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Abstract 

This work is devoted to investigation of the flow interaction between above and 

below ground drainage systems through gullies. Nowadays frequent flood events 

reinforce the need for using accurate models to simulate flooding and help urban 

drainage engineers. A source of uncertainty in these models is the lack of 

understanding of the complex interactions between the above and below ground 

drainage systems. 

The work is divided into two distinct parts. The first one focuses on the 

development of the solution method. The method is based on the unstructured, 

two- and three-dimensional finite volume method using the Volume of Fluid 

(VOF) surface capturing technique. A novel method used to link the 3D and 2D 

domains is developed in order to reduce the simulation time. 

The second part concentrates on the validation and implementation of the 

Computational Fluid Dynamics (CFD) model. The simulation results have been 

compared against 1:1 scale experimental tests. The agreement between the 

predictions and the experimental data is found to be satisfactory. The CFD 

simulation of the different flow configurations for a gully provides a detailed 

insight into the dynamics of the flow. The computational results provide all the 

flow details which are inaccessible by present experimental techniques and they 

are used to prove theoretical assumptions which are important for flood 

modelling and gully design. 
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Nomenclature 

 

Normal symbols represent scalar quantities and boldface symbols represent 

vector and tensor quantities. Generally, boldface Roman symbols represent 

vector and boldface Greek symbols represent tensor quantities, but this rule is 

not adhered too religiously 

 

Latin characters 

Symbol Description      Unit   

A   Cross-sectional area of flow    m2 

aP  Diagonal matrix coefficient    variable dependent 

aN  neighbour-cell matrix coefficient   variable dependent 

b  Length      m 

B  Top width of flow (eq. 2.5)    m 

B   Channel width     m 

Cd1  Discharge coefficient for weir   - 

Cd2  Discharge coefficient for orifice   - 

CM  De-Marchi coefficient of discharge   - 

Cc  Contraction coefficient    - 

Cv  Velocity coefficient     - 

d  Vector between  two cells centre   m 

eM  Kinetic energy     J/kg 

E   Specific energy 

f  Acceleration vector due to body forces  m/s2 

Fr  Froude number 

g  Gravitational acceleration    m/s2 

Gk  Production limiter 

h   Water level      mAD 

H  Total depth      m 
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H(x,t)  step (Heaviside) function    - 

I  Identity tensor 

k  Turbulent kinetic energy    J/kg 

k  Vector in the orthogonality treatment  m 

1
K   Empirical constant     - 

2
K   Empirical constant     - 

L  Weir length, grating length    m 

L’  Length of grating required to capture the flow m 

L0  Length of grating required to capture the flow 

 travelling on grating    m 

n  Unit normal vector 

p  Pressure      Pa 

q1  Flow between the kerb and the grating  m3/s 

q2  Flow bypassing the outer edge of grating  m3/s 

q3  flow carried over on the grating   m3/s 
Q   Discharge      m3/s 

b
Q   Bypassing flow     m3/s 

q   Discharge per unit length over the weir 

Re  Reynold number 

0
S   Channel slope     m/m 

f
S   Energy slope 

Sf  Cell-face surface-normal vector   m2 

S  Source term      variable dependent 

S  Surface area vector     m2 

t  Time       s 

u  Velocity vector     m/s 

v   Velocity      m/s 

V  Volume       m3 

w   Weir crest above bed or height   m 

W  Weber number 

x   Longitudinal direction 

1
y   Upstream flow depth    m 

y2  Flow depth at the edge    m 
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y’  Flow depth at the outer edge of grating  m 

 

Greek characters 
   Kinetic energy correction coefficient 

  Momentum correction coefficient 

  Delta function or very small scalar value 

  Turbulent energy dissipation rate   J/kgs 

    General scalar property 

  Indicator function 

   Diffusivity 

  Viscosity ratio or curvature of the interface 

   Under-relaxation factor 

   Dynamic viscosity     Ns/m2 

   Kinematic viscosity     m2/s 

  Turbulence energy dissipation rate  m2/s3 

   Density      kg/m3 

   Surface tension     N/m 

  Stress tensor      Pa 

   General tensorial property 

0
    Angle between the road surface and the vertical 
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Chapter 1  

Introduction 

Storm water collection and conveyance systems are critical components of urban 

drainage systems. Proper design and management of these systems are essential 

to minimize flood damage and disruptions in urban areas during storm events. 

Runoff water must be captured mainly by gully inlets. To locate and size these 

inlets properly, designers need reliable information on their hydraulic 

performance. Nowadays frequent flood events reinforce the need for using 

accurate models to simulate flooding and help urban drainage engineers. A 

source of uncertainty in these models is the lack of understanding of the 

complex interactions between the above and below ground drainage systems.  

Such knowledge is essential for enhanced calibration and verification of 1D-2D 

hydrodynamic modelling approaches (Leandro, et al., 2009).  However, general 

references in this subject disregard the complexity of the interaction between 

these two systems. They assume the inlet capacity is controlled solely by the 

inlet type and the flow on the surface (Almedeij & Houghtalen, 2003) or by 

gully efficiency (Balmforth, et al., 2006). The geometry of the inlet below 

ground is considered irrelevant. The most common way in which this element 

has been modelled is either as a weir or as an orifice, or as a combination of 

these. However, none of these elements are representative of the real flow 
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conditions. Moreover, the real linking elements include not only the surface 

inlet, but also the pipe inlet and its connections, the gully pot and the buried 

sewer pipe connections (Djordjevic, 2009). 

 

1.1 Motivation 

The Foresight Future Flooding study (Evans, et al., 2004a) (Evans, et al., 

2004b), highlighted the lack of accurate tools and methodologies for the 

prediction of the cause and extent of urban flooding, and of urban flood 

impacts. The report also promoted the development of an integrated approach 

to flood modelling to support accurate analysis of integrated portfolios of flood 

management responses. The UK flooding in summer 2007 was a wakeup call to 

challenge scientists and experts to face this problem. The need for investment in 

developing flood modelling tools became an essential task. There has been 

significant development of urban flood modelling tools in last few years. These 

models have been developed to interact the flood flows between the above and 

below ground drainage systems. The major deficiency in their application relates 

to the way in which the flows enter the below ground system through 

inlets/gullies on the catchment surface and, subsequently, when the below 

ground drainage system is full, how the flows exit through the gullies onto the 

catchment surface. 

Until recently, drainage system models have assumed that there is a “free” 

connection between the urban surface and the below ground system and vice 

versa, but it is becoming increasingly evident that this is not the case.  In some 



 

19 

 

areas there is a significant lack of gullies whilst at other locations the gullies 

may be partially or completely blocked.  The way in which these gulley 

inlets/outlets are described (free discharge, partially or fully blocked) is 

therefore critical to the accurate prediction of the hydraulic performance of the 

system.  There is a need therefore to better describe the performance of such 

types of gulley system commonly found in practice. Such understanding is 

essential to improve the crude representation and uncertainty of existing 

techniques. This need has also been identified by researchers and the developers 

of urban flood risk software. 

 

1.2 Objectives 

The overall objective of the research described in this thesis was to improve 

understanding of the interaction between above and below ground elements of 

urban flood models. The present research focuses on the hydraulics of gully 

flows. The aim of this study was divided into a number of specific objectives 

which are presented below: 

 Evaluate the application of CFD modelling for simulating flow into and 

from gullies; 

 Examine flow patterns and flow regimes around the gully; 

 Develop and test a novel algorithm to link 2D and 3D Computational 

Fluid Dynamics models; 

 Application of CFD modelling to generate new knowledge for improving 

urban flood models; 
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 Provide a basis of generalizing hydraulic descriptions for gully flow. 

 

1.3 Structure of thesis 

This thesis is divided in six chapters including this introduction. 

In Chapter 2 a review of relevant literature is provided. The review covers the 

main areas of research addressed including grate inlet hydraulics, discharge 

coefficient, linking surface and subsurface networks, CFD modelling applied in 

urban drainage. 

Chapter 3 provides the description of full scale physical experiment (completed 

in Sheffield Laboratory) to mimic the hydraulic interaction between the above 

and below ground drainage system via gully inlet. 

In Chapter 4 the mathematical and numerical models are described. A novel 

methodology, based on finite volume discretization, to link the 3D and 2D 

domain is proposed. 

In Chapter 5 implementation of the proposed model is presented. Both flow into 

gully and surcharged gully are investigated with the numerical model. 

Conventional and new methods developed for calculation of discharge coefficient 

and estimation of bypassing flow rate are presented in this chapter. 

In Chapter 6 the key findings of this thesis are summarised and relevant 

conclusions are drawn. The novel aspects introduced in this thesis are 

highlighted, followed by possible directions of future research to enhance and 

extend the methodologies presented.  
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Chapter 2  

Previous and Related Studies 

 

An overview of the literature relevant to this study is presented next. In the 

first section the studies related to grate inlets are reviewed. 

2.1 Grate Inlet 

The studies on grate inlets covered multiple interesting fields. Most researchers 

were keen to investigate the effectiveness of the grate inlet (Larson, 1947), (Li, 

et al., 1951), (Li, et al., 1954), others proposed several potential modifications 

on the existing grate inlet designs (Almedeij & Houghtalen, 2003), (Guo, 2000a) 

(Guo, 2000b). This section does not attempt to review all of the research and 

literature related to the street inlets but focuses on grate inlets without 

depression that are located on a gutter. 

The literature indicates that there are many factors that contribute to the 

performance of a gully inlet:  

 the type and shape of the grating; 

 the transversal and longitudinal street slopes; 

 the width and depth of the approaching flow; 

 the depth and velocity of flow over the grating; 
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 the presence of vortices; 

 the accumulation of debris. 

Depending upon the depth of flow, grate inlets operate under three different 

conditions of flow: 

1. weir flow; 

2. transitional flow, indefinable flow because of vortices and other 

disturbances; 

3. orifice flow. 

The inlet may operate like a weir when the water depth is shallow, or like an 

orifice when it is submerged (Guo, 1997) (Guo, 2000a) (Guo, 2000b) (Guo, 

2000c) (Mays, 2001). For a grate inlet that operates as a weir, the intercepted 

flow is given by the equation: 

 

Figure 2.1 – Explanatory diagram for weir equation 

 

1 0
20
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2 2

1 1
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2 1.5 2

h
hQ v v
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where, b is the width of weir, h0 is the water level above weir crest level, v is 

flow velocity and g is the gravitational acceleration. 

Introducing the discharge coefficient to incorporate the local losses: 

 

3/2 3/2
2 2

1 1
1 0

2
2

3 2 2d

v v
Q C gb h

g g

    
      
    
    

 (2.3) 

In case of small velocity the term 

3/2
2

1

2

v

g

 
  
 
 

 is negligible or can be included in 

discharge coefficient (Cd1), therefore: 

 3/2

1 1

2
2

3d
Q C gbH  (2.4) 

The flow over the gully inlet can be assumed to be similar to the flow over the 

weir, in which case h0=y1. In accordance with the procedure applied to compute 

the discharge: zero pressure distribution, parallel streamlines and neglecting the 

contraction of the nappe is assumed: 

 
1

3/2 3/2

1
0

2 2
2 ( ) ( )

3

y

c

b g
Q C g H z bdz H H y     

   (2.5) 

s
C is a contraction coefficient, equal to the ratio between the two cross-section 

area, z is the vertical distance measured from reference level. Taking into 

account the convergence of streamlines and rearranging the equation leads to: 

 3/2 3/22
11/2 3/2 1/2 3/2

11 1

2 2
[ ( ) ]

3

yb gQ
H H y

ybg y bg y
    (2.6) 

Introducing 1/2 3/2

1 1
/Fr Q bg y  we obtain: 
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1 1 1
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 (2.7) 

Considering that 
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2

1

1

1
2

FrH

y
   (2.8) 

the depth ratio is: 

 2 1
2 3/2 3

1 1 1

3

(2 )

y Fr

y Fr Fr


 
 (2.9) 

Applying the continuity equation between the two sections give us the following 

equation: 

 

3 2

1 2
2

2 1

y Fr

y Fr

 
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 (2.10) 

Rearranging 
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 (2.11) 

and the theoretical discharge relationship is: 
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3/2
3/2

2 3
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 (2.12) 

For transitional flow, the grate inlet capacity is somewhere between the inflows 

predicted by the weir and orifice flow equations. 

 

Larson’s (Larson, 1947) investigation of inlet gratings indicated that the inlet 

characteristics which are of primary importance in determining inlet 

interception capacity are: the inlet width (normal to the direction of flow) and 

the efficiency of inlet openings. He also stated that the characteristic of 
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approach flow has a significant effect on efficiency. His tests showed that high 

velocities tend to decrease the inlet capacity due to splashing. 

 

Li (Li, et al., 1951) used dimensional analysis to identify variables which have a 

significant effect on inlet capacity. The hydraulic tests were conducted at ½ 

scale model to determine the effect of each identified variable. Li treated the 

flow bypassing the grating as separate portions of flow. The bypassing flow 
b
Q  is 

made up of three components:  

 

Figure 2.2 – Elements of bypassing flow 

1. flow between the kerb and the grating (
1
q ); 

2. flow bypassing the outer edge of grating (
2
q ); 

3. flow carried over on the grating (
3
q ). 

The quantity of flow between the kerb and the grating was neglected in Li’s 

analysis. He found it is small in practice when compared to the main flow. Li 

found that: 

 2 1
( ' ) ' 'q K L L y gy   (2.13) 
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where 
1
K  = 0,25, 'L  is the length of grating required to capture the flow, L  is 

the length of the grating and 'y  is the depth of flow at the outer edge of the 

grating. The length of grating required to capture the flow is given by: 

 
2 0

0

'
tan

'

L g
K

v y
  (2.14) 

where 
0

  is the angle between the road surface and the vertical. 

Li proposed the following equation for flow travelling over the grating: 
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where 
0
L  is the length of grating required to capture all the flow travelling on 

grating. It was calculated from the following equation: 

 0
3

0 0

L g
K

v y
  (2.16) 

The value of 
3
K  depends on the ratio of the width of openings to the width of 

bars. 

 

The design method for grate inlets in HEC-12 is based on Burgi and Grober’s 

(Burgi & Gober, 1978) work. They found that the hydraulic efficiency of grate 

is improved as the longitudinal slopes increases. They also found that the 

transverse slope had a large effect on hydraulic efficiency, since steeper 

transverse slope would concentrate more flow over the inlet. 

 

The inlet bar orientation significantly influences the inlet behaviour. Grate 

inlets with longitudinal bars are more preferable than inlets with transverse 
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bars. The transverse bars reduce the effectiveness of the grating because they 

reduce the effective length of the grating and increase the splashing across the 

inlet. The study of John Hopkins University (John Hopkins University, 1956) 

showed that short and wide grating is more effective for general street 

conditions than long and narrow grating. Bourchard and Towsend (Bourchard 

& Towsend, 1984) investigation of inlet bar orientation indicated that inlets 

with transverse bars (90°) are the least effective. Inlets with 135° opening 

showed good correlation with longitudinal bars for low discharges but less 

effective for high discharges. The study involved full scale model with different 

inlet patterns, in which the bar orientation were ranged from 0° to 165° at 15° 

intervals. 

 

2.2 Discharge Coefficient 

Johnson’s study (Johnson, 2000) showed that the important variable governing 

discharge over weirs was Ht/w. The use of this variable, coupled with the 

inclusion of the weir height in the velocity head, resulted in the formulation of a 

single curve rather than a family of curves. He also pointed out that the 

importance of the velocity head should not be neglected. 

 

Kindsvater and Carter (Sturm, 2001) proposed that the effect of Reynolds and 

Weber number should be included in the discharge equation. 
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Johnson (Johnson, 2000) and Rehbock (Rehbock, 1929) research showed that 

the transverse length of the weir has little influence on the discharge coefficient, 

and this is valid for surface roughness of the weir as well. 

 

Flow over the grating represents a typical example of spatially varied flow with 

decreasing discharge. Several authors proposed equations for spatially varied 

flow profile. The dynamic equation of spatially varied flow for over a weir is 
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Subramanya (Subramanya & Awashty, 1972), El-Khasab and Smith (El-Kashab 

& Smith, 1976), Ranga Raju (Ranga Raju, et al., 1979), Hager (Hager, 1987) 

and Singh (Singh, et al., 1994) used experimental results to evaluate the 

rectangular weir equation. Swamee (Swamee, et al., 1994) developed elementary 

discharge coefficients that are related to the discharge through an elementary 

strip along the side weir.  

 

De-Marchi has introduced the discharge coefficient (Chow, 1959) as: 
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Where   is a varied flow function: 
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According to Froude number the discharge coefficient can have four different 

expressions: 

Fr < 0.6 

 
2

2

3
0.611 1

2d

Fr
C

Fr
 


 (2.20) 

0.6 < Fr < 1.0 

 0.45 0.06( 0.6)
d
C Fr    (2.21) 

1.0 < Fr < 1.8 
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1.8 < Fr 

 0.632 0.018( 1.8)
d
C Fr    (2.23) 

 

Despotovic (Despotovic, et al., 1990) modelled the grating as a series of weirs. 

All of the slots were modelled as a weir except the outmost ones which were 

treated as a combination of side weir and weir. The experimental part of the 

research involved covering up all slots apart from one and measuring the 

captured flow. This was repeated in turn for all slots. Treating the flow as a 

combination of side weir and weir at each slots, and assuming the discharge 

coefficient of weir equal to 0.42, they calculated the discharge coefficient for 

each side weir. They found it is independent from the Froude number upstream 

of each slot. However if the slots treated as a weir, then there is a strong 

relation between the Froude number and the discharge coefficient. The following 

exponential relationship was suggested: 
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 exp( 0.453 0.226)
d
C Fr    (2.24) 

Tomanovic (Tomanovic, et al., 1990) applied the above equation for grating in 

their study and obtained good results at lower cross-falls and flow rates. 

 

Borghei (Borghei, et al., 1999) conducted more than 250 laboratory tests to find 

the influence of the flow hydraulics and the geometric, channel, and weir shapes 

on the discharge coefficient. The results show that for subcritical flow the 

De-Marchi assumption of constant energy is acceptable. He found that the 

De-Marchi discharge coefficient is a function of the upstream Froude number 

and the ratios of weir height to upstream depth and weir length to channel 

width. Borghei proposed the following equation for calculation of discharge 

coefficient: 

 
1

1

0.7 0.48 0.3 0.06
M

w L
C Fr

y B
     (2.25) 

 

Matthew (Matthew, 1963) outlined a simple theory which clearly explains the 

influence of surface tension, viscosity and streamline geometry on discharge 

coefficient. Martino and Ragone (Martino & Ragone, 1984) conducted a 

comprehensive study on the effect of surface tension and viscosity on discharge 

coefficient.  

The study stated that an increase in the influence of surface tension (or 

reduction in Weber number) will engender an increment in the coefficient of 

contraction exceeding the decrement in that of velocity, but only for values of 

Weber number above a certain threshold, which is a function of both slot 
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breadth and the head. Below the threshold the decrements in the velocity 

coefficient exceed the increments of the contraction coefficient due to viscosity 

and to surface tension. Increase in the influence of viscosity (or reduction in 

Reynolds number) implies an increment in the contraction coefficient, always 

prevailing over the decrement in that velocity arising from the loss of head due 

to viscous drag. 

 

Similarly to Martino’s research the models proposed by Kindsvater (Kindsvater 

& Carter, 1957), Getti (Ghetti, 1966), Gavis (Gavis, 1964), Linquist (Linquist, 

1929), Datei (Datei, 1966) and Sarginson (Sarginson, 1972) give valuable 

information on the effect of surface tension and viscosity on discharge 

coefficient.  

 

De Martino’s (De Martino & Ragone, 1979) study concluded that both viscosity 

and surface tension have each opposite effects on the contraction coefficient Ce 

and velocity coefficient Cv. The investigation concentrated on Reynolds and 

Weber numbers and found that reduction in the Reynolds number accompanied 

by an increase in Ce and decrease in Cv. Similar effects are also caused by an 

increase in surface tension (a decrease in the Weber number). The fact that Ce 

and Cv tend to increase and decrease respectively, for an increase in either 

viscosity or surface tension accounts for the possible arising of conditions when, 

for values of the Reynolds and Weber numbers below a certain threshold (i.e.. 

for the slots investigated, for low head values), the reductions in the velocity 
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coefficient prevail on the increments in the contraction coefficient, so that the 

discharge coefficient (the product of Ce and Cv) will tend to decrease. 

The existence of such conditions was also confirmed by Swift (Swift, 1926) and 

surmised by Sarpkaya (Sarpkaya, 1958) as well.  

 

Honar (Honar & Keshavarzi, 2008) conducted more than 90 laboratory tests to 

develop a model for estimation of discharge coefficient in rounded-edge entrance 

shape and find the influence of non-dimensional hydraulic parameters on the 

discharge coefficient. It was found that under subcritical flow condition the 

rounded-edge entrance discharges 10% more flow rate than the squared edge 

entrance.  

 

2.3 Linking surface and sub-surface networks 

The interaction between surface and subsurface drainage network is 

complicated, while knowledge of their hydraulic characteristics is very limited. 

A general hydraulic description is yet to be derived. Current practices of gully 

designs mostly rely on empirical relations from a limited number of 

experimental studies. Further study to advance the knowledge of gully 

hydraulics is necessary and valuable, especially when existing drainage systems 

are challenged today by a combination of urban growth, ageing of sewers and 

climate change. 

Poor knowledge of the hydraulic behaviour of surface drainage structures could 

produce unreliable simulations from storm water management models (Russo, et 
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al., 2005) (Gomez & Russo, 2011). Kidd and Helliwell (1977) described the 

urban runoff process as a two-phase phenomenon including a surface phase and 

an underground phase. They recognized the complex interactions between these 

two phases and stated “there is no clear-cut interface between the two phases”. 

Inasmuch as the inlet efficiency governs the amount of water that can enter the 

drainage system, the above surface and below surface elements cannot be 

considered separately. Nowadays the lack of knowledge about the hydraulic 

behaviour of these types of structures has not been fully overcome (Gomez & 

Russo, 2011). 

Three different linkage types are available for dynamically linking the 1D and 

2D storm water management models: 

1. Point to point link: is a standard link type, coupling between a 

computational point in the 1D model and a computational point in the 

2D model. It can be used to couple upstream river branch to a 

downstream flood plain. 

2. Lateral link: couples the 1D model with 2D domain over a part of the 

river system. The flow is described through a weir equation in each 

linked grid point. This type of link can be used for simulation of 

overtopping levees 

3. Structure link: uses 1D model in a 2D domain to model flow through a 

structure, which is –usually- defined in the 1D model. This type of link is 

useful for modelling small features which cannot be adequately resolved 

using the typical grid size of the 2D domain. 
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With the increasing requirements for integrated modelling, particularly 1D to 

2D linking for surface water flooding, a need has arisen to provide a unit to 

simulate discharge through a manhole or gully from a surcharged culvert.  

In ISIS (www.halcrow.com/isis) the manhole outlet can be connected to a 

dummy boundary unit for linking to TUFLOW (www.tuflow.com), or to a 

reservoir to represent overland storage. The manhole unit can also incorporate 

an energy loss term, governed by Bernoulli's equation. TUFLOW has a similar 

connection to ESTRY as it has to ISIS.  

HEC-HMS (www.hec.usace.army.mil/software/hec-hms/)was designed to 

simulate rainfall-runoff process. The inlet can be represented as a flow diversion 

and its hydraulic efficiency can be described with the approaching flow – 

intercepted flow curve.  

SWMM (Storm Water Management Model) is a dynamic rainfall-runoff 

simulation model (www.epa.gov./athens/wwqtsc/html/swmm.html). The 

routing part of the software transports the runoff through a system of pipes and 

channels using kinematic or dynamic wave. The hydraulic behaviour of the 

street is described as an open channel and the inlet is characterised as a divider 

node describe by hydraulic efficiency data. This is represented by the ratio 

between total discharge approaching to the inlet and captured flow. 

MOUSE (www.dhisoftware.com) is a comprehensive surface runoff, open 

channel flow and pipe flow modelling package. The behaviour of street inlets 

can be described with flow depth using the weir equation. 



 

35 

 

 

Many different techniques exist to connect the 1D and 2D domains via gullies or 

manholes. The most frequently used representation of street inlets in numerical 

models can be summarized as: 

 Diversion elements characterized by inflow-captured flow table; 

 Diver nodes characterized by inflow-outflow table; 

 Weir equation; 

 Orifice equation; 

 Combination of orifice and weir equation; 

 Efficiency-head curve. 

 

2.4 CFD Modelling 

Due to the limitation with experimental investigation numerical models seem to 

be a reliable alternative for studying gully hydraulic performance. Compared to 

conventional measurements methods, a significant advantage of Computational 

Fluid Dynamics (CFD) model is the reduction in both the time and cost that 

are typically required to investigate gully flow. Another important factor, that 

it can be applied to different environmental condition including those that could 

not be modelled under laboratory conditions. It has been widely accepted that a 

good numerical model can be complementary to experimental tests. CFD is a 

tool that has tended to be used in “high-tech” industries. However, 

computational power has become more affordable and CFD is getting more 

frequently used in urban drainage. The published information shows that CFD 
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is most commonly applied in order to gain detailed design knowledge or to 

evaluate structural or operational variables (Jarman, et al., 2008). 

 

Huang (Huang, et al., 2002) and Shakibainia (Shakibainia, et al., 2010) used 

three-dimensional models to compute flow characteristics in 90 junction and 

showed that most flow structures observed experimentally were accurately 

simulated. 

Fang (Fang, et al., 2010) investigated the efficiency of curb inlets using three-

dimensional CFD model. The model used a finite-volume-finite-difference 

method to discretise the 3D Reynolds Averaged Navier-Stokes equations in fixed 

Eulerian rectangular grid system. Simulation runs were performed for 1.52 m 

and 4.56 m opening at various longitudinal and cross slopes. Simulated 

intercepted flow rate agreed well with laboratory test. The simulation results 

were used to develop a linear regression equation between inlet efficiency and 

water spread. 

Stovin (Stovin & Saul, 1998), Cullivan (Cullivan, et al., 2004) and Schuetz 

(Schuetz, et al., n.d.) have used CFD technique to investigate particle tracking 

in order to assess the separation efficiency in CSO tanks. 

Fach (Fach, et al., 2009) study is focused on the development of rating curves 

exemplarily for CSO structures using three-dimensional CFD model. The study 

showed that discharge determined by using the standard weir equation together 

with sonic water depth measurement can significantly differ from the discharge 

based on CFD simulation. Especially, for side weirs which did not correspond to 
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the standard weir layout, the results from the CFD model were closer to the 

reality than the simplified standard weir equation. 

 

The prediction of the water surface profile is fundamental in urban drainage 

modelling. However this is absent from the majority of the studies in which the 

free surface was assumed as flat and fixed. Jarman et al (Jarman, et al., 2008) 

reviewed CFD studies where water surface profiles were not predicted as a part 

of the solution process. The free surface was approximated by a fixed, horizontal 

frictionless boundary, predefined as part of model geometry. The investigated 

models were concerned with the application of CFD for engineering objectives 

rather than with the development of modelling methodology. The investigation 

concluded that this type of approach is reducing the computational effort but is 

not always appropriate. 

A similar approach in numerical simulation of free surface flow is when the 

water surface is replaced by a rigid lid (Mignot, et al., 2012). This is valid only 

if the free surface does not change much along the domain.  In the case of this 

study the rigid lid approximation likely introduced nonphysical errors. 

Ismail and Nikraz (Ismail & Nikraz, 2008) conducted an experimental and 

numerical analysis to establish the hydraulic characteristics and pollution 

removal efficiency of the cylindrical screen of VersaTrap. It has been designed 

to remove suspended solids, floatables and sediments from the storm water and 

to prevent re-entrainment. A three-dimensional model was constructed using 

tetrahedral meshes comprising of 268000 computational cells. Inlet flow rates 
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(11, 13 and 20 l/s) were defined by uniform velocities across the inlet plane. 

System outlets were defined with a pressure outlet corresponding to atmospheric 

pressure, representing a free outflow. The VOF model was used to determine 

the hydraulic characteristics and Eulerian-Eulerian model was used to obtain 

the efficiency of the system. The simulated peak flow was similar to the 

experimental results within an error of 22%.  

 

More literature on CFD modelling will be reviewed when CFD methods are 

introduced with more detail in Chapter 4. 

 

2.5 Conclusion 

Urban storm water collection and conveyance systems are critical components of 

the urban drainage. Proper design of these systems is essential to minimize flood 

damage and disruptions in urban areas during storm events. Excess water must 

be captured mainly by gully inlets. To locate and size these inlets properly, 

designers need reliable information on their hydraulic performance. 

 

Despite of many theoretical and experimental studies carried out on weir, 

orifice, free overfall, manhole and gully grating the flow calculation for gratings 

has not been completely solved. As discussed above the general references 

disregard the interaction between the above and below ground elements of 

linked 2D/1D or 1D model. None of the expressions presented this chapter are 

directly valid for modelling the link between surface and sub-surface flow. Most 
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of the existing models consider a weir or an orifice type link between the two 

systems. Some of them use a combination of these elements which can switch 

from one to the other depending on the water level around the edge of gully 

inlet.  

 

 

Figure 2.3 – The combined Head-Discharge relationship for manholes/inlets 

(Allitt, et al., 2009) 

The application of combined Head-Discharge curve gives more reliable results 

than weir or orifice equation. However there are several concerns about this 

type of calculation method. The main weakness of the combined Head-Discharge 

curve is the transition zone/zones. Namely, the mechanism of transition and the 

lower and upper boundary of transition zone are unknown. The method reliable 

in case of very shallow (less than 1 cm) or deep water (more than 30 cm), but 

gives uncertain result between this two values.  
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Regarding the distinct stages and processes for the case of a surcharged drain 

system the urban flooding simulation models are required to accurately describe 

the hydraulic phenomena of a surcharged gully, particularly: 

 the transition from free surface flow to pressurized flow 

 the interaction between surface flow and pressurized flow 

 the rise of the water level above surface level 

Numerous experiments have been undertaken worldwide in connection with 

grate efficiency. These are based on the most frequent situation, when the flow 

direction is from the surface into the gully. The surcharging flow condition is 

getting more attention nowadays from numerical modellers; however it has not 

been studied experimentally before. There is a need therefore to better describe 

the performance of gulley system commonly found in practice. Such 

understanding is essential to improve the crude representation and uncertainty 

of existing techniques. 
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Chapter 3  

Description of Physical Experiments completed in 

the Sheffield Laboratory 

 A full scale laboratory system has been built at the Water Engineering 

Laboratory of University of Sheffield to mimic the hydraulic interaction between 

the above and below ground drainage system via a gully inlet. The physical 

experiments are not the subject of this thesis but they are used to test the CFD 

modelling approach; therefore they are described here without too much detail. 

A comprehensive overview of the physical experiments and analysis of results is 

given by Sabtu (Sabtu, 2012). 

3.1 Experimental rig 

3.1.1 Testing platform 

The testing platform is a 4.27 m long and 1.83 m wide rectangular area with 

inlet and outlet tanks of either end of the platform that are each equipped with 

sluice gates to control the flow rate onto the testing platform. Both the outlet 

tank and the outflow from the gully are connected to a measuring tank which 

allows flow rate measurements to be taken. The dimension for the inlet and 

outlet tank itself is 2.44 m x 0.61 m. The flow for this system is provided by an 

overhead tank and is circulated through the entire system before being 
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transferred into a sump to be pumped back to the overhead tank again (Sabtu, 

2012). 

 

Figure 3.1 – Experimental rig (viewed from downstream, gully left) 

The testing platform was designed as a flatbed representing non-sloping road 

conditions (Figure 3.1). Longitudinal slopes were later incorporated. For sloping 

tests, the width of the testing platform has been halved (Figure 3.2) due to the 

difficulty of depth measurement of very shallow flow.  

 

Figure 3.2 – Experimental rig for sloping conditions 
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3.1.2 Gully and grates 

The gully itself is a trapped gully with spigot outlet. This is one of the most 

commonly used gully type designed with an outlet that forms a water seal and a 

rodding eye which helps to retain floating pollution within the gully pot. The 

gully has a 375 mm diameter and 750 mm nominal depth.  

 

Figure 3.3 – Dimensions of gully pot (Milton Precast) 

Figure 3.3 shows the dimensions of the gullies as specified by the manufacturer. 

The dimensions have been checked against BS5911-6:2004 and are in accordance 

to the specifications. The physical properties of gully are: 

 Internal diameter: 375 mm 

 Internal depth: 750 mm 

 Outlet diameter: 150 mm 

 Inside depth to centre of outlet: 148 mm 

 Outside depth of outlet: 251 mm 
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flow direction 

 Dimension of riser: 85 mm 

 Depth of water seal: 85 mm 

 Weight: 180 kg 

 

 

 

 

Figure 3.4 – Properties of grates (Sain-Gobain Pipelines, 2007) 

Figure 3.4 and Table 3.1 shows dimensions and hydraulic properties of the 

grates also as specified by the manufacturer. 

 

Table 3.1 – Physical properties of applied grates (Sain-Gobain Pipelines, 2007) 

Loading 

class 

Clear opening 

AxB [mm] 

Over base 

CxD [mm] 

Depth 

E [mm] 

Waterway area 

[cm2] 

HA102 

reference 

C250 325 x 437 475 x 524 75 933 S 

C250 400 x 432 550 x 530 75 1128 R 
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3.1.3 Pressure transducer and point-gauge 

In order to measure the depth of flow, seven pressure transducers have been set 

up on the rig.  Six of these are recessed in the platform and one at the bottom 

of the gully pot. Figure 3.5 shows the location of the transducers. 

 

Figure 3.5 – Location of pressure transducers 

The GEMS 5000 series (0-30mbar) pressure transducer has been used for the 

bed and GEMS 5000 series (0-150mbar) for the gully pot. Both sensors give an 

output of between 4-20 mA and uses 9-35V of supply power. These pressure 

transducers have been selected due to their long term stability and high 

accuracy (±0.2%). 

Point-gauge measuring equipment (see Figure 3.6) has also been set up in order 

to calibrate the pressure transducers. A point-gauge is equipment commonly 

used to measure the depth of water. It is basically a stainless steel gauging rod 

attached to a vernier scale. This is mounted on a small square platform with 4 

roller foot which allows it to be moved and rolled to different sections of the 

testing platform. The stainless steel gauging rod is held with a screw-like 
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attachment which allows the gauging rod to slide up and down over the water 

surface. This also allows for fine adjustments for accurate reading and can be 

released for large rapid changes in positions (Sabtu, 2012). 

      

Figure 3.6 – Point-gauge equipment 

Three different set ups have been tested during the study: terminal system, 

intermediate system and surcharged system. 

3.2 Terminal system 

 

Figure 3.7 – Schematic of terminal system 
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The terminal gully is a special gully which can have no carryover. Therefore this 

type of system has only one outlet, which is through the gully  

The flow from the overhead tank is transferred into the inlet tank and then 

towards the gully pot. Some of the flow is intercepted by the gully which then 

leaves the gully pot via a 150mm diameter outlet pipe into a measuring tank 

(2). There is no outflow from the outflow tank therefore it is working as a 

storage tank. Figure 3.7 shows a schematic of the terminal system. 

3.3 Intermediate system 

The intermediate gully system permits a portion of the approaching flow to pass 

the gully and flow into the next downstream one. Therefore in this type of 

system, there were two consecutive outlets in use. The first is the gully system 

itself whereas the second is the outlet tank at the far end of the testing 

platform.  

 

Figure 3.8 – Schematic of intermediate system 
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The basic of the system is the same as a terminal system where the only 

difference is that the bypassed flow is not passed back onto the testing platform. 

Instead, it is collected separately in measuring tank (1) (Sabtu, 2012). Figure 

3.8 shows the schematics of the intermediate system. 

 

3.4 Surcharged system 

The surcharged condition can occur when the flows exceed the design capacity, 

therefore the storm sewer becomes surcharged. This type of system has two 

inflows. The first is the gully itself and the second one is the inlet tank. The 

outflow from the outlet tanks is transferred to the measuring tank, from there 

to the overhead tank through the sump. Figure 3.9 shows the schematic of a 

surcharged system. 

 

Figure 3.9 – Schematic of surcharged system 

The design process traditionally relies on experimental pilot scale studies and 

empirical correlations. These experiments are usually expensive and time 
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consuming. Furthermore, the use of pilot scale studies requires the use of scaling 

laws to the full-size plant, which may not be well established. In addition the 

disruption caused by the installation of the measuring device is often 

intolerable.  

3.5 Testing protocol 

As a first step of the experimental test the transducers were installed and 

calibrated. After the calibration the rig was tested without grate later with 

grates. Terminal, intermediate and surcharge conditions were tested with 0% 

longitudinal and 0% cross-slopes. After the first phase of experimental tests the 

rig has been modified: (a) 1:30 longitudinal slop was introduced, (b) rig width 

has been halved. The testing protocol established the following conditions: 

 Total discharge approaching to inlet – Terminal system: 15 l/s, 21 l/s, 

26 l/s, 30 l/s, 33 and 36 l/s; 

 Total discharge approaching to inlet – Intermediate system: 6.0 l/s, 

10.5 l/s, 19.9 l/s, 23.8 l/s, 26.9 l/s, 29.6 l/s, 33 l/s; 

 Surcharging discharge: 1 l/s, 3 l/s, 5 l/s, 10 l/s and 14 l/s; 

 Longitudinal slope: flat and 1:100; 

 Cross-slope: flat and 1:30; 

 Gratings: without grate, Waterflow “S” and Waterflow “R”; 

 Other condition: with rodding eye and without rodding eye. 
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Chapter 4  

CFD Modelling 

Free surface flows appear nowadays in many engineering and mathematical 

problem. In the last few years many numerical methods have been developed for 

the simulation of free-surface flows. A free surface is an interface between a 

liquid and a gas in which the gas can only apply a pressure on the liquid. Free 

surface flow is an especially difficult class of flows with moving boundaries. The 

position of the boundary is known only at the beginning of simulation, its 

location at later times has to be determined as part of the solution procedure. 

The flow of immiscible fluids can be divided into three groups based on the 

interfacial structures: (1) segregated flow, (2) mixed flow and (3) dispersed flow. 

This study deals with the segregated type flow. Three different free surface 

computation methodologies can be distinguished in modelling of segregated flow, 

each of which treats the interfacial jump in a different way (Ferziger & Peric, 

1996), (Ubbink, 1997):  

 

1) Interface tracking methods: interface is represented and tracked explicitly 

either by marking it with special marker points, or by attaching it to a mesh 

surface which is forced to move with the interface.  
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a) Mesh based tracking:  

i) Moving mesh method: directly align the phase interface with the edges 

of computation mesh cells, which then distracts as the interface 

evolves; 

ii) Front tracking method: the interface is represented by an additional 

two dimensional mesh being superimposed on a fixed three 

dimensional mesh; 

b) Marker based tracking: the interface is tracked by directly marking it 

using massless marker particles; 

2) Interface capturing methods: either side of the interface are marked with 

massless particles or an indicator function. This class can be divided into 

two sub-classes: 

a) Marker based capturing: the interface is captured by marker particles 

attached to one of the phases in order to gather information about 

interfacial morphology from their distribution in the phase volume; 

b) Indicator based capturing: a scalar indicator function is used to 

distinguish between two different fluids. The indicator function can be 

either a scalar step function representing the volume fraction of the space 

occupied by one of the fluids (Volume of Fluid) or a smooth function 

(Level Set) encompassing a pre-specified iso-surface which identifies the 

interface. Two main approaches can be distinguished in indicator based 

capturing: 
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i) Single fluid (mixture) approach: the two phases treated as a mixture 

having one velocity and pressure. Material properties like viscosities 

and densities are taken into account as mixture quantities. This 

approach enforces particular properties within the phase, while 

fostering a smooth transition across the interface. 

ii) Two fluid approach: opposite to single fluid approach the two phases 

are treated separately, both having its own velocity and pressure 

field. A field belong to one of the phases is consistently transferred to 

a fictitious field using the indicator parameter. 

3) Hybrid methods: apply elements from both interface capturing and interface 

tracking methods. Many combination of above mentioned approaches have 

been developed in last decade with the aim of improving deficiencies of the 

phase modelling approach. 

 

4.1 Interface capturing methods 

The interface capturing methods use an Eulerian mesh, which is fixed in space. 

In contrast to interface tracking these approaches do not define the interface as 

a sharp boundary as the exact position of the interface is not known explicitly; 

therefore special techniques need to be applied to capture the interface. This is 

commonly achieved with the following methods (Figure 4.1): 

 Marker and Cell method 

 Level Set function 

 Volume of Fluid method 



 

53 

 

 

 

         

       (a) Marker and Cell            (b) Level Set          (c) Volume of Fluid 

Figure 4.1 – Interface capturing methods 

The Marker and Cell (MAC) method tracks the location of the fluid within a 

fixed Eulerian mesh through the use of massless marker particles (Figure 4.1a). 

These particles are convected through the computational domain at the end of 

each time step using the interpolated local fluid velocity. The free surface is 

then constructed from the cells partially filled with marker particles and having 

neighbouring empty cells. In the MAC method, the normal stress boundary 

condition at the interface is simplified to  

 
l g
p p  (4.1) 

where subscript l and g refer to liquid and gas phases. This simplified boundary 

condition is applied to the cell centres rather than the actual interface location. 

This greatly reduces the accuracy of the computational method. 

 

The Level Set method was proposed by Osher and Sethian (Osher & Sethian, 

1988). 
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A continuous function is initialized throughout the computational domain as 

signed distance from the interface. The function is positive in one phase and 

negative in the other. The zero level represents the free surface (Figure 4.1b). 

The movement of the interface is calculated by solving the transport equation 

for the level set function: 

 0
t





   


v  (4.2) 

This equation is derived from the assumption that each particle of liquid moves 

with the liquid velocity along the characteristic curves. In the Level Set 

approach (4.2) is transformed by setting 
N









v v  to obtain a Hamilton-

Jacobi equation: 

 0
Nt





  


v  (4.3) 

where vN is the normal velocity along the gradient . Many numerical 

algorithms have been developed to solve (4.3). The most used algorithms are 

the ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-

Oscillatory) introduced by Osher and Sethian (Osher & Sethian, 1988) and 

modified by Jiang (Jiang & Peng, 2000) and Croce (Croce, et al., 2004). 

The well known drawbacks of the Level Set approach are the degeneration of  

and that the method is not mass conservative. Therefore it requires a re-

initialization procedure in every time step to keep the accuracy of 

approximation of the interface. 
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The MAC method has evolved into the Volume of Fluid (VOF) method which 

can be looked upon as the limit when the number of marker particle becomes 

infinite. The original VOF method was proposed by Hirt and Nichols (Hirt & 

Nichols, 1981) and represents a compressive scheme with the donor-acceptor 

technique for the approximation of fluxes to be advected through cell faces and 

it reconstructs the interface as a piecewise constant line segments aligned with 

the mesh. The VOF belongs to the Eulerian methods and is based on a scalar 

indicator function. The value of the indicator function is equal to one if the cell 

is full with fluid, while a zero value would indicate that the cell contained no 

fluid (Figure 4.1c). The cells with values between one and zero must contain the 

free surface. 

Volume of Fluid method is perhaps the most widely used method for free 

surface flows despite the difficulties which have to be overcome, namely: how to 

advect the interface without diffusing, dispersing or wrinkling it (Ubbink & Issa, 

1999). The computation of curvature is difficult, because it involves the 

derivitives at the interface of the non-smooth function. The advection of the 

characteristic function introduces numerical diffusion which is results in a 

significant loss of accuracy around the interface (Figure 4.2). 

               

Figure 4.2 – Numerical diffusion of volume fraction in VOF 
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Numerous techniques have been investigated to reduce the numerical diffusion. 

One of the most common is the Simple Line Interface Calculation (SLIC) 

proposed by Noh and Woodward (Noh & Woodward, 1976). This technique 

approximates the interface in each cell as a line parallel with one of the 

coordinate axes. The direction and position of the line are deduced from the 

values of the volume fraction of liquid in the cell and certain neighbourhood of 

the cell considered. Another commonly used technique is the Piecewise Linear 

Interface Calculation (PLIC). This geometric algorithm has been developed to 

increase order of the convergence of SLIC for interface reconstruction. In this 

technique all the line directions are allowed for a line in one cell to construct the 

interface. Similarly to SLIC, the volume fraction of liquid in the cell in and its 

neighbourhood are taken into account. Both of these techniques do not 

reconstruct the interface as a series of connected line segments but rather a 

discontinuous chain of segments. This can lead to isolated, separated fluid 

bodies or disconnected free surfaces.  

Several reconstruction methods have been developed to eliminate the drawbacks 

of the above mentioned algorithms. The direction-split algorithm, developed by 

Rudman (Rudman, 1997), is based on the flux corrected transport method 

without explicit interface reconstruction. The idea is to determine intermediate 

values for the phase fraction by using diffusive low order schemes and correct 

them by applying high order anti-diffusive fluxes. Scardovelli (Scardovelli & 

Zaleski, 2003) used a quadratic least-square fit to approximate the interface. 

Later this method was improved by Aulisa (Aulisa, et al., 2003). Renardy 
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(Renardy & Renardy, 2002) proposed a method where the interface is 

reconstructed locally with a smooth parabolic function, the result of least-square 

minimization. This method gives very good results in case of spurious currents 

which are introduced by numerical algorithms. 

 

The Volume of Fluid method is more economical than MAC as only one value is 

needed for each cell. Another advantage of VOF is that only a scalar convective 

equation needs to be solved to propagate the volume fraction through the 

computational domain. Normal differencing schemes applied to the volume 

fraction convection equation introduce too much numerical diffusion and smear 

the interface over several cells. To avoid this effect special care needs to be 

taken to minimise the numerical diffusion. 

Several improvements have been introduced in the VOF method due to its 

popularity. Rider and Kothe (Rider & Kothe, 1998) developed a PLIC 

(piecewise linear interface calculation) method and a multidimensional unsplit 

time integration scheme. Harvie and Fletcher (Harvie & Fletcher, 2000) 

introduced a new VOF advection algorithm that uses a PLIC method coupled 

to a fully multidimensional cell face flux integration technique. Lopez proposed 

an improved VOF method based on multidimensional advection using edge-

matched flux polygons and spline-based interface reconstruction. Numerous 

hybrid methods that combine the characteristics of VOF, Level Set and front 

tracking methods have been proposed by researchers (Aulisa, et al., 2003), 

(Enright, et al., 2002) (Sussman & Pucket, 2000). In the last few years, there 
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have been successful attempts to simplify VOF procedures by introducing 

smooth basis functions (Pan & Chang, 2000), (Xiao, et al., 2005), (Yoloi, 2007). 

These better represent the discontinuity on the mesh but do not require 

geometric reconstruction. 

 

4.2 Mathematical model 

The fluid flow is mathematically described by three conservation laws, namely: 

(1) the conservation of mass, (2) conservation of momentum and (3) 

conservation of energy.  

4.2.1 Navier-Stokes equations 

The equations describing fluid flows were derived independently by Claude-Luis 

Navier and George Gabriel Stokes. The equations are an extension of the Euler 

equations and include the effect of viscosity. These equations describe how the 

velocity, pressure, temperature and density of moving fluid are related: 

1. Continuity equation: 

 ( ) 0
t





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
u  (4.4) 

 

2. Momentum equation: 
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3. Energy equation: 
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The transport equations for internal and kinetic energy have the following form 

(Aris, 1989): 
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 (4.8) 

For incompressible isothermal fluid ( constant,     ) the system can be 

simplified: 

 0  u  (4.9) 
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where  is the kinematic viscosity and p kinematic pressure (P/). Most 

dependent variables require a gradient-diffusion term of the following form 

(Pantakar, 1980): 

  
    (4.11) 

This term will be included into the transport equation for a general tensorial 

property : 
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4.2.2 Turbulence modelling 

Turbulence is one of the most challenging problems in fluid dynamics.  

The distinction between laminar, transitional and turbulent flow is not 

unambiguous. Sometimes the flow appears in different states depending on the 

location of the area of interest. The simplest way around this problem is to 

calculate the flow as turbulent. The turbulent nature of the flow plays a crucial 

part in the determination of relevant engineering parameters. 

The most straightforward approach to the solution of turbulence is Direct 

Numerical Simulation (DNS), which directly solves the Navier-Stokes equations. 

Despite the performance of modern supercomputers a direct simulation of 

turbulence by the time-dependent Navier-Stokes equation is applicable only to 

relatively simple flow problems. To calculate the flow in other more realistic 

cases, the complexity of the problem has to be reduced. This reduction is 

carried out by applying an averaging operation to the Navier-Stokes equations. 

The classical averaging method is the ensemble average, which produces the 

Reynolds Averaged Navier-Stokes equations (RANS). 

 

The most commonly used turbulence model in environmental CFD is the 

standard k-ε model, since it has proven to be quite stable and often produces 

reasonably realistic results. Many researchers have shown that the standard k-ε 

turbulence model often produces a high turbulent viscosity and is not able to 

capture the proper behaviour of turbulent boundary layers up to separation 
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(Bates, et al., 2005) (ERCOFTAC, 2000). The weaknesses of the standard k-ε 

model can be summarized as follows: 

 Laminar and transitional regimes of flow cannot be modelled with the 

standard k-ε model; 

 Regions of recirculation in a swirling flow are under-estimated; 

 The turbulent kinetic energy is over-predicted in regions of flow 

impingement and reattachment leading to poor prediction of the 

development of flow around leading edges; 

 Flow separation from surfaces under the action of adverse pressure 

gradients is poorly predicted; 

 Flow recovery following re-attachment is poorly predicted; 

 Turbulence driven secondary flows in straight ducts of non-circular cross 

section are not predicted at all. 

Finally, considering the pros and cons of different methods, the k-ω turbulence 

model was chosen for the turbulence modelling. This solves one equation for 

turbulent kinetic energy and a second equation for the specific turbulent 

dissipation rate (or turbulent frequency). The disadvantage of k-ω model is that 

it requires fine mesh resolution near the wall. The advantages of k-ω turbulence 

model are that it: 

 Allows for a more accurate near wall treatment; 

 Demonstrates superior performance for wall-bounded and low Reynolds 

number flows; 

 Shows potential for predicting transition; 
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 Performs significantly better under adverse pressure gradient; 

 Does not employ damping functions which leads to significant advantages 

in numerical stability. 

 

To include the best features of above mentioned models Menter (Menter, 1992) 

has combined different elements of the k-ε and k-ω models to form a new two-

equation turbulence model. Two versions of Menter’s model are referred as 

baseline (BSL) and shear-stress transport (SST) model.  

The k-ω SST model features an automatic wall treatment and uses a k-ω type 

model within the boundary layer and a k-ε type model in the free stream flow. 

The zonal formulation is based on the blending functions, which automatically 

ensure the proper selection of k-ω and k-ε zones.  
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The role of production limiter (
k
G ) is to prevent turbulence in stagnation 

regions: 
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F1 is the blending function and defined by: 
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The value of F1 is between one and zero. In case of one (inside the boundary 

layer) the k-ω model is in use, while if it is equal to zero the k-ε model used.  

CDkω is defined as: 
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The turbulent eddy viscosity is defined as: 
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where S is the invariant measure of strain rate and F2 defined by: 
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The k-ω SST model is a mixture of k-ε and k-ω models; therefore all the 

constants are computed by a blend form: 
1 2

(1 )F F      

 

4.2.3 Final form of equations 

The equations of motion are closed with the constitutive relation for density and 

dynamic viscosity. If the system consist two fluids then this yields: 
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where γ is an indicator function and defined as: 
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In order to model two fluids as a continuum the density should be continuous 

and differentiable (Brackbill, et al., 1992), (Lafaurie, et al., 1994). It can be 
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achieved with transitional area between the two fluids, which has a very small 

finite thickness: 
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Since the value of γ is associated with both fluids, it propagates with the fluids 

as a Lagrangian invariant and has a zero material derivative (Hirt & Nichols, 

1981): 
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The equations derived above completely describe the motion of two fluids; 

however analytical solutions are only available for simple circumstances. Due to 

the discontinuity of u  at the interface the above equations need to be 

reformulated for numerical solution. This reformulation can be accomplished as 

Spalding (Spalding, 1974) suggested: 
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 (4.25) 

In order to simplify the simulation, in this study both fluid (air and water) were 

assumed as incompressible. This is a reasonable assumption for the operation 

conditions of atmospheric pressure and for a non-temperature dependent 

problem. This assumption simplifies the equation(4.25), because the right hand 

side becomes equal to zero.  
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It is better to rearrange the transport equation for finite volume discretization 

using the identity          u u u  and the incompressibility condition: 
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The momentum equation can also be simplified using the incompressibility 

condition: 
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where f

is the surface tension source term. 

The final form continuity equation for incompressible flow, momentum equation 

and α transport equation need to be solved simultaneously together with the 

constitutive relations for density and dynamic viscosity. 

4.2.4 Initial and boundary conditions 

Regardless of the numerical methodology chosen to solve the governing 

equations, suitable initial and boundary conditions have to be specified. The 

initial conditions determine the state of fluid at time t=0, or at first step of an 

iterative scheme. 

Since the governing equations are a mixture of elliptic, parabolic and hyperbolic 

behaviour, boundary conditions must be specified at each point of the closed 

solution domain. Boundary conditions (BC) can be divided into two types: 

 Dirichlet BCs prescribe the value of the dependent variable on the 

boundary and are therefore termed “fixed value”; 

 von Neumann BCs prescribe the gradient of the variable normal to the 

boundary and are therefore termed “fixed gradient” 
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The most common physical boundary conditions in the discretised equation of 

the finite volume are (Versteeg & Malalasekera, 2007): 

Inlet boundary: The most common method is to fix the inlet velocity. Another 

option is to specify the upstream stagnation pressure and velocity magnitude. 

For this study, just like all multiphase flow modelling, this implies that the inlet 

condition of the indicator function needs to be fixed. 

Outlet boundary: It is vital that the outlet boundary condition is always 

selected on the basis it has a weak influence on the upstream flow. It should be 

placed as far away as possible from the region of interest and should be avoided 

in regions of strong geometrical changes. The most common physical condition 

for internal flows is to fix the downstream static pressure and zero gradient 

condition is applied to the velocities. Another commonly used approach is when 

the first row of cells next to the boundary is used to construct the velocity 

distribution. The boundary velocities are then scaled according to this velocity 

profile. If the boundary is placed where variation in the flow is small, then a 

zero gradient condition to the indicator function can be applied. 

Solid wall boundary: The normal velocity is zero; therefore no mass or other 

convective flux can penetrate the solid body. The other variables at the wall, 

the tangential velocity and pressure have to be determined by extrapolation 

from the interior boundary. 

Symmetry plane boundary: The surface normal gradients of all scalar fields are 

zero at the symmetry plane, thus the convection flux through the symmetry is 
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zero as well. Viscous stress of velocity component parallel to the boundary is 

zero. 

The correct implementation of boundary condition is crucial point of every flow 

solver. The accuracy of the solution is strongly depends on a proper physical 

and numerical treatment of boundaries (Blazek, 2001). Furthermore the 

robustness and convergence speed are considerably influenced. 

4.3 Numerical Model 

4.3.1 Introduction 

This Section describes the procedure by which the equations presented in 

Section 4.1 are solved numerically. The discretization used in the present study 

is the well established finite volume method (Versteeg & Malalasekera, 2007), 

(Blazek, 2001), (Hirsch, 2007). Finite volume method became popular in CFD 

as a result of two advantages: 

1. it ensures that the discretization is conservative (mass, momentum and 

energy are conserved in a discrete sense); 

2. it does not require coordinate transformation in order to be applied on 

irregular meshes. 

While the first property usually can be obtained using the finite difference 

formulation, it is obtained naturally from the finite volume method. The second 

property means that the finite volume method can be applied on unstructured 

mesh consisting of arbitrary polyhedral. This increased flexibility is a great 

advantage in generating a mesh for arbitrary geometries. 
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The finite volume method subdivides the flow domain into small control 

volumes. The transport equations are integrated over the control volumes by 

approximating the variation of flow properties between mesh points with 

piecewise profiles. These piecewise approximations – or differencing schemes – 

are constructed to support physical flow behaviour such as convection or 

diffusion. 

The solution procedure can be divided into three parts: 

1. Discretization of solution domain into control volumes; 

2. Numerical solution procedure; 

3. Post processing where the results of the simulation are checked and 

contour, vector plots prepared. 

4.3.2 Full 3D model 

4.3.2.1 Spatial discretization 

The main advantage of the finite volume method is that the spatial 

discretization is carried out directly in the physical space. In other words, there 

are no problems with any transformation between coordinate systems, as in the 

case of finite difference method (Blazek, 2001). There are several possibilities of 

defining the shape and position of the control volume. Two basic approaches 

can be distinguished: cell-centred scheme and cell-vertex scheme. The cell-

centred scheme, when the flow quantities are stored at the centroids of the 

control volumes. In case of cell-vertex scheme the flow variables are stored at 

the mesh points. The approach used in this study the so called co-located 

variable arrangement (Peric, 1985) where all the flow properties are defined at 
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the centre of the control volume. The general notation used by Jasak (Jasak, 

1996) and Ubbink (Ubbink, 1997) is also used in this study. 

 

Figure 4.3 – Control volume 

Figure 4.3 represents a typical control volume with an arbitrary number of 

faces. The computational point P is at the centre of the control volume. The 

vector d = PN connects the computational point P with its neighbour N and A 

is the outward-pointing face area vector normal to the face. The mesh is defined 

as being non-orthogonal if the angle between the vectors A and d is not zero. 

The vectors D and k are then introduced to account for the orthogonal; and 

non-orthogonal contributions to the gradients at cell faces respectively. Jasak 

(Jasak, 1996) describes three different approaches for splitting of the non-

orthogonal contribution k from the orthogonal component D. The so called over 

relaxed approach has shown to be the superior of the three approaches and will 

be used in this study for the discretization of momentum and pressure 

equations. The vectors D and k are defined as: 

 
2




d
D A

d A
 (4.29) 

  k A D  (4.30) 
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4.3.2.2 Discretization of the governing equations 

Once the solution domain has been defined, the governing equations are 

discretized by integrating them over all cells and applying Gauss’ theorem 

which translates a volume integral to a surface integral (Peric, 1985). The 

values of primitive variables on the cell faces are then rewritten in terms of 

neighbouring cell centre values yielding an algebraic equation for that cell. The 

result is a set of linear algebraic equation written in terms of mesh cell centre 

values (Hill, 1998). 

The standard form of the transport equation for a scalar property  is: 

 

convection term source termdiffusion termtemporal derivative

( ) ( ) ( )S
t  


    


        


u  (4.31) 

where  is the density, u is the velocity and  is the diffusion coefficient. This 

is a second order equation, as the diffusion term includes the second derivative 

of  in space. The finite volume method requires that equation (4.31) is satisfied 

over the control volume VP around the point P in the integral form: 

 

 

( ) ( )  

                                           ( )  

P P P

P

t t

t V V V

t t

t V

dV dV dV dt
t

S dV dt





    







 
        

 



   

 

u
 (4.32) 

The generalized form of Gauss’ theorem is used throughout the discretization 

procedure and defined below for various spatial derivatives of a vector or scalar 

quantity : 

 
V V

dV dS


       (4.33) 

 
V V
dV dS 


    (4.34) 

 
V V

dV dS


       (4.35) 
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where  is an arbitrary scalar function,  an arbitrary vector function, dS the 

surface area vector and V the surface area of the control volume. 

Since the control volume is bounded by flat faces the (4.33) can be transformed 

into sum of integrals over all faces: 

 
 

1

1

                              

P P

n

V V f
f
n

f f
f

dV dS dS

A






   

 

  



   



 (4.36) 

where f is the centre of the cell face, Af the face area vector and n is the number 

of faces of a control volume. Every face is shared by two neighbouring cells of 

which one owns the face and the other is the neighbour. The face area vector Af 

always points from the owner cell into the neighbour cell of the face. Unless is 

stated otherwise the face values are obtained by linear interpolation: 

 (1 )
f P P P N
L L      (4.37) 

The interpolation of a vector means the interpolation of each of its components. 

LP is the interpolation factor and defined as ratio of the distances fN and PN: 

 
P

fN
L

PN
  (4.38) 

Similar relations to (4.36) can be derived for (4.34) and (4.35): 

 
1P

n

f fV
f

dV 


  A  (4.39) 

and 

 
1

 
P

n

f fV
f

dV


    A   (4.40) 
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Equations (4.36), (4.39) and (4.40) can be used to get a second order accurate 

discretised prediction of the gradient of a flow property over a cell: 

  
1

1 n

f fP
fP

V 

   A   (4.41) 

  
1

1 n

f fP
fP

A
V

 


    (4.42) 

  
1

1 n

f fP
fP

A
V 

      (4.43) 

These equations will be used in the derivation of the discretized transport 

equations given in the following sections. 

4.3.2.3 Momentum equation 

The finite volume discretization is based on the integral form of (4.28) over the 

control volume and the time step t: 

   

   
   

 ( )  ( )  

                                

                               ( ) ( )

t t t t t t

t V t V t V

t t t t

t V t V
t t t t

t V t V

dV dt dV dt dV dt
t

PdV dt gdV dt

dV dt dV



  

  

 

 

 
         

 

   

      

     

   

   

u
u u u

u






 dt

 (4.44) 

The discretization of the momentum equation is presented in several works 

(Versteeg & Malalasekera, 2007), (Peric, 1985), (Hirsch, 2007) and (Blazek, 

2001), therefore the partially discretized form of momentum equation in terms 

of a cell and its face values will be given without further proof.  

The partially discretized form of the momentum equation is: 

   
1 1

  
P

n nt t t t

P f f f f f u Pt tf
f fP

V F dt V dt
t


 

 

  
          
  

u
u A u S


  (4.45) 

where 
Pu
S is the source term and defined as: 
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        
Pu P PP P P P

P g             S u  (4.46) 

The terms of interest in the above equation are the convection, diffusion and  

curvature terms. These terms are discussed in the following sections. The 

gradients over a cell of different flow properties can be calculated according to 

equations (4.42) and (4.43). 

4.3.2.3.1 Convection term 

The finite volume discretization of the convection term yields: 

 

( ) ( )

                   ( )

                   

P
f fV

f

f f f
f

f f
f

dV   

 



   

 









u A u

A u

F

 (4.47) 

where Ff is the face mass flux through the face: 

 ( )
f f f

 F A u  (4.48) 

The cell face flux is calculated by the solution algorithm. The cell face average 

value (f) is determined from the cell nodal values via the differencing scheme. 

Jasak (Jasak, 1996) analysed a number of differencing schemes in terms of 

boundedness, stability, accuracy and required computational resource. 

Considering the advantage and disadvantage of different differencing schemes 

the upwind (Pantakar, 1980) and Gamma (Jasak, 1996) schemes have been 

chosen for this study. The Gamma scheme guaranties a bounded solution whilst 

minimising the numerical diffusion of sharp changes in gradient of the variable. 

The upwind scheme determines the value of  at the cell face by considering the 

direction of flow is normal to the cell face. The value at the cell face is equal to 

the value of the cell node from the upwind direction: 
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 max ,0 max ,0
f f P N
          F F F  (4.49) 

where the subscript P and N indicates the current and neighbouring cell values. 

The Gamma scheme is a high resolution second order convection-diffusion 

differencing scheme based on the Normalised Variable Diagram (NVD) 

(Leonard, 1991), specially developed for unstructured meshes. The magnitude 

(u) of the velocity vector (u) is defined as: 

 

for 0 or 1

1
( ) for 1

2

1 for 0
2 2

D D D

f D A D

D D
D A D

u u u

u u u k u

u u
u u u k

k k


 




   

 

     
 

 (4.50) 

where k is prescribed constant with a value between 0 and 0.5. The 

recommended value is 0.1. The subscripts D and A are determined by the 

direction of flow: 

 0 &  or 0 &
f f
F D P A N F D N A P         (4.51) 

The decision factor 
D
u  is defined as: 

 1
2( )
A D

D
D

u u
u

u


 

 d
 (4.52) 

and calculated according to (4.42): 

 
1

1
( )

n

D f f
fD

u u
V 

  A  (4.53) 

4.3.2.3.2 Diffusion term 

The diffusion term will be discretised in a similar way. Using the assumption of 

linear variation of  : 
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1

( ) ( )
P

n

f f fV
f

dV 


        u A u  (4.54) 

where the dynamic viscosity at the face (f) is calculated by linear interpolation 

with LP calculated from (4.38): 

 (1 )
f P P P N
L L      (4.55) 

For an orthogonal mesh, the calculation of the gradient at the cell face is 

relatively straightforward using the nodal values straddling the cell face. 

Considering (4.29) and Af=Df then it is possible for an orthogonal mesh to use 

the following expression for the dot product between the face area vector and 

the velocity gradient at the face: 

 ( ) ( ) N P
f f f f f

f


       

u u
A u D u D

d
 (4.56) 

If the mesh is non-orthogonal it is necessary to introduce an additional term to 

compensate the non-orthogonal contribution. This is done by Af=Df+kf, the 

over relaxed non orthogonal decomposition of the face area vector (Jasak, 1996), 

(Ubbink, 1997): 

 

orthogonal contribution non-orthogonal correction

( ) ( ) ( )
f f f f f f
          A u D u k u  (4.57) 

In this case the orthogonal correction is treated explicitly. 

4.3.2.3.3 Source term 

Terms of the general transport equation which cannot be treated as convective 

or diffusive term are included in the source term. The source term S(), can be 

a general function of . The treatment of these terms follows the work of 
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Pantakar (Pantakar, 1980), in which the source terms are linearized before the 

actual discretization: 

 ( )S Su Sp

    (4.58) 

where Su and Sp can also depend on . Integration of (4.58) over the control 

volume yields: 

 ( )
P

P P PV
S dV SuV SpV

    (4.59) 

Su is directly added to any existing source term. If Sp is negative, then it can be 

added to the central coefficient of the solution matrix increasing its diagonal 

dominance and enhancing the stability of the solution (Brennan, 2001). If it is 

positive then it is solved explicitly.  

4.3.2.4 Temporal discretization 

Early applications of CFD were mostly focused on steady state solutions. These 

have a benefit of being easier to solve in terms of complexity and computer 

requirements. Nowadays the attention is being focused on unsteady simulation. 

In these cases, in addition to the question of spatial discretization, there is the 

question of temporal discretization. 

In the previous Section we have described the discretization of the volume 

integrals in the standard transport equation in integral form: 
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 (4.32) 

Assuming that the control volume does not change in time, the equation (4.32) 

can be written as: 



 

77 

 

 
( ) ( )  

                             ( ) 

t t

P f f f ft
f fP

t t

P P Pt

V F dt
t

SuV SpV dt




  







  
     

   

 

 



A
 (4.60) 

This expression is usually referred to as a “semi-discretized” form of the 

transport equation (Hirsch, 2007). The temporal integrals and time derivative 

can be calculated directly as: 
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where 
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 

 
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
 (4.63) 

Assuming that the density and diffusivity do not change in time, equations 

(4.60), (4.61) and (4.62) give: 
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Since 
f

  and ( )
f

  also depends on values of   in the surrounding cells (4.64) 

produces an algebraic equation: 

 n n
P P N N

N

a a Su    (4.65) 

where the subscript N denotes the nearest neighbours. 

It is useful to present the discretised momentum equation as: 
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( ) 1

( )
P P

n P
P P

P P

P
a a
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H u

u  (4.66) 

where 
PP P
a a  and: 

 ( ) n
P N N P

N

a Su H u u  (4.67) 

This formulation of the discretized momentum equation will be used for the 

derivation of the pressure equation. 

4.3.2.5 Pressure equation 

The pressure equation is derived from the incompressibility condition and the 

discretized momentum equation. The discretized continuity equation has the 

following form: 

 0
f fV

f

dV     u A u  (4.68) 

The discretized momentum equation (4.66) is used to predict the face value of 

the velocity. This is done by isolating the contribution of the pressure from 

(4.66) when interpolating it to the face. The contribution of the pressure 

gradient at the face is then added explicitly to uf by calculating it directly from 

the pressure values at the nodes sharing the face. The face value of velocity is: 

 
( ) 1

( )
f f

P Pf

P
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   
        
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H u
u  (4.69) 

The face values other than pressure gradient are calculated by using linear 

interpolation: 

 
( ) ( ) ( )
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P P Pf P N
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 (4.70) 

 
1 1 1
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     

 (4.71) 
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Substitution of uf from (4.69) into (4.68) gives: 

 
1 ( )

( )
f f f

f fP Pf f

P
a a

   
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   
 

H u
A A  (4.72) 

Taking into account the orthogonal and non-orthogonal contribution of 

neighbours, the pressure gradient over the faces can be calculated similarly to 

diffusion term. Using the over relaxed non-orthogonal decomposition of the face 

area vector: 

 

orthogonal contribution non-orthogonal correction

( ) ( ) ( )
f f f f f f

P P P       A D k  (4.73) 

The orthogonal contribution is given by: 

 ( ) N P
f f f

f

P P
P


  D D

d
 (4.74) 

and the non orthogonal correction is: 

 
1 1

( ) (1 )
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 k k A A  (4.75) 

The non-orthogonal correction is treated explicitly by adding it to the source 

term: 
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f f

f P f

P Sp
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 
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where 
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f f f

f fP Pf f

Sp P
a a

   
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 

H u
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Now it is possible to reformulate the pressure equation: 

 
P P N N

N

a P a P Sp   (4.78) 
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4.3.2.6 Solution algorithm 

The fluid in this study assumed to be Newtonian and incompressible. It follows 

there is no explicit equation for pressure, therefore special care needs to be 

taken to avoid de-coupling of pressure from velocity. It can be done by deriving 

the discretized pressure equation from a semi-discretized momentum equation, 

using the continuity restriction of a divergence free velocity field. The solution 

procedure applied in this study is based on PISO algorithm.  

4.3.2.6.1 Pressure-velocity coupling with PISO 

Pressure Implicit with Splitting of Operators (PISO) algorithm is a pressure-

velocity treatment for transient flow calculation proposed by Issa (Issa, 1986). 

PISO is a segregated approach for solving the Navier-Stokes equations, where 

pressure and velocity are treated sequentially using the predictor-corrector 

procedure. The summary of the algorithm is presented by Jasak (Jasak, 1996) 

and Rusche (Rusche, 2002). 

The pressure-velocity coupling is applied in three main steps: 

1. Momentum predictor step:  the pressure is used to solve the momentum 

equation and obtain the first approximation of velocity. The first 

approximation of velocity is not satisfies the continuity restriction. 

2. Pressure solution step: the matrix of pressure equation is assembled and 

solved to get the new estimation for the pressure. 

3. Explicit velocity correction step: the pressure obtained in previous step is 

used to calculate the conservative volumetric fluxes and reconstruct the 

velocities which are consistent with the pressure field. 
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The velocity depends on the pressure field and the contribution from the 

updated velocities of neighbouring cells. Therefore the last two steps are 

repeated until the predefined tolerance condition is satisfied. When the PISO 

loop is finished the velocity is corrected with the correct pressure gradient. 

 

4.3.2.6.2 Solution of linear equation systems 

The discretization procedure converts every partial differential into a system of 

linear algebraic equation. Each governing equation has its own unique linear 

equation system; however they all have the same general form: 

 n n
P P N N

N

a a b    (4.79) 

in matrix notation: 

   A b  (4.80) 

The diagonal elements of matrix A contain aP, while the off diagonal elements 

of A contain aN. Φ is the array of unknown  and b is the source array. 

Equation (4.80) is solved with an iterative procedure. This procedure starts with 

an initial guess and improves the solution in every iteration until satisfy the 

prescribed condition, which is the difference between two consecutive solution. 

The convergence rate can be improved by applying preconditioning matrix. In 

this study, for symmetric matrixes the Preconditioned Conjugate Gradient 

(PCG) solver with Diagonal-based Incomplete Cholesky (DIC) preconditioner 

was used. For asymmetric matrixes the Preconditioned Bi-Conjugate Gradient 

(PBiCG) with Diagonal-based Incomplete Lower-Upper (DILU) preconditioner 

was applied. 
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In order to ensure boundedness of the phase fraction the solution procedure 

utilizes the MULES (Multidimensional Universal Limiter for Explicit Solutions) 

algorithm developed by OpenCFD (OpenCFD, 2008). The algorithm calculates 

the flux correction as a difference between the higher order flux and the first 

order upwind flux. Since the flux correction is limited, therefore the new 

solution for phase fraction will be limited by the extrema determined in all 

neighbouring cells. 

 

4.3.3 Novel nested 2D/3D approach 

The full 3D model is a solid tool to model the gully pot and its environment. 

However, the heavy computational demand makes its application impractical 

when the time available restricts the total number of runs. Generally the heavy 

computational demand can be decreased if the number of control volumes or 

computational cells is decreased. The grate and gully pot are important area of 

the model where detailed description of flow is necessary. Furthermore 

significant reduction cannot be achieved around this area due to the given 

geometry. Nevertheless the road surface offers a good opportunity to cut back 

the number of control volumes because approximately half of the total cells of 

3D model is the road/street area of the domain. The flow on the road surface is 

free surface flow. The numerical open channel hydraulics can be regarded as a 

sub-domain of CFD and the general methods of CFD are applicable in open 

channel flow modelling. Considering that urban surface flows are usually 

characterised by turbulence and shallowness and turbulence effects tend to 
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uniform the velocity profile (except in the near bottom region where viscous 

effects are no longer negligible), it seems logical to replace the road surface with 

a 2D model. Many assumptions need to be made in order to simplify the 3D 

model into 2D one. The following assumptions are applied on 2D model: 

 The flow is isothermal and incompressible; 

 Boundary layer approximation is applicable due to shallow depth: 

o Tangential derivatives are negligible compared to normal ones; 

o Normal velocity components are negligible compared to tangential 

ones; 

o Total pressure is constant across the depth; 

 The motion is caused by spatial variation in the tangential direction in 

the total pressure (pL). 

In order to derive the shallow water equations the velocity profile across 2D 

flow depth must be prescribed (see Figure 4.4): 

    i fs i
v v f   (4.81) 

where fi(η) is a velocity profile described by: 

 2 3( )
i i i i
f a b c       (4.82) 

 0
n

n h
h

     (4.83) 

The three coefficients for (4.82) are calculated by the following equations: 

 1
i i i
a b c    (4.84) 

 
( )

2 3 fs i

i i i i
L i

h
a b c p

v




    (4.85) 
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 (4.86) 

 

 

Figure 4.4 – Velocity calculation on 2D domain 

 

4.3.3.1 Spatial discretization 

Discretization of the spatial domain results in a two-dimensional computational 

grid, which consists of a finite number of non-overlapping control surfaces.  

 

 

Figure 4.5 – Control surface 
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Figure 4.5 shows the control surfaces P and N and their common edge e. The 

sizes of the surfaces are denoted by SP and NP. Le is the length of edge e. The 

unit normal is calculated by: 

 i j

e

i j






n n
n

n n
 (4.87) 

The bi-normal me is perpendicular to the edge normal (ne) and to the edge 

vector (e): 

 ˆ
e e
 m e n  (4.88) 

where ê  is a unit vector parallel to the edge. The Pe’N line is a geodesic line 

connecting the centre of gravity of neighbouring control surfaces. The position 

of e’ is determined by following expression: 

 
e i e

  r r e  (4.89) 

Where ri and rj are the position vectors of start and end points of edge e. The 

βe coefficient calculated by the following equation: 

 
2

[ ( )] ( )
e i P e

e

e


   





d r r d e

d e
 (4.90) 

where e
PNd  and rp is a vector at centre of gravity of the control surface S. 

4.3.3.2 Discretization of transport equation 

Transport of surface scalar properties can be described by the following integral 

equation: 

 ( ) ( )
t t S

S S S S

d
dS dL dL s dS

dt  
  

 

          m v b m  (4.91) 
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Similarly to the volume 3D method, the transport equation must be satisfied for 

each control surface element. Accordingly, the spatial integrals in equation 

(4.91) should be integrated in the control surface SP.  

 ( )
P P P P

t S
S S S S

d
dS dL dL s dS

dt  
  

 

         m v m  (4.92) 

Spatial discretization of (4.92) was carried out assuming linear distribution of 

the variables on the control surface P: 

 ( ) ( ) ( )
P P S P

      r r r  (4.93) 

Assuming linear distribution of ψ in time and space is sufficient to achieve a 

second order accuracy of the discretization method.  

4.3.3.3 Discretization of spatial integrals 

Taking into account that the control area is limited by straight edges, the line 

integral over the boundary of control surface can be written as the sum of edges 

line integrals: 

 ( ) ( )
P e

eS L

dL dL  r r  (4.94) 

Applying the rules of central point: 

 ( )
e

e e
L

dL L  r  (4.95) 

where ( )
e e

  r  

 

4.3.3.3.1 Convection term 

Discretization of convective term is carried out using (4.94) and (4.95): 
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( )
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t e t e e e
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 


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  







m v m v
 (4.96) 

where ( )
e e t e e
s Lm v  

The value of ψ on edge e is calculated from the values of the centre points of 

adjacent control surface. Using central discretization scheme the value of ψ on 

the edge is calculated as follows: 

 (1 )
e x P x N
e e      (4.97) 

where the interpolation factor ex defined as the ratio of eN  and PN  : 

 
x

eN
e

PN
  (4.98) 

4.3.3.3.2 Diffusion term 

Using (4.94) and (4.95) the discretised diffusion term can be expressed as 

follows: 

 
( ) ( )

                      = ( ) ( )

S e S e e
eS

e e e S e
e

dL L

L

 



 




      

  





m m

m
 (4.99) 

where ( )
e S e

 m is a normal surface gradient of ψ on edge e. 

Discretization of the surface normal gradient depends on the othogonality of the 

grid. In this study an orthogonal grid has been used for the 2D domain; 

therefore there is no need to go into the details of the non-orthogonality issue. 

In the case of an orthogonal grid the normal surface gradient of ψ on edge e is: 

 ( ) N P
e S e

PN
L

 



  m  (4.100) 

and 
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( ) ( )
S P P P e e e

eP

L
S

    I n n m  (4.101) 

where ψe is value of ψ on the edge of control surface from the previous iteration. 

4.3.3.4 Temporal discretization 

After spatial discretization the transport equation has the following form: 

 ( ) ( ) ( )
P P e e e e e s e u P p P P

e e

d
S s L s S s S

dt   
            m  (4.102) 

Using the implicit Gear method for time discretization a fully discretised 

transport equation has the following form: 

 

3 4
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 (4.103) 

4.3.3.5 Solution of linear equation systems 

Taking into account that , n n
e e

 m  and ( )n
s e
  do not depend on the value of ψ 

at the centre of adjacent control surface at the time tn, similarly to 3D model 

the linear equations has the following from: 

 n n
P P N N P

N

a a r    (4.104) 

In case of combined convection discretization and the Gear time discretization 

method the coefficients and the right side of the equation are defined by the 

following expression: 
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 (4.105) 
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4

( ) ( )
2

o o oo oo
n n n n n nP P P P

P e e e e u P
e

S S
r L s S

t  

 



     


 k  (4.107) 

where n
e
 is the combination factor of central and upwind discretization of the 

convective term. 

4.3.3.6 2D/3D Link 

A special type of boundary has been used to connect the 2D domain to the 3D 

mesh. This switches velocity and pressure between fixed value and zero gradient 

type boundaries, depending on direction of velocity. The fixed value boundary is 

when the value of ψ is specified. The zero gradient boundary means the normal 

gradient of ψ is equal to zero. 

4.3.3.6.1 Edge-face mapping 

The CFD model defines a mesh of arbitrary polyhedral cells in three 

dimensions, bounded by arbitrary polygonal faces. The cell faces can be divided 

into two groups: internal faces and boundary faces, which coincide with the 

boundaries of the domain. Faces are formed by edges and edges defined by 

points in 3D space. The highest rank common element of two-dimensional grid 

and three-dimensional mesh is the edge. Figure 4.6 shows the common edges of 

2D grid and 3D mesh marked with different colours (red, yellow, blue, etc.). 

The edge is part of a face on the 3D domain and there is a series of faces above 

it. The first step in the 2D/3D link is to create the edge-face array or database 

which serves the basis for further calculation.  
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Figure 4.6 – Edge-face mapping 

The edge-face database contains the ID of element, length, area, and its 

coordinates and ID of neighbouring elements.  

4.3.3.6.2 From 2D to 3D 

Two flow directions can be distinguished in the model: flow from 2D to 3D and 

flow from 3D to 2D domain. The 3D and 2D domains are dynamically linked, 

therefore both models are able to receive and send the necessary parameters to 

the other one. As mentioned earlier, p, h and v are the working parameters in 

the 2D domain. The details of the 3D model have been discussed in the previous 

chapter. If we compare these parameters it can be seen that pressure and the 

velocity are calculated by both models, but the water depth is not. On the 3D 

side the free surface is captured by the VOF method, where an indicator 

function gives a value of 1 if the cell is filled by water and 0 if it is empty. The 

Figure 4.7 and equation (4.108) shows how the water level from the 2D model is 

converted to a γ value on the 3D domain. 
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Figure 4.7 – Transfer the water level from 2D to 3D 
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 (4.108) 

In the first step the water level from 2D is compared to the upper edge (ZU) of a 

face. If the water level is higher or equal to the elevation of the upper edge, then 

a value of 1 is assigned to the cell. In second step the water level is compared to 

the lower edge (ZL) of a face. If the water level is lower than the elevation of the 

lower edge, then a value of 0 is assigned to the cell. If the first two assumptions 

are false then the water level is between the upper and lower edge of a face. In 

this case linear interpolation is used to calculate the γ value. 

 

Figure 4.8 – Velocity transmission from 2D to 3D 
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As mentioned above the velocity in the 2D domain is calculated by a prescribed 

velocity profile. The velocity profile is defined by equation (4.81) - (4.86). This 

velocity distribution is sliced by the upper and lower edge of a face and assigned 

to the appropriate cell on 3D domain (Figure 4.8). Inasmuch as the velocity is a 

vector both magnitude and direction is transmitted to the 3D domain. 

 

Figure 4.9 – Schematic for momentum calculation on 2D domain 

The momentum equation on 2D domain described by the following equation: 
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where 
v
S is given by: 

 
, ,
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d i d i t
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m v

dt dS
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S  (4.110) 

The shear stress terms and the convection term correction tensor C are 

calculated from the prescribed velocity profile.  pL is the liquid pressure 

described by the following equation: 

 
L g d h
p p p p p


     (4.111) 
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where pg is the air pressure, pd the droplet impact pressure, pσ capillary pressure 

and ph the hydrostatic pressure. The components of the total pressure equation 

are calculated by following equations: 

 
2

,

,

( )

2
d i n

d i

v
p


  (4.112) 

 ( )
s s

p h


      (4.113) 

 
h L
p n gh    (4.114) 

The pressure assigned to the 3D cell in a similar way as described for flow 

velocity. 

4.3.3.6.3 From 3D to 2D 

When the flow direction is from 3D to 2D domain the same parameters need to 

be transmitted to the 2D model as above. First step is converting the interface 

on 3D into water depth using the area of a face (Ai), the γ parameter from 

VOF and the edge length (LE) (see Figure 4.10): 

 
i i
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

 (4.115) 

 

 

Figure 4.10 – Transfer water level from 3D to 2D 
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In the case of the velocity, the necessary parameters for equation (4.81) - (4.86) 

are calculated by 3D model except v . The following equation is used to 

calculate the average velocity:  

 
0

1 h
v vdh
h

   (4.116) 

4.4 Mesh Creation 

Once the problem has been specified an appropriate set of governing equations 

and boundary conditions have been selected. Next step is dividing the flow 

domain into cells. The design and construction of a quality mesh is crucial to 

the success of CFD analysis. The mesh has a significant impact on the rate of 

convergence, solution accuracy and CPU time required. Many different meshing 

strategies exist, including structured, unstructured, hybrid, composite and 

overlapping grids. The choices of numerical method and gridding strategy are 

strongly interdependent.  

Traditionally, grids have been divided into structured and unstructured grids. 

The structured grids are built up from quadrilateral elements. Therefore the 

structured grids have a well defined structure, from which the neighbours of a 

particular volume can be readily deduced on the basis of the location of the 

volume in the structure. Usually, a structured grid requires less memory and has 

better numerical properties. However it is difficult to mesh complex geometries 

using structured meshes. 

The structured meshes have the following characteristics in common: 

 A simple data structure is used to describe the mesh; 
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 All cells have a similar shape; 

 Cell faces and edges can be mapped to lie parallel to coordinate axes; 

 Mesh quality deteriorates with increasing complexity of the domain 

One characteristic used to distinguish between structured and unstructured 

meshes is the existence of an obvious mapping between logical space and 

physical space for the mesh (Hansen, et al., 2005). Unstructured grids are built 

from different elements, mainly from triangular ones. In case of unstructured 

grids the volumes can be ordered arbitrarily. The connections between the 

neighbours have to be defined explicitly. 

The unstructured meshes have the following properties in common: 

 The data structures is more complex; 

 Cells have variable local topology and size; 

 Cell faces and edges do not have an implied orientation; 

 Mesh quality remains high as the domain complexity increase. 

The meshing process can be divided into the following steps: 

1. Geometry definition 

2. Geometry decomposition 

3. Mesh generation 

4. Checking mesh quality, refining 

5. Definition of boundary conditions 

In the phase of defining the mesh we need to take into account whether the 

solver is uses a cell centred or a node centred algorithm. A cell centred solver 

creates control volumes that are completely identical to the grid. A node 
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centred solver creates its control volumes around the grid nodes instead 

(Andersson, et al., 2012). In this study the cell centred solver was used. 

Two different meshes have been built for the CFD simulation. Firstly an 

unstructured tetrahedral mesh, secondly a hybrid (mixture of tetra- and 

hexahedral) one was built. The hybrid mesh offers greater flexibility. The 

curved surfaces, the gully pot and grate are described by tetrahedral cells, while 

the road surface is described by hexahedral elements. The colour coded Figure 

4.11 shows the different parts of hybrid mesh: brown for hexahedral part and 

grey for the tetrahedral region. The reason why hexahedral element are chosen 

for the road surface is that the analysis of the free surface interface shows the 

VOF method is working better with hexahedral cells. The tetrahedral domain 

makes the water surface artificially bumpy. 

 

Figure 4.11 – Parts of hybrid mesh: brown area hexahedral, grey area 

tetrahedral 
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Pointwise software system was used for mesh and grid generation. Pointwise 

generates structured, unstructured and hybrid grids. The element types it 

makes include triangles, quadrilateral, tetrahedral, pyramids, prisms and 

hexahedra. Pointwise divides the overall region to be gridded into one or more 

sub-regions called blocks. It can be used to generate both 2D and 3D blocks. 2D 

block consists entirely of surface cells while a 3D block contains entirely 

volumetric cells. All blocks in the same grid must either be 2D or 3D; blocks of 

differing dimensionality cannot be combined (Pointwise, 2008). 

 

4.4.1 Tetrahedral mesh 

The mesh consists of 954,551 tetrahedral cells or control volumes. The 

tetrahedral mesh is formed by 199,394 nodes. Some grid refinement is used in 

the lower part of the region. The resolution varies between 2 mm and 0.07 m. 

Using a pure tetrahedral mesh does not allow describing the boundary layers 

with very much detail compared to a hybrid mesh. (Wilkening, et al., 2006) 

4.4.2 Hybrid mesh 

As a second grid, a hybrid grid was generated. This mesh was used with three 

different grates. Figure 4.12 shows the mesh of grates and Table 4.1 their 

hydraulic properties.  



 

98 

 

 

    a) Waterflow               b) Watershed                 c) Briflo 

Figure 4.12 – Mesh of grates used in numerical simulation (Waterflow used in 

laboratory experiment) 

Table 4.1 – Physical properties of modelled grates (Sain-Gobain Pipelines, 2007) 

Loading 

class 

Clear opening 

AxB [mm] 

Over base 

CxD [mm] 

Depth 

E [mm] 

Waterway area 

[cm2] 

HA102 

reference 

Waterflow 325 x 437 475 x 524 75 933 S 

Watershed 380 x 400 525 x 490 75 940 S 

Briflo 465 x 465 620 x 570 140 880 - 

 

The grid with the grate used in physical experiment (Waterflow) is composed of 

951,892 nodes and 1,546,726 elements (581,176 tetrahedrons, 628,100 

hexahedrons and 337,450 prisms). Starting from a structured surface grid, 

quadrilateral elements are extruded into the volume for a few layers to allow a 

fine resolution of the boundary layer developing on the road surface. Starting 

from an unstructured grid, a tetrahedral mesh is filling the gully pot and grate. 

Additional mesh refinement is used in the grate holes, water seal and rodding 

eye. The mesh resolution goes from 1 mm in the regions close to the wall, to 

0.08 m in regions far from the walls. Table 4.2 summarize the properties for 

different meshes used in numerical simulation. 
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Table 4.2 – Mesh properties with different grates 

Cell type 
Grate 

Briflow Watershed Waterflow Waterflow 

Tetrahedral 699,548 632,279 581,176 954,551 

Hexahedral 589,275 589,275 628,100 0 

Pyramid 0 0 0 0 

Prism 602,050 477,525 337,450 0 

Total Cells 1,890,873 1,699,079 1,546,726 954,551 

Total Nodes 1,068,891 985,507 951,892 199,394 

 

Elements at the walls need to be handled carefully. It is recommended for flows 

with attached boundary layer that the mesh includes a few layers of thin cells 

adjacent to the wall (Zikanov, 2010). In this study the flow approximated on a 

stretched grid adapted to solution gradients. Near wall treatment depends on y+ 

a dimensionless distance of the first grid point from the wall (Wilkening, et al., 

2006). For y+ the following relations are valid: 
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ln( )t
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u y
u
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
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u+ is the near wall velocity, uτ is the friction velocity ut is the known velocity 

tangent to the wall at a distance of y from the wall, κ is the Von Karman 

constant. The optimal value of y+ is lies between 5 and 10 (Andersson, et al., 

2012). As the k-ω SST turbulence model is used at walls an automatic near wall 

treatment is enforced. If y+ is outside the desired range a special treatment is 

applied. This has the advantage that it prevents the regeneration and 

adjustment of mesh to y+ according to the geometrical and flow conditions. 

4.4.3 Mesh quality 

Appropriate choice of mesh type depends on the geometric complexity of 

computational domain, the flow field and cell element types supported by 

solver. Preparing a good initial mesh usually requires the pre-knowledge or 

insight to the expected properties of the flow. The general way to eliminate the 

errors is to embrace the procedure of successive refinement of an initial mesh 

until certain key results shows no appreciable changes. An important aspect of 

the mesh generation is choosing the appropriate size of the mesh element. The 

general rule is that no fluid particle should advance through multiple mesh 

elements in one time step. 

In addition to mesh density the quality of a mesh depends on various criteria 

such as the shape of the cells (aspect ratio, skewness, included angle of adjacent 

faces), distance of cell faces from boundaries or spatial distribution of cell sizes. 

The most common sources of errors are: 

 Mesh too coarse; 

 High skewness; 
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 Large jumps in volume between adjacent cells; 

 Large aspect ratios; 

 Interpolation errors at non-conformal interfaces; 

 Inappropriate boundary layer meshes. 

Numerous quality functions can be used to determine the quality of a mesh. 

Here the quality of mesh was analysed using commonly used mesh quality 

parameters: equiangle skewness, equivolume skewness, aspect ratio and volume 

ratio. 

The equiangle skewness (QEAS) is a normalized measure of skewness that is 

defined as: 

 max minmax ,
180

eq eq

EAS
eq eq

Q
   

 

   
  

  

 (4.120) 

where 
max
 and 

min
  are the maximum and minimum angles between of the edges 

of the element, 
eq
 is 60 for tetrahedral element and 90 for hexahedral one. 

The value of 
EAS
 lies between 0 and 1, where 0 describes an equilateral element 

and 1 describes poorly shaped element. In general, high quality meshes contain 

elements that possess average QEAS values of 0.4 (ERCOFTAC, 2000), (Menter, 

2002), (MARNET-CFD, 1999), (ANSYS, 2006) 

Equivolume skewness is defined as: 

 eq

EVS
eq

S S
Q

S


  (4.121) 

where S is the volume of the mesh element and Seq is the maximum volume of 

an equilateral cell the circumscribing radius of which is identical to that of the 

mesh element. 
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Aspect ratio is defined as: 

 
AR

R
Q f

r
  (4.122) 

where f is a scaling factor equal to 1/3 for tetrahedral elements, r and R 

represent the radii of the spheres that describe and circumscribe the mesh 

element. Whenever possible, it is recommended to keep QAR within the range of 

0.2<QAR<5.  

The volume ratio analogue to aspect ratio, represents the maximum volume 

ratio of any given control volume relative to its neighbouring elements: 

 i
j

j

V
r
V

  (4.123) 

and 

 
1 2

max[ , ,......, ]
VR n
Q r r r  (4.124) 

Where Vi is the volume of the cell i, Vj is the volume of neighbouring element j 

and n is the total number of elements adjacent to element i. 

Figure 4.13 shows the minimum, maximum, average and distribution of above 

mentioned mesh quality parameters for a hybrid mesh. Comparing the average 

values to guidelines (ERCOFTAC, 2000) (Andersson, et al., 2012) (ANSYS, 

2006) (MARNET-CFD, 1999) it can be stated that the mesh satisfies the 

requirements of high quality mesh. 
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Figure 4.13 – Mesh quality parameters: a) skewness equiangle b) skewness 

equivolume c) volume ratio d) aspect ratio 
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Chapter 5  

Results 

 

5.1 CFD Model validation 

The CFD model is, like any other mathematical model, a simplified 

representation of a complex physical process. The results obtained are therefore 

based on many assumptions and are dependent upon the ability of the program 

to successfully and accurately assimilate vast quantities of data and solve highly 

complex mathematical problems. Model validation is a necessary requirement 

for model application. 

 

The effect of grid density was conducted by comparing the fine mesh results to 

the ones obtained on a coarser mesh. There results were found to be close at 

most locations, thought the finer mesh results gave better agreement in some 

areas. 
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5.1.1 Flow into gully 

Two different set ups have been used for depth measurement. The first set up 

(preliminary test) used the point-gauge equipment to monitor the flow depth at 

51 locations. Figure 5.1 (a) shows the location of depth measurement points 

marked with pink dots. The monitoring points comprise a 2.40 m long and 

0.75 m wide grid. The distance between the points is 0.30 m in the longitudinal 

direction and 0.15 m in the transversal direction. The depth was measured at 

each point after the flow reached a steady state condition. This set up has also 

been used to calibrate the pressure transducers. 

         

                                   (a)                             (b) 

Figure 5.1 – Monitoring location: (a) preliminary test and (b) final test 

The second set up (final test) used the GEMS 5000 sensors to measure the flow 

depth at seven locations. Six pressure transducers have been set up in the rig 

platform and one at the bottom of the gully pot. Figure 5.1 (b) shows the 

position of transducers in the rig platform. The positions are 30 cm equally from 

the centre of the grates and consecutively in order to give an average hydraulic 
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depth of the flow going into the gully gratings on all sides (Sabtu, 2012). The 

big advantage of pressure transducers, opposite to point-gauge, is that they 

allow continuous measurement of flow depth without disturbing the flow on the 

rig platform. 

5.1.1.1 Preliminary test 

The preliminary test was used to calibrate the pressure transducers using the 

point-gauge. Only the intermediate configuration (Figure 3.8) was tested with 

the following parameters: 

 inflow: 6.0 l/s, 10.5 l/s, 19.9 l/s, 23.8 l/s, 26.9 l/s, 29.6 l/s; 

 longitudinal slope: 0%; 

 cross-slope: 0%; 

 grate: Waterflow and without grate. 

The full 3D numerical model used tetrahedral mesh for preliminary validation. 

The details of mesh have been discussed earlier and can be found under section 

4.4.1. The results presented below are based on the 26.9 l/s inflow. 

Visual examination of flow features has been accomplished before the numerical 

comparison of observed and modelled depth. Figure 5.2 shows the progress of 

flood wave. The member of University of Sheffield research team experimented 

with similar wave progress and flow outline during the rig test. The shape of 

tail water (at outflow) was very similar to the observed one. Figure 5.3 and 

Figure 5.4 shows the shape of modelled and observed tail water. 
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Figure 5.2 – Progress of flow in time (full 3D model) 

 

Figure 5.3 – Modelled tail water (flow direction from left to right), full 3D 

model 

 

Figure 5.4 – Observed tail water (looking downstream) 
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Other valuable observations are the flow circulation at the gully inlet and ridge 

formation. When the opening is fully covered the water front produces undulant 

ridges. The ridge occurs above the inlet itself (Figure 5.5).  

 

Figure 5.5 – Velocity distribution and ridge formation above gully inlet (the 

unit of velocity is m/s), full 3D model 

As the discharge gets higher, the ridge moves downstream. The pattern of water 

circulation occurs at the same place. According to these observations, the model 

was behaving well and was able to describe the mechanism of flow. 

The comparison of measured and observed depth values resulted in similar 

conclusions. The simulated depth was very close to the observed one. 

During the analysis of the water surface at monitoring sections the “bumpiness” 

of the interface has been detected. Figure 5.6 shows the observed and modelled 

water levels at three sections (0.9 m, 0.6 m and 0.3 m) upstream of the gully 

pot. The water is marked with red and the air is with blue, the white dots are 

the observed water levels. 
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Figure 5.6 – Observed and modelled water levels upstream of gully (from up to 

down: 0.9 m, 0.6 m and 0.3 m upstream from gully), full 3D model 

Investigation of possible causes revealed that the tetrahedral mesh is not 

adequate for the VOF method. It became obvious that the geometric 

construction of the interface is working better with hexahedral cells. Therefore 

the platform or road surface has been replaced by hexahedral elements and later 

with 2D cells. 

 

5.1.1.2 Final test 

The final experimental test involves two type of grates, namely Waterflow 250 

“S” and Waterflow 250 “R”. These inlets and their physical parameters are 

presented in Figure 3.4 and Table 3.1. The gratings were investigated under 

terminal, intermediate and surcharged conditions. The details of the numerical 

model have been discussed in previous chapter. Constant inflow simulations 

were run until the depth and velocity magnitude were found to be practically 

invariant at the monitoring locations. Typically 40,000-60,000 iterations were 

needed to obtain fully converged solutions. Most of the simulations employing 
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hybrid meshes with 1.5 million cells were running on 4 processors. The average 

time to get a solution starting from scratch was about 3-5 days. 

The analysis and interpretation of measured depth data requires specific data 

representation and description. Descriptive statistics provides simple summaries 

about the observation. These summaries formed the basis of initial description 

of the observed data and its statistical investigation. The descriptive statistics 

were calculated for each monitoring location and each scenario. They provide 

basic information such as mean, minimum and maximum values, different 

measures of variation, as well as data about the shape of the distribution of the 

measured depth. These statistical functions were sufficient for the investigation 

in most cases. However when it was necessary more extensive statistical analysis 

was performed. An example of statistical analysis for intermediate condition 

with 26.9 l/s inflow is shown below. Figure 5.7 shows the graphical 

representation of a water depth time series. The D1, D2, D3, D4 and D6 time 

series have a similar range, while D5’s range is wider by 50%.  
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Figure 5.7 – Measured depth time series at monitoring locations D1-D6 

(intermediate conditions, inflow = 26.9 l/s) 
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Figure 5.8 – Histograms of depth for six monitoring locations (D1-D6) 

(intermediate condition, inflow = 26.9 l/s) 

These ranges are (0.953 cm-1.553 cm) unusually high if we consider that steady 

state or nearly steady state conditions were achieved during the test.  

Figure 5.8 shows the distribution histograms for six monitoring locations. The 

plot indicates the normal distribution curve and the result of goodness of fit 

tests, namely the Kolmogorov-Smirnov and Liliefors statistics. The Kolmogorov-
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Smirnov test is designed to assess the goodness of fit of a data sample to a 

hypothesised continuous distribution. The Liliefors test for normality resembles 

the Kolmogorov-Smirnov test but it is especially tailored to assess the normality 

of a distribution. The skewness, kurtosis and goodness of fit tests show that the 

distribution is normal at location D1, D2, D3, D4 and D6. The only exception is 

D5. 

Table 5.1 – Descriptive statistics of depth measurement (intermediate condition, 

inflow = 26.9 l/s) 

Statistical function Monitoring location 

 D1 D2 D3 D4 D5 D6 

Sample size 10384 10384 10384 10384 10384 10384 

Mean 3.935 3.898 2.597 3.349 0.871 2.556 

Confidence -95% 3.933 3.895 2.594 3.346 0.867 2.553 

Confidence +95% 3.938 3.901 2.599 3.351 0.876 2.558 

Geometric mean 3.933 3.895 2.594 3.346 0.839 2.552 

Harmonic mean 3.931 3.892 2.592 3.344 0.810 2.549 

Median 3.938 3.893 2.597 3.343 0.810 2.563 

Mode 3.963 3.879 2.584 3.333 0.651 2.549 

Frequency of mode 486 462 490 437 397 507 

Minimum 3.459 3.323 2.168 2.904 0.381 2.007 

Maximum 4.566 4.451 3.121 3.884 1.938 3.062 

Lower quartile 3.842 3.798 2.513 3.256 0.681 2.466 

Upper quartile 4.019 4.006 2.668 3.431 1.024 2.646 

Percentile 10 3.772 3.703 2.454 3.181 0.610 2.384 

Percentile 90 4.101 4.101 2.739 3.519 1.236 2.729 

Range 1.107 1.128 0.953 0.980 1.557 1.055 

Quartile range 0.177 0.209 0.154 0.176 0.344 0.180 

Variance 0.017 0.023 0.012 0.018 0.062 0.018 

Standard deviation  0.131 0.153 0.112 0.132 0.249 0.133 

Standard error 0.001 0.001 0.001 0.001 0.002 0.001 

Skewness 0.052 0.098 0.106 0.081 0.917 0.045 

Kurtosis -0.115 0.090 -0.008 -0.124 0.284 -0.022 
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Comparing the values of statistical functions for six monitoring locations (see 

Table 5.1) it became obvious that the behaviour of water depth at D5 is 

different from the other locations. The issue was investigated by checking the 

CFD results around the location of D5 probe. Later the result of CFD analysis 

was supported by photos from the Sheffield Laboratory. The CFD analysis 

shows that under certain conditions, flow bypassing outside of the grating 

meeting flow bypassing inside of the grating produced a jump in the water 

surface, resulting in flow back into the gully. The water surface variation looks 

like a hydraulic jump although it is not the classical hydraulic jump in all cases. 

Inasmuch as sufficient total head difference was maintained between the inside 

and outside bypassing water the water surface variation was maintained. Figure 

5.9 shows the water surface and the position of water surface variation based on 

CFD simulation. 

 

Figure 5.9 – Location of water surface variation, full 3D model 

70
 m

m
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The position of water surface variation is changing in time due to the changing 

hydraulic conditions behind the grating.  

     

Figure 5.10 – Location of water surface variation from University of Sheffield 

Laboratory’s photo 

Figure 5.10 shows the position of the jump in the water surface at different 

times from the video recording of experimental test. As can be seen on the 

pictures the position shifting is mainly affecting the water depth at the D5 

transducer.  

In order to validate the CFD model the result of experimental tests were 

compared to simulated depth values. An informative way to compare observed 

and modelled data for six monitoring locations is the so called box-and-whisker 

plot. The box plot uses a distinct rectangular box for each location, where each 

box corresponds to the central 50% of the cases, the so called inter-quartile 

range. The central mark inside the box indicates the median. The median 

satisfies the same linear property as the mean. Compared to the mean, the 

median has the advantage of being insensitive to outliers and extreme cases. 

The boxes are prolonged with lines covering the range of the non-outlier cases 

(which do not exceed by 1.5 times of the inter-quartile range the above or below 

box limits). The plot also indicates the extreme cases. This is similarly defined 
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as the outliers but using a larger inter-quartile range, namely 3 times of the 

inter-quartile range. If the dataset exhibits outliers and extreme cases then it 

can be suspected that this is the result of rough measurement errors. 
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Figure 5.11 – Comparison of observed and modelled depth (intermediate 

condition, inflow = 26.9 l/s), 2D/3D model 

Figure 5.11 shows the box-and-whisker plot for intermediate conditions for 

26.9 l/s inflow rate. The modelled depth matches well the observed depth at 

almost all locations. The only exception is at D4, where the difference between 

the median of observed depth and the modelled one is 0.22 cm. However this is 

still within the generally excepted error range in numerical modelling. 
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Figure 5.12 – Comparison of observed and modelled depth (intermediate 

condition, inflow = 36.71 l/s), 2D/3D model 

Figure 5.12 shows the comparison of observed and modelled depth for the 

highest tested inflow. The modelled depth values are very close to the observed 

ones. The tendency is similar to the previously discussed scenario. The inter-

quartile range is significantly wider for almost all locations. It can be explained 

by the disturbance of inflow. It was discovered through experimentation that for 

high flows, which are pushing the envelope of the rig setup, the inflow became 

highly turbulent (see Figure 5.13). The turbulent, wavy water is travelling in 

the downstream direction and introducing an undesirable variance in water 

level. Another conspicuous feature is that the number of extremes is strikingly 

high at the D5 location. This is probably due to the superposition of the above 
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mentioned hydraulic features, namely the tail water effect and highly turbulent 

inflow. 

 

Figure 5.13 – Highly turbulent inflow 

As the flow rate decreases below a certain level, this unsettling effect 

disappears. Table 5.2 shows the numerical comparison of simulated and 

observed depth at six monitoring locations.  

Table 5.2 – Results of model validation, 2D/3D model 

 Depth at location [cm] 

D1 D2 D3 D4 D5 D6 

 Intermediate conditions, inflow=36.71 l/s 

Modelled 4.46 4.42 3.02 3.76 0.93 2.84 

Observed 4.44 4.46 3.08 3.98 0.82 2.90 

Difference +0.02 -0.04 -0.06 -0.22 +0.11 -0.06 

 Intermediate conditions, inflow=26.9 l/s 

Modelled 3.93 3.86 2.59 3.12 0.77 2.59 

Observed 3.94 3.89 2.59 3.34 0.80 2.56 

Difference -0.01 -0.03 0.00 -0.22 -0.03 -0.03 

 Intermediate conditions, inflow=6.0 l/s 

Modelled 1.79 1.58 1.26 1.56 1.06 1.28 

Observed 1.79 1.60 1.26 1.67 1.05 1.26 

Difference 0.00 -0.02 0.00 -0.11 +0.01 +0.02 
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Considering the differences between observed and modelled depth and the 

experimental conditions, it can be stated that the flow depth was predicted 

satisfactorally by the model. Figure 5.14 - Figure 5.18 show the comparison of 

observed and modelled depth for full 3D and 2D/3D model for different inflow 

rates. 
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Figure 5.14 – Comparison of observed and modelled depth (intermediate 

condition, inflow = 6 l/s), full 3D model 
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Figure 5.15 – Comparison of observed and modelled depth (intermediate 

condition, inflow = 19.9 l/s), full 3D model 
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Figure 5.16 – Comparison of observed and modelled depth (intermediate 

condition, inflow = 36.71 l/s), full 3D model 
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Figure 5.17 – Comparison of observed and modelled depth (intermediate 

condition, inflow = 6 l/s), 2D/3D model 
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Figure 5.18 – Comparison of observed and modelled depth (intermediate 

condition, inflow = 19.9 l/s), 2D/3D model 



 

122 

 

 

5.1.2 Surcharged gully 

According to EN 752 “flooding” describes a “condition where wastewater 

and/or surface water escapes from or cannot enter a drain or sewer system and 

either remains on the surface or enters buildings”. The term “surcharge” is 

defined as a “condition in which wastewater and/or surface water is held under 

pressure within a gravity drain or sewer systems, but does not escape to the 

surface to cause flooding”. Eventually surcharge conditions may lead to a rise of 

water level above the surface. In this case the water escapes from the drain 

system or prevents surface water from entering into the drain system (Schmitt, 

et al., 2004). The surcharging condition has occurred more frequently in the last 

decade causing severe disruption of urban transport. However, to the author's 

knowledge no studies have been carried out to quantify this effect. 

The details of surcharging conditions were discussed in Chapter 3. Figure 3.9 

shows the schematic of surcharged system. The validation started with visual 

comparison of water surface obtained from physical experiment and CFD 

modelling. Figure 5.19 shows the modelled and observed surcharging water 

levels. The visual comparison of water surface features is challenging due to the 

transparency of the water. However it can be stated that the modelled water 

surface is similar to the observed one. 
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Figure 5.19 – Visual comparison of simulated and observed water surface 

features, surcharged conditions, flow rate = 13.89 l/s 

The visual comparison has been followed by numerical evaluation of simulated 

water depths. Figure 5.20 shows the comparison of observed and modelled depth 

for surcharged condition. The D7 monitoring location represents the transducer 

at the bottom of the gully pot, measuring the water level above the grate 

surface. As it was expected from the visualization of CFD results the non-outlier 

range of measured depth is very wide. This is caused by the highly turbulent 

conditions around the gully inlet. The CFD model simulation shows that a 

steady water surface above the grate cannot be achieved even at low flow 

conditions. The water depth above the grate obtained from physical experiment 

represents a flat water surface above the grate. In contrast, the result of the 

CFD simulation is a wavy water surface at γ=0.5. Therefore the modelled 

surface needs to be converted to an average water surface which can be 

compared to the observed elevation. Figure 5.13 shows that CFD model is 

satisfactorally able to predict the water depth above the grate despite its 
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uneven surface. The simulated depths at D1, D2, D5 and D6 are also very close 

to the observed ones. 
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Figure 5.20 – Comparison of observed and modelled depth (surcharge condition, 

inflow=13.89 l/s) 

The difference between modelled and observed depth is 0.02 cm - 0.07 cm. 

These points are part of a long section 30 cm from the kerb. The water surface 

is more tranquil at these locations compared to that above the grate. The water 

depth at D3 and D4 is overestimated by the model (+0.48 cm and +1.02 cm). 

In contrast to the physical experiment the CFD model is spreading the water 

more evenly around the inlet. The observed depth is suspiciously low at D4; 

however detailed investigation has not been undertaken to reveal the possible 

cause of this anomaly. 
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Overall, the validation of CFD model against surcharge condition was 

successful. The agreement with the depth obtained from the experimental test 

can be considered satisfactory. 

5.2 CFD model application for flow into and from gully 

The numerical simulations were performed using OpenFOAM (Open Field 

Operation And Manipulation), a free-source CFD-toolbox produced by 

OpenCFD Ltd. The software is based on the finite volume numerical method 

with the co-located variable arrangement for solving system of transient 

transport equations on arbitrary unstructured meshes in three dimensional 

space. It is consists a number of precompiled library and solvers, accompanied 

by the corresponding codes written in C++ programming language in an object-

oriented manner suitable for solving problems in Computational Continuum 

Mechanics. Using the object oriented programming approach creation of data 

types closely mimicking those of mathematical field theory is enabled, and the 

feature of overloading in C++ allows mathematical symbols to be applied on 

scalar, vector and tensor fields very similar to those in ordinary mathematics. It 

is utilized by the OpenFOAM programming language which is generic, making 

extensive use of C++ class and function templates and the principle of class 

inheritance (Weller, et al., 1998) 

The validated model is used to investigate several parameters which are 

affecting the inlet efficiency. The testing protocol established the following 

conditions: 

 Total discharge approaching to inlet: 6.0 l/s - 46 l/s; 
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 Surcharging discharge: 18 l/s - 88 l/s; 

 Longitudinal slope: flat and 1:100, 1:200; 

 Cross-slope: flat and 1:20, 1:60, 1:200; 

 Gratings: Waterflow “S” (Figure 5.21), Watershed “S” (Figure 5.22) and 

Briflo (Figure 5.23). 

Unsteady simulations with a fixed inflow boundary were run until the water 

level and velocity magnitude field were found to be practically invariant at the 

monitoring locations. Typically 30000-50000 iterations were needed to achieve 

fully converged solutions. The full 3D simulations employing hybrid meshes 

with 1.6 million cells were run on 4 processors. The average time to get a 

solution starting from scratch was about 3-5 days. The nested 3D/2D 

simulations employing a hybrid mesh on the 3D domain with 0.7 million cells 

and 65000 cells on 2D domain were running on 4 processors (3 cores for 3D 

domain and 1 core for 2D domain). The average time to get a solution was 

almost half of the full 3D case. The developed 3D/2D model lived up to 

expectations, decreased the running time significantly and provided the 

necessary information with accuracy at the same time. 
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Figure 5.21 – Waterflow “S” grate and its mesh 

 

      

Figure 5.22 – Watershed grate and its mesh 

 

         

Figure 5.23 – Briflow grate and its mesh 
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At the initial time, the distribution of phase fraction is prescribed in the cells of 

the mesh, defining the position and the shape of the interface at the beginning 

of the calculation. Most of the low flow simulations were started with the 

domain filled with air only, the high flow runs used the result of the low flow 

one as an initial condition in order to decrease the running time. Figure 5.24 

shows six snapshots of the unsteady flow simulation of intermediate conditions. 

It can be seen that initially the domain is filled with air, except the gully pot, 

which is partly filled with water.  

 

Figure 5.24 – Snapshots of the simulation of intermediate condition (not at 

same time intervals), full 3D model 
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The aim of this initial condition for the gully was to reduce the filling time of 

gully pot hereby decreasing the running time. 

The water is entering the plate at the left edge and flowing to right. The front 

wave remains almost perpendicular to the curb due to the flat long slope and 

cross slope (first row picture one and picture two, second row picture one). One 

part of the approaching front is captured by the gully; the other part passes the 

outside edge of the grating and between the grating and the kerb (second row, 

second picture). The captured water increases the water level in the gully and 

starts to flow out through the connected pipe (row three picture one). The last 

picture shows the final state of the simulation. 

 

5.3 Interception capacity 

Inlet interception capacity (Qi) is the flow intercepted by an inlet under given 

conditions. The efficiency of an inlet (E) is the percent of total flow that the 

inlet intercepts for those conditions. The efficiency of an inlet changes with 

changes in cross slope, longitudinal slope, approaching flow and road roughness. 

The interception capacity of an inlet increases with increasing flow rates, 

however the efficiency decreases with increasing flow rates (Brown, et al., 2001). 

The efficiency is defined by the following equation: 

 i
Q

E
Q

  (5.1) 

where E is the inlet efficiency, Q is the approaching flow and Qi is the 

intercepted flow. The non intercepted flow is termed bypass flow and defined  
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b i
Q Q Q   (5.2) 

 

 

Figure 5.25 – Components of bypassing flow 

Figure 5.25 shows the streamlines gained from CFD simulation, which can help 

to analyse the flow around and over the gratings. For the analysis of gratings, 

the flow bypassing the grating can be divided into three separate components 

(see Figure 5.25): (1) the flow passing between the grating and kerb, (2) the 

flow bypassing the outer edge of the grating and (3) flow carried over on the 

grating itself. The total flow bypassing the gratings is: 

 
1 2 3b

Q q q q    (5.3) 

where q1 is the flow passing between the grating and kerb, q2 is the flow 

bypassing the outer edge of the grating and q3 is the flow carried over on the 

grating itself. 

Li (Li, et al., 1951) suggested the following equation to calculate the flow 

bypassing the outer edge of the grating  

 ' , ,
2 1

( )q K L L y gy   (5.4) 
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where K1 = 0.25, L’ is the length of grating required to capture the outer 

portion of flow, L is the length of grating at outer edge, y’ is the depth at the 

outer edge of grating. L’ is given by: 

 
'

2 0,
0

tan
L g

K
v y

  (5.5) 

K2 = 1.2, tan 
0

 is the cross-slope of road surface, v0 is the average velocity at 

the outer edge of grating. 

These equations have been compared with CFD modelling results for 

intermediate conditions. In the case of terminal and surcharging conditions the 

term bypassing flow is difficult to interpret; therefore the results from these 

were not included in the investigation. The investigation focussed on the 

applicability and validity of the above equation. Different sloping conditions and 

inflows were tested and it was found that the included parameters give sufficient 

information to calculate the bypassing flow rate at the outer edge of the gully. 

The evaluation of two constants K1 and K2 revealed that neither of them can be 

considered as constant. The K1 parameter is a function of cross-slope described 

by the following equation: 

 
1

0

1
1.891exp 0.0067

tan
K



 
   

 
 (5.6) 
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Figure 5.26 – Bypassing flow rate with constant and variable K1 parameter 

 

Figure 5.26 shows the flow rate calculated by constant K1 and variable K1 

parameters compared to the observed bypassing flow rate. High and low flow 

rates combined with deep and low slopes are presented in the graph in order to 

shows the applicability of variable K1 on wide range of hydraulic environment. 

The originally suggested 0.25 value for K1 does not give a reliable result, 

especially when the flow rate is high on a low cross-slope (1:200). The original 

equation gives only 30% of the actual bypassing flow. In contrast, the 0.25 value 

is working well for low flow and deep cross-slope, the calculated flow rate is very 

close to the observed one. 

 

The flow travelling over the grating can be calculated by: 
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2
2

3 0 2
0

1
L

q Q
L

 
  

 
 

 (5.7) 

where L0 is the length required to capture all the flow over it given by: 

 0
3

0 0

L g
K

v y
  (5.8) 

The value of K3 depends on the ratio of opening width to bar width. The 

constant can have three different values: 

 K3=2 if the width of bar less than the width of opening; 

 K3=4 if the width of bar equal to the width of opening; 

 K3=8 if three transverse bars placed on the grating as well as 

longitudinal bars.  

The equations for flow travelling over the grating was tested using CFD model 

results and was found to predict the flow rate with ±5% error. Considering that 

the flow travelling over the bars is very small compared to the bypassing flow 

this error band is more than acceptable. 

Different methods have been used by model developers to calculate the 

intercepted flow rate. The most commonly used method is the Flow-Head curve, 

where the flow depth is used to calculate the intercepted flow rate. The location 

of the depth used in the calculation has a significant importance, however many 

researchers have applied different locations (above the grating, at the upstream 

edge, at outer edge, etc.). In this study the depth was measured 0.6 m upstream 

of the centre of the grating. Figure 5.27, Figure 5.28 and Figure 5.29 show the 

relationship between flow depth and intercepted flow rate for different gratings. 
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Figure 5.27 – Intercepted flow rate vs. depth Briflow grating 
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Figure 5.28 – Intercepted flow vs. depth Watershed grating 
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Figure 5.29 – Intercepted flow vs. depth for Waterflow grating 

The blue dots are simulated values; the red line represents a power function 

fitted to simulated values. The function has a form of Qi=a*db. The exponent 

has same value for each functions, however the constant is different for each 

gratings. 
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Figure 5.30 – Simulated and calculated efficiency for Waterflow grating 
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Similarly to the Q-H curve the efficiency is frequently represented in the form of 

an E-Q/d curve. In this investigation the Q/d parameter showed the best result 

for all three gratings as well. Spaliviero and May (Spaliviero & May, 1998) also 

used the Q/d parameter to represent efficiency data and found a linear 

relationship between these two parameters. In contrast to a linear function of 

the two variables Gomez and Russo’s (Gomez & Russo, 2011) research showed 

that the relationship is more like a power function rather than linear one. The 

investigation in this study has produced a similar result and found a strong 

correlation between simulated data and a power type function (see Figure 5.30): 

 
B

Q
E A

d

 
  

 
 (5.9) 

where Q is the discharge approaching the inlet, d is the depth 0.6 m upstream 

from grating centre, A and B are empirical coefficients. High correlation 

coefficients (R2 is between 0.97 and 0.99) were obtained for all three gratings. 

The exponent (B) has a value between -0.20 and -0.31, while the constant (A) is 

between 0.28 and 0.30.  

5.3.1 Factors affecting grating efficiency 

5.3.1.1 Longitudinal slope and cross-fall 

Increasing the longitudinal slope causes an increase in flow velocity. The 

increased velocity results in less time for the water to enter the grating and 

increases the amount of splashing over water. As the non-intercepted flow 

increases the efficiency of the grating decreases. 
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Increasing the cross-fall, at a given long slope, results in an increase in water 

depth of the approaching water due to the decreased flow width. Changing the 

cross-fall also results in a change in flow pattern or streamlines.  Figure 5.31 

shows the effect of a change in cross-fall to the flow pattern. 

 

                 (a)                               (b)                               (c)     

Figure 5.31 – Flow pattern at different cross-falls: (a) 1:20, (b) 1:60 and (c) 

1:200 

It can be seen as that the cross-fall increases the streamlines are closer to the 

kerb. In the case of steep cross-fall (Figure 5.31a) the intercepted flow is 

arriving from the upstream edge and outer edge of grating. As the cross-fall 

decreases the interception role of the downstream edge of the grating increases 

(Figure 5.31b and Figure 5.31c). The cross-fall is proportional to the amount of 

bypassing flow and it follows that the amount of back flow is inversely 

proportional to cross-fall. 

The distribution of intercepted flow among the edges of the grating is less 

known. The existing knowledge is mostly theoretical, experimental investigation 

has not been done yet, although it could be useful in the design and 

optimization of grating. One of the most comprehensive investigations 

(NEENAH & Engineering, 1987) on the hydraulic characteristics of inlet grates 



 

138 

 

conducted by the NEENAH Foundry Company and Engineering Laboratory 

Design stated: “Minor addition to the grate flow will occur due to inflow from 

the side of the grate. No attempt was made to include a factor measuring side 

flow since this would unnecessarily complicate the equation.” Despite the fact 

that the side flow was not measured directly during the experiment this 

statement has been accepted and applied by engineers and researchers. 

 

 

Figure 5.32 – Notation for investigation the effect of cross-fall on intercepted 

flow 

 

Nowadays, with the help of CFD modelling the distribution of intercepted flow 

among the edges of the grating can be calculated. Figure 5.32 shows the 

notation used in this investigation: Section1 (S1) is the upstream edge of the 

inlet, Section2 (S2) is the outer edge of the inlet and Section3 (S3) is the 

downstream edge of the inlet. Figure 5.33 shows the distribution of intercepted 

flow for 1:20, 1:60 and 1:200 cross-fall with 1:200 longitudinal slope. If the cross-

fall is low (first graph of Figure 5.33) the dominant section is S1, the upstream 
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section of the grating. 80% of the intercepted flow is coming from the upstream 

edge, 18% from outer edge and 2% from the downstream edge. 
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Figure 5.33 – Distribution of intercepted flow with different cross-falls 

 

If the cross-fall is medium (second graph of Figure 5.33) the distribution is 

similar to the low cross-fall. The contribution from the upstream edge is more 

than 70%. The flow crossing the outer edge is increased by 4-5%, exactly the 

same amount as the decline at upstream edge. The downstream edge remained 

the same with 2%. If the cross-fall is steep (third graph of Figure 5.33) the 

distribution significantly changes. The back flow from the downstream edge has 

disappeared due to the increased bypassing flow rate. The contribution from the 
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outer edge also significantly changed; approximately 40% of the intercepted flow 

is coming from the outer edge. This confirms the hypothesis that inflow from 

the side of the grating is not negligible. 

Figure 5.34 shows the flow distribution of intercepted flow for the three edges of 

the grating. It can be seen that the amount of flow coming from the outer edge 

of the grating is proportional to the cross-fall. Despite this proportional 

relationship most of the flow is coming from the upstream edge. The flow 

coming from the downstream edge is negligible, only 2% of the total intercepted 

flow. 
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Figure 5.34 – Percentage of intercepted flow for the three edges of inlet 
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5.3.1.2 Waterway area 

The waterway area is an important characteristic of the grating. The gratings 

selected for simulation have very similar waterway areas (933 cm2, 940 cm2 and 

880 cm2) although with different patterns, internal length, bar width and bar 

spacing. Figure 5.35 shows the intercepted flow against total flow for four 

different gratings with 1:200 longitudinal slope and cross-fall. It can be seen that 

the “Watershed” grating is the most efficient among the tested gratings, despite 

the fact it has the second largest waterway area. The “Waterflow A” grating 

has the largest area with transversal bars. The main difference between 

“Waterflow A” and “Watershed” is the bar width and bar pattern. The 

“Watershed” grating has a longer internal length due to the bar pattern and bar 

width. The situation is similar to the case of the “Briflow” and “Waterflow B” 

gratings. The longer internal grating length is results in greater efficiency, 

because the flow passing over the grating has a longer edge to fall in. 
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Figure 5.35 – Total flow vs. intercepted flow for different gratings 

 

5.4 Surcharging conditions 

Regarding the distinct stages and processes for the case of a surcharged drain 

system the urban flooding simulation models are required to accurately describe 

the hydraulic phenomena of a surcharged gully, particularly: 

 the transition from free surface flow to pressurized flow 

 the interaction between surface flow and pressurized flow 

 the rise of the water level above surface level 

Numerous experiments have been undertaken worldwide in connection with 

grate efficiency. All the experiments related to gratings/gullies are based on the 

most frequent situation, when the flow direction is from the surface into the 

gully. In this study surcharging conditions have also been investigated. This 

type of flow condition is getting more attention nowadays from numerical 

modellers; however it has not been studied experimentally before.  

Figure 5.36 shows fifteen snapshots of the unsteady flow simulation following 

sudden short-lived surcharging of the gully. The extent of the road surface and 

the height of the cube are only a cropped portion of the computational domain 

that extends further through the top and the three sides. The cube selected here 

is just for the presentation of results. It can be seen that the simulation starts 

with an empty domain. Initially the gully is empty and the road surface is dry. 
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Once the water starts entering the gully from the pipe connection underneath 

(first row, second image), the water leaves the gully through the inlet grating in 

a fashion that reflects the water pressure distribution within the gully. 
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Figure 5.36 – Snapshots of sudden surcharging gully (snapshot in every 0.2s) 
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The position of the leaving water strongly depends on the direction of the 

rodding eye, which in this case is not horizontal (see Figure 3.3). 

 

 

Figure 5.37 – Velocity distribution in surcharging gully, surcharge 

flow = 35.25 l/s 

Figure 5.37 shows the water surface and the velocity distribution for a 

surcharged gully. It can be seen that the direction of the main stream is along 

the centre line of the rodding eye. The outer edge is on the opposite side to the 

inflow location; therefore most of the flow (approximately 70%) is leaving the 

gully through this edge. If the centre line of the rodding eye is perpendicular to 

the centre line of the gully pot, then the water hits the opposite wall of the 

gully pot which absorbs its energy resulting in the leaving water being almost 

evenly distributed among the upstream, downstream and outer edge.  



 

146 

 

0 10 20 30 40 50 60 70 80 90 100

Surcharge flow (l/s)

0

100

200

300

400

500

600

700

800

900

D
e
p

th
 o

v
e
r 

g
ra

ti
n

g
 (

m
m

)

 Calculated depth

 Simulated depth

 

Figure 5.38 – Surcharge flow vs. depth over grating 

There is a strong power function type relationship between surcharging flow 

rate and depth over the grating (see Figure 5.38). When the gully is surcharged 

head losses are based on the full gully pot area and wetted perimeter, because 

these characteristics are all functions of the section shape and size. 

Whilst the movement of the fountain leaving the grating is rapid, the spreading 

of water on the surface is relatively slow. The water volume on the surface 

remains more or less symmetrical throughout the part of the simulation that is 

presented. Drying and wetting of the surface progresses as the water moves on 

the surface. 

 

5.5 Discharge coefficient calculation 

Many researchers have conducted tests on existing residential street inlets 

(Kranc & Anderson, 1993), (Larson, 1947), (Li, et al., 1951), (Li, et al., 1954), 
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(McEnroe, et al., 1999), (Valentin & Russo, 2007). Their results are not 

generally applicable unless similar conditions are applied. Even interpolation of 

the existing results is believed to be difficult.  

Flow over the grate represents a typical example of spatially varied flow with 

decreasing discharge. Several authors have proposed equations for spatially 

varied flow profiles relating the intercepted flow to the specific energy or flow 

depth (Mostkow, 1957), (Noseda, 1956), (Subramanya & Senputa, 1981). These 

studies considered only the frontal flow for the calculation of discharge 

coefficient.  

The inlet may operate like a weir when the water depth is shallow, or like an 

orifice when it is submerged (Guo, 1997), (Guo, 2000a), (Guo, 2000b), (Guo, 

2000c), (Mays, 2001). For a grate inlet that operates as a weir, the intercepted 

flow is given by the following equation: 
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Introducing the discharge coefficient to incorporate the local losses: 
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 (5.12) 

In case of small velocity the 

3/2
2
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 
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 

term is negligible or can be included in 

the discharge coefficient, therefore: 
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 3/2
1 1

2
2

3i d
Q C gbH  (5.13) 

where Qi is the discharge intercepted by the inlet, Cd1, is the weir discharge 

coefficient, which has a value between 0.6 - 0.7 (Butler & Davies, 2004), b is the 

length of the inlet and H1 is the total head of water over the inlet. The key issue 

is the location where H1 is measured (McEnroe, et al., 1999). The location of the 

critical-flow section depends on the geometry of the surrounding area of the 

inlet opening. Critical-flow does not necessarily occur at the perimeter of the 

inlet opening. In some cases, the exact location H1 is uncertain and must be 

estimated.  

Rehbock found experimentally that: 

 
1

1
0.611 0.08

305d

H
C

W H
    (5.14) 

The above equation neglects the viscous and surface tension effects, therefore is 

only valid when the total head is not small. Based on Rehbock’s research many 

investigators have confirmed the value of 0.611. Most design procedures assume 

a constant value for the discharge coefficient regardless of the characteristics of 

the flow. Experience has shown that the discharge coefficient is unlikely to be 

invariant at all flow rates. Preliminary investigation shows that in contrast a 

variable discharge coefficient can help to establish better design criteria for gully 

inlets (Galambos, et al., 2009). 

The intercepted discharge can be calculated using the kinetic energy coefficient 

(), momentum coefficient () and the energy loss between the two sections 

(hL): 
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Using (5.11) and (5.15): 
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A rearrangement yields: 
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where, 
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and 
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Kinetic energy and momentum principles are often used in hydraulic problems. 

Generally, in the energy and momentum equations the velocity is assumed to be 

steady, uniform and non-varying vertically. This assumption does not introduce 

any error in the case of steady flows. However the boundary resistance modifies 

the velocity distribution. When the velocity varies across the section true mean 

velocity head need not necessarily equal 
2

2

v

g
, therefore a correction factor is 

required to be used for both energy and momentum calculations. For 
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approximate values of coefficients, Rehbock assumed a linear velocity 

distribution, while Chow used a logarithmical one. King and Brater (King & 

Brater, 1963) provide experimentally determined values for kinetic energy and 

momentum correction coefficients for open channels of various cross-sectional 

shapes. In practice, the velocity distribution coefficients have often been 

assumed to be unity and the flow equations solved in an approximate way 

(Chen, 1992). In reality the velocity distribution is not uniform over the cross-

section and hence the velocity and momentum coefficient is not equal to unity. 

 

Different theoretical expression for  and  have been derived by many authors. 

In this study the values of  and  were determined by a numerical integration 

method using the CFD calculated velocity distributions according to equations 

(5.18) and (5.19).  and  have been calculated at the above mentioned three 

locations.  

 * * * Re
T u

A B S C Q D
   

      (5.20) 

 * * * Re
T u

A B S C Q D
   

      (5.21) 

where , , , , , , ,A A B B C C D D
       

are regression parameters, 
T
S is cross-slope, 

u
Q is approaching surface flow and Re is Reynolds number. 

Both the individual sections and averaged values (for three section S1, S2 and 

S3 see Figure 5.32) were investigated. Figure 5.39 and Figure 5.40 show the 

comparison of simulated and calculated  for the upstream and outer edge 

sections. It can be seen that the calculation predicts the kinetic energy 

coefficient for these two sections very well. This is also supported by the 
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regression statistics for calculation of kinetic energy and momentum coefficients 

(Table 5.3). The calculation for the downstream section is not as reliable (see 

Figure 5.41 and Table 5.3) as for the other two sections. The calculated values 

are very close to the simulated one for higher intercepted flow rate; however the 

estimation is not sufficiently precise for low flows. 
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Figure 5.39 – Comparison of simulated and calculated kinetic energy coefficient 

at upstream section (S1) 
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Figure 5.40 – Comparison of simulated and calculated kinetic energy coefficient 

at outer edge section (S2) 
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Figure 5.41 – Comparison of simulated and calculated kinetic energy coefficient 

at downstream section (S3) 
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This is due to the changing flow direction at the downstream edge. Higher flows 

and steeper longitudinal slopes decrease the uncertainty at the downstream 

section since the mixed flow (flow into the gully and from the gully in same 

time) disappears. An averaged kinetic energy and momentum coefficient for the 

three sections has been calculated. The averaged value gives more reliable 

results due to the elimination of uncertainty in the calculation of  at the 

downstream edge. Correlations between flow rate, surface slope, Reynolds 

number and the correction coefficients were calculated and a strong relationship 

was found between these hydraulic parameters (R2 above 0.96). Figure 5.42 and 

Figure 5.43 shows the comparison of  and  as calculated by multiple linear 

regression equation and CFD simulation. 

 

Table 5.3 – Regression summary of kinetic energy and momentum coefficient 

calculation for investigated sections 

 S1 S2 S3 

      

R 0.9884 0.9186 0.9659 0.9207 0.7001 0.7833 

R2 0.9769 0.8438 0.9330 0.8477 0.4901 0.6136 

p-level 0.0000 0.0000 0.0000 0.0000 0.0012 0.00006 
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Figure 5.42 – Simulated vs. calculated values of kinematic energy coefficient 
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Figure 5.43 – Simulated vs. calculated values of momentum coefficient 

The figures and the statistical parameters shows that the kinetic energy and 

momentum coefficient can be calculated reliably using the suggested equations.  
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After calculation of kinematic energy and momentum coefficients equation 

(5.17) was used to calculate the discharge coefficient. 
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Figure 5.44 – Calculated and observed discharge coefficient 

Figure 5.44 shows the relationship between intercepted flow rate and discharge 

coefficient. It can be seen that the discharge coefficient is not constant as its 

value is changing between 0.4 and 0.6. The theoretically determined 0.611 value 

has not been reached. There are two reasons for that: firstly higher inflows 

(resulting in higher depths over the grating) are needed to reach the orifice type 

behaviour of inlet; secondly the velocity head was considered in the discharge 

coefficient calculation, while many authors have neglected this term of the 

equation. 
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Chapter 6  

Discussion and Conclusion 

 

The studies presented in this thesis have been carried out in order to improve 

the understanding of the performance of local controls linking the above and 

below ground components of urban flood flows. The studies have involved the 

development of computational fluid dynamics models, validation of 3D and 

2D/3D CFD models and a number of computational simulations on different 

gratings to better understand the effect of various geometric and road alignment 

on the intercepted flow. Simulations of surcharging flow conditions have also 

been completed. Analysis of simulation data has resulted in methods for 

determining the intercepted flow, a method for determining the efficiency of 

gate inlets, a method for determining the discharge coefficient and in numerical 

models for predicting the flow into and from gully pots. This Chapter will 

presents the main conclusion of the investigation, discuss the work completed 

and make suggestions for further work. 

 

The numerical simulations of the different flow configurations provide a detailed 

insight into the dynamics of the flow. In particular the computational results 

provide all the flow details which are inaccessible by present experimental 
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techniques. They are used to prove the theoretical assumptions and yield the 

required information for analytical modelling. 

 

This study shows that an advanced CFD model can be used to evaluate inlet 

performance due to different inlet geometries, longitudinal slope and cross slope 

instead of conducting large numbers of expensive laboratory tests. 

The capabilities of interface capturing procedure based on Volume-of-Fluid 

method were assessed. The three dimensional computational model for two-

phase flow with interface capturing was extended with two dimensional model 

and a link between the two computational domains. A special type of boundary 

has been used to connect the 2D and 3D domains. This switches velocity and 

pressure between fixed value and zero gradient depending on the direction of 

flow. The nesting has a significant positive effect on simulation time. Special 

attention has been made to mesh generation because the design and 

construction of a quality mesh is crucial to the success of the CFD analysis. The 

advantages and disadvantages of different mesh types have been assessed.  

The models were validated by comparing the computational results with 

experimental results. 

 

In Chapter 5 the distribution of intercepted flow among the edges of the grating 

has been investigated and it was shown that the contribution to intercepted 

flow from the outer edge of grating can be significant in certain conditions. This 

result apparently contradicts the observations that led NEENAH Foundry 



 

158 

 

Company and Engineering Laboratory Design to suggest that a negligible 

amount of the intercepted flow arrives through the outer edge of the inlet. It 

was shown that the amount of flow arriving from the outer edge of the grating 

is proportional to the cross-fall. 

An improvement to the bypassing flow calculation was suggested. Different 

sloping conditions and inflows were tested and it was found that the included 

parameters give sufficient information to calculate the bypassing flow rate. It 

was shown that the empirical constant K1 is a function of cross-slope. 

Intercepted flow – depth functions were identified for three commonly used 

gratings. The regression analysis showed that the suggested equation can 

reliably predict the intercepted flow rate. Similarly to Q-H curve the Efficiency-

Q/d curve was identified for the selected gratings. 

Factors affecting grating efficiency have been investigated and yielded the 

following observations and conclusions. Under certain conditions a larger 

opening does not increase the effectiveness of a grating. This is because the 

dimensions and bar pattern influence the way that the flow is captured. 

Streamlines for different cross-fall scenarios were calculated and its effect on 

efficiency was investigated. 

A regression relationship that related the approaching flow and water depth to 

inlet efficiency was identified. 

The surcharging condition has been investigated to better understand the 

interaction between the surface and subsurface elements of urban flood models. 

A surcharge flow – depth function was identified as part of the investigation. 
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A realistic value for the street inlet can be calculated for certain flow conditions. 

The assumption that the discharge coefficient is constant and equal to 0.6 was 

proven to be wrong. A methodology for calculation of variable discharge 

coefficient was established. 

 

Suggestions for further work 

Numerical simulation of floods is very complex and interesting hydraulic 

problem. However, modelling is not only the objective but has serious ambitions 

in terms of reducing the flood consequences. All these problems are always 

further intensified by the combined effect of climate change and population 

growth. Below are listed some of the problems which could be in the focus of 

research in the future. 

 Although the numerical models were validated successfully against water 

depths data collected during experimental tests, it would be interesting 

to make a further comparison of the velocity distribution at selected 

sections. 

 Parasitic currents are attributed to the inaccurate determination of free 

surface and this is commonly encountered in VOF method based 

simulations. It has been found that the VOF method remain one of the 

most suitable methods for interface capturing in the framework of finite 

volume method without explicit free surface reconstruction. However, 

possibilities for improvement of interface sharpness with level set method 

should be further analysed.  
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 The computational 2D/3D link should be further extended to include 

tetrahedral type linkage, which would increase the flexibility and 

probably the effectiveness of the existing link. 

 The gully inlets frequently blocked by debris. Proper design and 

management of these systems are essential to minimize flood damage and 

disruptions in urban areas during storm events. The effect of blockage 

has not been tested either experimentally or numerically. The CFD 

modelling of debris blockage and its effect on inlet efficiency would 

generate valuable knowledge both for designers and modellers as well. 

 Similarly to debris, the sedimentation of gully pots and connected pipe 

system is frequently causing flood damage and disruption of urban 

transport. The developed multi-phase model can easily be extended into 

three phase model (water, air and sediment), which would provide a 

powerful tool to investigate the sedimentation process and could help to 

develop sediment management methods. 

 The gratings has a significant effect on inlet efficiency. The applied CFD 

model could help to develop hidrodynamically optimal gratings. 
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