]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[31]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[32]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[33]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[34]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[35]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[36]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[37]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[38]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[39]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[40]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[41]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[42]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[43]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
 
 
    I=mxGetPr(plhs[0]); 
    J=mxGetPr(plhs[1]); 
    K1=mxGetPr(plhs[2]); 
    K3=mxGetPr(plhs[3]); 
    K5=mxGetPr(plhs[4]); 
    K7=mxGetPr(plhs[5]); 
    C=mxGetPr(plhs[6]); 
    C23=mxGetPr(plhs[7]); 
    C49=mxGetPr(plhs[8]); 
    C64=mxGetPr(plhs[9]); 
    C8=mxGetPr(plhs[10]); 
    C16=mxGetPr(plhs[11]); 
    C32=mxGetPr(plhs[12]); 
    C128=mxGetPr(plhs[13]); 
    C256=mxGetPr(plhs[14]); 
    C2_59= mxGetPr(plhs[15]); 
    C2_16=mxGetPr(plhs[16]); 
    C2_49=mxGetPr(plhs[17]); 
    C2_8=mxGetPr(plhs[18]); 
    C2_32=mxGetPr(plhs[19]); 
    C2_64=mxGetPr(plhs[20]); 
    C4_9=mxGetPr(plhs[21]); 
    C4_54=mxGetPr(plhs[22]); 
    C4_324=mxGetPr(plhs[23]); 
    C6_13=mxGetPr(plhs[24]); 
    B=mxGetPi(plhs[25]); 
    F1=mxGetPr(plhs[26]); 
    F2=mxGetPr(plhs[27]); 
    F3=mxGetPr(plhs[28]); 
    F4=mxGetPr(plhs[29]); 
    G1=mxGetPr(plhs[30]); 
    G2=mxGetPr(plhs[31]); 
    G3=mxGetPr(plhs[32]); 
    G4=mxGetPr(plhs[33]); 
    H1=mxGetPr(plhs[34]); 
    H2=mxGetPr(plhs[35]); 
    H3=mxGetPr(plhs[36]); 
    H4=mxGetPr(plhs[37]); 
    I1=mxGetPr(plhs[38]); 
    I2=mxGetPr(plhs[39]); 
    I3=mxGetPr(plhs[40]); 
    I4=mxGetPr(plhs[41]); 
    X=mxGetPr(plhs[42]); 
    Y=mxGetPr(plhs[43]); 
     
    
mainloop(nodes,elements,bndvtx,mua,mus,g,f1,f2,f3,f4,g1,g2,g3,g4,h1,h2,h3,h4,i1,i2,i3,i4,c,om
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ega,nodem, \ 
    
noden,elemm,elemn,I,J,K1,K3,K5,K7,C,C23,C49,C64,C8,C16,C32,C128,C256,C2_59,C2_16,C2_
49,C2_8,C2_32,C2_64,C4_9, \ 
    C4_54,C4_324,C6_13,B,F1,F2,F3,F4,G1,G2,G3,G4,H1,H2,H3,H4,I1,I2,I3,I4,X,Y); 
     
    return; 
} 
 

num_int.c  
 
calculates orders of reflection by numerically integrating equation 7.16.  Implemented in c for 
efficiency and compiled within MATLAB  
 
#include <stdio.h> 
#include <math.h> 
#include <mex.h> 
 
 
/* -------- Heart of the mex file----------- */ 
void mainloop(int nnodes, 
double *nm, 
double *n0, 
double *Ca, 
double *Rn, 
double *I, 
double *R, 
double *bndvtx) 
{ 
    int N, NN, j, w, k,l,b; 
    double m, Ca_tmp; 
     
    /*      initialise k*/ 
    k = 0; 
     
    for (N=0; N<15; ++N){ 
        /* initialise I*/ 
        for (NN=0; NN<nnodes; ++NN){ 
            *(I+NN) = 0; 
        } 
         
         
        for (j=0; j<nnodes; ++j){ 
            b= *(bndvtx+j); 
      if (b==1){ 
                for(w=0; w<1999; ++w){ 
                    m= (w+1)/2000.0; 
                     
           /* If angle is less than critical angle, total internal reflectance */ 
                    Ca_tmp = *(Ca+j); 
                    if (m < Ca_tmp){ 
                        R[j]=1.0; 
                    } 
                    else { 
                         
                       /* Otherwise calculate reflectance  by integrating equation 7.18*/ 
 
                        R[j]=0.5*pow((((nm[j]*sqrt(1-pow(nm[j],2)*  \ 
                        (1-pow(m,2))))-(n0[j]*m))/((nm[j]*sqrt(1-pow(nm[j],2)*\ 
                        (1-pow(m,2))))+(n0[j]*m))),2)+ 0.5*pow((((nm[j]*m)-  \ 
                        (n0[j]*sqrt(1-pow(nm[j],2)*(1-pow(m,2)))))/((nm[j]*m)+ \ 
                        (n0[j]*sqrt(1-pow(nm[j],2)*(1-pow(m,2)))))),2); 
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                    } 
                     
                    I[j]=I[j]+R[j]*pow(m,N)*0.0005; 
                } 
                 
            } 
            else{ 
                I[j]=0; 
            } 
        } 
         
        for (l=0; l<nnodes; ++l){ 
             
            Rn[k]=I[l]; 
            ++k; 
        } 
    } 
} 
 
 
 
/* -------- Gate-way to matlab  ------------ */ 
 
void mexFunction(int nlhs, 
mxArray *plhs[], 
int nrhs, 
const mxArray *prhs[]) 
 
{ 
    double *Rn, *nm, *n0,*Ca, *I, *R, *bndvtx; 
    int nnodes, nzmax; 
     
     
  /* Error checking  */ 
     
    if (nrhs < 4 ) 
        mexErrMsgTxt(" There are not enough input arguments"); 
     
    if(nlhs!=1) 
        mexErrMsgTxt("This routine requires one ouput argument"); 
     
nm=mxGetPr(prhs[0]); 
    n0=mxGetPr(prhs[1]); 
    Ca=mxGetPr(prhs[2]); 
    bndvtx=mxGetPr(prhs[3]); 
     
    nnodes=mxGetM(prhs[0]);          /*  Number of of nodes */ 
 
    nzmax=nnodes*15; 
     
    plhs[0]=mxCreateDoubleMatrix(nzmax,1,mxREAL); 
    plhs[1]=mxCreateDoubleMatrix(nnodes,1,mxREAL); 
    plhs[2]=mxCreateDoubleMatrix(nnodes,1,mxREAL); 
    Rn=mxGetPr(plhs[0]); 
    I=mxGetPr(plhs[1]); 
    R=mxGetPr(plhs[2]); 
     
     
    mainloop(nnodes,nm,n0,Ca,Rn,I,R, bndvtx); 
     
    return; 
} 
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function [ksi]=bound_coeffs(mesh,sp) 
 
%Calculates boundary condition coefficients based on reflectivity. 
 
nm=mesh.ri; 
n0=ones(length(nm),1); 
Ca=zeros(length(nm),1); 
Ca(:)=cos(asin(n0./nm));       %w relating to Critical Angle 
 
 
%only calculates integral once for each unique RI. 
ri=unique(mesh.ri); 
 
% Numerically integrate eq. 7.16 
Rn1=num_int(ri,n0,Ca,ones(size(ri))); 
Rn1=reshape(Rn1,length(ri),15); 
 
Rn=zeros(length(nm),15); 
for i=1:length(ri) 
    ind=find(nm==ri(i)); 
    for j=1:15 
 Rn(ind,j)=Rn1(i,j); 
    end 
end 
 
Rn=reshape(Rn,length(nm),15); 
 
 
 
% Calculate boundary coefficients as defined in Appendix A 
 
if sp==1 
     
    BC.A=-Rn(:,2); 
    BC.B=3*Rn(:,3); 
     
    ksi=[BC.A BC.B]; 
 
    clear BC 
 
elseif sp==3 
     
    % A1,A2 
    BC.A(:,1)=-Rn(:,2); 
    BC.A(:,2)=(-9/4)*Rn(:,2)+(15/2)*Rn(:,4)-(25/4)*Rn(:,6); 
     
    %B1,B2 
    BC.B(:,1)=3*Rn(:,3); 
    BC.B(:,2)=(63/4)*Rn(:,3)-(105/2)*Rn(:,5)+(175/4)*Rn(:,7); 
     
    %C1,C2 
    BC.C(:,1)=(-3/2)*Rn(:,2)+(5/2)*Rn(:,4); 
    BC.C(:,2)=(-3/2)*Rn(:,2)+(5/2)*Rn(:,4); 
     
    %D1,D2 
    BC.D(:,1)=(3/2)*Rn(:,3)-(5/2)*Rn(:,5); 
    BC.D(:,2)=(3/2)*Rn(:,3)-(5/2)*Rn(:,5); 
     
    ksi = [BC.A BC.B BC.C BC.D]; 
 
    clear BC 
 
elseif sp==5 
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    %A1, A2, A3 
    BC.A(:,1)=-Rn(:,2); 
    BC.A(:,2)=(-9/4)*Rn(:,2)+(15/2)*Rn(:,4)-(25/4)*Rn(:,6); 
    BC.A(:,3)=(-225/64)*Rn(:,2)+(525/16)*Rn(:,4)-(3395/32)*Rn(:,6)+... 
        (2205/16)*Rn(:,8)-(3969/64)*Rn(:,10); 
     
    %B1, B2, B3 
    BC.B(:,1)=3*Rn(:,3); 
    BC.B(:,2)=(63/4)*Rn(:,3)-(105/2)*Rn(:,5)+(175/4)*Rn(:,7); 
    BC.B(:,3)=(2475/64)*Rn(:,3)-(5775/16)*Rn(:,5)+(37345/32)*Rn(:,7)-... 
        (24255/16)*Rn(:,9)+(43659/64)*Rn(:,11); 
     
    %C1, C2,C3 
    BC.C(:,1)=(-3/2)*Rn(:,2)+(5/2)*Rn(:,4); 
    BC.C(:,2)=(-3/2)*Rn(:,2)+(5/2)*Rn(:,4); 
    BC.C(:,3)=(15/8)*Rn(:,2)-(35/4)*Rn(:,4)+(63/8)*Rn(:,6); 
     
    %D1,D2,D3 
    BC.D(:,1)=(3/2)*Rn(:,3)-(5/2)*Rn(:,5); 
    BC.D(:,2)=(3/2)*Rn(:,3)-(5/2)*Rn(:,5); 
    BC.D(:,3)=(-15/8)*Rn(:,3)+(35/4)*Rn(:,5)-(63/8)*Rn(:,7); 
     
    %E1,E2,E3 
    BC.E(:,1)=(15/8)*Rn(:,2)-(35/4)*Rn(:,4)+(63/8)*Rn(:,6); 
    BC.E(:,2)=(-45/16)*Rn(:,2)+(285/16)*Rn(:,4)-(539/16)*Rn(:,6)+(315/16)*Rn(:,8); 
    BC.E(:,3)=(-45/16)*Rn(:,2)+(285/16)*Rn(:,4)-(539/16)*Rn(:,6)+(315/16)*Rn(:,8); 
     
    %F1,F2,F3 
    BC.F(:,1)=(-15/8)*Rn(:,3)+(35/4)*Rn(:,5)-(63/8)*Rn(:,7); 
    BC.F(:,2)=(45/16)*Rn(:,3)-(285/16)*Rn(:,5)+(539/16)*Rn(:,7)-(315/16)*Rn(:,9); 
    BC.F(:,3)=(45/16)*Rn(:,3)-(285/16)*Rn(:,5)+(539/16)*Rn(:,7)-(315/16)*Rn(:,9); 
     
    ksi=[BC.A BC.B BC.C BC.D BC.E BC.F]; 
  
    clear BC 
     
elseif sp==7 
    %A1,A2,A3,A4 
    BC.A(:,1)=-Rn(:,2); 
    BC.A(:,2)=(-9/4)*Rn(:,2)+(15/2)*Rn(:,4)-(25/4)*Rn(:,6); 
    BC.A(:,3)=(-225/64)*Rn(:,2)+(525/16)*Rn(:,4)-(3395/32)*Rn(:,6)+... 
        (2205/16)*Rn(:,8)-(3969/64)*Rn(:,10); 
    BC.A(:,4)=(-1225/256)*Rn(:,2)+(11025/128)*Rn(:,4)-(147735/256)*Rn(:,6)+... 
     (116655/64)*Rn(:,8)-(750519/256)*Rn(:,10)+(297297/128)*Rn(:,12)-... 
     (184041/256)*Rn(:,14); 
     
    %B1, B2, B3,B4 
    BC.B(:,1)=3*Rn(:,3); 
    BC.B(:,2)=(63/4)*Rn(:,3)-(105/2)*Rn(:,5)+(175/4)*Rn(:,7); 
    BC.B(:,3)=(2475/64)*Rn(:,3)-(5775/16)*Rn(:,5)+(37345/32)*Rn(:,7)-... 
        (24255/16)*Rn(:,9)+(43659/64)*Rn(:,11); 
    BC.B(:,4)=15*((1225/256)*Rn(:,3)-(11025/128)*Rn(:,5)+(147735/256)*Rn(:,7)-... 
     (116655/64)*Rn(:,9)+(750519/256)*Rn(:,11)-(297297/128)*Rn(:,13)+(184041/256)*Rn(:,15)); 
     
    %C1, C2,C3,C4 
    BC.C(:,1)=(-3/2)*Rn(:,2)+(5/2)*Rn(:,4); 
    BC.C(:,2)=(-3/2)*Rn(:,2)+(5/2)*Rn(:,4); 
    BC.C(:,3)=(15/8)*Rn(:,2)-(35/4)*Rn(:,4)+(63/8)*Rn(:,6); 
    BC.C(:,4)=(-35/16)*Rn(:,2)+(315/16)*Rn(:,4)-(693/16)*Rn(:,6)+(429/16)*Rn(:,8); 
     
    %D1,D2,D3,D4 
    BC.D(:,1)=(3/2)*Rn(:,3)-(5/2)*Rn(:,5); 
    BC.D(:,2)=(3/2)*Rn(:,3)-(5/2)*Rn(:,5); 
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    BC.D(:,3)=(-15/8)*Rn(:,3)+(35/4)*Rn(:,5)-(63/8)*Rn(:,7); 
    BC.D(:,4)=(35/16)*Rn(:,3)-(315/16)*Rn(:,5)+(693/16)*Rn(:,7)-(429/16)*Rn(:,9); 
     
    %E1,E2,E3,E4 
    BC.E(:,1)=(15/8)*Rn(:,2)-(35/4)*Rn(:,4)+(63/8)*Rn(:,6); 
    BC.E(:,2)=(-45/16)*Rn(:,2)+(285/16)*Rn(:,4)-(539/16)*Rn(:,6)+(315/16)*Rn(:,8); 
    BC.E(:,3)=(-45/16)*Rn(:,2)+(285/16)*Rn(:,4)-(539/16)*Rn(:,6)+(315/16)*Rn(:,8); 
    BC.E(:,4)=(105/32)*Rn(:,2)-35*Rn(:,4)+(1827/16)*Rn(:,6)-(297/2)*Rn(:,8)+(2145/32)*Rn(:,10); 
     
    %F1,F2,F3,F4 
    BC.F(:,1)=(-15/8)*Rn(:,3)+(35/4)*Rn(:,5)-(63/8)*Rn(:,7); 
    BC.F(:,2)=(45/16)*Rn(:,3)-(285/16)*Rn(:,5)+(539/16)*Rn(:,7)-(315/16)*Rn(:,9); 
    BC.F(:,3)=(45/16)*Rn(:,3)-(285/16)*Rn(:,5)+(539/16)*Rn(:,7)-(315/16)*Rn(:,9); 
    BC.F(:,4)=(-105/32)*Rn(:,3)+35*Rn(:,5)-(1827/16)*Rn(:,7)+(297/2)*Rn(:,9)-(2145/32)*Rn(:,11); 
     
    %G1,G2,G3,G4 
    BC.G(:,1)=(-35/16)*Rn(:,2)+(315/16)*Rn(:,4)-(693/16)*Rn(:,6)+(429/16)*Rn(:,8); 
    BC.G(:,2)=(105/32)*Rn(:,2)-35*Rn(:,4)+(1827/16)*Rn(:,6)-(297/2)*Rn(:,8)+(2145/32)*Rn(:,10); 
    BC.G(:,3)=(-525/128)*Rn(:,2)+(7175/128)*Rn(:,4)-(17325/64)*Rn(:,6)+(37395/64)*Rn(:,8)-... 
    (73689/128)*Rn(:,10)+(27027/128)*Rn(:,12); 
    BC.G(:,4)=(-525/128)*Rn(:,2)+(7175/128)*Rn(:,4)-(17325/64)*Rn(:,6)+(37395/64)*Rn(:,8)-... 
    (73689/128)*Rn(:,10)+(27027/128)*Rn(:,12); 
     
    %H1,H2,H3,H4 
    BC.H(:,1)=(35/16)*Rn(:,3)-(315/16)*Rn(:,5)+(693/16)*Rn(:,7)-(429/16)*Rn(:,9); 
    BC.H(:,2)=(-105/32)*Rn(:,3)+35*Rn(:,5)-(1827/16)*Rn(:,7)+(297/2)*Rn(:,9)-
(2145/32)*Rn(:,11); 
    BC.H(:,3)=(525/128)*Rn(:,3)-(7175/128)*Rn(:,5)+(17325/64)*Rn(:,7)-(37395/64)*Rn(:,9)+... 
        (73689/128)*Rn(:,11)-(27027/128)*Rn(:,13); 
    BC.H(:,4)=(525/128)*Rn(:,3)-(7175/128)*Rn(:,5)+(17325/64)*Rn(:,7)-(37395/64)*Rn(:,9)+... 
        (73689/128)*Rn(:,11)-(27027/128)*Rn(:,13); 
     
    ksi=[BC.A BC.B BC.C BC.D BC.E BC.F BC.G BC.H]; 
 
    clear BC 
else 
    ksi=[]; 
end   
 
 
 

function [f1,f2,f3,f4,g1,g2,g3,g4,h1,h2,h3,h4,i1,i2,i3,i4] = ksi_calc_sp7(mesh); 
 
%Calculates the boundary condition values for SP7 based on equations 28a-d 
%of Klose 2006 paper.   
 
% Calculate boundary coefficients 
BC=bound_coeffs(mesh,7); 
 
A=BC(:,1:4); 
B=BC(:,5:8); 
C=BC(:,9:12); 
D=BC(:,13:16); 
E=BC(:,17:20); 
F=BC(:,21:24); 
G=BC(:,25:28); 
H=BC(:,29:32); 
 
% Variables M to T are temporary variables to simplify input of excessive algebra  
M1=(7/24+A(:,2))-3.*D(:,2).*((1+B(:,1)).\((1/8)+C(:,1))); 
M2=(1+B(:,2))-21*D(:,2).*((1+B(:,1)).\D(:,1)); 
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M3=((1/8)+C(:,2))-3*D(:,2).*((1+B(:,1)).\((1/2)+A(:,1))); 
M4= ((41/384)+E(:,2))+3*D(:,2).*((1+B(:,1)).\((-1/16)+E(:,1))); 
M5=11*F(:,2)+33*D(:,2).*((1+B(:,1)).\F(:,1)); 
M6=((-1/16)+G(:,2))+3*D(:,2).*((1+B(:,1)).\((5/128)+G(:,1))); 
M7=15*H(:,2)+45*D(:,2).*((1+B(:,1)).\H(:,1)); 
 
N1=((407/1920)+A(:,3))-3*D(:,3).*((1+B(:,1)).\((-1/16)+E(:,1))); 
N2=(1+B(:,3))-33*D(:,3).*((1+B(:,1)).\F(:,1)); 
N3= ((-1/16)+C(:,3))-3*D(:,3).*((1+B(:,1)).\((1/2)+A(:,1))); 
N4= ((41/384)+E(:,3))+3*D(:,3).*((1+B(:,1)).\((1/8)+C(:,1))); 
N5=7*F(:,3)+21*D(:,3).*((1+B(:,1)).\D(:,1)); 
N6=((233/2560)+G(:,3))+3*D(:,3).*((1+B(:,1)).\((5/128)+G(:,1))); 
N7=15*H(:,3)+45*D(:,3).*((1+B(:,1)).\H(:,1)); 
 
P1=((3023/17920)+A(:,4))-3*D(:,4).*((1+B(:,1)).\((5/128)+G(:,1))); 
P2=(1+B(:,4))-45*D(:,4).*((1+B(:,1)).\H(:,1));  
P3=((5/128)+C(:,4))-3*D(:,4).*((1+B(:,1)).\((1/2)+A(:,1))); 
P4=((-1/16)+E(:,4))+3*D(:,4).*((1+B(:,1)).\((1/8)+C(:,1))); 
P5=7*F(:,4)+21*D(:,4).*((1+B(:,1)).\D(:,1)); 
P6=((233/2560)+G(:,4))+3*D(:,4).*((1+B(:,1)).\((-1/16)+E(:,1))); 
P7=11*H(:,4)+33*D(:,4).*((1+B(:,1)).\F(:,1)); 
 
R1=M1-M5.*((N2-N5.*(M2.\M5)).\(N4-N5.*(M2.\M1))); 
R2=M3+M5.*((N2-N5.*(M2.\M5)).\(N3+N5.*(M2.\M3))); 
R3=M4-M5.*((N2-N5.*(M2.\M5)).\(N1-N5.*(M2.\M4))); 
R4=M6+M5.*((N2-N5.*(M2.\M5)).\(N6+N5.*(M2.\M6))); 
R5=M7+M5.*((N2-N5.*(M2.\M5)).\(N7+N5.*(M2.\M7))); 
 
S1=((1/2)+A(:,1))-7*D(:,1).*(M2.\M3)-(11*F(:,1)+7.*D(:,1).*(M2.\M5)).*((N2-
N5.*(M2.\M5)).\(N3+N5.*(M2.\M3))); 
S2=((1/8)+C(:,1))+7*D(:,1).*(M2.\M1)+(11*F(:,1)+7*D(:,1).*(M2.\M5)).*((N2-
N5.*(M2.\M5)).\(N4-N5.*(M2.\M1))); 
S3=((-1/16)+E(:,1))+7*D(:,1).*(M2.\M4)-(11*F(:,1)+7*D(:,1).*(M2.\M5)).*((N2-
N5.*(M2.\M5)).\(N1-N5.*(M2.\M4))); 
S4=((5/128)+G(:,1))+7*D(:,1).*(M2.\M6)+(11*F(:,1)+7*D(:,1).*(M2.\M5)).*((N2-
N5.*(M2.\M5)).\(N6+N5.*(M2.\M6))); 
S5=15*H(:,1)+7*D(:,1).*(M2.\M7)+(11*F(:,1)+7*D(:,1).*(M2.\M5)).*((N2-
N5.*(M2.\M5)).\(N7+N5.*(M2.\M7))); 
 
T1=P1-P5.*(M2.\M6)-(P7+P5.*(M2.\M5)).*((N2-N5.*(M2.\M5)).\(N6+N5.*(M2.\M6))); 
T2=P2-P5.*(M2.\M7)-(P7+P5.*(M2.\M5)).*((N2-N5.*(M2.\M5)).\(N7+N5.*(M2.\M7))); 
T3=P3+P5.*(M2.\M3)+(P7+P5.*(M2.\M5)).*((N2-N5.*(M2.\M5)).\(N3+N5.*(M2.\M3))); 
T4=P4-P5.*(M2.\M1)+(P7+P5.*(M2.\M5)).*((N2-N5.*(M2.\M5)).\(N4-N5.*(M2.\M1))); 
T5=P6+P5.*(M2.\M4)-(P7+P5.*(M2.\M5)).*((N2-N5.*(M2.\M5)).\(N1-N5.*(M2.\M4))); 
 
f1= (1+B(:,1)).\(S1-S5.*(T2.\T3)); 
g1= -(1+B(:,1)).\(S2+S5.*(T2.\T4)); 
h1= -(1+B(:,1)).\(S3+S5.*(T2.\T5)); 
i1=-(1+B(:,1)).\(S4-S5.*(T2.\T1)); 
 
f2= M2.\(R1-R5.*(T2.\T4)); 
g2=M2.\(R2+R5.*(T2.\T3)); 
h2= M2.\(R3+R5.*(T2.\T5)); 
i2=M2.\(R4-R5.*(T2.\T1)); 
 
f3= (N2-N5.*(M2.\M5)).\(N1-N5.*(M2.\M4)-(N7+N5.*(M2.\M7)).*(T2.\T5)); 
g3= (N2-N5.*(M2.\M5)).\(N3+N5.*(M2.\M3)+(N7+N5.*(M2.\M7)).*(T2.\T3)); 
h3= (N2-N5.*(M2.\M5)).\(N4-N5.*(M2.\M1)+(N7+N5.*(M2.\M7)).*(T2.\T4)); 
i3= (N2-N5.*(M2.\M5)).\(N6+N5.*(M2.\M6)-(N7+N5.*(M2.\M7)).*(T2.\T1)); 
 
f4= T2.\T1; 
g4=T2.\T3; 
h4=T2.\T4; 
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i4=T2.\T5; 
 
clear M* N* P* R* S* T*  
 

 

function [J1,J2,J3,J4,data,mesh]=jacobian_sp7(mesh,frequency) 
 
% [J1,J2,J3,J4,data,mesh]=jacobian_spn(fn,frequency) 
% Calculates the Jacobian for each moment of fluence 
% (both complex version and separate parts 
% in terms of mus and mua for log amplitude and phase 
% (radians). See any of Dartmouth Publications regarding the 
% structure. Also calculates data (phase and amplitude) for a given 
% problem (fn) at a given frequency (MHz). 
% outputs phase and amplitude in structure data 
% and mesh information in mesh 
 
% If not a workspace variable, load mesh 
if ischar(mesh)== 1 
  mesh = load_mesh(mesh); 
end 
 
% modulation frequency 
omega = 2*pi*frequency*1e6; 
nvtx=length(mesh.nodes); 
 
% Create FEM matrices 
[f1,f2,f3,f4,g1,g2,g3,g4,h1,h2,h3,h4,i1,i2,i3,i4] = ksi_calc_sp7(mesh); 
 
if mesh.dimension==2 
 
  [i,j,k1,k3,k5,k7,c,c23,c49,c64,c8,c16,c32,c128,c256,c2_59,c2_16,c2_49,... 
    c2_8,c2_32,c2_64,c4_9,c4_54,c4_324,c6_13,B,F1,F2,F3,F4,G1,G2,G3,G4,... 
    H1,H2,H3,H4,I1,I2,I3,I4,ib,jb]=gen_matrices_2d_sp7(mesh.nodes(:,1:2),... 
    sort(mesh.elements')',... 
    mesh.bndvtx,... 
    mesh.mua,... 
    mesh.mus,... 
    mesh.g,... 
    f1,... 
    f2,... 
    f3,... 
    f4,... 
    g1,... 
    g2,... 
    g3,... 
    g4,... 
    h1,... 
    h2,... 
    h3,... 
    h4,... 
    i1,... 
    i2,... 
    i3,... 
    i4,... 
    mesh.c,... 
    omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
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K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
K7= sparse(i(1:nz_i),j(1:nz_i),k7(1:nz_i)); 
C = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23 = sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49 = sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64 = sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
C16 = sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C32 = sparse(i(1:nz_i),j(1:nz_i),c32(1:nz_i)); 
C128 = sparse(i(1:nz_i),j(1:nz_i),c128(1:nz_i)); 
C256 = sparse(i(1:nz_i),j(1:nz_i),c256(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
C2_8 = sparse(i(1:nz_i),j(1:nz_i),c2_8(1:nz_i)); 
C2_32 = sparse(i(1:nz_i),j(1:nz_i),c2_32(1:nz_i)); 
C2_64 = sparse(i(1:nz_i),j(1:nz_i),c2_64(1:nz_i)); 
C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
C4_54 = sparse(i(1:nz_i),j(1:nz_i),c4_54(1:nz_i)); 
C4_324 = sparse(i(1:nz_i),j(1:nz_i),c4_324(1:nz_i)); 
C6_13 = sparse(i(1:nz_i),j(1:nz_i),c6_13(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
 
[i,j]=size(C); 
nz_i = length(nonzeros(ib)); 
F1 = sparse(ib(1:nz_i),jb(1:nz_i),F1(1:nz_i)); 
F2 = sparse(ib(1:nz_i),jb(1:nz_i),F2(1:nz_i)); 
F3 = sparse(ib(1:nz_i),jb(1:nz_i),F3(1:nz_i)); 
F4 = sparse(ib(1:nz_i),jb(1:nz_i),F4(1:nz_i)); 
G1 = sparse(ib(1:nz_i),jb(1:nz_i),G1(1:nz_i)); 
G2 = sparse(ib(1:nz_i),jb(1:nz_i),G2(1:nz_i)); 
G3 = sparse(ib(1:nz_i),jb(1:nz_i),G3(1:nz_i)); 
G4 = sparse(ib(1:nz_i),jb(1:nz_i),G4(1:nz_i)); 
H1 = sparse(ib(1:nz_i),jb(1:nz_i),H1(1:nz_i)); 
H2 = sparse(ib(1:nz_i),jb(1:nz_i),H2(1:nz_i)); 
H3 = sparse(ib(1:nz_i),jb(1:nz_i),H3(1:nz_i)); 
H4 = sparse(ib(1:nz_i),jb(1:nz_i),H4(1:nz_i)); 
I1 = sparse(ib(1:nz_i),jb(1:nz_i),I1(1:nz_i)); 
I2 = sparse(ib(1:nz_i),jb(1:nz_i),I2(1:nz_i)); 
I3 = sparse(ib(1:nz_i),jb(1:nz_i),I3(1:nz_i)); 
I4 = sparse(ib(1:nz_i),jb(1:nz_i),I4(1:nz_i)); 
     
elseif mesh.dimension==3 
  [i,j,k1,k3,k5,k7,c,c23,c49,c64,c8,c16,c32,c128,c256,c2_59,c2_16,c2_49,... 
    c2_8,c2_32,c2_64,c4_9,c4_54,c4_324,c6_13,B,F1,F2,F3,F4,G1,G2,G3,G4,... 
    H1,H2,H3,H4,I1,I2,I3,I4,ib,jb]=gen_matrices_3d_sp7(mesh.nodes,... 
    sort(mesh.elements')',... 
    mesh.bndvtx,... 
    mesh.mua,... 
    mesh.mus,... 
    mesh.g,... 
    f1,... 
    f2,... 
    f3,... 
    f4,... 
    g1,... 
    g2,... 
    g3,... 
    g4,... 
    h1,... 
    h2,... 
    h3,... 
    h4,... 
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    i1,... 
    i2,... 
    i3,... 
    i4,... 
    mesh.c,... 
    omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
K7= sparse(i(1:nz_i),j(1:nz_i),k7(1:nz_i)); 
C = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23 = sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49 = sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64 = sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
C16 = sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C32 = sparse(i(1:nz_i),j(1:nz_i),c32(1:nz_i)); 
C128 = sparse(i(1:nz_i),j(1:nz_i),c128(1:nz_i)); 
C256 = sparse(i(1:nz_i),j(1:nz_i),c256(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
C2_8 = sparse(i(1:nz_i),j(1:nz_i),c2_8(1:nz_i)); 
C2_32 = sparse(i(1:nz_i),j(1:nz_i),c2_32(1:nz_i)); 
C2_64 = sparse(i(1:nz_i),j(1:nz_i),c2_64(1:nz_i)); 
C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
C4_54 = sparse(i(1:nz_i),j(1:nz_i),c4_54(1:nz_i)); 
C4_324 = sparse(i(1:nz_i),j(1:nz_i),c4_324(1:nz_i)); 
C6_13 = sparse(i(1:nz_i),j(1:nz_i),c6_13(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
F1 = sparse(i(1:nz_i),j(1:nz_i),F1(1:nz_i)); 
F2 = sparse(i(1:nz_i),j(1:nz_i),F2(1:nz_i)); 
F3 = sparse(i(1:nz_i),j(1:nz_i),F3(1:nz_i)); 
F4 = sparse(i(1:nz_i),j(1:nz_i),F4(1:nz_i)); 
G1 = sparse(i(1:nz_i),j(1:nz_i),G1(1:nz_i)); 
G2 = sparse(i(1:nz_i),j(1:nz_i),G2(1:nz_i)); 
G3 = sparse(i(1:nz_i),j(1:nz_i),G3(1:nz_i)); 
G4 = sparse(i(1:nz_i),j(1:nz_i),G4(1:nz_i)); 
H1 = sparse(i(1:nz_i),j(1:nz_i),H1(1:nz_i)); 
H2 = sparse(i(1:nz_i),j(1:nz_i),H2(1:nz_i)); 
H3 = sparse(i(1:nz_i),j(1:nz_i),H3(1:nz_i)); 
H4 = sparse(i(1:nz_i),j(1:nz_i),H4(1:nz_i)); 
I1 = sparse(i(1:nz_i),j(1:nz_i),I1(1:nz_i)); 
I2 = sparse(i(1:nz_i),j(1:nz_i),I2(1:nz_i)); 
I3 = sparse(i(1:nz_i),j(1:nz_i),I3(1:nz_i)); 
I4 = sparse(i(1:nz_i),j(1:nz_i),I4(1:nz_i)); 
 
end 
 
% Add complex contribution  to absorption terms to account for frequency dependance 
C=C+B; 
C23=C23+B; 
C49=C49+B; 
C64=C64+B; 
C8=C8+B; 
C16=C16+B; 
C32=C32 +B; 
C128 = C128+B; 
C256=C256+B; 
C2_59=C2_59+B; 
C2_16=C2_16+B; 
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C2_49=C2_49+B; 
C2_8=C2_8+B; 
C2_32=C2_32+B; 
C2_64=C2_64+B; 
C4_9=C4_9+B; 
C4_54 = C4_54+B; 
C4_324 = C4_324+B; 
C6_13 = C6_13+B; 
 
 
clear i j k1 c f1 g1 ib jb nz_i omega  
 
M1=K1+C+F1; 
M2=K3+C49+C2_59+F2; 
M3=K5+C64+C2_16+C4_9+F3; 
M4=K7+C256+C2_64+C4_324+C6_13+F4; 
 
% Calculate the RHS (the source vectors. For simplicity, we are 
% just going to use a Gaussian Source, The width of the Gaussian is 
% changeable (last argument). The source is assumed to have a 
% complex amplitude of complex(cos(0.15),sin(0.15)); 
 
% Now calculate source vector 
% NOTE last term in mex file 'qvec' is the source FWHM 
% 
[nnodes,junk]=size(mesh.nodes); 
[nsource,junk]=size(mesh.source.coord); 
qvec = spalloc(nnodes,nsource,nsource*100); 
if mesh.dimension == 2 
  for i = 1 : nsource 
    if mesh.source.fwhm(i) == 0 
        qvec(:,i) = gen_source_point(mesh,mesh.source.coord(i,1:2)); 
    else 
      qvec(:,i) = gen_source(mesh.nodes(:,1:2),... 
    sort(mesh.elements')',... 
    mesh.dimension,... 
    mesh.source.coord(i,1:2),... 
    mesh.source.fwhm(i)); 
    end 
  end 
elseif mesh.dimension == 3 
  for i = 1 : nsource 
    if mesh.source.fwhm(i) == 0 
        qvec(:,i) = gen_source_point(mesh,mesh.source.coord(i,1:3)); 
    else 
    qvec(:,i) = gen_source(mesh.nodes,... 
    sort(mesh.elements')',... 
    mesh.dimension,... 
    mesh.source.coord(i,:),... 
    mesh.source.fwhm(i)); 
    end 
  end 
end 
 
i=nnodes; 
 
% Build source term 
qvec=[qvec;(-2/3)*qvec;(8/15)*qvec;(-16/35)*qvec]; 
 
% Build mass matrix 
MASS=[M1 -(C23-G1) +(C8-H1) -(C16-I1);... 
     -(C23-G2) M2 -(C16-C2_49-H2) (C32+C2_8-I2);... 
     (C8-G3) -(C16+C2_49-H3) M3 -(C128+C2_32+C4_54-I3);... 
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  (-C16-G4) (C32+C2_8-H4) -(C128+C2_32+C4_54-I4) M4]; 
 
% %====================================== 
% % Optimise MASS matrix 
  
[MASS_opt,Q_opt,invsort]=optimise(MASS,qvec); 
 
% %======================================= 
 
[phi_all,R]=get_field(MASS_opt,mesh,Q_opt); 
 
% Re-order elements 
phi_all=phi_all(invsort,:); 
data.phi1=phi_all(1:nvtx,:); 
data.phi2=phi_all((nvtx+1):(2*nvtx),:); 
data.phi3=phi_all(((2*nvtx)+1):3*nvtx,:); 
data.phi4=phi_all(((3*nvtx)+1):4*nvtx,:); 
 
% Build source term 
data.phi = data.phi1 - (2/3).*data.phi2+... 
        (8/15).*data.phi3-(16/35).*data.phi4; 
clear phi*; 
 
[qvec] = gen_source_adjoint(mesh); 
 
% Adjoint source 
qvec = [qvec;(-2/3)*qvec;(8/15)*qvec;(-16/35)*qvec]; 
 
[MASS_opt,qvec_opt,invsort]=optimise(MASS,qvec); 
 
[phi]=get_field(conj(MASS_opt),mesh,conj(qvec_opt),R); 
phi=phi(invsort,:); 
data.aphi1=phi(1:nvtx,:); 
data.aphi2=phi((nvtx+1):(2*nvtx),:); 
data.aphi3=phi(((2*nvtx)+1):3*nvtx,:); 
data.aphi4=phi(((3*nvtx)+1):4*nvtx,:); 
 
% Calculate scalar flux from contributions of Phi1 Phi2 Phi3 Phi 4 
 
data.aphi = data.aphi1 - (2/3).*data.aphi2+... 
        (8/15).*data.aphi3-(16/35).*data.aphi4; 
clear phi* qvec* R* MASS*; 
% ======================================= 
%  
 
% Calculate boundary data 
[data.complex]=get_boundary_data(mesh,data.phi); 
[data.complex1]=get_boundary_data(mesh,data.phi1); 
[data.complex2]=get_boundary_data(mesh,data.phi2); 
[data.complex3]=get_boundary_data(mesh,data.phi3); 
[data.complex4]=get_boundary_data(mesh,data.phi4); 
 
% Map complex data to amplitude and phase 
% Phi 1 
data.amplitude1 = abs(data.complex1); 
 
data.phase1 = atan2(imag(data.complex1),... 
     real(data.complex1)); 
data.phase1(find(data.phase1<0)) = data.phase1(find(data.phase1<0)) + (2*pi); 
data.phase1 = data.phase1*180/pi; 
 
data.paa1 = [data.amplitude1 data.phase1]; 
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% Phi 2 
data.amplitude2 = abs(data.complex2); 
 
data.phase2 = atan2(imag(data.complex2),... 
     real(data.complex2)); 
data.phase2(find(data.phase2<0)) = data.phase2(find(data.phase2<0)) + (2*pi); 
data.phase2 = data.phase2*180/pi; 
 
data.paa2 = [data.amplitude2 data.phase2]; 
 
% Phi 3 
data.amplitude3 = abs(data.complex3); 
 
data.phase3 = atan2(imag(data.complex3),... 
     real(data.complex3)); 
data.phase3(find(data.phase3<0)) = data.phase3(find(data.phase3<0)) + (2*pi); 
data.phase3 = data.phase3*180/pi; 
 
data.paa3 = [data.amplitude3 data.phase3]; 
 
% Phi 4 
data.amplitude4 = abs(data.complex4); 
 
data.phase4 = atan2(imag(data.complex4),... 
     real(data.complex4)); 
data.phase4(find(data.phase4<0)) = data.phase4(find(data.phase4<0)) + (2*pi); 
data.phase4 = data.phase4*180/pi; 
 
data.paa4 = [data.amplitude4 data.phase4]; 
 
% Total 
data.amplitude = abs(data.complex); 
 
data.phase = atan2(imag(data.complex),... 
     real(data.complex)); 
data.phase(find(data.phase<0)) = data.phase(find(data.phase<0)) + (2*pi); 
data.phase = data.phase*180/pi; 
 
data.paa = [data.amplitude data.phase]; 
 
% Calculate Jacobian for each order of fluence and total fluence 
% Catch zero frequency (CW) here 
if frequency == 0 
  [J] = build_jacobian_cw(mesh,data); 
else 
  data1.phi = data.phi1; 
  data1.aphi = data.aphi1; 
  data1.complex = data.complex1; 
  [J1] = build_jacobian(mesh,data1); 
  data1.phi = data.phi2; 
  data1.aphi = data.aphi2; 
  data1.complex = data.complex2; 
  [J2] = build_jacobian(mesh,data1); 
  data1.phi = data.phi3; 
  data1.aphi = data.aphi3; 
  data1.complex = data.complex3; 
  [J3] = build_jacobian(mesh,data1); 
 data1.phi = data.phi4; 
  data1.aphi = data.aphi4; 
  data1.complex = data.complex4; 
  [J4] = build_jacobian(mesh,data1); 
  clear data1 
end 
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function [J,data,mesh]=jacobian_spn(mesh,frequency) 
 
% [J,data,mesh]=jacobian_stnd(fn,frequency,param) 
% Calculates a single Jacobian (both complex version and separate parts 
% in terms of mus and mua for log amplitude and phase 
% (radians). See any of Dartmouth Publications regarding the 
% structure. Also calculates data (phase and amplitude) for a given 
% problem (fn) at a given frequency (MHz). 
% outputs phase and amplitude in structure data 
% and mesh information in mesh 
% 
% As used in Section 8.7 - Diffusion based image recon 
% using the SPN approximation 
 
% If not a workspace variable, load mesh 
if ischar(mesh)== 1 
    mesh = load_mesh(mesh); 
end 
 
% modulation frequency 
omega = 2*pi*frequency*1e6; 
nvtx=length(mesh.nodes); 
 
% Create FEM matricex 
[f1,f2,f3,g1,g2,g3,h1,h2,h3] = ksi_calc_sp5(mesh); 
 
if mesh.dimension==2 
[i,j,k1,k3,k5,c,c23,c49,c64,c8,c16,c2_59,c2_16,c2_49,c4_9,B,F1,F2,F3,G1,G2,G3,H1,H2,H3,ib,jb]=
gen_matrices_2d_sp5(mesh.nodes(:,1:2),... 
    sort(mesh.elements')',... 
    mesh.bndvtx,... 
    mesh.mua,... 
    mesh.mus,... 
    mesh.g,... 
    f1,... 
    f2,... 
    f3,... 
    g1,... 
    g2,... 
    g3,... 
    h1,... 
    h2,... 
    h3,... 
    mesh.c,... 
    omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
C  = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23= sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49= sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64= sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
C16= sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
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C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
nz_i = length(nonzeros(ib)); 
F1 = sparse(ib(1:nz_i),jb(1:nz_i),F1(1:nz_i)); 
F2 = sparse(ib(1:nz_i),jb(1:nz_i),F2(1:nz_i)); 
F3 = sparse(ib(1:nz_i),jb(1:nz_i),F3(1:nz_i)); 
G1 = sparse(ib(1:nz_i),jb(1:nz_i),G1(1:nz_i)); 
G2 = sparse(ib(1:nz_i),jb(1:nz_i),G2(1:nz_i)); 
G3 = sparse(ib(1:nz_i),jb(1:nz_i),G3(1:nz_i)); 
H1 = sparse(ib(1:nz_i),jb(1:nz_i),H1(1:nz_i)); 
H2 = sparse(ib(1:nz_i),jb(1:nz_i),H2(1:nz_i)); 
H3 = sparse(ib(1:nz_i),jb(1:nz_i),H3(1:nz_i)); 
 
elseif mesh.dimension==3 
[i,j,k1,k3,k5,c,c23,c49,c64,c8,c16,c2_59,c2_16,c2_49,c4_9,B,F1,F2,F3,G1,G2,G3,H1,H2,H3,ib,jb]=
gen_matrices_3d_sp5(mesh.nodes,... 
    sort(mesh.elements')',... 
    mesh.bndvtx,... 
    mesh.mua,... 
    mesh.mus,... 
    mesh.g,... 
    f1,... 
    f2,... 
    f3,... 
    g1,... 
    g2,... 
    g3,... 
    h1,... 
    h2,... 
    h3,... 
    mesh.c,... 
    omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
C  = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23= sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49= sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64= sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
C16= sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
F1 = sparse(i(1:nz_i),j(1:nz_i),F1(1:nz_i)); 
F2 = sparse(i(1:nz_i),j(1:nz_i),F2(1:nz_i)); 
F3 = sparse(i(1:nz_i),j(1:nz_i),F3(1:nz_i)); 
G1 = sparse(i(1:nz_i),j(1:nz_i),G1(1:nz_i)); 
G2 = sparse(i(1:nz_i),j(1:nz_i),G2(1:nz_i)); 
G3 = sparse(i(1:nz_i),j(1:nz_i),G3(1:nz_i)); 
H1 = sparse(i(1:nz_i),j(1:nz_i),H1(1:nz_i)); 
H2 = sparse(i(1:nz_i),j(1:nz_i),H2(1:nz_i)); 
H3 = sparse(i(1:nz_i),j(1:nz_i),H3(1:nz_i)); 
 
end 
 
clear i j k1 c f1 g1 ib jb nz_i omega 
 
% Add complex component to account for frequency dependence 
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C=C+B; 
C23=C23+B; 
C49=C49+B; 
C64=C64+B; 
C8=C8+B; 
C16=C16+B; 
C2_59=C2_59+B; 
C2_16=C2_16+B; 
C2_49=C2_49+B; 
C4_9=C4_9+B; 
Cs=C16+C2_49; 
 
 
M1=K1+C+F1; 
M2=K3+C49+C2_59+F2; 
M3=K5+C64+C2_16+C4_9+F3; 
 
 
% Calculate the RHS (the source vectors. For simplicity, we are 
% just going to use a Gaussian Source, The width of the Gaussian is 
% changeable (last argument). The source is assumed to have a 
% complex amplitude of complex(cos(0.15),sin(0.15)); 
 
% Now calculate source vector 
% NOTE last term in mex file 'qvec' is the source FWHM 
% 
[nnodes,junk]=size(mesh.nodes); 
[nsource,junk]=size(mesh.source.coord); 
qvec = spalloc(nnodes,nsource,nsource*100); 
if mesh.dimension == 2 
    for i = 1 : nsource 
        if mesh.source.fwhm(i) == 0 
            qvec(:,i) = gen_source_point(mesh,mesh.source.coord(i,1:2)); 
        else 
            qvec(:,i) = gen_source(mesh.nodes(:,1:2),... 
                sort(mesh.elements')',... 
                mesh.dimension,... 
                mesh.source.coord(i,1:2),... 
                mesh.source.fwhm(i)); 
        end 
    end 
elseif mesh.dimension == 3 
    for i = 1 : nsource 
        if mesh.source.fwhm(i) == 0 
            qvec(:,i) = gen_source_point(mesh,mesh.source.coord(i,1:3)); 
        else 
            qvec(:,i) = gen_source(mesh.nodes,... 
                sort(mesh.elements')',... 
                mesh.dimension,... 
                mesh.source.coord(i,:),... 
                mesh.source.fwhm(i)); 
        end 
    end 
end 
 
i=nnodes; 
 
% Build source term 
qvec=[qvec;(-2/3)*qvec;(8/15)*qvec]; 
 
% Build mass matrix 
MASS=[M1 -(C23-G1) (C8-H1);-(C23-G2) M2 -(C16+C2_49-H2); 
     (C8-G3) -(C16+C2_49-H3) M3]; 
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% %====================================== 
% % Optimise MASS matrix 
 
[MASS_opt,Q_opt,invsort]=optimise(MASS,qvec); 
 
% %======================================= 
 
[phi_all,R]=get_field(MASS_opt,mesh,Q_opt); 
 
% Re-order elements 
phi_all=phi_all(invsort,:); 
data.phi1=phi_all(1:nvtx,:); 
data.phi2=phi_all((nvtx+1):(2*nvtx),:); 
data.phi3=phi_all(((2*nvtx)+1):3*nvtx,:); 
 
% Calculate total fluence 
data.phi = data.phi1 - (2/3).*data.phi2+... 
    (8/15).*data.phi3; 
clear phi*; 
 
[qvec] = gen_source_adjoint(mesh); 
qvec = [qvec;(-2/3)*qvec;(8/15)*qvec;(-16/35)*qvec]; 
 
[MASS_opt,qvec_opt,invsort]=optimise(MASS,qvec); 
[aphi]=get_field(conj(MASS_opt),mesh,conj(qvec_opt),R); 
aphi=aphi(invsort,:); 
data.aphi1=aphi(1:nvtx,:); 
data.aphi2=aphi((nvtx+1):(2*nvtx),:); 
data.aphi3=aphi(((2*nvtx)+1):3*nvtx,:); 
 
% Adjoint source term 
data.aphi = data.aphi1 - (2/3).*data.aphi2+... 
    (8/15).*data.aphi3; 
 
clear phi* qvec* R* MASS*; 
% ======================================= 
% 
 
% Calculate boundary data 
[data.complex]=get_boundary_data(mesh,data.phi); 
 
% Map complex data to amplitude and phase 
 
data.amplitude = abs(data.complex); 
 
data.phase = atan2(imag(data.complex),... 
    real(data.complex)); 
data.phase(find(data.phase<0)) = data.phase(find(data.phase<0)) + (2*pi); 
data.phase = data.phase*180/pi; 
 
data.paa = [data.amplitude data.phase]; 
 
% Calculate Jacobian for total fluence calculated from combination of moments. 
% Catch zero frequency (CW) here 
if frequency == 0 
    [J] = build_jacobian_cw(mesh,data); 
else 
    [J] = build_jacobian(mesh,data); 
end 
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function [fwd_mesh,pj_error1,pj_error2,pj_error3,pj_error4] = reconstruct_sp7(fwd_mesh,... 
  recon_basis,   frequency, data_fn, iteration, lambda, output_fn, filter_n) 
 
% Multi parameter image reconstruction program for spn meshes 
% See chapters 6 & 8 for more details 
 
 
%**************************************** 
% If not a workspace variable, load mesh 
if ischar(fwd_mesh)== 1 
  fwd_mesh = load_mesh(fwd_mesh); 
end 
 
if ischar(recon_basis) 
  recon_mesh = load_mesh(recon_basis); 
  [fwd_mesh.fine2coarse,... 
   recon_mesh.coarse2fine] = second_mesh_basis(fwd_mesh,recon_mesh); 
else 
  [fwd_mesh.fine2coarse,recon_mesh] = pixel_basis(recon_basis,fwd_mesh); 
end 
 
% read data 
% Need to load 4 data files, phi1, 2, 3 and 4 
% Phi 1 data 
anom = load_data(data_fn); 
anom1(:,1) = log(anom(:,1)); 
anom1(:,2) = anom(:,5)/180.0*pi; 
anom1(find(anom1(:,2)<0),2) = anom1(find(anom1(:,2)<0),2) + (2*pi); 
anom1(find(anom1(:,2)>(2*pi)),2) = anom1(find(anom1(:,2)>(2*pi)),2) - (2*pi); 
anom1 = reshape(anom1',length(anom1)*2,1); 
 
% Phi 2 data  
anom2(:,1) = log(anom(:,2)); 
anom2(:,2) = anom(:,6)/180.0*pi; 
anom2(find(anom2(:,2)<0),2) = anom2(find(anom2(:,2)<0),2) + (2*pi); 
anom2(find(anom2(:,2)>(2*pi)),2) = anom2(find(anom2(:,2)>(2*pi)),2) - (2*pi); 
anom2 = reshape(anom2',length(anom2)*2,1); 
 
% Phi 3 data  
anom3(:,1) = log(anom(:,3)); 
anom3(:,2) = anom(:,7)/180.0*pi; 
anom3(find(anom3(:,2)<0),2) = anom3(find(anom3(:,2)<0),2) + (2*pi); 
anom3(find(anom3(:,2)>(2*pi)),2) = anom3(find(anom3(:,2)>(2*pi)),2) - (2*pi); 
anom3 = reshape(anom3',length(anom3)*2,1); 
 
% Phi 4 data  
anom4(:,1) = log(anom(:,4)); 
anom4(:,2) = anom(:,8)/180.0*pi; 
anom4(find(anom4(:,2)<0),2) = anom4(find(anom4(:,2)<0),2) + (2*pi); 
anom4(find(anom4(:,2)>(2*pi)),2) = anom4(find(anom4(:,2)>(2*pi)),2) - (2*pi); 
anom4 = reshape(anom4',length(anom4)*2,1); 
 
 
% Initiate projection error for each moment of fluence 
pj_error1 = []; 
pj_error2 = []; 
pj_error3 = []; 
pj_error4 = []; 
 
% Initiate log file 
fid_log = fopen([output_fn '.log'],'w'); 
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fprintf(fid_log,'Forward Mesh   = %s\n',fwd_mesh.name); 
if ischar(recon_basis) 
  fprintf(fid_log,'Basis          = %s\n',recon_basis); 
else 
  fprintf(fid_log,'Basis          = %s\n',num2str(recon_basis)); 
end 
fprintf(fid_log,'Frequency      = %f MHz\n',frequency); 
fprintf(fid_log,'Data File      = %s\n',data_fn); 
fprintf(fid_log,'Initial Reg    = %d\n',lambda); 
fprintf(fid_log,'Filter         = %d\n',filter_n); 
fprintf(fid_log,'Output Files   = %s_mua.sol\n',output_fn); 
fprintf(fid_log,'               = %s_mus.sol\n',output_fn); 
 
 
for it = 1 : iteration 
   
  % Calculate separate Jacobian for each moment of fluence 
  [J1,J2,J3,J4,data]=jacobian_sp7(fwd_mesh,frequency); 
 
   % Read reference data 
   % Phi 1 reference data 
    clear ref* 
    ref1(:,1) = log(abs(data.amplitude1)); 
    ref1(:,2) = data.phase1; 
    ref1(:,2) = ref1(:,2)/180.0*pi; 
    ref1(find(ref1(:,2)<0),2) = ref1(find(ref1(:,2)<0),2) + (2*pi); 
    ref1(find(ref1(:,2)>(2*pi)),2) = ref1(find(ref1(:,2)>(2*pi)),2) - (2*pi); 
    ref1 = reshape(ref1',length(ref1)*2,1); 
 
   % Phi 2 reference data 
    ref2(:,1) = log(data.amplitude2); 
    ref2(:,2) = data.phase2; 
    ref2(:,2) = ref2(:,2)/180.0*pi; 
    ref2(find(ref2(:,2)<0),2) = ref2(find(ref2(:,2)<0),2) + (2*pi); 
    ref2(find(ref2(:,2)>(2*pi)),2) = ref2(find(ref2(:,2)>(2*pi)),2) - (2*pi); 
    ref2 = reshape(ref2',length(ref2)*2,1);  
     
    % Phi 3 reference data 
    ref3(:,1) = log(data.amplitude3); 
    ref3(:,2) = data.phase3; 
    ref3(:,2) = ref3(:,2)/180.0*pi; 
    ref3(find(ref3(:,2)<0),2) = ref3(find(ref3(:,2)<0),2) + (2*pi); 
    ref3(find(ref3(:,2)>(2*pi)),2) = ref3(find(ref3(:,2)>(2*pi)),2) - (2*pi); 
    ref3 = reshape(ref3',length(ref3)*2,1);  
 
    % Phi 4 reference data 
    ref4(:,1) = log(data.amplitude4); 
    ref4(:,2) = data.phase4; 
    ref4(:,2) = ref4(:,2)/180.0*pi; 
    ref4(find(ref4(:,2)<0),2) = ref4(find(ref4(:,2)<0),2) + (2*pi); 
    ref4(find(ref4(:,2)>(2*pi)),2) = ref4(find(ref4(:,2)>(2*pi)),2) - (2*pi); 
    ref4 = reshape(ref4',length(ref4)*2,1);  
  
    data_diff1 = abs(anom1-ref1); 
    data_diff2 = abs(anom2-ref2); 
    data_diff3 = abs(anom3-ref3); 
    data_diff4 = abs(anom4-ref4); 
    data_diff = [data_diff1; data_diff2; data_diff3; data_diff4]; 
 
% Calculate projection error 
    pj_error1 = [pj_error1 sum(data_diff1.^2)];   
    pj_error2 = [pj_error2 sum(data_diff2.^2)];  
    pj_error3 = [pj_error3 sum(data_diff3.^2)]; 
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    pj_error4 = [pj_error4 sum(data_diff4.^2)]; 
 
    disp('---------------------------------'); 
    disp(['Iteration Number          = ' num2str(it)]); 
    disp(['Projection error 1         = ' num2str(pj_error1(end))]); 
    disp(['Projection error 2         = ' num2str(pj_error2(end))]); 
    disp(['Projection error 3         = ' num2str(pj_error3(end))]); 
    disp(['Projection error 4         = ' num2str(pj_error4(end))]); 
    fprintf(fid_log,'---------------------------------\n'); 
    fprintf(fid_log,'Iteration Number          = %d\n',it); 
    fprintf(fid_log,'Projection error - phi 1       = %f\n',pj_error1(end)); 
    fprintf(fid_log,'Projection error - phi 2       = %f\n',pj_error2(end)); 
    fprintf(fid_log,'Projection error - phi 3       = %f\n',pj_error3(end)); 
    fprintf(fid_log,'Projection error - phi 4       = %f\n',pj_error4(end)); 
 
    if it ~= 1 
        p1 = (pj_error1(end-1)-pj_error1(end))*100/pj_error1(end-1); 
        p2 = (pj_error2(end-1)-pj_error2(end))*100/pj_error2(end-1); 
        p3 = (pj_error3(end-1)-pj_error3(end))*100/pj_error3(end-1); 
        p4 = (pj_error4(end-1)-pj_error4(end))*100/pj_error4(end-1); 
        disp(['Projection error change for phi1   = ' num2str(p1) '%']); 
        disp(['Projection error change for phi2   = ' num2str(p2) '%']); 
        disp(['Projection error change for phi3   = ' num2str(p3) '%']); 
        disp(['Projection error change for phi4   = ' num2str(p4) '%']);   
        fprintf(fid_log,'Projection error change for phi1   = %f %%\n',p1); 
        fprintf(fid_log,'Projection error change for phi2   = %f %%\n',p2); 
        fprintf(fid_log,'Projection error change for phi3   = %f %%\n',p3); 
        fprintf(fid_log,'Projection error change for phi4   = %f %%\n',p4); 
 
% Test for stopping criteria 
    if (p1) <= 0.1 & (p2) <= 0.1 & (p3)<= 0.1 & (p4)<= 0.1 % set stopping criteria < 2% 
          disp('---------------------------------'); 
          disp('STOPPING CRITERIA REACHED'); 
          fprintf(fid_log,'---------------------------------\n'); 
          fprintf(fid_log,'STOPPING CRITERIA REACHED\n'); 
          break 
        end 
    end 
 
      % Interpolate onto recon mesh 
    [J1,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J1.complete); 
    [J2,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J2.complete); 
    [J3,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J3.complete); 
    [J4,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J4.complete); 
 
    % Calculate higher ordered optical property terms 
    mua = recon_mesh.mua; 
    mua1 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g));  
    mua2 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^2)); 
    mua3 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^3)); 
    mua4 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^4)); 
    mua5 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^5)); 
    mua6 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^6)); 
    mua7 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^7)); 
    muai = ((4/9).*mua)+((5/9).*mua2); 
    muaii= ((16/45).*mua)+((4/9).*mua2); 
    muaiii=((32/105).*mua)+((8/21).*mua2); 
    muaiv= ((64/225).*mua)+((16/45).*mua2)+((9/25).*mua4); 
    muav = ((128/525).*mua)+((32/105).*mua2)+((54/175).*mua4); 
    muavi= ((256/1225).*mua)+((64/245).*mua2)+((324/1225).*mua4)+ ... 
                     ((13/49).*mua6); 
    kappa1 = 1./(3.*mua1); 
    kappa3 = 1./(7.*mua3); 
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    kappa5 = 1./(11.*mua5); 
    kappa7 = 1./(15.*mua7); 
     
    %% Find part of Jacobian that relates to other moments of fluence 
    foo1 = J1(:,end/2+1:end); 
    foo2 = J2(:,end/2+1:end); 
    foo3 = J3(:,end/2+1:end); 
    foo4 = J4(:,end/2+1:end); 
    [nrow,ncol]=size(J1); 
     
    % Construct complete jacobian and normalise at same time 
    dmua = diag(mua); 
    J1 = [J1*diag([kappa1;mua]) zeros(nrow,3.*ncol) -foo2*dmua foo3*dmua -foo4*dmua 
zeros(nrow,(3.*ncol)./2)]; 
    J2 = [zeros(nrow,ncol) J2*diag([kappa3;muai]) zeros(nrow,2.*ncol) -foo1*dmua 
zeros(nrow,ncol) ... 
        -foo3*diag(muaii) foo4*diag(muaiii) zeros(nrow,ncol./2)]; 
    J3 = [zeros(nrow,2.*ncol) J3*diag([kappa5; muaiv]) zeros(nrow,(3.*ncol)./2) foo1*dmua ... 
        zeros(nrow,ncol./2) -foo2*diag(muaii) zeros(nrow,ncol./2) -foo4*diag(muav)]; 
    J4 = [zeros(nrow,3.*ncol) J4*diag([kappa7; muavi]) zeros(nrow,ncol) -foo1*dmua 
foo2*diag(muaii) ... 
        zeros(nrow,ncol./2) -foo3*diag(muav)]; 
 
    clear foo* dmua 
     
    J = [J1; J2; J3; J4];  
 
 
    
    % build hessian 
    [nrow,ncol]=size(J); 
    Hess = zeros(nrow); 
    Hess = (J*J'); 
     
    % Add regularization 
    if it ~= 1 
        lambda = lambda./10^0.125; 
    end 
 
    % Hess 
    reg_amp = lambda*max(diag(Hess(1:2:end,1:2:end))); 
    reg_phs = lambda*max(diag(Hess(2:2:end,2:2:end))); 
    reg = ones(nrow,1); 
    reg(1:2:end) = reg_amp; 
    reg(2:2:end) = reg_phs; 
    reg = diag(reg); 
    reg = lambda.*eye(size(Hess)); 
     
    disp(['Amplitude Regularization       = ' num2str(reg_amp)]); 
    disp(['Phase Regularization           = ' num2str(reg_phs)]); 
    fprintf(fid_log,'Amplitude Regularization       = %f\n',reg_amp); 
    fprintf(fid_log,'Phase Regularization           = %f\n',reg_phs); 
         
    Hess = Hess+reg; 
     
    % Calculate update 
    foo = J'*(Hess\data_diff); 
    foo = foo.*[kappa1;mua; kappa3; muai; kappa5; muaiv; kappa7; muavi; ... 
        mua; mua; mua; muaii; muaiii; muav]; 
 
    % Update values 
    recon_mesh.kappa1 = kappa1 + foo(1:end/14); 
    recon_mesh.mua = mua + foo(end/14+1:2*end/14); 
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    recon_mesh.kappa3 = kappa3 + foo(2*end/14+1:3*end/14); 
    recon_mesh.muai = muai + foo(3*end/14+1:4*end/14); 
    recon_mesh.kappa5 = kappa5 + foo(4*end/14+1:5*end/14); 
    recon_mesh.muaiv = muaiv + foo(5*end/14+1:6*end/14); 
    recon_mesh.kappa7 = kappa7 +foo(6*end/14+1:7*end/14); 
    recon_mesh.muavi = muavi + foo(7*end/14+1:8*end/14); 
    recon_mesh.mua23 = (2/3)*mua +foo(8*end/14+1:9*end/14); 
    recon_mesh.mua815 = (8/15)*mua + foo(9*end/14+1:10*end/14); 
    recon_mesh.mua1635 = (16/35)*mua + foo(10*end/14+1:11*end/14); 
    recon_mesh.muaii = muaii + foo(11*end/14+1:12*end/14); 
    recon_mesh.muaiii = muaiii + foo(12*end/14+1:13*end/14); 
    recon_mesh.muav = muav + foo(13*end/14+1:end); 
     
    recon_mesh.mua = (recon_mesh.mua + ((3/2).*recon_mesh.mua23)+ ... 
       ((15/8).*recon_mesh.mua815)+ ... 
        ((35/16).*recon_mesh.mua1635))./4; 
    recon_mesh.mua1 = 1./(3.*recon_mesh.kappa1); 
    recon_mesh.mua3 = 1./(7.*recon_mesh.kappa3); 
    recon_mesh.mua5 = 1./(11.*recon_mesh.kappa5); 
    recon_mesh.mua7 = 1./(15.*recon_mesh.kappa7); 
     
    mua2_1=(9/5).*(recon_mesh.muai-((4/9).*recon_mesh.mua)); 
    mua2_2 = (9/4).*(recon_mesh.muaii-(16/45).*recon_mesh.mua); 
    mua2_3 = (21/8).*(recon_mesh.muaiii-(32/105).*recon_mesh.mua); 
    recon_mesh.mua2 = (mua2_1+mua2_2+mua2_3)./3; 
 
    mua4_1 = (25/9).*(muaiv - ((64/225).*recon_mesh.mua)- ((16/45).*recon_mesh.mua2)); 
    mua4_2 = (175/54).*(muav - ((128/525).*recon_mesh.mua)- ((32/105).*recon_mesh.mua2)); 
    recon_mesh.mua4 = (mua4_1+mua4_2)./2; 
 
    recon_mesh.mua6 = (49/13).*(recon_mesh.muavi-((256/1225).*recon_mesh.mua)-  
  ((64/245).*recon_mesh.mua2)- ((324/1225).*recon_mesh.mua4)); 
     
    mus1 = (recon_mesh.mua1-recon_mesh.mua)./(1-recon_mesh.g.^1); 
    mus2 = (recon_mesh.mua2-recon_mesh.mua)./(1-recon_mesh.g.^2); 
    mus3 = (recon_mesh.mua3-recon_mesh.mua)./(1-recon_mesh.g.^3); 
    mus4 = (recon_mesh.mua4-recon_mesh.mua)./(1-recon_mesh.g.^4); 
    mus5 = (recon_mesh.mua5-recon_mesh.mua)./(1-recon_mesh.g.^5); 
    mus6 = (recon_mesh.mua6-recon_mesh.mua)./(1-recon_mesh.g.^6); 
    mus7 = (recon_mesh.mua7-recon_mesh.mua)./(1-recon_mesh.g.^7); 
 
    recon_mesh.mus = (mus1+mus2+mus3+mus4+mus5+mus6+mus7)./7; 
 
    clear foo* Hess* Hess_norm tmp data_diff* G mus* 
 
    % Interpolate optical properties to fine mesh 
    [fwd_mesh,recon_mesh] = interpolatep2f(fwd_mesh,recon_mesh); 
 
    % We dont like -ve mua or mus! so if this happens, terminate 
    if (any(fwd_mesh.mua<0) | any(fwd_mesh.mus<0)) 
        disp('---------------------------------'); 
        disp('-ve mua or mus calculated...not saving solution'); 
        fprintf(fid_log,'---------------------------------\n'); 
        fprintf(fid_log,'STOPPING CRITERIA REACHED\n'); 
        break 
    end 
     
    % Filtering if needed! 
    if filter_n > 1 
        fwd_mesh = mean_filter(fwd_mesh,abs(filter_n)); 
    elseif filter_n < 0 
        fwd_mesh = median_filter(fwd_mesh,abs(filter_n)); 
    end 
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    if it == 1 
        fid = fopen([output_fn '_mua.sol'],'w'); 
    else 
        fid = fopen([output_fn '_mua.sol'],'a'); 
    end 
    fprintf(fid,'solution %g ',it); 
    fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
    fprintf(fid,'-components=1 '); 
    fprintf(fid,'-type=nodal\n'); 
    fprintf(fid,'%f ',fwd_mesh.mua); 
    fprintf(fid,'\n'); 
    fclose(fid); 
     
  if it == 1 
        fid = fopen([output_fn '_mus.sol'],'w'); 
    else 
        fid = fopen([output_fn '_mus.sol'],'a'); 
    end 
    fprintf(fid,'solution %g ',it); 
    fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
    fprintf(fid,'-components=1 '); 
    fprintf(fid,'-type=nodal\n'); 
    fprintf(fid,'%f ',fwd_mesh.mus); 
    fprintf(fid,'\n'); 
    fclose(fid); 
end 
 
% close log file! 
time = toc; 
fprintf(fid_log,'Computation TimeRegularization = %f\n',time); 
fclose(fid_log); 
 

 

function [fwd_mesh,pj_error1,pj_error2,pj_error3,pj_error4] = 
reconstruct_sp7_region(fwd_mesh, recon_basis, frequency, data_fn, iteration, lambda, output_fn,... 
 filter_n, region) 
 
% multiparameter reconstruction program for spn meshes 
% using hard priors 
% See chapters 6 & 8 for details 
 
 
tic; 
 
%**************************************** 
% If not a workspace variable, load mesh 
if ischar(fwd_mesh)== 1 
  fwd_mesh = load_mesh(fwd_mesh); 
end 
 
if ischar(recon_basis) 
  recon_mesh = load_mesh(recon_basis); 
  [fwd_mesh.fine2coarse,... 
   recon_mesh.coarse2fine] = second_mesh_basis(fwd_mesh,recon_mesh); 
else 
  [fwd_mesh.fine2coarse,recon_mesh] = pixel_basis(recon_basis,fwd_mesh); 
end 
 
% read data 
% Need to load 2 data files, phi1 and phi2 
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% Phi 1 data 
anom = load_data(data_fn); 
anom1(:,1) = log(anom(:,1)); 
anom1(:,2) = anom(:,5)/180.0*pi; 
anom1(find(anom1(:,2)<0),2) = anom1(find(anom1(:,2)<0),2) + (2*pi); 
anom1(find(anom1(:,2)>(2*pi)),2) = anom1(find(anom1(:,2)>(2*pi)),2) - (2*pi); 
anom1 = reshape(anom1',length(anom1)*2,1); 
 
% Phi 2 data  
anom2(:,1) = log(anom(:,2)); 
anom2(:,2) = anom(:,6)/180.0*pi; 
anom2(find(anom2(:,2)<0),2) = anom2(find(anom2(:,2)<0),2) + (2*pi); 
anom2(find(anom2(:,2)>(2*pi)),2) = anom2(find(anom2(:,2)>(2*pi)),2) - (2*pi); 
anom2 = reshape(anom2',length(anom2)*2,1); 
 
% Phi 3 data  
anom3(:,1) = log(anom(:,3)); 
anom3(:,2) = anom(:,7)/180.0*pi; 
anom3(find(anom3(:,2)<0),2) = anom3(find(anom3(:,2)<0),2) + (2*pi); 
anom3(find(anom3(:,2)>(2*pi)),2) = anom3(find(anom3(:,2)>(2*pi)),2) - (2*pi); 
anom3 = reshape(anom3',length(anom3)*2,1); 
 
% Phi 4 data  
anom4(:,1) = log(anom(:,4)); 
anom4(:,2) = anom(:,8)/180.0*pi; 
anom4(find(anom4(:,2)<0),2) = anom4(find(anom4(:,2)<0),2) + (2*pi); 
anom4(find(anom4(:,2)>(2*pi)),2) = anom4(find(anom4(:,2)>(2*pi)),2) - (2*pi); 
anom4 = reshape(anom4',length(anom4)*2,1); 
 
 
% Initiate projection error 
pj_error1 = []; 
pj_error2 = []; 
pj_error3 = []; 
pj_error4 = []; 
 
% Initiate log file 
fid_log = fopen([output_fn '.log'],'w'); 
fprintf(fid_log,'Forward Mesh   = %s\n',fwd_mesh.name); 
if ischar(recon_basis) 
  fprintf(fid_log,'Basis          = %s\n',recon_basis); 
else 
  fprintf(fid_log,'Basis          = %s\n',num2str(recon_basis)); 
end 
fprintf(fid_log,'Frequency      = %f MHz\n',frequency); 
fprintf(fid_log,'Data File      = %s\n',data_fn); 
fprintf(fid_log,'Initial Reg    = %d\n',lambda); 
fprintf(fid_log,'Filter         = %d\n',filter_n); 
fprintf(fid_log,'Output Files   = %s_mua.sol\n',output_fn); 
fprintf(fid_log,'               = %s_mus.sol\n',output_fn); 
 
disp('calculating regions'); 
if region ~= -1 
    K = region_mapper(recon_mesh,region); 
else 
    K = 1; 
end 
 
 
for it = 1 : iteration 
   
  % Calculate jacobian 
  [J1,J2,J3,J4,data]=jacobian_sp7(fwd_mesh,frequency); 
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   % Read reference data 
   % Phi 1 reference data 
    clear ref* 
    ref1(:,1) = log(abs(data.amplitude1)); 
    ref1(:,2) = data.phase1; 
    ref1(:,2) = ref1(:,2)/180.0*pi; 
    ref1(find(ref1(:,2)<0),2) = ref1(find(ref1(:,2)<0),2) + (2*pi); 
    ref1(find(ref1(:,2)>(2*pi)),2) = ref1(find(ref1(:,2)>(2*pi)),2) - (2*pi); 
    ref1 = reshape(ref1',length(ref1)*2,1); 
 
   % Phi 2 reference data 
    ref2(:,1) = log(data.amplitude2); 
    ref2(:,2) = data.phase2; 
    ref2(:,2) = ref2(:,2)/180.0*pi; 
    ref2(find(ref2(:,2)<0),2) = ref2(find(ref2(:,2)<0),2) + (2*pi); 
    ref2(find(ref2(:,2)>(2*pi)),2) = ref2(find(ref2(:,2)>(2*pi)),2) - (2*pi); 
    ref2 = reshape(ref2',length(ref2)*2,1);  
     
    % Phi 3 reference data 
    ref3(:,1) = log(data.amplitude3); 
    ref3(:,2) = data.phase3; 
    ref3(:,2) = ref3(:,2)/180.0*pi; 
    ref3(find(ref3(:,2)<0),2) = ref3(find(ref3(:,2)<0),2) + (2*pi); 
    ref3(find(ref3(:,2)>(2*pi)),2) = ref3(find(ref3(:,2)>(2*pi)),2) - (2*pi); 
    ref3 = reshape(ref3',length(ref3)*2,1);  
 
    % Phi 4 reference data 
    ref4(:,1) = log(data.amplitude4); 
    ref4(:,2) = data.phase4; 
    ref4(:,2) = ref4(:,2)/180.0*pi; 
    ref4(find(ref4(:,2)<0),2) = ref4(find(ref4(:,2)<0),2) + (2*pi); 
    ref4(find(ref4(:,2)>(2*pi)),2) = ref4(find(ref4(:,2)>(2*pi)),2) - (2*pi); 
    ref4 = reshape(ref4',length(ref4)*2,1);  
  
    data_diff1 = abs(anom1-ref1); 
    data_diff2 = abs(anom2-ref2); 
    data_diff3 = abs(anom3-ref3); 
    data_diff4 = abs(anom4-ref4); 
    data_diff = [data_diff1; data_diff2; data_diff3; data_diff4]; 
 
    pj_error1 = [pj_error1 sum(data_diff1.^2)];   
    pj_error2 = [pj_error2 sum(data_diff2.^2)];  
    pj_error3 = [pj_error3 sum(data_diff3.^2)]; 
    pj_error4 = [pj_error4 sum(data_diff4.^2)]; 
 
    disp('---------------------------------'); 
    disp(['Iteration Number          = ' num2str(it)]); 
    disp(['Projection error 1         = ' num2str(pj_error1(end))]); 
    disp(['Projection error 2         = ' num2str(pj_error2(end))]); 
    disp(['Projection error 3         = ' num2str(pj_error3(end))]); 
    disp(['Projection error 4         = ' num2str(pj_error4(end))]); 
    fprintf(fid_log,'---------------------------------\n'); 
    fprintf(fid_log,'Iteration Number          = %d\n',it); 
    fprintf(fid_log,'Projection error - phi 1       = %f\n',pj_error1(end)); 
    fprintf(fid_log,'Projection error - phi 2       = %f\n',pj_error2(end)); 
    fprintf(fid_log,'Projection error - phi 3       = %f\n',pj_error3(end)); 
    fprintf(fid_log,'Projection error - phi 4       = %f\n',pj_error4(end)); 
 
    if it ~= 1 
        p1 = (pj_error1(end-1)-pj_error1(end))*100/pj_error1(end-1); 
        p2 = (pj_error2(end-1)-pj_error2(end))*100/pj_error2(end-1); 
        p3 = (pj_error3(end-1)-pj_error3(end))*100/pj_error3(end-1); 
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        p4 = (pj_error4(end-1)-pj_error4(end))*100/pj_error4(end-1); 
        disp(['Projection error change for phi1   = ' num2str(p1) '%']); 
        disp(['Projection error change for phi2   = ' num2str(p2) '%']); 
        disp(['Projection error change for phi3   = ' num2str(p3) '%']); 
        disp(['Projection error change for phi4   = ' num2str(p4) '%']);   
        fprintf(fid_log,'Projection error change for phi1   = %f %%\n',p1); 
        fprintf(fid_log,'Projection error change for phi2   = %f %%\n',p2); 
        fprintf(fid_log,'Projection error change for phi3   = %f %%\n',p3); 
        fprintf(fid_log,'Projection error change for phi4   = %f %%\n',p4); 
 
    if (p1) <= 0.1 & (p2) <= 0.1 & (p3)<= 0.1 & (p4)<= 0.1 % set stopping criteria < 2% 
          disp('---------------------------------'); 
          disp('STOPPING CRITERIA REACHED'); 
          fprintf(fid_log,'---------------------------------\n'); 
          fprintf(fid_log,'STOPPING CRITERIA REACHED\n'); 
          break 
        end 
    end 
 
      % Interpolate onto recon mesh 
    [J1,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J1.complete); 
    [J2,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J2.complete); 
    [J3,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J3.complete); 
    [J4,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J4.complete); 
 
    % Normalize Jacobian wrt optical values 
    mua = recon_mesh.mua; 
    mua1 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g));  
    mua2 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^2)); 
    mua3 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^3)); 
    mua4 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^4)); 
    mua5 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^5)); 
    mua6 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^6)); 
    mua7 = (mua+recon_mesh.mus)-(recon_mesh.mus.*(recon_mesh.g.^7)); 
    muai = ((4/9).*mua)+((5/9).*mua2); 
    muaii= ((16/45).*mua)+((4/9).*mua2); 
    muaiii=((32/105).*mua)+((8/21).*mua2); 
    muaiv= ((64/225).*mua)+((16/45).*mua2)+((9/25).*mua4); 
    muav = ((128/525).*mua)+((32/105).*mua2)+((54/175).*mua4); 
    muavi= ((256/1225).*mua)+((64/245).*mua2)+((324/1225).*mua4)+ ... 
                     ((13/49).*mua6); 
    kappa1 = 1./(3.*mua1); 
    kappa3 = 1./(7.*mua3); 
    kappa5 = 1./(11.*mua5); 
    kappa7 = 1./(15.*mua7); 
     
    %% Adding dependance of phi1 and phi2 
    KK = [K zeros(size(K)); zeros(size(K)) K]; 
    foo1 = J1(:,end/2+1:end); 
    foo2 = J2(:,end/2+1:end); 
    foo3 = J3(:,end/2+1:end); 
    foo4 = J4(:,end/2+1:end); 
    [nrow,ncol]=size(J1); 
    K1 = zeros(nrow,ncol./2)*K; 
    KK2 = zeros(nrow,ncol)*KK; 
    J1 = [J1*KK KK2 KK2 KK2 -foo2*K foo3*K -foo4*K K1 KK2]; 
    J2 = [KK2 J2*KK KK2 KK2 -foo1*K KK2 -foo3*K foo4*K K1]; 
    J3 = [KK2 KK2 J3*KK K1 KK2 foo1*K K1 -foo2*K K1 -foo4*K]; 
    J4 = [KK2 KK2 KK2 J4*KK KK2 -foo1*K foo2*K K1 -foo3*K]; 
 
    clear foo* KK K1 KK2 
     
    % Normalize Jacobian wrt optical values 
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    N = [kappa1'*K./sum(K) mua'*K./sum(K) kappa3'*K./sum(K) ... 
        muai'*K./sum(K) kappa5'*K./sum(K) muaiv'*K./sum(K) ... 
        kappa7'*K./sum(K) muavi'*K./sum(K) mua'*K./sum(K) ... 
        mua'*K./sum(K) mua'*K./sum(K) muaii'*K./sum(K) ... 
        muaiii'*K./sum(K) muav'*K./sum(K)]; 
           
    J = [J1; J2; J3; J4]*diag(N);  
 
    % build hessian 
    [nrow,ncol]=size(J); 
    Hess = zeros(ncol); 
    Hess = (J'*J); 
        
reg = ones(ncol,1).*max(diag(Hess)).*lambda; 
    reg = diag(reg); 
     
    disp(['Regularization        = ' num2str(reg(1,1))]); 
    fprintf(fid_log,'Regularization        = %f\n',reg(1,1)); 
     
    Hess = Hess+reg; 
     
    % Calculate update 
    foo = Hess\(J'*data_diff); 
    foo = foo.*N'; 
    foo1 = []; 
    for i = 1 : 14 
        foo1 = [foo1; K*foo((i-1)*end/14+1:i*end/14)]; 
    end 
    foo = foo1; 
 
    % Update values 
    recon_mesh.kappa1 = kappa1 + foo(1:end/14); 
    recon_mesh.mua = mua + foo(end/14+1:2*end/14); 
    recon_mesh.kappa3 = kappa3 + foo(2*end/14+1:3*end/14); 
    recon_mesh.muai = muai + foo(3*end/14+1:4*end/14); 
    recon_mesh.kappa5 = kappa5 + foo(4*end/14+1:5*end/14); 
    recon_mesh.muaiv = muaiv + foo(5*end/14+1:6*end/14); 
    recon_mesh.kappa7 = kappa7 +foo(6*end/14+1:7*end/14); 
    recon_mesh.muavi = muavi + foo(7*end/14+1:8*end/14); 
    recon_mesh.mua23 = (2/3)*mua +foo(8*end/14+1:9*end/14); 
    recon_mesh.mua815 = (8/15)*mua + foo(9*end/14+1:10*end/14); 
    recon_mesh.mua1635 = (16/35)*mua + foo(10*end/14+1:11*end/14); 
    recon_mesh.muaii = muaii + foo(11*end/14+1:12*end/14); 
    recon_mesh.muaiii = muaiii + foo(12*end/14+1:13*end/14); 
    recon_mesh.muav = muav + foo(13*end/14+1:end); 
     
    recon_mesh.mua = (recon_mesh.mua + ((3/2).*recon_mesh.mua23)+ ... 
       ((15/8).*recon_mesh.mua815)+ ... 
        ((35/16).*recon_mesh.mua1635))./4; 
    recon_mesh.mua1 = 1./(3.*recon_mesh.kappa1); 
    recon_mesh.mua3 = 1./(7.*recon_mesh.kappa3); 
    recon_mesh.mua5 = 1./(11.*recon_mesh.kappa5); 
    recon_mesh.mua7 = 1./(15.*recon_mesh.kappa7); 
     
    mua2_1=(9/5).*(recon_mesh.muai-((4/9).*recon_mesh.mua)); 
    mua2_2 = (9/4).*(recon_mesh.muaii-(16/45).*recon_mesh.mua); 
    mua2_3 = (21/8).*(recon_mesh.muaiii-(32/105).*recon_mesh.mua); 
    recon_mesh.mua2 = (mua2_1+mua2_2+mua2_3)./3; 
 
    mua4_1 = (25/9).*(muaiv - ((64/225).*recon_mesh.mua)- ... 
        ((16/45).*recon_mesh.mua2)); 
    mua4_2 = (175/54).*(muav - ((128/525).*recon_mesh.mua)- ... 
  ((32/105).*recon_mesh.mua2)); 
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    recon_mesh.mua4 = (mua4_1+mua4_2)./2; 
 
    recon_mesh.mua6 = (49/13).*(recon_mesh.muavi- ((256/1225).*recon_mesh.mua)-… 
  ((64/245).*recon_mesh.mua2)- ((324/1225).*recon_mesh.mua4)); 
     
    mus1 = (recon_mesh.mua1-recon_mesh.mua)./(1-recon_mesh.g.^1); 
    mus2 = (recon_mesh.mua2-recon_mesh.mua)./(1-recon_mesh.g.^2); 
    mus3 = (recon_mesh.mua3-recon_mesh.mua)./(1-recon_mesh.g.^3); 
    mus4 = (recon_mesh.mua4-recon_mesh.mua)./(1-recon_mesh.g.^4); 
    mus5 = (recon_mesh.mua5-recon_mesh.mua)./(1-recon_mesh.g.^5); 
    mus6 = (recon_mesh.mua6-recon_mesh.mua)./(1-recon_mesh.g.^6); 
    mus7 = (recon_mesh.mua7-recon_mesh.mua)./(1-recon_mesh.g.^7); 
 
    recon_mesh.mus = (mus1+mus2+mus3+mus4+mus5+mus6+mus7)./7; 
 
    clear foo* Hess* Hess_norm tmp data_diff* G mus* 
 
    % Interpolate optical properties to fine mesh 
    [fwd_mesh,recon_mesh] = interpolatep2f(fwd_mesh,recon_mesh); 
 
    % We dont like -ve mua or mus! so if this happens, terminate 
    if (any(fwd_mesh.mua<0) | any(fwd_mesh.mus<0)) 
        disp('---------------------------------'); 
        disp('-ve mua or mus calculated...not saving solution'); 
        fprintf(fid_log,'---------------------------------\n'); 
        fprintf(fid_log,'STOPPING CRITERIA REACHED\n'); 
        break 
    end 
     
    % Filtering if needed! 
    if filter_n > 1 
        fwd_mesh = mean_filter(fwd_mesh,abs(filter_n)); 
    elseif filter_n < 0 
        fwd_mesh = median_filter(fwd_mesh,abs(filter_n)); 
    end 
     
    if it == 1 
        fid = fopen([output_fn '_mua.sol'],'w'); 
    else 
        fid = fopen([output_fn '_mua.sol'],'a'); 
    end 
    fprintf(fid,'solution %g ',it); 
    fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
    fprintf(fid,'-components=1 '); 
    fprintf(fid,'-type=nodal\n'); 
    fprintf(fid,'%f ',fwd_mesh.mua); 
    fprintf(fid,'\n'); 
    fclose(fid); 
     
  if it == 1 
        fid = fopen([output_fn '_mus.sol'],'w'); 
    else 
        fid = fopen([output_fn '_mus.sol'],'a'); 
    end 
    fprintf(fid,'solution %g ',it); 
    fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
    fprintf(fid,'-components=1 '); 
    fprintf(fid,'-type=nodal\n'); 
    fprintf(fid,'%f ',fwd_mesh.mus); 
    fprintf(fid,'\n'); 
    fclose(fid); 
end 
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% close log file! 
time = toc; 
fprintf(fid_log,'Computation TimeRegularization = %f\n',time); 
fclose(fid_log); 
 
 
 
 
 
function [val_int,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,val) 
 
% This function interpolates fwd_mesh into recon_mesh 
% For the Jacobian it is an integration! 
NNC = size(recon_mesh.nodes,1); 
NNF = size(fwd_mesh.nodes,1); 
NROW = size(val,1); 
val_int = zeros(NROW,NNC*2); 
 
for i = 1 : NNF 
  if recon_mesh.coarse2fine(i,1) ~= 0 
    val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) = ... 
    val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)) + ... 
 val(:,i)*recon_mesh.coarse2fine(i,2:end); 
    val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) = ... 
    val_int(:,recon_mesh.elements(recon_mesh.coarse2fine(i,1),:)+NNC) + ... 
 val(:,i+NNF)*recon_mesh.coarse2fine(i,2:end); 
  elseif recon_mesh.coarse2fine(i,1) == 0 
    dist = distance(fwd_mesh.nodes,fwd_mesh.bndvtx,recon_mesh.nodes(i,:)); 
    mindist = find(dist==min(dist)); 
    mindist = mindist(1); 
    val_int(:,i) = val(:,mindist); 
    val_int(:,i+NNC) = val(:,mindist+NNF); 
  end 
end 
 
for i = 1 : NNC 
  if fwd_mesh.fine2coarse(i,1) ~= 0 
    recon_mesh.mua(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
    fwd_mesh.mua(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
    recon_mesh.mus(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
    fwd_mesh.mus(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
    recon_mesh.c(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
    fwd_mesh.c(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
    recon_mesh.g(i,1) = (fwd_mesh.fine2coarse(i,2:end) * ... 
    fwd_mesh.g(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
    recon_mesh.region(i,1) = ... 
    median(fwd_mesh.region(fwd_mesh.elements(fwd_mesh.fine2coarse(i,1),:))); 
  elseif fwd_mesh.fine2coarse(i,1) == 0 
    dist = distance(fwd_mesh.nodes,... 
      fwd_mesh.bndvtx,... 
      [recon_mesh.nodes(i,1:2) 0]); 
    mindist = find(dist==min(dist)); 
    mindist = mindist(1); 
    recon_mesh.mua(i,1) = fwd_mesh.mua(mindist); 
    recon_mesh.mus(i,1) = fwd_mesh.mus(mindist); 
    recon_mesh.c(i,1) = fwd_mesh.c(mindist); 
    recon_mesh.g(i,1) = fwd_mesh.g(mindist); 
    recon_mesh.region(i,1) = fwd_mesh.region(mindist); 
  end 
end 
 
function [fwd_mesh,recon_mesh] = interpolatep2f(fwd_mesh,recon_mesh) 
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for i = 1 : length(fwd_mesh.nodes) 
  fwd_mesh.mua(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       recon_mesh.mua(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
  fwd_mesh.c(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       recon_mesh.c(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
  fwd_mesh.mus(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       recon_mesh.mus(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
   fwd_mesh.g(i,1) = ... 
      (recon_mesh.coarse2fine(i,2:end) * ... 
       recon_mesh.g(recon_mesh.elements(recon_mesh.coarse2fine(i,1),:))); 
end 
 
 
function KKK=region_mapper(mesh,region) 
% Region mapper for region-based reconstruction 
 
nregion = length(region) 
nnodes = length(mesh.nodes); 
 
% create empty mapping matrix 
K = sparse(nnodes,nregion); 
 
% Assign mapping functions, for each node belonging to each region 
for j = 1 : nregion 
    K(find(mesh.region==region(j)),j) = 1; 
end 
 
% find the total number of assigned nodes 
N = full(sum(sum(K))); 
 
% Here if some node is not in region, must account for it 
if N ~= length(mesh.nodes) 
    KK = sparse(nnodes,nnodes-N); 
    for k = 1 : length(region) 
        if k == 1 
            a = find(mesh.region~=region(k)); 
        else 
            a = intersect(find(mesh.region~=region(k)),a); 
        end 
    end 
    for i = 1 : length(a) 
        KK(a(i),i) = 1; 
    end 
    KKK = [K KK]; 
else 
    KKK = K; 
end 
 
 

function [fwd_mesh,pj_error] = reconstruct_spn(fwd_mesh, recon_basis, frequency, data_fn,   
 iteration, lambda, output_fn, filter_n) 
 
% Diffusion based reconstruction program for spn meshes 
% See chapters 6 & 8 for details 
%  
 
tic; 



252 

 
%**************************************** 
% If not a workspace variable, load mesh 
if ischar(fwd_mesh)== 1 
  fwd_mesh = load_mesh(fwd_mesh); 
end 
 
if ischar(recon_basis) 
  recon_mesh = load_mesh(recon_basis); 
  [fwd_mesh.fine2coarse,... 
   recon_mesh.coarse2fine] = second_mesh_basis(fwd_mesh,recon_mesh); 
else 
  [fwd_mesh.fine2coarse,recon_mesh] = pixel_basis(recon_basis,fwd_mesh); 
end 
 
% read data 
tmp = load_data(data_fn); 
[i j]=size(tmp); 
if j ==2 
  anom(:,1) = log(tmp(:,1)); 
  anom(:,2) = tmp(:,2)/180.0*pi; 
  anom(find(anom(:,2)<0),2) = anom(find(anom(:,2)<0),2) + (2*pi); 
  anom(find(anom(:,2)>(2*pi)),2) = anom(find(anom(:,2)>(2*pi)),2) - (2*pi); 
  anom = reshape(anom',length(anom)*2,1); 
else 
disp('Forward data is in wrong format. Use save_data to save phase/amp data'); 
end 
 
% Initiate projection error 
pj_error = []; 
 
% Initiate log file 
fid_log = fopen([output_fn '.log'],'w'); 
fprintf(fid_log,'Forward Mesh   = %s\n',fwd_mesh.name); 
if ischar(recon_basis) 
  fprintf(fid_log,'Basis          = %s\n',recon_basis); 
else 
  fprintf(fid_log,'Basis          = %s\n',num2str(recon_basis)); 
end 
fprintf(fid_log,'Frequency      = %f MHz\n',frequency); 
fprintf(fid_log,'Data File      = %s\n',data_fn); 
fprintf(fid_log,'Initial Reg    = %d\n',lambda); 
fprintf(fid_log,'Filter         = %d\n',filter_n); 
fprintf(fid_log,'Output Files   = %s_mua.sol\n',output_fn); 
fprintf(fid_log,'               = %s_mus.sol\n',output_fn); 
 
 
for it = 1 : iteration 
   
  % Calculate jacobian 
  [J,data]=jacobian_spn(fwd_mesh,frequency); 
 
  % Read reference data 
  clear ref; 
  ref(:,1) = log(data.amplitude); 
  ref(:,2) = data.phase; 
  ref(:,2) = ref(:,2)/180.0*pi; 
  ref(find(ref(:,2)<0),2) = ref(find(ref(:,2)<0),2) + (2*pi); 
  ref(find(ref(:,2)>(2*pi)),2) = ref(find(ref(:,2)>(2*pi)),2) - (2*pi); 
  ref = reshape(ref',length(ref)*2,1); 
 data_diff = (anom-ref); 
 
  pj_error = [pj_error sum((anom-ref).^2)];   
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  disp('---------------------------------'); 
  disp(['Iteration Number          = ' num2str(it)]); 
  disp(['Projection error          = ' num2str(pj_error(end))]); 
 
  fprintf(fid_log,'---------------------------------\n'); 
  fprintf(fid_log,'Iteration Number          = %d\n',it); 
  fprintf(fid_log,'Projection error          = %f\n',pj_error(end)); 
 
  if it ~= 1 
    p = (pj_error(end-1)-pj_error(end))*100/pj_error(end-1); 
    disp(['Projection error change   = ' num2str(p) '%']); 
    fprintf(fid_log,'Projection error change   = %f %%\n',p); 
    if (p) <= 0.1 
      disp('---------------------------------'); 
      disp('STOPPING CRITERIA REACHED'); 
      fprintf(fid_log,'---------------------------------\n'); 
      fprintf(fid_log,'STOPPING CRITERIA REACHED\n'); 
     break 
    end 
  end 
 
  % Interpolate onto recon mesh 
  [J,recon_mesh] = interpolatef2r(fwd_mesh,recon_mesh,J.complete); 
   
  recon_mesh.kappa=1./(3.*((recon_mesh.mua+((1-recon_mesh.g).*recon_mesh.mus)))); 
  % Normalize Jacobian wrt optical values 
  J = J*diag([recon_mesh.kappa;recon_mesh.mua]); 
 
  % build hessian 
  [nrow,ncol]=size(J); 
  Hess = zeros(nrow); 
  Hess = (J*J'); 
   
  % initailize temp Hess, data and mesh, incase PJ increases. 
  Hess_tmp = Hess; 
  mesh_tmp = recon_mesh; 
  data_tmp = data_diff; 
   
  % Add regularization 
  if it ~= 1 
    lambda = lambda./10^0.125; 
  end 
 
  % Seems that scatter part is always more noisey. So we will make 
  % sure that the regularization for phase is some factor (ratio 
  % of amplitude vs phase diagonals of the Hessian) higher. 
 
  reg_amp = lambda*max(diag(Hess(1:2:end,1:2:end))); 
  reg_phs = lambda*max(diag(Hess(2:2:end,2:2:end))); 
  reg = ones(nrow,1); 
  reg(1:2:end) = reg(1:2:end).*reg_amp; 
  reg(2:2:end) = reg(2:2:end).*reg_phs; 
  reg = diag(reg); 
   
  disp(['Amp Regularization        = ' num2str(reg(1,1))]); 
  disp(['Phs Regularization        = ' num2str(reg(2,2))]); 
  fprintf(fid_log,'Amp Regularization        = %f\n',reg(1,1)); 
  fprintf(fid_log,'Phs Regularization        = %f\n',reg(2,2)); 
  Hess = Hess+reg; 
 
  % Calculate update 
  foo = J'*(Hess\data_diff); 
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  foo = foo.*[recon_mesh.kappa;recon_mesh.mua]; 
 
  % Update values 
  recon_mesh.kappa = recon_mesh.kappa + (foo(1:end/2)); 
  recon_mesh.mua = recon_mesh.mua + (foo(end/2+1:end)); 
  recon_mesh.mus = ((1./(3.*recon_mesh.kappa))-recon_mesh.mua)./(1-recon_mesh.g); 
 
  clear foo Hess Hess_norm tmp data_diff G 
 
 
  % Interpolate optical properties to fine mesh 
  [fwd_mesh,recon_mesh] = interpolatep2f(fwd_mesh,recon_mesh); 
 
  % We dont like -ve mua or mus! so if this happens, terminate 
  if (any(fwd_mesh.mua<0) | any(fwd_mesh.mus<0)) 
    disp('---------------------------------'); 
    disp('-ve mua or mus calculated...not saving solution'); 
    fprintf(fid_log,'---------------------------------\n'); 
    fprintf(fid_log,'STOPPING CRITERIA REACHED\n'); 
    break 
  end 
   
  % Filtering if needed! 
  if filter_n > 1 
    fwd_mesh = mean_filter(fwd_mesh,abs(filter_n)); 
  elseif filter_n < 0 
    fwd_mesh = median_filter(fwd_mesh,abs(filter_n)); 
  end 
 
  if it == 1 
    fid = fopen([output_fn '_mua.sol'],'w'); 
  else 
    fid = fopen([output_fn '_mua.sol'],'a'); 
  end 
  fprintf(fid,'solution %g ',it); 
  fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
  fprintf(fid,'-components=1 '); 
  fprintf(fid,'-type=nodal\n'); 
  fprintf(fid,'%f ',fwd_mesh.mua); 
  fprintf(fid,'\n'); 
  fclose(fid); 
   
  if it == 1 
    fid = fopen([output_fn '_mus.sol'],'w'); 
  else 
    fid = fopen([output_fn '_mus.sol'],'a'); 
  end 
  fprintf(fid,'solution %g ',it); 
  fprintf(fid,'-size=%g ',length(fwd_mesh.nodes)); 
  fprintf(fid,'-components=1 '); 
  fprintf(fid,'-type=nodal\n'); 
  fprintf(fid,'%f ',fwd_mesh.mus); 
  fprintf(fid,'\n'); 
  fclose(fid); 
end 
 
% close log file! 
time = toc; 
fprintf(fid_log,'Computation TimeRegularization = %f\n',time); 
fclose(fid_log); 
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function [data,mesh]=femdata_spnhybrid(mesh,frequency,sp5lim) 
 
% Hybrid SP5-SP1/Diffusion model. sp5lim is size of square region around source to be 
solved using sp5  
% See Chapter 9 for details 
 
tic 
 
if ischar(mesh)== 1 
  mesh = load_mesh(mesh); 
end 
 
% modulation frequency 
omega = 2*pi*frequency*1e6; 
 
 
%================================== 
% Define regions to be solved by SP5 & SP1 
 
ind=find(abs(mesh.nodes(:,1))<=sp5lim & abs(mesh.nodes(:,2))<=sp5lim); 
mesh1.nodes=mesh.nodes(ind,:); 
mesh1.elements=delaunay(mesh1.nodes(:,1),mesh1.nodes(:,2)); 
mesh1.mua=mesh.mua(ind); 
mesh1.mus=mesh.mus(ind); 
mesh1.g=mesh.g(ind); 
mesh1.ri=mesh.ri(ind); 
mesh1.c=mesh.c(ind); 
mesh1.bndvtx=mesh.bndvtx(ind); 
mesh1.dimension=mesh.dimension; 
mesh1.region=mesh.region(ind); 
mesh1.source=mesh.source; 
 
ind=unique([find(abs(mesh.nodes(:,1))>=sp5lim);find(abs(mesh.nodes(:,2))>=sp5lim)]); 
mesh2.nodes=mesh.nodes(ind,:); 
mesh2.elements=delaunay(mesh2.nodes(:,1),mesh2.nodes(:,2)); 
mesh2.mua=mesh.mua(ind); 
mesh2.mus=mesh.mus(ind); 
mesh2.g=mesh.g(ind); 
mesh2.ri=mesh.ri(ind); 
mesh2.c=mesh.c(ind); 
mesh2.bndvtx=mesh.bndvtx(ind); 
mesh2.dimension=mesh.dimension; 
mesh2.region=mesh.region(ind); 
 
clear ind 
 
nvtx=length(mesh1.nodes)+length(mesh2.nodes); 
 
r1=length(mesh1.nodes); 
r2=length(mesh2.nodes); 
 
ident=[]; 
ident(:,1)=unique([find(abs(mesh2.nodes(:,1))==sp5lim & 
abs(mesh2.nodes(:,2))<=sp5lim);find(abs(mesh2.nodes(:,1))<=sp5lim & 
abs(mesh2.nodes(:,2))==sp5lim)]); 
 
ident(:,2)=unique([find(abs(mesh1.nodes(:,1))==sp5lim);find(abs(mesh1.nodes(:,2))==sp5lim)]
); 
ident(:,2)=ident(:,2)+r2; 
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% ======================================= 
% Calculate SP5 Mass matrix 
 
  [f1,f2,f3,g1,g2,g3,h1,h2,h3] = ksi_calc_sp5(mesh1); 
 
% Create FEM matrices 
if mesh1.dimension==2 
[i,j,k1,k3,k5,c,c23,c49,c64,c8,c16,c2_59,c2_16,c2_49,c4_9,B,F1,F2,F3,G1,G2,G3,H1,H2,H3,ib,jb]=
gen_matrices_2d_sp5(mesh1.nodes(:,1:2),... 
    sort(mesh1.elements')',... 
    mesh1.bndvtx,... 
    mesh1.mua,... 
    mesh1.mus,... 
    mesh1.g,... 
    f1,... 
    f2,... 
    f3,... 
    g1,... 
    g2,... 
    g3,... 
    h1,... 
    h2,... 
    h3,... 
    mesh1.c,... 
    omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
C  = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23= sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49= sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64= sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
C16= sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
nz_i = length(nonzeros(ib)); 
F1 = sparse(ib(1:nz_i),jb(1:nz_i),F1(1:nz_i)); 
F2 = sparse(ib(1:nz_i),jb(1:nz_i),F2(1:nz_i)); 
F3 = sparse(ib(1:nz_i),jb(1:nz_i),F3(1:nz_i)); 
G1 = sparse(ib(1:nz_i),jb(1:nz_i),G1(1:nz_i)); 
G2 = sparse(ib(1:nz_i),jb(1:nz_i),G2(1:nz_i)); 
G3 = sparse(ib(1:nz_i),jb(1:nz_i),G3(1:nz_i)); 
H1 = sparse(ib(1:nz_i),jb(1:nz_i),H1(1:nz_i)); 
H2 = sparse(ib(1:nz_i),jb(1:nz_i),H2(1:nz_i)); 
H3 = sparse(ib(1:nz_i),jb(1:nz_i),H3(1:nz_i)); 
 
elseif mesh1.dimension==3 
[i,j,k1,k3,k5,c,c23,c49,c64,c8,c16,c2_59,c2_16,c2_49,c4_9,B,F1,F2,F3,G1,G2,G3,H1,H2,H3,ib,jb]=
gen_matrices_3d_sp5(mesh1.nodes,... 
    sort(mesh1.elements')',... 
    mesh1.bndvtx,... 
    mesh1.mua,... 
    mesh1.mus,... 
    mesh1.g,... 
    f1,... 
    f2,... 
    f3,... 
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    g1,... 
    g2,... 
    g3,... 
    h1,... 
    h2,... 
    h3,... 
    mesh1.c,... 
    omega); 
 
nz_i=length(nonzeros(i)); 
K1 = sparse(i(1:nz_i),j(1:nz_i),k1(1:nz_i)); 
K3 = sparse(i(1:nz_i),j(1:nz_i),k3(1:nz_i)); 
K5 = sparse(i(1:nz_i),j(1:nz_i),k5(1:nz_i)); 
C  = sparse(i(1:nz_i),j(1:nz_i),c(1:nz_i)); 
C23= sparse(i(1:nz_i),j(1:nz_i),c23(1:nz_i)); 
C49= sparse(i(1:nz_i),j(1:nz_i),c49(1:nz_i)); 
C64= sparse(i(1:nz_i),j(1:nz_i),c64(1:nz_i)); 
C8 = sparse(i(1:nz_i),j(1:nz_i),c8(1:nz_i)); 
C16= sparse(i(1:nz_i),j(1:nz_i),c16(1:nz_i)); 
C2_59 = sparse(i(1:nz_i),j(1:nz_i),c2_59(1:nz_i)); 
C2_16 = sparse(i(1:nz_i),j(1:nz_i),c2_16(1:nz_i)); 
C2_49 = sparse(i(1:nz_i),j(1:nz_i),c2_49(1:nz_i)); 
C4_9 = sparse(i(1:nz_i),j(1:nz_i),c4_9(1:nz_i)); 
B = sparse(i(1:nz_i),j(1:nz_i),B(1:nz_i)); 
F1 = sparse(i(1:nz_i),j(1:nz_i),F1(1:nz_i)); 
F2 = sparse(i(1:nz_i),j(1:nz_i),F2(1:nz_i)); 
F3 = sparse(i(1:nz_i),j(1:nz_i),F3(1:nz_i)); 
G1 = sparse(i(1:nz_i),j(1:nz_i),G1(1:nz_i)); 
G2 = sparse(i(1:nz_i),j(1:nz_i),G2(1:nz_i)); 
G3 = sparse(i(1:nz_i),j(1:nz_i),G3(1:nz_i)); 
H1 = sparse(i(1:nz_i),j(1:nz_i),H1(1:nz_i)); 
H2 = sparse(i(1:nz_i),j(1:nz_i),H2(1:nz_i)); 
H3 = sparse(i(1:nz_i),j(1:nz_i),H3(1:nz_i)); 
 
end 
 
 
 
clear j* k* c* nz* 
 
% Add complex component to absorption moments due to 
% frequency dependence 
C=C+B; 
C23=C23+B; 
C49=C49+B; 
C64=C64+B; 
C8=C8+B; 
C16=C16+B; 
C2_59=C2_59+B; 
C2_16=C2_16+B; 
C2_49=C2_49+B; 
C4_9=C4_9+B; 
Cs=C16+C2_49; 
 
 
M1=K1+C+F1; 
M2=K3+C49+C2_59+F2; 
M3=K5+C64+C2_16+C4_9+F3; 
 
MASS_sp5=[M1 -(C23-G1) (C8-H1);-(C23-G2) M2 -(C16+C2_49-H2); 
     (C8-G3) -(C16+C2_49-H3) M3]; 
 
 



258 

%=================================== 
%Calculate diffusion Mass matrix 
clear K1 B F1 C 
% Calculate boundary condition coefficients 
[f1] = ksi_calc_sp1(mesh2); 
 
% Create FEM matrices 
if mesh2.dimension == 2 
  [i,j,k1,c,B,F1,ib,jb]=gen_matrices_2d_sp1(mesh2.nodes(:,1:2),... 
    sort(mesh2.elements')',... 
    mesh2.bndvtx,... 
    mesh2.mua,... 
    mesh2.mus,... 
    mesh2.g,... 
    f1,... 
    mesh2.c,... 
    omega); 
 
nz_i = nonzeros(i); 
K1 = sparse(i(1:length(nz_i)),j(1:length(nz_i)),k1(1:length(nz_i))); 
C = sparse(i(1:length(nz_i)),j(1:length(nz_i)),c(1:length(nz_i))); 
B = sparse(i(1:length(nz_i)),j(1:length(nz_i)),B(1:length(nz_i))); 
nz_i = nonzeros(ib); 
F1 = sparse(ib(1:length(nz_i)),jb(1:length(nz_i)),F1(1:length(nz_i))); 
 
elseif mesh2.dimension == 3 
     [i,j,k1,c,B,F1,ib,jb]=gen_matrices_3d_sp1(mesh2.nodes,... 
    sort(mesh2.elements')',... 
   mesh2.bndvtx,... 
    mesh2.mua,... 
    mesh2.mus,... 
    mesh2.g,... 
    f1,... 
    mesh2.c,... 
    omega); 
nz_i = nonzeros(i); 
K1 = sparse(i(1:length(nz_i)),j(1:length(nz_i)),k1(1:length(nz_i))); 
C = sparse(i(1:length(nz_i)),j(1:length(nz_i)),c(1:length(nz_i))); 
B = sparse(i(1:length(nz_i)),j(1:length(nz_i)),B(1:length(nz_i))); 
F1 = sparse(i(1:length(nz_i)),j(1:length(nz_i)),F1(1:length(nz_i))); 
 
end 
 
clear i j k1 c f1 g1 ib jb nz_i  
 
MASS_sp1 = K1 + C + B +F1; 
%===================================================== 
% Combine SP1 and SP3 Mass matricies 
[i,j]=size(MASS_sp1); 
[ii,jj]=size(MASS_sp5); 
MASS=[MASS_sp1 sparse(i,jj);sparse(ii,j) MASS_sp5];  
%========================================================= 
 
% Calculate the RHS (the source vectors. For simplicity, we are 
% just going to use a Gaussian Source, The width of the Gaussian is 
% changeable (last argument). The source is assumed to have a 
% complex amplitude of complex(cos(0.15),sin(0.15)); 
 
[nnodes,junk]=size(mesh1.nodes); 
[nsource,junk]=size(mesh.source.coord); 
qvec = spalloc(nnodes,nsource,nsource*100); 
if mesh1.dimension == 2 
  for i = 1 : nsource 
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    if mesh1.source.fwhm(i) == 0 
        qvec(:,i) = gen_source_point(mesh1,mesh1.source.coord(i,1:2)); 
    else 
      qvec(:,i) = gen_source(mesh1.nodes(:,1:2),... 
     sort(mesh1.elements')',... 
     mesh1.dimension,... 
     mesh1.source.coord(i,1:2),... 
     mesh1.source.fwhm(i)); 
    end 
  end 
elseif mesh1.dimension == 3 
  for i = 1 : nsource 
    if mesh1.source.fwhm(i) == 0 
        qvec(:,i) = gen_source_point(mesh1,mesh1.source.coord(i,1:3)); 
    else 
    qvec(:,i) = gen_source(mesh1.nodes,... 
     sort(mesh1.elements')',... 
     mesh1.dimension,... 
     mesh1.source.coord(i,:),... 
     mesh1.source.fwhm(i)); 
    end 
  end 
end 
 
clear junk i nnodes nsource; 
 
qvec=sparse([zeros(length(mesh2.nodes),1);qvec;-(2/3)*qvec;(8/15)*qvec]); 
 
%============================================== 
% Adjust Mass matrix to account for shared nodes between 2 mesh regions. 
 [MASS]=link_nodes_sp5(MASS,ident,r1); 
 
% ====================================== 
% Optimise MASS matrix 
  
 [MASS_opt,Q_opt,invsort]=optimise(MASS,qvec); 
  
 
% ======================================= 
%  
 phi_all=get_field(MASS_opt,mesh,Q_opt); 
 
% Re-order elements 
 phi_all=phi_all(invsort,:); 
 
% Extract composite moments of phi 
phi_sp1=phi_all(1:r2,:); 
phi1=phi_all(r2+1:(r2+r1),:); 
phi2=phi_all((r2+r1)+1:(r2+2*r1),:); 
phi3=phi_all((r2+2*r1)+1:end,:); 
 
phi_sp5=phi1-(2/3).*phi2+(8/15).*phi3; 
 
data.phi=[phi_sp5;phi_sp1]; 
data.phi1=phi_sp1; 
data.phi5=phi_sp5; 
clear qvec* M* C; 
 
% Calculate boundary data 
 
% For 2d 
mesh_temp.nodes=[mesh1.nodes;mesh2.nodes]; 
mesh_temp.elements=delaunay(mesh_temp.nodes(:,1),mesh_temp.nodes(:,2)); 
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[data.complex]=get_boundary_data(mesh,data.phi); 
 
% Map complex data to amplitude and phase 
data.amplitude = abs(data.complex); 
 
data.phase = atan2(imag(data.complex),... 
     real(data.complex)); 
data.phase(find(data.phase<0)) = data.phase(find(data.phase<0)) + (2*pi); 
data.phase = data.phase*180/pi; 
 
data.paa = [data.amplitude data.phase]; 
 

 

 
 
function [MASS_hybrid]=link_nodes_sp5(MASS,ident,r1,r2) 
 
% Links Mass matrix elements to account for nodes shared between 2 regions 
 
  MASS_hybrid=MASS; 
ind=[ident(:,2)-r1 ident(:,1)+r2 ident(:,1)+r1+r2 ident(:,1)+(2*r1)+r2]; 
 
for i=1:length(ident) 
  MASS_hybrid(ind(i,1),:)=MASS(ind(i,1),:)+MASS(ind(i,2),:)-(2/3).*MASS(ind(i,3),:)+... 
                                                         (8/15).*MASS(ind(i,4),:); 
 
  MASS_hybrid(ind(i,2),:)=0; 
  MASS_hybrid(ind(i,3),:)=0; 
  MASS_hybrid(ind(i,4),:)=0; 
 
  MASS_hybrid(ind(i,2),ind(i,2))=1; 
  MASS_hybrid(ind(i,3),ind(i,3))=1; 
  MASS_hybrid(ind(i,4),ind(i,4))=1; 
 
  MASS_hybrid(ind(i,2),ind(i,1))=-1; 
  MASS_hybrid(ind(i,2),ind(i,3))=2/3; 
  MASS_hybrid(ind(i,2),ind(i,4))=-8/15; 
   
  MASS_hybrid(ind(i,3),ind(i,1))=3/2; 
  MASS_hybrid(ind(i,3),ind(i,2))=-3/2; 
  MASS_hybrid(ind(i,3),ind(i,4))=-4/5; 
 
  MASS_hybrid(ind(i,4),ind(i,1))=-15/8; 
  MASS_hybrid(ind(i,4),ind(i,2))=15/8; 
  MASS_hybrid(ind(i,4),ind(i,3))=5/4; 
 
end 
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