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ABSTRACT

Population projection matrix (PPM) models are a cetral tool in ecology and evolution.
They are widely used for devising population manageent practises for conservation, pest
control, and harvesting. They are frequently emplogd in comparative analyses that seek
to explain demographic patterns in natural populatbns. They are also a key tool in
calculating measures of fithess for evolutionary sidies. Yet, demographic analyses using
projection matrices have, in some ways, failed todep up with prevailing ecological
paradigms. A common focus on long-term and equilibum dynamics when analysing
projection matrix models fits better with the outmoded view of ecosystems as stable and
immutable. The more current view of ecosystems asydamic and subject to constant
extrinsic disturbances has bred new theoretical adances in the study of short-term
‘transient’ dynamics. Transient dynamics can be vey different to long-term trends, and
given that ecological studies are often conducted/er short timescales, they may be more
relevant to research. This thesis focuses on theudly of transient dynamics using
population projection matrix models. The first secton presents theoretical, methodological
and computational advances in the study of transigndynamics. These are designed to
enhance the predictive power of models, whilst keamy data requirements to a minimum,
and borrow from the fields of engineering and systas control. Case studies in this section
provide support for consideration of transient dynamics in population management. The
second section applies some of these new methods @onswer pertinent questions
surrounding the ecology and evolution of transientlynamics in plants. Results show that
transient dynamics exhibit patterns according to fie form and phylogenetic history.
Evidence suggests that this can be linked to theagfe-structuring of life cycles, which
opens up the possibility for new avenues of resedrconsidering the evolution of transient

dynamics in nature.
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INTRODUCTION

A fundamental aim in ecology and evolution is teate mathematical models that are
predictive of future system dynamics. Ecologicall @volutionary models may span scales of
biological organisation from genes (Galindo, OlgoRalumbi 2006) to ecosystems (McGinnis
et al. 1969), scales of time from days (Carslake, Towr8eyHodgson 2009a) to millennia
(Ezardet al. 2012), and scales of space from a single fieldv@fde et al. 2004) to entire
continents (Thomast al. 2004). Such systems inevitably have one thingamroon: their
dynamics are noisy, subject to both exogenous amtbgenous sources of variation that
complicate our understanding of how they work aimtér our ability to accurately model
them. Of course, different sources of variation iamportant at different scales: levels of gene
expression will have a great deal of effect onratividual’s phenotype (Smitét al. 2009), but
probably very little impact on ecosystem dynamicslividual weather patterns spanning a
several months may seriously impact population gima®meeet al.2011), but are less likely to
be highly influential on evolutionary scales. Certaspects of microclimate may be highly
important to individual insect populations (Lawseinal. 2012), but may be inconsequential to
global insect diversity. In any case, variationsgrgs a significant obstacle in developing
models of natural systems: it is no coincidencda tevelopment of the fields of ecology,
evolution, mathematics and statistics are oftemldinked.

Remarkably however, the foundations of mathemativadlels are often very similar.
Individual classes of model can be applicable goeat variety of systems. Network models can
describe disease dynamics (Lion & Boots 2010) odfaebs (Ingst al. 2008); differential
equations can describe chemical networks (Minch&vRoussel 2007) or spatial population
dynamics (Holme®t al. 1994); matrix models can describe metabolic ndtadFdrsteret al.
2003) or macroevolutionary processes (Eztrél. 2012). Moreover, modelling frameworks
often transcend traditional disciplinary boundariegological models have often proven
relevant when applied to economic problems (Haldarday 2011). Given the generality of
modelling techniques, it may pay sub-disciplineghimi ecology and evolution to borrow

methods from one another, or to look to other stilfjelds for solutions to modelling problems.

One ecological discipline that has seen a particwkalth of modelling literature is that of

population ecology. The earliest prospective modélgopulation dynamics were developed in
the 19" Century, with the inception of the logistic eqoatiVerhulst 1838), although studies of
population dynamics did not become popular ungl 268" Century, when these equations were

rediscovered and developed (Reed & Pearl 1927}y Bawvdels of population dynamics were
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simple. Every individual was considered equal gndontribution to the population. Dynamics
were considered to be constant over time. Dengpeddence was included in its most basic
form. Development of more complex methods was sioweded by the fact that calculation
was necessarily done by hand. Nevertheless, owergopulation models became steadily more
complex, with the incorporation of new methods sashdifferential equation models (Lotka
1932). A particular breakthrough was the introductof population projection matrix (PPM)
models; Leslie 1945; Lefkovitch 1965). These idtroed stage-structuring into population
models, recognising that not all individuals in fh@pulation contribute equally to population
dynamics. Matrix models of population dynamicswgr® be perhaps the most widely-used
models in population ecology, remaining highly plaptoday.

The popularity of matrix models may lie in theiadtability. First of all, it is relatively
easy to understand how a life cycle graph is cakeirt® matrix form: matrix columns describe
the current life cycle stage of an individual, andtrix rows describe the stage an individual
may move into within the next timestep. Entrieshia matrix describe how probable movement
between different life stages is. The demograptriacture of the population is described by a
column vector of numbers or densities of individyand multiplying the matrix by this vector
yields the demographic structure of the populatiothe next timestep. Repeating this process
gives a population projection; a time series ofyation size or density. Hence, the projection
equation is simplen; = A'n,, whereA is the PPM anah, andn, are the demographic vectors at
time t and time O respectiveljost importantly, there are a number of emergeaperties of
this model that describe long-term population dyieamforegoing the requirement for model
projection (see Caswell 2001). In the long termghbpulation is predicted to settle to a stable
state with stable growth or decline and a stabieadgaphic structure. The dominant eigenvalue
of the matrixAmax is the value of stable geometric long-term growtfihe dominant right
eigenvectorw of the matrix describes the proportions of lifeage densities in the stable
demographic structure. The dominant left eigerorectof the matrix describes the long-term
reproductive value of each stage. It is also péssido compute how changes in the life cycle
might influence these dynamics, using simple simtgitand elasticity analyses. As PPM
models were conceived in a time when the presidargdigm of ecology was one of stability in
natural systems (Cuddington 2001), these properntiade PPM models a highly attractive

prospect.

However, over time ecological paradigms changedssalility theory largely fell out of favour.
Technological developments revolutionised scierg@ avhole, as computational power grew
exponentially. For population ecology, this mettuatt greater sources of natural variation could
(and should) be incorporated into matrix modelsl&gists fell into two broad camps: those
that believed density-dependent processes cordribwdre significantly to noisy population

dynamics (Dennigt al. 1997), and those that believed environmental sistatity is the driver

11



of variation in population density and growth (Féedp & Ellner 2001). This argument is not
trivial: by this time PPM models were a key tool mumerous areas of ecological and
evolutionary research. An accurate understandingpptilation dynamics was important when
using PPM models to inform population managemermt aolicy for conservation (Price &
Kelly 1994), pest control (Smith & Trout 1994), asive species (Shea & Kelly 1998), fisheries
(Sable & Rose 2011), and harvesting (Pinard 19B8)nany such cases, studies will have
influenced the dissemination of significant econahiinvestment. Simultaneously, PPM
models were widely used in comparative ecologioa evolutionary studies (Silvertovet al.
1996; Crone 2001), with demographic measures ssibtng-term growth or reproductive value
used as measures of fithess (Hunt & Hodgson 20M8hce PPM models were not only
instrumental in an applied sense, but also impottaour understanding of how ecological and
evolutionary processes work.

Density-dependent and stochastic models have leeth success in explaining complex
time series of population dynamics. Two classid¢esys provide the most rigorous evidence for
density dependent regulation of populations: in thbBoratory, overcompensating density
dependence has been shown to drive both limit syahel chaos in populations of flour beetle
of the genudribolium (Denniset al. 1997; Costantino, Desharnais & Cushing 1997; Deeini
al. 2001). In the field, there is ample evidence tpgast that density-dependent processes drive
the cyclic population dynamics of many species aifent, particularly voles (Hanskit al.
1993; Turchin 1993). However, the importance ofhsmonlinear dynamics in most natural
systems has been hotly debated (Turchin & Tayl®2)9whilst stochastic effects are arguably
more ubiquitous. Countless studies of stochasticogdgaphy have demonstrated that vital rates
vary over both time and space under differing emnnental conditions. Such studies span a
wealth of taxa in both plants (Nantel, Gagnon & WNa@96; Morris & Doak 2005) and animals
(Nakaoka 1997; Hunteet al. 2010). More recently, it has been accepted th#t density-
dependent and stochastic mechanisms are likelg important, with the description of models
that include both types of process (Bjgrnstad &@r2001).

All of these analyses have retained one thing mroon with analyses of earlier, basic
PPM models: they continue to focus on the long-temmoperties of the model. Density
dependent analyses consider attractors: stabldibgtguisuch as the carrying capacity of the
population and nonstable equilibria including linggcles and chaos (Denni al. 2001).
Stochastic models concern themselves with mearvaridnce of long-term stochastic growth
rate (Fieberg & Ellner 2001), with stochastic stviy and elasticity analyses describing how
stochastic growth is affected by changes in vaigés of the population (Tuljapurkar, Horvitz &
Pascarella 2003).

However, the past decade has seen the spotligheduupon analyses of short-term, or
‘transient’, population dynamics (Neubert & CaswiB7; Hastings 2001, 2004; Townletyal.
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2007). The concepts underlying transient theoryralatively simple. Transient dynamics can
be very different to long-term dynamics: for exaeph population that declines in the long
term may increase in the short termvare versa(Hastings 2001, 2004; Townleyt al. 2007).
Long-term dynamics are independent of populationcstre, but transient dynamics depend
heavily on population structure (Townley & Hodgs2®08). Therefore transients are likely to
be a common feature of stochastic systems, wherertliironment induces frequent changes in
population structure. As such, transient analysag Ioe important to population management if
transients preside in the population, standing gdmle asymptotic analyses as a means of
evaluating population models. Additionally, tramégemay aid in our understanding of complex
ecological time series, standing alongside derfyendence and stochasticity as an important
driver of variation in population dynamics.

However, transient analyses don't benefit from #iimple analytical solutions and
intuitive interpretations enjoyed by asymptotic lggas. Early development in the field saw a
great diversity of methodologies for quantifyingttbdransient dynamicper se(Neubert &
Caswell 1997; Koons, Holmes & Grand 2007; Towrdéwl. 2007; Townley & Hodgson 2008)
and their sensitivity to perturbation (Fox & Gurehi 2000; Yearsley 2004; Caswell 2007). The
emerging body of literature was fragmented: whileere existed a diverse range of
methodologies for analysing transients, these mdiffegreatly in their approach and amongst
them there was even little consensus on what ¢atesti ‘transient dynamics’. Without a broad
understanding of how best to analyse transierttgld@e what transient dynamics are and what
they mean, transient analyses remained elusivetudies of population management and

comparative demography.

This thesis aims to build some coherence in theogmh to studying transient population

dynamics, and to explore some ecological and eleolaty patterns in transient dynamics. The
thesis is comprised of a number of standalone gapstten throughout the course of my PhD.

Each chapter is a study in its own right, althohgpefully they also come together as a logical
whole.

The first part of the thesis, “Modelling Transi€tdpulation Dynamics” consists of four
chapters that deal with methods behind the studirasfsients. The first chapter provides a
literature review that aims to synthesise a fram&wmithin which to study transients. It is
within this framework that the rest of the thesi€dnducted. The second chapter presents novel
methods for analysing transient dynamics that oifrom control systems engineering. These
help to increase the accuracy of model predictian,crucially demand no extra data for their
implementation. The third chapter explores somehef core assumptions of PPM models,
assessing how their violation affects predictedadyics and how often they are adhered to. The
fourth chapter presents a software package fosigahanalysis in the program R that includes

all modelling methodology used in this thesis, amate. This software makes transient analyses
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freely available to ecologists, conservationistd esearchers the world over. Throughout this
first section, | heavily utilise worked examplesing models for natural populations. These
demonstrate, on a case-by-case basis, the impertainconsidering transient dynamics in
population management.

The second section of the thesis, “The Role om3ient Population Dynamics in
Ecology and Evolution”, consists of two chapterattBeek to explore patterns of transient
dynamics in natural plant populations, and assesg important these patterns may be to
ecological and evolutionary processes. Mainly, tuacerns how transients vary according to
both life history and phylogenetic relatedness. Tifte chapter explores how large transients
can get, asking the questions, do plants exhilbdnband-bust transient dynamics, do plants
with similar life forms exhibit similar potentiaransient dynamics, and are these dynamics
heritable? The sixth chapter explores the rolesimnt dynamics play in the response of
populations to disturbance, asking do populati@msl tto rebound quickly from disturbance
events, do different life forms show different patts of response to disturbance, and are such
patterns of response heritable? This section digves a large database of PPM models for
plant species. Results indicate that patternsasfsient dynamics differ according to both life
form and phylogenetic relatedness, unearthing tbssipility that transients may be an
important target of selection in natural populagion

Finally, the general discussion draws togethesrinftion presented in the thesis, and
debates the future of transient dynamics in ecolgy evolution. This includes a discussion on
how the results presented here contribute to odenstanding of population dynamics, and a
venturing of some important questions that nedaktexplored. It also includes a consideration
of how transient dynamics fit into the general gt demography, and specifically how
transient theory may contribute in density depehdand stochastic systems. Important
methodological requirements are suggested, induthe extension of transient dynamics to
other modelling frameworks. Last, the discussiarchas upon the possibility of using transient
analyses to predict dynamics of other stage-stredtbiological systems spanning all levels of

biological organisation across various scalesmétand space.
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CHAPTER 1

Early experience of working with transient dynamresealed the diversity of approaches to
their study. Many indices of transient dynamicssted, but there was often confusion
surrounding their exact meaning. Some studies wdoidgo the use of specific indices
altogether, analysing transient dynamics over iatyitscales of time and/or density. Continued
disparity in approach risked inability to compaesults between studies, and would have
increased difficulties for newcomers to the figlthapter 1 reviews the literature on the study of
transient dynamics in population projection matmwodels, and synthesises a framework in
which to work. Although the first chapter presentesle, this was the third paper published as
part of this thesis. With this paper, we aimed rionpote methods that would be useful in many
different contexts and identify important indicegth concrete mathematical and biological
interpretations, which capture a large amount af thariability in transient dynamics of
populations. At the very least, we hoped that ssitting the available literature into a coherent
framework would help identify where different metlscsit in the context of the overall study of

transient dynamics.

Chapter 1:

Stott, I., Townley, S. & Hodgson, D.J. (2011) Arfrework for studying transient dynamics of
population projection matrix modelScology Letters14, 959-970.

doi: 10.1111/j.1461-0248.2011.01659.x
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A FRAMEWORK FOR STUDYING TRANSIENT DYNAMICS OF
POPULATION PROJECTION MATRIX MODELS

ABSTRACT

Empirical models are central to effective conseovaaind population management, and should
be predictive of real-world dynamics. Available retithg methods are diverse, but analysis
usually focuses on long-term dynamics that are lenbdescribe the complicated short-term
time series that can arise even from simple modi@lswing ecological disturbances or
perturbations. Recent interest in such transientdycs has led to diverse methodologies for
their quantification in density-independent, timeariant population projection matrix (PPM)
models, but the fragmented nature of this litematbas stifled the widespread analysis of
transients. We review the literature on transietyses of linear PPM models and synthesise a
coherent framework. We promote the use of stansddindices, and categorise indices
according to their focus on either convergence giroe transient population density, and on
either transient bounds or case-specific translgnamics. We use a large database of empirical
PPM models to explore relationships between indigies$ransient dynamics. This analysis
promotes the use of population inertia as a simpdesatile and informative predictor of
transient population density, but criticises thditutof established indices of convergence
times. Our findings should guide further developtmeh analyses of transient population

dynamics using PPMs or other empirical modellirghteques.

INTRODUCTION

Our aim is to promote a framework for the analysistransients emerging from empirical
models of population dynamics. Models of prospectpopulation dynamics are integral to
conservation and management (Menges 1990; Fuji&ataswell 2001; Wilson 2003; Baxter
et al. 2006) and should ideally be predictive of realddgpopulation dynamics. Numerous
population modelling methods now exist, includin@e linear or logistic equations (e.g.
Verhulst 1838; Volterra 1926; Lotka 1932), diffecenequations (e.g. May 1975), matrix
models (e.g. Leslie 1945; Lefkovitch 1965), intégmapjection models (e.g. Childst al. 2004;
Ellner & Rees 2006, 2007) and individual-based nwde.g. van Winkle, Rose & Chambers
1993). Most models have simple density-independéng-invariant forms, but many models
may include drivers of more complicated populatdhymamics: nonlinear density-dependent
forms incorporate intrinsic drivers, such as dgndipendence in vital rates or Allee effects
(e.g. Costantino, Desharnais & Cushing 1997; Deenial. 2001; Fowler & Ruxton 2002),

whereas time-varying stochastic forms incorporataresic drivers, such as variation in climate
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or resource abundance (e.g. Fieberg & Ellner 20@Qdjapurkar, Horvitz & Pascarella 2002).
Nonlinear, time-varying forms combine both thesasity dependent and stochastic approaches
(e.g. Bjgrnstad & Grenfell 2001; Costantigioal. 2005).

One particular class of model, the population mtge matrix (PPM), has held
enduring popularity in population modelling. PPM dets benefit from being intuitive and
tractable, and from the availability of a matutertture on their parameterisation, analysis and
interpretation. Although density-dependent and tsstic forms exist (Costantino, Desharnais
& Cushing 1997; Fieberg & Elliner 2001), many resbgurojects are unable to collect the data
required to parameterise such models, especiallgdpulations of conservation concern. Thus,
it is linear, time-invariant PPM models that donteshe applied demographic literature (e.g.
Pavlik & Barbour 1988; Crooks, Sanjayan & Doak 1988nier, McDonald & Buskirk 2007),
despite criticisms that they have limitations wittspect to describing observed dynamics of
natural populations (Bierzychudek 1999; Stephetnal. 2002). Historically, analysis of these
models (and indeed of many other classes of papuolahodel) has focused on long-term
population dynamics. Simple models tend to cone¢mton analysing properties of stable
asymptotic equilibria such as long-term growth @te population structure (e.g. Pinard 1993;
Shea & Kelly 1998; Otway, Bradshaw & Harcourt 2Q0Bgnsity-dependent models largely
focus on analysing attractors including stable ldajia such as carrying capacity or unstable
equilibria such as limit cycles and chaotic dynam(e.g. Turchin 1993; Dennet al. 2001).
Stochastic models aim to simulate or provide aredytsolutions to expected values of and
variation in long-term stochastic growth rate aoguydation size (e.g. Tuljapurkar 1990; Morris
& Doak 2005; Nantel, Gagnon & Nault 1996). The temcl to focus on equilibria and long-
term dynamics is perhaps a hangover from earlyrétieal paradigms that perceived ecological
systems as ‘balanced’ (Cuddington 2001). In additizecause such long-term dynamics are
largely independent of population attributes susindial population size or structure, they lend
themselves to relatively easy calculation.

However, there has been a recent surge of interesthort-term, TRANSIENT
DYNAMICS of populations (see Glossary for definitioof capitalised terms). Density-
independent, time-invariant PPM models predict that population experiences a constant
environment with unlimited resources, then it ssttito a long-term stable rate of
ASYMPTOTIC GROWTH (or decline) and a theoretical ABLE DEMOGRAPHIC
DISTRIBUTION. However, in reality, populations exj@nce a changeable and heterogeneous
world, where extrinsic disruptions to populatiorrusture of biotic origin (e.g. disease,
predation pressure or competition), abiotic origgng. changing climate, extreme weather
events or fire) and anthropogenic origin (e.g. bating or management intervention) lead to a
realised INITIAL DEMOGRAPHIC DISTRIBUTION that isifferent from the population’s
stable demographic distribution. This can be alregweither DISTURBANCES to population

structure that are asymmetric across the life cy@bhanging the initial demographic
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distribution) andor PERTURBATIONS to vital rates of the populatiath@nging the stable
demographic distribution). Discrepancies betwedtialrand stable distributions will result in
short-term increases in population density (poputatAMPLIFICATION), decreases in
population density (population ATTENUATION), afat fluctuations in density that are very
different to those that might be expected in an intahle environment (Hastings 2004; Townley
et al. 2007; Tenhumberg, Tyre & Rebarber 2009). In theeabe of further disturbance or
perturbation, transient dynamics would dampen aedpbpulation would settle back to stable
state. The time taken for stable state to be rehébléowing disturbance or perturbation is
termed the TRANSIENT PERIOD (Fig. 1.1). The abiltty understand and quantify such
transient dynamics would enable managers to botbliarate adverse transient response to
natural disturbance and perturbation, and delibgrananipulate transient response through
anthropogenic disturbance and perturbation. A tingino understanding of transients may
improve the predictive power of the simple dengityependent, time-invariant PPM models
that dominate the literature and, combined with eottapproaches, may aid in our
comprehension of how complicated population dynanaice shaped. The transient dynamics
that we discuss here form a middle-ground of emglinmodelling: they describe deterministic
responses to (possibly stochastic) disturbancegedurbations, allowing a consideration of
non-equilibrium dynamics without recourse to thenpaotationally expensive study of fully
stochastic systems. In a predictive sense, theyparkaps most useful for populations that
usually experience relatively stable conditiond,Wwhich are occasionally subject to significant
disturbance or perturbation.

Transient dynamics have already been shown to lapertant consequences for
population management. Anthropogenic fires causereased transient growth of the
reproductive proportion of populations of endandegwlden mountain heatheHydsonia
montand in North Carolina (Gros®t al. 1998). Following hunting cessation, a managed
population of red deerCervus elaphyson the Isle of Rum showed prolonged transient
fluctuations in size (Coulsort al. 2004). Analysis of transients also helps to impraur
understanding of population invasion. In invasivenp populations, early life-stage vital rates
strongly influence the transient dynamics that prtemestablishment and population growth
(McMahon & Metcalf 2008; Ezareét al. 2010): this is intuitive considering seeds are the
dispersive unit for plants. Conversely, in manynaadi populations, adults are more likely to
disperse, and pea aphiddyrthosiphon pisulnpopulations may exhibit immediate population
growth that is greater than predicted asymptotiovgin, following experimentally induced adult
invasion scenarios (Tenhumberg, Tyre & Rebarber90Comparative studies of transient
dynamics provide information that should help adwspulation management in the absence of
sufficient data. Monocarpic herbs and trees havenbghown to exhibit greater potential
amplitudes of transient amplification and attermratihan perennial herbs and shrubs (Stott

al. 2010a [Chapter 5]). Long-lived animal species vsithw reproduction have been shown to
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have greater variability in potential transient wgtlo than short-lived species with fast
reproduction (Koongt al. 2005). The importance of transients in shapinginahtpopulation
dynamics is likely to become more apparent, assiesuh analyses become a more established
part of the demographer’s toolbox.

Unfortunately, the emerging literature on transianglysis is disparate and rather
fragmented, lacking the coherence of approachethdoanalysis of long-term dynamics in
population models. A large number of methodolodiage been developed in recent years for
quantifying transient dynamics and their relatiopsto vital rates, and these have almost
exclusively focused on density-independent, timediant PPM models: this class of model
lends itself readily to development of transierdlgges. A coherent approach to the analysis of
transient dynamics in such models is warrantedhii article, we provide a critical review of
existing methodologies that focuses on indices timte been developed, how they are
calculated, their interpretation and potential aggpions. We highlight differences, similarities
and even mathematical equivalences among suchspedliindices. Our primary aim is to
consolidate this information into a common framewdor transient analysis and identify
important indices that capture much of the variatio transient dynamics of a population.
Although our focus is on linear, time-invariant nretg] we anticipate that this emerging
framework will inform the development of transieahalyses for density-dependent and
stochastic PPM models and wider classes of popualathodel. Throughout, we provide
necessary mathematical methodology and clarifyiteslogy surrounding the study of transient

dynamics and wider population ecology.

TRANSIENT DYNAMICS IN PPM MODELS

Transient dynamics in density-independent, timediant PPMmodels do not benefit from the
simple analytical solutions availadier asymptotic dynamics. For the modaeE A'ng (whereA

is thePPM, n, is the demographic distribution vector of the dapan attime t andn, is the
initial demographic distribution vector of th@pulation), the rate of asymptotic growth (or
decline) is simply equdb L.« (the dominant eigenvalue 8f). The dominant righ¢igenvector
w represents the relative proportions of life staigethe stable demographic distribution, and
the dominant left eigenvecterrepresents the relative reproductive value of diéelstage (see
Caswell 2001). Once the population settles to stable segmptotic propertiehave sole
influence over population density, growth and dturites They are independent of the initial
demographic distribution of thgopulation, and they are insensitive to time. Hosvetransient
dynamics (and the indices used to describe thery)imawo dimensions: first, along the ‘time’
axis of the population projection (i.e rate of convergence to stable state) and sealadg
the ‘populationdensity’ axis of the population projection (i.e vimether they amplifyattenuate

and/or oscillate and in the magnitude of thesetdlattons).Variation along both axes depends
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strongly on the initial demographistribution. However, variation along both axesalso
limited: transient dynamics are bounded both in rate of emence and inpossible
amplification and attenuation. Therefore, indicels tmnsient dynamics focus either on
convergence time or transient populataemsity, and can differ in their measurement diegit
TRANSIENT BOUNDS or CASE-SPECIFIC indices of transient dynasni

CONVERGENCE RATES

The earliest widely used transient index focusemodel convergencete. Thedamping ratio
(Caswell 2001 p.95) of a PPM modekmculated as the ratio of the dominant eigenvaluée
magnitudeof the first subdominant eigenvalue (see Appendi).lit can beconsidered as a
measure of the intrinsic resilience of the popaolatdescribing how quickly transient dynamics
decay following disturbancer perturbation, regardless of population strucitine largerthe
damping ratio, the quicker the population convergdtsis certainly a useful measure in
comparing relative resilience acrgsspulations or species, and has been employedchsirsu
many comparative analyses. For example, slower-growrgls may have higher damping
ratio than faster-growing corals (Hughes & Tan2@®0), indicating that slower-growing corals
may be more susceptibk® disturbance or perturbation. Similarly, lateegsional plant
species such as trees or shrubs tend to have a baveping ratiothan early-successional
species such as perennial herbs (Francilgertown 2004). Many other comparative analyses
have also used thdamping ratio to infer population resilience (eyConnor 1993Mollet &
Cailliet 2002; Salguero-Goémez & Casper 2010).

The damping ratio itself is a dimensionless measureé does noprovide a direct
quantification of the transient period. Howevercdinbe implemented in equations that will
provide this information. Foexample, the time for the influence Xgf.x to become x times as
greatash, is equal to the logarithm of x divided by the lagan of thedamping ratio (Caswell
2001 p.96). In a strict mathematical sense pitygulation never reaches stable state, but merely
continues tapproach it indefinitely. Therefore, consideringagdconvergence dhe model in
this way is perhaps the only way of prescribingirdtd timeframe to the transient period.
However, the length of thigansient period depends not only on the inheresitience ofthe
population but also on its structure: the dampiatjorignores thenitial distribution of the
population, and so cannot provioidormation on convergence and the transient pegivdn a
particular disturbance scenario. As such, it islliko be of limiteduse for population managers
and researchers interested in populati@sponse to specific natural or anthropogenic
disturbance. Indeed, wease a large set of empirical PPM models to shovevbeahat the
damping ratio correlates relatively weakly with gergence times ofealistic population
projections.

Another class of convergence measures makes itibs® incorporate specific

disturbance scenarios. Distance measures caldblatglistance’ to stable state, incorporating
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explicitly the degree oflifference between the initial and stable demogagistributions in
their calculation. Each distance measure has erdift interpretatiorand corresponding
strengths and weaknesses. The simplest distaresures suffer from the opposite problem to
the damping ratio inthat they do not consider intrinsic resilience bk tpopulation to
disturbance. For exampl&eyfitz's 4 (Keyfitz 1968) measures theroportional difference
between the initial and stable demograptistribution vectors (Appendix 1.1), ignoring other
PPM parameters in itgalculation. Some distance measures incorporaténeiurPPM
parameters: for exampl@rojection distance(Haridas & Tuljapurkar2007) measures the
difference in the reproductive value of the initedd the stable demographic distributions
(Appendix 1.1), utilising thereproductive value vectov in its calculation. Other distance
measuresare even more informativeCohen’s cumulative distance metr{€ohen 1979)
incorporates the intrinsic resilience of the popata to disturbance, with a formula that
incorporates the ‘path’ taken by ti@tial demographic distribution, as it convergesvards
stabledemographic distribution through time.

With each distance metric having a different intetation, theutility of each will
depend on the nature of the study unctamsideration. One drawback common to all distance
measures is thahey cannot give an objective estimate of convergaime given garticular
disturbance scenario. As such, they are most ugeftdmparative analyses, comparing case-
specific response to disturbanmeperturbation. Despite this, distance measurgs hat seen
the same popularity as the damping ratio in comparativalyses. There 8 clear need for an
index that can provide an estimate of timectmvergence given a particular disturbance
scenario. Quasi-convergenagven a specific population structure can be sitewlaby
projecting the model and calculating the time tateachieveasymptotic growth to a specified
accuracy (e.g. for the model éxhibit growth within 1% of\n.y); however, this is a relatively

computationally intensive solution to the problem.

POPULATION DENSITY AND GROWTH

There are a number of benefits to studying tramsppulation sizedensity and growth.
Population managers will often aim eitherbtmost the density and growth of populations (e.g.
for conservation oharvesting) or to curb them (e.g. for control oftgseand invasivepecies).
Understanding transient response to natural orcieddisturbance and perturbation can help to
achieve these aims; indeed i@morance of transient responses could hinder pssgwhen
employing management strategies developed usingmsyic analysigKoons, Rockwell &
Grand 2007). When studying resistance and resdietwc disturbance and perturbation,
measuring immediate changespiopulation density following disturbance or pertatibn is an
alternative to evaluating convergence rate (Neuke@aswell 1997)Populations may never
reach stable state in the natural environnf&otvnleyet al. 2007; Buckleyet al. 2010; Stotet

al. 2010a [Chapter 5]) and in awegse, most ecological studies are conducted orstahes that
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areshorter than the time it would take to do so (Hwsi2004). Hencdhere is a conceptual
flaw in analysing asymptotic population denségd growth whilst ignoring transients, and
studying convergence raédone will be of limited use. Consequently, redéatature has been
concerned with quantifying transient populatioresgtructuredensity and growth.

However, the quantification of transient populatidansity andgrowth requires a
number of decisions to be made. The first decissosimply how to define ‘transient’. It is
difficult to objectively delimitthe transient period (Maron, Horvitz & Williams 20)1 and the
length of the transiengeriod is highly variable among different model®fiBing ‘transient’in
terms of population density and structure is egudifficult: asymptotic model properties
always exert some influence over thapulation projection, albeit a decreasing inflienihe
nearer-termthe analysis. Furthermore, by their very naturapgirent dynamics arhighly
sensitive to the demographic population structweduin themodel. Considering these issues,
we have identified three maproblems to overcome in quantifying transients:disgntangling
transient and asymptotic effects, (2) choosing mitial demographicdistribution and (3)
choosing the timeframe for analysis. We discesisting methodologies with respect to how
they deal with these thrgeoblems.

DISENTANGLING TRANSIENT AND ASYMPTOTIC EFFECT8ere are two
approaches to the study of transient amplificatiorattenuation in population density. First,
absolute measures of transi@aipulation density describe how big or small a pajon can
becomein the short term: such measures describe the cmubnfluence ofransient growth
rates and asymptotic dynamics (Fig. 1.2a). Secwaldiive measures of transient population
density describe how big esmall a population can become in the short terdative to
asymptotic dynamics (Fig. 1.2b). Relative measuoéstransient dynamicshold several
advantages over absolute measures of trangepulation density. First, they clarify the
concept of attenuation esymptotically declining populations (attenuatisrshort-term decline
in density at a faster rate than asymptotic defliaed amplification inasymptotically
increasing populations (amplification is short-temmcrease in density at a faster rate than
asymptotic increase). Figure 1.Bastrates how, for an asymptotically decliningppation of
the desert tortois€gsopherus agassiziit is difficult to capture attenuation d@lse population
approaches extinction. Conversely, Fig. 1.2b detnatesthat attenuation of the population is
much easier to understamchen the influence of asymptotic growth is discedntSecond,
relative measures enable the fair comparison df botplified andattenuated dynamics of a
single population, through projection different initial demographic distributions throutjte
same PPM(Fig. 1.2b). Third, relative measures enable faimparative study ofransient
dynamics among populations or species with widelgying asymptotic growth (Stotet al.
2010a [Chapter 5]). Therefore, relative measuras tadthe list of standardised, emergent
properties of a PPM model that are both qualititiemd quantitatively comparable within and

across studies and models. Relative measures daakoan intuitivebiological interpretation:
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discounting asymptotic growth yields valués population density, relative to those of a
population with the sammitial density that grows at its predicted asyntigtgate (Koons,
Holmes & Grand2007; Townleyet al. 2007). In addition, relative measures of densay

easily be converted back to absolute measures riditglef required, simply by multiplying

t
max*

relative density by

The process of removing the influence of asymptadyicamics caibe done very easily
in practice. An intuitive solution may be to prdjg@o models, one with the initial and one with
the stable demographidistribution, and compare the two. However, thisuimecessarily
computationally intensive. A second solution idgricorporate thesorrection into formulae for
transient indices, for example, by scalthg eigenvectors of the matrix (e.g. Koons, Hol&es
Grand 2007). This solutiom/though adequate for individual indices, is lagkin generality: it
does not allow for more detailed study, such astbér transientimeframes or of lifestage-
specific dynamics. A third solution used Bgpwnley & Hodgson (2008) in calculating their
transient indice$Appendix 1.1) is to use the ‘standardised’ PRMwhich is equal to thEPM
A divided byAimax This is a computationally simple solution, amhbles complete projection of
population dynamics in the absenceaslymptotic dynamical effects. Hence, any analysas t
can be appliedo the PPM can also be applied to the standard®¥d, includinganalysis at
any timeframe of the projection or analysis ofdtege-specificdynamics. We promote this as
the simplest and mostobmprehensive solution to the problem of diseniaggiransientfrom
asymptotic effects.

CHOOSING AN INITIAL DEMOGRAPHIC DISTRIBUTIONransient dynamics are
very sensitive to the initial demograpliistribution used in the population projection (iKeet
al. 2005;Caswell 2007; Townley & Hodgson 2008), and theee tam established approaches
available when it comes to choosing an initl@mographic distribution to work with. First,
case-specific measures transient density describe the predicted dynaricthe population,
given a known initial demographic distribution. 8ed, bounds otransient population density
represent the most extreme possildkies of amplification and attenuation, and regjuaio prior
knowledge of the population’s demographic distiidnut For effectivepopulation management,
it will most often be better to study case-spectfignsient dynamics where possible (e.g.
Zufiga-Vegaet al. 2007). However, estimating the demographic distidiouof a population
can prove to be costly and labour-intensive anis séten infeasible. Transient bounds provide
an alternative approach fwpulation management when the demographic disioitbwof the
population is unknown, and provide best- and woaste scenarios dfansient change in
population density (Townley & Hodgson 2008he realised dynamics of the population will
lie anywhere between theansient bounds on population density, and we ttédl range of
possible values the TRANSIENT ENVELOPE (Fig. 1.Zbjansientbounds can also prove
useful for comparative studies, both becahsy require no knowledge of population structure

and because thégvoke like responses among models (Sto#l. 2010a [Chapter 5]).
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Calculation of case-specific transient dynamicsetyerequiregrojection of the known
initial demographic distribution. Transiebbunds on population density result from projection
of STAGE-BIASED VECTORS of demographic distribution (Townley Rodgson 2008),
where all individuals in the population are groupea single stage. In th®. agassiziimodel,
maximal possiblemplification is achieved from a population of jastults, whereamaximal
possible attenuation is achieved from a populabbjust yearlings (Fig. 1.2b). Although there
do exist situations where alidividuals in a population might be in the sanfe btage (for
example, in a biological invasion or reintroductigmogramme), it isinlikely that the dynamics
of real populations will follow such extrenteajectories. The transient envelope is therefore
useful in describingthe range of possible transient densities, buts f&dl inform on the
probability of certain population sizes being agbitt For example, emodel might show an
increased propensity for amplification ovattenuation (indeed this is the case for e
agassiziimodel in Fig. 1.2)put the transient envelope does not provide tha information.
Simulation of population dynamics over the entmage of possibldemographic distributions
(e.g. Koonset al. 2005) can provide thidetailed information. Imagine the shaded areasgn F
1.2, but shadedarker for more likely transient population dersitiand lighter fotess likely
transient densities. This may be useful for popotamanagement, but is computationally
demanding and an unwieldytput to use in comparative research.

Case-specific indices of transient dynamics andstemt bounds aréoth valuable
measures of transient dynamics, but it is importaat both are comparable across models.
Standardising the initial staghstribution so that overall population densityergual to 1 (e.qg.
Maron Horvitz & Williams 2010; Koon®t al. 2005; Townleyet al. 2007; Townley &Hodgson
2008; Stottet al. 2010a [Chapter 5]) achieves this. Initialising@pulation projection with an
overall density of 1 holds severabjor advantages: first, it enables fair comparigbtiansient
dynamics of different initial stage distributionsojected througlthe same model. In Fig. 1.2b,
for example, it is easy to see how differemtial demographic distributions result in diffeite
transient responseghen each starts with at an initial overall deneityt. Second, ienables fair
comparative study of transient dynamics among nsoftel different populations or species
(Maron, Horvitz & Williams 2010; Stott al.2010a [Chapter 5]). Third, coupling this approach
with the study of relativeneasures of transient dynamics yields values fojepted population
density that are not only relative to asymptotioaiyics but alseelative to initial density. For
example, in Fig. 1.2b, a projected density2 means that the population doubles in sizdivela
to asymptoticgrowth, whereas a projected density of 0.5 meaatttie populatiorhalves in
size relative to asymptotic growth.

CHOOSING THE TIMEFRAME FOR ANALY ST8ansient dynamics can be measured
at any point along the populatipnojection. The first, and perhaps most intuitiaeproach is to
measure near-term, time-dependent transient dysanmicthis casethe timeframe chosen is

very important. Very near-term measuremens& overlooking the full extent of transient
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dynamics if thepopulation continues to amplify or attenuate beytmal timeframestudied.
Conversely, measurements taken further along tbgegiion will risk increased dilution by
asymptotic dynamics as the populat@mmverges to stable state. Choosing arbitrary pioiets
along theprojection at which to analyse transient dynamias been theolution of many
comparative studies (e.g. Koomss al. 2005; McMahon & Metcalf 2008; Maron, Horvitz &
Williams 2010), but often suctmeasurements are not comparable as they are nessaety
indicative of preceding or subsequent dynamics. ekoad approach iso measure the
asymptotic effects of transient dynamics: althouigis may seem paradoxical, this method
provides easily calculable aadhenable indices that can supply very useful in&tion. A third
approach is to do away with time altogether in @albons, with time-independenteasures of
transient dynamics. The benefits atrdwbacks of each method depend on the contexhichw
they areused.

For near-term transient analysis, an intuitive sofuis to studyimmediate transient
response, i.e. population density and growththe first time interval Reactivity and first-
timestep attenuatioare themaximal possible amplification and attenuationha first timestep
(Neubert & Caswell 1997; Townlegt al. 2007; Townley & Hodgsor2008; Appendix 1.1).
This instantaneous transient response will alwagsinbthe transient period, but limiting
evaluation to the first time intervalsks missing the full extent of transient dynamiés
complementarysolution to this problem is to measure maximal sramt responselongside
first-timestep respons&laximal amplificationandmaximal attenuatiomre the largest possible
amplification and attenuation thatay be achieved at any time point of populatiorjgmtoon
(Neubert& Caswell 1997; Townleyet al. 2007; Townley & Hodgson 200&ppendix 1.1).
Measuring this ‘biggest’ transient response iscatife for capturing the full extent of transient
dynamics: population densighould always be smaller than maximal amplificator larger
thanmaximal attenuation. These four near-term indicesevall originallydefined as transient
bounds, but they also exist for case-spegfmections and collectively capture the majority o
variation in near-terniransient response, as we show below. However,aheyotparticularly
amenable: maximal amplification and attenuation tnes calculated numerically, and are
therefore not readily disposed ®ERTURBATION ANALYSIS. Analytical perturbation
analyses ofeactivity and first-timestep attenuation are measible, but will ddittle to inform
on transient response beyond the first timestep.

Alternatively, studying the asymptotic effects adirtsient dynamicgan prove to be
very informative. Early demographic studies of hanmopulations consideregopulation
momentum(Keyfitz 1971; Appendix 1.1)the latent increase in human population size
following an immediatedecrease in birth rates to the level of replacenfeopulation inertia
(Koons, Holmes & Grand 2007; Appendix 1.1) is aidagextension of this: a populatiavith
any given demographic distribution, following anystdrbance orperturbation, will settle

asymptotically to a fixed ratio above or belawhat is expected from a similar population
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growing at asymptotic raté-ig. 1.2b). Therefore, population momentum is acé&d case of
population inertia (Koons, Holmes & Grand 2007; Apgix 1.1). Population inertisvas
originally defined for case-specific projectiongjt bhbounds orpopulation inertia also exist.
Amplified asymptotic multiplicatiorand attenuated asymptotic multiplicatiofTownley &
Hodgson 2008; Appendix 1.13re bounds on population inertia, despite beingutaied
differently. Although more a consequence of transient dynanhias &2 measure dfansient
dynamicsper se population inertia can be thought of alsddistic measure that results from the
combined effect of dynamics ovehe whole transient period and we show below that
population inertiaorrelates tightly with the other indices of tramtidynamics. A finastrength

of inertia is that it is very amenable to pertuiyatanalysis, as its a simple function of the
initial stage distribution and the dominaigenvectors of the PPM.

A final method for overcoming the problem of tinsetd do awayvith it in calculations
altogether. Theupper Kreiss bounds a lowerbound on maximal possible amplification
(Townleyet al.2007;Townley & Hodgson 2008; Appendix 1.1) and tbever Kreiss bounds
an upper bound on maximal possible attenuation (TowileHodgson2008; Appendix 1.1).
These measures are time-independent and, thartke texistence of analytical formulae for
their calculation, provide gateway to perturbation analysis for transient loisuon maximal
amplification and attenuation. However, the Krdisginds also suffefrom drawbacks: first,
they have no precise biological interpretati@econd, they are currently defined only as
transient bounds and ndbr case-specific dynamics (although the necess#gebraic
adjustmentis not complicated). Last, they are somewhat rednnhadvhenconsidering their

relationship to other indices, as we show below.

A FRAMEWORK FOR TRANSIENT ANALYSIS

The transient analysis of density-independent,-imeariant PPM models would benefit from a

coherent framework within which to work. When me#&sy transient population density and

growth, the discounting of asymptotic model projgsrthas a number of benefits, and this is

most easily done by using the standardised BPMhereA = A/Ama. In addition, standardising
the initial demographic distributiom, to give ﬁo, where |ﬁ0||1= 1 means that transient

dynamics can be studied relative to both initiahgiy as well as to asymptotic growth. In
combination, these standardisations make transidides more meaningful both for population
management and comparative analysis, and allowctamparison of results both within and
among models.

Deciding the timeframe for analysis of transiemsiy and growth is a harder problem
to solve: different transient indices have différenterpretations, but often show highly
correlated relationships with one another (Stottl. 2010a [Chapter 5]). We exploit a database

of 563 published, irreducible (Stadt al. 2010b [Chapter 3]) PPM models for 202 species of
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animals and plants (Appendix 7) to further expltre relationships between transient indices
measured using different timeframes. All mathenadtand statistical modelling was conducted
using R version 2.12.1 (R Development Core TeamlpOEirst of all, we note a special
relationship between the Kreiss bound and transkminds on population inertia. The
derivation of the Kreiss bounds involves maximisargminimising over a scaling factor r for
r>1 (Appendix 1.1). However, where the maximunmimium occurs at-1, the upper and
lower Kreiss bounds are identical to the upper #mder bounds on population inertia
respectively. We calculated these measurementsafdr PPM in our database and found that in
76.1% of cases, the upper Kreiss bound was idémtidhe upper bound on population inertia,
whereas in 99.8% of cases, the lower Kreiss bouad identical to the lower bound on
population inertia. In both cases, Spearman’s @tkelations between the Kreiss bounds and
their respective bound on inertia yielded coeffitéeof greater than 0.99. So, the Kreiss bounds
are somewhat redundant in comparison to populatientia, which is easier to interpret,
simpler to calculate and more flexible.

Given this information, we would consider first-istep Keactivity, first-timestep
attenuation), maximal Maximal amplificationmaximal attenuationand asymptoticamplified
inertia, attenuated inertipindices of transient dynamics to be the mostulsekasurements of
transient population density and growth (Table.1These indices and their bounds together
describe the majority of variation in transient plagpion density, are comparable within and
across models and all have a definite biologic&rpretation. Relationships between these
measurements are presented in Fig. 1.3. To studsioreships between bounds on transient
dynamics, we calculated the six bounds for each BR#correlated them against one another,
the results of which are presented in the uppét-figangle of Fig. 1.3. To study relationships
between case-specific indices, we generated rardomographic distribution vectors for each
PPM by drawing numbers from uniform distributiostandardised these vectors to sum to 1,
calculated the six case-specific transient indfoegach model and performed Spearman’s rank
correlations on each pairwise combination of inslid&/e repeated this process 1000 times to
obtain distributions of correlation coefficients the pairwise comparisons. Although the use of
a uniform distribution is somewhat artificial givémat relative densities of life stages are likely
to co-vary in natural populations, it allowed explion of a wide range of potential stage
structures. The results are presented in the ltefietiangle of Fig. 1.3. It appears that for both
transient bounds and case-specific indices, araglifimeasures show very tight positive
correlations with one another (upper-left quadraihig. 1.3), whereas attenuated measures
show tight positive correlations, but not to thensadegree as among amplified measures
(lower-right quadrant of Fig. 1.3). However, amiglif measures are not good predictors of
attenuated measures ande versaupper-right and lower-left quadrants of Fig. 1.3he
correlation coefficients of transient bounds lienfortably within the modal range for those of

case-specific transient indices, which indicatest tim relation to one another, bounds on
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transient dynamics behave similar to case-spetitices of transient dynamics. Of the three
pairs of indices, population inertia correlatestbagh its amplified or attenuated partner
indices.

We also explored the relationships between the isdices and measures of
convergence. For each randomly generated initimloggaphic distribution, we simulated the
time taken for population growth to settle withiflof X, We correlated transient bounds
with the median simulated convergence time of tB@0literations for each PPM. For case-
specific indices, we correlated the six transiemdides with time to convergence at each
iteration of the model, and 1000 iterations of tlmedel provided distributions of Spearman’s
rho values. Most correlations between bounds andianeconvergence time were significant,
but all were relatively weak with absolute valuésSpearman’s rho ranging between 0.21 and
0.7. Distributions of correlation coefficients beswn case-specific transient dynamics and time
to convergence were similarly weak and widely vagy(see Appendix 1.1 for more detailed
methodology and results from these analyses). ifdigates that larger transient departures
from asymptotic growth are not necessarily linkedatlonger time to convergence, either for
transient bounds or for case-specific transienicesl Studying the relationship between the
damping ratio and the median simulated time to eogence also indicated that the damping
ratio is a relatively poor predictor of convergenaih a Spearman’s correlation coefficient of
—0.66 and high variability in the distribution obipts (Appendix 1.1). The relationship between
approximate time to convergence calculated usiagitmping ratio and simulated median time
to convergence is similarly weak, although with rmedime to convergence rarely exceeding
approximated time to convergence, there is a palarttlity of the damping ratio in providing a
weak bound on convergence rate. Nonetheless, itherelear need for an index that measures
finite convergence time, which would fit into therfnework for analysis we describe here. Such
a measure would be qualitatively and quantitativelgrmative for population management, be
calculable as both a bound and case-specific i@k be a standardised index that is
comparable among PPM models. Simulating quasi-cgewnee of the model goes some way to

achieving these goals, but is computationally isiemand rather ill-defined.

CASE STUDIES

The transient indices and bounds identified hemwige standardised, comparable, qualitative
and quantitative measures that can be used in rctign with other model parameters to

inform on population state and potential managem@ig. 1.4). Figure 1.4a shows two

projections for the subcanopy tr8grrax obassian central Japan (Abe, Nakashizuka & Tanaka
1998). The PPM distinguishes between those indalglfiound in the shade and individuals
found in canopy gaps: vital rates of individualseiach environment differ considerably. The

‘before’ projection uses the recorded demograpistridution, with only 6.2% of the canopy
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open. This population attenuates increasingly tivee: the value for first-timestep attenuation
indicates that the population is expected to deerdy 10% compared with asymptotic growth
in one year, whereas the value for attenuatedianiexdicates that given environmental stability
the population is expected to become up to 70%lemtilan asymptotic growth predicts. This
is important to considef, for the population is 1.02, indicating that it Mgkow over time,
when in fact the transient dynamics of the popolatmay cause it to decline. Eventually
(assuming no change in vital rates or canopy copepulation growth will settle th.,= 1.02,
but at much reduced density. The ‘after’ projectsimulates disturbance caused by a hurricane
opening up 50% of the existing canopy. Far frormgelamaging to the population, this would
cause amplification, even with no change in thal vates of the population. It would grow at a
rate faster thahnaxin the short term: reactivity indicates that witluist 1 year, it is predicted to
become 5% larger than asymptotic growth predictser@as amplified inertia predicts the
density will eventually settle to be up to 30% kErghan expected of a population initiated at
stable stage structure (again, assuming envirorahstatbility following the disturbance event).
Figure 1.4b illustrates transient bounds for thensferdam albatrofdiomedea
amsterdamensisn Amsterdam Island in the South-Eastern Indiareadc (Inchausti &
Weimerskirch 2001). This is one of the world’s sdrepecies of bird, with the Amsterdam
Island colony being the known population. Althougle demographic structure of the species
has previously been recorded in 1997, the exacbdeaphic structure of the current population
is unknown. In this case, transient bounds canigeovital informationimax for the population
is equal to 1.06, which is encouraging, and theegbf bounds on reactivity and first-timestep
attenuation indicate that in 1 year, the populattould not decrease or increase within
anything more than 10% of its size as predicteddyymptotic growth. However, despite having
a positive Amay, the worst-case scenario is that the populationosl halves relative to
asymptotic growth within the next 10 years as iatkd by the lower bound on maximal
attenuation. So, despite having a positive predietgymptotic growth, there is a real danger
that the population may in fact decline in sizeisTworst-case scenario is unlikely as it results
from a population composed entirely of chicks, kadts the goalposts for population
management. Were a reintroduction programme igke place, the transient bounds indicate
that age 11 individuals would be the best to tiaretk, as it is this age class that provides the

largest overall population amplification both imriadly and asymptotically.

DISCUSSION

Transient population dynamics are important to harsin any management scenario: short-
term fluctuations in population density and groven swamp predicted asymptotic trends.
Recent interest in transients has given rise terdez methodologies for calculating transients

for density-independent, time-invariant PPM modélswever, the fragmented nature of this

30



literature has left the field of transient analysiatively inaccessible to non-specialists. We
have identified an emerging framework, with a numbiedecisions to make when evaluating
transient population density, growth and structuMe strongly recommend that transient
dynamics be studied relative to both asymptotiomjnoand initial population density. The
easiest ways to achieve this are to standardiseRh by dividing it byhnax and standardise the
initial demographic distribution by scaling it, stat overall population density is equal to 1.
Analysing transient dynamics at arbitrary pointsongl the population projection is
unsatisfactory, and so the three pairs of indicksntified here can be used as comparable
measures to capture the majority of variation amsient dynamics of a population. Our analysis
of correlations between these indices reveals abipual inertia (Koons, Holmes & Grand 2007)
to be a simple yet versatile index that correlatengly with other indices, both when
measured for case-specific transient dynamics amohds on transient dynamics. There are
many available methods for analysing convergenamarels, but the biological interpretation
of most of these indices is questionable and we lidentified a need for a more robust index of
convergence in density-independent, time-invarfPtl models.

Although the study of transient dynamics is relgivwell developed for density-
independent, time-invariant PPM models, transiéatge received relatively little attention in
density-dependent and stochastic models. We aatiifhat the framework we identify here
(i.e. study of relative transient dynamics, staddged initial conditions and first-timestep,
maximal and asymptotic response) may be usefuiforming development of transient indices
in these areas. However, the nonlinear and/or Wamging nature of such models presents
further obstacles to analytical solutions for trans dynamics. Nonlinear projection matrix
models vary greatly in the form and influence dithattractors, therefore there is unlikely to be
a single predictor of transient density or convaggerate that suits all situations. Nonlinear
models demonstrating stable equilibrium densityl wievent the phenomenon of asymptotic
inertia in future population size as defined heoe linear models, but timestep-specific
amplification and attenuation (and bounds on theg#)remain interesting and measurable.
Stochastic models incorporate disturbance and foation as a result of small-scale
fluctuations in the environment, but near-term dyita following larger, more infrequent
disturbances or perturbations may differ from Ieagn dynamic trends. It may be useful to
have analytical formulae to approximate such dyeansimilar to those that exist for long-term
stochastic dynamics (Tuljapurkar 1982), therebyucaty the need for full numerical
simulation. The extension of transient analysisl&sses of population model other than PPMs
is another logical next step. In particular, intdgirojection models (Eliner & Rees 2006, 2007)
would benefit from development of methods for tiansanalysis.

One of the most useful extensions to understandopulation dynamicper seis to
understand the interplay between the vital rateéb@fpopulation and its dynamics. Perturbation
analyses such as SENSITIVITY (Caswell 2001 p.2E)ASTICITY (Caswell 2001 p.227)
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and TRANSFER FUNCTION (Hodgson & Townley 2004) asek provide this important
information for asymptotic population dynamics. Aunmber of methods for transient
perturbation analysis exist, particularly methoaisanalysing sensitivity of transient population
density to changes in vital rates of the populafidrese methods must make the same decisions
regarding standardisation of dynamics, choice dfalnpopulation structure and time point
along the projection at which to analyse. Howetlezy have an added decision to make in what
form of projection equation to differentiate: matlsohave chosen to use matrix calculus to
evaluate state-space form equations (Caswell 20@yr)differentiate the solution to the
projection equation as expressed using model eaees and eigenvectors (Fox & Gurevitch
2000; Yearsley 2004) and to evaluate sensitivityrafsient indices that are functions of the
PPM (Townleyet al.2007; Koons, Holmes & Grand 2007). A review andtkgsis of these
approaches is certainly needed. However, theréllisa sieed for new approaches to transient
perturbation analysis. Relationships between asytiepgrowth and changes in vital rates of
populations are often markedly nonlinear (Hodgsomd&nley 2004) and there is evidence to
show that this may also be the case for transignamics (Townleyet al2007). Sensitivity
analysis, as a linear approximation, is not sudfitito describe population dynamic responses to
non-negligible perturbations (Carslake, Townley &dgson 2008, 2009a). Therefore, there is a
need for a transfer-function style approach togiem perturbation analysis that can model the
nonlinear response of transient density to pertioba

The majority of interest in transient dynamics fsus far centred on their use in
population management: far fewer studies have densil their potential impact in other areas
of ecology and evolution. A better understandingrahsients could provide opportunities to
understand life-history evolution from a new pecdwe. A population that experiences
unpredictable disturbance may need to evolve toeSestant to disturbance through having
smaller transients, as an insurance against paopuldecline. Conversely, a population that
experiences regular disturbance of a particulae tygay evolve to have a larger transient
dynamical response to that disturbance, maximisinglification to exploit opportunity to
outcompete other genotypes. It is likely that theutaneous optimisation of asymptotic and
transient growth rates will combine to maximise ddarm stochastic growth rate, but the
mechanisms mapping life-history variation onto siant dynamics and potential trade-offs
between selection on short- and long-term growthehaot yet been explored. Transient
dynamics also have relevance in ecological systether than populations: indeed the
application of transient theory could extend to astage-structured biological system.
Transients could help to better understand the mligs of communities, for example in
modelling tropic cascades in food webs. They malp e better understand the spread of
infectious diseases in epidemiological models. Timay help explain the rapid spread of novel
genotypes through populations. They could be usefolodelling the responses of ecosystems

to climate change, tracking the movement of enemgynatter through different ecosystem
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compartments. There are some examples of trargjeaimics in other ecological systems — the
flow of matter through a rainforest ecosystem hasnbshown to exhibit transient dynamics
(Neubert & Caswell 1997; Townley & Hodgson 2008)damodels of whooping cough
epidemiology in humans have shown significant filmsresponse to perturbation, with annual
epidemical cycles becoming multiannual cycles feit@ an increase in recovery rates (Rohani,
Keeling & Grenfell 2002).

Transient analysis of population dynamics is dillyoung and emerging field of
population ecology, likely to see many advancesdming years. Indeed, transient analysis
should prove an essential part of any study of dgaphy. However, relatively inaccessible
literature and a lack of coherency could presenbaarier to widespread use of some
methodologies. With a common framework within whibhh develop methods, and the
formulation of extra tools, transient analysis lias potential to provide great insight to the

fields of conservation, population management armdLéionary ecology.
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TABLES

TABLE 1.1: Important indices of transient populatidynamics. Matrices are presented as capital@etlin bold. Vectors are in small type and in bdldmbers
and scalars are in normal for represents the standardised population projeati@inix and is equal t8/Amnay (WhereA is the PPM andl.xis the dominant

eigenvalue of\); w represents the dominant right eigenvectoh ¢the stable demographic distribution vecterjepresents the dominant left eigenvectof ¢the
reproductive value vectorﬁ0 represents the initial demographic distributioanstardised to sum to 1. minCS denotes the minimalonm sum of a matrix and

[Im]] is the one-norm of a vector (equal to the sum of its entries),mand M.« are the smallest and largest entries of a veotaspectively. We have chosen to
use the Greef to represent transient bounds (in accordance Wattnley & Hodgson 2008), whereas the Latin P regmesscase-specific indices of transient
dynamics. An overbar indicates a bound or indexroplification, whereas an underbar represents adouindex of attenuation (Townley & Hodgson 2008)
subscript provides information on the timeframestofdy: 1 for first-timestep indices; max or min foaximal amplification or attenuation, respectivelgdoo for

asymptotic indices.

INDEX FORMULA BIOLOGICAL MEANING
REACTIVITY TRANSIENT  p = ||1i||1 TRANSIENT BOUND maximum population growth in a
BOUND single timestep, relative to stable growth rate.
- N . CASE-SPECIFIC population growth achieved by a given
CASE- P, = ||Afio||, when [[Af,||, > 1

opulation structure in a single timestep, relatovetable
SPECIFIC populati ucture |1 ingle ti p, tove
growth rate. Assumes the population will amplify

immediately.
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FIRST-
TIMESTEP
ATTENUATION

MAXIMUM

AMPLIFICATON

MAXIMUM
ATTENUATION

TRANSIENT
BOUND

CASE-
SPECIFIC

TRANSIENT
BOUND

CASE-
SPECIFIC

TRANSIENT
BOUND

p1= minCS(K)

P, = ||Afio, when [|AR,||, <1

Prmax = max (J[A]],)

ﬁmax = r{l;})x (”A\tﬁ0”1)

when ||Ktﬁ0||1 > 1 for some t

Pmin = Mmin (minCS(ﬁt))

TRANSIENT BOUNDB minimum population growth in a
single timestep, relative to stable growth rate.
CASE-SPECIFIC population growth achieved by a given
population in a single timestep, relative to stajlawth rate.

Assumes the population will attenuate immediately.

TRANSIENT BOUND the largest possible future population
density achievable, relative to a population witkbte

growth rate and same initial density.

CASE-SPECIFIC the largest possible future density of a
given population structure, relative to a populatigth

stable growth rate and same initial density. Assuthe

population amplifies at some point in the future.

TRANSIENT BOUND the smallest possible future
population density achievable, relative to a poatewith

stable growth rate and same initial density.
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AMPLIFIED
INERTIA

ATTENUATED
INERTIA

CASE-
SPECIFIC

TRANSIENT
BOUND

CASE-
SPECIFIC

TRANSIENT
BOUND

CASE-
SPECIFIC

[oe]

0 =

Poin = min (/&5

when ||Ktﬁ0||1 < 1forsomet

_ Vmaxllwlll
viw
v lwlly vIing|lwll;
=———— when ————
viw viw
_ Vmin”wlll
viw
v lwlly v |lwlly
= T when T
viw viw

>1

CASE-SPECIFIC the smallest possible future density of a
given population structure, relative to a populatiath
stable growth rate and same initial density. Assuthe

population attenuates at some point in the future.

TRANSIENT BOUND the largest possible long-term
population density, relative to a population witabde
growth rate and same initial density.

CASE-SPECIFIC the long-term population density of a
given population structure, relative to a populatiath
stable growth and same initial density. Assumes the

population amplifies in the long term.

TRANSIENT BOUND the smallest possible long-term
population density, relative to a population witalde
growth rate and same initial density.

CASE-SPECIFIC the long-term population density of a
given population structure, relative to a populatiath
stable growth and same initial density. Assumes the

population attenuates in the long term.
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FIG. 1.1: lllustration of transient population dynias arising from a density-independent, time-
invariant PPM model. A population with stable demagdpic distribution (dashed line; hatched
bar plot) declines at a rate equaligy each time interval. However, real-world populasion

have initial demographic distributions that diffesm the stable demographic distribution (solid

line; grey bar plot) and exhibit transient dynamics
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FIG. 1.2: Transient dynamics of the desert tort@spherus agassizivith medium fecundity
(Doak, Kareiva & Klepetka 1994fa) Absolute population dynamics, including both tians
and asymptotic influencegh) standardised transient dynamics, excluding thuénte of
asymptotic growth. All demographic distribution® arcaled, so that overall initial population
density equals 1. Bold lines and black barplotscate transient bounds (note that sometimes,
unlike in this case, different stage-biased prijest define the amplification envelope at
different times in the projection); thin lines agdey barplots indicate case-specific initial
demographic distributions; dashed lines and hatddaglots indicate the stable demographic
distribution. Areas shaded in light grey indicate transient envelope, which is the range of

values in which all case-specific projections Wl
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FIG. 1.3: Correlations between transient bounds @awk-specific indices for 563 published

population projection matrix models. The upper-tighangle shows pairwise correlations
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scale. The lower-left triangle consists of histogsathat show distributions of Spearman’s rho

values for 1000 pairwise correlations of case-djgeandices for randomly generated case-

specific demographic distributions.
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CHAPTER 2

Understanding the dynamics of a model is importdotvever, management often also requires
knowledge of the best way to change population gyos to achieve management goals.
Chapter 2, the fourth paper published as part isf ttesis, confronts this issue for transient
population dynamics. Having identified populatiowiitia as a holistic and effective descriptor
of transient density, this chapter describes methodvaluate how changes to vital rates of the
life cycle affect inertia. We borrow from engineweyisystems control theory to achieve this,
employing use of transfer function analyses. Maatially, this method accurately describes
nonlinearity in the relationship between changesit@al rates and resulting changes in inertia.

As we demonstrate, this is an important considamatinen planning management regimes.

Chapter 2:

Stott, I., Hodgson, D.J. & Townley, S. (2012) Begtosensitivity: nonlinear perturbation
analysis of transient dynamiddethods in Ecology and Evolution

doi: 10.1111/j.2041-210X.2012.00199.x
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BEYOND  SENSITIVITY: NONLINEAR PERTURBATION
ANALYSIS OF TRANSIENT DYNAMICS

ABSTRACT

1. Perturbation analyses of population models ategral to population management: such
analysesevaluate how changes in vital rates of membershef gopulation translate to
changes in populationdynamics. Sensitivity and elasticity analyses ohgkberm
(asymptotic) growth are popular, blimited: they ignore short-term (transient) dynasnic
and provide a linear approximation to nonlinparturbation curves.

2. Population inertia measures how much largernmaller a non-stable population becomes
comparedvith an equivalent stable population, as a reduitamsient dynamics. We present
formulae for the transfer function of population inertia, el describes nonlinear
perturbation curves ofransient population dynamics. The method comfdytdits into
wider frameworks for analyticatudy of transient dynamics, and for perturbatioalgses
that use the transfer function approach.

3. We use case studies to illustrate how the tesrighction of population inertia may be used
in population management. These show that strategesedb solely on asymptotic
perturbation analysesan cause undesirable transient dynamics and/brtdaiexploit
desirable transient dynamicshis highlights the importance of considering batinsient
and asymptotic population dynamiospopulation management.

4. Our case studies also show a tendency towardsethaonlinearity in transient perturbation
curves. We extend our method to measure sensitivifyopulation inertia and show that it
often fails to capture dynamics resulting from perturiasi typical of management

scenarios.

INTRODUCTION

A thorough understanding of how external factorapsh populationdensity and growth is
essential to population managemelManagement goals will often explicitly incorporate
elements of density and growth, for example, torm@growth and persistence of populations
of conservation concef(e.g. Esparza-Olguin, Valverde & Vilchis-Anaya 2p02ducedensity
and spread of pests and invasive species (e.g. 8le2006), or sustain optimal yields from
exploited populationge.g. Pinard 1993). Commonly, it is necessary tplar howpotential
management actions may impact population denaitg growth, to evaluate the most
ecologically andeconomically effective means of achieving managé¢rgeals(e.g. Baxteret

al. 2006). Alternatively, an assessment of hpetential environmental change may impact

populationdensity and growth may be required, to explorepibgsibledetrimental impacts of
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uncontrolled events that are antagonisiic management goals (e.g. Mumby, Vitolo &
Stephensor2011). It is important in either case to know whigdtal rates orstages of the life
cycle should be targeted during managemengnsure optimum outcomes for minimum effort
and cost.

In practise, these assessments are commonly cawteding perturbation analyses of
empirical population modelsSuch analyses evaluate how changes in the vitek rat a
population (survival, growth, regression, fecundity, or ungery parameters that influence
these) affect measures of populatiensity and growth. Frequently, analytical methbdse
focussed on linear approximations of the effecsmwiall perturbation®n long-term growth.
Termed asymptotic sensitivitand elasticity analyses (Caswell 2001), these wgpécdlly
mathematicallyand computationally simple and easily interpreted.

However, asymptotic sensitivity and elasticity gsaek have two major drawbacks.
First, long-term growth is often a very poor prediof real population dynamics, as short-term
‘transient’ dynamics are often very different todpterm trends (Hastings 2001; Townletyal.
2007). There is arincreasing awareness of the need to incorporatéysasa of transient
dynamics into ecological and evolutionary studEzardet al. 2010; Stotet al. 2010a [Chapter
5]), and many methods haween developed in the last decade to quantify émsitvity of
transient dynamics to perturbation. Most of theseelfiocussed on population projection matrix
(PPM) models,which are arguably the most widely used empiricaldets in population
ecology. Methods vary in their approach and rimays on time-invariant, density-independent
models (Fox &Gurevitch 2000; Yearsley 2004), stochastic modéldjgpurkar, Horvitz &
Pascarella 2003), density-dependent mod@&veneret al. 2011) or combinations thereof
(Caswell 2007)A second drawback of asymptotic sensitivity andtatdy analyses is that the
linear approximations they offer may bery poor predictors of population dynamic respaose
largeperturbations. The actual relationship betweenraugstionto the life cycle and resultant
population dynamics is often substantialiynlinear (Townley & Hodgson 2008), and there has
been interest in modelling nonlinearity in pertditva analyse®f long-term growth (Hodgson
& Townley 2004; HodgsonTownley & McCarthy 2006; Milleret al. 2011). These methods
have been limited to non-stochastic, density-inddpat PPMmodels, which is more a by-
product of the tractability of analyticabnlinear perturbation analysis than an ignoraridhe
need for such analyses in stochastic and densjigrattentmodels. That said, given the
relatively data-demanding natuoé even basic PPM models, it is likely that nonebiastic,
density-independent models dominate the literaggpeciallyin conservation.

However, to date, there do not exist any analytinathods that can assess nonlinear
perturbation of transient dynamics. In this papes,address this issue to conceive a formula
that calculates the transfer function of populaiiwertia for linear, time-invariant PPM models.
This builds on existing methods that use populati@itia as an index of transient dynamics

and that use transfer function methods for nonfipesturbation analysis of population models.
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Transient dynamics of ‘non-stable’ populations [wihon-stable demographic
distributions) result in a phenomenon termed pdmainertia. A ‘stable’ population (with
stable demographic distribution) is predicted towgror decline at a fixed geometric rate.
Population inertia occurs because non-stable ptipota exhibit very different patterns of
transient growth and/or decline before eventuadlitliag to this stable geometric rate. These
transient dynamics mean that a non-stable populaibieves long-term population densities at
a fixed ratio either above or below that of an gglgant stable population. Population inertia
(Koons, Holmes & Grand 2007) is the value of tlaga. Therefore, a population with inertia
greater than 1 becomes and remains larger thant Isgrted out with a stable demographic
distribution, whilst a population with inertia sriealthan 1 becomes and remains smaller. The
magnitude of inertia indicates how much larger roaker, relatively, the population becomes.
Somewhat paradoxically, inertia is a measure ofa@nptotic effects of transient dynamics
that cause departures from asymptotic growth in dhert term. Hence, it measures the
persistency of transients, yet it has been showwotelate very strongly with near-term
transient indices such as reactivity and transaemplification (Stott, Townley & Hodgson 2011
[Chapter 1]). As an index of transient dynamicgyudation inertia has a number of strengths: it
is standardised measure and thus can be easilyatethpmong different models, and as we
show here, it is amenable to analytical perturlpatinalysis.

Transfer function analyses help to elucidate rehsthips between system inputs,
outputs and feedback mechanisms. Their applicatoRPM models in population ecology
began with the modelling of nonlinear perturbatioofs asymptotic growth (Hodgson &
Townley 2004; Hodgson, Townley & McCarthy 2006). particular strength of transfer
function methods is that they are able to model gler perturbation structures involving
multiple simultaneous perturbations (for example|tiple management strategies or life cycle
trade-offs). However, they require no extra datecatculate than traditional sensitivity and
elasticity analyses.

Combining population inertia and the transfer fimttapproach yields a method for
nonlinear perturbation analysis of transient dyre@mivhich we show to be flexible in its ability
to model realistic management regimes, and comfgataith within and among models. We
illustrate these methods using worked examplesdbatonstrate the importance of considering
transient perturbation analysis alongside asymptpirturbation analyses for population
management. We derive measures of the linear satysibf population inertia, to compare
these with their corresponding transfer functioBsxamples show that transient dynamic
response to perturbation is often extremely noalinerendering sensitivity a poor

approximation to nonlinear perturbation analysisrafsient dynamics.

45



MATERIALS AND METHODS

TRANSFER FUNCTION FRAMEWORK

The transfer function analysis (TFA) framework igp@werful method for analysing linear,
time-invariant mathematical systeig@@gata 2010). TFA describes relationships betwgstem
inputs, system outputs and the feedback mechanisms witleirsystem. Irthe case of a PPM
model, the ‘system’ is the PPM model itself, antireear, time-invariant’ model is one that is
non-stochastic and densilgdependent. An ‘input’ is the current demograpsicture, the
‘outputs’ of interest are measures of populationsitg or growth,and the ‘feedbacks’ being
studied are the vital rates of the life cydleat is, the elements of the PPM or underlying
parameters that influendbem. Thus, transfer functions may be used to deter the precise
nonlinear relationship between a perturbation talwiates of thdife cycle and resulting
population dynamics, which can then be usednform management regimes or anticipate
population response anvironmental change.

When presenting transfer function formulae, we aseommonnotation throughout
where matrices are presented upper-case (@o{dA), vectors are presented lower-case bold
(e.g.a), numbers andcalars are presented in normal font (e.g. a) andtibns aregendered in
italics (e.g.a())). The transfer function of long-terroy ‘asymptotic’, population growth has
already been describeHodgson & Townley 2004). For the purposes of papoih
managemenit may be desirable to know what the long-term dgloof a perturbed®PPMA; is,

where:

As = A+odeT. D

In this equation, the original PPM is perturbed by magnitudeusing a ‘perturbation structure’
determined by column vectodsande, which when multiplied together as in equationiti{ e’
representinghe transpose of from a column to a row vector) form a matthat determines
which vital rates are perturbed. (It is noted thainde are analogous to andc, respectively, of
Hodgson & Townley 2004lthough we have decided to change notation herentain in line
with the accepted norms of the control systemsalitee). A has some=mergent properties
relating to asymptotic population dynamics: th@minant eigenvalug., represents the long-
term (asymptoticgrowth of the population, the dominant right eigector w representshe
ratio of stages in the stable demographic distigbuand the dominant left eigenvector
represents the reproductive valueeaich stageA; in turn has its own, different, asymptotic
growth rate stable stage structure and reproductive valueateidetermined bthe structure

and magnitude of perturbation.
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If 6 is used to represent a continuous set of periorbatalues,then there is a
corresponding set of numbels that represents all afhe associated..fA;s). The exact

relationship betwee& andi canbe described using:
s 1=eTAI-A)"d, (2)

wherel is the identity matrix of same dimensionfAagHodgson &Townley 2004; please see
Appendix 2.1 for all proofs). This equation is tin@nsfer function for asymptotigrowth. It is
possible therefore to specify a range of pertuopanagnitudesdmin 10 dmay, calculatél,(A+
SmindeT) andAma(A+ SmaxdeT) to find the maximum and minimum of the associatathe ofl,
and use equation 2 to easily evaluate the preelationship betweeh andd. As d, e and the
range ofé are user-specifiedhe only required known parameter is the PPM. Hetraaesfer
function analysis of asymptotic growth may be exedwvith the same basic information as
sensitivity and elasticity analysidnother strength of TFA is that it may be used &styrb
more than one vital rate at a time, as illustradéer (and whilsive concentrate here on single-
parameter, rank-one perturbatio$;A may also be extended to model multiple pertiiwba
simultaneouslywe refer to Hodgson & Townley 2004 and Hodgs®awnley & McCarthy

2006 for more information on specifyiigese complex perturbation structures).

THE TRANSFER FUNCTION OF POPULATION INERTIA
An extension to equation 2 allows evaluation of tfensfer function of population inertia.

Population inertia (B is calculated using:

Ranir

o = 3
Tw 3)
Here,v is the dominant left eigenvector Afandw is the dominantight eigenvector oA (as
described earlier)ﬁ0 is the vector representirige demographic distribution of the population
(scaled to sum to 13nd Nv|L denotes the one-norm, or column sumwofKoons,Holmes &
Grand 2007; Stott, Townley & Hodgson 2011 [Chaﬂt]()erRepIacingﬁ0 With Vipax OF Vi, the

standard basis vectors timaximise and minimise population inertia, will gitree uppebound

(P.,) or lower bound f0_) on population inertia, respective($tott, Townley & Hodgson 2011

[Chapter 1]), and this is true for aubsequent formulae. Working with this basic equmtit

can beshown that population inertia of the perturbed maks is equivalent to:

_eTI-A)",c"A1-A)"'d

POO ’
eT(AI—A)—2d

(4)
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wherel is the identity matrix of same dimensionfAsindc is a columrvector of ones of equal

dimension tAA (see Appendix 2.1 fquroofs). Hence, given the same parameters as bgfoee
and a rangef 8), plus one extra parameteﬁi((,vmax Or Vmin), it is possible to firstise equation 2

to evaluate the relationship betwekerandd asdescribed earlier and then use equation 4 to
evaluate the relationshlpetween population inertia aid The result is three sets of numbexs:
set of 6 values (the perturbation magnitude), a sek eflues (thecorresponding asymptotic
growth) and a set of population inertia valfgge corresponding transient population density).
It is then possibleéo plot the precise relationships between populatiertia ands, between

population inertia and, and betweeh ands.

SENSITIVITY OF POPULATION INERTIA

Transfer functions are extremely useful for infanmipopulationmanagement, but sensitivity
measurements may remain useful foomparative statistical analyses among models,
populations or specig®.g. Franco & Silvertown 2004; McMahon & Metcal®@B). Insuch
analyses, the scalar value of sensitivity is marerzable than @omplex, nonlinear transfer
function. Using the transfer function method, it is fairlyngile to obtain arestimate for the
sensitivity of population inertia through differatton of the transfer functions themselves.

Equation 4 may be representesl

_ ALA)
=T TR ©
Where
i =e"M-A)""H, , LAO=c"AU-A)""d
and f3(0) =eT(AI—A)2d. (6)
The derivatives of the functioffigl), f.(A) andfy(A) separately are:
) =—e"M-A)?h , f)=-c"A-A)"d
and ff(A) =-2eT(AI-A)3d. (7

Then, the product rule and the quotient rule asxlue differentiate equation 5 with respect to
Al

)
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Here, using the limit ak approache&, . iS a necessary step, as matrices used in thei@guat
become singular (i.e. their inverse cannot be caethuwherih = Anax

Equation 2 can be directly differentiated withpest tos to give the sensitivity of to

o {(eT(?\I - A)‘ld)z} ©

38 Aodmax| eT(M—A)-2d

Again, the limit as\. approaches.x must be used to avoid singularities. Third, thaie rule is

used to find the sensitivity of population ineitiied:

0P, 0Py OA 10
a5 91 a5 (10)
(see Appendix 2.1 for proofs). All code used iralgses is freely available as part of the R
packagepopdemo (R Development Core Team 2011; Stott, Hodgson &villey 2012a
[Chapter 4]).

RESULTS

In this section, we provide two worked examplesiggheanalyses outlined earlier. Both are
empirical PPM modelparameterised from field data, and previous studidsoth populations
have led to very clear management recommendatimsed on asymptotic perturbation
analyses. Wexplore the transfer function for population in@mif eachusing parameter inputs
based on their recommendathnagement strategies, and discuss how the rdsuitsthese
analyses might affect the outcome of proposed nemagt.We highlight how the nonlinear
predictions oftransfer functions compare with the linear preditsi ofsensitivity analysis. For
each model, we evaluate the effeft management on the predicted inertia of the otrre
populationstructure, which provides the most accurate priediatf perturbed dynamics. We
also explore the effect oianagement on the upper and lower bounds on inktéimagement is
often unlikely to operate near the inefti@aundaries, although there are some notable sosnari
whenthis may be the case: for example, in populatismagions andeintroductions, individuals
are likely to be concentrated insingle stage class. For the case studies presbaeted the
bounds on inertia provide a good indication of #féect of perturbatioron the range of
transient dynamics, which is usekulowledge if there is uncertainty in the estimatwdrcurrent

population structure or if there is the potentaldisturbancéo cause that structure to change.
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CACTUS NEOBUXBAUMIA MACROCEPHADLA
Neobuxbaumia macrocephais a rare species of columnar cacteisdemic to the Tehuacan
valley, central Mexico. Esparz®lguin, Valverde & Vilchis-Anaya (2002) parametedstwo
size-based PPM models for the species using dédiiectsnl inthe field from 1997 to 1999.
Based on elasticity analysis amstnulated perturbation analysis of long-term grgwithey
recommendegrolonging survival of the largest individuals as best management strategy to
increase population growth tfe species.

Here, we work with the 1997-1998 matrix (the sanarix used in simulation analyses
in Esparza-Olguin, Valverde &ilchis-Anaya 2002), which we cal\ s (Table 2.1). We
perturb stasis of the largest size class (elenfEhip]), inaccordance with the recommended

management regiméherefore, the perturbation structure is determimgthevectorsdcacsand
€acwus(Table 2.1). The population :3tructuﬁ%actus is known (Table 2.1; Fig. 2.1a), and we use

this to calculatethe transfer function of case-specific populatioeriia. Howeverthere is
uncertainty in the number of seedlings in the patoh: none were detected, but this is likely a
result of the facthat they are small and hard to find. Thereforegl@ation ofthe transfer
functions of the outer bounds on inertia providasndication of the range of values of transient
dynamics thatmay result from any population structure. Givent thtasis ofthe largest
individuals is 0.869, we perturb over a realisénge of -0.1< § < 0.1, to give a maximum
perturbed stasis value of 0.969.

The population currently has a relatively largerifa and isexpected to increase to a
density around 400% of thatedicted byAmax (Fig. 2.1b). Given that the goal is to increase
population density and growth, this is good newthoaigh thepopulation is predicted to
decline in the long term, currepbpulation structure dictates that it will in factrease rapidly
in the short term and should not dip below curdamsitywithin the next 70 years (Fig. 2.1b).
The recommended managemssdime is beneficial in the long term; howevehas anegative
impact on population inertia: any increase in sta$the largest stage class will cause a drop in
the value of populatioinertia (Fig. 2.1d). The magnitude of this declisenot capturedy
sensitivity, which predicts a far less pronoundedline in inertia. Thus, a significant benefit of
management igot seen for several decades, because of the dargpantransientdynamics.
Evaluation of the outer bounds on populatioertia indicates further detriment of managing for
adultsurvival. Fluctuations in the upper bound on ire(kig. 2.1cland a decrease in the lower
bound (Fig. 2.1e) cause an increasethe range of potential transient density. Sensit
analyseglo not accurately describe these changes over fangerbatiorrange — in particular,
the upper bound shows highly nonlinedynamics that are far from those predicted by
sensitivity.

Managing for transient dynamics can yield a be#sult. Transfer functions of inertia
across the life cycléAppendix 2.2) indicate that fecundity has the mpgsitive impact on

transient dynamics. Using a perturbation structhieé acts on fecundity across all reproductive
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life stages (Table 2.1) increases population inertig@. (Ri2d). A doubling of fecundity
significantly increases short-term populatisine (Fig. 2.2b), giving much more rapid results
thanmanaging for increased adult survival, despitefdéiog thatthis management scheme has a
negligible effect on long-termgrowth. Additionally, this management practisereases both
upper (Fig. 2.2c) and lower (Fig. 2.2e) boumdsinertia: given uncertainty in the population
structurethis is favourable as it shifts the potential ranf¢ransientdynamics upwards on the
scale of transient densityherefore, it may be favourable in this case to aganforincreased
fecundity rather than increased adult survivakth@simmediate returns are better. Alternatively,
it may bedesirable to implement two different managemerdtagies:first, to manage for
transient dynamics to boost populatidensity and then to manage for asymptotic dynatoics
maintain population persistence. However, this wfilcourse inevitably depend on the relative

costs of each managemetitategy.

KOALA (PHASCOLARCTOS CINEREYS

The KoalaPhascolarctos cinereysgs an arboreal marsupiadtive to Australia. It is widespread
within the country,although the status of populations varies fromaedb region: in some
areas, it is overabundant, whilst in othgyepulations are in persistent decline. Baxatil.
(2006) explore potential management strategies for anatwerdantpopulation on Snake
Island, with a goal of reducing population densithey parameterise a stage-based PPM with
stages defined by the tooth wear of koalas, wh&chni indication of age. The study uses
asymptotic elasticityanalysis that explicitly incorporates costs of ngeETaent,therefore
identifying those strategies that are both ecollbicand economically viable. Based on these
analyses, theyrecommend investing in reduction of both fecundityd survival, in an
approximate 0.3:1 ratio. Subdermal contraceptasesconsidered as a mechanism to decrease
fecundity, whilst translocation of adults to more sparspbpulated areas is recommended to
decrease survival lyroxy, without the need for culls.

It is possible to evaluate the precise impact i thanagemergtrategy on the transient
dynamics of the populationsing transfer function analysis. We perturb thal&k®PM Ayoai
using a structure determined by vectofs, ande,aqs (Table 2.2). Recommended management
targets alladult life stages, but modelling this would requaemulti-parametermulti-rank
perturbation structure. As an analyticaimpromise, we have chosen to focus on the vitakra
of stage 2 individuals, as they have both largestifidityand highest survival. The perturbation
structure acts on severdtal rates simultaneously: fecundity of stage @ividuals (element
[1,2]) is perturbed by factor 0.3, whilst stasigl gmowth of stage 2 individuals (elements [2,2]
and [3,2], the lifecycle transitions that incorporate survival) are¢hbperturbedoy factor 0.5

each. This gives the 0.3:1 investmeatio recommended by the study. We evaluate transfe
functionsbased on the known structure of the populatigy,, (McLean 2003; Table 2.2),

although again we evaluate tlansfer functions of bounds on inertia to getdwaiof theange
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of uncertainty surrounding this estimate. We pértwer the range -0.8 5 < 1, to evaluate the
short-termimpact of management over a wide range of investmdrilst keeping vital rates of
the perturbed matrix withirealistic limits.

Population structure is very close to the stablecsire predicted by the model (Fig.
2.3a), and as such populatidgnamics closely follow long-term growth from thatset(Fig.
2.3b). Hence, population inertia is small, with grepulationbecoming at most up to 3% larger
than predictedby Amax A reduction in survival and fecundity using tmecommended
management regime increases populabantia (Fig. 2.3d), which is directly antagonist
management goals. The absolute increase in inertsanall, but it is important to note that
recommended managemaeattes not result in an immediate halt to growth: ghpulationwill
continue to grow for 2-3 years before stabilizifi§jg. 2.3b). Nonlinearity of the transfer
function means thathe larger the magnitude of perturbation, the lassuratesensitivity
analysis is at describing the magnitude of chaingmertia. The potential range of transient
dynamics isdecreased overall, with management decreasinggherbound on inertia (Fig.
2.3c) and increasing the lower boumrd inertia (Fig. 2.3e). This indicates that manageintan
decrease the uncertainty surrounding short-termulptipn density, although again these
changes are small in theiragnitude. Sensitivity analysis would have ovemstedthis effect:
both transfer functions show diminishingeturns, which is not captured by sensitivity
approximations.

Managing for transient dynamics would suggest fbatising on survival alone is a
better option: decreasirfgcundity tends to increase inertia, whereas dstrgasurvivaltends
to decrease inertia. It appears that targetinges?aigdividuals would have the largest impact
(Appendix 2.2).Decreasing survival of stage 3 individuals doesicedpopulationnertia (Fig.
2.4d), and it is possible to manipulate this tgpgtopulation growth, despite long-term growth
being above unity (Fig. 2.4b). This managementoopélso results in a significantly decreased
upper bound on inertia (Fig. 2.4c) and a barelgratt lower bound on inertia (Fig. 2.4e).
However, the effort and cost required to implemdm$ management scheme would be far
greater than that recommended by Baxteal. (2006), and within a few years, the population
resumes growth. As a long-term management schdrsepitoves therefore to be inadequate.
However, it may be desirable to first, manage fansient dynamics through translocation of
adults, and then phase in contraceptive measuresatage for asymptotic dynamics. This
exploits the population reductions that can be eaad through transient dynamics and then

maintains those reductions in the long term.

DISCUSSION
The transfer function for population inertia prosgda means of nonlinear perturbation analysis

of transient population dynamics. We have illugidathe importance of considering this
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alongside asymptotic perturbation analyses in mmid management, which adds to other
studies that have demonstrated that an ignoranceansient dynamics can work against
management goals (Koons, Rockwell & Grand 2007).

A notable outcome of our analyses is the extrenmdimearity that can be exhibited in
perturbation curves of population inertia. Manytloé transfer functions generated in the case
studies showed a marked nonlinearity that may netigelinear approximations of sensitivity
analysis ineffective except for very small pertuidia magnitude. Figure 2.5 illustrates some
more examples of extreme nonlinearity exhibitedramsfer functions of the cactus and koala
models, and Appendix 2.2 explores these further. @aluation of many other PPM models
not presented here suggests that such nonlingésutgrhaps the rule rather than the exception.
It has been argued that sensitivity analyses ahpsytic growth may be fairly robust to model
assumptions, including linearity of perturbatiorsgense (Caswell 2001 p.613-615), and this
warrants further study. Our preliminary evidencggasts that this may not be the case for
transient dynamics. Targets of conservation andagement often require large magnitude of
perturbation, and so sensitivity may prove too pmoapproximation for predicting their impact
on transient dynamics.

In the light of this, nonlinear perturbation ofrisdent dynamics could prove to be very
important, and working with population inertia attte transfer function framework has a
number of benefits. In a previous paper (Stott, flleyw & Hodgson 2011 [Chapter 1]), we
identified an emerging framework for analysis aingient dynamics with choices to make
regarding: (i) standardising dynamics to removengsyptic effects, (i) choosing an initial
demographic distribution to use in the model ang ¢hoosing a timeframe to evaluate.
Population inertia (Koons, Holmes & Grand 2007)ais index of transient dynamics that is
robust to all of these choices: as it is possiblevwaluate upper and lower bounds on inertia
(Stott, Townley & Hodgson 2011 [Chapter 1]), theseno need to know the population’s
demographic distribution, although it is possible évaluate sensitivity of case-specific
dynamics using a given demographic distributiodegired. Population inertia correlates very
well with other measures of transient dynamicst{Simwnley & Hodgson 2011 [Chapter 1]),
indicating that it should be a good proxy indexus® in perturbation analyses, especially when
it is unclear what timeframe of the projection tbyse. Lastly, in the equation for population
inertia, the influence of asymptotic dynamics imosed, so that perturbation analysis of inertia
is a standardised approach that may be comparedsaonodels, regardless of differences in
their asymptotic dynamics. The transfer functiamnework works well with population inertia:
matrix eigendata are easy to express in termsaofster functions and population inertia is
expressed in terms of matrix eigendata. As illusttathe methods we present are flexible,
compared with classic approaches, in their abiiitymodel complex management regimes
involving simultaneous perturbation to many magie@ments.We have focussed here on single-

parameter, rank-one perturbations, whilst multipegter, multi-rank perturbations may offer
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the option to study yet more complicated pertudmatstructures (Hodgson, Townley &
McCarthy 2006). We are working on the more compéidaalgebraic expansion for this method.

An alternative approach of nonlinear perturbatioalgsis is to use matrix determinants
to represent the transfer function (and derivattheseof) in terms of characteristic polynomials
(Lubben et al. 2009; Miller et al. 2011). This affords a more flexible specificatiom
perturbation structure without the need for compddgebraic expansion and offers another
benefit in its ability to evaluate polynomialsiat Ay However, when using this approach to
attempt analysis of population inertia, we discedenumerical calculation and evaluation of
polynomials to be inherently unstable, in both R DRvelopment Core Team 2011) and
MATLAB (Mathworks 2011), using the polynom package R and the ss2tf function in
MATLAB. It is possible that the use of symbolic elga (as advocated in Millet al. 2011)
will lessen this instability.

The methods discussed here would benefit from egupdin to other population models.
It would certainly be useful to have analyticalng&nt indices and nonlinear perturbation
methods for stochastic and density-dependent modaisther important challenge is to
migrate transient analyses and nonlinear pertunbainalyses to integral projection models
(Easterling, Ellner & Dixon 2000). It is argued thlaese models require less data than PPMs so
are better for data-deficient systems (Ramula, ReBackley 2009), and as they do not rely on
an arbitrary discretisation of the life cycle, theyay be robust to many of the analytical
problems associated with matrix dimension (seeddasy, Ellner & Dixon 2000; Salguero-
Gomez & Plotkin 2010; Stottt al. 2010a [Chapter 5]), and matrix reducibility (Stettal.
2010b [Chapter 3]). Stochastic and density-dependpplications exist (Ellner & Rees 2006,
2007), but the study of transient dynamics andaiseonlinear perturbation analysis requires
development.

Meanwhile, it is becoming increasingly easy to npapate complex analyses into
studies that use linear, time-invariant PPM moddiany studies rely on such basic models, as
parameterisation of stochastic or density-dependedels often requires more data than it is
feasible to provide, especially under constrainistime and finance. But, perhaps analytical
approaches need to move beyond sensitivity whertoihes to informing population
management: methods for nonlinear perturbationyaisalof both asymptotic and transient
dynamics are now freely available. These vastlyeiase the information that can be provided
by simple models, without any demand for furthetaddost importantly, as many studies are

starting to show, an ignorance of these dynamigsawan be detrimental to management goals.
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TABLES

Acactus

ncactus

dCﬁC'[US

eCﬁC'[US

Stage~

© 00 N O O b W N P «—

[ =Y
o

Long term

Transient

Long term

Transient

2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 4130 11.456 10.238 31.370
0.013 0.435 0 0 0 0 0 0 0 0

0 0.217 0.677 0 0 0 0 0 0 0

0 0 0.097 0.865 0 0 0 0 0 0

0 0 0 0.108 0.875 0 0 0 0 0

0 0 0 0 0.025 0.900 0 0 0 0

0 0 0 0 0 0.050 0.850 0.077 0 0

0 0 0 0 0 0 0.150 0.615 0 0

0 0 0 0 0 0 0 0.308 0.700 0.091

0 0 0 0 0 0 0 0 0.300 0.869

0 0.1116 0.1505 0.1797 0.1942 0.0971 0.0971 0.06B@485 0.0582

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0.13 0.36 0.32 1

TABLE 2.1: Parameters used in the
Neobuxbaumia macrocephalg@actus)

case study.Accus IS the population

A~

projection matrix, N, IS the

population vector standardised to sum
to 1, and the vectordcacws and Eacuus

determine the perturbation structure for
recommended management based on
either  perturbation analyses  of
asymptotic dynamics (labelled ‘long-
term’) or the transfer function of inertia

(labelled ‘transient’).
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A koala

Nkoala

dkoala

€oala

Stage-

«—

© 00 N o O b~ W N -

Long term

Transient

Long term

Transient

1 2 3 4 5 6 7 8 9

0 0.3026 0.1663 0.1244 0.0891 0.0556 0.0394 26.020.0118

0.9908 0.5359 0 0 0 0 0 0 0
0 0.4580 0.4550 0 0 0 0 0 0
0 0 0.5000 0.0655 0 0 0 0 0
0 0 0 0.7272 0.2216 0 0 0 0
0 0 0 0 0.4617 0.2265 0 0 0
0 0 0 0 0 0.3538 0.1267 0 0
0 0 0 0 0 0 0.4693 0.4247 0
0 0 0 0 0 0 0 0.1762 0.6090

0.135 0.330 0.225 0.120 0.080 0.065 0.085 0.010 0

0.3 0.5 0.5 0
0 0 0.5 0.5
0 1 0 0 0 0 0
0 0 0

TABLE 2.2: Parameters used in the

Phascolarctos cinereugoala) case studyoaia
is the population projection matrix), . is the

population vector standardised to sum to 1, and
the vectors dioaa and €eaa determine the

perturbation  structure  for recommended
management based on either perturbation
analyses of asymptotic dynamics (‘long-term’) or

the transfer function of inertia (‘transient’).
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FIG. 2.1: Analyses of the transfer function of trefor the cactus population projection matrix
based on management recommendations for long-tgmantics. Parameters for models are
presented in Table 2.1(a) Estimated current population structure and predicstable
population structure(b) population projection showing dynamics of the atiage structure
(dashed), the current population structure (sdiath) and perturbation of d = +0.358 acting on
the current population structure to give= 1 (red);(c) transfer function of the upper bound on
inertia; (d) transfer function of inertia of the current pogida structure(e) transfer function of
the lower bound on inertia. In panels c-e, sengitiat 5 = O is indicated with dotted lines. In
panel c, the change in the functiordat 0.037 is caused by the maximum entryw @hanging

from element 7 to element 10, thus altening, and changing the transfer function of the bound.
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the upper bound on inertigd) transfer function of inertia of the current pogiga structure{e)
transfer function of the lower bound on inertia.panels c-e, sensitivity at= 0 is indicated

with dotted lines.
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FIG.2.3: Analyses of the transfer function of imeerfor the koala population projection matrix
based on management recommendations for long-tgmantics. Parameters for models are
presented in Table 2.2a) Estimated current population structure and predicstable
population structure(b) population projection showing dynamics of the Eatiage structure
(dashed), the current population structure (sdbdi) and perturbation @& = —0.081 acting on
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inertia; (d) transfer function of inertia of the current popida structurefe) transfer function of
the lower bound on inertia. In panels c-e, serigjtiat 56 = 0 is indicated with dotted lines. In
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from element 2 to element 1, thus altering, and changing the transfer function of the bound.
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FIG. 2.5: Further examples of nonlinearity in tleetas and koala models. Transfer functions of
inertia are represented by solid lines, and sertgitvalues by dotted lines. Panels a-c represent
transfer functions of the cactus mod@l) upper bound on inertia, perturbing element [7(6];
case-specific inertia (using the current demogmaptructure in Figs 2.1a and 2.2a), perturbing
element [5,5]{c) lower bound on inertia, perturbing element [8Rnels d-f represent transfer
functions of the koala mode{d) upper bound on inertia, perturbing element [2(2); case-
specific inertia (using the current demographiaicttire in Figs 2.3a and 2.4a), perturbing
element [9,9];(f) lower bound on inertia, perturbing element [1)8].all cases, perturbation
achieves a minimum of half the element being pbedrand a maximum of twice the element

being perturbed, but is bounded between 0 and 1.
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CHAPTER 3

Advances in computation have opened up the oppbytéor complex ecological models and
analytical techniques, such as those presentebapters 1 and 2. However, most models and
analyses necessarily make certain basic assumptidmsh if violated undermine their results.
Various anomalies encountered when working with BRBsed questions about reducibility
and ergodicity of models. Core assumptions of raosilyses are that the matrix is irreducible
and ergodic. However, we discovered that up to artgu of published PPM models violate
these assumptions. Chapter 3 is the second papéshmd as part of this PhD. The chapter
introduces the joint concepts of reducibility amgaalicity and what they mean in the context of
PPM models. We explore the consequences of vigldtiase assumptions for various types of
model and various types of analysis, and use dasies to demonstrate how reducibility and

non-ergodicity can affect model dynamics and aialbutcomes.

Chapter 3:

Stott, I., Townley, S., Carslake, D. & Hodgson, [2010) On reducibility and ergodicity of
population projection matrix modeslethods in Ecology and Evolutioh 242-252.

doi: 10.1111/j.2041-210X.2010.00032.x

62



ON REDUCIBILITY AND ERGODICITY OF POPULATION
PROJETION MATRIX MODELS

ABSTRACT

1.

Population projection matrices (PPMs) are prbobahe most commonly used empirical
population models. To be useful for predictive ovgpective analyses, PPM models should
generally barreducible (the associated life cycle graph contains the seg transition
rates to facilitate pathways from all stages to afither stages) and
thereforeergodic(whatever initial stage structure is used in tbhpytation projection, it will
always exhibit the same stable asymptotic growt)ra

Evaluation of 652 PPM models for 171 speciemftbe literature suggests that 24.7% of
PPM models areeducible(parameterized transition rates do not facilifehways from all
stages to all other stages). Reducible models ametimes ergodic but may ben-
ergodic(the model exhibits two or more stable asymptstates with different asymptotic
stable growth rates, which depend on the initialgst structure used in the population
projection). In our sample of published PPMs, 15&%non-ergodic.

This presents a problem: reducible—ergodic nsodéken defy biological rationale in their
description of the life cycle but may or may nobye problematic for analysis as they often
behave similarly to irreducible models. Reducibe+ergodic models will usually defy
biological rationale in their description of thethdhe life cycle and population dynamics,

hence contravening most analytical methods.

. We provide simple methods to evaluate redutybdind ergodicity of PPM models, present

illustrative examples to elucidate the relationshgiween reducibility and ergodicity and
provide empirical examples to evaluate the impiaces of these properties in PPM models.
As a prevailing tool for population ecologisBPM models need to be as predictive as
possible. However, there is a large incidence alucéility in published PPMs, with
significant implications for the predictive powersuch models in many cases. We suggest
that as a general rule, reducibility of PPM modi#isuld be avoided. However, we provide a
guide to the pertinent analysis of reducible matnixdels, largely based upon whether they

are ergodic or not.

INTRODUCTION
Ecological dynamics are inherently complex. Howewéris desirable in applications of

population ecology to be able to accurately prefiiaire dynamics of populations (Caswell

2001, 2007; Townlegt al.2007; Townley & Hodgson 2008). Population projectimatrices
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(PPMs) are possibly the most often used empiricpufation models, and much research in
population ecology focuses on the design of inénghsaccurate matrix modelling techniques.
Factors such as spatial heterogeneity (e.g. DaygsiRgham 1995; Hunter & Caswell 2005),
density dependence (e.g. Jensen 1993; Grant & BeP®®0; Armsworth 2002), exogenous
stochastic influence (e.g. Nakaoka 1997; Fiebergelner 2001; Tuljapurkar, Horvitz, &
Pascarella 2003) and transient dynamics (e.g. Kebnal.2005; Townley & Hodgson
2008; Tenhumberg, Tyre, & Rebarber 2009; Stotil. 2010a [Chapter 5]) are now commonly
incorporated into modelling and analytical methodswever, for a building to be robust it
must also have secure foundations. Equally, matrddel complexities are building blocks
upheld by the basic grounding of the model itsdlie-life cycle.

Almost all life cycle models can be describedreeducible, meaning that they contain
direct or indirect pathways from every stage ctassvery other stage class (Fig. 3.1a). A PPM
associated with an irreducible life cycle can ftbal described as irreducible. According to the
Perron—Frobenius theorem (Perron 1907a,b; FrobedR®E2; for overviews, see Caswell
2001; Li & Schneider 2002; Elhashash & Szyld 20@8),irreducible, primitive matriA will
have a single, positive eigenvalue that is a simpbe of the characteristic polynomial Afand
whose modulus is greater than all other eigenvalhfeshe matrix (Caswell 2001; Li &
Schneider 2002) — this is commonly known as theidant eigenvalue of the matrix. It is this
value — also known ds..— that describes the long-term (asymptotic) growdte of the
population and which has to date been studiedanribjority of published PPM analyses (see,
e.g. Esparza-Olguin, Valverde, & Vilchis-Anaya 20G2enier, McDonald, & Buskirk
2007; Zuniga-Vegat al.2007). It is simple to calculate, and conceptuakgy to understand.
Long-established methods of evaluating the effettshanges to vital rates on the long-term
population growth rate exist in the forms of sautjt and elasticity analyses (Caswell 2001),
and these are often used to inform on populatiomagement and conservation decisions
(Crowderet al.1994; Crooks, Sanjauan, & Doak 1998; Runge, Lamgii & Kendall 2004).
Population projections from irreducible matrices atwaysergodic- that is, they will always
eventually exhibit the same outcome (i.e. the sarakle growth as described by the dominant
eigenvalue), irrespective of the initial condition$ the model (i.e. the initial population
structure used in the projection).

By contrast, aeduciblelife cycle model is essentially not complete -nsiions do not
facilitate pathways from every stage class to evetlger stage class (Caswell 2001).
Consequently, one or more portions of the life eyafte isolated from the rest of the cycle
(Fig. 3.1b,c). Except in a few cases — for exampleen modelling a species with post-
reproductive stage classes (Caswell 2001; Fig)3-lta reducible life cycle model defies
biological rationale. A reducible PPM associatedhwsuch a life cycle may undergo
simultaneous row and column permutations (i.e. hé&sgows and columns simultaneously

rearranged) so that it takes the form:
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Al Al,Z Al,n—l Al,n
0 A, eee Aona Agn
0 0 e A]-l An—l,n
0 0 . 0 A

That is, it may be divided into a number of submat (blocks), with those on the diagonal
being irreducible (Caswell 2001; Li & Schneider 2p0and where ‘0O’ denotes a block of
zeroes. The presence or absence of data in blotke top-right corner determines the position
of the diagonal blocks relative to one another. Mfer to this as the block-permuted matrix.
Each diagonal block has a dominant eigenvalue, e&athich will be an eigenvalue of the
overall matrix, and the largest of these will bei@qo the dominant eigenvalue of the overall
matrix, Amax. However, for some reducible matrices, the longitstable growth rate may be
described by eigenvalues other than the dominaagwell 2001), dependent on the initial stage
structure of the population used in the projectidmeducible model that may exhibit more than
one final state, dependent on initial conditionsyrbe described amn-ergodic When using
dominant eigenvalues or vectors to inform on mamegg and conservation decisions, a
reducible, non-ergodic model can hence prove pradilie, as the asymptotic growth rate
experienced by the population may be radicallyedéht from that predicted by the model. The
ergodic properties of reducible non-negative magridepend on the specific structure of the
reducible model and the relative sizes of the damtireigenvalues of its constituent blocks.
This has been explored in the mathematical liteeat(e.g. Dietzenbacher 1991; Bapat
1998; Kolotilina 2004); however, its applicationshaot yet extended to population biology.
Indeed, the issue of reducibiliper seis rarely explicitly considered in the biologidaérature
(however, notable exceptions include Bierzychud@®B2] Caswell 2001; Ehrlén & Lehtila
2002; Bode, Bode, & Armsworth 2006; Maron, Horvi&,Williams 2010; Stotet al.2010a
[Chapter 5]).

Here, we present methods to easily evaluate rbiiticiand ergodicity of matrices.
Using these methods, we show that a considerablgogion (approximately one-quarter) of
existing published PPMs are reducible, many of whéce non-ergodic. We elucidate the
relationship between reducibility and ergodicityings illustrative theoretical models of
reducible PPMs. We explore the real-world impliocas of reducibility and non-ergodicity of
PPMs using three empirical examples of reducibldrioes employing different analytical
techniques. Lastly, we encourage population denpbgna to carefully consider their life cycle
model and advise that reducibility should be avdigéhere possible; however, we discuss

analytical approaches to unavoidably reducible nsmd@sed upon their ergodic properties.
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ILLUSTRATIVE MODELS

To show how reducible non-negative matrix structetates to ergodicity of the model, we
present simulations of illustrative PPM models. Shdemonstrate the conditions under which a
reducible model will be differentially ergodic oomergodic and, at a greater resolution, reveal
how matrix structure relates to the number of ddifi¢ asymptotic states that the model may
achieve. We use, e.A,) to refer to the dominant eigenvalue of a constitiblock of a

reducible matrix, whereds,,x or A(A) refers to the dominant eigenvalue of the overaltrix.

ILLUSTRATIVE MODELS: METHODS

A theoretical, irreducible, six-stage matrix models constructed. This model was designed to
be similar to one that may be parameterized foea $pecies (Fig. 3.2a). Transition rates were
‘knocked out’ of this model and replaced with zeadues to create reducible models. The first
of these may be subdivided to form two irreduciblecks on the diagonal (the two-block
reducible model; Fig. 3.2b). The second may be isidst to form three irreducible blocks on
the diagonal (the three-block reducible model; Bigc).

Ergodic properties of reducible non-negative roagiare determined by the relative
sizes of the dominant eigenvalues of the constitbkrtks of the matrix — specifically, it is the
relative sizes of the blocks on the diagonal tihatimportant (Bapat 1998). We manipulated the
relative sizes of the dominant eigenvalues of tlthagonal blocks by varying transition rates
on the diagonal of the block (i.e. varying survivath stasis, the transition rate that measures
the rate of survival without growth or regressioratdifferent stage class). As a result, sets of
matrices were generated with eigenvalues thatdanea continuous scale. Each single matrix
in these sets was projected using six stage-biaged population vectors, with all individuals
in a single stage and a density of one, in a masimeitar to that employed by Townley &
Hodgson (2008). In practice, these are vectoreades except for a one in one row only. This
enabled an assessment of growth rate accordirifptoykcle stage: as reducibility is related to
connectivity between stages, it was important that ‘fate’ of each individual stage was
assessed independently. The actual, realized astimmrowth rate of each stage-biased
projection was calculated by dividing populatiomesat time t+1 [N:q)] by population size at
time t [Ny] after the population had reached a stable groatd An ergodic model will exhibit
the same realized asymptotic growth rate for ewwage-biased projection, whereas a non-
ergodic model will exhibit two or more growth ra@song its set of stage-biased projections.

For the two-block reducible matrix, the modellingpgess was simpl&(A;) was fixed
at its ‘natural’ value (0-738), whild{A,) was varied over the range 0-66—0-81. For thethre
block reducible matrix, each of the block-spec#figenvalues had to be varied in order to assess

every permutation of relative eigenvalue size. Ashs in part 1 of the procesfA;) andi(A»)
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were fixed at their ‘natural’ values (0-711 and1d-@espectively), whilst(Az) varied over the
range 0-53-0-78. In part 2 of the procg6s;) was fixed at its highest value from part 1
(0-78),MA;) remained fixed at its ‘natural’ value (0-611) aiéd,) was varied over the range
0-61-0-86. In part 3(A,) was fixed at its highest value from part 2 (0;8G\;) remained
fixed at its highest value from part 1 (0-78) af@,) was varied over the range 0-70-0-95.
These values may seem somewhat arbitrary but wersea so that all transition rates remained
within biologically realistic limits, whilst stilallowing all permutations of relative eigenvalue
Size to be assessed.

All modelling was carried out using R version 2.@2Development Core Team 2009).
Realised A values were calculated using theuelambda  function in the R package

popdemo.

ILLUSTRATIVE MODELS: RESULTS

Models showed that for both the two- and threedbloaducible matrices, the models only
exhibited ergodicity wherk(A;) was the largest eigenvalue, with all other casdsbiting non-
ergodicity (Figs 3.3 and 3.4).

More specifically, the models showed that the neimiif different asymptotic growth
rates that may be achieved by a reducible PPM naefednds on the relative magnitudes of the
dominant eigenvalues of its constituent blocks. e block reducible matrix can only exhibit
a maximum of two different growth rates. This wiltcur wherh (A1) <A(A>) (Fig. 3.3). The
three-block reducible matrix can be thought of a&@block reducible matrix within another
two-block reducible matrix. Thereforg(As;) must be greater than bdtfA,) andi(A,) to
exhibit asymptotic independence (i.e. to exist agotential asymptotic growth rate of the
model). Howeveri(A,) must only be greater thaufA,) to exhibit asymptotic independence. As
such, it is only whei(A;) <A(A2) <A(Az) that the model exhibits three different long-term
growth rates (Fig. 3.4). However, the model mayitekitwo different long-term growth rates
wherei(Az) <AMA1) <A(Az), where MA7) <A(A3z) <A(A,) or wheré\(Az) <AA1) <MAy)
(Fig. 3.4). The same logic would therefore applyatty reducible model — for example, in a
four-block reducible model(A4) would have to be greater thafAs), A\(A,) andi(A,) to
exhibit asymptotic independence, and so on.

The only exception to this rule will occur whenotwiagonal blocks are not fixed

relative to one another. Take a reducible matrithwhe structure:

Ay A
A | O
0 | As

0

The matrix can be re-permuted so that blockard A are swapped but without changing the

overall structure of the matrix:
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A1 A
As; | O
0| A

Fori(A,) to exhibit asymptotic independence as illustratbg our models, the
conditionA(A;) <A(A,) must be true, as usual. However, as there isisteichable difference
between these two placements gfafad A, then fork(A;) to exhibit asymptotic independence,
the conditior(A;) <A(A3) is necessary, ba(A,) <A(Aj3) is no longer necessary. Note that
whilst this affects the number of possible asymptgtowth rates wherg(A,) is not the largest
eigenvalue, it does not affect the condition tlmatthe model to exhibit ergodicity(A;) must
be the largest eigenvalue. Hence, ifig\not fixed relative to the other diagonal blocikse
model will be non-ergodic. It is worth mentioninig@that whilst we have only illustrated this
case with matrices whekg.x < 1, the rules we have described above apply yman-negative

matrix withAmnax > 0.

INCIDENCE OF REDUCIBILITY AND NON-ERGODICITY IN PUB LISHED PPMS

INCIDENCE OF REDUCIBILITY AND NON-ERGODICITY IN PUBISHED PPMS:
METHODS

Population projection matrices were collected frim literature, with the database at the time
of analysis numbering 652 matrices (152 animals %01 plants) for 171 species (57 animals
and 114 plants) across a diverse range of taxa/jgeendix 7). In the first instance, we sought
out large comparative analyses of PPM models oftpland animals and sourced many PPMs
from the original articles cited by those analys@siline searches of ecological literature
provided additional PPMs, although these searclege nwot systematic. PPMs were not chosen
with any bias regarding reducibility or ergodicity/e feel that the database of PPMs represents
a fair sample of the entire population of publisf#Ms; hence, any result described here may
be interpreted as applicable to the wider PPMditee. The database held by the authors is
being continually added to, and contains extrarmfition on the species and models present. It
is producible at any time upon request.

Each matrix was tested for reducibility using thhguanent that a square mathxis
irreducible if, and only if,I(+ A)*'is positive (i.e. every element df€ A)**is greater than 0),
wherel is the identity matrix andrepresents the number of columns or rows in th&ixna
equal to the number of stage classes in the lifeapodel (Caswell 2001).

Each matrix was tested for ergodicity using theumrgnt that a non-negative
matrix A is, under certain natural conditions, ergodic ifdaonly if the dominant left

eigenvectow of A is positive (i.e. every element wis greater than 0). Biologically, this vector
68



is known as the ‘reproductive value’ vector, andisfias the equatiomTA = AV,
wherelnais the dominant eigenvalue Afandv' denotes the transpose wofi.e. from a
column vector to a row vector). The specific coidis and mathematical proof for this can be
found in Appendix 3.1, and the subject is discussea greater depth in Dietzenbacher (1991).
As this is a new method in population biology ferkating ergodicity, each result was double
checked with simulation of population dynamics gsstage-biased vectors in the same manner
described here for the illustrative model (seestliative models: methods). In every case,
results from simulation of the model agreed witbutts from evaluation of the dominant left
eigenvector.

All tests were carried out using R version 2.9. @& elopment Core Team 2009). The
necessary code to test reducibility and ergodioftymatrices using the above arguments is

available in the R packag®pdemo.

INCIDENCE OF REDUCIBILITY AND NON-ERGODICITY IN PUBISHED PPMS:
RESULTS

Analysis of the matrix database showed that thelémce of reducibility in published PPMs is
high, at 24-7%. Of the reducible models, 63-2%namergodic, which makes 15-6% of our
sample of published PPMs non-ergodic.

Some reducible models have been modelled with regstductive stage classes or
have similar plausibly reducible life cycles, arttud do not defy biological rationale (as
illustrated in Fig. 3.1b). However, most reducibl®dels are lacking vital transition rates to
complete the life cycle and as such defy biologreéibnale (as illustrated in Fig. 3.1c). Some
reducible models showed a complete absence ofictestages in the model, and hence
incorporated no transition rates whatsoever fos¢hsiages (so that the PPM contained columns
of zeroes). In addition, many models included 10@%s of survival with stasis in adult stage
classes, which although are not an origin of reulityi per se effectively model immortal

individuals and so clearly defy biological ratiomal

EMPIRICAL EXAMPLES

We chose three reducible matrices from the liteeata illustrate how reducibility may (or may
not) affect model outcomes and conclusions, depgnadin the ergodic properties of the model
and the analyses performed. These matrices werk lplermuted (code to block permute a
reducible matrix may be found in the R packag@pdemo and further information on block
permuting a reducible matrix by hand may be foumd\ppendix 3.2), and the eigenvalues of
their diagonal blocks were calculated. These wieee tompared with the realized asymptotic

growth rates of their stage-biased projections.
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EMPIRICAL EXAMPLES:NUTTALLIA OBSCURATA

Nuttallia obscuratgthe varnish clam) is a marine invasive speciesBiitish Columbia,
Canada. Dudas, Dower, & Anholt (2007) parametdmze matrices for the species, in order to
evaluate the dynamics of invasive populations dedtify which life-history stages are the best
to target with control strategies. By performingraptotic sensitivity and elasticity analyses,
they concluded that reducing the survival of adidtividuals would be the most beneficial
strategy to curb population growth.

The PPM for the Robbers’ passage populatioM.obbscuratas shown in Fig. 3.5a.
There was no observed growth of stage 1 individudsstage 2 individuals — these instead all
bypassed stage 2, becoming stage 3 individualg/gafl. The authors noted this irregularity and
corrected the estimates of transition rates acaglglibut failed to note that the resulting matrix
is reducible: individuals in stage 2 may grow aadroduce, but no individual in stages 1, 3, 4
or 5 can contribute in any way to stage 2 (whethexugh growth or reproduction).

Although reducible, the matrix is ergodic (Fig.&.6Therefore, in this particular case,
the conclusions of the study would not be greatfgcéed by the reducible structure of the
model. Every population projection will eventualettle to a rate of geometric growth
described by the dominant eigenvalue of the matid so the asymptotic growth rate of the
population can be safely defined as such. Thergfire sensitivity and elasticity analyses
conducted by Dudas, Dower, & Anholt (2007) corngetvaluate the effects of perturbations to
vital rates on asymptotic population growth. Thisnot necessarily always the case, as other
examples will show.

Perhaps in this case, individuals grew faster taaticipated. A re-definition of size
classes to a lesser resolution might have prodwedrreducible matrix that described
population dynamics more effectively. This shoudddasy to do if data on sizes of individuals
are available. When parameterizing models, it igthvbearing in mind that the life cycle model
may have to be redefined in order to fit with tteadcollected. Information on parameterizing
models according to data availability is availalandermeer 1978; Moloney 1986).
Alternatively, for species such as the varnish cthat exhibit continuous state variables (e.qg.
where organism size is a strong determinant of igainand/or growth and/or fecundity),
integral projection models (IPMs) offer a meangopulation projection that utilizes smooth,
continuous relationships between such state vasgadnhd an organism’s vital rates, which may
be more accurate than the discrete-class apprdwimsato such relationships provided by a
PPM (Easterling, Ellner, & Dixon 2000; Ellner & Re2006, 2007).

EMPIRICAL EXAMPLES: ARDISIA ESCALLONIOIDES
Ardisia escallonioidegMarlberry) is a perennial understorey shrub foumdhe subtropical
forests of southern Florida, as well as on islaamtts in coastal regions of the Caribbean Sea and

the Gulf of Mexico. Pascarella & Horvitz (1998) lenited data from the Florida populations in
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order to parameterize models that would allow thseasment of the role of environmental
variation in shaping population dynamics of the cgg® The environmental variation in
guestion was the degree of forest canopy ‘openrassi result of hurricane damage. Patches
were identified with varying degrees of canopy opess, and an individual matrix was
parameterized for each. The individual matricesewttien combined with a patch-transition
matrix into a megamatrix that described dynamicshef population as a whole. Asymptotic
growth rates, stable stage structures and semgitivid elasticity analyses were conducted for
individual matrices and the megamatrix and theltesvere compared and contrasted with one
another.

The matrix representing the 5% open patch is ptedén Fig. 3.5b. There is no growth
of stage 7 or stage 8 individuals, and 100% stasisage 8 individuals. The authors noted that
their original matrix parameterization was not Iftdank’ (sensuCaswell 1989), so would not
exhibit asymptotic behaviour comparable with otpatch-specific matrices, and corrected it as
such (by estimating fecundity values and juvenilevival rates). However, they did not note
that the resulting model was reducible, and so stidlynot exhibit comparable asymptotic
behaviour (although it is noteworthy that they icad and corrected this in later analyses that
used the data — see Appendix A of Tuljapurkar, Hpr& Pascarella 2003).

The reducible model exhibits two possible asymptgtiowth rates (Fig. 3.6b). Any
projection that excludes stage 8 individuals in thetial population structure will
follow A = 0-984, and any projection that includes staged®iduals in the initial population
structure will followA = 1. In this case, the asymptotic growth ratehaf population has no
single numerical definition, although it is assuntedequal the dominant eigenvalue of the
matrix. Hence, it is not comparable with the othaatrix models. Sensitivity and elasticity
analyses measured the effect of perturbations endtiminant eigenvalue, but this is not
necessarily equivalent to the effect that suchupeations have on asymptotic growth rate, as
asymptotic growth rate is not always equal to tbenidant eigenvalue. These analyses are
therefore fundamentally flawed for the 5% open @gnpatch. Having said that, the errors in
this model are diluted by data from other patchabé megamatrix such that the megamatrix is
irreducible, so that the conclusions of analysesetdaon the megamatrix will be little affected
by the single reducible model.

The authors recognize that transition rates absersuch a model must occur in
populations and that ‘a much larger sample sizeldvbe needed to detect them empirically’
(Pascarella & Horvitz 1998, p. 551). With consttaimn the amount of data that can be
collected, perhaps in such situations it may beesgary to estimate these transition rates (such
as from historical data, or based upon observexs iatother (sub)populations where available)
to ensure a reliable model. Again, IPMs may offeafiernative approach in such a situation, as
they usually require less data than traditional PRiddels (Easterling, Ellner, & Dixon
2000; Ellner & Rees 2006, 2007).
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EMPIRICAL EXAMPLES: PINUS JEFFREYI

Pinus jeffreyi(the Jeffrey Pine) is a coniferous tree found he south-eastern USA. van
Mantgem & Stephenson (2005) constructed PPM mddela population of the species (along
with numerous other species of coniferous treepha Sierra Nevada in order to assess the
reliability of PPM models as predictors of the dynes of populations of such species. They
compared matrix model projections with empiricaladan population size, and concluded that
PPM models were good predictors of population sgeort-term growth, survival and
recruitment.

The PPM model foP. jeffreyiis presented in Fig. 3.5c. No stage 4 individuals
progressed to become stage 5 individuals withirtithe frame of the study. The authors noted
this, and recognized that this missing transitiauld be a problem when projecting over long
time periods. However, as the study only lookesghairt-term dynamics (with models projected
over a maximum of two time intervals), they conéddhat it should not have great adverse
effects on their analyses. That said, reducibjiity sewas not explicitly discussed.

The reducible model exhibits three possible asytigpgrowth rates (Fig. 3.6¢). The
matrix, in its block-permuted form, has five irr@ihle blocks on the diagonal. This is a good
example of how a model missing just one transitisie then becomes highly mathematically
constrained as a result: eigenvalues are constramée equal to the values of survival with
stasis (on the diagonal of the matrix). Eigenvextare equally constrained by these
eigenvalues. Hence, an analysis that uses any\ailyes of the matrix will be adversely
affected. These include not only asymptotic analysech as sensitivity and elasticity but also
some measures of transient dynamics, such as thpim ratio of the population (Caswell
2001) and certain measures of transient sensitiabd elasticity (Fox & Gurevitch
2000; Yearsley 2004).

van Mantgem & Stephenson (2005) are correct inttleteducibility of the matrix has
little impact on the conclusions of their analysethey wished merely to compare empirical
with predicted population dynamics, and the motiedy present are an accurate representation
of the demographic rates of the species in the fiet@®d considered. This example illustrates a
case in which a reducible matrix, despite being-eiodic and having highly constrained
eigenvalues, should not pose a problem for theifspanalyses being conducted. That said, the
supplementary material does provide dominant eigieieg of the PPMs as values of asymptotic
population growth, and elasticity values are usedthe manuscript to support certain
conclusions (although are not presented) — theslysas will be flawed as a result of the model

structure.
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DISCUSSION

We have demonstrated that reducibility, and hemeeargodicity, in published PPM models is
common. We have illustrated how the structure afucthle models affects their ergodic
properties, and provided some empirical examplesvsty how these properties may or may
not affect model outcomes and conclusions, depgmaiirthe analyses implemented.

But why are so many published PPMs reducible? Whdme models may plausibly be
based upon a reducible life cycle (e.g. Brault &well 1993), most are missing vital transition
rates necessary for a complete life cycle. Thislde@ the question as to why such transition
rates are missing from those models. The mostyliksiplanation for this, as noted earlier
by Pascarella & Horvitz (1998) in thfadisia example, is that the relevant data required tg ful
parameterize the model are lacking. There are togsiple explanations for this — either the
data collected overlooked life cycle transitionatttiid occur, or the missing transitions did not
occur during the time of study. Certain methodslaifa collection may result in poor estimates
of transition rates, and perhaps a failure to aepaufull set of transition rates — Miinzbergova &
Ehrlén (2005) note that commonly used methods reaultr in ‘poor representation of some
stages’, and advise to collect data for an equalbaus of individuals per stage. However, even
if the data collected do accurately represent ifieeclcle of the population during the time of
study (with certain transition rates missing), ttiise is often limited to two consecutive years
(Fieberg & Ellner 2001), comprising two populatioensuses: just enough to parameterize a
single projection matrix. Such matrices will onlgpresent demographic rates under the
environmental conditions specific to that year. Bindndesirable environmental conditions, it
takes little stretch of the imagination to envisigg some life cycle transitions may not occur
in a single year. Even under desirable environnheataditions, low transition rates (especially
of growth) may be seen under certain life cycle etedespecially for long-lived species
(Enright, Franco, & Silvertown 1995). While the aatollected in such an instance may
adequately represent the demographics of that epeni that particular year, it is clearly
insufficient to describe the dynamics of the popafaover many years — this much seems
intuitive. Additionally, as we have shown here wibr illustrative and empirical examples,
complications arise as reducible matrix models thagmwn such data have certain mathematical
properties — such as eigenvalues that are corstram equal those of the sub-blocks in all
cases, and non-ergodicity in some cases — thapwsgy problems for analysis.

For these reasons, as a general rule it is bestdinl using reducible models. Having
said that, if a reducible model is unavoidable hsaanodel will not always prove problematic
for analysis (as was seen earlier in Bieusexample). It is important that demographers know
how to: (1) identify reducible matrices, (2) evdkithe ergodic properties of those matrices and
(3) discern whether the models will prove problémédr the analyses that are to be conducted.
We propose that matrices should be defined asucibl®, reducible—ergodic or reducible—non-

ergodic and that this information be used to guwadalysis. Reducibility and ergodicity of a
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matrix can be easily evaluated using the methodgnesent (see the Incidence of reducibility
and non-ergodicity in published PPMs: methods sactiAppendix 3.1) and analyses
appropriate to that model structure can then beeino

For deterministic asymptotic analyses, a reducdsgedic matrix can be analysed in
very much the same way as an irreducible matrivalyses such as evaluation of the dominant
eigenvalue and/or eigenvector and calculationssgmatotic sensitivity or elasticity will be
largely unaffected by the model. On the other haheterministic asymptotic analyses of
reducible—non-ergodic matrices will often prove répus: there is no single definition of
asymptotic stable population growth and structlie. an unavoidably reducible model, an
alternative is to analyse the portion of the lifele that one is interested in — for example, when
analysing population growth rates of species wittweproductive stage classes, one might
want to only analyse the block for the reproducpeet of the population (Caswell 2001, p. 89).

Reducible models have implications for stochast@lyses also. In stochastic analyses,
sets of transition matrices are generated, withh esitgle matrix representing transition rates
under a certain environmental condition. This isially done either by using matrices
parameterized over different time intervals or bywidng transition rates from probability
distribution functions with covarying parametersefferg & Ellner 2001). A different matrix
(emulating a unique set of environmental condifjaaschosen for each projection interval. In
this case, it is clearly difficult to evaluate edguty of the model — each simulation is unique, as
a different sequence of parameters or matricelscted each time the simulation is run.
However, reducibility of the combined matrix setncae evaluated. For the matrix set
A(1),A(2),...,A(n), the arithmetic average mativk=(1/n)(A(1) +A(2) +...+A(n)). As
ergodicity cannot be evaluated, reducibilityMfshould be avoided in stochastic analyses.
Individual reducible matrices, while undesirableosld not usually be a problem provided that
the missing transitions are present elsewhere énntiatrix set. However, the impacts of
individual reducible matrices on stochastic anaysarrant further exploration and we note that
this rule of thumb may not always apply. An altéiverto simulating stochastic models is to
calculate Tuljapurkar's approximation to the statltagrowth rate (Fieberg & Ellner 2001).
This calculation should only be based on ergodig¢rimmanodels, as calculations utilize the
dominant eigenvalue, which can only be properlyraef for ergodic models.

Transient population dynamics are gaining increas@t@éntion from researchers.
Methods for calculating transients are many andedarand the impacts of reducibility and
ergodicity of matrices on transient analyses waltywaccording to analyses used. For methods
that implicate matrix eigenvalues in their calcigat(e.g. Fox & Gurevitch 2000; Yearsley
2004), reducible matrices (whether ergodic or naodic) should be avoided, as the
eigenvalues of the matrix are constrained by thdaehstructure. For methods that do not utilize
matrix eigenvalues (e.g. Koons, Holmes, & Grand 720wnley & Hodgson

2008; Tenhumberg, Tyre, & Rebarber 2009), a genetalwould be to avoid reducible—non-
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ergodic matrices: many analyses relate transierdisares to asymptotic growth (Koons,
Holmes, & Grand 2007; Townley & Hodgson 2008) andilsee model used requires a robust
definition of asymptotic growth. That said, in sonases (as exemplified in tRénusexample
above), empirical calculation of population growtites over the transient period may not be

adversely affected by a non-ergodic model.

CONCLUSIONS

With reducible models so abundant in the litergtures important for population biologists to
know of the issues concerning their use, be ableleatify whether a matrix is irreducible,
reducible—ergodic or reducible—-non-ergodic, andetike necessary precautions to alleviate
potential problems associated with these modettstres, either by redefining model structure
if possible or by choosing the right analytical hwats pertaining to the use of that matrix. The
methods and models presented here should helpfeominon these processes. Although
biologists now have the necessary mathematicdiststal and computational tools at their
disposal to conduct highly complex analyses, itrigortant not to forget about the foundations
of PPM models and to remember to consider the Héisicycle model and matrix structure

very carefully.
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FIGURES

(a) Example irreducible
life cycle

N0

(b) Example post-reproductive
life cycle

9/0)0)0,

(c) Example reducible
life cycle

oeYeolo}

FIG. 3.1: Example stage-structured life cyclés). An irreducible life cycle. Every stage is
connected to every other stage via at least orfevaat (b) A reducible, post-reproductive life

cycle. Sufficient transitions to facilitate pathvgafrom every stage to every other stage are

lacking: once in stage 4, there are no connectottise rest of the life cycle. Such a life cycle,
although reducible, is biologically plausibléc) A reducible life cycle that is missing a
necessary transition rate. Sufficient transitiam$acilitate pathways from every stage to every
other stage are lacking: once in stages 1 and Rdaridual cannot then contribute to stages 3
and 4. Such a model clearly defies biological retle, with portions of the life cycle isolated

from the rest of the cycle.
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FIG. 3.2: The matrices used for
modelling. In each case, the life cycle
described by the matrix is also shown for
clarity. (a) The irreducible projection
matrix upon which the reducible matrices
are based. This is similar to one that may
be parameterized for a tree species:
fecundity and survival with stasis
increase with size, whilst survival with
growth decreases with size. Each stage
also has a small probability of regression.
(b) The two-block reducible matrix in
block-permuted form. An X indicates the
‘knocking-out’ of transition g, from the
irreducible matrix and its replacement
with a zero value in order to create the
reducible matrix. The matrix may be
subdivided with irreducible blocks A
and A on the diagonal as indicated. ‘0’
indicates a zero block (i.e. all elements of
the block are zero). (c) The three-block
reducible matrix in block-permuted form.
An x indicates the ‘knocking-out’ of
transitions @; and @s from the
irreducible matrix and their replacement
with zero values in order to create the
reducible matrix. The matrix may be
subdivided with irreducible blocks on the
diagonal as indicated. Again, ‘O’
indicates a zero block. Note: in all cases,
only irreducible blocks on the diagonal
are important in the modelling process.
Henceforth in this study, blocks;Aand

A, 3 can be disregarded.
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FIG. 3.3: Axes at the top of the graph show the eliod) process for the simple two-block
reducible matrixA(A,) is fixed (=0.738) and(A,) varies. Relative positions afA;) and

graphs (a) and (b) are indicated on the scalesaoih of the figure. The y-axes of graphs (a) and
(b) follow a log scale. Population size{Ns standardized by(A) to clearly indicate

differences in growth rates, therefore stagesftilaw L(A) converge to horizontal lines on the
graph. The number of different asymptotic growtiesethat may be achieved by the model
depends on the relative magnitudes of the domieigenvalues of its constituent blocka)

MAZ) <MA,), therefore all stages follo(A) =A(A;) = 0.738.(b) L(A1) <A(A,), therefore

stages 5 and 6 folloW(A) =A(A,) = 0.775. Stages 1-4 continue to follagh;) = 0.738.

78



AA,)
4 055 060 065 070 075

lllllllrvvlvllllllllllll

(@ Ay (B A MA,)

065 070 075 080 0-85

2 B L B I R L B
c d
©) aa) @ ya, "
3070 075 080 085 090 095
T[T T[T,
@ iy ® @
(a) (b) (c) (d) (e) () (9)

MAg) < MA) < MA)) A(Ay) < AM(Ag) < MA]) AMA) <A(A)) < AMAg) AA)) <A(Ay) <A(Ag) AA) < AAg) < (A A(Ag) < (A1) < M(Ay) A(Ag) < A(Ay) < A(A,)
0-560 < 0-611 <0-711 0611 <0660 < 0-711 0-660 <0-711 <0780 0711 <0-740<0-780 0-711 <0-780 <0-860 0-780 <0-820 <0-860 0-780 <0-860 < 0-920

-~ 38
g ~
z o
o ~[ r: B " B
» - [
(1}
£ iy - . L ~ "
Z sl : L\ : & ; \ -
o 50 100 0 50 100 0 50 100 O 50 100 O 50 100 O 50 100 O 50 100
Projection intervals (t)
FIG. 3.4:

Axes at the top of the graph show the modellingess for the three-block reducible matrix. In dait(A,) andi(A,) are fixed (=0.611 and 0.711 respectively) and
MAS3) varies. In part 24(A;) andi(A3) are fixed (=0.711 and 0.780 respectively) a(hl,) varies. In part 3,(Az) and\(A,) are fixed (=0.780 and 0.860
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respectively) and(A,) varies. In all cases, relative positions of blsglecific eigenvalues and of graphs (a)—(g) areatdd where appropriate on the axes at the
top of the figure. The y-axes of graphs (a)—(glofela log scale. Population size {Nis standardized by(A) to clearly indicate differences in growth rates,
therefore stages that follak¢A) converge to horizontal lines on the graph. Thaler of different asymptotic growth rates that rhayachieved by the model
depends on the relative magnitudes of the domigigenvalues of its constituent blocka) A(Az) <A(A,) <A(A,), therefore all stages follow(A) =A(A;) = 0.711.
(b) AM(A2) <MA3) <A(A1), therefore all stages folloi(A) =A(Ay= 0.711.(c) M(A2) <MA1) <A(As), therefore stage 6 followgA) =A(A3) = 0.780, while stages 1-
5 follow A(A;) = 0.711.(d) MA1) <M(A2) <AMAj3), therefore stage 6 followgA) = A(A3) = 0.780, while stages 4 and 5 foll@gA,) = 0.740 and stages 1-3 follow
MA7) = 0.711. (e]MA1) <MA3) <A(Ay), therefore stages 4—6 folldwWA) = A(A,) = 0.860, while stages 1-3 folldwWA;) = 0.711.(f) AM(Az) <MA1) <MAy),

therefore stages 4-6 follavfA) = A(A,) = 0.860, while stages 1-3 folldwWfA,) = 0.820.(g) The model is returned to its original staté.@s) <A(A,) <A(A,), and
all stages followh(A) = A(A1) = 0.920.
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FIG. 3.5: Empirical examples of reducible matriegth varying numbers of asymptotic growth
rates that may be achieved (see Fig. 3.6). Eachxmashown in its original (left) and block-
permuted (right) form. In each case, the life cygdscribed by the matrix is also shown for
clarity. (a) Left: PPM parameterized for the Robber’s passageilation of varnish clams
Nuttallia obscuratgDudas, Dower, & Anholt 2007). Right: the block-perited matrix, with

two irreducible blocks on the diagon@) Left: PPM parameterized for marlbewydisia
escallonoidegPascarella & Horvitz 1998) under a 5% open can®pght: the block-permuted
matrix, with three irreducible blocks on the diagbiic) Left: PPM parameterized for the
Jeffrey PinePinus jeffreyi(van Mantgem & Stephenson 2005). Right: the blpeknuted

matrix, with five irreducible blocks on the diagdna
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FIG. 3.6: Projections of the example empirical @dle matrices from stage-biased initial
populations. In all cases, y-axes follow a log ecaid population size [§§ is standardized by
MA) to clearly indicate differences in growth ratdsrefore, stages that folldwA) converge
to horizontal lines on the graph. In agreement Withillustrative models, the number of
different asymptotic growth rates that may be adeby the model (and therefore the
ergodicity of the model) depends on the relativgmitades of the dominant eigenvalues of its
constituent blockga) TheNuttallia obscuratamodel exhibits ergodicity, agA,) <A(A.),
therefore all stages folloW(A) = L(A;)=0.727.(b) TheArdisia escallonioidesnodel exhibits
two different asymptotic growth rates,Xd#\,) <A(A;) <A(As). Stage 8 followd(A) =A(A3z) =
1, whereas stages 1-7 foll&{A;)=0.984.(c) ThePinus jeffreyimodel exhibits three different
growth rates, as(A1) <M(Asz) <AMAL) <MA) <AMAs). Stage 5 follows(A) = A(As)=0.945
[although this projection does not completely cageewithin the 500 projection intervals
plotted, it goes on to convergeit@\)], stages 1-3 follow(A,) = 0.944 and stage 4 follows
MA,) =0.778.
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CHAPTER 4

Ecologists and evolutionary biologists are increglsi required to be computer programmers to
implement the mathematical and statistical modedsensary for research. Open-source
software packages have been an integral part sfréviolution: they make complex methods
freely available to everyone, whilst the efforts third-party developers ensure they are
continually expanded and kept up-to-date. R is gg@shthe most widely-used open source
programming language in ecology and evolution, enthe language used to implement all
analytical methods that contributed to this theBlaking these methods freely available by
compiling them into an R package was the logicalt retep to encourage their wider use.
Chapter 4 is the fifth paper published as partttiésis, and provides a user’s guide to software
tools for the methods presented in the first ttolegpters. These are freely available as part of

the R packagpopdemo.

Chapter 4:

Stott, I., Hodgson, D.J. & Townley, S. (201pppdemo: an R package for population
demography using projection matrix analydiiethods in Ecology and Evolution

doi: 10.1111/j.2041-210X.2012.00222.x

84



POPDEMO: AN R PACKAGE FOR POPULATION

DEMOGRAPHY USING PROJECTION MATRIX ANALYSIS

ABSTRACT

1. Effective population management requires aceyegdictions of future population dynamics
and how they may be manipulated to achieve managegoals.

2. The R packagpopdemo provides software tools for novel analytical methdhat aim to
enhance the predictive power of basic populatianegtion matrix models. These include
indices of transient population dynamics and tranifnction analyses.

3. We use a case study to demonstrate the usemgmitance of these methods for population

management and briefly discuss their potentialiegiibn outside population ecology.

INTRODUCTION

popdemo is an R package (available at http://cran.R-ptopg) that provides novel analytical
methods for basipopulation projection matrix (PPM) models. Thesd ethemore traditional
approaches available in the packamggpbio (Stubben & Milligan 2007). In this study, we
highlight key methods covered pppdemo and use a PPM case study to show how these may
be used for population management. For detailedrnmition, we point the reader in the
direction of package demdbat provide comprehensive coverage of functionakinally, we

discuss how the tools in this package could firelugtsidgpopulation ecology.

POPULATION PROJECTION MATRIX MODELS

Population projection matrix models are an impdrtaol in ecological and evolutionary
demography, for population management (Kareiva,vidar& McClure 2000), comparative
ecology (Buckleyet al. 2010) and life history theory (Aberg al. 2009). Many studies rely on
basic density-independent, non-stochastic (linéag-invariant) PPM models (e.g. Linké al.
2007), as data required by more complex densitgqegnt and stochastic models (e.g. Jensen
1996; Fieberg & Ellner 2001) are often difficult pyovide. Our examples use a PPM for
medium-fecundity desert tortois€g¢pherus agassiziwith eight size classes (Doak, Kareiva &
Klepetka 1994). Onc@opdemo is installed and loaded, the matrix is createdrinyning
data(Tort)
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5 6 7 8

1 0 0 0 0 0 1.300 1.980 2.570 |
2 0.716  0.567 0 0 0 0 0 0
3 0 0.149 0.567 0 0 0 0 0
4 0 0 0.149 0.604 0 0 0 0
5 0 0 0 0.235 0.560 0 0 0
6 0 0 0 0 0.225 0.678 0 0
7 0 0 0 0 0 0.249 0.851 0
81 0 0 0 0 0 0 0.016  0.860 |

Basic PPM models take the form= A'n,, whereA is the PPM describing the stage-structured
life cycle of the organism, and, and n, are vectors containing numbers or densities of
individuals in each stage class (the demographictsire) of the current population and the

population at time t in the future, respectivelggsCaswell 2001). Projecting and graphing
population dynamics using this equation is oftemfitst step towards understanding the model.
popdemo’s functionproject  enables this [Fig. 4.1; seéemo(projection) I

no <-c(1,1,2,3,5,8,13,21)

prl <- project(Tort, vector=n0, time=50)

plot(prl)

MEASURING POPULATION DYNAMICS

Traditionally, analysis of basic PPM models hasifsed on long-term (asymptotic) population
dynamics. Assuming density-independence and atangnvironment, any population is
predicted to eventually settle to a stable statth @& stable demographic structure equal to the
dominant right eigenvector w of the PPM, and a lstajeometric growth rate equal to the
dominant eigenvaluk. of the PPM (Caswell 2001). The stable growth miften used as an
indicator of population viability and fitness;,.x > 1 predicts long-term population increase,
whereas\ax < 1 predicts long-term decline. The desert toed®M declines in the long term,
with Anax = 0.958 (Fig. 4.1; Appendix 4.1).

MODEL ASSUMPTIONS

Ideally, most PPMs should Ipgimitive, like the desert tortoise PPM, with asymptotic ayics
conforming to the aforementioned description. Imtcast,imprimitive PPMs exhibit periodic
life cycle transitions (Otto & Day 2007), which s®ucyclic long-term population dynamics

rather than stable geometric growth. ImprimitiveM@Pmay also beeducibleandnonergodic
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such models can be decomposed into two or more,pgdiding several different potential
long-term growth rates that depend on demograpghictsire (Stottet al. 2010b [Chapter 3]).
Many analyses assume primitivity, irreducibilitydador ergodicity, so it is important to check
these properties to ensure analyses are appropt@mtethe model. The functions
is.matrix_primitive , Is.matrix_irreducible and is.matrix_ergodic

facilitate these checks [Appendix 4.1; skeno(matrixtools) ]-

TRANSIENT DYNAMICS
Even if a model is primitive, analysing only lorg#h dynamics has significant drawbacks.
Asymptotic analyses ignoransient dynamic®f the population. Populations are frequently
subject to environmental disturbances, so are yatlstable state. Consequently, long-term
growth rate is often a poor predictor of real-wgpldpulation dynamics (Bierzychudek 1999).
Short-term (transient) dynamics may differ drasycdrom long-term trends because of
discrepancies between the current and stable damioigr distributions. In the short term,
populations may increase faster than their statdetty rate (amplify) if reproductive adults are
overrepresented in the population (as is the cab@i 4.1). Alternatively, they may grow more
slowly than their stable growth rate (attenuaténihature juveniles are overrepresented.

popdemo includes functions to calculate three key pairsirafices that measure
transient dynamics. Reactivity re@ctivity ) and first-timestep attenuation
(firststepatt ) represent immediate amplification/attenuation time first timestep,
respectively. Maximum amplification maxamp and maximum attenuationméxatt )
represent the largest/smallest possible amplibo#ittenuation, respectively (Townley &
Hodgson 2008). Upper and lower inertianeftia ) represent fixed long-term
amplification/attenuation, respectively (Koons, Mek & Grand 2007). These indices are
standardised to remove effects of asymptotic dyosirand to assume a total initial population
density of 1, so they can be compared both amagstvithin models where these may differ,
thus offering advantages over analysing simulatgthohics (see Stott, Townley & Hodgson
2011 [Chapter 1]). Each index therefore describms much larger or smaller the non-stable
population is at a certain point along the popalatprojection, relative to the density of an
equivalent population initiated at stable stagactire. Indices of amplification are >1, whilst
indices of attenuation are <1, with the exact vatdiethe index giving the magnitude of
amplification or attenuation.

The desert tortoise population amplifies if adalts overrepresented:
n0.amp <- ¢(1,1,2,3,5,8,13,21)
reactivity(Tort, vector=n0.amp)
maxamp(Tort, vector=n0.amp)

inertia(Tort, vector=n0.amp)
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This population amplifies (reactivity equals 2.8dabecause of this, settles to a density
over four times that predicted by stable growtleifiia equals 4.1; Fig. 4.2a). As asymptotic
analysis indicates population decline, basing memamt decisions on that alone could result in
poor strategies that ignore the potential for timspopulation amplification.

The population attenuates if juveniles are ovessgnted:
n0.att <- ¢(21,13,8,5,3,2,1,1)
firststepatt(Tort, vector=n0.att)
maxatt(Tort, vector=n0.att)
inertia(Tort, vector=n0.att)

This population attenuates (first-timestep atteionaequals 0.92) and settles to a
density below that predicted by stable growth fiaeequals 0.91; Fig. 4.2a). In this case,
asymptotic analysis would underestimate the sgvefishort-term decline, so that management
efforts may fail to achieve desired goals.

Transient dynamics depend strongly on populatiomcgire. If population structure is
not known, then transient bounds inform on the pidérange of transient dynamics (Townley
& Hodgson 2008; Stott, Townley & Hodgson 2011 [Cleafd]). Transient bounds on indices of
amplification represent the largest possible vathasthose indices may take, whilst bounds on
indices of attenuation represent the smallest plessalues that those indices may take. These
extreme values of amplification and attenuationultesrom projections of stage-biased
demographic vectors (Townley & Hodgson 2008). Agsthiased vector contains 100% of
individuals in a single-stage class, and therens sitage-biased vector for each stage of the life
cycle (Fig. 4.2b). For example, a 3x3 matrix hagtaof stage-biased vectors [1 0 0]; [0 1 O]; [0
0 1]. When using the aforementioned functions fenagating transient indices, the relevant
transient bound is returned if a demographic veistaot specified:
reactivity(Tort)
firststepatt(Tort)
maxamp(Tort)
maxatt(Tort)
inertia(Tort, bound="upper’)
inertia(Tort, bound="lower")

For the desert tortoise, a bias towards the larigebtiduals results in amplification
bounds, whilst a bias towards yearlings resul&tienuation bounds (Fig. 4.2b). The population
can grow to an absolute maximum of almost severedints current size (maximum
amplification bound equals 6.82) and an absolut@mim of 12% its current size (maximum
attenuation bound equals 0.12; Fig. 4.2b). Thermé&tion provided by these transient bounds
therefore provides best- or worst-case scenaribsreTare further indices of transient density
available in popdemo, and the functions described here have extra tiesli [see

demo(transient) ]. popdemo also contains functions for transient indices ttheal with
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model convergence [sedemo(convergence) and Stott, Townley & Hodgson 2011

[Chapter 1] for a discussion on convergence indlices

PERTURBATION ANALYSES

For population management, it is important to krimw population dynamics may be changed
to achieve management goals. Perturbation anahgsess how changes to vital rates of the life
cycle such as survival, fecundity or growth affpopulation dynamics. A classical approach is
to conduct sensitivity analysis of the stable grovate (asymptotic sensitivity analysis). This
provides a linear estimate of the effect of pemtidns on long-term population growth
(Caswell 2001). Asymptotic sensitivity analyses énabeen used to prioritise potential
management practises (e.g. Ratsirarson, Siland&ickard 1996) and analyse prospective
population dynamics under varying environmentalditions (e.g. Abe, Nakashizuka & Tanaka
1998). Asymptotic sensitivity analysis of the deswrtoise PPM suggests that promoting
growth of young adults (element [8,7] of the m3atisxan efficient way to encourage long-term
population growth (Appendix 4.1). This could perbd®e achieved through protection and/or
supplementary feeding of those individuals. Sevigjtianalyses for transient dynamics also
exist and provide a linear estimate of the effeciperturbations on short-term population

density or growth (e.g. Caswell 2007).

TRANSFER FUNCTION ANALYSES
The linear relationships described by sensitivibalgsis are tangents to more complicated
nonlinear functions (Fig. 4.3). Because of thi:ys#vity analyses may poorly describe the
effect of larger perturbations on population dynasriiransfer function analysesan model the
exact nonlinear relationship between a perturbatiod resulting population dynamics and
require no more information than sensitivity anab/s

The functiontfa models the transfer function of asymptotic growtfodgson &
Townley 2004), andinertia.tfa models the transfer function of population inertia
providing a good indication of the effect of peldation on transient dynamics (Stott, Hodgson
& Townley 2012b [Chapter 2]). Three parametersragpiired for these functions: the PPM, a
perturbation structure and a range of perturbatiagnitude. The perturbation structure is given
with two vectors:d picks out the rows to be perturbed, angicks out the columns to be
perturbed. For example, to perturb element [3,2hdx3 matrix, inpud=c(0,0,1) and
e=c(0,1,0) into the functions. The perturbation magnitude reinge of values that specifies
how much to change the vital rate(s) by, and isemgivy a variable calleghrange .
inertia.tfa also needs to either be given the demographictateiwith which to calculate

inertia, or be instructed to calculate the uppeloarer bound on inertia. The transfer function
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relating asymptotic growth to growth rate of yousdplt tortoises (element [8,7]) is modelled

using the following code:

tf1 <- tfa(Tort, d=c(0,0,0,0,0,0,0,1), e=c(0,0,0,0, 0,0,1,0),
prange=seq(0,0.25,0.01))

plot(tfl)

Sensitivity analysis of asymptotic growth undermesties the effort needed to reverse
long-term population decline (Fig. 4.3a): sendijividashed line) suggests that increasing
growth of young adults by approximately 0.12 woalkhievel..x = 1, whereas the transfer
function (solid line) indicates that an increaseapproximately 0.25 is required. As this would
bring the overall survival rate of young adultsatove 1 (0.851 + 0.016 + 0.25 = 1.117), itis a
biologically unrealistic solution.

For the same perturbation, the transfer functianirfertia of a specified demographic
structure is modelled using:
no <-¢(1,1,2,3,5,8,13,21)
tf2 <- inertia.tfa(Tort, vector=n0, d=¢(0,0,0,0,0,0 ,0,1),

e=c(0,0,0,0,0,0,1,0),
prange=seq(0,0.25,0.01))
plot(tf2)

Sensitivity analysis of inertia overestimates tlegative effect of larger perturbations
(Fig. 4.3b): sensitivity predicts a decline in iti@mwith an increase in perturbation (dashed line),
but the transfer function demonstrates a dramatftte increasing inertia at larger perturbation
magnitudes (solid line). Nonlinear effects suchttase highlight that management strategies
based on sensitivity analyses may be ecologicalti/ax economically inefficient at achieving
desired goals.

Deciding on potential management regimes can bficdif To aid this process,
popdemo provides functions to perform transfer functioralgses across the whole life cycle.
The functions tfamatrix and inertia.tfamatrix generate multiplots of transfer
functions, one for every life cycle transition. Bleplots are laid out in the same way as the
PPM, so that the position of each panel in the iplott indicates which PPM element it
corresponds to. Analysing such plots by eye givesrgression of which vital rates are best to
target. We provide an example hereif@rtia.tfamatrix using the desert tortoise PPM:
tfmat <- inertia.tfamatrix(Tort, vector=n0)
plot(tfmat)

Overall, it seems that increasing fecundity maytHsebest way to promote population
amplification (Fig. 4.4, top row). The plot alsoos¥s that most perturbations have a highly
nonlinear effect on transient population dynamics.

Another key advantage of using transfer functiomghiat they can model complex

perturbation structures, including simultaneoustysbation to multiple vital rates, different
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perturbation magnitudes for different vital ratesl dife cycle trade-offs (Hodgson & Townley
2004, Stott, Hodgson & Townley 2012b [Chapter ZJhis means that transfer functions can

accurately model the effect of complicated managemegimes [sedemo(transfer) ]-

CONCLUSIONS
The tools provided ipopdemo facilitate the use of novel analytical methods lbasic PPM
models. Used alongside traditional analytical apphes, these enable more comprehensive and
more predictive analyses of population dynamicsheuit demand for extra data. The software
tools showcased here will likely be of most use ifdorming population management for
relatively data-deficient species. They are alkelyi to be of use in comparative ecology (Stott
et al. 2010a [Chapter 5]). They have potential applicatiostudying life history evolution: for
example, transient dynamics can be used as a neeaStgsilience (Neubert & Caswell 1997)
and transfer functions could be used to modeldyfele trade-offs. Lastly, these methods could
find application in modelling stage-structured egptal or evolutionary systems other than
populations.

For a full index of functions available popdemo and links to their documentation,

run ?popdemo.

91



FIGURES

o
O—.
N
>
=
]
L o
Q 0 —
'c‘—
c
.0
et
o
Y S -
= . =
Q.
(o]
o
o _|
0

[ I [ [ [ [
0 10 20 30 40 50

Time.intervals

FIG. 4.1: Population projection for the desertds# population projection matrix, generated

using theproject  function (Appendix 4.1).
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FIG. 4.2: Transient dynamics of the desert tortgis@ulation projection matrix. Plots are
generated using the project function (Appendix 41id are standardised to remove asymptotic
dynamics and to assume an initial overall dendity. dransient indices and bounds are added
to plots in red(a) A population where adults are overrepresented iieglreactivity (_Pl) =
2.63; maximum amplificationﬁmax) = 5.11; inertia {300) = 4.14, whilst a population where
juveniles are overrepresented attenuates: firgdiep attenuationR;) = 0.92; maximum
attenuation P,,,) = 0.84; inertia P,,) = 0.91.(b) Transient bounds result from stage-biased
population projections: reactivityp) = 3.58; first-timestep attenuatio@l() = 0.75; maximum
amplification (P,,,) = 6.83; maximum attenuatiorf_)gﬂn) = 0.12; upper inertia@,) = 5.12;

lower inertia @_) = 0.20.
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CHAPTER 5

Having synthesised and developed methods for th/sia of transient dynamics, and written
code for their implementation, we wished to uses¢h&o answer interesting ecological and
evolutionary questions. To do this, we exploitr@éadatabase of PPM models for plant species.
Chapter 5 is the first paper published as parhisf thesis, and is (to our knowledge) the first
large-scale comparative analysis of transient mjmri dynamics ever done. With transient
theory in its infancy, the importance of transielynamics in ecological systems is poorly
understood. In this chapter we explore patterrthénpotential range of transient dynamics that
may be exhibited by populations. We seek patteaasrding to life form, and phylogenetic
relatedness. Alongside this, we test the effecmofiel parameters on indices of transient
dynamics. Because this was the first study pubdistiee methods used are perhaps somewhat
different to what we might choose now: we makeafdhe Kreiss bound rather than population
inertia, and would perhaps choose differently frime more diverse range of methods for
comparative study. However, the tools availableigaat the time enabled us to uncover some

interesting results.

Chapter 5:

Stott, I., Franco, M., Carslake, D., Townley, S.H&dgson, D.J. (2010) Boom or bust? A
comparative analysis of transient population dymanm plantsJournal of Ecology98, 302-
311. doi: 10.1111/j.1365-2745.2009.01632.x
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BOOM OR BUST? A COMPARATIVE ANALYSIS OF TRANSIENT
POPULATION DYNAMICS IN PLANTS

ABSTRACT

1. Population dynamics often defy predictions base@&mpirical models, and explanations for
noisy dynamics have ranged from deterministic ch&msenvironmental stochasticity.
Transient (short-term) dynamics following disturbaror perturbation have recently gained
empirical attention from researchers as furthesitdes effectors of complicated dynamics.

2. Previously published methods of transient amalsve tended to require knowledge of
initial population structure. However, this has th@¥ercome by the recent development of
the parametric Kreiss bound (which describes hagela population must become before
reaching its maximum possible transient amplifiatifollowing a disturbance) and the
extension of this and other transient indices touianeously describe both amplified and
attenuated transient dynamics.

3. We apply the Kreiss bound and other transiatité@s to a data base of matrix models from
108 plant species, in an attempt to detect ecabgand mathematical patterns in the
transient dynamical properties of plant populations

4. We describe how life history influences the siant dynamics of plant populations: species
at opposite ends of the scale of ecological summes$mve the highest potential for transient
amplification and attenuation, whereas species withrmediate life history complexity
have the lowest potential.

5. We find ecological relationships between tramsi@nd asymptotic dynamics: faster-growing
populations tend to have greater potential magegudf transient amplification and
attenuation, which could suggest that short- and4erm dynamics are similarly influenced
by demographic parameters or vital rates.

6. We describe a strong dependence of transientifaraon and attenuation on matrix
dimension: perhaps signifying a potentially worgyinartefact of basic model
parameterization.

7. Synthesis Transient indices describe how big or how sméhppopulations can get, en
route to long-term stable rates of increase oridecllThe patterns we found in the potential
for transient dynamics, across many species oftglanggest a combination of ecological
and modelling strategy influences. This better ustd@ding of transients should guide the
formulation of management and conservation stragefpr all plant populations that suffer

disturbances away from stable equilibria.
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INTRODUCTION

The dynamics of natural systems are highly complekas such often prove difficult to predict.
Yet, it is in the interest of ecologists to be atbepredict the natural dynamics of ecological
systems. Populations have received perhaps the atiesttion in the ecological modelling
literature, with population projection matrices @) emerging as a prevailing modelling tool.
This is hardly surprising, considering their widgpkcation in pest control (Smith & Trout
1994; Shea & Kelly 1998; Hastings, Hall & Taylor 8) Dudas, Dower & Anholt 2007),
harvesting (Cropper & DiResta 1999; Souza & Mar@2086) and conservation (Price & Kelly
1994; Esparza-Olguin, Valverde & Vilchis-Anaya 200mhareset al. 2007), and although there
is an increasing interest in habitat- and ecosydteel practice (Hardinget al.2001), the
population still remains a popular target for maragnt. Often population dynamics defy
simple model predictions, and current explanationdluctuations in dynamics of populations
range from deterministic chaos (Hastirgsal. 1993) to environmental stochasticity (Dennis &
Costantino 1988) and various combinations of th@enniset al. 1997, 2001; Bjgrnstad &
Grenfell 2001).

Transient dynamics have recently emerged as aefughplanation for unpredictable
population behaviour (Hastings 2001). Typicallyplegical systems are not at equilibrium, and
disturbances are integral to ecosystem functionll{iigéon, Hobbs & Moore 2005). As such,
populations may be subject to frequent exogenosturtbances to stage structure (Koehs
al. 2005; Townleyet al.2007; Townley & Hodgson 2008), such as weathenmyedisease,
human impacts, invasive species or migration. Koflg a disturbance, short-term transient
dynamics often prove to be radically different frtong-term trajectories (Caswell 2007). Thus,
in reality, population dynamics are likely to bendoated by transient responses to exogenous
disturbances (Townlegt al.2007) — deterministic reactions to largely stotlagvents.
Additional complications arise because studies lahtpdemography usually last only a few
years (Jongejaret al2010), and short-term goals are often the normanagement strategies
(Hastings 2004).

With only a relatively recent interest in transgeand their quantification, PPM models
have commonly undergone asymptotic analyses (beiHastings 2004; Koonet al. 2005;
Townleyet al.2007; Townley & Hodgson 2008; Maron, Horvitz & Wblins 2010) — eigendata
of matrices, used to describe such long-term trehdse proven analytically tractable and
conceptually simple (Caswell 2001). Studies hawesicered the asymptotic responses of plant
populations to disturbances such as fire (Hoffmd®99), grazing (O’Connor 1993) and
hurricanes (Batista, Platt & Macchiavelli 1998).dddition to this, there are established means
of analysing the contributions of demographic patars to long-term growth rates in the forms
of sensitivity and elasticity analyses (Caswell P0@nd, more recently, transfer function
analysis (Hodgson & Townley 2004). Many studiesehatilized such analyses, with results

often advocated for use in informing policy and agement of species (e.g. Fiedler
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1987; Menges 1990; Nault & Gagnon 1993). Larger manative analyses have found general
patterns according to life history (Silvertowhal.1993; Franco & Silvertown 2004; Bures
al.2010). But, if transients do dominate ecologicastegns, then policy, management and
conservation decisions based on asymptotic anaiyag<e severely limited, risking the waste
of resources on suboptimal population managemeategies. Indeed, in plants, there is
evidence that long-term (asymptotic) trends in pagon models can provide very poor
predictions of the true long-term behaviour of papians over time (Bierzychudek 1999).

Transients and their sensitivities, however, havavgn to be difficult to quantify.
Published methods of transient analysis have dgtdrer lacked applicability to every PPM
model (Neubert & Caswell 1997) have needed largeuams of demographic information (Fox
& Gurevitch 2000) or have required intensive coragioh (Yearsley 2004; Caswell 2007). The
largest drawback of published methods of transa@alysis is that none have truly managed to
divorce the need for knowledge of initial populatistructure — something that asymptotic
analysis benefits hugely from. Population ecolagishve hence been ill-equipped to utilize
transient analysis to inform management and comaserv strategies. Thus, although now
gaining greater attention in the literature (e.cpk2 2005; Koonst al2005), transients have
yet to gain wide popularity in practice.

However, Townley & Hodgson (2008) recently devebbge computationally simple
new set of indices that builds in part on the wofkNeubert & Caswell (1997), aimed at
providing a means of calculating best- and worsecscenarios following disturbance. These
included the Kreiss bound, a flexible parametraei that may be calculated independently of
initial population structure. They also extendednsient measurements to include both
population amplification (transient increase in plagion size or density) and attenuation
(transient decrease in population size or denftigwing disturbance events. It is these indices
that we employ in this study. We have chosen noaralyse other established indices of
transient population size or density, such as @djmi momentum and inertia (the long-term
population amplification following perturbations tmographic rates; see Koons, Holmes &
Grand 2007). These differ from our indices primyairl that they measure responses to specified
disturbances or perturbations — here, we focusednlston indices of maximal transient
amplification and attenuation as measures of theradlv transient dynamical properties of
populations.

This article reports the first large-scale analydiglobal patterns in transient dynamical
properties of populations. We scrutinize a dateebzfsmodels for 108 plant species with the
aim of detecting deterministic biological and matla¢ical signals in patterns of transient
dynamics. With relevance to plant ecology, we dbsdnow life history influences the transient
dynamical properties of populations. Our resulé® @ahdicate relationships between magnitudes
of transient departure from long-term growth andglterm growth itself, perhaps suggesting

that short- and long-term dynamics are similarlfluenced by the vital rates (e.g. survival,
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growth, fecundity) of members of populations. Inatempt to further inform the building of
more predictive models and reliable analyses, veeriee dependence of transients on matrix

dimension and explore the influence of matrix die on transients.

MATERIALS AND METHODS

DATA BASE

Population projection matrices were collected fribm literature, with the current data base of
plant PPMs at the time of analysis numbering 50@in®s for 113 plant species of 11 different
Subclasses and 52 Families. The taxonomy for gaeties was found using Tudge (2000) for
the taxonomic level of Order and above and Systhlatairae 2000 (Brands 1989-2005) for
taxonomic levels below Order.

One matrix was chosen for each species for usaatyses. This ‘species reference
matrix’ was, where possible, an average of a nurabsubpopulation matrices of spatial and/or
temporal replication. Where it was not biologicglgtifiable to take an average, the selected
species reference matrix was chosen as the matrithé (sub)population subject to conditions
that most closely resembled the species’ ecolodimalm’ (e.g. before, rather than after,
hurricane disturbance). Matrices with redundantdssages (the ‘seeds’ problem, highlighted
in Caswell 2001, pp. 60—62) were corrected in {h@epriate manner.

Each matrix was tested for reducibility using thhguanent that a square mat#éxis
irreducible if, and only if, I(+ A)*'is positive (i.e. every element of the new maisixgreater
than zero), wherkis the identity matrix of same dimension Aas andsrepresents the
dimension (number of columns or rows) in the maf@aswell 2001). Reducible matrices were
not used in analyses because they often repregdagibally implausible life cycles and defy
asymptotic analysis. One hundred and eight speefesence matrices remained after reducible

matrices were removed (see Appendix 7 for a fsi).li

INDICES OF TRANSIENT DYNAMICS

The indices of transient dynamics used were measdescribed by Townley & Hodgson
(2008). The method of calculation uses theoretisige-biased disturbances to initial
population structure (i.e. with all individuals &nsingle stage class and a density of 1), thus
modelling extreme transient dynamics of populatiomgesponse to such disturbances. We
studied transient amplification and attenuationeath population relative to the long-term
growth or decline predicted by the dominant eigéumwaf its PPM. This avoided the problem
of there not being any upper bounds on the trahgjemwth of an asymptotically growing
population, or any lower bounds on the transietenaiation of an asymptotically declining

population. Hence, all our transient indices déschiow much bigger or smaller a population
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could get, relative to how big it would be if itagted out at stable stage structure. This is
equivalent to measuring the dynamics of a geonadlyicweighted population) Ny,
where N, is the population size or density at time t. Imagtice, we did this by measuring
transient indices, not of the PPMitself, but of the ‘standardized’ PP/ (equal toA divided

by its dominant eigenvalug. This standardize#l of all A to be 1, allowing direct comparison
of both amplified and attenuated dynamics acrobp@ulations (Fig. 5.1). This particular
method also has the advantage of removing theteifédbe dominant eigenvalue on the indices
that we measure, allowing us to infer relationstbpsnveen those indices and the asymptotic
growth rate of the population as predicted by tR&IFA.

Six indices were calculated for each PPM, withe¢hindices describing amplified
dynamics and three analogous indices describirgted dynamics. Figure 5.1 illustrates the
indices graphically with respect to the matrix prtjons. Table 5.1 provides formulae for
calculation and biological interpretations of edodex. In brief, our amplification indices
arereactivity (the largest possible population density achievied one timestep after
disturbance)maximum amplificatioithe largest possible population density achievedny
timestep after disturbance) and tigper Kreiss boun¢an analytical lower bound for maximum
amplification). These are partnered by indices dferaation, which arfirst-timestep
attenuationmaximum attenuatioand thdower Kreiss boundrespectively. Code to calculate
the 6 indices is available in the R packagppdemo. Table 5.2 is a correlation matrix of the
indices, which shows that by nature, these indaresinterrelated. To account for this non-

independence, we conducted a principal compon@alysis (PCA) on the six indices.

PRINCIPAL COMPONENTS ANALYSIS

Principal components analysis distils variation anlarge number of correlated (i.e. non-
independent) variables into just one or two undateel measurements, called principal
components. In our case, this means that the iaridteld in the six indices of transient
dynamics can potentially be described instead lst jpne or two measurements, thus
simplifying the analytical process and reducing ghebability of type | statistical errors by
accounting for the high correlates between indices.

The PCA was conducted on lggransformed indices, as this describes more atlyra
the multiplicative nature of these transient dymamiHence, amplified transients become
positive, whereas attenuated transients becometimeg®detailed results for the PCA are
presented in Appendix 5.1. These results suggestntiore than 90% of the variance can be
accounted for by principal components 1 and 2. Eadbx has an associated ‘loading’, which
is the coefficient associated with that index ia grincipal component’s linear function. In our
case, for principal component 1 (PC1), amplifiednsients have a positive loading and
attenuated transients have a negative loadingp#acipal component 2 (PC2), both amplified

and attenuated transients have a positive loadihis means that PC1 describes the overall
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tendency of the population to produce transientslanfie magnitude (i.e. a large PC1

corresponds to a population with both amplified atignuated transients of large magnitude,
and a small PC1 corresponds to a population with bnplified and attenuated dynamics of

small magnitude). PC2 describes the tendency ofptimilation to be biased towards either
relatively larger amplified dynamics or relativdbrger attenuated dynamics (i.e. a large PC2
corresponds to a population with amplified dynantitat are large relative to its attenuated
dynamics, and a small PC2 corresponds to a popalatith attenuated dynamics that are large

relative to its amplified dynamics).

STATISTICAL MODELS
To find ecological and model parameterization pagtdn the observed variation in transient
dynamics, we regressed PC1 and PC2 against fdaratit explanatory variables using general
linear modelling. Thédife historyof a plant is a categorical variable equivalentthose
described in Franco & Silvertown (2004): monocarfsiemelparous) plants from open and/or
disturbed habitats, perennial (iteroparous) hert fopen and/or disturbed habitats, perennial
herbs from forest habitats, shrubs and trees. ©hg-term (asymptotic) intrinsic population
growth rater is equal to 1), whereh is the dominant eigenvalue of PPM Thedimensiorof
the matrix is equal to the number of matrix coluronsows, and is equivalent to the number of
stage-classes in the life cycle model. Last,ntiagrix typeis distinguished by the position of
non-zero data in the matrix and represents a qtigdt description of the complexity of the
demographic model. Our descriptions are consisteittt Carslake, Townley & Hodgson
(2009b).Leslie+ matrices are traditional Leslie matrices (Les®d3) incorporating growth and
fecundity but also allowing for stasis of the latsige class, therefore containing positive data in
the first row, the first subdiagonal and the lagty These are usually age-structured models, in
which ‘old’ individuals are grouped into a singlage class whose members die at a fixed rate
per projection intervaProgressiormatrices are like Leslie+ matrices, but additignal
incorporate stasis of all stage classes (indivalin remain within a stage-class between
projection intervals; e.g. where stages are detethby the size of the individual) and therefore
contain data in the first row, the first subdiagoaad the diagonalGrowth matrices are like
progression matrices, but allow for skipped stadgsses and therefore may include additional
data anywhere in the lower triangle of the matrefkovitchmatrices (after Lefkovitch 1965)
represent a generalized, stage-structured lifeecydlich can contain data anywhere in the
matrix, including regression through the life cydiedividuals can, e.g. get smaller, undergo
fission or produce smaller vegetative offspring.

Statistical models considered the effects of gfil@xatory variables simultaneously on
a single principal component, although interactibie$ween explanatory variables were not
considered. We used general linear models with &a®rror structure, identity link function

and stepwise model simplification from the maximaddel, in order of least significance,
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usingF-test analysis of deviance model comparisons asigrificance threshold qf = 0.05,
until a minimal adequate model was achieved (ine where only significant effects remain).
One clear outlier was removed in all analyses thablvedr as an explanatory variable
(Digitalis purpureg A =11.8;r =2.5). All minimal adequate models were checked for
normality of standardized residuals and homoscamutgst

All analyses were conducted in a TIPS frameworkenghevery species is treated as an
independent data point (Silvertown & Dodd 1996; tiaene of the analysis refers to using the
data from the ‘tips’ of the phylogenetic tree). Howgr, previous statistical analyses that were
conducted on the raw transient indices employed B¢&eS and phylogenetically independent
contrasts (PICs), where the degree of relatednetsgbn species is controlled for (Felsenstein
1985; Freckleton 2000). Each included matrix dinmmss a covariate (cf. Salguero-Gémez &
Casper 2010). The results from PIC analyses coravdw those of TIPS analyses, although they
are not presented here. Phylogeny was obtained) B$iglomatic, using taxonomic groups
recognized by the Angiosperm Phylogeny Group (2003)

All mathematical and statistical modelling was peried using R version 2.8.0 (R

Development Core Team 2008).

RESULTS

EFFECTS OF LIFE HISTORY

Plants with different life histories exhibit difemt potential magnitudes of transient
amplification and attenuation. Analyses showedelterbe a significant relationship between
life history and PC1 Hj100= 3.6,p = 0.009; Fig. 5.2), however, there was no sigaific
relationship between life history and PGz {,0= 0.5,p = 0.72). Monocarpic plants and trees
are probably to exhibit both amplified and atteedatransients of greater magnitude than
perennial, iteroparous herbs from open habitatssanabs, which in turn are probably to exhibit
amplified and attenuated transients of greater fadg than perennial, iteroparous herbs from
forest habitats. There is no bias towards eithatively larger amplification or relatively larger
attenuation. Statistically, life histories can beuped as indicated in Fig. 5.2 with perennials
(both open and forest) and shrubs having simitarsients, being lower in magnitude than those
of monocarps. Trees can be grouped with either wamps or perennials and shrubs, having
transients of a lower magnitude than monocarpsbathigher magnitude than perennials and

shrubs.

RELATIONSHIPS BETWEEN TRANSIENTS AND ASYMPTOTIC GRW@TH
Populations that grow faster in the long term slboth amplified and attenuated transients of a

greater magnitude than those that are slower-ggwon declining (significant positive
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relationship betweenand PC1F; 100= 4.2,p = 0.042; Fig. 5.3), with no bias towards either
relatively larger amplification or relatively langeattenuation (no significant relationship
betweerr and PC2F; 9= 0.04,p = 0.83).

INFLUENCE OF MATRIX STRUCTURE
Matrices with a greater dimension are probably xbil@t both amplified and attenuated
transients of a greater magnitude than matricels aismaller dimension (significant positive
relationship between matrix dimension and PELy= 36.2,p < 0.001; Fig. 5.4), with no bias
towards either relatively larger amplification celatively larger attenuation (no significant
effect of dimension on PCE; ;0,= 0.3,p = 0.60).

Matrix type was not influential in determining ttransient dynamical properties of the
PPM models: it had no significant effect on PCE;s=0.52,p=0.47) or PC2
(Fi105=2.1,p=0.15).

DISCUSSION

RELATIONSHIPS BETWEEN TRANSIENTS AND LIFE HISTORY

Analyses showed there to be a U-shaped relationséiween life-history strategy, defined
along a continuum of ecological succession, andrtagnitude of both amplified and attenuated
transient dynamics. Monocarpic plants (a groupihgrmuals and monocarpic perennials) and
trees, representing opposite ends of a scale dbgical succession, generally have amplified
and attenuated transients of greater magnitudesiwars and iteroparous perennials. This is an
intriguing observation — the expected relationsimight be one of monotonic decline with
increasing life history complexity, at least for @ified dynamics: several studies have shown
that annuals and species of early succession haageg reproductive allocation than perennials
and species of later succession (Gleeson & Tilng801Aarssen & Taylor 1992; Silvertown &
Dodd 1996; Fenner 2000).

Selective environmental pressures acting on ligeehny trade-offs may account for our
findings. Early-successional species inhabitingnopabitats will benefit from a quick pre-
emption of abundant resources. For trees, gagwriforest are ephemeral and may be filled by
a few individuals at most. In both situations, undeodels of ‘lottery’ recruitment, where
successful establishment of juveniles is random amiscriminate (Chesson & Warner
1981; Chesson 1991; Turnbull, Crawley & Rees 20p@)ducing many viable offspring may
give the best chance of successful colonizationidlwincreases the potential for transient
amplification). Due to subsequent space constraintBor competition for resources, juvenile
mortality would be high (which increases the patdrior transient attenuation). This would

account for the boom-and-bust transient propeeidsbited by these life histories. Perennials
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in forest habitats, in contrast, experience a ikt constant environment, where colonization
opportunities are more predictable. Therefore, sthdtill experiencing space and resource
constraints once established, they might be leges®d to the pressure of ‘lottery’ colonization.
Thus, their best strategy may be to weigh the cois(sinnecessary) reproduction against the
benefits of survival and vice versa, resulting iecreased fecundity and increased juvenile
survival (and therefore more stable transient pggseas a result). There is ample evidence for
trade-offs such as these in plants (Mitchell-O1886a,b; Ehrlén & van Groenendael 1998 and
citations therein). It is worth bearing timescalenmind when considering this: tree populations
are slow-growing, and their ‘transient state’ vililerefore probably last far longer than that of
an annual. Transient dynamics can be just as eatfamboth, but over entirely different
timescales.

The discrepancy between our findings and resultsrdproductive allocation theory
(Silvertown & Dodd 1996) perhaps reflect the diffieces between studying individual
demographic traits and demographics (the size¢tstrel and dynamics of population®r se
The number of offspring produced is a product mdy of reproductive allocation, but of many
vital rates. For example, trees may allocate coatpaly less resources to reproduction than
annuals, but given increased pollination successatgr number of seeds produced or greater
seed set, a tree may produce as many individusprifig in a single year, and hence have the
capacity to exhibit the same magnitude of transimiplification. Indeed, seed size (and
therefore number) is not necessarily proportionaintividual size across species, and shows
great variation across taxa and life histories @det al.2005). In addition, measures of
reproductive allocation do not account for adultvaial: increased adult survival in trees will
probably contribute to greater population ampliiia.

Further analysis of how life history and transielynamics are related is needed.
Sensitivity, elasticity and/or transfer functionadyses of transient indices would inform on
whether, as for asymptotic elasticity (Silvertoetnal.1993; Silvertown, Franco & Menges
1996; Franco & Silvertown 2004), specific life lmges show individual patterns in their
responses to perturbation. Such results would egpjulation managers with the information

on the ability of populations of certain speciesmaplify and/or attenuate.

RELATIONSHIPS BETWEEN TRANSIENTS AND LONG-TERM DYNKICS
Populations with rapid asymptotic growth (grea)eare likely to harbour the potential for
greater magnitudes of both transient amplificatiod attenuation.

For transient amplification, this relationship &atively intuitive: vital rates such as
survival and fecundity that contribute to long-tgpapulation growth also contribute greatly to
transient amplification. However, the relationshifih transient attenuation is less intuitive,
since attenuation is associated with low sub-aslutvival, and low or zero fecundity. Again,

given trade-offs in allocation of resources to swaland reproduction, a plant that has high
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adult survival (hence increasing asymptotic growtltes and the potential for transient
amplification) may invest less in sub-adult surVifhence simultaneously increasing the
potential for transient attenuation). Our discovefypositive relationships between long-term
rates of growth and the magnitude of short-termufaifpn amplification and attenuation may
suggest that all of these are similarly influentgdvital rates of members of the population,
which in turn will be determined by evolutionarystary or environmental resources and
stressors. We explore this possibility by relatiogr results to reported patterns in both
asymptotic and transient sensitivities and eldsgi

The popularity of asymptotic analyses is accompghbiean abundance of literature on
sensitivities of long-term population dynamics tibal rates of plants. Comparative studies
utilizing empirical models have explored patternselasticity of asymptotic growth to both
compound transition rate elasticities (Silvertostnal. 1993; Silvertown, Franco & Menges
1996; Crone 2001) and vital rate elasticities (Ecad Silvertown 2004; Burnset al.2010).
Simulation studies have also explored relationstipsveen elasticities of matrix elements
(Carslake, Townley & Hodgson 2009b). In the vasjamity of these cases, it has been reported
that elasticity of asymptotic growth to survivalgieater than elasticity to fecundity. As outlined
earlier, we might intuitively expect transient aifipation to respond to adult survival (as well
as fecundity), but attenuation to respond to sulitadirvival.

Despite the wealth of studies of sensitivities syraptotic growth rates to vital rates,
there is a dearth of similar studies for the sesitof transient dynamics to recruitment,
survival and growth in plants. Perhaps, the onlestigation into patterns of sensitivity in
transient dynamics was made by Koenhsal.(2005). They considered three bird and three
mammal species at various points on the fast—sfevhistory continuum. They found that for
populations close to stable stage structure, tahsensitivities showed a greater dependence
on sub-adult survival than on fecundity (which iitar to results for asymptotic elasticity in
mammals and birds — see Heppell, Caswell & Crow2@d0 and Seether & Bakke 2000).
Conversely, for populations disturbed away fronblgestage structure, transient sensitivities
showed a greater dependence on fecundity and saiwival than on sub-adult survival. Our
indices utilize initial structures that represeighgicant departures from stable structure, and as
such they would be more likely to exhibit this sedgattern. This agrees with expectations as
outlined above for amplified dynamics, but not witkpectations for attenuated dynamics. It is
noteworthy that Koon®t al's results are not directly comparable with thossadibed for
asymptotic dynamics as one is a measure of sdhsitind the other is a measure of elasticity
(for formal definitions see Caswell 2001). Howevér,appears that, for animals at least,
transient sensitivities do not conform to the nghatbal patterns of asymptotics and are far more
attuned to variation in initial conditions.

It is difficult to infer how vital rates may detemme the transient dynamics of plant

populations using studies of asymptotic dynamicglamt populations or transient dynamics in
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animal populations. However, patterns of transgamsitivity in plants could be complex, and
amplified and attenuated dynamics might show differesponses to variation in vital rates. A
study explicitly concerning transient sensitiviglasticity and/or transfer function analyses in
plants needs to be performed to infer these relstips. For now, we are left with the
intriguing observation that plant populations pegelil to grow faster in the long term tend to
exhibit the potential for larger magnitudes of si@mt amplification and attenuation than

(asymptotically) slower-growing or declining poptités.

EFFECTS OF MATRIX STRUCTURE ON TRANSIENT INDICES
Both amplified and attenuated dynamics increasemagnitude with increasing matrix
dimension.

One explanation for this is that it is an artefafcinodel design. A larger matrix (i.e. one
with a larger number of stages in the life cycledeld will house comparatively more
demographic transition rates and hence will cappaak rates of fecundity and mortality more
efficiently. A small (low-dimension) matrix used tiescribe the same life cycle will effectively
average out variation in fecundity and mortalitiesa so that peak rates of a small matrix will
always be of lesser magnitude than those of a lang&ix for the same population. This
‘averaging effect’ is a parsimonious explanation & increase in transient magnitude with
increasing matrix dimension, since maximum (andimmirm) column sums of a larger matrix
are likely to be larger (and smaller) than for aeraged, smaller matrix. This is an important
consideration, because it highlights that poputstimay amplify or attenuate beyond bounds
predicted by simplified models.

However, if the number of stages chosen is a fleation of the life cycle, then this
should not be the case — modelled transient dyrsamauld be indicative of the true transient
dynamical properties of the population. An organisith greater stage specificity (i.e. greater
heterogeneity in demographic rates across theclitde) will require a life cycle model with
more stages (and hence a larger projection matriggpture that heterogeneity. In this case, our
finding that magnitudes of transient dynamics iaseewith increasing matrix dimension would
indicate that organisms with greater stage spégifxhibit more extreme transient dynamics.

As a comparative study, ours does not control fages specificity and as such we
cannot reliably distinguish between these two exgians. However, a recent study
by Tenhumberg, Tyre & Rebarber (2009) provides seamport for the former. They collected
demographic data from the pea aplidyrthosiphon pisumand used it to create matrices of
differing dimension. They then compared model peas from these matrices to empirical
dynamics of laboratory populations. They found thager matrices modelled greater transient
growth rates and captured observed transient graatbs more effectively than smaller
matrices. This further supports our hypothesis thagnitudes of transient dynamics increase

with increasing matrix dimension.
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Approaches to parameterizing matrix models arenofiased upon data availability
(Vandermeer 1978; Moloney 1986) or are taxon-sped#.g. Noon & Sauer 1992), whilst
reviews of methods for modelling complex factorstsas environmental stochasticity (Fieberg
& Ellner 2001) or spatial heterogeneity (Day & Hogham 1995) reveal a diversity of
approaches. Matrix dimension is known to have aiognt effect on the elasticities of matrix
elements (Enright, Franco & Silvertown 1995). Hoemuits effect on population size, density
or growth rate has not often been studied (butdseMatos & Silva Matos 1998; Lamar &
McGraw 2005; Ramula & Lehtila 2005; Tenhumberg,eT§ Rebarber 2009) and is less often
controlled for in demographic analyses. Our resali&cate that it could have consequences for
these measures and hence for management stravegied upon them. Perhaps there is a need
for more stringent rules in matrix parameterizattonassure that models are predictive and
comparative. Enright, Franco & Silvertown (1995)gested that matrix dimension should
either be a function of longevity or equal for diffnt models that require comparison (see
also Salguero-Gomez & Casper 2010 for homogenimiatrix dimension across models). Our
results indicate that either solution could haveefiact on transient dynamics depending on the
population under study. We also note that the digzation of infinite-dimensional integral
projection matrices (see Ellner & Rees 2006), famarical analysis, should consider the
impacts of dimensionality not just on asymptotiegictions, but also on the transient properties
of the discretized model.

Matrix type did not show a significant relationshigth transient magnitude and so
appears to have no effect on the transient dynaaifitke model. This may be because real-
world populations do not conform rigidly to the e boundaries of classification used to
describe empirical models. For example, inclusibjust one extra stasis parameter in a Leslie+
matrix changes it into a growth matrix. Howeveis tsingle parameter is unlikely to have huge
effects on the model output. Whilst it is a goodado incorporate possible model effects in

analyses, perhaps a more robust definition of mdgmpe’ is required.

CONCLUSIONS

The indices of transient dynamics that we emplose hghould prove to be useful in many
scenarios. In the fields of situ conservation and pest control, measures suchaatviey and
first-timestep attenuation would allow demographersalculate ‘best-case’ and ‘worst-case’
scenarios, so establishing the ability of distudeato cause population booms and crashes in
the very near term, and enabling attempts to desjgick fixes’ to buffer against population
disturbances. In the contrasting fieldseaf situpopulation management (including species
reintroduction) and harvesting, indices such asimam amplification and attenuation may
enable demographers to utilize population distucban their advantage and enable population

managers to maximize population size and viabiNithout compromising costs or harvest
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rates. In fundamental research, these indicesiapdrticular, the Kreiss bounds) are useful in
comparative analyses as measures of the overadli¢rst dynamical properties of a population
or species. Primarily, however, all of these indieeould be of use to anyone who does not
have knowledge of initial population structure. Whénformation on population structure is
available, other methods may prove more pertinéat. example, the measures of transient
growth employed in Maron, Horvitz & Williams (2016)ay be more useful to demographers
who have information on current population struetand are interested in population growth
rate rather than size (e.g. to identify whetheropypation is currently undergoing short-term
decline or increase). Population momentum andia@foons, Holmes & Grand 2007) may be
more useful to demographers who are interestedojpulption size or density but have
information on current population structure. Ine@sh, measuring transient growth rates or
population inertia and/or momentum would be momrefulsvhen comparing within, rather than
between, species or populations exposed to diffexamditions, e.g. as a measure of fitness.
Our results have shown that there are strong etiwak between the Kreiss bounds and
immediate and maximum measures of population aioglibn and attenuation. The
relationships of these indices with one anothed waith other indices of transient dynamics
such as population momentum and inertia, warrarthdéu exploration. In addition, we have
uncovered several patterns in the transient dyrenpooperties of populations. First, life
history and transient dynamical properties of papohs are related. Second, transient and
long-term dynamics are positively correlated. Tedsimore light on both of these findings, a
study that looks at the sensitivity of transientghanges in transition rates would be ideal. Last,
transient dynamics are sensitive to matrix dimemsigth consequences for management
strategies based upon such models. It is debatedidther this is an artefact of the model or
because of larger matrices modelling organisms wittater stage specificity and life cycle
complexity. In either case, matrix dimension oughbe controlled for in any transient analysis
of population dynamics. Transient analysis is k&) see increased popularity in the near
future — these results and further studies of tespopulation dynamics should aid population

managers and conservationists working with wilchpf@opulations.
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TABLES

TABLE 5.1: The transient indices used in analysespmpanied by formulae for calculation, and bimabdescriptions. After Townley & Hodgson (2008ge

also Fig. 5.1minCS minimum column sum of the matrix. Note that r dige Kreiss bound calculations is different fromiged to describe intrinsic population

growth rate.

BIOLOGICAL MEANING STRENGTHS/ ADDITIONAL
DESCRIPTION INDICES
(AMPLIFICATION/ ATTENUATION) WEAKNESSES INFORMATION
Immediate REACTIVITY The largest/smallest possible density (relati&mple; amenable to ||1§||1 < Prax
(first-timestep) reactivity = ||1i||1 to asymptotic dynamics) that may be reachqgkrturbation analysis / minCS(A) 2 Prmin
transient index by the population in the first projection Does not always capture
FIRST-TIMESTEP interval. largest transient.
ATTENUATION
first timestep
attenuation = minCS(A)
Kreiss bound  UPPER KREISS BOUND The density a population must amplify/ Amenable to perturbation K3 < [
K} = max {(r — |1 - B)7Y| } attenuate to (relative to asymptotic dynamicahalysis; captures largest s >p .
1 1 — -
i before reaching its maximum/minimum transient more effectively /
overall size; therefore inner bounds on Inner rather than outer bound

LOWER KREISS BOUND
K; = Igi{l{(r — DminCS(r1 — A)~}

transient amplification/attenuation. on transient magnitude.
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Maximum MAXIMUM AMPLIFICATION The largest/smallest density (relative to Captures outer bound, May or may not

transient index P = max {” Kt”l} asymptotic dynamics) that may be reached byaximum transient / result from the
the population overall. Not amenable to perturbationsame stage-bias as
MAXIMUM ATTENUATION analysis. |1A]l, 7
Pmin = rpzigl{minCS(Kt)} minCS(A)
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TABLE 5.2: Spearman’s rank correlation matrix foe iog,-transformed transient indices used
in analyses. Values reported are Spearmanaues. All p < 0.001.

Pima K; IA]], Pmin K;
K; 0.99
IA]. 0.97 0.96
Pmin -0.66 -0.65 -0.65
K> -0.48 -0.49 -0.46 0.92
minCS(K) -0.44 -0.41 -0.56 0.70 0.55
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FIGURES
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FIG. 5.1: Graphical representation of the indicEgransient dynamics used in analyses. Each
solid line represents a single stage-biased pioje¢of the standardized matrix) initiated with a
total density of one (i.e. each projection starihwall individuals clustered in a single stage
class: a population initiated at stable stage ildigion would follow a flat line at y = 1).
Therefore, in this example from a six-stage PPMrydlare six projections. The vertical axis is
on a logarithmic scale to illustrate the multiptiega nature of the measurements. Note that

maximum amplificationp,,,, and reactivity f{|L, may or may not result from the same initial
stage structure, which is also true for first-titegs attenuatiorminCSA) and maximum
attenuatioP . K; <PpaandK,>p . |Alk < PraandminCgA) > p . Example PPM

used for projection is for the palimartea deltoidea(Pinard 1993).
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Principal component 1

Life form

FIG. 5.2: On average, plants at the extremitieifefhistory complexity (i.e. monocarps and
trees) tend to have transients of greater magnitode those of mid-range complexity (i.e.
perennial herbs and shrubs). Lowercase lettersfhgignoupings of life history by statistical
significance. M = monocarpic plants from open andlisturbed habitats, O = perennial herbs
from open and/or disturbed habitats, F = pereriredbs from forest habitats, S = shrubs,

T =trees. Means and SD are plotted for an averaggixndimension and average r where

relevant, using the minimum adequate model.
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Principal component 1
0 2 4

-2

-10 05 0 05 10 15
Asymptotic growth rate (r)
FIG. 5.3: The potential magnitudes of transient aigits (both amplified and attenuated
measures) have a positive association with r, thasure of long-term population growth or
decline, although there is a lot of scatter inrlationship, as is evident from the graph.
The fitted line is plotted for an average matrixndnsion using the minimal adequate model

(but excluding life history because of the diffigubf calculating an ‘averagé value for this
parameter).
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Principal component 1

3 5 7 9 11 13 15 17
Matrix dimension
FIG. 5.4: The dimension of the matrix model (equathe number of stages chosen in the life
cycle model) shows a positive relationship with gotential magnitudes of transient dynamics
(both amplified and attenuated transient measulris@d curves are plotted for average r where

relevant, using the minimum adequate model (buluelkag life history due to the difficulty of

calculating an ‘average’ value for this parameter).

116



117



CHAPTER 6

Exploring patterns of the range of transient dyrsnmiaturally led to questions regarding the
probability of models exhibiting certain transietnamics over others. Chapter 6 is the one
unpublished chapter of this thesis. As the lasptavawritten, it improves on the methods used
in chapter 5. We choose to analyse populationimgiten its strength and tractability as an
index of transient dynamics. We make use of thevative MCMCglmm analysis framework,
which uses Bayesian inference to fit complex modelslata, most importantly enabling an
accurate modelling of phylogenetic signal. We es@lahether populations tend to amplify or
attenuate following disturbance, and nudge tramsiigmo the realms of evolutionary biology by
linking our results to life history theory. The wits presented in this chapter suggest that
transient dynamics may not just be important toundgerstanding of ecological dynamics, but

also to our understanding of how life histories reaglve over time.

Chapter 6:
Stott, I., Townley, S. Franco, M., Matsikis, I., Gake, D.J., & Hodgson, D.J. (2012) Stage-

structured life cycles favour demographic resilent plant populations. In prep.
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STAGE-STRUCTURED LIFE CYCLES FAVOUR DEMOGRAPHIC
RESILIENCE OF PLANT POPULATIONS

ABSTRACT

The importance of incorporating environmental #oia into demographic studies is well-

recognised. However, little is understood about ghert-term responses of populations to
demographic disturbance events, which act overtsheriods of time to directly alter

population size and structure, but have little @ffen the longer-term vital rates of the
population. Recent interest in transient dynamitspapulations has enabled study of the
response of populations to disturbance. Using ndvahsient analyses, we show that
populations have a remarkable tendency to booraspanse to disturbance by exhibiting short-
term increase in population density. This is trumhbacross the entire range of possible
disturbances and for disturbances that have bermded in the field. We uncover patterns in
this booming behaviour, according to life histormdaphylogeny. We argue that this
demographic resilience to disturbance should bevatved property of populations living in

disturbed environments, and tentatively suggestkaldetween tendency towards amplification

and the evolution of stage-structuring in natufeldycles.

INTRODUCTION

Natural populations are subject to an ever-changmgronment. Sources of heterogeneity that
may influence a population’s vital rates and suiteinclude variation in abiotic factors such as
temperature (Egley 1990) or light availability (Baitine & Forde 1960), biotic factors such as
disease (Tompkins, White & Boots 2003) or compmtit{(Connell 1983), and anthropogenic
factors such as harvesting (Pinard 1993) or hatdéstruction (Tilmaret al. 1994). Changes in

a population’s vital rates and structure translater time into changes in its dynamics:
consequently the environment influences populatiensity and growth (Savagg al. 2004).
Population density and growth are key componenfiérafss (Hunt & Hodgson 2010), therefore
environmental variation imposes an important salagiressure on populations.

The importance of modelling environmental variation population dynamic and
evolutionary studies is well-recognised. Stochastmdels of demography are established in
population ecology (Fieberg & Eliner 2001), andchtastic measures of fitness have long been
used in evolutionary ecology (Gillespie 1974). cBstic models usually incorporate
environmentally-induced variation in survival, feclty, growth or regression, termed
perturbationsto life cycle rates. An alternative (although Iessnmon) approach to stochastic

analysis is to modalisturbanceto population structure. In this case, stochasditation is not
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forced through changes in matrix entries, but thhoahanges in the population vector (Stott,
Townley & Hodgson 2011 [Chapter 1]). Hence, in adelowith perturbation, population
dynamics are dictated by a changing schedule af vétes that slowly mould structure and
density over time. On the other hand, populationaglyics of a model with disturbance follow
the schedule of an unchanging set of vital ratescfpated by sudden changes in structure and
density. While it might be possible to model denagdpic disturbances via perturbations to vital
rates (e.g. a disease epidemic will cause a suiddezase in mortality; the ploughing of a field
will cause a sudden increase in seed bank germimative suggest there is value in modelling
such events as disturbances to demographic steudttom a modelling perspective, it may be
more revealing to disturb the state rather thavetturb the system.

Whichever form a stochastic model takes, analysssally focus on long-term
dynamics: mean and variance in long-term populatjmwth and density (Fieberg & Ellner
2001). In the long term, expected growth rate idependent of the population’s current
structure. However, patterns of short-term growdh prove to be very different to expected
long-term trends, and are highly dependent on tineeot structure of the population (Townley
et al. 2007; Townley & Hodgson 2008). These ‘transienghamics have seen increased
research interest in recent years, both as a mefrscreasing accuracy of models for
population management (Stott, Hodgson & TownleyZk0JChapter 2]), and as a means of
explaining the complicated time series of populatitynamics in nature (Kooret al. 2005a,;
Stott et al. 2010a [Chapter 5]; Maron, Horvitz & Williams 2010lthough some methods
explore transient response to perturbation (Neubed Cawell 1997), studying transient
dynamics in the context of disturbance has proverentractable and meaningful. Hence, the
vast majority of transient analyses consider pdmraresponse to disturbance (Fox &
Gurevitch 2001; Yearsley 2004; Koomrd al. 2007; Caswell 2007; Townlegt al. 2007;
Townley & Hodgson 2008; Stott, Townley & Hodgsori2QChapter 1]).

Transient response of populations to disturbandé matter from an evolutionary
perspective: a population that can boom in respomsdisturbance, thus quickly rebounding
from reduced density, will have significant competi advantage over a population that busts
in response to disturbance. Evolutionary studiésnouse measures of long-term growth as
surrogates for fitness (Hunt & Hodgson 2010). Th&ocally however, populations in disturbed
environments should evolve to maximise not onlg tbhg-term growth, but also their ability to
rebound from disturbance in the short term. Thiseoiation yields the notion olemographic
resilience which we define as the ability of a populatiorbtiunce back from disturbance in the
short term by booming in density. This definitidiffers importantly from many established
concepts of ecological ‘resilience’: such measumese commonly estimate the rate of return to
stability or the time taken to reach stability,Ié@ling disturbance or perturbation (Gunderson
2000). The concept of demographic resilience mptementary to these ideals: we don’t look

to redefine the concept of ecological resilienag, to extend the concept of resilience to the

120



study of transient demography (Neubert & Casweli7)9We study demographic resilience in
the very short term as the propensity torégctive (Neubert & Caswell 1997): in other words
the probability of growing faster than the stalbdg¢erof increase following disturbance. We
study demographic resilience in the longer termthees propensity to have positivieertia
(Koons 2007): in other words the probability of Elgdup larger than a stable population,
following disturbance. These measures fit with gemeral concept of resilience: the former
measures the instant rate at which a disturbed lgopu bounces back (towards carrying
capacity or to regain numerical advantage); theedaheasures whether this ‘rate of return’
advantage can be maintained through time. A ligony that can achieve quicker numerical
replacement following disturbance and maintain higimsity in the longer term will, all else
being equal, dominate a disturbed system. As haghadjraphic resilience to disturbance will
infer superior competitive advantage, it might bgexted that rates of high demographic
resilience should be found in nature.

In this study, we explore patterns of demograpbgilience in natural populations of
angiosperm plants. First of all, we merely seeknteasure rates and distributions of
demographic resilience in populations. Second, explore how patterns of demographic
resilience change according to shared ancestry liénchistory. We employ a recently-
established framework for measuring transient dyoaniStott, Townley & Hodgson 2011
[Chapter 1]), as well as introducing novel statetisampling procedures for studying transient
dynamics in the context of demographic resiliend&/e explore rates and distributions of
demographic resilience using simple but robusissiedl methods, and extend this exploration
into patterns according to phylogeny and life mgtosing cutting-edge Bayesian generalised
linear mixed models (Hadfield 2010).

Our results indicate that populations show remdykdiigh rates of demographic
resilience to disturbance. Patterns in these mtedinked to both phylogenetic history and life
form. We argue that this emergent property of petpans is highly likely to be an evolved
response to a disturbed environment. We analigtiiak high demographic resilience to the
stage-structuring of life cycles, including delayegroduction and asymmetry in juvenile and
adult survival, and discuss how the differencedigturbance regimes experienced by different
species may shape differences in their patterdewiographic resilience. Last, we speculate on
how transient dynamics may contribute to understanditness of populations in stochastic

environments.
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MATERIALS AND METHODS

DATABASE

We use a database of 620 population projectionixn@®PM) models for 147 angiosperm
species representing 57 different families. Thesadels have been collected from the
published literature, and for some species includighin-species replicates (multiple
populations per species) and/or within-populatigplicates (multiple PPM models per
population, measured at different times). We fodB8 of the models in the database to be
reducible. Reducible models present problems iatysis as they often represent biologically
implausible life cycles, and may be non-ergodiaistiviolating certain assumptions of many
PPM analyses (Sto#t al. 2010b [Chapter 3]). In all analyses, we excludktlicible models,
leaving 487 irreducible PPM models for 143 specigmesenting 56 different families. To
these remaining models, we applied the ‘seedsection (Caswell 2001 p.60-62) to matrices
with redundant seed stages, which are sometimgspasoluct of incorrect modelling of fast
germination rates.

Only a portion of our database contained infornmatim the current demographic
structure of populations, which is a necessaryeppdgsite for some of our analyses. This subset
numbers 215 irreducible PPM models for 70 speapsesenting 36 different families. Some
demographic vectors excluded measures of cert@nstages (usually seeds and early life
stages): in this case we took the conservativeogoprof fixing densities of those stages at their
stable-stage density and combining these with éberded demographic densities of other life
stages. All demographic vectors were scaled totsutmin analyses.

Appendix 7 contains the database of PPM modelsxaasdciated information.

BASIC PPM MODELS

We study the dynamics of density-independent, rochsistic (i.e. linear, time-invariant)
population projection matrix models, which are di¢e-time models that take the formFA'ng,

In this equationn, and n, are the demographic vectors at time t and timedpectively,
containing numbers or densities of individuals &the stage clas#\ is a square, nonnegative
matrix representing the life cycle of the organisncorporating measures of survival, growth,
retrogression and fecundity. Af is primitive (which should usually be the casbgrt whatever
its demographic structure, the population is predido settle to atable statewith long-term
(asymptotic) stable rate of growth or decline eqaahe dominant eigenvalig,. of the PPM,
and stable demographic structure with ratios ajestaqual to the dominant right eigenvegtor
of the PPM (Caswell 2001). The relative reproductialue of each stage is embodied in the

dominant left eigenvector of the PPM.

TRANSIENT DYNAMICS
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Population projections of linear, time-invariant shets are a combination of both the long-term
asymptotic dynamics described above, and short-temsient dynamics Transient dynamics
can differ dramatically from long-term trends (Tdexm & Hodgson 2008): in the short term,
populations may either boom by growing faster tthesir stable rate of growth (amplify) or bust
by growing slower than their stable rate of grow#tenuate). Hence, a population that
amplifies becomes larger in size/density than anvedent stable population, and a population
that attenuates becomes smaller (Townley & HodgXif¥8; Stott, Townley & Hodgson 2011
[Chapter 1]). Whether a population amplifies oreatates is dictated by its demographic
structure. In this study we introduce the notidridemographic resilience’: a population that
amplifies in response to a disturbance is consiléoebe resilient in the short-term to that
disturbance, whilst a population that attenuatesisidered to be non-resilient.

We employ two measures of transient amplificatiod attenuation, following Stott,

Townley & Hodgson (2011) [Chapter 1]. These measwise the standardised matiXequal
to A scaled by\,,) and the standardised vect65 (equal ton,y scaled to sum to 1) in their

calculation. Thus, they remove any confoundinga¥ of differing asymptotic growth and
differing initial density to give transient indicélsat are comparable both among and within
models. These standardisations mean that theesdve employ measure the transient density
of a non-stable population projection, relative the density of an equivalent population
projection initiated with stable stage structurks a result of this, indices with values greater
than 1 indicate population amplification whereadides with values less than 1 indicate
population attenuation.

The first index, reactivity, measures the transi@miplification or attenuation of the
population in the first timestep (note that Stofpwnley & Hodgson 2011 [Chapter 1]
distinguish between ‘reactivity’ being amplificatian the first timestep and ‘first-timestep
attenuation’ being attenuation in the first-timgst®r ease, here we use reactivity as a catch-all

term for first-timestep response). Reactivity isasured as:
reactivity =P, = ||K ﬁ0||1 .

The second index we employ is population inertfes a result of transient dynamics, a non-
stable population will settle at a density abovebelow its predicted stable density when it
reaches stable state. Inertia is the measure isfldhg-term population amplification or

attenuation and is measured as:

T/\
o v ng|[wl|
inertia = P, = #.
viw
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By using both reactivity and inertia, we are allessess first whether populations are resilient
to disturbance in the very near term, and seconeliven they maintain that resilience in the

long term.

DATA SIMULATION

We explore demographic resilience in two settirfigst, we measure ‘general demographic
resilience’ to all possible disturbances. Secavel measure ‘specific demographic resilience’
to recorded disturbances in the field.

GENERAL DEMOGRAPHIC RESILIENCEVe consider the general demographic
resilience of the population to be the probabiliy amplification across all possible
disturbances. We compute this by calculating teectivity and inertia of the population for
randomly generated demographic structures thatrdieeentire range of possible population
structures. We achieve this unbiased samplingeofadjraphic vectors by drawing population
structures from the Dirichlet distribution. TherDhlet is a multivariate generalisation of the
beta distribution, and is parameterised by a veofoshape parameters The distribution
concentrates on this vector, with the degree ofceotration modelled by a scaling factor:
increasing the scale af increases the probability of sampling near Hence, when all; are
equal, the distribution is symmetric, and whencalequal one, the Dirichlet is equal to the
multivariate uniform [0,1] distribution.

We calculated a mean PPM per species (using aetlugible PPM models), and drew
one million random demographic distributions frdme symmetric Dirichlet with all; equal to
one for each mean matrix. We then calculated tesbtivity and inertia for each matrix-vector
pair, giving 1 million measures each of reactivaityd inertia for every mean species matrix.
From these one million samples we were then ableatculate the probability of immediate
amplification p(R>1) and the probability of long-term amplificatip(P,,>1) for each species.

These measures of general resilience were caldulesieg the preactivity and pinertia
functions in the R package popdemo (Stott, Hod@gsdiownley 2012a [Chapter 4]).

SPECIFIC DEMOGRAPHIC RESILIENCBVNe consider the specific demographic
resilience of the population to be the transiespomse of the population to a specific, observed
demographic disturbance. Observed demographiardetice is modelled using the recorded
non-stable structure of the population. We catedaeactivity and inertia for each population
(using all irreducible PPM models with recorded dgnaphic structures), and from this data,
calculated a mean reactivity and a mean inertisspecies.

Reactivity and inertia were calculated using thacteity, firststepatt and inertia

functions in the R package popdemo (Stott, Hod@gsdownley 2012a [Chapter 4]).

STATISTICAL METHODS

Our first question is simply: in the short termyhiesilient are species to disturbance?
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EXACT BINOMIAL TESTSNe initially explore this question non-parametiligaand
conservatively, with exact binomial tests. For em@h demographic resilience, we binary-
transformed probabilities of reactivity and inertiyy assigning a O if there was higher
probability of attenuation (i.e. if p{P1) or p(R>1) were <0.5), or assigning a 1 if there was
higher probability of amplification (i.e. if p(P1) or p(R>1) were >0.5). We conducted an
exact binomial test on this data against a null@adf 0.5, representing a null hypothesis that
each case occurs with equal probability. For dedemographic resilience, we binary-
transformed measures of reactivity and inertia bgigming a value of O if the population
attenuated (i.e. if Por P, were <1) or a value of 1 if the population amplfi(i.e. if R or P,
were >1). We conducted an exact binomial testhisidata against a null value of 0.5, again
representing a null hypothesis that amplificatiod attenuation are equally likely to occur.

BOOTSTRAP T TESTSecond, we explore this question parametricalipguswo-
tailed, one-sample bootstrap t-tests. For gendeahographic resilience, we tested mean
probability of amplification in reactivity and irtea against the null hypothesis that
amplification and attenuation are equally likelyeoall (i.e. we tested E[p(Pl)] and
E[p(P.>1)] against a null mean value of 0.5). For sfieaemographic resilience we log-
transformed reactivity and inertia (as this bettepresents the multiplicative nature of the
indices for parametric statistical analysis, anelds values >0 for amplification and <O for
attenuation), and tested these against a null hgsa that populations are equally likely to
amplify or attenuate to the same magnitude ovéral we tested E[log@ and E[log(R)]
against a null mean value of 0). Significance determined by assessing whether confidence

intervals calculated from t-distributions overlagpeith null mean values.

Our second question is, does demographic resilishoe relationships with shared ancestry or
life history?

MCMCglmm To address this question, we employ generalisesht mixed models
(glmm) that use Markov Chain Monte Carlo (MCMC) @ithms in a Bayesian inference
framework, using the R package MCMCglmm (Hadfiedd @).

Random effects: We constructed a phylogeny inclydiranch lengths for all species,
using phylomatic (http://phylodiversity.net/phylotita to find topology down to family level,
phylocom (Webb, Ackerly & Kembel 2008) to calculdtench lengths down to family level,
and then taxonomic literature to find topology drench lengths for remaining within-family
polytomies. This yielded an almost fully-resolyadylogeny, with just 2 remaining polytomies.
Phylogeny was modelled as a random effect in MCM@glmodels, in each analysis trimming
species from the tree that did not appear in the fie that analysis. The final phylogeny and
full details on its inference can be found in Apgiers.1.

Fixed effects: We assigned each species a life @dreither monocarpic (M), perennial
herb in open habitat (O), perennial herb in fotesbitat (F), shrub (S) or tree (T) following
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Franco & Silvertown (2004). This was modelled a%-kvel, categorical, fixed effect in
MCMCglmm models.

Model structure: For both general and specific dgnapohic resilience measures, we
assessed the following 4 models: including bothlgdeny and life form, including phylogeny
but excluding life form, excluding phylogeny butcinding life form, and excluding both
phylogeny and life form. Support for phylogeny difel form were assessed using the deviance
information criterion (DIC), with lowest DIC inditiag the most informative model. For
general demographic resilience, we logit-transfanper-species measures of P and
p(P.>1), converting any values of 1 to 129@s probabilities of 1 cannot be modelled by the
logit distribution. We analysed both logit{pe)} and logit{p(P.>1)} simultaneously in a
bivariate gaussian gimm, allowing interactions heswthe two responses and fixed effects, and
full variance-covariance between the two responsben estimating random and residual
variance. We used default uninformative priors figed effects, and specified parameter-
expanded uninformative priors for random and residriance, which gave relatively good
chain mixing. Our number of iterations was 30000ih a 10% burnin and a thinning interval
of 100, which achieved low autocorrelation in fixefflect posteriors and high repeatability of
results. For specific demographic resilience, \wely-transformed reactivity and inertia by
assigning a value of O if the population attenudiesl if P, or P, <1) and a value of 1 if
reactivity or inertia were >1(i.e. if;Por B, >1). The two binary responses were analysed
separately in univariate binomial gimms, therefor@delling the probability of amplification in
response to recorded disturbance. We specifiecharioumative prior on the probability scale
for fixed effects, parameter-expanded uninformatpréors for random effects, and fixed
residual variance at 1, which gave relatively gab@in mixing for scaled posteriors. The
number of iterations was also 300000, with 10% luamd a thinning interval of 100, which
again achieved low autocorrelation of fixed-effeolutions and high repeatability of results.

For more information on all statistical models, @sgpecially detailed explanations and
justifications of MCMCglmm model structure, pridnaice and model fit, please see Appendix
6.2.

RESULTS

HOW RESILIENT ARE SPECIES TO DISTURBANCE?
Populations show remarkable demographic resiliendty the large majority amplifying in
response to disturbance, and maintaining amplifioah the long term.

EXACT BINOMIAL TESTSEXxact binomial tests were highly significant in aelises
(p<0.001 for all tests), which indicates a highesbability of amplification in all data. For

general demographic resilience, this means thaitgrerobability of amplification across all
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possible demographic structures is significantlyrentikely both in the immediate and long
term (i.e. p(>1) > 0.5 and p(R>1 )> 0.5 occur significantly more often than P) < 0.5 and
p(P,>1) < 0.5 respectively). For specific demograpkisilience, this means that amplification
in response to recorded disturbance is signifigamtbre likely both in the immediate and long
term (i.e. R> 1 and B> 1 occur significantly more often thap1 and R< 1 respectively).

BOOTSTRAP T TESTSBootstrap t tests showed that this result also shold
parametrically (p<0.01 for all tests), which agaidicates a higher probability of amplification
in all cases. For general demographic resilietlug, means that the average probability of
amplification is significantly greater than 0.5,tlhan the immediate and the long term (i.e.
E[p(P>1)] > 0.5 and E[p(B>1)] > 0.5 Figs. 6.1a & 6.1b). For specific deraggtic resilience,
this means that the average magnitude of log-toam&fd immediate and long-term transient
dynamics are both significantly greater than O @&gog(P)] > 0 and E[log(R)] > 0 Fig. 6.1c,
Fig. 6.1d).

DOES DEMOGRAPHIC RESILIENCE SHOW RELATIONSHIPS WITHSHARED
ANCESTRY OR LIFE HISTORY?

Populations show patterns of general demograpkitenece according to both phylogeny and
life history, but we identified no such patterns $pecific demographic resilience.

MCMCglmm Analyses of general demographic resilience inditainteresting
relationships with both phylogeny and life form.IDindicated that the inclusion of life form
was supported over its exclusion (Table 6.1). fatar estimates show a U-shaped relationship
along the axis of ecological succession (M-O-F-Sfdr) probability of both reactivity and
inertia (Figs. 6.2a & 6.2b). Thus, monocarps areks show the highest probabilities of
amplification in the immediate and long term, whiterennials and shrubs have relatively
lower probabilities of amplification. However, theodel with lowest DIC was the phylogeny-
only model (Table 6.1), which indicates that thedationship is better explained through
modelling longitudinal shared ancestry than througbss-sectional categories of life form,
pointing to a degree of conservation of transiemindgraphy within clades. MCMCglimm
analyses for specific demographic resilience indtahat there was no support for inclusion of
either phylogeny or life form in the model (Table)6 Parameter estimates for different life
forms were very similar (Figs. 6.2c & 6.2d), and thck of support for phylogeny indicates that

response of species to disturbances experiendbd field is not conserved within clades.

DISCUSSION
Populations show a remarkable tendency towards ificagion in response to disturbance.
When assessing population response to every caideiwdisturbance, we found that the

overwhelming majority of species are significanttpre likely to amplify rather than attenuate,
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both in the immediate and long term. We also fothat populations show a high tendency
towards both immediate and long-term amplificatiomesponse to real-world disturbances. At
the least, this represents an interesting ecolbglenomenon. However we also link this result
to life history theory: we argue that amplificatiom response to disturbance should be an
emergent, evolved property of natural populaticarg] present analytical results that suggest
our observations can be explained in part by tlagesstructuring of life cycles, including

asymmetry across the life cycle in rates of suhaval reproduction.

LINKING DEMOGRAPHIC RESILIENCE AND LIFE HISTORY
Population dynamics are a consequence of the atienabetween an organism'’s life cycle, and
its demographic structure. Hence, the transiesparese of a population to disturbance is
mediated through the life cycle.

It is possible to obtain an analytical solutionthe Dirichlet sampling procedures we
present here, and we illustrate this geometricadiing a 3-stage model f@arlina vulgaris
(Lofgrenet al.2000):

0.500 0 2.800
A =(0.250 0.222 0
0 0.667 0

,A=1(0239 0213 0 0.203|, 1.494

0.479 0 2.682 0.667 0.686]"
0 0.639 0 0.130 1.841

Figure 6.3 shows a unit triangle plotted in thrégmahsional space. The complete set of
relative densities of a three-stage demographgriids surface. The unit triangle is bisected by
another triangle which defines the boundary of &@imption versus attenuation. For reactivity,
the vertices of the bisecting triangle are defibgdhe reciprocals of the column sums of the
standardised PPM. For inertia, vertices are defined by the redpts of the entries of the
reproductive value vectar (after scaling/ andw so thatv'w equals 1 and the sumwfequals
1). Above the bisection boundary the populatiorpléias, whilst below the boundary the
population attenuates. Therefore the area withenuinit triangle above the bisection boundary
equals our measure of general demographic resdlietiee probability of amplification in
response to any conceivable disturbance. This ge@mwepresentation generalises to an (n-1)-
dimensional unit simplex plotted in n-dimensionalpérspace, bisected by another (n-1)-
dimensional simplex whose vertices are definetiénsame manner.

We provide the algebraic solution to the three-disnenal case in Appendix 6.3, but
the n-dimensional generalisation of this equat®far more difficult to deduce. However, we
can speculate on how the entriesAcéindv affect the response of the population to distuckan
For a non-stage-structured demography, the vertitése bisecting simplex would be equal to
the vertices of the unit simplex. In this case, semographic structures achieve either
amplification or attenuation. For a stage-struddulemography with varying rates of survival,

growth, retrogression and fecundity, one or momgptex vertices are greater than 1, and one or
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more simplex vertices are less than 1. This meaatsthe unit simplex is bisected into regions
of amplification and attenuation. Thus, stage-dtnugg is a necessary prerequisite for transient
dynamics. The position of vertices of the bisectisignplex dictates the amplification-
attenuation boundary in the unit simplex. Therefahe relative column sums of the PPM and
the relative reproductive value of each stage deter what proportions of demographic vectors
achieve amplification immediately and in the loegnt respectively. It is evident from figure
6.3 that asymmetry in the vertices of bisectingrgles (i.e. some vertices larger than 1 and
some vertices smaller than 1) achieve boundariemgirelatively high probability of
amplification for both reactivity and inertia, aneg provide algebraic support for this assertion
in Appendix 6.3. In the case dfarlina, this asymmetry is achieved through delayed
reproduction and differential juvenile and adultvéual. Conversely, early reproduction and/or
reduced asymmetry in survival would result in & Iistory with decreased probabilities of
amplification (as vertices >1 are moved down tlagies and/or vertices <1 are moved up their
axes). Generalising this geometric interpretatmn-dimensional space is more difficult, as the
number of simplex vertices increases. Howevergctre results that stage-structuring achieves
transient dynamics and that asymmetry in the lifelec achieves asymmetric probability of
amplification or attenuation will still apply.

It is difficult to determine cause and effect with@xperimental evidence. A tendency
towards amplification may be a desirable side-¢ftéstage-structured life histories, or it could
be a target of selection. It is generally accephat populations evolve to maximise their rate of
numerical increase, and measures of population tgraave commonly used to represent
genotype ‘fitness’ (Hodgson & Hunt 2010). Althougimple conceptual models might suggest
that early reproduction and semelparity shouldawedired in life histories (Cole 1954), various
different explanations for the evolution of delayegroduction, iteroparity and structured life
cycles have been explored. Early reproduction neagdmstrained by resource availability (Bell
1980), and iteroparity may be favoured when therdifferential juvenile and adult survival
(Roff 2002; Charnov & Schaffer 1973). Fitness neae/ depends on the environment, and
structured life cycles and delayed reproduction imaye evolved as a bet-hedging strategy in
stochastic environments (Wilbur & Rudolf 2006; KeoR008). High demographic resilience
may be a beneficial consequence of such evolutjomarcess that favour structured life cycles.
Alternatively, a tendency towards amplificationré@sponse to disturbance could be selected for.
The environment influences population structureudlgh disturbance, and in the same way that
fithness may depend on population sex ratio (Caretl al. 2012), fitness in a disturbed world
may depend on population structure. A life histbimat is able to achieve high rates of
numerical replacement both in the long term anthénshort term following disturbance should

be fitter than a life history that achieves eitbee, but not the other.
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THE EFFECT OF DISTURBANCE REGIME

The optimal life history for promotion of amplifitan is obviously going to depend on the
disturbance regime that the population experiencéghen modelling general demographic
resilience of populations, we analysed overall paion response to uniform random
disturbance. This null disturbance regime may #&euailly be unlikely to occur in nature. First,
disturbance may be non-uniform: this gives peaik(¢he sampling distribution of demographic
structures. For example, populations may be mkedylto be disturbed closer to their current
demographic structures. Second, disturbance mayoberandom: this biases the parameter
space that demographic structure is pushed intangthg the slope(s) of the sampling
distribution. For example, a hurricane may damagge trees but leave saplings unscathed, so
that disturbance is relatively more likely to cawssmographic structures with more saplings
and less adults. These two caveats present dicagriconceptual impasse in our approach:
disturbances may be non-uniform and/or non-randmrhjt is almost impossible to state what
distributions of non-uniformity and non-randomnegsst in nature. On the one hand, our null
approach may be a poor representation of real-wdigdirbance regimes. On the other hand,
by avoiding bias altogether, we avoid the pitfdib@sing distributions in the wrong manner.

Timing of disturbances is also likely to be impaittaand the interaction between type
of disturbance and timing of disturbance shouldceptually dictate a population’s optimal
response. A population that experiences frequelatively uniform and relatively random (i.e.
relatively unpredictable) disturbances would wanbe resilient to a large range of disturbance
types. Conversely, a population that experiencsquent, non-uniform and non-random (i.e.
relatively predictable) disturbances might wishbw highly resilient to that particular type of
disturbance whilst potentially sacrificing resileanto other disturbance types. Various different
optima could exist in between these two extremdéifferent disturbance regimes can be
modelled by changing the sampling pattern withim anit simplex. It is worth noting that the
Dirichlet distribution provides the opportunity reodel biased disturbance regimes: asymmetry
in the distribution is easily achievable by varyitige relative values and scale @f shape
parameters of the distribution. However, the qoasstill remains as to how non-uniformity
and non-randomness should be modelled.

Although it is difficult to say what disturbancegimes populations have experienced
historically, we found that populations show a sabsal tendency towards amplification in
response to observed disturbances, albeit a weaalkaionship than for resilience across all
possible disturbances. This represents a crossisaicsnapshot of natural disturbance regimes,
and so it is difficult to discern whether recordbsturbances are frequent or infrequent, random
or non-random, and uniform or non-uniform in the@spective systems. However, the

observation still remains that populations tendthenwhole, to be resilient to them.
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PATTERNS ACCORDING TO PHYLOGENY AND LIFE FORM

If demographic resilience is a target of naturded®n, then we may expect to find a
relationship between demographic resilience andlogeyy if demographic resilience is
phylogenetically constrained. Equally, if distunbe regimes dictate optimum patterns in
demographic resilience then we may expect to findelationship between demographic
resilience and life form if different life forms parience different disturbance regimes.

We found that plants exhibit patterns of generahalgraphic resilience according to
both phylogeny and life form. Plants show a U-&thpelationship between life history (as
defined on a continuum of ecological successiom) mrobability of amplification across all
possible population structures (Fig. 6.2a & 6.2bjhis echoes results from Stett al. (2010a)
[Chapter 5] that found a U-shaped relationship ketwlife history and potential magnitude of
both amplified and attenuated transient dynamitlere are two key differences between this
study and our earlier study: first of all, here wensider population response to specific
disturbances, whereas in Stettal. (2010a) [Chapter 5] we focussed on transient bsutich
represent the most extreme possible transient dgsatimat a population can exhibit. Second,
in this study we assess the probability of ampiiimn, whereas in Stodt al. (2010a) [Chapter
5] we worked with measures of the magnitude ofdiiem dynamics. Combining both results,
we find that monocarps and trees show more extteamsient bounds (i.e. a larger transient
envelope), alongside a greater probability of afigaliion in response to disturbance. On the
other hand, perennials and shrubs show a decreasge of potential transient dynamics,
alongside a relatively lower probability of ampd#ition in response to disturbance.

We previously linked patterns in transient bourapdtterns of recruitment competition
mediated by life history trade-offs. Monocarps a@reks may experience relatively greater
lottery recruitment competition, as opportunities $eedling establishment are relatively more
ephemeral than for perennials and shrubs (Chess@fager 1981; Chesson 1991; Turnbull,
Crawley & Rees 2000). Thus, monocarps and treesefibefrom large magnitude of
amplification enabling fast population establishineThe flipside of this is that trade-offs
between survival and fecundity (Ehrlén & van Graatael 1998) mean they are more exposed
to greater magnitude of attenuation. Conversedyemnials and shrubs experience relatively
more stable environments, so are able to weighivalragainst fecundity to achieve optimal
fitness without the need for such extreme trangignaimics. In this context, the results we find
in this study have two possible interpretationdrstFgreater probability of amplification for
monocarps and trees will aid potential populatioomgh under increased lottery competition:
whatever the population structure, populations abée to take advantage of ephemeral
resources by having a higher probability of amplify and by amplifying to a greater
magnitude. Second, increased probability of anggliion in monocarps and trees will
counteract the potential detrimental impacts oératation: if life cycle trade-offs necessarily

mean that the population also has the potentiattémuate to a greater magnitude, then having a
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life cycle with lower probability of attenuation @ne way to deal with this. Conversely,

perennials and shrubs can endure a relatively highebability of attenuation because their

magnitude of attenuation is relatively smaller.efdtatively, it may simply be that life histories

that favour increased potential range in transtymamics also necessarily favour increased
probability of amplification.

We previously found no relationship between randetransient dynamics and
phylogeny, but our analyses here show that a pkylp@nly model best explains variation in
probability of amplification. This may be a congeqce of different analytical techniques: here
we incorporate phylogeny with branch lengths imd#CMCglmm model, which may be more
robust to some of the pitfalls of comparative as@ly(Freckleton 2009) than our previous
method of using comparative contrasts (Freckle@®02 calculated from a phylogeny without
branch lengths. Alternatively, we may have uncodexrdrue result relating to the conservation
of life histories within plant clades. Transientinds on amplification are dictated by the largest
matrix column sum (reactivity) or the largest enimythe reproductive value vector (inertia).
However, probability of amplification is affecteds the relative sizes of all column sums
(reactivity) or all stage-specific reproductive wesd (inertia). Hence, whilst both metrics will be
affected by variation in magnitude of vital rat@spbability of amplification is additionally
affected by aspects of life cycle structure suctedayed reproduction and ability to skip stages
or regress through the life cycle. It may be fiatcycle structure is conserved within clades,
whilst the sizes of vital rates within that struetiare less constrained. There is scant evidence
for this, although it has been found that sizesvitdl rates are relatively independent of
phylogeny, whilst the absolute importance of thasa rates to long-term population growth is
more constrained (Burreg al. 2010). How these patterns affect transient dynsumsicinclear, as
broad comparative analyses of response of transigmmics to perturbation are yet to be
conducted. On the whole however, conservation fef tistory within plant clades is not
particularly well-understood, and phylogenetic sigm studies of life history is often lacking
(Burnset al.2010; Buckleyet al.2011).

Whilst we found patterns according to general deagaigic resilience, we found no
support for a relationship between either phylogenyife history and specific demographic
resilience. Conceptually, this could provide supfor the idea that different life forms have
found different optimum solutions according to tldferent disturbance regimes they
experience. Therefore, despite the fact that wiffe life forms show different patterns of
general demographic resilience, they show the spatterns of response to real-world
disturbances. However, this hinges on the assomptiat recorded disturbances in our
database are a representative sample of the disttegb experienced by plants in nature, and

there is no simple way to tell whether this is thse.
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DENSITY DEPENDENCE AND STOCHASTICITY

Our use of linear, time-invariant PPM models meiduas we do not account for either density-
dependent effects (Benton & Grant 1996) or enviremi@l stochasticity (Tuljapurkar, Horvitz
& Pascarella 2003). Consensus techniques forienainanalyses are yet to be extended to these
modelling systems, so for the moment at least wdianited to studying transients using basic
PPM models. However we note that in any case, systems lack adequate information on
the ways in which density dependence and envirotahestochasticity affect populations.
Many studies may collect demographic informatiodemvarying population densities, and/or
varying environmental conditions, yet it is anothiing altogether to understand the
mechanisms of density-dependent action or postibke series of environmental perturbation,
which are crucial to modelling such effects.

A common criticism of comparative analyses that msgection matrices or life tables
is that they do not account for density dependerficdtal rates (Caughley 1966; Gaillaed al.
1994). However, the assumption of density-indepand is often the best option in the absence
of information on the form and strength of densigpendence in each species. Despite this, we
can speculate on how transient dynamics may behadensity-dependent systems. Density of
all or part of the population may affect overallpptation growth. The relationship between
density and growth may be positive, mediated thinofilee effects (Stepheret al. 1999). In
this case, if disturbance tends to decrease paoguldéensity then amplification may be the only
thing that rescues the population from being pushezt an Allee threshold into a phase of
decline. Alternatively, the relationship betweeensity and growth may be negative: for
example, intraspecific competition may slow growtha plant population at high densities
(Lewontin & Levins 1989). Below carrying capacitiie benefits of amplification in response
to disturbance will still exist: populations thant to amplify will reach carrying capacity
soonest. However, this benefit may change as dpulgtion increases and approaches its
attractor: close to carrying capacity, populatidhat amplify may risk overcompensating
density dependence (May 1975; Grenétlal. 1992).

Environments are rarely constant, and the impodgaot modelling environmental
heterogeneity in natural systems is widely recaghi¢Fieberg & Ellner 2001). Stochastic
models usually incorporate such environmental stsiitity by modelling variation in vital
rates (perturbation) of the population over timk.is well-established that long-term mean
stochastic growth rate is lower than asymptoticedsinistic growth of a mean population,
which is due to variation in per-timestep growthul{@purkar 1990; Landest al. 2003).
Transient dynamics are an integral part of thisclssticity: per-timestep growth is
deterministic, combining asymptotic growth rate ighhis independent of population structure)
and transient dynamics (which are dependent on lptipo structure). A propensity for
amplification may increase mean per-timestep graavit¥or decrease variance in per-timestep

growth, in both cases increasing long-term mearchsistic growth rate. Demographic
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resilience will certainly be important in stochassiystems that experience relatively constant
environments that are punctuated by large distodagvents. For example, coral reefs
experience relatively constant environmental comas, but populations endure heavy
disturbance in hurricane years (Mumby, Vitolo & @tenson 2011). An ability to rebound
from such disturbance events will be key to popoatpersistence, by avoiding lethal
consequences of reduced population density sushsxeptibility to interspecific competition,

demographic stochasticity and Allee effects.

CONCLUSIONS

We have shown that plant populations exhibit a rkatde propensity towards amplification in
response to demographic disturbance, patterns afhwhary according to life form and
phylogeny. We strongly believe that this demogiaphsilience will be a target for natural
selection: it ameliorates detrimental effects aftulibance, facilitates successful exploitation of
ephemeral opportunities for colonisation, avoidsiifal Allee effects associated with reduced
population density and may contribute positivelyldag-term stochastic growth. We have
analytically linked demographic resilience to thage-structuring of life cycles, including
delayed reproduction and asymmetry in juvenile addlt survival. However, the intricate
mechanisms underpinning the relationship betweagesstructured life cycles and a tendency
towards amplification are unclear. Additionallyet causal relationship between the two is
uncertain: demographic resilience may be a desraethsequence of other selection pressures
that favour stage-structuring, or it may be a d&lactarget that has helped to mould stage-
structuring in organismal life cycles.

Transient theory is a burgeoning field in ecologyver time it has gained significant
traction in the disciplines of population managetmamd comparative demography, and will
doubtless continue to contribute to these fieldhenfuture. But perhaps transient theory also
has a significant contribution to make in the studylife history evolution. Evolutionary
studies often use demographic measures as fitnegegates. Just as ecologists are
increasingly realising the benefits of thinking tlhe short-term, it may pay evolutionary
biologists to do the same. Effects of populativuncdure on fithess and the different selection
pressures acting on short- and long-term demograptould be important to understanding
evolutionary processes. Consequently, transienamjcs may provide a new perspective for

understanding the complex arrays of life histomyrfd in nature.
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TABLES

TABLE 6.1: Results of MCMCglmm analyses

Model Type Response Fixed Random DIC
General Bivariate p(R>1) and p(R>1) Life form  Phylogeny 1391.34
resilience None Phylogeny 840.15
Life form  None 1430.27
None None 1453.84
Specific  Univariate Binary-transformed;P Life form  Phylogeny 89.04
resilience None Phylogeny 88.50
Life form  None 88.05
None None 87.45
Specific  Univariate Binary-transformed,P Life form  Phylogeny 96.49
resilience None Phylogeny 89.23
Life form  None 88.41
None None 87.44
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FIG. 6.1: Distributions of measures of demograpbaiilience (a) the probability of immediate
amplification in response to every possible distade (p(2>1)), (b) the probability of
immediate amplification in response to every pdssitisturbance (p(1)), (c) long-
transformed immediate transient response (reagtivaof species to recorded disturbances
(log(Py), (d) log-transformed long-term transient response fimenf species to recorded
disturbances (log(R}). In each panel, red lines indicate the mean24% confidence intervals
calculated from bootstrap t-tests. Significancenidicated by the fact that 95% confidence

intervals do not overlap with 0.5 in panels a andria 0 in panels ¢ and d.

136



14ra 11-(1e-6)
121 H1-(1e-5)
10}
= ® {1-(le-4)
< 8
= N-(1e-3)
= 6
[e)] ® [ ]
9 40.99
4t e}
2+ 10.9
O i 1 1 1 1 1 -05
M O F S T
Life form
C_ 40.99
4 L
2} H0.9
= ®
A‘—
o
\5 0 = T 0 5
prrg
D
ke
-2r 40.1
_4 -
40.01

M (0] F S T
Life form

logit{p(P..>1)}

14

12

10

Il 1 1 1

1

0.99

0.9

0.5

M (6] F S
Life form

0.99

0.9

0.5

0.1

0.01

Life form

1-(1e-6)

1-(1e-5)

1-(1e-4)

1-(1e-3)
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phylogeny. In all cases, probabilities are plotteda logit scale but the probability scale is

shown on the right-hand axis for clarity.
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Reactivity Inertia

FIGURE 6.3: Geometric representation of generalagaphic resilience for a 3-stage model
for Carlina vulgaris Regions of amplification are shaded yellow, asgions of attenuation are
shaded blue.
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DISCUSSION

Thinking in the short term can help demographedetstand the ecological and evolutionary
processes underpinning population dynamics. Usinframnework for studying transient

dynamics (Stott, Townley & Hodgson 2011 [Chaptey, Wle have presented methods (Stott,
Hodgson & Townley 2012b [Chapter 2]) and softwarelg (Stott, Hodgson & Townley 2012a
[Chapter 4]) that enable demographers to incorpdrainsient analyses into their work. Using
case studies, we have shown that such transielylsasaare important for informing population
management for conservation and pest control. Usargparative analyses, we have shown
that different life forms show different ecologicphtterns of transient dynamics, and that
certain aspects of transient demography may beabéi (Stottet al. 2010a [Chapter 5];

Chapter 6). Finally, we have linked transient derapby to stage-structuring in life cycles and

ventured the possibility that transient dynamicy met as a target for selection (Chapter 6).

Modern ecological paradigms assume a dynamic emvient, where systems are constantly
subject to factors that force changes in their dyna (Cuddington 2001). Ecological studies
are often conducted over relatively short timescalbere such changes in dynamics will be
important. Yet even now, analyses of ecological edinvariably focus on long-term
dynamics (Hastings 2001, 2004). Although transikeory is not a new idea (Kermack &
McKendrick 1927), until recently the quantitativeatysis of transient dynamics remained
somewhat of a black box. New developments in thekl fof transient demographic analysis,
including those presented in this thesis, should teebroaden the use of transient analyses in
population management, comparative ecology, antligon.

The need for more widespread application of trarisianalyses is not merely
conceptual: as we have shown, transient dynamigsnaportant to population management
(Stott, Townley & Hodgson 2011 [Chapter 1]; Stétgdgson & Townley 2012a [Chapter 3];
Stott, Hodgson & Townley 2012b [Chapter 2]). Igmgritransients in management of
populations can be detrimental in many ways: firinagement may not identify and deal with
patterns of short-term growth or decline that amtagonistic to management goals. Second,
management may have detrimental effects on tratssiereating short-term dynamics that are
detrimental to management goals. Third, managemeagtoverlook the opportunity to exploit
transient dynamics to achieve management goals iimo@ ecologically and economically
efficient manner. Few applied ecological studiesehaonsidered transient dynamics to date
(although see McMahon & Metcalf 2008). The metheds software tools presented here

should allow that to change, giving population ngra and conservationists the opportunity to
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conduct analyses that are more predictive of fupmgulation dynamics. In many cases, this
could result in management schemes that are mofegecally and economically efficient than
would otherwise be possible.

We have also shown the methods presented in tegstiio be useful in comparative
analyses of transient dynamics (Settal. 2010a [Chapter 5]; Chapter 6). The prevalence and
importance of transients in nature is poorly uned: again, very few studies have explored
ecological and evolutionary patterns of transieynmainics (although see Kooms al. 2005;
Maron, Horvitz & Williams 2010). There is ample dgnce, particularly in the plant ecology
literature, which show that observed demographractires differ from predicted stable
demographic structures (Bierzychudek 1999; Doak &riid 1999; Ramula & Lehtila 2005;
Williams et al. 2010). However, there is little consensus on wérestuch deviations tend to be
large or small, and whether they have positive egative consequences for population
dynamics. We have shown that observed demograpticteres found in natural populations
tend to result in amplification, and that this pber@non extends to the entire range of possible
demographic structures a population may take (@nagt This represents early evidence that
natural structuring of populations has importanbsamuences for their dynamics. We have
shown that these patterns of response to distuebahow links to a plant’s life history and
ancestry (Chapter 6) and that populations showrdggaeity in the ways in which they can
respond to disturbance (Stett al. 2010a [Chapter 5]). This represents early evidehatethe
dynamical consequences of natural population stringg may induce selection pressures on

transients.

These tantalising early results open the door flrstantive research into the ecological and
evolutionary importance of transient dynamics, #mefe are many questions yet to be asked.
First of all, we need a greater understanding ahdients and what influences them. Our
understanding of how long-term population dynangos shaped is comparatively good, as a
result of the numerous studies linking long-ternovgh to life cycles through perturbation
analysis. We know that sensitivity of long-term gtb to different vital rates depends on an
organism’s life history. For example, long-term gtb is often more sensitive to changes in
survival than fecundity (Carslake, Townley & Hodgs2009b). In plants, long-term growth in
tree populations is relatively more sensitive tdividual survival, whilst long-term growth in
annual plant populations is relatively more sewmsitio fecundity (Silvertowret al. 1993;
Franco & Silvertown 2004). In mammals, age of figgproduction is more important to long-
term growth of animal populations than fecunditgr se (Oli & Dobson 2003). Having
identified that patterns of transient dynamics teaisongst different life forms, the logical next
step is to identify what most influences those dyica. Perturbation analyses are the way to
answer this. The best method is debateable: satysdnalyses (Caswell 2007; Stott, Hodgson
& Townley 2012b [Chapter 5]) are amenable to siatistudy, but pronounced nonlinearity in
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perturbation curves of transients may mean thastes functions (Stott, Hodgson & Townley
2012b [Chapter 2]) are more accurate, if more uldlyie

We have linked high demographic resilience to skege-structuring of life cycles
(Chapter 6). An important next step is to explotether there is enough selection pressure on
demographic resilience to favour stage-structufedcicles. This will help answer the question
as to whether high demographic resilience is aralalsi consequence of stage-structured life
histories or whether it may have helped to drive ¢lolution of stage-structuring. To answer
such questions using experiments would requireghhhitailored study system: an organism
that exhibits a stage-structured life cycle, is aatde to tailored population disturbances, and
evolves fast enough to detect changes in theyideeawver the course of a single experiment. In
the first instancein silico modelling experiments of the same nature may peoei theoretical
support for a selection pressure on transient digganA third option may be to conduct
invasion experiments that assess whether popusatidth higher probability and magnitude of
transient amplification have competitive advantalgewever, this evidence wouldn’t be so
concrete in its support for transient dynamics terget for selection, and it would be very hard
to delineate effects of transient demography framf@unding competitive effects. Perturbation
analyses may also help to understand evolutionateqms of transient dynamics. They could
be effective in identifying the main areas of ttie tycle that may be targeted by selection: the

vital rates that transient dynamics are most seadi.

To fully understand how transient dynamics are stapur knowledge of transients will have
to move beyond density-independent, non-stochastidels. The advances that have been seen
in this modelling framework are substantial, angbamtant, and such models may remain the
easiest modelling systems with which to study tems. However, transient analyses will need
to be migrated to density-dependent and stochazielling systems if we are to gain a full
appreciation of how transient dynamics can furtbar understanding of demography. At
present, it is unclear how transient dynamics fitilinto these systems. In density-dependent
models, transient dynamics will still exist in pdgtions that have densities below carrying
capacity. However, we might expect that densityetelent effects will dampen transient
dynamics as populations approach carrying capa€hgrefore, whilst it may be possible to
study near-term transient dynamics, density-depgindgstems may not benefit from the
existence of an analogue to population inertia.

The study of transient dynamics in stochasticesystraises even more issues. At one
level, deterministic transient dynamics are angrdkpart of stochastic dynamics, as they are a
result of the perturbations and disturbances thatacterise stochastic systems. However, there
may yet be merit in studying stochastic-transieghainics of systems that experience
occasional, significant disturbance events. Distndes of large enough magnitude may still

result in amplification or attenuation that movespplation density outside what may be
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reasonably expected of ‘normal’ stochastic effetitsthis respect, stochastic systems may
exhibit their own transient dynamics at the stotihalevel where, for short time periods
following disturbance, population growth is sigodntly larger or smaller than long-term
stochastic growth. In such cases, populations cstilldsee stochastic transient amplification
and attenuation both immediately and in the longnte

Another future requirement for a fuller understaugdof transients is the migration of
transient dynamics to other classes of populatiodeh Integral projection models (IPMs) are
gaining popularity as alternatives to PPMs in deraplic research (Ellner & Rees 2006, 2007).
As these are essentially infinite-dimensional PPMlets, the migration of transient analyses to
IPMs shouldn't present too much of a conceptualblem. Other popular modelling
frameworks include individual-based models (van MinRose & Chambers 1993), difference
equation models (May 1975) and metapopulation nsofiéanski 1998). Each of these model
classes may stand to gain the same kinds of infligiittransient dynamics has afforded PPM
modelling. The formulation of meaningful indicestadnsient dynamics for these systems is an

important methodological challenge in populatiooldyy.

Finally, as mentioned throughout this thesis, thsrenerit in considering the application of
transient theory to other areas of biology. If siant dynamics have proven to be important in
stage-structured populations, then theoreticalty ttmay be important in other stage-structured
biological systems. Biological systems at all lsvel organisation may be considered as ‘stage-
structured’, and often very different systems aceletled in very similar ways. For example, at
the level of the gene, matrix models are used poesent genetic algorithms (Nix & Vose
1992). At the level of the cell, matrix models arged to represent stoichiometric metabolic
networks (Papiret al. 2002; Reeckt al. 2006). At the level of the community they are used
model species distributions (Cherell al. 1995). At the level of the ecosystem, they areluse
represent energy flow (McGinnet al. 1969). It may prove a simple task to apply theéssof
transient analyses developed in matrix populatioadets to these systems. Many other systems
may be considered to be stage-structured, evdreyf are not modelled using matrices: gene
expression networks, hormone regulation, modelsdieéase progression, epidemiological
models, food webs, speciation models and nutrigalies are just a few examples. However,
once transient analyses are formulated for varinadel classes (network models, individual-
based models, differential equation models, andomsl the application of those analyses

between different biological systems could be atietly easy process.

Transient theory has come a long way in a shom fimthe field of population ecology. There
are a number of challenges that lie ahead, in ingttihodological development and in exploring
the importance of transients in the ecology andutvm of populations. In any case, transients

should have a lot more to offer yet in helping tplain the natural variation found in
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population dynamics. Results presented in thisithesggest that transients may even help
explain some of the variety found in the life higge of different species. Indeed, if transient
analyses are extended beyond demography to otbas af biological research, they may yet
help in explaining all sorts of variation foundaher levels of biological organisation, across

new scales of time and space.
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APPENDICES

APPENDIX 1.1

Detailed information on methodology and resultscofrelation analyses between transient

indices and simulated time to convergence (Chapter

We calculated time to convergence as the time téketine population to settle to within 1% of
predicted asymptotic growth. We did this by prajgtpopulation size using the population
projection matrix (PPM) and randomly generated -cgmeific initial demographic distribution,
and calculating time-dependent growth) @t each time interval. Onde remained within a
window of (0.99%a0 <M < (1.01%a9 for 10*s intervals (where s is the dimension loé t
PPM) then convergence was deemed to have beereckdsb, for example, a 3x3 matrix with
Amax=1.05 would be considered to be converged withinaf%,.« when it exhibits 0.1395 ¥; <
1.0605 for 30 consecutive time intervals. The valti@0*s was used to prevent miscalculation
of convergence: some matrices (especially largéd-ggpe matrices with similar mortality and
fecundity values for each age class) may exhiltébie’ growth for many consecutive time
intervals, when in fact they have not yet converdggtsuring that our window for stable growth
is much larger than s prevents the algorithm fraematurely thinking that such models may
have converged. This is additionally preferablentlising the same, very large window for
every matrix, as it saves on computation time. &®me code for calculating convergence time
is included in the functiononvergence.time of the R packagpopdemo.

The first figure in this appendix shows relatiopshibetween indices of transient
population density and time to convergence. Thiehiahd side of the figure shows distributions
of Spearman’s correlation coefficient between cgmgific transient indices (Table 1.2 in
Chapter 1) and time to convergence. These were wathy randomly generating an initial
demographic distribution for each PPM, computingeegpecific transient indices and time to
convergence, and correlating this data. This was tepeated 1000 times to find distributions
of correlation coefficients for the indices. Thght hand side of the figure shows correlations
between the transient bounds on population deii$dple 1.2 in Chapter 1) and the median
time to convergence for each PPM (over 1000 it@na)i. Neither transient bounds nor case-
specific indices show a strong relationship witlmdito convergence, indicating that larger
transient departures from asymptotic growth are mestessarily linked to a longer time to

convergence.
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The second figure in this appendix shows resultxdorelations between the damping
ratio and median time to convergence for each RAfdither the damping ratio nor estimates of
time to convergence using the damping ratio shatr@ng relationship with realised time to
convergence, indicating that the damping ratiods mecessarily a good predictor of realised

time to convergence.
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APPENDIX 1.2
Table of published indices of transient dynamidsafiier 1).

Some formulae differ slightly to those given in tiriginal articles: we present using a common matathave simplified some formulae and present sfommaulae

using their analytical solutions. Matrices are pri#ed capitalised, and in bold. Vectors are in btygé, and in bold. Numbers and scalars are imabfont. ||m]|

is the one-norm of m. Where m is a nonnegativeorethis is equal to the sum of all the entriethi vector. Where m is a nonnegative matrix, thisgual to the

largest column sum of the matri&. represents the population projection mathix,. represents the dominant eigenvalueApfw represents the dominant right

eigenvector oA (the stable demographic distribution vectarjepresents the dominant left eigenvectoAdthe reproductive value vector); represents theeotr

demographic distribution vector of the populatidn.addition of a hat symbol represents scalingpasified of a vector or matrix.

TRANSIENT INDEX REFERENCE FORMULA

NOTES INTERPRETAON

DAMPING RATIO Caswell ) . [Amax|
Damping ratio =
(2001) |2z
KEYFITZ'S A Keyfitz (1968)

, 1
Keyfitz s A = 7 [In, — W],

ey

)

Transient bound; measure of convergence The intrinsic resilience of the population
rate. A, is the first subdominant eigenvalue to disturbance, excluding the influence
of A, including both real and imaginary of the current demographic distribution.

components where applicable.

Distance measure; case-specifiiy, is the The proportional difference between the

current demographic distribution, scaled so current and stable demographic

that||fy||; = 1 andw is the stable distributions, excluding the influence
demographic distribution, wher@& = that the PPM has on the path of
w/||w]l;. population projection.
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PROJECTION
DISTANCE

)

COHEN'S
CUMULATIVE
DISTANCE

Dy

POPULATION

INERTIA AND
MOMENTUM

REACTIVITY

Haridas &
Tuljapurkar
(2007)

Cohen (1979)

Koons
(2007a);
Keyfitz (1971)

Townley &
Hodgson
(2008);
Neubert &
Caswell
(1997)

. ‘A’Tno
Inertia = ——
[Ing |4

Reactivity = ||A\||1

(3)

C)

)

(6)

Distance measure; case-specificis the The difference in the reproductive value
reproductive value vector scaled so that  of the current and stable demographic

vTw = 1 with w as in (2). distributions.

Distance measure; case-specific. Analyticallhe distance from current to stable
solution is presented. is the identity matrix demographic distribution, including the
of same dimension &s; ¥ andw are as in  influence that the PPM has on the path

3). of population projection.

Case-specific measure. Simplified formula The asymptotic density of the

is presentedy is scaled in the same way as population, relative to density that

for (3) and (4). Momentum — following the would occur given an initial population
original Keyfitz (1971) definition — is a with the same overall density but stable
special case of inertia for a population wherdemographic distribution.

Amax = 1, following perturbation to vital rates.

Transient boundaA is the PPMA scaled by The maximum overall population
Amase density that may be achieved in the first
time interval of projection, relative to

asymptotic growth and initial population

density.
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FIRST-TIMESTEP
ATTENUATION

MAXIMUM
AMPLIFICATION

pmax

MAXIMUM
ATTENUATION

—min

AMPLIFIED
ASYMPTOTIC
MULTIPLICATION

P

Townley &
Hodgson
(2008)

Townley &
Hodgson
(2008);
Neubert &
Caswell
(1997)

Townley &
Hodgson
(2008)

Townley &
Hodgson
(2008)

First timestep attenuation = minCS(K) (7N

Prmax = max ([I21],)

t>0

p__=min (minCS(Kt))

—min

—_ _ Vmax”wlll
viw

®)

€)

(10)

Transient boundA is as in (6). minCS The minimum overall population

denotes the minimum column sum of the density that may be achieved in the first

matrix. time interval of projection, relative to
asymptotic growth and initial population
density.

Transient boundA is as in (6). May be The maximum overall population

equal to reactivity as defined in (6), and/or density that may be achieved, relative to

p,, as defined in (10). asymptotic growth and initial population

density.

Transient boundA and minCS are as in (7). The minimum overall population

May be equal to first-timestep attenuation aglensity that may be achieved, relative to
defined in (7) and/op as defined in (11). asymptotic growth and initial population
- density.

Transient boundA is as in (6).v,,. is the  The maximum asymptotic population
largest entry of the reproductive value vectolensity that may be achieved, relative to
v. Equal to population inertia as defined in asymptotic growth and initial population
(5) for the stage-biased demographic vectordensity.

that achieveg .
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ATTENUATED
ASYMPTOTIC
MULTIPLICATION

UPPER KREISS

LOWER KREISS
BOUND
K

Townley &
Hodgson
(2008)

Townley &
Hodgson
(2008)

Townley &
Hodgson
(2008)

VoWl

Lu viw

K= max(r— 1) [| (1= &)

K; = min(r — 1) minCS(rl — K)_l
r>

(D

(12)

(13)

Transient boundA is as in (6).vy,;, is the ~ The minimum asymptotic population
smallest entry of the reproductive value  density that may be achieved, relative to
vectorv. Equal to population inertia as asymptotic growth and initial population
defined in (5) for the stage-biased density.

demographic vector that achieyes

Transient boundA is as in (6).1 is the The analytical lower bound on
identity matrix with the same dimension as maximum amplification as defined in
A. Equal top as defined in (10) where (8).

maximum occurs at» 1.

Transient boundA and minCS are as in (7). The analytical upper bound on

| is as in (12). Equal tp as defined in (11) maximum attenuation as defined in (9).

where maximum occurs aPrl.
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APPENDIX 2.1

Algebraic proofs of formulae (Chapter 2).

DEFINITION OF TERMS

Throughout, we use a common notation where matdoegpresented upper-case bold (A)3.
vectors are presented lower-case bold @,gaumbers and scalars are presented in normal font
(e.g. a) and functions are rendered in italics. @X)).

A perturbed matrix can be represented as:

As = A + &deT (D
whereA is the stage-structured PPMis the perturbation magnitude, addande are column
vectors of the same dimension Aghat determine the perturbation structure. Theatrices
have some emergent properties relating to asyneppoipulation dynamics: with respectAg
the dominant eigenvalug,,x represents the long-term (asymptotic) growth &f plopulation,
the dominant right eigenvectav represents the ratio of stages in the stable depbig
distribution and the dominant left eigenvectarepresents the reproductive value of each stage.
The analogues of these g are termed.;, w; andv;s respectively.

We use) to represent a continuous set of perturbation madgs:
8 €ER; Spmin < 8 < Spax

andA represents the corresponding setsof
AER; 0K A< o,

TRANSFER FUNCTION OF ASYMPTOTIC GROWTH

If X is an eigenvalue @&&; then the following is true:
1=28eT(AI-A)"!d

therefore,

§1=eT(AI—A)"d. 2)

This makes it possible to discern the exact ratatiip betweeid anda.
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TRANSFER FUNCTION OF POPULATION INERTIA

Population inertia is calculated using:

_ Vi llwlly

o = 3
TTw 3)
Note that the upper and lower bounds on populathentia _ and Poo respectively) are

calculated by substituting, (the population’s demographic distribution, scaledsum to 1)
with Vi OF Vimin, (the standard basis vectors that maximise andmisie population inertia

respectively): this is true for all subsequent folae.

(3) is equivalent to:

T T

viigc'w

Py, = 4)

viw

wherec is a column vector of ones with the same dimena®h. Substitutings andw with v;

andw; respectively will give population inertia 8f;. We know that (by definition),
AsVs = vsTAs and Asws = AgWs . (5)
Substituting (1) into (5) gives:
AsVsT =vs (A +8deT) and Asws = (A + SdeT)ws .
Rearranging,

AsVsT —VsTA = 8vs deT and Asws — Awg = dSeTwy
& vsT(Asl — A) = 6vs'deT and (Asl — A)ws = dseTwy

& Vsl = 6vs deT(As1 —A)~! and wg = (AsI — A)"*dSeTwy.
Given thatdvsd andde'w; are both non-zero scalars, they can be ignored:
vsT =eT(AsI—A)"! and ws = (AsI—A)71d. (6)

Substituting from (6) into (4) and usifgn place ofz; gives:
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b = eT(AI—A) 'hycT(AI - A)~1d
- eT(AI — A)—2d '

()

Hence it is possible to discern the exact relatignbetween population inertia (whethey, B

orgoo) and, and using both (7) and (2) together, it is pdesit discern the exact relationship

between population inertia aidd

SENSITIVITY OF POPULATION INERTIA

Using the transfer function method, it is fairlyngile to obtain a value for the sensitivity of

population inertia through differentiation of thearsfer functions themselves.

represented as:

b _ ANAM)
° s
In (8),
i =e"A-A)"H, , HLA)=c"AW-A)"'d

and f3(0) =eT(AI—A)2d.

Differentiating (9) with respect to gives:

i =-e"M-A)?h , f(0)=-c"A-A)"d
and f3(0) = —2eT(AI—A)3d.

Using (9), (10) and the product and quotient ralésws differentiation of (8):

daA h A->Amax

f3(0)?

0o {f{(l)fz(l)fs(l)+f1(7\)fz'(7\)f3(7\)—fl(l)fz(l)fé(l)}_

Differentiating (2) with respect toand rearranging:

oA
0=eT(AI—A)"1d — seT (Al - A)‘Zd%

rearranging this,

oA
seT (A1 — A)‘Zd% =eT(AI—-A)"'d

so that

(7) may be

(8)

(6)

()

)

(12)
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oA eTI-A)"'d
95 SeT(AI—A)=2d’

Substituting from (2) gives
or eTI-A)"1d T 1
3 eTal—a)2a¢ M-Ad

and therefore

Ty _ AV-14)2
on_ . {(e (AL — A) d)}_ 13

35 Aohmax | eT(M — A)-2d

In both (11) and (13), the limit & approaches.,.x must be used to avoid singularity of
matrices wherkh = Ay Finally, the chain rule is used to find the s/ of population

inertia tod:

e _3Fa Bk s
a6 01 36

These formulae are available as part of the R mpcgapdemo. The transfer function of
inertia can be calculated using the funciioertia.tfa , and the sensitivity of inertia can be
calculated using the functidnertia.tfsens . The transfer function of asymptotic growth
can be calculated using the functida , and the sensitivity of asymptotic growth can be

calculated using¢fsens
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APPENDIX 2.2

Matrix multi-plots of transfer functions (Chapter 2

Here we present a series of plots that illustria¢ettansfer functions of inertia across the cactus
(Neobuxbaumia macrocephaland koala Phascolarctos cinerejdife cycles. An individual
transfer function is presented for each life cycdmsition. Plots are laid out in accordance with
the layout of the matrices, so that the positioeadh plot within the multi-plot indicates which
life cycle transition it pertains to. Perturbati@mges are chosen such that fecundity parameters
are bounded at a minimum of 0, and a maximum ohBd the parameter value. Survival/stasis
values are bounded at a minimum of 0 and a maxiwiueither 5 times the parameter value or
1, whichever is smaller. The x axis of each pdahie perturbation value, and the y axis of each

plot is the corresponding value of population iiert
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APPENDIX 3.1

Precise mathematical statement and proof of thedigity test (Chapter 3)

A population projection model is ergodic if

lim {%log(Nt)} ,
i.e. the asymptotic rate of growth of populatiomslty is independent of initial population
structure. Populations described by irreducible BRIve ergodic. In many published PPMs,
missing transition rates, typically missing growtlobabilities caused by lack of observed
transitions, lead to reducible population projettinatrices. So when is a reducible PPM not
ergodic? This non-ergodicity can be detected vig lsimulation runs by seeking out
differences in the asymptotic growth rate of poparadensities. In fact, we can, as described
below, test for ergodicity/non-ergodicity by insfien of the dominant left eigenvector of

the PPM.

A reducible PPMA will, after permutations of coordinates, take fitngn

Ay Uy -+ Uy
A= 0 :
I N
0 0 A

Here each Ais irreducible and typically each column block-mat

Uy
Ui =

] ) 1 = 2J "'Jql
Ui

formed from the block matrices;lUcontains a non-zero entry. The condition on thenEans
there are no backward hanging chains, i.e. in gwmhposition of the life cycle graph of the
PPM into sub-graphs determined by thee&&ach sub-graph i = 2,..., q is linked by a pathtkbac
to sub-graphi=1.

In this reducible case, we have observed in ouulsition study of the data base of
PPMs that the system is ergodic when the domin&gnealue of A is the dominant
eigenvalue ofA. To test for such ergodicity, i.e. whether the d@nt eigenvalue of Ais the
dominant eigenvalue of A, we only need to lookh&t torresponding dominant left eigenvector
of A.

ERGODICITY TEST
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The system is ergodic, i.&(A) = AM(Ay), if, and only if, A has a positive left eigenvector

corresponding to the eigenvalu@).

PRECISE STATEMENT AND MATHEMATICAL PROOF

Assume that the reducible PPMcan be mapped via a permutation of coordinates, Bx, to

a form
Ar U U1q
Ap=mtan=|° = =
n [ Uq—qu'
0 0 Aq
where

1.Each Ai=1,..., q, is irreducible;
2. The dominant eigenvalue Af A(A), is an eigenvalue of only ong; A

3. Each column block-matrix

Ugi
U1= ) i=2;---;q;

Ui_1j

formed from the block matrices; Ucontains a non-zero entry.
Then the dominant eigenvalueAfis the dominant eigenvalue of & and only if, the left

eigenvector oA, corresponding to the dominant eigenvalue, istpesi
PROOF

Suppose first that(A) = A(A1). Then by Assumption 2y(A;) > A(A;), for each i 1. Using the
permuted block form, the left eigenvector equation

vIA = A(A VT

Becomes
[Al Up - Uy ]
0 :
[vi, Vg [ : Uq_qu = A(A)[v], Vg
0 0 Aq
where
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vin? = |v], ...,V;{].

Then
ViA; = AMA V]
and irreducibility of A means that this equation has a positive solutjormhen
ViU +v3A; = M(Av;
and since((A,) <A(A,) we have that
vz =viUp(AMADI = Ay,
But

2

vl =viU,(AMADI—A) L = - < Az +( Az ) +>
- AMAY) AA) (A

is positive because of the irreducibility of.AHence

vy =viUpAADI— Ay

is positive. Continuing that we have that

viUsz +viUps + viAz = A(A)vs .

Then

vi = AA)WVT = AA VT

becomes

[A1 Up - Uy

0 :

[vi, ...,Vg]l : Uq_qu = A(A[vi, AR
0 0 Aq
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Then
viA; = AMAV].

But A(A\) is not an eigenvalue of;Atherefore y= 0 andv is not positive.

Notice that wherA is ergodic in the sense thatcan be permuted to the block form wiiA )

dominant, then the eigenmode expansion of theisolof

e = Ang
IS
vin,
n, = A(A)"——W + other terms,
viw

Where some of the ‘other terms’ may, if & imprimitive, grow geometrically lik&(A)' but
oscillate with the rest decaying faster th&A)', but possibly with oscillations. Importantiy,

andw are non-negative, non-zero vectors, which combwig positivity of v guarantees that

v n,

viw

Is positive and finite. It follows that

lim {%bg(Nt)},

t—oo0

i.e. the asymptotic rate of growth of populatiomsigy, is independent of initial population

structure.
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APPENDIX 3.2
Notes on block-permuting a reducible matrix by h&dbapter 3)

Here, we provide a step-by-step walkthrough of mmés$hto block-permute a reducible matrix
by hand. The method mainly uses the life cycl@lgrassociated with the matrix. The method
is illustrated using a reducible matrix based ugh@enmatrix used in our theoretical models. The
empirical reducible matrices are shown as furthangles. Block-permuting a reducible
matrix is sometimes not an easy process — how si@mrocess it is will depend on the size of
the matrix and the number of isolated sectionsettae in the life cycle. The R package
popdemo contains a functiorblockmatrix that will block-permute a reducible matrix
quickly and easily (with sufficient notes and aratimin to allow translation of the code to other

programs capable of matrix multiplication).

METHOD
Start with a reducible PPM. For this example, \egehtaken the PPM used in our theoretical

models and eliminated transition ratgg @and ge.

1 2 3 4 5 6
1 05 001 075 1 1.25 15 |
2 01 0525 0.01

3 0.08 055 0.01

4 0.575 0.01

5 0.04 0.6

6 0.02 0.625

Step 1: Draw the life cycle graph associated with PPM. It's easiest if all arrows that move
forwards through the life cycle are drawn belowoass that move backwards through the life
cycle.

In this example, the life cycle is:

Step 2: Identify groups of stages in the life cytlat communicate fully with one another (i.e.

have transitions that link every stage in the graitlh every other stage in the group). The
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easiest way to do this is to find the longest loopthe life cycle. A group may constitute any
number of stages (i.e. a ‘group’ of just one stagmossible).
In this example, there are 3 groups: [1,2,3],][4¥ad [6]. These groups and the life

cycle loops associated with them are indicate@éhbelow.

6
N N N N \)

Step 3: Write out a simplified life cycle using slieegroups instead of individual stages. Arrows
indicate which groups contribute to which otherugp®. There should be no loops in this
simplified, group-based life cycle. Again, trykeep arrows moving forwards through the life
cycle below arrows moving backward through thedyele.

In this example, group [4,5] contributes to bothes groups, and group [6] contributes

L/A—_\
1,2,3 4,5 — 6

to group [1,2,3].

Step 4: Re-write the simplified life cycle so tl@tows ONLY face backwards. If steps 1, 2
and 3 have been done correctly then this shoujabbsible. A useful tip is to identify whether
the groups have transitions in but not out, out rit in, or both out and in. Groups with
transitions in but not out go on the left. Grouipat have transitions out but not in go on the
right. Groups with transitions both out and inigahe middle. Note that there may be more
than one way to do this (see example Aodisia escallonioidesbelow), and some block-
permuted forms are easier to intuitively understi#wach others.

In this example:

1,2,3 6 4,5

Step 5: Re-write the matrix with the columns aomts in this order. The order of stages within
groups does not matter.

So the block-permuted matrix looks something ths:
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1 2 3 6 4 5

1 005 001 075| 15 1 1.25
2 01 0525 0.01
3 0.08 0.55 0.01
6 0.625 0.02
4 0.575 0.01
5 0.04 0.6
EMPIRICAL EXAMPLES
NUTTALLIA OBSCURATA
1 2 3 4 5
1 | 0.026 0.002 0.009 0.034 0.062]
2 0.126
3 0.326 0.564 0.428
4 0.211 0.547
5 0.095 0.716
Step 1:
Step 2:

There are 2 groups: [2] and [1,3,4,5].

Step 3:
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2 m 1,3,4,5
Step 4:
1,3,4,5 1 2
Step 5: The block-permuted matrix is:
1 3 4 5 2
1 | 0.026 0.009 0.034 0.062 0.002]
3 0.326 0.428 0.564
4 0.211 0.547
5 0.095 0.716
2 0.126

ARDISIA ESCALLONIOIDES

1 2 3 4 5 6 7 8
1 B 09 23 26 08 |
2 0.1
3 07 095 0.17
4 0.01 0.66
5 0.17 0.96
6 0.04 088 0.04
7 0.96
8
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There are 3 groups: [1,2,3,4,5,6], [7] and [8].

Step 3:

P - S

1,2,3,4,5,6 7 8

All arrows are facing backwards already. Howevethis case, this could also be represented

A

as:

‘/' e~

1,2,3,4,5,6 8 7

Both of these lead to correct block-permutationshef matrix. As detailed in the manuscript,

A

the situation that results is one where two (orep@ubmatrices are not fixed relative to one

another, therefore their eigenvalues are not damirgdative to one another.

Step 5: The block-permuted matrix is:

1 2 3 4 5 6 7 8
1 - 09 23 | 26 08 |
2 0.1
3 07 095 0.7
4 0.01 0.66
5 0.17 0.96
6 0.04 0.88| 0.04
7 0.96
8

Or:
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N o0 oo o1 b~ W N P

PINUS JEFFREYI

Step 1:

Step 2:

9,0)9)0,

1

1 2 3 4 5 6 8 7
09 23 | 08 26
0.1
0.7 095 0.17
0.01 0.66
0.17 0.96
0.04 0.88 0.04
1
0.96
1 2 3 4 5
1 - 0.804 0.073 |
2 0.174 0.792
3 0.167 0.944
4 0.028 0.778
5 0.945

o0

There are 5 groups: [1], [2], [3], [4] and [5].

Step 3:

NN
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Step 4:

Step 5: The block-permuted matrix is:

4 32145
4 3 2 1 5

4 - 0.778] 0.028 N

3 0.994] 0.167

2 0.792] 0.174

1 0.804] 0.073

5 0.945
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APPENDIX 4.1
R code for figures (Chapter 4)

#This appendix provides R code for producing the fi
#manuscript.

#

#Install the library using install.packages() or by
#http://cran.R-project.org

#Load the library

library(popdemo)

#

#These figures use a matrix for the desert tortoise
data(Tort)

#This matrix is size-based, with medium fecundity.
#follows:

#1: Yearling

#2: Juvenile 1

#3: Juvenile 2

#4: Immature 1

#5: Immature 2

#6: Subadult

#7: Adult 1

#8: Adult 2

BB T R R R R T R R T

#FIGURE 1: POPULATION PROJECTION
#

#This figure is designed to be 3.5" by 3.5"
#(Check size of plot window using 'par(din)’).
#

#

#Set margins:

par(mar=c(5,4,1,1))

#Create a population vector. This one is biased to
Tortvec<-c(1,1,2,3,5,8,13,21)

#Project the tortoise PPM and population vector. |
#projecting for 50 time intervals. The torotoise i
#this projection is for 50 years. We use the funct

prl <- project(Tort, vector=Tortvec, time=50)

gures included in the main

downloading from

Gopherus agassizii:

The size classes are as

TR R R T

wards adults.

n this case, we are
nterval is one year, so

ion 'project’.
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#Plot the projection. This uses an S3 plotting meth
#info, see "?plot.projection’.
plot(prl)

#For a primitive matrix (see below), the long-term
#part of the first dominant eigenvalue of the PPM.
eigs<-eigen(Tort)
lambdamax<-Re(eigs$values[1])

lambdamax

#the dominant right eigenvector is the absolute val
#first eigenvector
w<-abs(Re(eigs$vectorsl,1]))

w

#Note that the package popbio provides functions 'l

#that will provide these also.

#For more info on projecting population dynamics, s

BB T T R R R R T R TR R T

#FIGURE 2: TRANSIENT DYNAMICS

#

od for projections. For

growth rate is the real

ue of the real part of the

ambda' and 'stable.stage’

ee demo(projection).

BB TR R R T

#

#Fig. 2a: Population-specific transient dynamics
#

#This figure is designed to be 3.5" by 3.5"
#(Check size of plot window using 'par(din)’).

#

#Set margins:

par(mar=c(5,4,1,1))

#Create 2 population vectors. One is adult-biased,
#juvenile-biased and it attenuates.

Tortamp <- ¢(1,1,2,3,5,8,13,21)

Tortatt <- ¢(21,13,8,5,3,2,1,1)

#Project these vectors using the project function.
#matrix using 'standard.A=T" to remove effects of a
#means that the projection has a long-term growth r
#not grow or decline in the long-term. We also sta
#vector to sum to 1 using 'standard.vec=T'. These s

and it amplifies. One is

We are standardising the
symptotic dynamics. This
ate of unity, i.e. it does
ndardise the population
tandardisations make it
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#easier (and fairer) to compare between models with

#sizes, and different long-term growth rates.

pr2.1 <- project(Tort, vector=Tortamp, time=50,
standard.A=T, standard.vec=T)

pr2.2 <- project(Tort, vector=Tortatt, time=50,

standard.A=T, standard.vec=T)

#Plot the amplification projection and label it
plot(pr2.1, ylim=c(0.5,10), log="y", cex.axis=0.8)
text(52, pr2.1[51], "amplification",

adj=c(1,-0.5), cex=0.8)

#Calculate the transient dynamics of the amplificat

reac <- reactivity(Tort, vector=Tortamp)

maxamp <- maxamp(Tort, vector=Tortamp, return.t=T)

upinertia <- inertia(Tort, vector=Tortamp)

#Add points on the projection for amplification and

points(c(1,maxamp$t,31), c(reac,maxamp$maxamp,upine

pch=3, col="red")
text(1, reac, expression(bar(P)[1]),
adj=c(-0.3,0.5), col="red", cex=0.8)

text(maxamp$t, maxamp$maxamp, expression(bar(P)[max

adj=c(0.1,-0.5), col="red", cex=0.8)
text(31, upinertia, expression(bar(P)[infinity]),
adj=c(0.1,-0.5), col="red", cex=0.8)

#Add in the second projection using the ‘lines' com
lines(0:50, pr2.2)
text(52, pr2.2[51], "attenuation”, adj=c(1,1), cex=

#Calculate the transient dynamics of the attenuatio
firstep <- firststepatt(Tort, vector=Tortatt)
maxatt <- maxatt(Tort, vector=Tortatt, return.t=T)

lowinertia <- inertia(Tort, vector=Tortatt)

#Add points on the attenuation projection and label
points(c(1,maxatt$t,31), c(firstep,maxatt$maxatt,lo
pch=3, col="red")

text(1, firstep, expression(underline(P)[1]),
adj=c(0,-0.6), col="red", cex=0.8)

text(maxatt$t, maxattdmaxatt, expression(underline(
adj=c(0.1,1.5), col="red", cex=0.8)

text(31, lowinertia, expression(underline(P)[infini
adj=c(0.1,1.5), col="red", cex=0.8)

#Add in a dotted line at y=1

different population

ion projection

label them

rtia),

D

mand and label it

0.8)

n projection
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winertia),

P)[min),

ty),
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lines(c(0,50),c(1,1),lty=2)

#Fig. 2b: Transient bounds

#This figure is designed to be 3.5" by 3.5"
#(Check size of plot window using 'par(din)").
#

#Set margins:

par(mar=c(5,4,1,1))

#Transient bounds result from projections of the st
#model. When using the function 'project’, the stag
#projected automatically if no population vector is

#for the desert tortoise, using a standardised matr
pr2 <- project(Tort, standard.A=TRUE, time=50)

#Now we need to plot these population dynamics. The
#automatically plots all stage-biased projections:

plot(pr2, log="y", cex.axis=0.8, ylim=c(0.1,10))

#Add in a dotted line at y=1
lines(c(0,50), c(1,1), Ity=2)

#Calculate the bounds on transient dynamics for the
#also done automatically if no population vector is
reacb<-reactivity(Tort)

firstepb<-firststepatt(Tort)
maxampb<-maxamp(Tort,return.t=T)
maxattb<-maxatt(Tort,return.t=T)
upinertiab<-inertia(Tort, bound="upper")

lowinertiab<-inertia(Tort, bound="lower")

#Add points on the projection and label them
points(c(1,1,maxampb$t,maxattb$t,31,31),

c(reacb,firstepb,maxampb$maxamp,maxattb$maxa

pch=3,col="red")
text(1, reach, expression(bar(rho)[1]),
adj=c(-0.5,0.5), col="red", cex=0.8)
text(1, firstepb, expression(underline(rho)[1]),
adj=c(-0.5,1.5), col="red", cex=0.8)

text(maxampb$t, maxampb$maxamp, expression(bar(rho)

adj=c(0.1,-0.5),col="red",cex=0.8)

text(maxattb$t, maxattb$maxatt, expression(underlin
adj=c(0.1,1.5), col="red", cex=0.8)

text(31, upinertiab, expression(bar(rho)[infinity])
adj=c(0.1,-0.5), col="red", cex=0.8)

age-biased dynamics of the
e-biased model dynamics are
specified. We can do this

ix like before:

S3 method for projections

desert tortoise. This is
specified.

tt,upinertiab,lowinertiab),

[max]),

e(rho)[min)),
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text(31, lowinertiab, expression(underline(rho)[inf
adj=c(0.1,1.5), col="red", cex=0.8)

#Amplification bounds result from the projection of
#stage 8 individuals. Attenuation bounds result fr

#population with 100% stage 1 individuals.

HHHHHHHH

#FIGURE 3: TRANSFER FUNCTIONS

inity]),

a population with 100%

om the projection of a

BHHHH

#Fig. 3a: Transfer function of asymptotic growth
#

#This figure is designed to be 3.5" by 3.5"
#(Check size of plot window using 'par(din)’).

#

#Set margins:

par(mar=c(5,4,1,1))

#Create a transfer function using 'tfa’. The pertur
#determined by two vectors d and e. The matrix d%*
#where nonzero elements in this matrix are the elem
#perturbed. The relative size of entries in this m
#sizes of perturbation to those elements. In this ¢
#element [8,7]. We are going to look at the effect
#The largest biologically reasonable perturbation i
tf1 <- tfa(Tort, d=c(0,0,0,0,0,0,0,1), e=c(0,0,0,0,
prange=se(q(0,0.25,0.01))

#Now we plot this using an S3 method for transfer f
#see '?plot.tfa’).

plot(tf1, cex.axis=0.8)

#Now we're going to add in the sensitivity tangent.
#lambda-max, and a slope of the sensitivity of the
#Calculate lambda-max of the desert tortoise PPM:
lambda <- Re(eigen(Tort)$values[1])

#Calculate the sensitivity using the function 'tfse
sensl<-tfsens(Tort, d=c(0,0,0,0,0,0,0,1), e=c(0,0,0

#Now add in the line, specifying the correct interc
abline(lambda, sensl, Ity=2, col="red")

bation structure is

%e gives the structure,
ents of the PPM to be
atrix are the relative
ase, we are perturbing
of perturbing up to 0.25.
s about 0.12.

0,0,1,0),

unctions (for information

This has an intercept of

same transfer function.

ns'
,0,0,0,1,0))

ept and slope:
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#Fig. 3b: Transfer function of population inertia
#

#This figure is designed to be 3.5" by 3.5"
#(Check size of plot window using 'par(din)").

#

#Set margins:

par(mar=c(5,4,1,1))

#The process is very similar to above. We need to
#structure and perturbation range. For inertia we
#population vector using the 'vector' argument, or
#using the 'bound’ argument. Create a population ve
Tortvec <- ¢(1,1,2,3,5,8,13,21)

#Now calculate the transfer function using inertia.
tf2 <- inertia.tfa(Tort, vector=Tortvec, d=c(0,0,0,
e=¢(0,0,0,0,0,0,1,0), prange= seq(

#Plot the transfer function using the same S3 metho
plot(tf2,cex.axis=0.8,ylim=c(3.9,4.43))

#The sensitivity tangent for transfer function of i
#equal to the relevant inertia (either using the sa
#the correct bound), and a slope of the sensitivity
#function. Calculate inertia of the desert tortoise
#vector:

inertia <- inertia(Tort, vector=Tortvec)
#Calculate the sensitivity using the function ‘iner
sens2 <- inertia.tfsens(Tort, vector=Tortvec, d=c(0

e=¢(0,0,0,0,0,0,1,0), toler

#(Here the 'tolerance' has had to be lowered to avo

#the function without that argument and it will hav

#Now add in the line, specifying the correct interc
abline(inertia, sens2, Ity=2, col="red")

BB T R R R R T R TR R T

#FIGURE 4: TRANSFER FUNCTION MATRIX
#

specify a PPM, perturbation
either have to specify a

the bound to be calculated
ctor:

tfa:
0,0,0,0,1),
0,0.25,0.01))

d as before:

nertia has an intercept of

me population vector, or

of the same transfer

PPM using the population

tia.tfsens"
,0,0,0,0,0,0,1),

ance=1e-5)

id calculation error: try

e trouble running)
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#This figure is designed to be 7" by 7"

#(Check size of plot window using 'par(din)’).

#

#This is a nice, easy plot because the function doe
#functions 'tfmat' and 'inertia.tfrmat' calculate a

#PPM element. They are saved as arrays of values.

#customisable: see "?tfmat' and "?inertia.tfmat'.
#

#Create the array for inertia, using a specific pop
Tortvec <- ¢(1,1,2,3,5,8,13,21)
tfmat<-inertia.tfamatrix(Tort, vector=Tortvec)

#...and plot it!
plot(tfmat)

s it all for you. The
transfer function for every

The functions are

ulation vector:
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APPENDIX 5.1

Detailed results from principal components analy&&isapter 5)

v —

o —
w
:
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PC1 PC2 PC3 PC4 PC5 PC6

FIG. A5.1.1: Barplot of variance explained by tmepipal components

TABLE A5.1.1: Table of variances according to pipa component, detailing percentage and
cumulative percentages explained. PC1 and PC2 iaxpB0% of variance in all transient
indices.
PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 2.003 1.212 0.6563 0.2526 09503.05195

Proportion of

) 0.669 0.245 0.0718 0.0106 0.00377 0.00045
Variance

Cumulative

) 0.669 0.913 0.9851 0.9958 0.99955 1
Proportion
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FIG. A5.1.2: Plot of PC1 against PC2, detailingdiogs of the transient indices. "I" denotes

log10, so e.g. IKmax=lgglKmax). The amplified transients (Kmax = upper lseeibound,

rhomax = maximum amplification and react = reatfljvehow positive loadings on both PC1

and PC2. The attenuated transients (Kmin=lowes&mund, rhomin=maximum attenuation,

firstep=first-timestep attenuation) show negativadings on PC1 but positive loadings on PC2.

TABLE A5.1.2: Table of loadings by transient indaxd principal component.

PC1 PC2 PC3 PC4 PC5 PC6
10910(Kmax) 0.439149 0.380868-0.05002 0.334535-0.42675 0.604616
l0g10(K min) -0.34274  0.5219090.504305 -0.52118 -0.2861  0.048327
10010(Pmax) 0.444282 0.373189-0.00173 0.124331-0.21215 -0.77645
l0g10(Pmin) -0.4339 0.3483420.270527 0.7163110.318156 -0.05368
logio(reactivity) 0.454045 0.3173740.13277  -0.25652 0.7637710.162289

log,o(first-timestep attenuation)

-0.31284 0.47033R.80769

-0.14864 0.080359.00309
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APPENDIX 6.1

Detailed information on construction of angiospgshylogeny (Chapter 6)

The phylogeny used in MCMCglmm analyses is preskiméigure A6.1.1. The full phylogeny
consists of 147 angiosperm species representingifiatent families. This phylogeny was
trimmed to 143 species for general resilience aalyand 70 species for specific resilience
analyses. Details on which species were used ih aaalysis can be found in Appendix 7,
which also includes species’ taxonomic information.

The topology of the phylogeny to family level wdeund using phylomatic
(http://phylodiversity.net/phylomatic), and brantdngths of this tree were fitted using the
bladj function included in phylocom (Webb, Ackerly & K&l 2008). Remaining within-
family polytomies were resolved using informatioom the literature. These polytomies, and

the studies used to resolve them, are listed below.

POLYTOMIES AT FAMILY LEVEL:

ArecaceaeAstrocaryum mexicanum, Borassus aethiopum, Chameadadicalis,
Coccothrinax readii, Euterpe edulis, Euterpe precit, Geonoma deversa, Geonoma
orbignyana, Iriartea deltoidea, Neodypsis decaBhytelephas seemannii, Podococcus
barteri, Thrinax radiatd Bakeret al. (2009)

Asteraceae (Asteroidea, Carduoidea, Cichorioidea)

Asteroidea Ambrosia dumosa, Eupatorium perfolatium, Eupatoriesinosum,
Helianthus divaricatus Stevens (2001)

CarduoideaCarduus nutansCarlina vulgaris, Centaurea maculodairsium palustré
Haffner & Hellwig (1999)

Cichorioidea Hieracium floribundumPicris hieracioidesScorzonera humil)s
Whitton, Wallace & Jansen (1995)

Cacataceaddarnegiea gigantica, Neobuxbaumia mezcalaensishdddraumia tetetzo,
Neobuxbaumia macrocephala, Mammillaria crucigeranihillaria magnimamma,
Pterocereus gaumeriGibson & Horak (1978)

Caryophyllaceaeinuartia obtusiloba, Paryonychia pulvinata, Sileaeaulis, Silene
douglasi): Fior et al. (2006)

FabaceaeAnthyllis vulneraria, Astragalus scaphoides, Casgaophila, Dicymbe altsonii,
Lathyrus vernus, Machaerium cuspidatum, Pentactethacroloba, Periandra
mediterranea, Prosopis glandulosa, Ulex gallii, ”hinorn: Wojciechowskiet al. (2004)

Liliaceae Calochortus, Clintonia borealis, Erythronium japoom, Fritillaria meleagris:
Peruzziet al(2009)

Calochortus Patterson & Givnish (2003)

Poaceae (Chloridoidea, Panicoideae, Pooideae) Kidtidu (1996)
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Chloridoidea Aristida bipartita Danthonia sericegSpartina alterniflora Swallenia
alexandrag: Petersoret al. (2010).
PanicoideaeAndropogon semiberhiBothriochloa insculptaDigitaria eriantha,
Heteropogon contortus, Themeda triandra, Setar@dasaty: Giussanet al.
(2001), Teerawatananat al. (2011)
PooideaeAchnatherum calamigrostrig\gropyron repens Hsiaoet al(1995)
PrimulaceaeArdisia escallonioides, Myrsine guianensis, Primuldgaris, Primula verik
Anderberg, Stahl & Kallersjo (1998), Magttal. (2001)
ProteaceaeBanksia ericifolia, Petrophile pulchella, Roupal@ntang: Stevens (2001)
RosaceaeAgrimonia eupatoria, Geum rivale, Geum reptansgRtilla anserind: Stevens
(2001)

184



Ari e

-Arisaema ser
rmllana meleagris
rythronium japonicum
lintonia borealis

alochortus tiburonensis

alochortus pulchellus

alochortus albus
Iochonus oblspoensls

Trillium grandiflorum

Mlspomm
isporum sessile

wallenia alexandrae
partina alterniflora
anthonia sericea
ristida bipartita

etaria incrassata
igitaria eriantha
othriochloa insculpta
ndropogon semiberbis

Themeda triandra
eteropogan contortus
grostis
ropyron Iepens

IandSIa punclulata

landsia
[ vands:a Juncea
4|—: landsia deppeana
Catopsis sassmﬂora
— T Calathea ovandens

Euterpe precatoria
uterpe edulis
leodypsis decaryi
eonoma orbignyana
eonoma deversa

ocaryum icanu
rea radi
Iriartea
phas se
rassus im

Thrinax radiata

" toglossury
Aspasia princip
Alllum Irlcoccum

mdem umbellata
indera benzoin
-Chlorocardium, rodiei

Duguetia
°oupala

cotyledon

xalis acetosella

ourea induta,

inum catharticum

arcinia lucida

rosopis glandulosa
ntaclethra macroloba

icymbe altsonii

assia nemophila

nthy/lls vulneraria
stragalus scaphoides
nus

athyrus ver

tentilla anserina
grimonia eupatoria
eum reptans
eumrivale
ecropia obtusifolia
rosimum alicastrum

t fusca

Fagus grandifolia
R e — )

-Alnus incana
ferruginea

4|—|—Clldemra hirta

satis tinctoria

-Arabis fecunda
leome droserifolia
Hudsonia montana
Fumana

P

-Aesculus turbinata
clerocarya birrea
hus aromatica

A,mvuu maritima

f -. leob. tetetzo _
[ 1 I—Neobuxbaum.a macrocephala
| 1 Carnegiea )
{ Pter ucereus g
L M. illaria cructgera

l/ene douglasu

_Mmu'amg oblu;r/oba

L "‘“ iplex vesicaria

Y '

rimula veris .

rimula vulgaris
-Ardisia escallonioides
Myrsine

%as peruviana
ertholletia excelsa
tyrax obassia
alluna vulgaris

lelianthus divaricatus
-Ambrosia dumosa
upatorium resinosum
upatorium perfoliatum
icris hieracioides
lieracium floribundum
Scorzonera humilis
arduus nutans
irsium palustre
entaurea maculosa
allma vulgaris

—Daucus carota

cab bari:
lpsacus sylvestris

iburnum furcatum
\,h:um Igare

—Cynog/ossum c)t’l7 cinale
Gentiana p. ithe

da myconi
lantago media
igitalis purpurea

Er

remophlla forrestii
inguicula villosa
inguicula vulgaris
inguicula alpina
dicularis furbishiae
-Avicennia marina

FIG. A6.1.1:
Phylogeny used in
MCMCglmm
analyses, including
branch lengths.
Species’ taxonomy
can be found in

Appendix 7.
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APPENDIX 6.2
Detailed information on MCMCglmm analyses (Chajier

We used the R packaddCMCglmmo explore how shared ancestry and life histofecis$

propensity for transient amplification. The softevarses Markov Chain Monte Carlo algorithms
to fit parameter estimates to data in a Bayesiaméwork. Bayesian glmm models are
relatively robust to non-gaussian data, such apithyeortion and binary data that we use in this

study.

MODEL STRUCTURE
MCMCglmnallows multivariate responses, fixed effects, mndaffects and residuals. There are
many different combinations of interactions to cb®from when estimating fixed effect means

and variances, and random effect (co)variances.

RANDOM EFFECTS

MCMCglmnallows incorporation of a phylogenetic relatedneggsance-covariance matrix in
the random effects structure. This means that Kaeterelationship between species can be
modelled, including both topological relatednesd grhylogenetic distance. We built a
phylogeny representing the 147 species in our dafase Appendix 6.1). This phylogeny was
converted to a Newick-coded format, read iR@as aphylo object in theape package,
trimmed using thelrop.tip  function to exclude species for which there wesdrreducible
matrices, where appropriate trimmed further to edel species for which there were no
recorded demographic distribution, and modelleM@MCglmnanalyses using thgedigree

argument.

FIXED EFFECTS
We modelled life form as a fixed effect, with 5&s: monocarps (M), perennial herbs in open
habitats (O), perennial herbs in forest habitajsgkrubs (S) and trees (T), following Franco &
Silvertown (2004).

RESPONSE VARIABLES

Data generated from Dirichlet draws (general ressde) consists of a mean probability of
amplification per species for any possible demogi@gtructure, either in the first timestep
[reactivity; p(R>1)], or the long term [inertia; p(P1l)]. This proportion data was logit-

transformed and analysed in a Gaussian gimm. Asmraitive would be to use raw 'counts' of

amplification and attenuation and analyse the dat binomial gimm with logit link, but as
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each data point is calculated from the same numwbBirichlet draws, the two approaches are
almost equivalent. Due to the high number of propos close to 1, this had a bimodal
distribution after transformation and we relied thie robustness diCMCglmnto cope with

this. We analysed both variables simultaneouslyigariate responses, fitting an interaction
between trait and life form, and using the function to fit full variance and covariance
between the two traits in random and residual waga which accounts for the correlation

between the two responses.

Case-specific transient data (specific resiliermm)sists of the mean projected first-timestep
(reactivity) and long-term (inertia) transient dymas per species. This data was transformed
into binary response variables, where a 0 was rasgig the population attenuates and a 1 was
assigned if the population amplifies. We then fibiaary glmm model to this data, which
effectively fits the probability of amplificationf @opulations given their recorded demographic
structure. This is subtly, but notably, different the proportion models, which estimate the
probability of amplification given any possible dom demographic structure. In binary glmm
models, the residual variance is not used in cafimi of the log-likelihood, and the
MCMCglmntourse notes recommend that the best approachkeo is to fix the residual
variance at an arbitrary value and then rescaleepos distributions after the model is fit. As
MCMCgimndoes not yet allow multivariate models where var@is fixed but covariance is
still fit by the model, we were not able to modgktdata in a bivariate model and so univariate

models were used, with residual variance fixed at 1

ITERATIONS/BURNIN/THINNING

Chains seemed to mix well in all cases when usD@PB0 iterations and a burnin interval of
30000. For both sets of models, we used a thinimitegval of 100 to deal with autocorrelated
chains. We checked autocorrelation of fixed paramedf all models to ensure it was kept low
at the level of the thinning interval (at least k@s suggested in tddCMCglmneourse notes,
but usually far lower). Autocorrelation remainedhiin chains estimating random effects and
residuals, and increasing thinning intervals ditl remedy this. This might be expected, given
that variance estimates are bounded at O, and we that it should have little effect on

parameter estimates (Link & Eaton 2012).

PRIORS

MCMCglmnmodels fixed-effect priors using a gaussian distron, which takes 2 parameters:
mean and variance. Random and residual priorssarally modelled using an inverse Wishart
distribution, which is a multivariate relative ¢fetinverse gamma distribution and takes a shape

parameter (nu) and a scale parameter V. This distributiom$eto a point mass on V agjoes
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to infinity, therefore V can be thought of as aoprvariance and can be thought of as a
'degree-of-belief' parameter: the highes, the more confidence is placed in the priofarare.
We aimed to make all priors as uninformative assiibs. It is possible to specify improper
priors for random effects and residuals usingOVand/orv <0: such priors are very
uninformative, however none of our models wouldegptcimproper priors and so we used

proper uninformative priors for all random and desil parameters.

LOGIT-TRANSFORMED DIRICHLET DATA (GENERAL RESILIENE)

We used default uninformative priors for fixed effe (mean=0, variance=30in general
resilience data, and this gave gaussian margirskpors for fixed effects in all models. There
are no default priors for random effects and redigllbut theMCMCglmnaourse notes suggest
an uninformative proper of V=1 and =0.002, with V split evenly over the number of
parameters being estimated. However, for our matielse priors gave bad mixing for random
effects and residuals as chains became stuck dwb0deal with this, we decided to use
parameter-expanded priors. This method introducasabies into the prior that are not
identified in the log-likelihood (and therefore sitab not affect DIC, unlike changing V @j.
The prior is multiplied by the extra variables, alhiconvert the posterior distribution to a non-
central scaled F distribution. Parameter expanpi@vented chains from sticking at 0, and
latent variables estimated by parameter-expandedspiere similar to those from models that
didn’t use parameter expansion. Posteriors for ganéffects and residuals were positively-
skewed, however this is expected to a lesser atgrextent, as variances are bounded at 0 and

+00.

BINARY-TRANSFORMED TRANSIENT DATA (SPECIFIC RESILIECE)

Whilst the default fixed effects priors MFCMCglmnare uninformative on the logit scale, where
within-group proportions are close to 1 in binamsponse models, they are often not
uninformative on the probability scale (see figu8.2.2). In our specific resilience data,
within-group probabilities for life form were cloge or equal to 1 as most species amplify in
both the short- and long-term. Because of thisaulefixed effects priors had chains with bad
mixing (especially for monocarpic species, whichaahplify) and so we used a prior that is
uninformative on the probability scale as suggestele MCMCglmngourse notes (in our case
mean = 0, variance s%tn/3 = 1+ n°/3). This gave much better mixing and gaussian
posteriors for fixed effects. Again, we used amtorimative prior of V=1y=0.002 for random
effects in binary models. However, we fixed variaor residuals at 1 (as recommended in the
MCMCglmneourse notes), as residual variance is not idedtih the log-likelihood of binary
response models. Again, chains for random effegquently stuck at 0. ThCMCglmm
course notes suggest parameter expansion in hiesppnse models where this is the case, and

so we also used parameter expansion here to gaiasctvith better mixing, which didn't stick
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at 0. We rescaled fixed and random chains to assumesidual variance of O for posterior
checks, again following suggestions in M €MCglmneourse notes. Posterior distributions for

random effects variances were quite positively slebvas variances were close to 0.

BEST-FIT MODELS

For both data sets, we fit four models: 1. inclgdboth phylogeny and life form; 2. including
phylogeny and excluding life form; 3. excluding pdgeny and including life form; 4.
excluding both phylogeny and life form.

LOGIT-TRANSFORMED DIRICHLET DATA (GENERAL RESILIENE)

The best-fit model was including phylogeny and eduoig life form. Including life form was
supported over excluding life form, but the factthhe phylogeny-only model was preferred
overall suggests that most of the similarity betwéfe forms is better explained by ancestral

relatedness.

BINARY-TRANSFORMED TRANSIENT DATA (SPECIFIC RESILIECE)
The null model was the best-fit model, excludinghbphylogeny and life form. This indicates
that the distribution of amplification and atteriaatis very similar across life forms, and shows

no relationship to phylogeny.

CODE
The following presents the code used for MCMCglmralgses:

#LOGIT-TRANSFORMED MODELS (GENERAL RESILIENCE)
#model 1.1: 2-response, +phylogeny, +Ecotype

#set prior model 1.1

priorl.1<-list(R = list(V = diag(2)*0.5, nu=0.002),

G = list(G1=list(V = diag(2)*0.5, nu =0.002, alpha.mu=c(0,0),
alpha.V=diag(2)*100 0)))
#model 1.1
m1.1<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log it) ~ trait:Ecotype - 1,
random=~us(trait):animal, rcov=~us(t rait):units,

family=c("gaussian”,"gaussian"),
prior=priorl.1, data=meandata, pedig ree=meantree, nodes="TIPS",
thin=100, nitt=150000, burnin=30000, verbose=F)

###2-response, +phylogeny, -Ecotype
#set prior model 1.2
priorl.2<-list(R = list(V = diag(2)*0.5, nu=0.002),

189



G = list(G1=list(V = diag(2)*0.5, nu
alpha.V=diag(2)*10)
#model 1.2

m1.2<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log

random=~us(trait):animal, rcov=~us(t
family=c("gaussian”,"gaussian"),
prior=priorl.2, data=meandata, pedig

thin=100, nitt=150000, burnin=30000,

###2-response, -phylogeny, +Ecotype

#set prior model 1.2

priorl.3<-list(R = list(V = diag(2)*0.5, nu=0.002))
#model 1.3

m1.3<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log

rcov=~us(trait):units, family=c("gau
prior=priorl.3, data=meandata,
thin=100, nitt=150000, burnin=30000,

###2-response, -phylogeny, -Ecotype

#set prior model 1.2

priorl.4<-list(R = list(V = diag(2)*0.5, nu=0.002))
#model 1.4

m1.4<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log

rcov=~us(trait):units, family=c("gau
prior=priorl.4, data=meandata,
thin=100, nitt=150000, burnin=30000,

#BINARY MODELS (SPECIFIC RESILIENCE)
#set prior model 1.1
#Use a non-informative prior on the probability sca
autocorrelation.
#Use an uninformative prior for random effects, add
#prevent random effects chains sticking at 0. alph
#large effective sample and is robust.
#Fix residual variance at 1
priorl.1<-list(R = list(V = 1, fix=1),
G = list(G1=list(V = 1, nu=0.002, al
B = list(mu=rep(0,5), V=diag(5)*(1+p
#model 1.1: Reactivity, +phylogeny, +Ecotype
m1.1<-MCMCglmm(reac.mean.bin ~ Ecotype,
random=~animal, family="categorical"
prior=priorl.1, data=meanvecdata, pe
nodes="TIPS", thin=50, nitt=150000,

#set prior model 1.2
priorl.2<-list(R = list(V = 1, fix=1),
G = list(G1=list(V = 1, nu=0.002, al

=0.002, alpha.mu=c(0,0),
)

it) ~ trait - 1,

rait):units,

ree=meantree, nodes="TIPS",

verbose=F)

it) ~ trait:Ecotype - 1,

ssian”,"gaussian"),

verbose=F)

it) ~ trait - 1,

ssian”,"gaussian"),

verbose=F)

le to prevent

ing parameter expansion to
a.V=100 gives good mixing,

pha.mu=0, alpha.V=100)),
i"2/3)))

digree=vectree,
burnin=30000, verbose=F)

pha.mu=0, alpha.vV=100)),
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B = list(mu=0, V=(1+pi"2/3)))
#modell.2: 1 Reactivity, +phylogeny, -Ecotype
m1.2<-MCMCglmm(reac.mean.bin ~ 1,

random=~animal, family="categorical"

prior=priorl.2, data=meanvecdata, pe
nodes="TIPS", thin=50, nitt=150000,

#set prior model 1.3
priorl.3<-list(R = list(V = 1, fix=1),
B = list(mu=rep(0,5), V=diag(5)*(1+p
#model 1.3: 1 Reactivity, -phylogeny, +Ecotype
m1.3<-MCMCglmm(reac.mean.bin ~ Ecotype,
family="categorical",
prior=priorl.3, data=meanvecdata,
thin=50, nitt=150000, burnin=30000,

#set prior model 1.4
priorl.4<-list(R = list(V = 1, fix=1),
B = list(mu=0, V=(1+pi"2/3)))
#model 1.4: 1 Reactivity, -phylogeny, -Ecotype
m1l.4<-MCMCglmm(reac.mean.bin ~ 1,
family="categorical",
prior=priorl.4, data=meanvecdata,
thin=50, nitt=150000, burnin=30000,

digree=vectree,

burnin=30000, verbose=F)

i"2/3)))

verbose=F)

verbose=F)
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APPENDIX 6.3

Analytical solutions to Dirichlet sampling proceésr for calculating general transient

resilience (Chapter 6)

Figure 6.3 shows a geometric representation oDihiehlet sampling procedures that we used
to calculate general transient resilience. Belowpnesent the algebraic solution for calculating

probability of amplification in this 3-stage case.

These equations use eitleefthe vector of column sums of the standardised PPMA/Aay),
or v (the reproductive value vector, equal to the deminleft eigenvector of the PPM,
rescaled so thav'w = 1 where W|h = 1). ¢ is used for calculating the probability of
amplification in the first timestep (reactivity),hereasv is used for calculating the probability

of amplification in the long term (inertia). In lotases, the algebraic solution is the same.

The first case exists when twgt and oneel, or two <1 and one #1:

1—1caq)? 1—vyq)?
(1- ) I ¢ ol S
(c<1,1 = C51)(Cc12 — C>1) (Va1 — €51) (Va2 — C>1)

p(P, > 1) =

The second case exists when ord @and two 1 or one 1 and two y1:

1—1coq)? 1—v_q)?
(1-car) s D1 (Ve
(C>1,1 - C<1)(C>1,2 - C<1) (V1,1 — €<1)(V>12 — C<1)

p(P,>1)=1-

The first case is illustrated in Figure 6.3a, ama $econd is illustrated in Figure 6.3b (note that

the dashed triangles plotted in Figure 6.3 haviogs that lie on the reciprocalsoandv).

In the first case, a higher probability of ampHion is achieved by increasing the numerator of
the fraction and/or decreasing the denominatorhef fraction. The former is achieved by
increasing the .¢ or w,, and the latter is achieved by keeping theor v, close to 1. In the
second case, a higher probability of amplificat®machieved by increasing the denominator of
the fraction and/or decreasing the numerator offihetion. Again, the former is achieved by
increasing ¢ or V.4, and the latter is achieved by keeping theot v, close to 1. Given that
the vertices of the dashed simplexes in Figurdi®.@n the reciprocals afandv, the g; or v,
result in vertices <1 of the dashed simplexes gufé 3, and the.¢or v, result in vertices >1.
Therefore, increasing.£ or \.; moves vertices <1 closer to 0 whilst increasing ar v
therefore moves vertices >1 closer to 1.

These equations show that stage-structuring aesitansient dynamics. If alj or v;
equal 1, then there is no solution to the aboveatkops: there is no amplification or attenuation.
There are two ways to achieve stage-structuringifféncycles: asymmetry in survival and
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asymmetry in reproduction. Concentrating reproduncgffort to one area of the life cycle is an
efficient way to increase.cand v, giving high probability of amplification both imediately
and in the long term. Hence, delaying reproductiah favour amplification. Maintaining
relatively high adult survival will also increasg @nd v, whilst maintaining relatively high
juvenile survival keeps.¢ and v, close to 1, in both cases favouring high probiddi of
amplification. However, trade-offs will dictate than organism cannot maintain high juvenile
survival, adult survival and reproduction. Mainiam relatively high adult survival causes a
disproportionate increase in,vwhilst giving a relatively smaller increase ig;,ctherefore
populations that experience relatively irregulestalibance may wish to invest in adult survival
over juvenile survival to ensure amplification iginmtained in the long term. On the other hand,
investing in high juvenile survival over adult siwal will ensure ¢; close to 1 giving high
probability of immediate amplification, but will glbroportionately decrease;\giving lower
probability of long-term amplification. This strgie may be favourable for organisms that
experience frequent disturbance, where high prdibakif long-term amplification is less
important.

In summary, stage-structuring achieves transignawhics. An efficient way to achieve
this and simultaneously favour high probabilitie§ amplification is through delayed
reproduction. High survival across the life cyclavdurs amplification, but allocation of
resources to either juvenile or adult survival naydifferentially favoured according to what
sort of disturbance regime they experience. Of smuife cycles are shaped by countless other
factors, but it seems that features common in ahtife cycles (stage-structuring, delayed
reproduction, asymmetry in survival) favour amghtiion of population dynamics, inferring a
high transient resilience to disturbance. Genengjithe above equations to n dimensions is
difficult. However, we may assume that the sameltgsnay hold: increasing any,cand v,
will favour amplification, as will keeping any.cand v; close to 1. Hence, whatever the
dimension of the life cycle, the same solutionstbieving high probability of amplification

should exist.
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APPENDIX 7
Metadata for database of PPM models(Chapterl, Givapt Chapter 6)

This appendix presents metadata for the PPM madeld in comparative analyses in chapters. The maldeiselves and their associated data are awadaldn
excel file upon request. This metadata presentsyheies present in the database, their taxondmaygeference(s) from which models were obtainesptimber of

matrices in the database, the number of differeptifations for which matrices are available, whetitenot at least one irreducible matrix is avdiéaland whether
or not at least one model includes a known demditagector.
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PLANTS

Class Order Family Species Reference Number Number Irreducible  Vector
matrices populations
Gymnospermae Pinales Pinaceae Abies concolor van Mantgem & Stephenson (2005) 5 5 Y N
Gymnospermae Pinales Pinaceae Abies magnifica van Mantgem & Stephenson (2005) 4 4 Y N
Gymnospermae Pinales Cupressaceae Calocedrus decurrens van Mantgem & Stephenson (2005) 3 3 Y N
Angiospermae  Poales Poaceae Achnatherum Guardiaet al. (2000) 1 1 Y Y
calamagrostis
Angiospermae  Sapindales Sapindaceae Aesculus turbinata Kanekoet al. (1999) 2 Y Y
Angiospermae  Rosales Rosaceae Agrimonia eupatoria  Kiviniemi (2002) 10 2 Y Y
Angiospermae  Poales Poaceae Agropyron repens Mortimer (1983) 1 1 Y N
Angiospermae  Asparagales Alliaceae Allium tricoccum Nault & Gagnon (1993) 5 1 Y Y
Angiospermae  Corylales Betulaceae Alnus incana Huenneke & Marks (1987) 7 2 Y N
Angiospermae  Asterales Asteraceae Ambrosia dumosa Miriti et al.(2001) Y Y
Angiospermae  Poales Poaceae Andropogon Silvaet al. (1991) 2 2 Y Y
semiberbis
Angiospermae  Fabales Fabaceae Anthyllis vulneraria Sterk (1975) 3 2 Y N
Angiospermae  Brassicales Brassicaceae Arabis fecunda Lesica & Shelly (1995) 15 3 Y
Gymnospermae Pinales Araucariaceae Araucaria Enright & Watson (1991) 3 Y Y
cunninghamii
Gymnospermae Pinales Araucariaceae Araucaria hunsteinii Enright (1982) 3 3 Y Y
Angiospermae  Ericales Primulaceae Ardisia escallonioides Pascarella & Horvitz (1998) 7 4 Y N
Angiospermae  Arales Araceae Arisaema serratum Kinoshita (1987) 1 1 Y Y
Angiospermae  Arales Araceae Arisaema triphyllum Bierzychudek (1982) 7 2 Y Y
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Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae

Angiospermae

Poales

Plumbaginales

Aristolochiales
Asparagales
Fabales

Arecales

Caryophyllales
Lamiales
Proteales
Lecythidales
Corylales
Arecales
Poales
Rosales
Zingiberales
Ericales
Liliales

Liliales

Liliales

Liliales

Poaceae

PlumbaginaceaeArmeria maritima

Aristolochiaceae Asarum canadense

Orchidaceae
Fabaceae

Arecaceae

Amaranthaceae
Acanthaceae
Proteaceae
Lecythidaceae
Betulaceae
Arecaceae
Poaceae
Moraceae
Marantaceae

Ericaceae

Liliaceae

Liliaceae

Liliaceae

Liliaceae

Aristida bipartita

Aspasia principissa

Astragalus scaphoides

Astrocaryum

mexicanum

Atriplex vesicaria
Avicennia marina
Banksia ericifolia

Bertholletia excelsa

Betula nana

Borassus aethiopum
Bothriochloa insculpta
Brosimum alicastrum

Calathea ovandensis

Calluna vulgaris

Calochortus albus

Calochortus

obispoensis

Calochortus pulchellus

Calochortus

tiburonensis

O'Connor (1993) 11
Lefébvre & Chandler- 1
Mortimer (1984)

Damman & Cain (1998) 44
Zotz & Schmidt (2006) 1
Lesica (1995) 11
Pifieroet al.(1984) 7
Hunt (2001) 27
Burns & Ogden (1985) 1
Bradstock & O'Connell (1988) 1
Zuidema & Boot (2002) 1
Ebert & Ebert (1989) 1
Barotet al. (2000) 1
O'Connor (1993) 11
Peters (1990) 1
Horvitz & Schemske (1995) 17

Barclay-Estrup & Gimingham (1975) 1
Fiedler (1987)

Fiedler (1987) 3
Fiedler (1987) 3
Fiedler (1987) 3
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Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Cycadopsida

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Asterales
Asterales
Caryophyllales
Fabales
Poales
Rosales
Asterales
Cycadales
Arecales
Laurales
Asterales
Brassicales
Myrtales
Liliales
Arecales
Boraginales

Boraginales

Poales
Apiales
Fabales
Lamiales
Poales

Dipsacales

Asteraceae
Asteraceae
Cactaceae
Fabaceae
Bromeliaceae
Urticaceae
Asteraceae
Zamiaceae
Arecaceae
Lauraceae
Asteraceae

Brassicaceae

MelastomataceaeClidemia hirta

Liliaceae
Arecaceae
Boraginaceae

Boraginaceae

Poaceae
Apiaceae

Fabaceae
Plantaginaceae
Poaceae

Caprifoliaceae

Carduus nutans Shea & Kelly (1998)
Lofgrenet al. (2000)
Steenbergh & Lowe (1977)
Silander (1983)

Winkler et al. (2007)
Alvarez-Buylla (1994)
Emery & Gross (2005)

Ceratozamia mirandae Perez-Farrerat al. (2006)

Carlina vulgaris
Carnegiea gigantea
Cassia nemophila
Catopsis sessiliflora
Cecropia obtusifolia

Centaurea maculosa

Chamaedorea radicalis Endrest al. (2004)

Chlorocardium rodiei  Zagt (1997)
Cirsium palustre Ramulaet al. (2009)
Cleome droserifolia Hegazy (1990)

De Walt (2006)

Clintonia borealis Pitelkaet al. (1985)

Coccothrinax readii Olmsted & Alvarez-Buylla (1995)
Cynoglossum officinale Boorman & Fuller (1984)

Cynoglossum Cipollini et al. (1993)

virginianum

Danthonia sericea Moloney (1988)

Daucus carota Verkaar & Schenkeveld (1984)
Dicymbe altsonii Zagt (1997)

Digitalis purpurea van Baalen (1982)
O'Connor (1993)

Werner & Caswell (1977)

Digitaria eriantha

Dipsacus sylvestris
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Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Liliales
Liliales
Annonales
Boraginales
Lamiales
Lamiales

Liliales

Asterales

Asterales
Arecales
Arecales
Fagales
Liliales
Malvales
Malpighiales
Gentianales

Arecales
Arecales
Rosales
Rosales

Lecythidales

Colchicaceae
Colchicaceae
Annonaceae

Boraginaceae

Disporum sessile
Disporum smilacinum
Duguetia neglecta

Echium vulgare

ScrophulariaceaeEremophila forrestii

Scrophulariaceaegeremophila maitlandii

Liliaceae

Asteraceae

Asteraceae
Arecaceae
Arecaceae
Fagaceae
Liliaceae
Cistaceae
Clusiaceae

Gentianaceae

Arecaceae
Arecaceae
Rosaceae
Rosaceae

Lecythidaceae

Erythronium
japonicum
Eupatorium
perfoliatum
Eupatorium resinosum
Euterpe edulis
Euterpe precatoria
Fagus grandifolia
Fritillaria meleagris
Fumana procumbens
Garcinia lucida
Gentiana
pneumonanthe
Geonoma deversa
Geonoma orbignyana
Geum reptans

Geum rivale

Grias peruviana

Kawanoet al. (1987)
Kawanoet al. (1987)

Zagt (1997)

Klemow & Raynal (1985)
Watsonet al. (1997)
Watsonet al. (1997)
Kawanoet al. (1987)

Byers & Meagher (1997)

Byers & Meagher (1997)

Silva Matoset al. (1999)
Pefa-Claros & Zuidema (2000)
Batistaet al. (1998)

Zhang (1983)

Bengtsson (1993)

Guedjeet al. (2003)

Chapmaret al.(1989)

Zuidema (2000)
Rodriguez-Buritic&t al. (2005)
Weppleret al. (2006)

Kiviniemi (2002)

Peters (1991; 1992)
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Angiospermae  Asterales Asteraceae Helianthus divaricatus Nantel & Gagnon (1999) 9 4 Y N
Angiospermae  Zingiberales Heliconiaceae Heliconia acuminata  Bruna (2003) 6 1 Y Y
Angiospermae  Poales Poaceae Heteropogon contortus O'Connor (1993) 11 1 Y N
Angiospermae  Asterales Asteraceae Hieracium floribundum Thomas & Dale (1975) 1 1 Y N
Angiospermae  Asparagales Orchidaceae = Himantoglossum Pfeiferet al. (2006) 1 1 Y Y
hircinum
Angiospermae  Malvales Cistaceae Hudsonia montana Grosset al. (1998) 4 1 Y N
Angiospermae  Cornales Hydrangeaceae Hydrangea paniculata Haraet al. (2004) 1 1 Y Y
Bryopsida Hypnales Hylocomiaceae Hylocomium splendens Okland (1995) 1 1 Y Y
Angiospermae  Arecales Arecaceae Iriartea deltoidea Pinard (1993) 6 5 Y Y
Angiospermae  Brassicales Brassicaceae Isatis tinctoria Farahet al. (1988) 1 1 Y N
Angiospermae  Fabales Fabaceae Lathyrus vernus Ehrlén & van Groenendael (1998); 19 7 Y Y
Ehrlén (1995)
Angiospermae  Laurales Lauraceae Lindera benzoin Cipollini et al. (1994) 3 2 N N
Angiospermae  Laurales Lauraceae Lindera umbellata Haraet al. (2004) 1 1 Y Y
Angiospermae  Malphigiales Linaceae Linum catharticum Verkaar & Schenkeveld (1984) 1 1 Y N
Angiospermae  Fabales Fabaceae Machaerium Nabe-Nielsen (2004) 2 1 Y Y
cuspidatum
Angiospermae  Magnoliales Magnoliaceae Magnolia salicifolia Haraet al. (2004) 1 1 Y Y
Angiospermae  Caryophyllales Cactaceae Mammillaria crucigera Contreras & Valverde (2002) 3 2 Y Y
Angiospermae  Caryophyllales Cactaceae Mammillaria Valverdeet al. (2004) 4 2 Y Y
magnimamma
Angiospermae  Myrtales MelastomataceaeMiconia albicans Hoffmann (1999) 3 1 Y N
Angiospermae  Caryophyllales CaryophyllaceaeMinuartia obtusiloba  Forbis & Doak (2004) 1 1 Y Y
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Angiospermae

Angiospermae

Angiospermae

Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae

Angiospermae

Ericales

Asparagales

Caryophyllales

Caryophyllales

Caryophyllales

Arecales
Fagales
Oxalidales
Apiales
Caryophyllales
Lamiales

Fabales

Fabales

Proteales
Arecales
Asterales

Lamiales

Primulaceae

Myrsine guianensis

Amaryllidaceae Narcissus

Cactaceae

Cactaceae

Cactaceae

Arecaceae
Nothofagaceae
Oxalidaceae

Araliaceae

pseudonarcissus
Neobuxbaumia

macrocephala

Neobuxbaumia
mezcalaensis

Neobuxbaumia tetetzo

Neodypsis decaryi
Nothofagus fusca
Oxalis acetosella

Panax quinquefolium

CaryophyllaceaeParonychia pulvinata

Orobanchaceae Pedicularis furbishiae

Fabaceae

Fabaceae

Proteaceae

Arecaceae

Asteraceae

Pentaclethra
macroloba

Periandra
mediterranea
Petrophile pulchella
Phytelephas seemannii

Picris hieracioides

Lentibulariaceae Pinguicula alpina

Hoffmann (1999) 3

Barkham (1980) 3
Esparza-Olguiret al. (2002); 4
Godinez-Alvarez & Valiente-Banuet
(2004)

Esparza-Olguiet al. (2005) 1

Godinez-Alvarez & Valiente-Banuet 1

(2004)

Ratsirarsoret al. (1996) 4
Enright & Ogden (1979) 1
Berg (2002) 6
Nantelet al. (1996) 5
Forbis & Doak (2004) 1
Menges (1990) 1
Hartshorn (1975) 1
Hoffmann (1999) 3
Bradstock & O'Connell (1988) 1
Bernal (1998) 1
Klemow & Raynal (1985) 1
Svenssoret al. (1993) 1
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Angiospermae
Angiospermae
Gymnospermae
Gymnospermae
Gymnospermae
Gymnospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Gymnospermae

Angiospermae

Lamiales
Lamiales
Pinales
Pinales
Pinales
Pinales
Lamiales
Arecales
Rosales
Ericales
Ericales
Fabales
Caryophyllales
Lamiales
Burserales
Proteales
Connarales
Saxifragales
Dipsacales
Sapindales
Asterales

Pinales

Poales

Lentibulariaceae Pinguicula villosa

Lentibulariaceae Pinguicula vulgaris

Pinaceae
Pinaceae
Pinaceae
Pinaceae
Plantaginaceae
Arecaceae
Rosaceae
Primulaceae
Primulaceae
Fabaceae
Cactaceae
Gesneriaceae
Anacardiaceae
Proteaceae
Connaraceae
Saxifragaceae
Caprifoliaceae
Anacardiaceae
Asteraceae

Cupressaceae

Poaceae

Pinus jeffreyi

Pinus lambertiana
Pinus palustris
Pinus ponderosa
Plantago media
Podococcus barteri
Potentilla anserina
Primula veris
Primula vulgaris
Prosopis glandulosa
Pterocereus gaumeri
Ramonda myconi
Rhus aromatica
Roupala montana
Rourea induta
Saxifraga cotyledon
Scabiosa columbaria
Sclerocarya birrea
Scorzonera humilis

Sequoia sempervirens

Setaria incrassata

Svenssoret al. (1993)
Svenssoret al. (1993)

van Mantgem & Stephenson (2005)
van Mantgem & Stephenson (2005)

Plattet al. (1988)

van Mantgem & Stephenson (2005)

Eriksson & Eriksson (2000)
Bullock (1980)

Eriksson (1986)

Ramulaet al. (2009)

Valverde & Silvertown (1998)
Golubovet al. (1999)
Mendézet al. (2004)

Pico6 & Riba (2002)

Nantel & Gagnon (1999)
Hoffmann (1999)

Hoffmann (1999)

Dinnétz & Nilsson (2002)
Verkaar & Schenkeveld (1984)
Emanuekt al. (2005)

Colling & Matthies (2006)
Bosch (1971);

Namkoong & Roberds (1974)
O'Connor (1993)

1

20

201



Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae
Angiospermae

Angiospermae

Caryophyllales

Caryophyllales
Poales
Ericales
Poales

Poales
Arecales

Poales

Poales
Poales
Poales
Poales
Liliales
Fabales
Fabales
Dipsacales

Myrtales

CaryophyllaceaeSilene acaulis

CaryophyllaceaeSilene douglasii

Poaceae
Styracaceae
Poaceae
Poaceae
Arecaceae

Bromeliaceae

Bromeliaceae
Bromeliaceae
Bromeliaceae
Bromeliaceae
Melanthiaceae
Fabaceae
Fabaceae
Adoxaceae

Vochysiaceae

Spartina alterniflora
Styrax obassia
Swallenia alexandrae
Themeda triandra
Thrinax radiata
Tillandsia
brachycaulos
Tillandsia deppeana
Tillandsia juncea
Tillandsia multicaulis
Tillandsia punctulata
Trillium grandiflorum
Ulex gallii

Ulex minor
Viburnum furcatum

Vochysia ferruginea

Grosset al. (2006);

Morris & Doak (2005)

Kephart & Paladino (1997)
Hastingset al. (2006)

Abe et al. (1998)

Pavlik & Barbour (1988)
O'Connor (1993)

Olmsted & Alvarez-Buylla (1995)
Mondragoret al. (2004)

Winkler et al. (2007)
Winkler et al. (2007)
Winkler et al. (2007)
Winkler et al. (2007)
Rooney & Gross (2003)
Stokeset al. (2004)
Stokeset al. (2004)

Haraet al. (2004)

Boucher & Mallona (1997)

25

21

5

e

=

N

[

z < < <

< <

< 5z z <<

< < < <

zZz Z

202



ANIMALS

Class Order Family Species Reference Number Number Irreducible  Vector
matrices populations
Mammalia Carnivora Felidae Acinonyx jubatus Crookset al. (1998) 1 1 Y
Osteichthyes Acipenseriformes Acipenseridae Acipenser medirostris  Simpson & Kopp (2006) 1 1 Y Y
Pterygota Hemiptera Aphididae Acyrthosiphon pisum  Grosset al.(2002) 4 2 Y
Aves Strigiformes Strigidae Aegolius funereus Hayward & McDonald, 2nd Owl 1 1 Y
Symposium.
Anthozoa Scleractinia Agariciidae Agaricia agaricites Hughes & Tanner (2000) 4 1 Y Y
Mammalia Carnivora Ursidae Ailuropoda Carteret al. (1999) 1 1 N
melanoleuca
Mammalia Artiodactyla Cervidae Alces alces Gaillard & Yoccoz (2003) Y N
Anthozoa Alcyonacea Alcyoniidae Alcyonium sp McFadden (1991) 4 4 Y
Aves Anseriformes Anatidae Anser caerulescens Rockwellet al. (1997) 1 1 Y
Mammalia Artiodactyla Antilocapridae  Antilocapra americana Berger & Conner (2008); Gaillard 4 3 Y
and Yoccoz (2003)
Mammalia Cetacea Balaenopteridae Balaenoptera musculus Usher (1972) 1 1 Y N
Mammalia Artiodactyla Bovidae Bos taurus Gaillard & Yoccoz (2003) 1 1 Y
Mammalia Primates Atelidae Brachyteles Lawler (2010) 1 1 Y
hypoxanthus
Amphibia Anura Bufanoidea Bufo boreas Biek et al. (2002) 1 1 Y
Aves Charadriiformes Scolopacidae  Calidris pusilla Hitchcock & Gratto-Trevor (1997) 1 1 Y N
Malacostraca Decapoda Portunidae Callinectes sapidus Miller (2001) 4 1 Y
Mammalia Carnivora Phocidae Callorhinus ursinus Barlow & Boveng (1991) 1 1 N N
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Mammalia
Mammalia
Mammalia

Mammalia

Chondrichthyes

Reptilia

Mammalia

Aves

Mammalia

Mammalia
Reptilia
Sauropsida
Aves
Actinopterygii
Mammalia
Sauropsida
Reptilia
Mammalia
Branchiopoda

Branchiopoda

Chondrichthyes

Carnivora
Artiodactyla
Artiodactyla
Artiodactyla
Lamniformes

Testudines

Primates

Galliformes

Primates

Artiodactyla
Testudines
Testudines

Passeriformes

Scorpaeniformes

Artiodactyla

Falconiformes

Squamata
Rodentia
Cladocera
Cladocera

Rajiformes

Canidae
Bovidae
Bovidae

Cervidae

Odontaspididae

Cheloniidae

Cebidae

Phasianidae

Cercopithecidae

Cervidae
Cheloniidae
Chelydridae
Tyrranidae
Cottidae
Bovidae
Cathartidae
Elapidae
Sciuridae
Daphniidae
Daphniidae

Dasyatidae

Canis lupis

Capra ibex

Capra pyrenaica
Capreolus capreolus
Carcharias taurus

Caretta caretta

Cebus capucinus
Centrocercus
urophasianus
Cercopithecus mitis
stuhlmanni

Cervus elaphus
Chelonia mydas
Chelydra serpentina
Chiroxiphia linearis
Clinocottus globiceps
Connochaetes taurinus
Coragyps atratus
Cryptophis nigrescens
Cynomys gunnisoni
Daphnia magna
Daphnia pulex

Dasyatis violacea

Miller et al. (2002)
Gaillard & Yoccoz (2003)
Escoset al. (1994)
Gaillard & Yoccoz (2003)
Otwayet al. (2004)

Crouseet al. (1987); Crowdeet al.

(1994)
Lawler (2010)
Johnson & Braun (1999)

Cords & Chowdhury (2010)

Bentonet al. (1995)
Chaloupka (2002)
Congdoret al. (1994)
McDonald (1993)
Pfister (1996)
Grangeet al. (2004)
Blackwell et al. (2007)
Webbet al. (2002)
Cully (1997)

DJC unpublished
Franket al. (1957)
Mollet & Cailliet (2002)
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Aves

Mammalia
Sauropsida
Actinopterygii
Mammalia
Mammalia

Mammalia

Mammalia
Mammalia
Aves

Aves
Actinopterygii
Anthozoa
Anthozoa
Reptilia
Mammalia
Mammalia
Gastropoda
Gastropoda
Gastropoda
Mammalia

Mammalia

Procellariiformes

Rodentia
Testudines
Clupeiformes
Carnivora
Perissodactyla

Perissodactyla

Cetacea
Carnivora
Falconiformes

Falconiformes

Cyprinodontiformes

Scleractinia
Scleractinia
Testudines
Primates
Carnivora
Archegastropoda
Archegastropoda
Pulmonata
Artiodactyla
Artiodactyla

Diomedeidae

Geomyidae
Emydidae
Engraulidae
Mustelidae
Equidae
Equidae

Balaenidae
Otariidae
Falconidae
Falconidae
Fundulidae
Faviidae
Faviidae
Testudinidae
hominidae
Phocidae
Haliotidae
Haliotidae
Helicidae
Bovidae

Cervidae

Diomedea
amsterdamensis
Dipodomys stephensi
Emydoidea blandingii
Engraulis mordax
Enhydra lutris nereis
Equus burchelli

Equus caballus

Eubalaena glacialis
Eumetopias jubatus
Falco naumanni
Falco peregrinus
Fundulus grandis
Goniastrea aspera
Goniastrea favulus
Gopherus agassizii
Gorilla beringei
Halichoerus grypus
Haliotis rufescens
Haliotis sorenseni

Helix aspera

Inchausti & Weimerskirch (2001)

Price & Kelly (1994)
Congdoret al. (1993)

Lo et al.(1995)

Krkoseket al. (2007)

Grangeet al. (2004)

Garrott & Taylor (1990);
Fernandeet al. (2006)
Fujiwara & Caswell (2001)
York (1994)

Hiraldo et al. (1996)

Wootton & Bell (1992)

Sable (2007)

Orive (1995)

Orive (1995)

Doaket al.(1994)

Lawler (2010)

Hardinget al. (2007)
Rogers-Bennett & Leaf (2006)
Rogers-Bennett & Leaf (2006)
Laskowski & Hopkin (1996)

Hemitragus jemlahicus Caughley (1966)

Hippocamelus bisulcus Wittmer et al. (2010)

1

N
- [

I—‘|—\l—‘|A|a|_\|_\l—‘l—‘

N
- [

HI—‘"‘HHHI—\H"‘

<
< < <X <X < Zz

< < < < < < < <<

pa
> z zz zZz =

Z zZ << >z 2 Z

205



Reptilia

Aves
Reptilia
Pterygota
Reptilia
Anthozoa
Anthozoa
Mammalia
Mammalia
Mammalia

Mammalia

Mammalia
Mammalia

Mammalia

Anthozoa
Mammalia
Mammalia
Chondrichthyes
Aconoidasida
Mammalia

Mammalia

Squamata

Passeriformes
Testudines
Coleoptera
Testudines
Gorgonacea
Scleractinia
Rodentia
Primates
Primates

Cetacea

Carnivora
Rodentia

Rodentia

Scleractinia
Carnivora
Carnivora
Carchariniformes
Piroplasmorida
Lagomorpha

Artiodactyla

Elapidae

Turdidae
Kinosternidae
NA

Cheloniidae
Gorgoniidae
Agariciidae
Geomyidae
Cercopithecidae
Cercopithecidae

Balaenopteridae

Mustelidae
Muridae

Muridae

Faviidae
Mustelidae
Mustelidae
Carcharhinidae
Babesiidae
Ochotonindae

Cervidae

Hoplocephalus

bungaroides

Hylocichla mustelina
Kinosternon flavescens

Lasioderma serricorne

Lepidochelys kempi

Leptogorgia virgulata

Leptoseris cucullata

Liomys adspersus
Macaca fascicularis
Macaca Thibetana
Megaptera
novaeangliae

Meles meles

Microtus orcadensis

Microtus

pennsylvanicus

Montastrea annularis

Mustela erminea

Mustela nigripes

Negaprion brevirostris

Nuttallia obscurata

Ochotona princeps

Odocoileus hermionus

Webbet al. (2002)

Noon & Sauer (1992)
Heppellet al. (1996)
Lefkovitch (1965)
Heppellet al. (1996)
Gotelli (1991)

Hughes & Tanner (2000)
Oli & Zinner (2001)
Crockettet al. (1996)

Oli & Zinner (2001)
Barlow & Clapham (1997)

Messick & Hornocker (1981)
Leslieet al. (1965)
Oli & Dobson (1999)

Hughes & Tanner (2000)
Wittmer et al. (2007)
Grenieret al. (2007)
Hoenig & Gruber (1990)
Dudaset al. (2007)

Smith (1974)

Galillard & Yoccoz (2003)
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Mammalia

Actinopterygii
Actinopterygii
Actinopterygii

Mammalia
Mammalia
Mammalia
Mammalia
Mammalia
Mammalia
Malacostraca
Malacostraca

Mammalia

Mammalia
Mammalia
Anthozoa
Aves

Mammalia

Mammalia

Sauropsida

Artiodactyla
Scorpaeniformes
Salmoniformes

Salmoniformes

Marsupialia
Cetacea
Artiodactyla
Artiodactyla
Artiodactyla
Artiodactyla
Decapoda
Decapoda

Primates

Carnivora
Primates
Gorgonacea
Passeriformes
Artiodactyla

Marsupialia

Galliformes

Cervidae
Cottidae
Salmonidae

Salmonidae

Macropodidae
Delphinidae
Bovidae
Bovidae
Bovidae
Bovidae
Paguroidea
Palaemonoida

hominidae

Felidae

Cercopithecidae
Plexuridae
Passeridae

Suidae

Phascolarctidae

Phasianidae

Odocaoileus virginianus Jensen (1996)

Oligocottus maculosus
Onchorhynchus clarki
Onchorhynchus
tshawytscha
Onychogalea fraenata
Orcinus orca
Oreamnos americanus
Ovis aeries

Ovis canadensis

Ovis dall

Pagurus longicarpus
Palaemonetes pugio
Pan troglodytes
schweinfurthii
Panthera leo

Papio cynocephalus
Paramuricea clavata
Passer domesticus
Phacochoerus

aethiopicus

Pfister (1996)
Hilderbrand (2003)
Kareivaet al. (2000); Wilson 2003

Fisheret al. (2000)

Brault & Caswell (1993)
Galillard & Yoccoz (2003)
Galillard & Yoccoz (2003)
Gaillard & Yoccoz (2003)
Gaillard & Yoccoz (2003)
Damiani (2005)

Sable (2007)

Lawler (2010)

Oli & Zinner (2001)
Oli & Zinner (2001)
Linareset al.(2007)
Macleanet al. (2008)
Oli & Zinner (2001)

Phascolarctos cinereus Baxteret al.(2006)

Phasianus colchicus

torquatus

Clarket al.(2008)
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Aves

Aves
Anthozoa
Osteichthyes
Mammalia
Mammalia

Aves

Aves
Amphibia
Amphibia
Amphibia
Amphibia
Mammalia
Aves
Actinopterygii
Actinopterygii
Mammalia
Mammalia

Mammalia

Mammalia

Demospongiae

Procellariiformes
Piciformes
Scleractinia
Cyprinodontiformes
Primates
Artiodactyla

Procellariiformes

Procellariiformes
Anura

Anura

Anura

Anura
Artiodactyla
Falconiformes
Salmoniformes
Clupeiformes
Rodentia
Rodentia

Rodentia

Rodentia

Dictyoceratida

Diomedeidae
Picidae
Faviidae
Poeciliidae
Indridae
Bovidae

Procellariidae

Procellariidae
Ranidae
Ranidae
Ranidae
Ranidae
Cervidae
Accipitridae

Salmonoidae
Clupeoidae

Sciuridae

Sciuridae

Sciuridae

Sciuridae

Spongiidae

Phoebastria nigripes
Picoides borealis
Platygyra sinensis
Poecilia reticulata
Propithecus Verreuxi
Pseudois nayaur
Pterodroma
phaeopygia
sandwichensis
Puffinus opisthomelas
Rana aurora

Rana catesbeiana
Rana sylvatica

Rana temporaria
Rangifer tarandus
Rostrhamus sociabilis
Salvelinus fontinalis
Sardinops sagax
Sciurus carolinensis
Spermophilus armatus
Spermophilus
columbianus
Spermophilus lateralis

Spongia graminea

Lewison & Crowder (2003)
MacGuireet al. (1995)
Orive (1995)
Branikowskiet al. (2002)
Lawleret al. (2009)

Oli & Zinner (2001)
Simons (1984)

Keitt et al. (2002)
Biek et al. (2002)
Purnimaet al. (2005)
US EPA (2003)

Biek et al. (2002)

Oli & Zinner (2001)
Beissinger (1995)
Letcheret al. (2007)
Lo et al.(1995)
Barkalowet al. (1970)
Slade & Balph (1974)
Dobson & Oli (2001)

Bronson (1979)
Cropper & Di Resta (1999)
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Sauropsida
Polychaeta
Aves
Mammalia
Mammalia

Mammalia

Mammalia

Mammalia

Pterygota
Mammalia

Aves
Mammalia

Aves

Gastropoda
Aves
Mammalia
Mammalia
Mammalia
Mammalia

Reptilia

Charadriiformes

Spionida
Strigiformes
Artiodactyla
Artiodactyla

Rodentia

Marsupialia

Artiodactyla

Coleoptera

Sirenia

Passeriformes
Cetacea

Galliformes

Archegastropoda
Charadriiformes
Carnivora
Carnivora
Carnivora
Carnivora

Squamata

Laridae
Spionidae
Strigidae
Suidae
Bovidae

sciuridae

Didelphidae

Bovidae

NA

Trichechidae

Troglodytedae

Delphinidae

Phasianidae

Trochidae
Alcidae
Canidae
Ursidae
Ursidae
Ursidae

Viperidae

Sterna antillarum
Streblospio benedicti
Strix occidentalis
Sus scrofa

Syncerus caffer
Tamiasciurus
hudsonicus
Thylamys elegans
Tragelaphus
strepsiceros
Tribolium sp
Trichechus manatus
latirostris
Troglodytes troglodytes
Tursiops truncatus
Tympanuchus cupido
pinnatus

Umbonium costatum
Uria lomvia

Urocyon littoralis
Ursus americanus
Ursus arctos

Ursus maritimus

Vipera aspis

Akcakayaet al. (2003)
Levinet al.(1987)
Lande (1988)

Bieber & Ruf (2005)
Grangeet al. (2004)
McAdamet al. (2007)

Limaet al. (2001)
Galillard & Yoccoz (2003)

Costantino (1987)
Rungeet al. (2004)

Macleanet al. (2008)
Stolen & Barlow (2003)
Wisdom & Mills (1997)

Noda & Nakao (1996)
Wieseet al. (2004)
Roemeret al. (2001)
Oli & Zinner (2001)
Wielgus (2002)
Hunter (2010)
Altwegg et al. (2005)
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Aves
Aves
Mammalia
Reptilia
Bivalvia

Mammalia

Passeriformes
Passeriformes
Carnivora
Squamata
Nuculoida

Carnivora

Vireonidae
Vireonidae
Canidae
Xenosauridae
Yoldiidae

Otariidae

Vireo latimeri Woodworth (1999)
Vireo olivaceus Noon & Sauer (1992)
Vulpes vulpes Nelsonet al. (2010)

Xenosaurus grandis Zuniga-Vegeet al. (2007)
Yoldia notabilis Nakaoka (1997)

Zalophus californianus Wielguset al. (2008)
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GLOSSARY

AMPLIFICATION

Short-term increase in population density relatovasymptotic growth.

ASYMPTOTIC GROWTH
The long-term, geometric rate of population incecaisdecline that the model exhibits when it

reaches stable state; mathematically, equal tdah@nant eigenvalue of the PPMhax

ATTENUATION
Short-term decrease in population density relativesymptotic growth.

CASE-SPECIFIC TRANSIENT DYNAMICS

INITIAL DEMOGRAPHIC DISTRIBUTION
The actual ratios of life stages in the populatimathematically, the vector used to project
population dynamics. Represented here usingvhere [jo||. (the one-norm or column sum

of ny) is equal to overall population size or density.

DISTURBANCE
A change to the demographic structure of the pdoungusually as a result of exogenous
forces); mathematically, a change in the ratiafefdtages in the initial demographic

distribution vector.

ELASTICITY
The change in population density or growth resglfiom a perturbation of one or more vital

rates of a population, relative to the magnitudehefvital rate(s) perturbed.
PERTURBATION
A change to the vital rates of the population (Ugwes a result of exogenous forces);

mathematically, a change in one or more PPM elesnent

PERTURBATION ANALYSIS
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Any analysis that considers the change of a moatglud with respect to the change of a model
input; usually considering the change in populatiensity or growth resulting from

perturbation of one or more vital rates of the pafon.

SENSITIVITY
The absolute rate of change in population densityrawth resulting from infinitesimal

perturbations of one or more vital rates of a papaih.

STABLE DEMOGRAPHIC DISTRIBUTION
The ratios of life stages in the population whereéches stable state; mathematically, equal to

the dominant right eigenvector of the PRM,

STAGE-BIASED VECTOR
An initial demographic distribution vector that tedkindividuals in a single stage and an
overall density of 1; mathematically, a standarsi®aector with zeroes in each entry, except

for a single entry that is equal to one.

TRANSFER FUNCTION
A means of perturbation analysis derived from systand control theory. Describes the exact
nonlinear relationship between a perturbation ¥dad rate and resultant change in population

density or growth.

TRANSIENT BOUND
The most extreme values of transient dynamicsrtizgt result from a PPM. Any case-specific

transient dynamics must lie between the boundswmiification and attenuation.

TRANSIENT DYNAMICS
The short-term dynamics of the population, whiah @dgpendent on the initial conditions of the

model.

TRANSIENT ENVELOPE

The area between the transient bounds, in whiok-gpacific transient dynamics must lie.
TRANSIENT PERIOD

The period of time in which the model exhibits s&mt dynamics, before it settles to stable

State.
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