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ABSTRACT 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Population projection matrix (PPM) models are a central tool in ecology and evolution. 

They are widely used for devising population management practises for conservation, pest 

control, and harvesting. They are frequently employed in comparative analyses that seek 

to explain demographic patterns in natural populations. They are also a key tool in 

calculating measures of fitness for evolutionary studies. Yet, demographic analyses using 

projection matrices have, in some ways, failed to keep up with prevailing ecological 

paradigms. A common focus on long-term and equilibrium dynamics when analysing 

projection matrix models fits better with the outmoded view of ecosystems as stable and 

immutable. The more current view of ecosystems as dynamic and subject to constant 

extrinsic disturbances has bred new theoretical advances in the study of short-term 

‘transient’ dynamics. Transient dynamics can be very different to long-term trends, and 

given that ecological studies are often conducted over short timescales, they may be more 

relevant to research. This thesis focuses on the study of transient dynamics using 

population projection matrix models. The first section presents theoretical, methodological 

and computational advances in the study of transient dynamics. These are designed to 

enhance the predictive power of models, whilst keeping data requirements to a minimum, 

and borrow from the fields of engineering and systems control. Case studies in this section 

provide support for consideration of transient dynamics in population management. The 

second section applies some of these new methods to answer pertinent questions 

surrounding the ecology and evolution of transient dynamics in plants. Results show that 

transient dynamics exhibit patterns according to life form and phylogenetic history. 

Evidence suggests that this can be linked to the stage-structuring of life cycles, which 

opens up the possibility for new avenues of research considering the evolution of transient 

dynamics in nature. 
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INTRODUCTION 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

A fundamental aim in ecology and evolution is to create mathematical models that are 

predictive of future system dynamics. Ecological and evolutionary models may span scales of 

biological organisation from genes (Galindo, Olson & Palumbi 2006) to ecosystems (McGinnis 

et al. 1969), scales of time from days (Carslake, Townley & Hodgson 2009a) to millennia 

(Ezard et al. 2012), and scales of space from a single field (Valverde et al. 2004) to entire 

continents (Thomas et al. 2004). Such systems inevitably have one thing in common: their 

dynamics are noisy, subject to both exogenous and endogenous sources of variation that 

complicate our understanding of how they work and hinder our ability to accurately model 

them. Of course, different sources of variation are important at different scales: levels of gene 

expression will have a great deal of effect on an individual’s phenotype (Smith et al. 2009), but 

probably very little impact on ecosystem dynamics. Individual weather patterns spanning a 

several months may seriously impact population growth (Smee et al. 2011), but are less likely to 

be highly influential on evolutionary scales. Certain aspects of microclimate may be highly 

important to individual insect populations (Lawson et al. 2012), but may be inconsequential to 

global insect diversity. In any case, variation presents a significant obstacle in developing 

models of natural systems: it is no coincidence that development of the fields of ecology, 

evolution, mathematics and statistics are often tightly linked. 

Remarkably however, the foundations of mathematical models are often very similar. 

Individual classes of model can be applicable to a great variety of systems. Network models can 

describe disease dynamics (Lion & Boots 2010) or food webs (Ings et al. 2008); differential 

equations can describe chemical networks (Mincheva & Roussel 2007) or spatial population 

dynamics (Holmes et al. 1994); matrix models can describe metabolic networks (Förster et al. 

2003) or macroevolutionary processes (Ezard et al. 2012). Moreover, modelling frameworks 

often transcend traditional disciplinary boundaries: ecological models have often proven 

relevant when applied to economic problems (Haldane & May 2011).  Given the generality of 

modelling techniques, it may pay sub-disciplines within ecology and evolution to borrow 

methods from one another, or to look to other subject fields for solutions to modelling problems. 

 

One ecological discipline that has seen a particular wealth of modelling literature is that of 

population ecology. The earliest prospective models of population dynamics were developed in 

the 19th Century, with the inception of the logistic equation (Verhulst 1838), although studies of 

population dynamics did not become popular until the 20th Century, when these equations were 

rediscovered and developed (Reed & Pearl 1927). Early models of population dynamics were 



11 
 

simple. Every individual was considered equal in its contribution to the population. Dynamics 

were considered to be constant over time. Density dependence was included in its most basic 

form. Development of more complex methods was slow, impeded by the fact that calculation 

was necessarily done by hand. Nevertheless, over time population models became steadily more 

complex, with the incorporation of new methods such as differential equation models (Lotka 

1932). A particular breakthrough was the introduction of population projection matrix (PPM) 

models; Leslie 1945; Lefkovitch 1965).  These introduced stage-structuring into population 

models, recognising that not all individuals in the population contribute equally to population 

dynamics.  Matrix models of population dynamics grew to be perhaps the most widely-used 

models in population ecology, remaining highly popular today. 

The popularity of matrix models may lie in their tractability. First of all, it is relatively 

easy to understand how a life cycle graph is coerced into matrix form: matrix columns describe 

the current life cycle stage of an individual, and matrix rows describe the stage an individual 

may move into within the next timestep. Entries in the matrix describe how probable movement 

between different life stages is.  The demographic structure of the population is described by a 

column vector of numbers or densities of individuals, and multiplying the matrix by this vector 

yields the demographic structure of the population in the next timestep. Repeating this process 

gives a population projection; a time series of population size or density.  Hence, the projection 

equation is simple: nt = Atn0, where A is the PPM and nt and n0 are the demographic vectors at 

time t and time 0 respectively. Most importantly, there are a number of emergent properties of 

this model that describe long-term population dynamics, foregoing the requirement for model 

projection (see Caswell 2001). In the long term the population is predicted to settle to a stable 

state with stable growth or decline and a stable demographic structure. The dominant eigenvalue 

of the matrix λmax is the value of stable geometric long-term growth.  The dominant right 

eigenvector w of the matrix describes the proportions of life stage densities in the stable 

demographic structure.  The dominant left eigenvector v of the matrix describes the long-term 

reproductive value of each stage. It is also possible to compute how changes in the life cycle 

might influence these dynamics, using simple sensitivity and elasticity analyses. As PPM 

models were conceived in a time when the presiding paradigm of ecology was one of stability in 

natural systems (Cuddington 2001), these properties made PPM models a highly attractive 

prospect.  

 

However, over time ecological paradigms changed and stability theory largely fell out of favour. 

Technological developments revolutionised science as a whole, as computational power grew 

exponentially.  For population ecology, this meant that greater sources of natural variation could 

(and should) be incorporated into matrix models. Ecologists fell into two broad camps: those 

that believed density-dependent processes contribute more significantly to noisy population 

dynamics (Dennis et al. 1997), and those that believed environmental stochasticity is the driver 
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of variation in population density and growth (Fieberg & Ellner 2001). This argument is not 

trivial: by this time PPM models were a key tool in numerous areas of ecological and 

evolutionary research. An accurate understanding of population dynamics was important when 

using PPM models to inform population management and policy for conservation (Price & 

Kelly 1994), pest control (Smith & Trout 1994), invasive species (Shea & Kelly 1998), fisheries 

(Sable & Rose 2011), and harvesting (Pinard 1993). In many such cases, studies will have 

influenced the dissemination of significant economical investment. Simultaneously, PPM 

models were widely used in comparative ecological and evolutionary studies (Silvertown et al. 

1996; Crone 2001), with demographic measures such as long-term growth or reproductive value 

used as measures of fitness (Hunt & Hodgson 2010). Hence PPM models were not only 

instrumental in an applied sense, but also important to our understanding of how ecological and 

evolutionary processes work.  

Density-dependent and stochastic models have both seen success in explaining complex 

time series of population dynamics. Two classic systems provide the most rigorous evidence for 

density dependent regulation of populations: in the laboratory, overcompensating density 

dependence has been shown to drive both limit cycles and chaos in populations of flour beetle 

of the genus Tribolium (Dennis et al. 1997; Costantino, Desharnais & Cushing 1997; Dennis et 

al. 2001). In the field, there is ample evidence to suggest that density-dependent processes drive 

the cyclic population dynamics of many species of rodent, particularly voles (Hanski et al. 

1993; Turchin 1993). However, the importance of such nonlinear dynamics in most natural 

systems has been hotly debated (Turchin & Taylor 1992), whilst stochastic effects are arguably 

more ubiquitous. Countless studies of stochastic demography have demonstrated that vital rates 

vary over both time and space under differing environmental conditions. Such studies span a 

wealth of taxa in both plants (Nantel, Gagnon & Nault 1996; Morris & Doak 2005) and animals 

(Nakaoka 1997; Hunter et al. 2010). More recently, it has been accepted that both density-

dependent and stochastic mechanisms are likely to be important, with the description of models 

that include both types of process (Bjørnstad & Grenfell 2001).  

All of these analyses have retained one thing in common with analyses of earlier, basic 

PPM models: they continue to focus on the long-term properties of the model. Density 

dependent analyses consider attractors: stable equilibria such as the carrying capacity of the 

population and nonstable equilibria including limit cycles and chaos (Dennis et al. 2001). 

Stochastic models concern themselves with mean and variance of long-term stochastic growth 

rate (Fieberg & Ellner 2001), with stochastic sensitivity and elasticity analyses describing how 

stochastic growth is affected by changes in vital rates of the population (Tuljapurkar, Horvitz & 

Pascarella 2003). 

 

However, the past decade has seen the spotlight turned upon analyses of short-term, or 

‘transient’, population dynamics (Neubert & Caswell 1997; Hastings 2001, 2004; Townley et al. 
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2007). The concepts underlying transient theory are relatively simple. Transient dynamics can 

be very different to long-term dynamics: for example, a population that declines in the long 

term may increase in the short term or vice versa (Hastings 2001, 2004; Townley et al. 2007). 

Long-term dynamics are independent of population structure, but transient dynamics depend 

heavily on population structure (Townley & Hodgson 2008). Therefore transients are likely to 

be a common feature of stochastic systems, where the environment induces frequent changes in 

population structure. As such, transient analyses may be important to population management if 

transients preside in the population, standing alongside asymptotic analyses as a means of 

evaluating population models. Additionally, transients may aid in our understanding of complex 

ecological time series, standing alongside density dependence and stochasticity as an important 

driver of variation in population dynamics.  

However, transient analyses don’t benefit from the simple analytical solutions and 

intuitive interpretations enjoyed by asymptotic analyses. Early development in the field saw a 

great diversity of methodologies for quantifying both transient dynamics per se (Neubert & 

Caswell 1997; Koons, Holmes & Grand 2007; Townley et al. 2007; Townley & Hodgson 2008) 

and their sensitivity to perturbation (Fox & Gurevitch 2000; Yearsley 2004; Caswell 2007). The 

emerging body of literature was fragmented: whilst there existed a diverse range of 

methodologies for analysing transients, these differed greatly in their approach and amongst 

them there was even little consensus on what constitutes ‘transient dynamics’. Without a broad 

understanding of how best to analyse transients, let alone what transient dynamics are and what 

they mean, transient analyses remained elusive in studies of population management and 

comparative demography. 

 

This thesis aims to build some coherence in the approach to studying transient population 

dynamics, and to explore some ecological and evolutionary patterns in transient dynamics. The 

thesis is comprised of a number of standalone papers written throughout the course of my PhD. 

Each chapter is a study in its own right, although hopefully they also come together as a logical 

whole.  

The first part of the thesis, “Modelling Transient Population Dynamics” consists of four 

chapters that deal with methods behind the study of transients. The first chapter provides a 

literature review that aims to synthesise a framework within which to study transients. It is 

within this framework that the rest of the thesis is conducted. The second chapter presents novel 

methods for analysing transient dynamics that borrow from control systems engineering. These 

help to increase the accuracy of model prediction, but crucially demand no extra data for their 

implementation. The third chapter explores some of the core assumptions of PPM models, 

assessing how their violation affects predicted dynamics and how often they are adhered to. The 

fourth chapter presents a software package for transient analysis in the program R that includes 

all modelling methodology used in this thesis, and more. This software makes transient analyses 
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freely available to ecologists, conservationists and researchers the world over. Throughout this 

first section, I heavily utilise worked examples, using models for natural populations. These 

demonstrate, on a case-by-case basis, the importance of considering transient dynamics in 

population management. 

 The second section of the thesis, “The Role of Transient Population Dynamics in 

Ecology and Evolution”, consists of two chapters that seek to explore patterns of transient 

dynamics in natural plant populations, and assess how important these patterns may be to 

ecological and evolutionary processes. Mainly, this concerns how transients vary according to 

both life history and phylogenetic relatedness. The fifth chapter explores how large transients 

can get, asking the questions, do plants exhibit boom-and-bust transient dynamics, do plants 

with similar life forms exhibit similar potential transient dynamics, and are these dynamics 

heritable? The sixth chapter explores the role transient dynamics play in the response of 

populations to disturbance, asking do populations tend to rebound quickly from disturbance 

events, do different life forms show different patterns of response to disturbance, and are such 

patterns of response heritable? This section draws upon a large database of PPM models for 

plant species. Results indicate that patterns of transient dynamics differ according to both life 

form and phylogenetic relatedness, unearthing the possibility that transients may be an 

important target of selection in natural populations.  

 Finally, the general discussion draws together information presented in the thesis, and 

debates the future of transient dynamics in ecology and evolution. This includes a discussion on 

how the results presented here contribute to our understanding of population dynamics, and a 

venturing of some important questions that need to be explored. It also includes a consideration 

of how transient dynamics fit into the general study of demography, and specifically how 

transient theory may contribute in density dependent and stochastic systems. Important 

methodological requirements are suggested, including the extension of transient dynamics to 

other modelling frameworks. Last, the discussion touches upon the possibility of using transient 

analyses to predict dynamics of other stage-structured biological systems spanning all levels of 

biological organisation across various scales of time and space. 

 

  



15 
 

  



16 
 

_______________ 

CHAPTER 1 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Early experience of working with transient dynamics revealed the diversity of approaches to 

their study. Many indices of transient dynamics existed, but there was often confusion 

surrounding their exact meaning. Some studies would forego the use of specific indices 

altogether, analysing transient dynamics over arbitrary scales of time and/or density. Continued 

disparity in approach risked inability to compare results between studies, and would have 

increased difficulties for newcomers to the field. Chapter 1 reviews the literature on the study of 

transient dynamics in population projection matrix models, and synthesises a framework in 

which to work. Although the first chapter presented here, this was the third paper published as 

part of this thesis. With this paper, we aimed to promote methods that would be useful in many 

different contexts and identify important indices, with concrete mathematical and biological 

interpretations, which capture a large amount of the variability in transient dynamics of 

populations. At the very least, we hoped that synthesising the available literature into a coherent 

framework would help identify where different methods sit in the context of the overall study of 

transient dynamics. 

 

 

Chapter 1: 

Stott, I., Townley, S. & Hodgson, D.J. (2011) A framework for studying transient dynamics of 

population projection matrix models. Ecology Letters, 14, 959-970.  

doi: 10.1111/j.1461-0248.2011.01659.x 
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A FRAMEWORK FOR STUDYING TRANSIENT DYNAMICS OF 

POPULATION PROJECTION MATRIX MODELS  

 

 

ABSTRACT 

Empirical models are central to effective conservation and population management, and should 

be predictive of real-world dynamics. Available modelling methods are diverse, but analysis 

usually focuses on long-term dynamics that are unable to describe the complicated short-term 

time series that can arise even from simple models following ecological disturbances or 

perturbations. Recent interest in such transient dynamics has led to diverse methodologies for 

their quantification in density-independent, time-invariant population projection matrix (PPM) 

models, but the fragmented nature of this literature has stifled the widespread analysis of 

transients. We review the literature on transient analyses of linear PPM models and synthesise a 

coherent framework. We promote the use of standardised indices, and categorise indices 

according to their focus on either convergence times or transient population density, and on 

either transient bounds or case-specific transient dynamics. We use a large database of empirical 

PPM models to explore relationships between indices of transient dynamics. This analysis 

promotes the use of population inertia as a simple, versatile and informative predictor of 

transient population density, but criticises the utility of established indices of convergence 

times. Our findings should guide further development of analyses of transient population 

dynamics using PPMs or other empirical modelling techniques. 

 

 

INTRODUCTION 

Our aim is to promote a framework for the analysis of transients emerging from empirical 

models of population dynamics. Models of prospective population dynamics are integral to 

conservation and management (Menges 1990; Fujiwara & Caswell 2001; Wilson 2003; Baxter 

et al. 2006) and should ideally be predictive of real-world population dynamics. Numerous 

population modelling methods now exist, including simple linear or logistic equations (e.g. 

Verhulst 1838; Volterra 1926; Lotka 1932), difference equations (e.g. May 1975), matrix 

models (e.g. Leslie 1945; Lefkovitch 1965), integral projection models (e.g. Childs et al. 2004; 

Ellner & Rees 2006, 2007) and individual-based models (e.g. van Winkle, Rose & Chambers 

1993). Most models have simple density-independent, time-invariant forms, but many models 

may include drivers of more complicated population dynamics: nonlinear density-dependent 

forms incorporate intrinsic drivers, such as density dependence in vital rates or Allee effects 

(e.g. Costantino, Desharnais & Cushing 1997; Dennis et al. 2001; Fowler & Ruxton 2002), 

whereas time-varying stochastic forms incorporate extrinsic drivers, such as variation in climate 
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or resource abundance (e.g. Fieberg & Ellner 2001; Tuljapurkar, Horvitz & Pascarella 2002). 

Nonlinear, time-varying forms combine both these density dependent and stochastic approaches 

(e.g. Bjørnstad & Grenfell 2001; Costantino et al. 2005). 

One particular class of model, the population projection matrix (PPM), has held 

enduring popularity in population modelling. PPM models benefit from being intuitive and 

tractable, and from the availability of a mature literature on their parameterisation, analysis and 

interpretation. Although density-dependent and stochastic forms exist (Costantino, Desharnais 

& Cushing 1997; Fieberg & Ellner 2001), many research projects are unable to collect the data 

required to parameterise such models, especially for populations of conservation concern. Thus, 

it is linear, time-invariant PPM models that dominate the applied demographic literature (e.g. 

Pavlik & Barbour 1988; Crooks, Sanjayan & Doak 1998; Grenier, McDonald & Buskirk 2007), 

despite criticisms that they have limitations with respect to describing observed dynamics of 

natural populations (Bierzychudek 1999; Stephens et al. 2002). Historically, analysis of these 

models (and indeed of many other classes of population model) has focused on long-term 

population dynamics. Simple models tend to concentrate on analysing properties of stable 

asymptotic equilibria such as long-term growth rate and population structure (e.g. Pinard 1993; 

Shea & Kelly 1998; Otway, Bradshaw & Harcourt 2004). Density-dependent models largely 

focus on analysing attractors including stable equilibria such as carrying capacity or unstable 

equilibria such as limit cycles and chaotic dynamics (e.g. Turchin 1993; Dennis et al. 2001). 

Stochastic models aim to simulate or provide analytical solutions to expected values of and 

variation in long-term stochastic growth rate and population size (e.g. Tuljapurkar 1990; Morris 

& Doak 2005; Nantel, Gagnon & Nault 1996). The tendency to focus on equilibria and long-

term dynamics is perhaps a hangover from early theoretical paradigms that perceived ecological 

systems as ‘balanced’ (Cuddington 2001). In addition, because such long-term dynamics are 

largely independent of population attributes such as initial population size or structure, they lend 

themselves to relatively easy calculation. 

However, there has been a recent surge of interest in short-term, TRANSIENT 

DYNAMICS of populations (see Glossary for definition of capitalised terms). Density-

independent, time-invariant PPM models predict that if a population experiences a constant 

environment with unlimited resources, then it settles to a long-term stable rate of 

ASYMPTOTIC GROWTH (or decline) and a theoretical STABLE DEMOGRAPHIC 

DISTRIBUTION. However, in reality, populations experience a changeable and heterogeneous 

world, where extrinsic disruptions to population structure of biotic origin (e.g. disease, 

predation pressure or competition), abiotic origin (e.g. changing climate, extreme weather 

events or fire) and anthropogenic origin (e.g. harvesting or management intervention) lead to a 

realised INITIAL DEMOGRAPHIC DISTRIBUTION that is different from the population’s 

stable demographic distribution. This can be a result of either DISTURBANCES to population 

structure that are asymmetric across the life cycle (changing the initial demographic 
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distribution) and⁄or PERTURBATIONS to vital rates of the population (changing the stable 

demographic distribution). Discrepancies between initial and stable distributions will result in 

short-term increases in population density (population AMPLIFICATION), decreases in 

population density (population ATTENUATION), and⁄or fluctuations in density that are very 

different to those that might be expected in an immutable environment (Hastings 2004; Townley 

et al. 2007; Tenhumberg, Tyre & Rebarber 2009). In the absence of further disturbance or 

perturbation, transient dynamics would dampen and the population would settle back to stable 

state. The time taken for stable state to be reached following disturbance or perturbation is 

termed the TRANSIENT PERIOD (Fig. 1.1). The ability to understand and quantify such 

transient dynamics would enable managers to both ameliorate adverse transient response to 

natural disturbance and perturbation, and deliberately manipulate transient response through 

anthropogenic disturbance and perturbation. A thorough understanding of transients may 

improve the predictive power of the simple density-independent, time-invariant PPM models 

that dominate the literature and, combined with other approaches, may aid in our 

comprehension of how complicated population dynamics are shaped. The transient dynamics 

that we discuss here form a middle-ground of empirical modelling: they describe deterministic 

responses to (possibly stochastic) disturbances or perturbations, allowing a consideration of 

non-equilibrium dynamics without recourse to the computationally expensive study of fully 

stochastic systems. In a predictive sense, they are perhaps most useful for populations that 

usually experience relatively stable conditions, but which are occasionally subject to significant 

disturbance or perturbation. 

Transient dynamics have already been shown to have important consequences for 

population management. Anthropogenic fires cause increased transient growth of the 

reproductive proportion of populations of endangered golden mountain heather (Hudsonia 

montana) in North Carolina (Gross et al. 1998). Following hunting cessation, a managed 

population of red deer (Cervus elaphus) on the Isle of Rum showed prolonged transient 

fluctuations in size (Coulson et al. 2004). Analysis of transients also helps to improve our 

understanding of population invasion. In invasive plant populations, early life-stage vital rates 

strongly influence the transient dynamics that promote establishment and population growth 

(McMahon & Metcalf 2008; Ezard et al. 2010): this is intuitive considering seeds are the 

dispersive unit for plants. Conversely, in many animal populations, adults are more likely to 

disperse, and pea aphid (Acyrthosiphon pisum) populations may exhibit immediate population 

growth that is greater than predicted asymptotic growth, following experimentally induced adult 

invasion scenarios (Tenhumberg, Tyre & Rebarber 2009). Comparative studies of transient 

dynamics provide information that should help advise population management in the absence of 

sufficient data. Monocarpic herbs and trees have been shown to exhibit greater potential 

amplitudes of transient amplification and attenuation than perennial herbs and shrubs (Stott et 

al. 2010a [Chapter 5]). Long-lived animal species with slow reproduction have been shown to 
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have greater variability in potential transient growth than short-lived species with fast 

reproduction (Koons et al. 2005). The importance of transients in shaping natural population 

dynamics is likely to become more apparent, as transient analyses become a more established 

part of the demographer’s toolbox. 

Unfortunately, the emerging literature on transient analysis is disparate and rather 

fragmented, lacking the coherence of approaches to the analysis of long-term dynamics in 

population models. A large number of methodologies have been developed in recent years for 

quantifying transient dynamics and their relationship to vital rates, and these have almost 

exclusively focused on density-independent, time-invariant PPM models: this class of model 

lends itself readily to development of transient analyses. A coherent approach to the analysis of 

transient dynamics in such models is warranted. In this article, we provide a critical review of 

existing methodologies that focuses on indices that have been developed, how they are 

calculated, their interpretation and potential applications. We highlight differences, similarities 

and even mathematical equivalences among such published indices. Our primary aim is to 

consolidate this information into a common framework for transient analysis and identify 

important indices that capture much of the variation in transient dynamics of a population. 

Although our focus is on linear, time-invariant models, we anticipate that this emerging 

framework will inform the development of transient analyses for density-dependent and 

stochastic PPM models and wider classes of population model. Throughout, we provide 

necessary mathematical methodology and clarify terminology surrounding the study of transient 

dynamics and wider population ecology.  

 

 

TRANSIENT DYNAMICS IN PPM MODELS 

Transient dynamics in density-independent, time-invariant PPM models do not benefit from the 

simple analytical solutions available for asymptotic dynamics. For the model nt = Atn0 (where A 

is the PPM, nt is the demographic distribution vector of the population at time t and n0 is the 

initial demographic distribution vector of the population), the rate of asymptotic growth (or 

decline) is simply equal to λmax (the dominant eigenvalue of A). The dominant right eigenvector 

w represents the relative proportions of life stages in the stable demographic distribution, and 

the dominant left eigenvector v represents the relative reproductive value of each life stage (see 

Caswell 2001). Once the population settles to stable state, asymptotic properties have sole 

influence over population density, growth and structure. They are independent of the initial 

demographic distribution of the population, and they are insensitive to time. However, transient 

dynamics (and the indices used to describe them) vary in two dimensions: first, along the ‘time’ 

axis of the population projection (i.e. in rate of convergence to stable state) and second, along 

the ‘population density’ axis of the population projection (i.e. in whether they amplify, attenuate 

and/or oscillate and in the magnitude of these fluctuations). Variation along both axes depends 
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strongly on the initial demographic distribution. However, variation along both axes is also 

limited: transient dynamics are bounded both in rate of convergence and in possible 

amplification and attenuation. Therefore, indices of transient dynamics focus either on 

convergence time or transient population density, and can differ in their measurement of either 

TRANSIENT BOUNDS or CASE-SPECIFIC indices of transient dynamics. 

 

CONVERGENCE RATES 

The earliest widely used transient index focuses on model convergence rate. The damping ratio 

(Caswell 2001 p.95) of a PPM model is calculated as the ratio of the dominant eigenvalue to the 

magnitude of the first subdominant eigenvalue (see Appendix 1.1). It can be considered as a 

measure of the intrinsic resilience of the population, describing how quickly transient dynamics 

decay following disturbance or perturbation, regardless of population structure (the larger the 

damping ratio, the quicker the population converges). It is certainly a useful measure in 

comparing relative resilience across populations or species, and has been employed as such in 

many comparative analyses. For example, slower-growing corals may have a higher damping 

ratio than faster-growing corals (Hughes & Tanner 2000), indicating that slower-growing corals 

may be more susceptible to disturbance or perturbation. Similarly, late-successional plant 

species such as trees or shrubs tend to have a lower damping ratio than early-successional 

species such as perennial herbs (Franco & Silvertown 2004). Many other comparative analyses 

have also used the damping ratio to infer population resilience (e.g. O’Connor 1993; Mollet & 

Cailliet 2002; Salguero-Gómez & Casper 2010).  

The damping ratio itself is a dimensionless measure and does not provide a direct 

quantification of the transient period. However, it can be implemented in equations that will 

provide this information. For example, the time for the influence of λmax to become x times as 

great as λ2 is equal to the logarithm of x divided by the logarithm of the damping ratio (Caswell 

2001 p.96). In a strict mathematical sense, the population never reaches stable state, but merely 

continues to approach it indefinitely. Therefore, considering quasi-convergence of the model in 

this way is perhaps the only way of prescribing a finite timeframe to the transient period. 

However, the length of the transient period depends not only on the inherent resilience of the 

population but also on its structure: the damping ratio ignores the initial distribution of the 

population, and so cannot provide information on convergence and the transient period given a 

particular disturbance scenario. As such, it is likely to be of limited use for population managers 

and researchers interested in population response to specific natural or anthropogenic 

disturbance. Indeed, we use a large set of empirical PPM models to show below that the 

damping ratio correlates relatively weakly with convergence times of realistic population 

projections.  

Another class of convergence measures makes it possible to incorporate specific 

disturbance scenarios. Distance measures calculate the ‘distance’ to stable state, incorporating 
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explicitly the degree of difference between the initial and stable demographic distributions in 

their calculation. Each distance measure has a different interpretation and corresponding 

strengths and weaknesses. The simplest distance measures suffer from the opposite problem to 

the damping ratio in that they do not consider intrinsic resilience of the population to 

disturbance. For example, Keyfitz’s ∆ (Keyfitz 1968) measures the proportional difference 

between the initial and stable demographic distribution vectors (Appendix 1.1), ignoring other 

PPM parameters in its calculation. Some distance measures incorporate further PPM 

parameters: for example, projection distance (Haridas & Tuljapurkar 2007) measures the 

difference in the reproductive value of the initial and the stable demographic distributions 

(Appendix 1.1), utilising the reproductive value vector v in its calculation. Other distance 

measures are even more informative: Cohen’s cumulative distance metric (Cohen 1979) 

incorporates the intrinsic resilience of the population to disturbance, with a formula that 

incorporates the ‘path’ taken by the initial demographic distribution, as it converges towards 

stable demographic distribution through time.  

With each distance metric having a different interpretation, the utility of each will 

depend on the nature of the study under consideration. One drawback common to all distance 

measures is that they cannot give an objective estimate of convergence time given a particular 

disturbance scenario. As such, they are most useful in comparative analyses, comparing case-

specific response to disturbance or perturbation. Despite this, distance measures have not seen 

the same popularity as the damping ratio in comparative analyses. There is a clear need for an 

index that can provide an estimate of time to convergence given a particular disturbance 

scenario. Quasi-convergence given a specific population structure can be simulated by 

projecting the model and calculating the time taken to achieve asymptotic growth to a specified 

accuracy (e.g. for the model to exhibit growth within 1% of λmax); however, this is a relatively 

computationally intensive solution to the problem. 

 

POPULATION DENSITY AND GROWTH 

There are a number of benefits to studying transient population size, density and growth. 

Population managers will often aim either to boost the density and growth of populations (e.g. 

for conservation or harvesting) or to curb them (e.g. for control of pests and invasive species). 

Understanding transient response to natural or induced disturbance and perturbation can help to 

achieve these aims; indeed an ignorance of transient responses could hinder progress when 

employing management strategies developed using asymptotic analysis (Koons, Rockwell & 

Grand 2007). When studying resistance and resilience to disturbance and perturbation, 

measuring immediate changes in population density following disturbance or perturbation is an 

alternative to evaluating convergence rate (Neubert & Caswell 1997). Populations may never 

reach stable state in the natural environment (Townley et al. 2007; Buckley et al. 2010; Stott et 

al. 2010a [Chapter 5]) and in any case, most ecological studies are conducted on timescales that 



23 
 

are shorter than the time it would take to do so (Hastings 2004). Hence, there is a conceptual 

flaw in analysing asymptotic population density and growth whilst ignoring transients, and 

studying convergence rate alone will be of limited use. Consequently, recent literature has been 

concerned with quantifying transient population size, structure, density and growth.  

However, the quantification of transient population density and growth requires a 

number of decisions to be made. The first decision is simply how to define ‘transient’. It is 

difficult to objectively delimit the transient period (Maron, Horvitz & Williams 2010), and the 

length of the transient period is highly variable among different models. Defining ‘transient’ in 

terms of population density and structure is equally difficult:  asymptotic model properties 

always exert some influence over the population projection, albeit a decreasing influence, the 

nearer-term the analysis. Furthermore, by their very nature, transient dynamics are highly 

sensitive to the demographic population structure used in the model. Considering these issues, 

we have identified three main problems to overcome in quantifying transients: (1) disentangling 

transient and asymptotic effects, (2) choosing an initial demographic distribution and (3) 

choosing the timeframe for analysis. We discuss existing methodologies with respect to how 

they deal with these three problems. 

DISENTANGLING TRANSIENT AND ASYMPTOTIC EFFECTS: There are two 

approaches to the study of transient amplification or attenuation in population density. First, 

absolute measures of transient population density describe how big or small a population can 

become in the short term: such measures describe the combined influence of transient growth 

rates and asymptotic dynamics (Fig. 1.2a). Second, relative measures of transient population 

density describe how big or small a population can become in the short term, relative to 

asymptotic dynamics (Fig. 1.2b). Relative measures of transient dynamics hold several 

advantages over absolute measures of transient population density. First, they clarify the 

concept of attenuation in asymptotically declining populations (attenuation is short-term decline 

in density at a faster rate than asymptotic decline) and amplification in asymptotically 

increasing populations (amplification is short-term increase in density at a faster rate than 

asymptotic increase). Figure 1.2a illustrates how, for an asymptotically declining population of 

the desert tortoise Gopherus agassizii, it is difficult to capture attenuation as the population 

approaches extinction. Conversely, Fig. 1.2b demonstrates that attenuation of the population is 

much easier to understand when the influence of asymptotic growth is discounted. Second, 

relative measures enable the fair comparison of both amplified and attenuated dynamics of a 

single population, through projection of different initial demographic distributions through the 

same PPM (Fig. 1.2b). Third, relative measures enable fair comparative study of transient 

dynamics among populations or species with widely varying asymptotic growth (Stott et al. 

2010a [Chapter 5]). Therefore, relative measures add to the list of standardised, emergent 

properties of a PPM model that are both qualitatively and quantitatively comparable within and 

across studies and models. Relative measures do not lack an intuitive biological interpretation: 
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discounting asymptotic growth yields values for population density, relative to those of a 

population with the same initial density that grows at its predicted asymptotic rate (Koons, 

Holmes & Grand 2007; Townley et al. 2007). In addition, relative measures of density can 

easily be converted back to absolute measures of density if required, simply by multiplying 

relative density by t
maxλ . 

The process of removing the influence of asymptotic dynamics can be done very easily 

in practice. An intuitive solution may be to project two models, one with the initial and one with 

the stable demographic distribution, and compare the two. However, this is unnecessarily 

computationally intensive. A second solution is to incorporate the correction into formulae for 

transient indices, for example, by scaling the eigenvectors of the matrix (e.g. Koons, Holmes & 

Grand 2007). This solution, although adequate for individual indices, is lacking in generality: it 

does not allow for more detailed study, such as of other transient timeframes or of lifestage-

specific dynamics. A third solution used by Townley & Hodgson (2008) in calculating their 

transient indices (Appendix 1.1) is to use the ‘standardised’ PPM Â, which is equal to the PPM 

A divided by λmax. This is a computationally simple solution, and enables complete projection of 

population dynamics in the absence of asymptotic dynamical effects. Hence, any analysis that 

can be applied to the PPM can also be applied to the standardised PPM, including analysis at 

any timeframe of the projection or analysis of lifestage-specific dynamics. We promote this as 

the simplest and most comprehensive solution to the problem of disentangling transient from 

asymptotic effects. 

CHOOSING AN INITIAL DEMOGRAPHIC DISTRIBUTION: Transient dynamics are 

very sensitive to the initial demographic distribution used in the population projection (Koons et 

al. 2005; Caswell 2007; Townley & Hodgson 2008), and there are two established approaches 

available when it comes to choosing an initial demographic distribution to work with. First, 

case-specific measures of transient density describe the predicted dynamics of the population, 

given a known initial demographic distribution. Second, bounds on transient population density 

represent the most extreme possible values of amplification and attenuation, and require no prior 

knowledge of the population’s demographic distribution. For effective population management, 

it will most often be better to study case-specific transient dynamics where possible (e.g. 

Zúñiga-Vega et al. 2007). However, estimating the demographic distribution of a population 

can prove to be costly and labour-intensive and so is often infeasible. Transient bounds provide 

an alternative approach to population management when the demographic distribution of the 

population is unknown, and provide best- and worst-case scenarios of transient change in 

population density (Townley & Hodgson 2008). The realised dynamics of the population will 

lie anywhere between the transient bounds on population density, and we call this range of 

possible values the TRANSIENT ENVELOPE (Fig. 1.2b). Transient bounds can also prove 

useful for comparative studies, both because they require no knowledge of population structure 

and because they invoke like responses among models (Stott et al. 2010a [Chapter 5]). 



25 
 

Calculation of case-specific transient dynamics merely requires projection of the known 

initial demographic distribution. Transient bounds on population density result from projection 

of STAGE-BIASED VECTORS of demographic distribution (Townley & Hodgson 2008), 

where all individuals in the population are grouped in a single stage. In the G. agassizii model, 

maximal possible amplification is achieved from a population of just adults, whereas maximal 

possible attenuation is achieved from a population of just yearlings (Fig. 1.2b). Although there 

do exist situations where all individuals in a population might be in the same life stage (for 

example, in a biological invasion or reintroduction programme), it is unlikely that the dynamics 

of real populations will follow such extreme trajectories. The transient envelope is therefore 

useful in describing the range of possible transient densities, but fails to inform on the 

probability of certain population sizes being achieved. For example, a model might show an 

increased propensity for amplification over attenuation (indeed this is the case for the G. 

agassizii model in Fig. 1.2), but the transient envelope does not provide this vital information. 

Simulation of population dynamics over the entire range of possible demographic distributions 

(e.g. Koons et al. 2005) can provide this detailed information. Imagine the shaded areas in Fig. 

1.2, but shaded darker for more likely transient population densities and lighter for less likely 

transient densities. This may be useful for population management, but is computationally 

demanding and an unwieldy output to use in comparative research. 

Case-specific indices of transient dynamics and transient bounds are both valuable 

measures of transient dynamics, but it is important that both are comparable across models. 

Standardising the initial stage distribution so that overall population density is equal to 1 (e.g. 

Maron, Horvitz & Williams 2010; Koons et al. 2005; Townley et al. 2007; Townley & Hodgson 

2008; Stott et al. 2010a [Chapter 5]) achieves this. Initialising a population projection with an 

overall density of 1 holds several major advantages: first, it enables fair comparison of transient 

dynamics of different initial stage distributions projected through the same model. In Fig. 1.2b, 

for example, it is easy to see how different initial demographic distributions result in different 

transient responses when each starts with at an initial overall density of 1. Second, it enables fair 

comparative study of transient dynamics among models for different populations or species 

(Maron, Horvitz & Williams 2010; Stott et al. 2010a [Chapter 5]). Third, coupling this approach 

with the study of relative measures of transient dynamics yields values for projected population 

density that are not only relative to asymptotic dynamics but also relative to initial density. For 

example, in Fig. 1.2b, a projected density of 2 means that the population doubles in size relative 

to asymptotic growth, whereas a projected density of 0.5 means that the population halves in 

size relative to asymptotic growth. 

CHOOSING THE TIMEFRAME FOR ANALYSIS: Transient dynamics can be measured 

at any point along the population projection. The first, and perhaps most intuitive, approach is to 

measure near-term, time-dependent transient dynamics: in this case, the timeframe chosen is 

very important. Very near-term measurements risk overlooking the full extent of transient 
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dynamics if the population continues to amplify or attenuate beyond the timeframe studied. 

Conversely, measurements taken further along the projection will risk increased dilution by 

asymptotic dynamics as the population converges to stable state. Choosing arbitrary time points 

along the projection at which to analyse transient dynamics has been the solution of many 

comparative studies (e.g. Koons et al. 2005; McMahon & Metcalf 2008; Maron, Horvitz & 

Williams 2010), but often such measurements are not comparable as they are not necessarily 

indicative of preceding or subsequent dynamics. A second approach is to measure the 

asymptotic effects of transient dynamics: although this may seem paradoxical, this method 

provides easily calculable and amenable indices that can supply very useful information. A third 

approach is to do away with time altogether in calculations, with time-independent measures of 

transient dynamics. The benefits and drawbacks of each method depend on the context in which 

they are used. 

For near-term transient analysis, an intuitive solution is to study immediate transient 

response, i.e. population density and growth in the first time interval. Reactivity and first-

timestep attenuation are the maximal possible amplification and attenuation in the first timestep 

(Neubert & Caswell 1997; Townley et al. 2007; Townley & Hodgson 2008; Appendix 1.1). 

This instantaneous transient response will always be in the transient period, but limiting 

evaluation to the first time interval risks missing the full extent of transient dynamics. A 

complementary solution to this problem is to measure maximal transient response alongside 

first-timestep response. Maximal amplification and maximal attenuation are the largest possible 

amplification and attenuation that may be achieved at any time point of population projection 

(Neubert & Caswell 1997; Townley et al. 2007; Townley & Hodgson 2008; Appendix 1.1). 

Measuring this ‘biggest’ transient response is effective for capturing the full extent of transient 

dynamics: population density should always be smaller than maximal amplification and larger 

than maximal attenuation. These four near-term indices were all originally defined as transient 

bounds, but they also exist for case-specific projections and collectively capture the majority of 

variation in near-term transient response, as we show below. However, they are not particularly 

amenable: maximal amplification and attenuation must be calculated numerically, and are 

therefore not readily disposed to PERTURBATION ANALYSIS. Analytical perturbation 

analyses of reactivity and first-timestep attenuation are more feasible, but will do little to inform 

on transient response beyond the first timestep. 

Alternatively, studying the asymptotic effects of transient dynamics can prove to be 

very informative. Early demographic studies of human populations considered population 

momentum (Keyfitz 1971; Appendix 1.1), the latent increase in human population size 

following an immediate decrease in birth rates to the level of replacement. Population inertia 

(Koons, Holmes & Grand 2007; Appendix 1.1) is a logical extension of this: a population with 

any given demographic distribution, following any disturbance or perturbation, will settle 

asymptotically to a fixed ratio above or below what is expected from a similar population 
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growing at asymptotic rate (Fig. 1.2b). Therefore, population momentum is a special case of 

population inertia (Koons, Holmes & Grand 2007; Appendix 1.1). Population inertia was 

originally defined for case-specific projections, but bounds on population inertia also exist. 

Amplified asymptotic multiplication and attenuated asymptotic multiplication (Townley & 

Hodgson 2008; Appendix 1.1) are bounds on population inertia, despite being calculated 

differently. Although more a consequence of transient dynamics than a measure of transient 

dynamics per se, population inertia can be thought of as a holistic measure that results from the 

combined effect of dynamics over the whole transient period and we show below that 

population inertia correlates tightly with the other indices of transient dynamics. A final strength 

of inertia is that it is very amenable to perturbation analysis, as it is a simple function of the 

initial stage distribution and the dominant eigenvectors of the PPM. 

A final method for overcoming the problem of time is to do away with it in calculations 

altogether. The upper Kreiss bound is a lower bound on maximal possible amplification 

(Townley et al. 2007; Townley & Hodgson 2008; Appendix 1.1) and the lower Kreiss bound is 

an upper bound on maximal possible attenuation (Townley & Hodgson 2008; Appendix 1.1). 

These measures are time-independent and, thanks to the existence of analytical formulae for 

their calculation, provide a gateway to perturbation analysis for transient bounds on maximal 

amplification and attenuation. However, the Kreiss bounds also suffer from drawbacks: first, 

they have no precise biological interpretation. Second, they are currently defined only as 

transient bounds and not for case-specific dynamics (although the necessary algebraic 

adjustment is not complicated). Last, they are somewhat redundant when considering their 

relationship to other indices, as we show below. 

 

 

A FRAMEWORK FOR TRANSIENT ANALYSIS 

The transient analysis of density-independent, time-invariant PPM models would benefit from a 

coherent framework within which to work. When measuring transient population density and 

growth, the discounting of asymptotic model properties has a number of benefits, and this is 

most easily done by using the standardised PPM Â, where Â = A/λmax. In addition, standardising 

the initial demographic distribution n0 to give 0n̂ , where || 0n̂ ||1 = 1 means that transient 

dynamics can be studied relative to both initial density as well as to asymptotic growth. In 

combination, these standardisations make transient indices more meaningful both for population 

management and comparative analysis, and allow fair comparison of results both within and 

among models. 

Deciding the timeframe for analysis of transient density and growth is a harder problem 

to solve: different transient indices have different interpretations, but often show highly 

correlated relationships with one another (Stott et al. 2010a [Chapter 5]). We exploit a database 

of 563 published, irreducible (Stott et al. 2010b [Chapter 3]) PPM models for 202 species of 
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animals and plants (Appendix 7) to further explore the relationships between transient indices 

measured using different timeframes. All mathematical and statistical modelling was conducted 

using R version 2.12.1 (R Development Core Team 2011). First of all, we note a special 

relationship between the Kreiss bound and transient bounds on population inertia. The 

derivation of the Kreiss bounds involves maximising or minimising over a scaling factor r for 

r > 1 (Appendix 1.1). However, where the maximum/minimum occurs at r→1, the upper and 

lower Kreiss bounds are identical to the upper and lower bounds on population inertia 

respectively. We calculated these measurements for each PPM in our database and found that in 

76.1% of cases, the upper Kreiss bound was identical to the upper bound on population inertia, 

whereas in 99.8% of cases, the lower Kreiss bound was identical to the lower bound on 

population inertia. In both cases, Spearman’s rank correlations between the Kreiss bounds and 

their respective bound on inertia yielded coefficients of greater than 0.99. So, the Kreiss bounds 

are somewhat redundant in comparison to population inertia, which is easier to interpret, 

simpler to calculate and more flexible. 

Given this information, we would consider first-timestep (reactivity, first-timestep 

attenuation), maximal (maximal amplification, maximal attenuation) and asymptotic (amplified 

inertia, attenuated inertia) indices of transient dynamics to be the most useful measurements of 

transient population density and growth (Table 1.1). These indices and their bounds together 

describe the majority of variation in transient population density, are comparable within and 

across models and all have a definite biological interpretation. Relationships between these 

measurements are presented in Fig. 1.3. To study relationships between bounds on transient 

dynamics, we calculated the six bounds for each PPM and correlated them against one another, 

the results of which are presented in the upper-right triangle of Fig. 1.3. To study relationships 

between case-specific indices, we generated random demographic distribution vectors for each 

PPM by drawing numbers from uniform distributions, standardised these vectors to sum to 1, 

calculated the six case-specific transient indices for each model and performed Spearman’s rank 

correlations on each pairwise combination of indices. We repeated this process 1000 times to 

obtain distributions of correlation coefficients for the pairwise comparisons. Although the use of 

a uniform distribution is somewhat artificial given that relative densities of life stages are likely 

to co-vary in natural populations, it allowed exploration of a wide range of potential stage 

structures. The results are presented in the lower-left triangle of Fig. 1.3. It appears that for both 

transient bounds and case-specific indices, amplified measures show very tight positive 

correlations with one another (upper-left quadrant of Fig. 1.3), whereas attenuated measures 

show tight positive correlations, but not to the same degree as among amplified measures 

(lower-right quadrant of Fig. 1.3). However, amplified measures are not good predictors of 

attenuated measures and vice versa (upper-right and lower-left quadrants of Fig. 1.3). The 

correlation coefficients of transient bounds lie comfortably within the modal range for those of 

case-specific transient indices, which indicates that in relation to one another, bounds on 
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transient dynamics behave similar to case-specific indices of transient dynamics. Of the three 

pairs of indices, population inertia correlates best with its amplified or attenuated partner 

indices. 

 We also explored the relationships between the six indices and measures of 

convergence. For each randomly generated initial demographic distribution, we simulated the 

time taken for population growth to settle within 1% of λmax. We correlated transient bounds 

with the median simulated convergence time of the 1000 iterations for each PPM. For case-

specific indices, we correlated the six transient indices with time to convergence at each 

iteration of the model, and 1000 iterations of this model provided distributions of Spearman’s 

rho values. Most correlations between bounds and median convergence time were significant, 

but all were relatively weak with absolute values of Spearman’s rho ranging between 0.21 and 

0.7. Distributions of correlation coefficients between case-specific transient dynamics and time 

to convergence were similarly weak and widely varying (see Appendix 1.1 for more detailed 

methodology and results from these analyses). This indicates that larger transient departures 

from asymptotic growth are not necessarily linked to a longer time to convergence, either for 

transient bounds or for case-specific transient indices. Studying the relationship between the 

damping ratio and the median simulated time to convergence also indicated that the damping 

ratio is a relatively poor predictor of convergence, with a Spearman’s correlation coefficient of 

−0.66 and high variability in the distribution of points (Appendix 1.1). The relationship between 

approximate time to convergence calculated using the damping ratio and simulated median time 

to convergence is similarly weak, although with median time to convergence rarely exceeding 

approximated time to convergence, there is a potential utility of the damping ratio in providing a 

weak bound on convergence rate. Nonetheless, there is a clear need for an index that measures 

finite convergence time, which would fit into the framework for analysis we describe here. Such 

a measure would be qualitatively and quantitatively informative for population management, be 

calculable as both a bound and case-specific index and be a standardised index that is 

comparable among PPM models. Simulating quasi-convergence of the model goes some way to 

achieving these goals, but is computationally intensive and rather ill-defined. 

 

 

CASE STUDIES 

The transient indices and bounds identified here provide standardised, comparable, qualitative 

and quantitative measures that can be used in conjunction with other model parameters to 

inform on population state and potential management (Fig. 1.4). Figure 1.4a shows two 

projections for the subcanopy tree Styrax obassia in central Japan (Abe, Nakashizuka & Tanaka 

1998). The PPM distinguishes between those individuals found in the shade and individuals 

found in canopy gaps: vital rates of individuals in each environment differ considerably. The 

‘before’ projection uses the recorded demographic distribution, with only 6.2% of the canopy 
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open. This population attenuates increasingly over time: the value for first-timestep attenuation 

indicates that the population is expected to decrease by 10% compared with asymptotic growth 

in one year, whereas the value for attenuated inertia indicates that given environmental stability 

the population is expected to become up to 70% smaller than asymptotic growth predicts. This 

is important to consider: λmax for the population is 1.02, indicating that it will grow over time, 

when in fact the transient dynamics of the population may cause it to decline. Eventually 

(assuming no change in vital rates or canopy cover), population growth will settle to λmax = 1.02, 

but at much reduced density. The ‘after’ projection simulates disturbance caused by a hurricane 

opening up 50% of the existing canopy. Far from being damaging to the population, this would 

cause amplification, even with no change in the vital rates of the population. It would grow at a 

rate faster than λmax in the short term: reactivity indicates that within just 1 year, it is predicted to 

become 5% larger than asymptotic growth predicts, whereas amplified inertia predicts the 

density will eventually settle to be up to 30% larger than expected of a population initiated at 

stable stage structure (again, assuming environmental stability following the disturbance event). 

 Figure 1.4b illustrates transient bounds for the Amsterdam albatross Diomedea 

amsterdamensis on Amsterdam Island in the South-Eastern Indian Ocean (Inchausti & 

Weimerskirch 2001). This is one of the world’s rarest species of bird, with the Amsterdam 

Island colony being the known population. Although the demographic structure of the species 

has previously been recorded in 1997, the exact demographic structure of the current population 

is unknown. In this case, transient bounds can provide vital information. λmax for the population 

is equal to 1.06, which is encouraging, and the values of bounds on reactivity and first-timestep 

attenuation indicate that in 1 year, the population should not decrease or increase within 

anything more than 10% of its size as predicted by asymptotic growth. However, despite having 

a positive λmax, the worst-case scenario is that the population almost halves relative to 

asymptotic growth within the next 10 years as indicated by the lower bound on maximal 

attenuation. So, despite having a positive predicted asymptotic growth, there is a real danger 

that the population may in fact decline in size. This worst-case scenario is unlikely as it results 

from a population composed entirely of chicks, but sets the goalposts for population 

management. Were a reintroduction programme is to take place, the transient bounds indicate 

that age 11 individuals would be the best to translocate, as it is this age class that provides the 

largest overall population amplification both immediately and asymptotically. 

 

 

DISCUSSION 

Transient population dynamics are important to consider in any management scenario: short-

term fluctuations in population density and growth can swamp predicted asymptotic trends. 

Recent interest in transients has given rise to diverse methodologies for calculating transients 

for density-independent, time-invariant PPM models. However, the fragmented nature of this 
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literature has left the field of transient analysis relatively inaccessible to non-specialists. We 

have identified an emerging framework, with a number of decisions to make when evaluating 

transient population density, growth and structure. We strongly recommend that transient 

dynamics be studied relative to both asymptotic growth and initial population density. The 

easiest ways to achieve this are to standardise the PPM by dividing it by λmax and standardise the 

initial demographic distribution by scaling it, so that overall population density is equal to 1. 

Analysing transient dynamics at arbitrary points along the population projection is 

unsatisfactory, and so the three pairs of indices identified here can be used as comparable 

measures to capture the majority of variation in transient dynamics of a population. Our analysis 

of correlations between these indices reveals population inertia (Koons, Holmes & Grand 2007) 

to be a simple yet versatile index that correlates strongly with other indices, both when 

measured for case-specific transient dynamics and bounds on transient dynamics. There are 

many available methods for analysing convergence of models, but the biological interpretation 

of most of these indices is questionable and we have identified a need for a more robust index of 

convergence in density-independent, time-invariant PPM models. 

Although the study of transient dynamics is relatively well developed for density-

independent, time-invariant PPM models, transients have received relatively little attention in 

density-dependent and stochastic models. We anticipate that the framework we identify here 

(i.e. study of relative transient dynamics, standardised initial conditions and first-timestep, 

maximal and asymptotic response) may be useful in informing development of transient indices 

in these areas. However, the nonlinear and/or time-varying nature of such models presents 

further obstacles to analytical solutions for transient dynamics. Nonlinear projection matrix 

models vary greatly in the form and influence of their attractors, therefore there is unlikely to be 

a single predictor of transient density or convergence rate that suits all situations. Nonlinear 

models demonstrating stable equilibrium density will prevent the phenomenon of asymptotic 

inertia in future population size as defined here for linear models, but timestep-specific 

amplification and attenuation (and bounds on these) will remain interesting and measurable. 

Stochastic models incorporate disturbance and perturbation as a result of small-scale 

fluctuations in the environment, but near-term dynamics following larger, more infrequent 

disturbances or perturbations may differ from long-term dynamic trends. It may be useful to 

have analytical formulae to approximate such dynamics, similar to those that exist for long-term 

stochastic dynamics (Tuljapurkar 1982), thereby reducing the need for full numerical 

simulation. The extension of transient analysis to classes of population model other than PPMs 

is another logical next step. In particular, integral projection models (Ellner & Rees 2006, 2007) 

would benefit from development of methods for transient analysis. 

One of the most useful extensions to understanding population dynamics per se is to 

understand the interplay between the vital rates of the population and its dynamics. Perturbation 

analyses such as SENSITIVITY (Caswell 2001 p.210), ELASTICITY (Caswell 2001 p.227) 
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and TRANSFER FUNCTION (Hodgson & Townley 2004) analyses provide this important 

information for asymptotic population dynamics. A number of methods for transient 

perturbation analysis exist, particularly methods for analysing sensitivity of transient population 

density to changes in vital rates of the population. These methods must make the same decisions 

regarding standardisation of dynamics, choice of initial population structure and time point 

along the projection at which to analyse. However, they have an added decision to make in what 

form of projection equation to differentiate: methods have chosen to use matrix calculus to 

evaluate state-space form equations (Caswell 2007), to differentiate the solution to the 

projection equation as expressed using model eigenvalues and eigenvectors (Fox & Gurevitch 

2000; Yearsley 2004) and to evaluate sensitivity of transient indices that are functions of the 

PPM (Townley et al. 2007; Koons, Holmes & Grand 2007). A review and synthesis of these 

approaches is certainly needed. However, there is still a need for new approaches to transient 

perturbation analysis. Relationships between asymptotic growth and changes in vital rates of 

populations are often markedly nonlinear (Hodgson & Townley 2004) and there is evidence to 

show that this may also be the case for transient dynamics (Townley et al.2007). Sensitivity 

analysis, as a linear approximation, is not sufficient to describe population dynamic responses to 

non-negligible perturbations (Carslake, Townley & Hodgson 2008, 2009a). Therefore, there is a 

need for a transfer-function style approach to transient perturbation analysis that can model the 

nonlinear response of transient density to perturbation. 

The majority of interest in transient dynamics has so far centred on their use in 

population management: far fewer studies have considered their potential impact in other areas 

of ecology and evolution. A better understanding of transients could provide opportunities to 

understand life-history evolution from a new perspective. A population that experiences 

unpredictable disturbance may need to evolve to be resistant to disturbance through having 

smaller transients, as an insurance against population decline. Conversely, a population that 

experiences regular disturbance of a particular type may evolve to have a larger transient 

dynamical response to that disturbance, maximising amplification to exploit opportunity to 

outcompete other genotypes. It is likely that the simultaneous optimisation of asymptotic and 

transient growth rates will combine to maximise long-term stochastic growth rate, but the 

mechanisms mapping life-history variation onto transient dynamics and potential trade-offs 

between selection on short- and long-term growth have not yet been explored. Transient 

dynamics also have relevance in ecological systems other than populations: indeed the 

application of transient theory could extend to any stage-structured biological system. 

Transients could help to better understand the dynamics of communities, for example in 

modelling tropic cascades in food webs. They may help to better understand the spread of 

infectious diseases in epidemiological models. They may help explain the rapid spread of novel 

genotypes through populations. They could be useful in modelling the responses of ecosystems 

to climate change, tracking the movement of energy or matter through different ecosystem 
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compartments. There are some examples of transient dynamics in other ecological systems – the 

flow of matter through a rainforest ecosystem has been shown to exhibit transient dynamics 

(Neubert & Caswell 1997; Townley & Hodgson 2008) and models of whooping cough 

epidemiology in humans have shown significant transient response to perturbation, with annual 

epidemical cycles becoming multiannual cycles following an increase in recovery rates (Rohani, 

Keeling & Grenfell 2002). 

Transient analysis of population dynamics is still a young and emerging field of 

population ecology, likely to see many advances in coming years. Indeed, transient analysis 

should prove an essential part of any study of demography. However, relatively inaccessible 

literature and a lack of coherency could present a barrier to widespread use of some 

methodologies. With a common framework within which to develop methods, and the 

formulation of extra tools, transient analysis has the potential to provide great insight to the 

fields of conservation, population management and evolutionary ecology. 
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TABLES  

 

TABLE 1.1: Important indices of transient population dynamics. Matrices are presented as capitalised, and in bold. Vectors are in small type and in bold. Numbers 

and scalars are in normal font.  Â represents the standardised population projection matrix and is equal to A/λmax (where A is the PPM and λmax is the dominant 

eigenvalue of A); w represents the dominant right eigenvector of A (the stable demographic distribution vector); v represents the dominant left eigenvector of A (the 

reproductive value vector); 0n̂ represents the initial demographic distribution, standardised to sum to 1. minCS denotes the minimum column sum of a matrix and 

||m||1 is the one-norm of a vector m (equal to the sum of its entries). mmin and mmax are the smallest and largest entries of a vector m respectively. We have chosen to 

use the Greek ρ to represent transient bounds (in accordance with Townley & Hodgson 2008), whereas the Latin P represents case-specific indices of transient 

dynamics. An overbar indicates a bound or index of amplification, whereas an underbar represents a bound or index of attenuation (Townley & Hodgson 2008). A 

subscript provides information on the timeframe of study: 1 for first-timestep indices; max or min for maximal amplification or attenuation, respectively, and ∞ for 

asymptotic indices. 

 

INDEX FORMULA BIOLOGICAL MEANING 

REACTIVITY TRANSIENT 

BOUND 

ρ� � ����� TRANSIENT BOUND – maximum population growth in a 

single timestep, relative to stable growth rate. 

CASE-SPECIFIC – population growth achieved by a given 

population structure in a single timestep, relative to stable 

growth rate.  Assumes the population will amplify 

immediately. 

 

CASE- 

SPECIFIC 

P� � ����	
��			when			����	
�� � 1 
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FIRST-

TIMESTEP 

ATTENUATION 

TRANSIENT 

BOUND 

ρ� � minCS���� TRANSIENT BOUND - minimum population growth in a 

single timestep, relative to stable growth rate. 

CASE-SPECIFIC – population growth achieved by a given 

population in a single timestep, relative to stable growth rate. 

Assumes the population will attenuate immediately. 

 

CASE- 

SPECIFIC 

P� � ����	
��			when			����	
�� � 1 

MAXIMUM 

AMPLIFICATON  

TRANSIENT 

BOUND 

ρ��� � max�� !���"�#$ TRANSIENT BOUND – the largest possible future population 

density achievable, relative to a population with stable 

growth rate and same initial density. 

CASE-SPECIFIC – the largest possible future density of a 

given population structure, relative to a population with 

stable growth rate and same initial density. Assumes the 

population amplifies at some point in the future. 

 

CASE- 

SPECIFIC 

P��� � max�� !���"�	
�#$			 
										when			���"�	
�# � 1	for	some	t 

MAXIMUM 

ATTENUATION 

TRANSIENT 

BOUND 

ρ�*+ � min�� !minCS���"�$ TRANSIENT BOUND – the smallest possible future 

population density achievable, relative to a population with 

stable growth rate and same initial density. 
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CASE- 

SPECIFIC 

P�*+ � min�� !���"�	
�#$			 
										when			���"�	
�# � 1	for	some	t 

CASE-SPECIFIC – the smallest possible future density of a 

given population structure, relative to a population with 

stable growth rate and same initial density. Assumes the 

population attenuates at some point in the future. 

 

AMPLIFIED 

INERTIA 

TRANSIENT 

BOUND 
ρ, � v���‖/‖�01/  

TRANSIENT BOUND – the largest possible long-term 

population density, relative to a population with stable 

growth rate and same initial density. 

CASE-SPECIFIC – the long-term population density of a 

given population structure, relative to a population with 

stable growth and same initial density. Assumes the 

population amplifies in the long term. 

CASE- 

SPECIFIC 
P, � 01�	
‖/‖�01/ 			when			 01�	
‖/‖�01/ � 1 

ATTENUATED 

INERTIA 

TRANSIENT 

BOUND 
ρ, � v�*+‖/‖�01/  

TRANSIENT BOUND – the smallest possible long-term 

population density, relative to a population with stable 

growth rate and same initial density. 

CASE-SPECIFIC – the long-term population density of a 

given population structure, relative to a population with 

stable growth and same initial density. Assumes the 

population attenuates in the long term. 

CASE- 

SPECIFIC 
P, � 01�	
‖/‖�01/ 			when			 01�	
‖/‖�01/ � 1 
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FIGURES 

 

 

FIG. 1.1: Illustration of transient population dynamics arising from a density-independent, time-

invariant PPM model. A population with stable demographic distribution (dashed line; hatched 

bar plot) declines at a rate equal to λmax each time interval. However, real-world populations 

have initial demographic distributions that differ from the stable demographic distribution (solid 

line; grey bar plot) and exhibit transient dynamics. 
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FIG. 1.2: Transient dynamics of the desert tortoise Gopherus agassizii with medium fecundity 

(Doak, Kareiva & Klepetka 1994). (a) Absolute population dynamics, including both transient 

and asymptotic influences; (b) standardised transient dynamics, excluding the influence of 

asymptotic growth. All demographic distributions are scaled, so that overall initial population 

density equals 1. Bold lines and black barplots indicate transient bounds (note that sometimes, 

unlike in this case, different stage-biased projections define the amplification envelope at 

different times in the projection); thin lines and grey barplots indicate case-specific initial 

demographic distributions; dashed lines and hatched barplots indicate the stable demographic 

distribution. Areas shaded in light grey indicate the transient envelope, which is the range of 

values in which all case-specific projections will lie. 
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FIG. 1.3: Correlations between transient bounds and case-specific indices for 563 published 

population projection matrix models. The upper-right triangle shows pairwise correlations 

between six transient bounds and their associated Spearman’s rho values; both axes are on a log 

scale. The lower-left triangle consists of histograms that show distributions of Spearman’s rho 

values for 1000 pairwise correlations of case-specific indices for randomly generated case-

specific demographic distributions. 

 



40 
 

 

 

 

 

FIG 1.4: Case studies of transient dynamics in natural populations. (a) Case-specific dynamics 

of the subcanopy tree Styrax obassia; (b) transient bounds of the Amsterdam albatross 

Diomedea amsterdamensis. Bold lines and black barplots indicate transient bounds; thin lines 

and grey barplots indicate case-specific initial demographic distributions; dashed lines and 

hatched barplots indicate the stable demographic distribution. 
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_______________ 

CHAPTER 2 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Understanding the dynamics of a model is important. However, management often also requires 

knowledge of the best way to change population dynamics to achieve management goals. 

Chapter 2, the fourth paper published as part of this thesis, confronts this issue for transient 

population dynamics. Having identified population inertia as a holistic and effective descriptor 

of transient density, this chapter describes methods to evaluate how changes to vital rates of the 

life cycle affect inertia. We borrow from engineering systems control theory to achieve this, 

employing use of transfer function analyses. Most crucially, this method accurately describes 

nonlinearity in the relationship between changes to vital rates and resulting changes in inertia. 

As we demonstrate, this is an important consideration when planning management regimes. 

 

 

Chapter 2: 

Stott, I., Hodgson, D.J. & Townley, S. (2012) Beyond sensitivity: nonlinear perturbation 

analysis of transient dynamics. Methods in Ecology and Evolution. 

doi: 10.1111/j.2041-210X.2012.00199.x  
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BEYOND SENSITIVITY: NONLINEAR PERTURBATION 

ANALYSIS OF TRANSIENT DYNAMICS 

 

 

ABSTRACT 

1. Perturbation analyses of population models are integral to population management: such 

analyses evaluate how changes in vital rates of members of the population translate to 

changes in population dynamics. Sensitivity and elasticity analyses of long-term 

(asymptotic) growth are popular, but limited: they ignore short-term (transient) dynamics 

and provide a linear approximation to nonlinear perturbation curves.  

2. Population inertia measures how much larger or smaller a non-stable population becomes 

compared with an equivalent stable population, as a result of transient dynamics. We present 

formulae for the transfer function of population inertia, which describes nonlinear 

perturbation curves of transient population dynamics. The method comfortably fits into 

wider frameworks for analytical study of transient dynamics, and for perturbation analyses 

that use the transfer function approach.  

3. We use case studies to illustrate how the transfer function of population inertia may be used 

in population management. These show that strategies based solely on asymptotic 

perturbation analyses can cause undesirable transient dynamics and/or fail to exploit 

desirable transient dynamics. This highlights the importance of considering both transient 

and asymptotic population dynamics in population management.  

4. Our case studies also show a tendency towards marked nonlinearity in transient perturbation 

curves. We extend our method to measure sensitivity of population inertia and show that it 

often fails to capture dynamics resulting from perturbations typical of management 

scenarios.  

 

INTRODUCTION 

A thorough understanding of how external factors shape population density and growth is 

essential to population management. Management goals will often explicitly incorporate 

elements of density and growth, for example, to promote growth and persistence of populations 

of conservation concern (e.g. Esparza-Olguín, Valverde & Vilchis-Anaya 2002), reduce density 

and spread of pests and invasive species (e.g. De Walt 2006), or sustain optimal yields from 

exploited populations (e.g. Pinard 1993). Commonly, it is necessary to explore how potential 

management actions may impact population density and growth, to evaluate the most 

ecologically and economically effective means of achieving management goals (e.g. Baxter et 

al. 2006). Alternatively, an assessment of how potential environmental change may impact 

population density and growth may be required, to explore the possible detrimental impacts of 
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uncontrolled events that are antagonistic to management goals (e.g. Mumby, Vitolo & 

Stephenson 2011). It is important in either case to know which vital rates or stages of the life 

cycle should be targeted during management, to ensure optimum outcomes for minimum effort 

and cost. 

In practise, these assessments are commonly carried out using perturbation analyses of 

empirical population models. Such analyses evaluate how changes in the vital rates of a 

population (survival, growth, regression, fecundity, or underlying parameters that influence 

these) affect measures of population density and growth. Frequently, analytical methods have 

focussed on linear approximations of the effect of small perturbations on long-term growth. 

Termed asymptotic sensitivity and elasticity analyses (Caswell 2001), these are typically 

mathematically and computationally simple and easily interpreted. 

However, asymptotic sensitivity and elasticity analyses have two major drawbacks. 

First, long-term growth is often a very poor predictor of real population dynamics, as short-term 

‘transient’ dynamics are often very different to long-term trends (Hastings 2001; Townley et al. 

2007). There is an increasing awareness of the need to incorporate analyses of transient 

dynamics into ecological and evolutionary studies (Ezard et al. 2010; Stott et al. 2010a [Chapter 

5]), and many methods have been developed in the last decade to quantify the sensitivity of 

transient dynamics to perturbation. Most of these have focussed on population projection matrix 

(PPM) models, which are arguably the most widely used empirical models in population 

ecology. Methods vary in their approach and may focus on time-invariant, density-independent 

models (Fox & Gurevitch 2000; Yearsley 2004), stochastic models (Tuljapurkar, Horvitz & 

Pascarella 2003), density-dependent models (Tavener et al. 2011) or combinations thereof 

(Caswell 2007). A second drawback of asymptotic sensitivity and elasticity analyses is that the 

linear approximations they offer may be very poor predictors of population dynamic response to 

large perturbations. The actual relationship between a perturbation to the life cycle and resultant 

population dynamics is often substantially nonlinear (Townley & Hodgson 2008), and there has 

been interest in modelling nonlinearity in perturbation analyses of long-term growth (Hodgson 

& Townley 2004; Hodgson, Townley & McCarthy 2006; Miller et al. 2011). These methods 

have been limited to non-stochastic, density-independent PPM models, which is more a by-

product of the tractability of analytical nonlinear perturbation analysis than an ignorance of the 

need for such analyses in stochastic and density-dependent models. That said, given the 

relatively data-demanding nature of even basic PPM models, it is likely that non-stochastic, 

density-independent models dominate the literature, especially in conservation. 

However, to date, there do not exist any analytical methods that can assess nonlinear 

perturbation of transient dynamics. In this paper, we address this issue to conceive a formula 

that calculates the transfer function of population inertia for linear, time-invariant PPM models. 

This builds on existing methods that use population inertia as an index of transient dynamics 

and that use transfer function methods for nonlinear perturbation analysis of population models. 
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Transient dynamics of ‘non-stable’ populations (with non-stable demographic 

distributions) result in a phenomenon termed population inertia. A ‘stable’ population (with 

stable demographic distribution) is predicted to grow or decline at a fixed geometric rate. 

Population inertia occurs because non-stable populations exhibit very different patterns of 

transient growth and/or decline before eventually settling to this stable geometric rate. These 

transient dynamics mean that a non-stable population achieves long-term population densities at 

a fixed ratio either above or below that of an equivalent stable population. Population inertia 

(Koons, Holmes & Grand 2007) is the value of this ratio. Therefore, a population with inertia 

greater than 1 becomes and remains larger than had it started out with a stable demographic 

distribution, whilst a population with inertia smaller than 1 becomes and remains smaller. The 

magnitude of inertia indicates how much larger or smaller, relatively, the population becomes. 

Somewhat paradoxically, inertia is a measure of the asymptotic effects of transient dynamics 

that cause departures from asymptotic growth in the short term. Hence, it measures the 

persistency of transients, yet it has been shown to correlate very strongly with near-term 

transient indices such as reactivity and transient amplification (Stott, Townley & Hodgson 2011 

[Chapter 1]). As an index of transient dynamics, population inertia has a number of strengths: it 

is standardised measure and thus can be easily compared among different models, and as we 

show here, it is amenable to analytical perturbation analysis.  

Transfer function analyses help to elucidate relationships between system inputs, 

outputs and feedback mechanisms. Their application to PPM models in population ecology 

began with the modelling of nonlinear perturbations of asymptotic growth (Hodgson & 

Townley 2004; Hodgson, Townley & McCarthy 2006). A particular strength of transfer 

function methods is that they are able to model complex perturbation structures involving 

multiple simultaneous perturbations (for example, multiple management strategies or life cycle 

trade-offs). However, they require no extra data to calculate than traditional sensitivity and 

elasticity analyses.  

Combining population inertia and the transfer function approach yields a method for 

nonlinear perturbation analysis of transient dynamics, which we show to be flexible in its ability 

to model realistic management regimes, and comparable both within and among models. We 

illustrate these methods using worked examples that demonstrate the importance of considering 

transient perturbation analysis alongside asymptotic perturbation analyses for population 

management. We derive measures of the linear sensitivity of population inertia, to compare 

these with their corresponding transfer functions. Examples show that transient dynamic 

response to perturbation is often extremely nonlinear, rendering sensitivity a poor 

approximation to nonlinear perturbation analysis of transient dynamics.  
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MATERIALS AND METHODS 

 

TRANSFER FUNCTION FRAMEWORK 

The transfer function analysis (TFA) framework is a powerful method for analysing linear, 

time-invariant mathematical systems (Ogata 2010). TFA describes relationships between system 

inputs, system outputs and the feedback mechanisms within the system. In the case of a PPM 

model, the ‘system’ is the PPM model itself, and a ‘linear, time-invariant’ model is one that is 

non-stochastic and density independent. An ‘input’ is the current demographic structure, the 

‘outputs’ of interest are measures of population density or growth, and the ‘feedbacks’ being 

studied are the vital rates of the life cycle, that is, the elements of the PPM or underlying 

parameters that influence them. Thus, transfer functions may be used to determine the precise 

nonlinear relationship between a perturbation to vital rates of the life cycle and resulting 

population dynamics, which can then be used to inform management regimes or anticipate 

population response to environmental change. 

 When presenting transfer function formulae, we use a common notation throughout 

where matrices are presented upper-case bold (e.g. A), vectors are presented lower-case bold 

(e.g. a), numbers and scalars are presented in normal font (e.g. a) and functions are rendered in 

italics (e.g. a(λ)). The transfer function of long-term, or ‘asymptotic’, population growth has 

already been described (Hodgson & Townley 2004). For the purposes of population 

management, it may be desirable to know what the long-term growth of a perturbed PPM Aδ is, 

where: 

 

�2 	� 	� 3 δ451	.																																																																	718 
 

In this equation, the original PPM A is perturbed by magnitude δ using a ‘perturbation structure’ 

determined by column vectors d and e, which when multiplied together as in equation 1 (with eT 

representing the transpose of e from a column to a row vector) form a matrix that determines 

which vital rates are perturbed. (It is noted that d and e are analogous to b and c, respectively, of 

Hodgson & Townley 2004, although we have decided to change notation here to remain in line 

with the accepted norms of the control systems literature). A has some emergent properties 

relating to asymptotic population dynamics: the dominant eigenvalue λmax represents the long-

term (asymptotic) growth of the population, the dominant right eigenvector w represents the 

ratio of stages in the stable demographic distribution and the dominant left eigenvector v 

represents the reproductive value of each stage. Aδ in turn has its own, different, asymptotic 

growth rate, stable stage structure and reproductive value that are determined by the structure 

and magnitude of perturbation. 
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If δ is used to represent a continuous set of perturbation values, then there is a 

corresponding set of numbers λ that represents all of the associated λmax(Aδ). The exact 

relationship between δ and λ can be described using: 

 

δ:� � 517λ< = �8:�4	,																																																										728 
 

where I  is the identity matrix of same dimension as A (Hodgson & Townley 2004; please see 

Appendix 2.1 for all proofs). This equation is the transfer function for asymptotic growth. It is 

possible therefore to specify a range of perturbation magnitudes (δmin to δmax), calculate λmax(A+ 

δmindeT) and λmax(A+ δmaxdeT) to find the maximum and minimum of the associated range of λ, 

and use equation 2 to easily evaluate the precise relationship between λ and δ. As d, e and the 

range of δ are user-specified, the only required known parameter is the PPM. Hence, transfer 

function analysis of asymptotic growth may be executed with the same basic information as 

sensitivity and elasticity analysis. Another strength of TFA is that it may be used to perturb 

more than one vital rate at a time, as illustrated later (and whilst we concentrate here on single-

parameter, rank-one perturbations, TFA may also be extended to model multiple perturbations 

simultaneously: we refer to Hodgson & Townley 2004 and Hodgson, Townley & McCarthy 

2006 for more information on specifying these complex perturbation structures). 

 

THE TRANSFER FUNCTION OF POPULATION INERTIA 

An extension to equation 2 allows evaluation of the transfer function of population inertia. 

Population inertia (P∞) is calculated using: 

 

P, � 01�	
‖/‖�01/ 	.																																																																738 
 

Here, v is the dominant left eigenvector of A and w is the dominant right eigenvector of A (as 

described earlier), 0n̂  is the vector representing the demographic distribution of the population 

(scaled to sum to 1) and ||w||1 denotes the one-norm, or column sum, of w (Koons, Holmes & 

Grand 2007; Stott, Townley & Hodgson 2011 [Chapter 1]). Replacing 0n̂  with vmax or vmin, the 

standard basis vectors that maximise and minimise population inertia, will give the upper bound 

( ∞ρ ) or lower bound (
∞

ρ ) on population inertia, respectively (Stott, Townley & Hodgson 2011 

[Chapter 1]), and this is true for all subsequent formulae. Working with this basic equation, it 

can be shown that population inertia of the perturbed matrix Aδ is equivalent to: 

 

P, �	517λ< = �8:��	AB17λ< = �8:�4517λ< = �8:C4 	,																																											748 
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where I  is the identity matrix of same dimension as A and c is a column vector of ones of equal 

dimension to A (see Appendix 2.1 for proofs). Hence, given the same parameters as before (d, e 

and a range of δ), plus one extra parameter (0n̂ ,vmax or vmin), it is possible to first use equation 2 

to evaluate the relationship between λ and δ as described earlier and then use equation 4 to 

evaluate the relationship between population inertia and λ. The result is three sets of numbers: a 

set of δ values (the perturbation magnitude), a set of λ values (the corresponding asymptotic 

growth) and a set of population inertia values (the corresponding transient population density). 

It is then possible to plot the precise relationships between population inertia and δ, between 

population inertia and λ, and between λ and δ. 

 

SENSITIVITY OF POPULATION INERTIA 

Transfer functions are extremely useful for informing population management, but sensitivity 

measurements may remain useful for comparative statistical analyses among models, 

populations or species (e.g. Franco & Silvertown 2004; McMahon & Metcalf 2008). In such 

analyses, the scalar value of sensitivity is more amenable than a complex, nonlinear transfer 

function. Using the transfer function method, it is fairly simple to obtain an estimate for the 

sensitivity of population inertia through differentiation of the transfer functions themselves. 

Equation 4 may be represented as: 

 

P, �	E�7λ8EC7λ8EF7λ8 	,																																																																758 
 

Where 

 

E�7λ8 � 517λ< = �8:��	
							,							EC7λ8 � B17λ< = �8:�4 

																		and							EF7λ8 � 517λ< = �8:C4	.																																																									768	 
 

The derivatives of the functions f1(λ), f2(λ) and f3(λ) separately are: 

 

E�J7λ8 � =517λ< = �8:C�	
							,								ECJ7λ8 � =B17λ< = �8:C4 

																		and							EFJ7λ8 � =2517λ< = �8:F4	.																																																				778 
 

Then, the product rule and the quotient rule are used to differentiate equation 5 with respect to 

λ: 

 

LP,Lλ � limN→NPQR S
E�J7λ8EC7λ8EF7λ8 3 E�7λ8ECJ7λ8EF7λ8 = E�7λ8EC7λ8EFJ7λ8EF7λ8C T	.														788 
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Here, using the limit as λ approaches λmax is a necessary step, as matrices used in the equation 

become singular (i.e. their inverse cannot be computed), when λ = λmax. 

 Equation 2 can be directly differentiated with respect to δ to give the sensitivity of λ to 

δ: 

 

∂λ∂δ � limN→NPQR W
�517λ< = �8:�4�C517λ< = �8:C4 X	.																																																798 

 

Again, the limit as λ approaches λmax must be used to avoid singularities.  Third, the chain rule is 

used to find the sensitivity of population inertia to δ: 

 

LP,LZ � LP,L[ LλLZ 																																																																	7108 
 

(see Appendix 2.1 for proofs).  All code used in analyses is freely available as part of the R 

package popdemo (R Development Core Team 2011; Stott, Hodgson & Townley 2012a 

[Chapter 4]). 

 

 

RESULTS 

In this section, we provide two worked examples using the analyses outlined earlier. Both are 

empirical PPM models parameterised from field data, and previous studies of both populations 

have led to very clear management recommendations based on asymptotic perturbation 

analyses. We explore the transfer function for population inertia of each, using parameter inputs 

based on their recommended management strategies, and discuss how the results from these 

analyses might affect the outcome of proposed management. We highlight how the nonlinear 

predictions of transfer functions compare with the linear predictions of sensitivity analysis. For 

each model, we evaluate the effect of management on the predicted inertia of the current 

population structure, which provides the most accurate prediction of perturbed dynamics. We 

also explore the effect of management on the upper and lower bounds on inertia. Management is 

often unlikely to operate near the inertia boundaries, although there are some notable scenarios 

when this may be the case: for example, in population invasions and reintroductions, individuals 

are likely to be concentrated in a single stage class. For the case studies presented here, the 

bounds on inertia provide a good indication of the effect of perturbation on the range of 

transient dynamics, which is useful knowledge if there is uncertainty in the estimation of current 

population structure or if there is the potential for disturbance to cause that structure to change. 
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CACTUS (NEOBUXBAUMIA MACROCEPHALA) 

Neobuxbaumia macrocephala is a rare species of columnar cactus, endemic to the Tehuacan 

valley, central Mexico. Esparza- Olguín, Valverde & Vilchis-Anaya (2002) parameterised two 

size-based PPM models for the species using data collected in the field from 1997 to 1999. 

Based on elasticity analysis and simulated perturbation analysis of long-term growth, they 

recommended prolonging survival of the largest individuals as the best management strategy to 

increase population growth of the species. 

 Here, we work with the 1997-1998 matrix (the same matrix used in simulation analyses 

in Esparza-Olguín, Valverde & Vilchis-Anaya 2002), which we call Acactus (Table 2.1). We 

perturb stasis of the largest size class (element [10,10]), in accordance with the recommended 

management regime: therefore, the perturbation structure is determined by the vectors dcactus and 

ecactus (Table 2.1). The population structure cactusn̂  is known (Table 2.1; Fig. 2.1a), and we use 

this to calculate the transfer function of case-specific population inertia. However, there is 

uncertainty in the number of seedlings in the population: none were detected, but this is likely a 

result of the fact that they are small and hard to find. Therefore, evaluation of the transfer 

functions of the outer bounds on inertia provides an indication of the range of values of transient 

dynamics that may result from any population structure. Given that stasis of the largest 

individuals is 0.869, we perturb over a realistic range of -0.1 ≤ δ ≤ 0.1, to give a maximum 

perturbed stasis value of 0.969. 

 The population currently has a relatively large inertia and is expected to increase to a 

density around 400% of that predicted by λmax (Fig. 2.1b). Given that the goal is to increase 

population density and growth, this is good news: although the population is predicted to 

decline in the long term, current population structure dictates that it will in fact increase rapidly 

in the short term and should not dip below current density within the next 70 years (Fig. 2.1b). 

The recommended management regime is beneficial in the long term; however, it has a negative 

impact on population inertia: any increase in stasis of the largest stage class will cause a drop in 

the value of population inertia (Fig. 2.1d). The magnitude of this decline is not captured by 

sensitivity, which predicts a far less pronounced decline in inertia. Thus, a significant benefit of 

management is not seen for several decades, because of the dampening of transient dynamics. 

Evaluation of the outer bounds on population inertia indicates further detriment of managing for 

adult survival. Fluctuations in the upper bound on inertia (Fig. 2.1c) and a decrease in the lower 

bound (Fig. 2.1e) cause an increase in the range of potential transient density. Sensitivity 

analyses do not accurately describe these changes over large perturbation range – in particular, 

the upper bound shows highly nonlinear dynamics that are far from those predicted by 

sensitivity. 

 Managing for transient dynamics can yield a better result. Transfer functions of inertia 

across the life cycle (Appendix 2.2) indicate that fecundity has the most positive impact on 

transient dynamics. Using a perturbation structure that acts on fecundity across all reproductive 
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life stages (Table 2.1) increases population inertia (Fig. 2.2d). A doubling of fecundity 

significantly increases short-term population size (Fig. 2.2b), giving much more rapid results 

than managing for increased adult survival, despite the fact that this management scheme has a 

negligible effect on long-term growth. Additionally, this management practise increases both 

upper (Fig. 2.2c) and lower (Fig. 2.2e) bounds on inertia: given uncertainty in the population 

structure, this is favourable as it shifts the potential range of transient dynamics upwards on the 

scale of transient density. Therefore, it may be favourable in this case to manage for increased 

fecundity rather than increased adult survival, as the immediate returns are better. Alternatively, 

it may be desirable to implement two different management strategies: first, to manage for 

transient dynamics to boost population density and then to manage for asymptotic dynamics to 

maintain population persistence. However, this will of course inevitably depend on the relative 

costs of each management strategy. 

 

KOALA ( PHASCOLARCTOS CINEREUS) 

The Koala, Phascolarctos cinereus, is an arboreal marsupial native to Australia. It is widespread 

within the country, although the status of populations varies from region to region: in some 

areas, it is overabundant, whilst in others, populations are in persistent decline. Baxter et al. 

(2006) explore potential management strategies for an overabundant population on Snake 

Island, with a goal of reducing population density. They parameterise a stage-based PPM with 

stages defined by the tooth wear of koalas, which is an indication of age. The study uses 

asymptotic elasticity analysis that explicitly incorporates costs of management, therefore 

identifying those strategies that are both ecologically and economically viable. Based on these 

analyses, they recommend investing in reduction of both fecundity and survival, in an 

approximate 0.3:1 ratio. Subdermal contraceptives are considered as a mechanism to decrease 

fecundity, whilst translocation of adults to more sparsely populated areas is recommended to 

decrease survival by proxy, without the need for culls.  

It is possible to evaluate the precise impact of this management strategy on the transient 

dynamics of the population using transfer function analysis. We perturb the koala PPM Akoala 

using a structure determined by vectors dkoala and ekoala (Table 2.2). Recommended management 

targets all adult life stages, but modelling this would require a multi-parameter, multi-rank 

perturbation structure. As an analytical compromise, we have chosen to focus on the vital rates 

of stage 2 individuals, as they have both largest fecundity and highest survival. The perturbation 

structure acts on several vital rates simultaneously: fecundity of stage 2 individuals (element 

[1,2]) is perturbed by factor 0.3, whilst stasis and growth of stage 2 individuals (elements [2,2] 

and [3,2], the life cycle transitions that incorporate survival) are both perturbed by factor 0.5 

each. This gives the 0.3:1 investment ratio recommended by the study. We evaluate transfer 

functions based on the known structure of the population koalan̂  (McLean 2003; Table 2.2), 

although again we evaluate the transfer functions of bounds on inertia to get an idea of the range 
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of uncertainty surrounding this estimate. We perturb over the range -0.3 ≤ δ ≤ 1, to evaluate the 

short-term impact of management over a wide range of investment, whilst keeping vital rates of 

the perturbed matrix within realistic limits.  

Population structure is very close to the stable structure predicted by the model (Fig. 

2.3a), and as such population dynamics closely follow long-term growth from the outset (Fig. 

2.3b). Hence, population inertia is small, with the population becoming at most up to 3% larger 

than predicted by λmax. A reduction in survival and fecundity using the recommended 

management regime increases population inertia (Fig. 2.3d), which is directly antagonistic to 

management goals. The absolute increase in inertia is small, but it is important to note that 

recommended management does not result in an immediate halt to growth: the population will 

continue to grow for 2-3 years before stabilizing (Fig. 2.3b). Nonlinearity of the transfer 

function means that the larger the magnitude of perturbation, the less accurate sensitivity 

analysis is at describing the magnitude of change in inertia. The potential range of transient 

dynamics is decreased overall, with management decreasing the upper bound on inertia (Fig. 

2.3c) and increasing the lower bound on inertia (Fig. 2.3e). This indicates that management can 

decrease the uncertainty surrounding short-term population density, although again these 

changes are small in their magnitude. Sensitivity analysis would have overestimated this effect: 

both transfer functions show diminishing returns, which is not captured by sensitivity 

approximations.  

Managing for transient dynamics would suggest that focusing on survival alone is a 

better option: decreasing fecundity tends to increase inertia, whereas decreasing survival tends 

to decrease inertia. It appears that targeting stage 3 individuals would have the largest impact 

(Appendix 2.2). Decreasing survival of stage 3 individuals does reduce population inertia (Fig. 

2.4d), and it is possible to manipulate this to stop population growth, despite long-term growth 

being above unity (Fig. 2.4b). This management option also results in a significantly decreased 

upper bound on inertia (Fig. 2.4c) and a barely altered lower bound on inertia (Fig. 2.4e). 

However, the effort and cost required to implement this management scheme would be far 

greater than that recommended by Baxter et al. (2006), and within a few years, the population 

resumes growth. As a long-term management scheme, this proves therefore to be inadequate. 

However, it may be desirable to first, manage for transient dynamics through translocation of 

adults, and then phase in contraceptive measures to manage for asymptotic dynamics. This 

exploits the population reductions that can be achieved through transient dynamics and then 

maintains those reductions in the long term.  

 

 

DISCUSSION 

The transfer function for population inertia provides a means of nonlinear perturbation analysis 

of transient population dynamics. We have illustrated the importance of considering this 
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alongside asymptotic perturbation analyses in population management, which adds to other 

studies that have demonstrated that an ignorance of transient dynamics can work against 

management goals (Koons, Rockwell & Grand 2007).  

A notable outcome of our analyses is the extreme nonlinearity that can be exhibited in 

perturbation curves of population inertia. Many of the transfer functions generated in the case 

studies showed a marked nonlinearity that may render the linear approximations of sensitivity 

analysis ineffective except for very small perturbation magnitude. Figure 2.5 illustrates some 

more examples of extreme nonlinearity exhibited in transfer functions of the cactus and koala 

models, and Appendix 2.2 explores these further. Our evaluation of many other PPM models 

not presented here suggests that such nonlinearity is perhaps the rule rather than the exception. 

It has been argued that sensitivity analyses of asymptotic growth may be fairly robust to model 

assumptions, including linearity of perturbation response (Caswell 2001 p.613-615), and this 

warrants further study. Our preliminary evidence suggests that this may not be the case for 

transient dynamics. Targets of conservation and management often require large magnitude of 

perturbation, and so sensitivity may prove too poor an approximation for predicting their impact 

on transient dynamics.  

In the light of this, nonlinear perturbation of transient dynamics could prove to be very 

important, and working with population inertia and the transfer function framework has a 

number of benefits. In a previous paper (Stott, Townley & Hodgson 2011 [Chapter 1]), we 

identified an emerging framework for analysis of transient dynamics with choices to make 

regarding: (i) standardising dynamics to remove asymptotic effects, (ii) choosing an initial 

demographic distribution to use in the model and (iii) choosing a timeframe to evaluate. 

Population inertia (Koons, Holmes & Grand 2007) is an index of transient dynamics that is 

robust to all of these choices: as it is possible to evaluate upper and lower bounds on inertia 

(Stott, Townley & Hodgson 2011 [Chapter 1]), there is no need to know the population’s 

demographic distribution, although it is possible to evaluate sensitivity of case-specific 

dynamics using a given demographic distribution if desired. Population inertia correlates very 

well with other measures of transient dynamics (Stott, Townley & Hodgson 2011 [Chapter 1]), 

indicating that it should be a good proxy index to use in perturbation analyses, especially when 

it is unclear what timeframe of the projection to analyse. Lastly, in the equation for population 

inertia, the influence of asymptotic dynamics is removed, so that perturbation analysis of inertia 

is a standardised approach that may be compared across models, regardless of differences in 

their asymptotic dynamics. The transfer function framework works well with population inertia: 

matrix eigendata are easy to express in terms of transfer functions and population inertia is 

expressed in terms of matrix eigendata. As illustrated, the methods we present are flexible, 

compared with classic approaches, in their ability to model complex management regimes 

involving simultaneous perturbation to many matrix elements.We have focussed here on single-

parameter, rank-one perturbations, whilst multiparameter, multi-rank perturbations may offer 
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the option to study yet more complicated perturbation structures (Hodgson, Townley & 

McCarthy 2006). We are working on the more complicated algebraic expansion for this method.  

An alternative approach of nonlinear perturbation analysis is to use matrix determinants 

to represent the transfer function (and derivatives thereof) in terms of characteristic polynomials 

(Lubben et al. 2009; Miller et al. 2011). This affords a more flexible specification of 

perturbation structure without the need for complex algebraic expansion and offers another 

benefit in its ability to evaluate polynomials at λ = λmax. However, when using this approach to 

attempt analysis of population inertia, we discovered numerical calculation and evaluation of 

polynomials to be inherently unstable, in both R (R Development Core Team 2011) and 

MATLAB (Mathworks 2011), using the polynom package in R and the ss2tf function in 

MATLAB. It is possible that the use of symbolic algebra (as advocated in Miller et al. 2011) 

will lessen this instability.   

The methods discussed here would benefit from application to other population models. 

It would certainly be useful to have analytical transient indices and nonlinear perturbation 

methods for stochastic and density-dependent models. Another important challenge is to 

migrate transient analyses and nonlinear perturbation analyses to integral projection models 

(Easterling, Ellner & Dixon 2000). It is argued that these models require less data than PPMs so 

are better for data-deficient systems (Ramula, Rees & Buckley 2009), and as they do not rely on 

an arbitrary discretisation of the life cycle, they may be robust to many of the analytical 

problems associated with matrix dimension (see Easterling, Ellner & Dixon 2000; Salguero-

Gómez & Plotkin 2010; Stott et al. 2010a [Chapter 5]), and matrix reducibility (Stott et al. 

2010b [Chapter 3]). Stochastic and density-dependent applications exist (Ellner & Rees 2006, 

2007), but the study of transient dynamics and use of nonlinear perturbation analysis requires 

development.  

Meanwhile, it is becoming increasingly easy to incorporate complex analyses into 

studies that use linear, time-invariant PPM models. Many studies rely on such basic models, as 

parameterisation of stochastic or density-dependent models often requires more data than it is 

feasible to provide, especially under constraints on time and finance. But, perhaps analytical 

approaches need to move beyond sensitivity when it comes to informing population 

management: methods for nonlinear perturbation analysis of both asymptotic and transient 

dynamics are now freely available. These vastly increase the information that can be provided 

by simple models, without any demand for further data. Most importantly, as many studies are 

starting to show, an ignorance of these dynamics may even be detrimental to management goals.  
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TABLES 

 
   

 
Stage→ 

↓ 
1 2 3 4 5 6 7 8 9 10 

 1 0 0 0 0 0 0 4.130 11.456 10.238 31.370 

 2 0.013 0.435 0 0 0 0 0 0 0 0 

 3 0 0.217 0.677 0 0 0 0 0 0 0 

 4 0 0 0.097 0.865 0 0 0 0 0 0 

Acactus 5 0 0 0 0.108 0.875 0 0 0 0 0 

 6 0 0 0 0 0.025 0.900 0 0 0 0 

 7 0 0 0 0 0 0.050 0.850 0.077 0 0 

 8 0 0 0 0 0 0 0.150 0.615 0 0 

 9 0 0 0 0 0 0 0 0.308 0.700 0.091 

 10 0 0 0 0 0 0 0 0 0.300 0.869 
            �	B]B"^_  0 0.1116 0.1505 0.1797 0.1942 0.0971 0.0971 0.0631 0.0485 0.0582 
            

dcactus 

Long term 0 0 0 0 0 0 0 0 0 1 

Transient 1 0 0 0 0 0 0 0 0 0 
            

ecactus 

Long term 0 0 0 0 0 0 0 0 0 1 

Transient 0 0 0 0 0 0 0.13 0.36 0.32 1 
            

 

 

 

TABLE 2.1: Parameters used in the 

Neobuxbaumia macrocephala (cactus) 

case study. Acactus is the population 

projection matrix, cactusn̂  is the 

population vector standardised to sum 

to 1, and the vectors dcactus and ecactus 

determine the perturbation structure for 

recommended management based on 

either perturbation analyses of 

asymptotic dynamics (labelled ‘long-

term’) or the transfer function of inertia 

(labelled ‘transient’). 
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Stage→ 

↓ 
1 2 3 4 5 6 7 8 9 

 1 0 0.3026 0.1663 0.1244 0.0891 0.0556 0.0394 0.0226 0.0118 

 2 0.9908 0.5359 0 0 0 0 0 0 0 

 3 0 0.4580 0.4550 0 0 0 0 0 0 

 4 0 0 0.5000 0.0655 0 0 0 0 0 

Akoala 5 0 0 0 0.7272 0.2216 0 0 0 0 

 6 0 0 0 0 0.4617 0.2265 0 0 0 

 7 0 0 0 0 0 0.3538 0.1267 0 0 

 8 0 0 0 0 0 0 0.4693 0.4247 0 

 9 0 0 0 0 0 0 0 0.1762 0.6090 
           �	`A]a]  0.135 0.330 0.225 0.120 0.080 0.065 0.035 0.010 0 
           

dkoala 

Long term 0.3 0.5 0.5 0 0 0 0 0 0 

Transient 0 0 0.5 0.5 0 0 0 0 0 
           

ekoala 

Long term 0 1 0 0 0 0 0 0 0 

Transient 0 0 1 0 0 0 0 0 0 
           

 

 

 

TABLE 2.2: Parameters used in the 

Phascolarctos cinereus (koala) case study. Akoala 

is the population projection matrix, koalan̂  is the 

population vector standardised to sum to 1, and 

the vectors dkoala and ekoala determine the 

perturbation structure for recommended 

management based on either perturbation 

analyses of asymptotic dynamics (‘long-term’) or 

the transfer function of inertia (‘transient’). 
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FIGURES 

 

FIG. 2.1: Analyses of the transfer function of inertia for the cactus population projection matrix 

based on management recommendations for long-term dynamics. Parameters for models are 

presented in Table 2.1. (a) Estimated current population structure and predicted stable 

population structure; (b) population projection showing dynamics of the stable stage structure 

(dashed), the current population structure (solid black) and perturbation of d = +0.358 acting on 

the current population structure to give λ = 1 (red); (c) transfer function of the upper bound on 

inertia; (d) transfer function of inertia of the current population structure; (e) transfer function of 

the lower bound on inertia. In panels c-e, sensitivity at δ = 0 is indicated with dotted lines. In 

panel c, the change in the function at δ = 0.037 is caused by the maximum entry of v changing 

from element 7 to element 10, thus altering vmax and changing the transfer function of the bound.
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FIG.2.2: Analyses of the transfer function of inertia for the cactus population projection matrix 

based on management recommendations for transient dynamics. Parameters for models are 

presented in Table 2.1. (a) Estimated current population structure and predicted stable 

population structure; (b) population projection showing dynamics of the stable stage structure 

(dashed), the current population structure (solid black) and a managed population with a 

perturbation of δ = +31 acting on the current population structure (red); (c) transfer function of 

the upper bound on inertia; (d) transfer function of inertia of the current population structure; (e) 

transfer function of the lower bound on inertia. In panels c-e, sensitivity at δ = 0 is indicated 

with dotted lines. 
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FIG.2.3: Analyses of the transfer function of inertia for the koala population projection matrix 

based on management recommendations for long-term dynamics. Parameters for models are 

presented in Table 2.2. (a) Estimated current population structure and predicted stable 

population structure; (b) population projection showing dynamics of the stable stage structure 

(dashed), the current population structure (solid black) and perturbation of δ = –0.081 acting on 

the current population structure to give λ = 1 (red); (c) transfer function of the upper bound on 

inertia; (d) transfer function of inertia of the current population structure; (e) transfer function of 

the lower bound on inertia. In panels c-e, sensitivity at δ = 0 is indicated with dotted lines. In 

panel c, the change in the function at δ = –0.1 is caused by the maximum entry of v changing 

from element 2 to element 1, thus altering vmax and changing the transfer function of the bound. 
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FIG. 2.4: Analyses of the transfer function of inertia for the koala population projection matrix 

based on management recommendations for transient dynamics. Parameters for models are 

presented in Table 2.2. (a) Estimated current population structure and predicted stable 

population structure; (b) population projection showing dynamics of the stable stage structure 

(dashed), the current population structure (solid black) and perturbation of δ = –0.24 acting on 

the current population structure (red); (c) transfer function of the upper bound on inertia; (d) 

transfer function of inertia of the current population structure; (e) transfer function of the lower 

bound on inertia. In panels c-e, sensitivity at δ = 0 is indicated with dotted lines. 
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FIG. 2.5: Further examples of nonlinearity in the cactus and koala models. Transfer functions of 

inertia are represented by solid lines, and sensitivity values by dotted lines. Panels a-c represent 

transfer functions of the cactus model: (a) upper bound on inertia, perturbing element [7,6]; (b) 

case-specific inertia (using the current demographic structure in Figs 2.1a and 2.2a), perturbing 

element [5,5]; (c) lower bound on inertia, perturbing element [8,8]. Panels d-f represent transfer 

functions of the koala model: (d) upper bound on inertia, perturbing element [2,2]; (e) case-

specific inertia (using the current demographic structure in Figs 2.3a and 2.4a), perturbing 

element [9,9]; (f) lower bound on inertia, perturbing element [1,8]. In all cases, perturbation 

achieves a minimum of half the element being perturbed and a maximum of twice the element 

being perturbed, but is bounded between 0 and 1. 
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_______________ 

CHAPTER 3 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Advances in computation have opened up the opportunity for complex ecological models and 

analytical techniques, such as those presented in chapters 1 and 2. However, most models and 

analyses necessarily make certain basic assumptions, which if violated undermine their results. 

Various anomalies encountered when working with PPMs raised questions about reducibility 

and ergodicity of models. Core assumptions of most analyses are that the matrix is irreducible 

and ergodic. However, we discovered that up to a quarter of published PPM models violate 

these assumptions. Chapter 3 is the second paper published as part of this PhD. The chapter 

introduces the joint concepts of reducibility and ergodicity and what they mean in the context of 

PPM models. We explore the consequences of violating these assumptions for various types of 

model and various types of analysis, and use case studies to demonstrate how reducibility and 

non-ergodicity can affect model dynamics and analytical outcomes. 

 

 

Chapter 3: 

Stott, I., Townley, S., Carslake, D. & Hodgson, D.J (2010) On reducibility and ergodicity of 

population projection matrix models. Methods in Ecology and Evolution, 1, 242-252.  

doi: 10.1111/j.2041-210X.2010.00032.x  
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ON REDUCIBILITY AND ERGODICITY OF POPULATION 

PROJETION MATRIX MODELS  

 

 

ABSTRACT 

1. Population projection matrices (PPMs) are probably the most commonly used empirical 

population models. To be useful for predictive or prospective analyses, PPM models should 

generally be irreducible (the associated life cycle graph contains the necessary transition 

rates to facilitate pathways from all stages to all other stages) and 

therefore ergodic (whatever initial stage structure is used in the population projection, it will 

always exhibit the same stable asymptotic growth rate). 

2. Evaluation of 652 PPM models for 171 species from the literature suggests that 24.7% of 

PPM models are reducible (parameterized transition rates do not facilitate pathways from all 

stages to all other stages). Reducible models are sometimes ergodic but may be non-

ergodic (the model exhibits two or more stable asymptotic states with different asymptotic 

stable growth rates, which depend on the initial stage structure used in the population 

projection). In our sample of published PPMs, 15.6% are non-ergodic. 

3. This presents a problem: reducible–ergodic models often defy biological rationale in their 

description of the life cycle but may or may not prove problematic for analysis as they often 

behave similarly to irreducible models. Reducible–non-ergodic models will usually defy 

biological rationale in their description of the both the life cycle and population dynamics, 

hence contravening most analytical methods. 

4. We provide simple methods to evaluate reducibility and ergodicity of PPM models, present 

illustrative examples to elucidate the relationship between reducibility and ergodicity and 

provide empirical examples to evaluate the implications of these properties in PPM models. 

5. As a prevailing tool for population ecologists, PPM models need to be as predictive as 

possible. However, there is a large incidence of reducibility in published PPMs, with 

significant implications for the predictive power of such models in many cases. We suggest 

that as a general rule, reducibility of PPM models should be avoided. However, we provide a 

guide to the pertinent analysis of reducible matrix models, largely based upon whether they 

are ergodic or not. 

 

 

INTRODUCTION 

Ecological dynamics are inherently complex. However, it is desirable in applications of 

population ecology to be able to accurately predict future dynamics of populations (Caswell 

2001, 2007; Townley et al. 2007; Townley & Hodgson 2008). Population projection matrices 
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(PPMs) are possibly the most often used empirical population models, and much research in 

population ecology focuses on the design of increasingly accurate matrix modelling techniques. 

Factors such as spatial heterogeneity (e.g. Day & Possingham 1995; Hunter & Caswell 2005), 

density dependence (e.g. Jensen 1993; Grant & Benton 2000; Armsworth 2002), exogenous 

stochastic influence (e.g. Nakaoka 1997; Fieberg & Ellner 2001; Tuljapurkar, Horvitz, & 

Pascarella 2003) and transient dynamics (e.g. Koons et al. 2005; Townley & Hodgson 

2008; Tenhumberg, Tyre, & Rebarber 2009; Stott et al. 2010a [Chapter 5]) are now commonly 

incorporated into modelling and analytical methods. However, for a building to be robust it 

must also have secure foundations. Equally, matrix model complexities are building blocks 

upheld by the basic grounding of the model itself – the life cycle. 

Almost all life cycle models can be described as irreducible, meaning that they contain 

direct or indirect pathways from every stage class to every other stage class (Fig. 3.1a). A PPM 

associated with an irreducible life cycle can itself be described as irreducible. According to the 

Perron–Frobenius theorem (Perron 1907a,b; Frobenius 1912; for overviews, see Caswell 

2001; Li & Schneider 2002; Elhashash & Szyld 2008), an irreducible, primitive matrix A will 

have a single, positive eigenvalue that is a simple root of the characteristic polynomial of A and 

whose modulus is greater than all other eigenvalues of the matrix (Caswell 2001; Li & 

Schneider 2002) – this is commonly known as the dominant eigenvalue of the matrix. It is this 

value – also known as λmax– that describes the long-term (asymptotic) growth rate of the 

population and which has to date been studied in the majority of published PPM analyses (see, 

e.g. Esparza-Olguín, Valverde, & Vilchis-Anaya 2002; Grenier, McDonald, & Buskirk 

2007; Zúñiga-Vega et al. 2007). It is simple to calculate, and conceptually easy to understand. 

Long-established methods of evaluating the effects of changes to vital rates on the long-term 

population growth rate exist in the forms of sensitivity and elasticity analyses (Caswell 2001), 

and these are often used to inform on population management and conservation decisions 

(Crowder et al. 1994; Crooks, Sanjauan, & Doak 1998; Runge, Langtimm, & Kendall 2004). 

Population projections from irreducible matrices are always ergodic– that is, they will always 

eventually exhibit the same outcome (i.e. the same stable growth as described by the dominant 

eigenvalue), irrespective of the initial conditions of the model (i.e. the initial population 

structure used in the projection). 

 By contrast, a reducible life cycle model is essentially not complete – transitions do not 

facilitate pathways from every stage class to every other stage class (Caswell 2001). 

Consequently, one or more portions of the life cycle are isolated from the rest of the cycle 

(Fig. 3.1b,c). Except in a few cases – for example, when modelling a species with post-

reproductive stage classes (Caswell 2001; Fig. 3.1b) – a reducible life cycle model defies 

biological rationale. A reducible PPM associated with such a life cycle may undergo 

simultaneous row and column permutations (i.e. have its rows and columns simultaneously 

rearranged) so that it takes the form: 
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A1 A1,2 … A1,n-1 A1,n 

0 A2 … A2,n-1 A2,n 

: : ·̇. : : 

0 0 … An-1 An-1,n 

0 0 … 0 An 

 

That is, it may be divided into a number of submatrices (blocks), with those on the diagonal 

being irreducible (Caswell 2001; Li & Schneider 2002), and where ‘0’ denotes a block of 

zeroes. The presence or absence of data in blocks at the top-right corner determines the position 

of the diagonal blocks relative to one another. We refer to this as the block-permuted matrix. 

Each diagonal block has a dominant eigenvalue, each of which will be an eigenvalue of the 

overall matrix, and the largest of these will be equal to the dominant eigenvalue of the overall 

matrix, λmax. However, for some reducible matrices, the long-term stable growth rate may be 

described by eigenvalues other than the dominant (Caswell 2001), dependent on the initial stage 

structure of the population used in the projection. A reducible model that may exhibit more than 

one final state, dependent on initial conditions, may be described as non-ergodic. When using 

dominant eigenvalues or vectors to inform on management and conservation decisions, a 

reducible, non-ergodic model can hence prove problematic, as the asymptotic growth rate 

experienced by the population may be radically different from that predicted by the model. The 

ergodic properties of reducible non-negative matrices depend on the specific structure of the 

reducible model and the relative sizes of the dominant eigenvalues of its constituent blocks. 

This has been explored in the mathematical literature (e.g. Dietzenbacher 1991; Bapat 

1998; Kolotilina 2004); however, its application has not yet extended to population biology. 

Indeed, the issue of reducibility per se is rarely explicitly considered in the biological literature 

(however, notable exceptions include Bierzychudek 1982; Caswell 2001; Ehrlén & Lehtilä 

2002; Bode, Bode, & Armsworth 2006; Maron, Horvitz, & Williams 2010; Stott et al. 2010a 

[Chapter 5]). 

 Here, we present methods to easily evaluate reducibility and ergodicity of matrices. 

Using these methods, we show that a considerable proportion (approximately one-quarter) of 

existing published PPMs are reducible, many of which are non-ergodic. We elucidate the 

relationship between reducibility and ergodicity using illustrative theoretical models of 

reducible PPMs. We explore the real-world implications of reducibility and non-ergodicity of 

PPMs using three empirical examples of reducible matrices employing different analytical 

techniques. Lastly, we encourage population demographers to carefully consider their life cycle 

model and advise that reducibility should be avoided where possible; however, we discuss 

analytical approaches to unavoidably reducible models, based upon their ergodic properties. 
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ILLUSTRATIVE MODELS 

To show how reducible non-negative matrix structure relates to ergodicity of the model, we 

present simulations of illustrative PPM models. These demonstrate the conditions under which a 

reducible model will be differentially ergodic or nonergodic and, at a greater resolution, reveal 

how matrix structure relates to the number of different asymptotic states that the model may 

achieve. We use, e.g. λ(A1) to refer to the dominant eigenvalue of a constituent block of a 

reducible matrix, whereas λmax or λ(A) refers to the dominant eigenvalue of the overall matrix. 

 

ILLUSTRATIVE MODELS: METHODS 

A theoretical, irreducible, six-stage matrix model was constructed. This model was designed to 

be similar to one that may be parameterized for a tree species (Fig. 3.2a). Transition rates were 

‘knocked out’ of this model and replaced with zero values to create reducible models. The first 

of these may be subdivided to form two irreducible blocks on the diagonal (the two-block 

reducible model; Fig. 3.2b). The second may be subdivided to form three irreducible blocks on 

the diagonal (the three-block reducible model; Fig. 3.2c). 

 Ergodic properties of reducible non-negative matrices are determined by the relative 

sizes of the dominant eigenvalues of the constituent blocks of the matrix – specifically, it is the 

relative sizes of the blocks on the diagonal that are important (Bapat 1998). We manipulated the 

relative sizes of the dominant eigenvalues of these diagonal blocks by varying transition rates 

on the diagonal of the block (i.e. varying survival with stasis, the transition rate that measures 

the rate of survival without growth or regression to a different stage class). As a result, sets of 

matrices were generated with eigenvalues that varied on a continuous scale. Each single matrix 

in these sets was projected using six stage-biased initial population vectors, with all individuals 

in a single stage and a density of one, in a manner similar to that employed by Townley & 

Hodgson (2008). In practice, these are vectors of zeroes except for a one in one row only. This 

enabled an assessment of growth rate according to life cycle stage: as reducibility is related to 

connectivity between stages, it was important that the ‘fate’ of each individual stage was 

assessed independently. The actual, realized asymptotic growth rate of each stage-biased 

projection was calculated by dividing population size at time t+1 [N(t+1)] by population size at 

time t [N(t)] after the population had reached a stable growth rate. An ergodic model will exhibit 

the same realized asymptotic growth rate for every stage-biased projection, whereas a non-

ergodic model will exhibit two or more growth rates among its set of stage-biased projections. 

For the two-block reducible matrix, the modelling process was simple. λ(A1) was fixed 

at its ‘natural’ value (0·738), whilst λ(A2) was varied over the range 0·66–0·81. For the three-

block reducible matrix, each of the block-specific eigenvalues had to be varied in order to assess 

every permutation of relative eigenvalue size. As such, in part 1 of the process λ(A1) and λ(A2) 
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were fixed at their ‘natural’ values (0·711 and 0·611 respectively), whilst λ(A3) varied over the 

range 0·53–0·78. In part 2 of the process, λ(A3) was fixed at its highest value from part 1 

(0·78), λ(A1) remained fixed at its ‘natural’ value (0·611) and λ(A2) was varied over the range 

0·61–0·86. In part 3, λ(A2) was fixed at its highest value from part 2 (0·86), λ(A3) remained 

fixed at its highest value from part 1 (0·78) and λ(A1) was varied over the range 0·70–0·95. 

These values may seem somewhat arbitrary but were chosen so that all transition rates remained 

within biologically realistic limits, whilst still allowing all permutations of relative eigenvalue 

size to be assessed. 

All modelling was carried out using R version 2.9.2 (R Development Core Team 2009). 

Realised λ values were calculated using the truelambda  function in the R package 

popdemo. 

 

ILLUSTRATIVE MODELS: RESULTS 

Models showed that for both the two- and three-block reducible matrices, the models only 

exhibited ergodicity where λ(A1) was the largest eigenvalue, with all other cases exhibiting non-

ergodicity (Figs 3.3 and 3.4). 

 More specifically, the models showed that the number of different asymptotic growth 

rates that may be achieved by a reducible PPM model depends on the relative magnitudes of the 

dominant eigenvalues of its constituent blocks. The two-block reducible matrix can only exhibit 

a maximum of two different growth rates. This will occur when λ(A1) < λ(A2) (Fig. 3.3). The 

three-block reducible matrix can be thought of as a two-block reducible matrix within another 

two-block reducible matrix. Therefore, λ(A3) must be greater than both λ(A2) and λ(A1) to 

exhibit asymptotic independence (i.e. to exist as a potential asymptotic growth rate of the 

model). However, λ(A2) must only be greater than λ(A1) to exhibit asymptotic independence. As 

such, it is only when λ(A1) < λ(A2) < λ(A3) that the model exhibits three different long-term 

growth rates (Fig. 3.4). However, the model may exhibit two different long-term growth rates 

where λ(A2) < λ(A1) < λ(A3), where λ(A1) < λ(A3) < λ(A2) or where λ(A3) < λ(A1) < λ(A2) 

(Fig. 3.4). The same logic would therefore apply to any reducible model – for example, in a 

four-block reducible model, λ(A4) would have to be greater than λ(A3), λ(A2) and λ(A1) to 

exhibit asymptotic independence, and so on. 

 The only exception to this rule will occur when two diagonal blocks are not fixed 

relative to one another. Take a reducible matrix with the structure: 

 

A1 A1,2 

0 
A2 0 
0 A3 

 

The matrix can be re-permuted so that blocks A2 and A3 are swapped but without changing the 

overall structure of the matrix: 
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A1 A1,2 

0 
A3 0 
0 A2 

 

For λ(A2) to exhibit asymptotic independence as illustrated by our models, the 

condition λ(A1) < λ(A2) must be true, as usual. However, as there is no discernable difference 

between these two placements of A2 and A3, then for λ(A3) to exhibit asymptotic independence, 

the condition λ(A1) < λ(A3) is necessary, but λ(A2) < λ(A3) is no longer necessary. Note that 

whilst this affects the number of possible asymptotic growth rates where λ(A1) is not the largest 

eigenvalue, it does not affect the condition that for the model to exhibit ergodicity, λ(A1) must 

be the largest eigenvalue. Hence, if A1 is not fixed relative to the other diagonal blocks, the 

model will be non-ergodic. It is worth mentioning also that whilst we have only illustrated this 

case with matrices where λmax < 1, the rules we have described above apply to any non-negative 

matrix with λmax > 0. 

 

 

INCIDENCE OF REDUCIBILITY AND NON-ERGODICITY IN PUB LISHED PPMS 

 

INCIDENCE OF REDUCIBILITY AND NON-ERGODICITY IN PUBLISHED PPMS: 

METHODS 

Population projection matrices were collected from the literature, with the database at the time 

of analysis numbering 652 matrices (152 animals and 500 plants) for 171 species (57 animals 

and 114 plants) across a diverse range of taxa (see Appendix 7). In the first instance, we sought 

out large comparative analyses of PPM models of plants and animals and sourced many PPMs 

from the original articles cited by those analyses. Online searches of ecological literature 

provided additional PPMs, although these searches were not systematic. PPMs were not chosen 

with any bias regarding reducibility or ergodicity. We feel that the database of PPMs represents 

a fair sample of the entire population of published PPMs; hence, any result described here may 

be interpreted as applicable to the wider PPM literature. The database held by the authors is 

being continually added to, and contains extra information on the species and models present. It 

is producible at any time upon request. 

Each matrix was tested for reducibility using the argument that a square matrix A is 

irreducible if, and only if, (I  + A)s-1 is positive (i.e. every element of (I  + A)s−1 is greater than 0), 

where I  is the identity matrix and s represents the number of columns or rows in the matrix, 

equal to the number of stage classes in the life cycle model (Caswell 2001). 

Each matrix was tested for ergodicity using the argument that a non-negative 

matrix A is, under certain natural conditions, ergodic if and only if the dominant left 

eigenvector v of A is positive (i.e. every element of v is greater than 0). Biologically, this vector 



69 
 

is known as the ‘reproductive value’ vector, and satisfies the equation vTA = λmaxv
T, 

where λmax is the dominant eigenvalue of A and vT denotes the transpose of v (i.e. from a 

column vector to a row vector). The specific conditions and mathematical proof for this can be 

found in Appendix 3.1, and the subject is discussed at a greater depth in Dietzenbacher (1991). 

As this is a new method in population biology for evaluating ergodicity, each result was double 

checked with simulation of population dynamics using stage-biased vectors in the same manner 

described here for the illustrative model (see Illustrative models: methods). In every case, 

results from simulation of the model agreed with results from evaluation of the dominant left 

eigenvector. 

All tests were carried out using R version 2.9.2 (R Development Core Team 2009). The 

necessary code to test reducibility and ergodicity of matrices using the above arguments is 

available in the R package popdemo. 

 

INCIDENCE OF REDUCIBILITY AND NON-ERGODICITY IN PUBLISHED PPMS: 

RESULTS 

Analysis of the matrix database showed that the incidence of reducibility in published PPMs is 

high, at 24·7%. Of the reducible models, 63·2% are non-ergodic, which makes 15·6% of our 

sample of published PPMs non-ergodic. 

Some reducible models have been modelled with post-reproductive stage classes or 

have similar plausibly reducible life cycles, and thus do not defy biological rationale (as 

illustrated in Fig. 3.1b). However, most reducible models are lacking vital transition rates to 

complete the life cycle and as such defy biological rationale (as illustrated in Fig. 3.1c). Some 

reducible models showed a complete absence of certain stages in the model, and hence 

incorporated no transition rates whatsoever for those stages (so that the PPM contained columns 

of zeroes). In addition, many models included 100% rates of survival with stasis in adult stage 

classes, which although are not an origin of reducibility per se, effectively model immortal 

individuals and so clearly defy biological rationale. 

 

 

EMPIRICAL EXAMPLES 

We chose three reducible matrices from the literature to illustrate how reducibility may (or may 

not) affect model outcomes and conclusions, depending on the ergodic properties of the model 

and the analyses performed. These matrices were block permuted (code to block permute a 

reducible matrix may be found in the R package popdemo and further information on block 

permuting a reducible matrix by hand may be found in Appendix 3.2), and the eigenvalues of 

their diagonal blocks were calculated. These were then compared with the realized asymptotic 

growth rates of their stage-biased projections. 
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EMPIRICAL EXAMPLES: NUTTALLIA OBSCURATA 

Nuttallia obscurata (the varnish clam) is a marine invasive species in British Columbia, 

Canada. Dudas, Dower, & Anholt (2007) parameterize two matrices for the species, in order to 

evaluate the dynamics of invasive populations and identify which life-history stages are the best 

to target with control strategies. By performing asymptotic sensitivity and elasticity analyses, 

they concluded that reducing the survival of adult individuals would be the most beneficial 

strategy to curb population growth. 

The PPM for the Robbers’ passage population of N. obscurata is shown in Fig. 3.5a. 

There was no observed growth of stage 1 individuals into stage 2 individuals – these instead all 

bypassed stage 2, becoming stage 3 individuals in 1 year. The authors noted this irregularity and 

corrected the estimates of transition rates accordingly but failed to note that the resulting matrix 

is reducible: individuals in stage 2 may grow and reproduce, but no individual in stages 1, 3, 4 

or 5 can contribute in any way to stage 2 (whether through growth or reproduction). 

Although reducible, the matrix is ergodic (Fig. 3.6a). Therefore, in this particular case, 

the conclusions of the study would not be greatly affected by the reducible structure of the 

model. Every population projection will eventually settle to a rate of geometric growth 

described by the dominant eigenvalue of the matrix, and so the asymptotic growth rate of the 

population can be safely defined as such. Therefore, the sensitivity and elasticity analyses 

conducted by Dudas, Dower, & Anholt (2007) correctly evaluate the effects of perturbations to 

vital rates on asymptotic population growth. This is not necessarily always the case, as other 

examples will show. 

 Perhaps in this case, individuals grew faster than anticipated. A re-definition of size 

classes to a lesser resolution might have produced an irreducible matrix that described 

population dynamics more effectively. This should be easy to do if data on sizes of individuals 

are available. When parameterizing models, it is worth bearing in mind that the life cycle model 

may have to be redefined in order to fit with the data collected. Information on parameterizing 

models according to data availability is available (Vandermeer 1978; Moloney 1986). 

Alternatively, for species such as the varnish clam that exhibit continuous state variables (e.g. 

where organism size is a strong determinant of survival and/or growth and/or fecundity), 

integral projection models (IPMs) offer a means of population projection that utilizes smooth, 

continuous relationships between such state variables and an organism’s vital rates, which may 

be more accurate than the discrete-class approximations to such relationships provided by a 

PPM (Easterling, Ellner, & Dixon 2000; Ellner & Rees 2006, 2007). 

 

EMPIRICAL EXAMPLES: ARDISIA ESCALLONIOIDES 

Ardisia escallonioides (Marlberry) is a perennial understorey shrub found in the subtropical 

forests of southern Florida, as well as on islands and in coastal regions of the Caribbean Sea and 

the Gulf of Mexico. Pascarella & Horvitz (1998) collected data from the Florida populations in 
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order to parameterize models that would allow the assessment of the role of environmental 

variation in shaping population dynamics of the species. The environmental variation in 

question was the degree of forest canopy ‘openness’ as a result of hurricane damage. Patches 

were identified with varying degrees of canopy openness, and an individual matrix was 

parameterized for each. The individual matrices were then combined with a patch-transition 

matrix into a megamatrix that described dynamics of the population as a whole. Asymptotic 

growth rates, stable stage structures and sensitivity and elasticity analyses were conducted for 

individual matrices and the megamatrix and the results were compared and contrasted with one 

another. 

The matrix representing the 5% open patch is presented in Fig. 3.5b. There is no growth 

of stage 7 or stage 8 individuals, and 100% stasis of stage 8 individuals. The authors noted that 

their original matrix parameterization was not ‘full rank’ (sensu Caswell 1989), so would not 

exhibit asymptotic behaviour comparable with other patch-specific matrices, and corrected it as 

such (by estimating fecundity values and juvenile survival rates). However, they did not note 

that the resulting model was reducible, and so may still not exhibit comparable asymptotic 

behaviour (although it is noteworthy that they realized and corrected this in later analyses that 

used the data – see Appendix A of Tuljapurkar, Horvitz, & Pascarella 2003). 

The reducible model exhibits two possible asymptotic growth rates (Fig. 3.6b). Any 

projection that excludes stage 8 individuals in the initial population structure will 

follow λ = 0·984, and any projection that includes stage 8 individuals in the initial population 

structure will follow λ = 1. In this case, the asymptotic growth rate of the population has no 

single numerical definition, although it is assumed to equal the dominant eigenvalue of the 

matrix. Hence, it is not comparable with the other matrix models. Sensitivity and elasticity 

analyses measured the effect of perturbations on the dominant eigenvalue, but this is not 

necessarily equivalent to the effect that such perturbations have on asymptotic growth rate, as 

asymptotic growth rate is not always equal to the dominant eigenvalue. These analyses are 

therefore fundamentally flawed for the 5% open canopy patch. Having said that, the errors in 

this model are diluted by data from other patches in the megamatrix such that the megamatrix is 

irreducible, so that the conclusions of analyses based on the megamatrix will be little affected 

by the single reducible model. 

The authors recognize that transition rates absent in such a model must occur in 

populations and that ‘a much larger sample size would be needed to detect them empirically’ 

(Pascarella & Horvitz 1998, p. 551). With constraints on the amount of data that can be 

collected, perhaps in such situations it may be necessary to estimate these transition rates (such 

as from historical data, or based upon observed rates in other (sub)populations where available) 

to ensure a reliable model. Again, IPMs may offer an alternative approach in such a situation, as 

they usually require less data than traditional PPM models (Easterling, Ellner, & Dixon 

2000; Ellner & Rees 2006, 2007). 
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EMPIRICAL EXAMPLES: PINUS JEFFREYI 

Pinus jeffreyi (the Jeffrey Pine) is a coniferous tree found in the south-eastern USA. van 

Mantgem & Stephenson (2005) constructed PPM models for a population of the species (along 

with numerous other species of coniferous tree) in the Sierra Nevada in order to assess the 

reliability of PPM models as predictors of the dynamics of populations of such species. They 

compared matrix model projections with empirical data on population size, and concluded that 

PPM models were good predictors of population size, short-term growth, survival and 

recruitment. 

The PPM model for P. jeffreyi is presented in Fig. 3.5c. No stage 4 individuals 

progressed to become stage 5 individuals within the time frame of the study. The authors noted 

this, and recognized that this missing transition would be a problem when projecting over long 

time periods. However, as the study only looked at short-term dynamics (with models projected 

over a maximum of two time intervals), they concluded that it should not have great adverse 

effects on their analyses. That said, reducibility per se was not explicitly discussed. 

The reducible model exhibits three possible asymptotic growth rates (Fig. 3.6c). The 

matrix, in its block-permuted form, has five irreducible blocks on the diagonal. This is a good 

example of how a model missing just one transition rate then becomes highly mathematically 

constrained as a result: eigenvalues are constrained to be equal to the values of survival with 

stasis (on the diagonal of the matrix). Eigenvectors are equally constrained by these 

eigenvalues. Hence, an analysis that uses any eigenvalues of the matrix will be adversely 

affected. These include not only asymptotic analyses such as sensitivity and elasticity but also 

some measures of transient dynamics, such as the damping ratio of the population (Caswell 

2001) and certain measures of transient sensitivity and elasticity (Fox & Gurevitch 

2000; Yearsley 2004). 

van Mantgem & Stephenson (2005) are correct in that the reducibility of the matrix has 

little impact on the conclusions of their analyses – they wished merely to compare empirical 

with predicted population dynamics, and the models they present are an accurate representation 

of the demographic rates of the species in the time period considered. This example illustrates a 

case in which a reducible matrix, despite being non-ergodic and having highly constrained 

eigenvalues, should not pose a problem for the specific analyses being conducted. That said, the 

supplementary material does provide dominant eigenvalues of the PPMs as values of asymptotic 

population growth, and elasticity values are used in the manuscript to support certain 

conclusions (although are not presented) – these analyses will be flawed as a result of the model 

structure. 
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DISCUSSION 

We have demonstrated that reducibility, and hence non-ergodicity, in published PPM models is 

common. We have illustrated how the structure of reducible models affects their ergodic 

properties, and provided some empirical examples showing how these properties may or may 

not affect model outcomes and conclusions, depending on the analyses implemented. 

But why are so many published PPMs reducible? Whilst some models may plausibly be 

based upon a reducible life cycle (e.g. Brault & Caswell 1993), most are missing vital transition 

rates necessary for a complete life cycle. This leads to the question as to why such transition 

rates are missing from those models. The most likely explanation for this, as noted earlier 

by Pascarella & Horvitz (1998) in the Ardisia example, is that the relevant data required to fully 

parameterize the model are lacking. There are two possible explanations for this – either the 

data collected overlooked life cycle transitions that did occur, or the missing transitions did not 

occur during the time of study. Certain methods of data collection may result in poor estimates 

of transition rates, and perhaps a failure to capture a full set of transition rates – Münzbergová & 

Ehrlén (2005) note that commonly used methods may result in ‘poor representation of some 

stages’, and advise to collect data for an equal number of individuals per stage. However, even 

if the data collected do accurately represent the life cycle of the population during the time of 

study (with certain transition rates missing), this time is often limited to two consecutive years 

(Fieberg & Ellner 2001), comprising two population censuses: just enough to parameterize a 

single projection matrix. Such matrices will only represent demographic rates under the 

environmental conditions specific to that year. Under undesirable environmental conditions, it 

takes little stretch of the imagination to envisage that some life cycle transitions may not occur 

in a single year. Even under desirable environmental conditions, low transition rates (especially 

of growth) may be seen under certain life cycle models, especially for long-lived species 

(Enright, Franco, & Silvertown 1995). While the data collected in such an instance may 

adequately represent the demographics of that species in that particular year, it is clearly 

insufficient to describe the dynamics of the population over many years – this much seems 

intuitive. Additionally, as we have shown here with our illustrative and empirical examples, 

complications arise as reducible matrix models based upon such data have certain mathematical 

properties – such as eigenvalues that are constrained to equal those of the sub-blocks in all 

cases, and non-ergodicity in some cases – that may pose problems for analysis. 

For these reasons, as a general rule it is best to avoid using reducible models. Having 

said that, if a reducible model is unavoidable, such a model will not always prove problematic 

for analysis (as was seen earlier in the Pinus example). It is important that demographers know 

how to: (1) identify reducible matrices, (2) evaluate the ergodic properties of those matrices and 

(3) discern whether the models will prove problematic for the analyses that are to be conducted. 

We propose that matrices should be defined as irreducible, reducible–ergodic or reducible–non-

ergodic and that this information be used to guide analysis. Reducibility and ergodicity of a 
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matrix can be easily evaluated using the methods we present (see the Incidence of reducibility 

and non-ergodicity in published PPMs: methods section; Appendix 3.1) and analyses 

appropriate to that model structure can then be chosen. 

For deterministic asymptotic analyses, a reducible–ergodic matrix can be analysed in 

very much the same way as an irreducible matrix. Analyses such as evaluation of the dominant 

eigenvalue and/or eigenvector and calculations of asymptotic sensitivity or elasticity will be 

largely unaffected by the model. On the other hand, deterministic asymptotic analyses of 

reducible–non-ergodic matrices will often prove spurious: there is no single definition of 

asymptotic stable population growth and structure. For an unavoidably reducible model, an 

alternative is to analyse the portion of the life cycle that one is interested in – for example, when 

analysing population growth rates of species with post-reproductive stage classes, one might 

want to only analyse the block for the reproductive part of the population (Caswell 2001, p. 89). 

Reducible models have implications for stochastic analyses also. In stochastic analyses, 

sets of transition matrices are generated, with each single matrix representing transition rates 

under a certain environmental condition. This is usually done either by using matrices 

parameterized over different time intervals or by drawing transition rates from probability 

distribution functions with covarying parameters (Fieberg & Ellner 2001). A different matrix 

(emulating a unique set of environmental conditions) is chosen for each projection interval. In 

this case, it is clearly difficult to evaluate ergodicity of the model – each simulation is unique, as 

a different sequence of parameters or matrices is selected each time the simulation is run. 

However, reducibility of the combined matrix set can be evaluated. For the matrix set 

A(1), A(2),…, A(n), the arithmetic average matrix M=(1/n)(A(1) + A(2) +…+ A(n)). As 

ergodicity cannot be evaluated, reducibility of M  should be avoided in stochastic analyses. 

Individual reducible matrices, while undesirable, should not usually be a problem provided that 

the missing transitions are present elsewhere in the matrix set. However, the impacts of 

individual reducible matrices on stochastic analyses warrant further exploration and we note that 

this rule of thumb may not always apply. An alternative to simulating stochastic models is to 

calculate Tuljapurkar’s approximation to the stochastic growth rate (Fieberg & Ellner 2001). 

This calculation should only be based on ergodic matrix models, as calculations utilize the 

dominant eigenvalue, which can only be properly defined for ergodic models. 

Transient population dynamics are gaining increased attention from researchers. 

Methods for calculating transients are many and varied, and the impacts of reducibility and 

ergodicity of matrices on transient analyses will vary according to analyses used. For methods 

that implicate matrix eigenvalues in their calculation (e.g. Fox & Gurevitch 2000; Yearsley 

2004), reducible matrices (whether ergodic or non-ergodic) should be avoided, as the 

eigenvalues of the matrix are constrained by the model structure. For methods that do not utilize 

matrix eigenvalues (e.g. Koons, Holmes, & Grand 2007; Townley & Hodgson 

2008; Tenhumberg, Tyre, & Rebarber 2009), a general rule would be to avoid reducible–non-
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ergodic matrices: many analyses relate transient measures to asymptotic growth (Koons, 

Holmes, & Grand 2007; Townley & Hodgson 2008) and so the model used requires a robust 

definition of asymptotic growth. That said, in some cases (as exemplified in the Pinus example 

above), empirical calculation of population growth rates over the transient period may not be 

adversely affected by a non-ergodic model. 

 

 

CONCLUSIONS 

With reducible models so abundant in the literature, it is important for population biologists to 

know of the issues concerning their use, be able to identify whether a matrix is irreducible, 

reducible–ergodic or reducible–non-ergodic, and take the necessary precautions to alleviate 

potential problems associated with these model structures, either by redefining model structure 

if possible or by choosing the right analytical methods pertaining to the use of that matrix. The 

methods and models presented here should help to inform on these processes. Although 

biologists now have the necessary mathematical, statistical and computational tools at their 

disposal to conduct highly complex analyses, it is important not to forget about the foundations 

of PPM models and to remember to consider the basic life cycle model and matrix structure 

very carefully. 
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FIGURES 

 

 

FIG. 3.1: Example stage-structured life cycles. (a) An irreducible life cycle. Every stage is 

connected to every other stage via at least one pathway. (b) A reducible, post-reproductive life 

cycle. Sufficient transitions to facilitate pathways from every stage to every other stage are 

lacking: once in stage 4, there are no connections to the rest of the life cycle. Such a life cycle, 

although reducible, is biologically plausible. (c) A reducible life cycle that is missing a 

necessary transition rate. Sufficient transitions to facilitate pathways from every stage to every 

other stage are lacking: once in stages 1 and 2, an individual cannot then contribute to stages 3 

and 4. Such a model clearly defies biological rationale, with portions of the life cycle isolated 

from the rest of the cycle. 
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FIG. 3.2: The matrices used for 

modelling. In each case, the life cycle 

described by the matrix is also shown for 

clarity. (a) The irreducible projection 

matrix upon which the reducible matrices 

are based. This is similar to one that may 

be parameterized for a tree species: 

fecundity and survival with stasis 

increase with size, whilst survival with 

growth decreases with size. Each stage 

also has a small probability of regression. 

(b) The two-block reducible matrix in 

block-permuted form. An × indicates the 

‘knocking-out’ of transition a5,4 from the 

irreducible matrix and its replacement 

with a zero value in order to create the 

reducible matrix. The matrix may be 

subdivided with irreducible blocks A1 

and A2 on the diagonal as indicated. ‘0’ 

indicates a zero block (i.e. all elements of 

the block are zero). (c) The three-block 

reducible matrix in block-permuted form. 

An × indicates the ‘knocking-out’ of 

transitions a4,3 and a6,5 from the 

irreducible matrix and their replacement 

with zero values in order to create the 

reducible matrix. The matrix may be 

subdivided with irreducible blocks on the 

diagonal as indicated. Again, ‘0’ 

indicates a zero block. Note: in all cases, 

only irreducible blocks on the diagonal 

are important in the modelling process. 

Henceforth in this study, blocks A1,2 and 

A2,3 can be disregarded. 
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FIG. 3.3: Axes at the top of the graph show the modelling process for the simple two-block 

reducible matrix. λ(A1) is fixed (=0.738) and λ(A2) varies. Relative positions of λ(A1) and 

graphs (a) and (b) are indicated on the scale at the top of the figure. The y-axes of graphs (a) and 

(b) follow a log scale. Population size [N(t)] is standardized by λ(A) to clearly indicate 

differences in growth rates, therefore stages that follow λ(A) converge to horizontal lines on the 

graph. The number of different asymptotic growth rates that may be achieved by the model 

depends on the relative magnitudes of the dominant eigenvalues of its constituent blocks: (a) 

λ(A2) < λ(A1), therefore all stages follow λ(A) = λ(A1) = 0.738. (b) λ(A1) < λ(A2), therefore 

stages 5 and 6 follow λ(A) = λ(A2) = 0.775. Stages 1–4 continue to follow λ(A1) = 0.738.
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FIG. 3.4:  

Axes at the top of the graph show the modelling process for the three-block reducible matrix. In part 1, λ(A2) and λ(A1) are fixed (=0.611 and 0.711 respectively) and 

λ(A3) varies. In part 2, λ(A1) and λ(A3) are fixed (=0.711 and 0.780 respectively) and λ(A2) varies. In part 3, λ(A3) and λ(A2) are fixed (=0.780 and 0.860 
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respectively) and λ(A1) varies. In all cases, relative positions of block-specific eigenvalues and of graphs (a)–(g) are indicated where appropriate on the axes at the 

top of the figure. The y-axes of graphs (a)–(g) follow a log scale. Population size [N(t)] is standardized by λ(A) to clearly indicate differences in growth rates, 

therefore stages that follow λ(A) converge to horizontal lines on the graph. The number of different asymptotic growth rates that may be achieved by the model 

depends on the relative magnitudes of the dominant eigenvalues of its constituent blocks: (a) λ(A3) < λ(A2) < λ(A1), therefore all stages follow λ(A) = λ(A1) = 0.711. 

(b) λ(A2) < λ(A3) < λ(A1), therefore all stages follow λ(A) = λ(A1) = 0.711. (c) λ(A2) < λ(A1) < λ(A3), therefore stage 6 follows λ(A) = λ(A3) = 0.780, while stages 1–

5 follow λ(A1) = 0.711. (d) λ(A1) < λ(A2) < λ(A3), therefore stage 6 follows λ(A) = λ(A3) = 0.780, while stages 4 and 5 follow λ(A2) = 0.740 and stages 1–3 follow 

λ(A1) = 0.711. (e) λ(A1) < λ(A3) < λ(A2), therefore stages 4–6 follow λ(A) = λ(A2) = 0.860, while stages 1–3 follow λ(A1) = 0.711. (f) λ(A3) < λ(A1) < λ(A2), 

therefore stages 4–6 follow λ(A) = λ(A2) = 0.860, while stages 1–3 follow λ(A1) = 0.820. (g) The model is returned to its original state of λ(A3) < λ(A2) < λ(A1), and 

all stages follow λ(A) = λ(A1) = 0.920.
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FIG. 3.5: Empirical examples of reducible matrices with varying numbers of asymptotic growth 

rates that may be achieved (see Fig. 3.6). Each matrix is shown in its original (left) and block-

permuted (right) form. In each case, the life cycle described by the matrix is also shown for 

clarity. (a) Left: PPM parameterized for the Robber’s passage population of varnish clams 

Nuttallia obscurata (Dudas, Dower, & Anholt 2007). Right: the block-permuted matrix, with 

two irreducible blocks on the diagonal. (b) Left: PPM parameterized for marlberry Ardisia 

escallonoides (Pascarella & Horvitz 1998) under a 5% open canopy. Right: the block-permuted 

matrix, with three irreducible blocks on the diagonal. (c) Left: PPM parameterized for the 

Jeffrey Pine Pinus jeffreyi (van Mantgem & Stephenson 2005). Right: the block-permuted 

matrix, with five irreducible blocks on the diagonal. 
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FIG. 3.6: Projections of the example empirical reducible matrices from stage-biased initial 

populations. In all cases, y-axes follow a log scale and population size [N(t)] is standardized by 

λ(A) to clearly indicate differences in growth rates; therefore, stages that follow λ(A) converge 

to horizontal lines on the graph. In agreement with the illustrative models, the number of 

different asymptotic growth rates that may be achieved by the model (and therefore the 

ergodicity of the model) depends on the relative magnitudes of the dominant eigenvalues of its 

constituent blocks: (a) The Nuttallia obscurata model exhibits ergodicity, as λ(A2) < λ(A1), 

therefore all stages follow λ(A) = λ(A1)=0.727. (b) The Ardisia escallonioides model exhibits 

two different asymptotic growth rates, as λ(A2) < λ(A1) < λ(A3). Stage 8 follows λ(A) = λ(A3) = 

1, whereas stages 1–7 follow λ(A1)=0.984. (c) The Pinus jeffreyi model exhibits three different 

growth rates, as λ(A1) < λ(A3) < λ(A4) < λ(A2) < λ(A5). Stage 5 follows λ(A) = λ(A5)=0.945 

[although this projection does not completely converge within the 500 projection intervals 

plotted, it goes on to converge to λ(A)], stages 1–3 follow λ(A2) = 0.944 and stage 4 follows 

λ(A1) = 0.778. 
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_______________ 

CHAPTER 4 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Ecologists and evolutionary biologists are increasingly required to be computer programmers to 

implement the mathematical and statistical models necessary for research. Open-source 

software packages have been an integral part of this revolution: they make complex methods 

freely available to everyone, whilst the efforts of third-party developers ensure they are 

continually expanded and kept up-to-date. R is perhaps the most widely-used open source 

programming language in ecology and evolution, and is the language used to implement all 

analytical methods that contributed to this thesis. Making these methods freely available by 

compiling them into an R package was the logical next step to encourage their wider use. 

Chapter 4 is the fifth paper published as part this thesis, and provides a user’s guide to software 

tools for the methods presented in the first three chapters. These are freely available as part of 

the R package popdemo. 

 

 

Chapter 4:  

Stott, I., Hodgson, D.J. & Townley, S. (2012) popdemo: an R package for population 

demography using projection matrix analysis. Methods in Ecology and Evolution. 

doi: 10.1111/j.2041-210X.2012.00222.x 

  



85 
 

POPDEMO: AN R PACKAGE FOR POPULATION 

DEMOGRAPHY USING PROJECTION MATRIX ANALYSIS 

 

ABSTRACT 

1. Effective population management requires accurate predictions of future population dynamics 

and how they may be manipulated to achieve management goals. 

2. The R package popdemo provides software tools for novel analytical methods that aim to 

enhance the predictive power of basic population projection matrix models. These include 

indices of transient population dynamics and transfer function analyses. 

3. We use a case study to demonstrate the use and importance of these methods for population 

management and briefly discuss their potential application outside population ecology.  

 

INTRODUCTION 

popdemo is an R package (available at http://cran.R-project. org) that provides novel analytical 

methods for basic population projection matrix (PPM) models. These add to the more traditional 

approaches available in the package popbio  (Stubben & Milligan 2007). In this study, we 

highlight key methods covered by popdemo and use a PPM case study to show how these may 

be used for population management. For detailed information, we point the reader in the 

direction of package demos that provide comprehensive coverage of functionality. Finally, we 

discuss how the tools in this package could find use outside population ecology. 

 

 

POPULATION PROJECTION MATRIX MODELS 

Population projection matrix models are an important tool in ecological and evolutionary 

demography, for population management (Kareiva, Marvier & McClure 2000), comparative 

ecology (Buckley et al. 2010) and life history theory (Åberg et al. 2009). Many studies rely on 

basic density-independent, non-stochastic (linear, time-invariant) PPM models (e.g. Linkie et al. 

2007), as data required by more complex density-dependent and stochastic models (e.g. Jensen 

1996; Fieberg & Ellner 2001) are often difficult to provide. Our examples use a PPM for 

medium-fecundity desert tortoise (Gopherus agassizii) with eight size classes (Doak, Kareiva & 

Klepetka 1994). Once popdemo is installed and loaded, the matrix is created by running 

data(Tort) : 
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  1 2 3 4 5 6 7 8  

1  0 0 0 0 0 1.300 1.980 2.570  

2  0.716 0.567 0 0 0 0 0 0  

3  0 0.149 0.567 0 0 0 0 0  

4  0 0 0.149 0.604 0 0 0 0  

5  0 0 0 0.235 0.560 0 0 0  

6  0 0 0 0 0.225 0.678 0 0  

7  0 0 0 0 0 0.249 0.851 0  

8  0 0 0 0 0 0 0.016 0.860  
 

Basic PPM models take the form nt = Atn0, where A is the PPM describing the stage-structured 

life cycle of the organism, and n0 and nt are vectors containing numbers or densities of 

individuals in each stage class (the demographic structure) of the current population and the 

population at time t in the future, respectively (see Caswell 2001). Projecting and graphing 

population dynamics using this equation is often the first step towards understanding the model. 

popdemo’s function project  enables this [Fig. 4.1; see demo(projection) ]: 

n0 <- c(1,1,2,3,5,8,13,21)  

pr1 <- project(Tort, vector=n0, time=50)  

plot(pr1) 

 

 

MEASURING POPULATION DYNAMICS 

Traditionally, analysis of basic PPM models has focussed on long-term (asymptotic) population 

dynamics.  Assuming density-independence and a constant environment, any population is 

predicted to eventually settle to a stable state, with a stable demographic structure equal to the 

dominant right eigenvector w of the PPM, and a stable geometric growth rate equal to the 

dominant eigenvalue λmax of the PPM (Caswell 2001). The stable growth rate is often used as an 

indicator of population viability and fitness: λmax > 1 predicts long-term population increase, 

whereas λmax < 1 predicts long-term decline. The desert tortoise PPM declines in the long term, 

with λmax = 0.958 (Fig. 4.1; Appendix 4.1).  

 

MODEL ASSUMPTIONS 

Ideally, most PPMs should be primitive, like the desert tortoise PPM, with asymptotic dynamics 

conforming to the aforementioned description. In contrast, imprimitive PPMs exhibit periodic 

life cycle transitions (Otto & Day 2007), which cause cyclic long-term population dynamics 

rather than stable geometric growth. Imprimitive PPMs may also be reducible and nonergodic: 
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such models can be decomposed into two or more parts, yielding several different potential 

long-term growth rates that depend on demographic structure (Stott et al. 2010b [Chapter 3]). 

Many analyses assume primitivity, irreducibility and/or ergodicity, so it is important to check 

these properties to ensure analyses are appropriate to the model. The functions 

is.matrix_primitive , is.matrix_irreducible  and is.matrix_ergodic  

facilitate these checks [Appendix 4.1; see demo(matrixtools) ]. 

 

TRANSIENT DYNAMICS 

Even if a model is primitive, analysing only long-term dynamics has significant drawbacks. 

Asymptotic analyses ignore transient dynamics of the population. Populations are frequently 

subject to environmental disturbances, so are rarely at stable state. Consequently, long-term 

growth rate is often a poor predictor of real-world population dynamics (Bierzychudek 1999). 

Short-term (transient) dynamics may differ drastically from long-term trends because of 

discrepancies between the current and stable demographic distributions. In the short term, 

populations may increase faster than their stable growth rate (amplify) if reproductive adults are 

overrepresented in the population (as is the case in Fig. 4.1). Alternatively, they may grow more 

slowly than their stable growth rate (attenuate) if immature juveniles are overrepresented. 

popdemo includes functions to calculate three key pairs of indices that measure 

transient dynamics. Reactivity (reactivity ) and first-timestep attenuation 

(firststepatt ) represent immediate amplification/attenuation in the first timestep, 

respectively. Maximum amplification (maxamp) and maximum attenuation (maxatt ) 

represent the largest/smallest possible amplification/attenuation, respectively (Townley & 

Hodgson 2008). Upper and lower inertia (inertia ) represent fixed long-term 

amplification/attenuation, respectively (Koons, Holmes & Grand 2007). These indices are 

standardised to remove effects of asymptotic dynamics and to assume a total initial population 

density of 1, so they can be compared both amongst and within models where these may differ, 

thus offering advantages over analysing simulated dynamics (see Stott, Townley & Hodgson 

2011 [Chapter 1]). Each index therefore describes how much larger or smaller the non-stable 

population is at a certain point along the population projection, relative to the density of an 

equivalent population initiated at stable stage structure. Indices of amplification are >1, whilst 

indices of attenuation are <1, with the exact value of the index giving the magnitude of 

amplification or attenuation.  

The desert tortoise population amplifies if adults are overrepresented:  

n0.amp <- c(1,1,2,3,5,8,13,21)  

reactivity(Tort, vector=n0.amp)  

maxamp(Tort, vector=n0.amp)  

inertia(Tort, vector=n0.amp)  
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This population amplifies (reactivity equals 2.6) and, because of this, settles to a density 

over four times that predicted by stable growth (inertia equals 4.1; Fig. 4.2a). As asymptotic 

analysis indicates population decline, basing management decisions on that alone could result in 

poor strategies that ignore the potential for transient population amplification.  

The population attenuates if juveniles are overrepresented:  

n0.att <- c(21,13,8,5,3,2,1,1)  

firststepatt(Tort, vector=n0.att)  

maxatt(Tort, vector=n0.att) 

inertia(Tort, vector=n0.att)  

This population attenuates (first-timestep attenuation equals 0.92) and settles to a 

density below that predicted by stable growth (inertia equals 0.91; Fig. 4.2a). In this case, 

asymptotic analysis would underestimate the severity of short-term decline, so that management 

efforts may fail to achieve desired goals.  

Transient dynamics depend strongly on population structure. If population structure is 

not known, then transient bounds inform on the potential range of transient dynamics (Townley 

& Hodgson 2008; Stott, Townley & Hodgson 2011 [Chapter 1]). Transient bounds on indices of 

amplification represent the largest possible values that those indices may take, whilst bounds on 

indices of attenuation represent the smallest possible values that those indices may take. These 

extreme values of amplification and attenuation result from projections of stage-biased 

demographic vectors (Townley & Hodgson 2008). A stage-biased vector contains 100% of 

individuals in a single-stage class, and there is one stage-biased vector for each stage of the life 

cycle (Fig. 4.2b). For example, a 3×3 matrix has a set of stage-biased vectors [1 0 0]; [0 1 0]; [0 

0 1]. When using the aforementioned functions for generating transient indices, the relevant 

transient bound is returned if a demographic vector is not specified:  

reactivity(Tort)  

firststepatt(Tort)  

maxamp(Tort)  

maxatt(Tort)  

inertia(Tort, bound='upper')  

inertia(Tort, bound='lower')  

For the desert tortoise, a bias towards the largest individuals results in amplification 

bounds, whilst a bias towards yearlings results in attenuation bounds (Fig. 4.2b). The population 

can grow to an absolute maximum of almost seven times its current size (maximum 

amplification bound equals 6.82) and an absolute minimum of 12% its current size (maximum 

attenuation bound equals 0.12; Fig. 4.2b). The information provided by these transient bounds 

therefore provides best- or worst-case scenarios. There are further indices of transient density 

available in popdemo, and the functions described here have extra utilities [see 

demo(transient) ]. popdemo also contains functions for transient indices that deal with 



89 
 

model convergence [see demo(convergence)  and Stott, Townley & Hodgson 2011 

[Chapter 1] for a discussion on convergence indices].  

 

 

PERTURBATION ANALYSES 

For population management, it is important to know how population dynamics may be changed 

to achieve management goals. Perturbation analyses assess how changes to vital rates of the life 

cycle such as survival, fecundity or growth affect population dynamics. A classical approach is 

to conduct sensitivity analysis of the stable growth rate (asymptotic sensitivity analysis). This 

provides a linear estimate of the effect of perturbations on long-term population growth 

(Caswell 2001). Asymptotic sensitivity analyses have been used to prioritise potential 

management practises (e.g. Ratsirarson, Silander & Richard 1996) and analyse prospective 

population dynamics under varying environmental conditions (e.g. Abe, Nakashizuka & Tanaka 

1998). Asymptotic sensitivity analysis of the desert tortoise PPM suggests that promoting 

growth of young adults (element [8,7] of the matrix) is an efficient way to encourage long-term 

population growth (Appendix 4.1). This could perhaps be achieved through protection and/or 

supplementary feeding of those individuals. Sensitivity analyses for transient dynamics also 

exist and provide a linear estimate of the effect of perturbations on short-term population 

density or growth (e.g. Caswell 2007).  

 

TRANSFER FUNCTION ANALYSES 

The linear relationships described by sensitivity analysis are tangents to more complicated 

nonlinear functions (Fig. 4.3). Because of this, sensitivity analyses may poorly describe the 

effect of larger perturbations on population dynamics. Transfer function analyses can model the 

exact nonlinear relationship between a perturbation and resulting population dynamics and 

require no more information than sensitivity analyses.  

The function tfa  models the transfer function of asymptotic growth (Hodgson & 

Townley 2004), and inertia.tfa  models the transfer function of population inertia, 

providing a good indication of the effect of perturbation on transient dynamics (Stott, Hodgson 

& Townley 2012b [Chapter 2]). Three parameters are required for these functions: the PPM, a 

perturbation structure and a range of perturbation magnitude. The perturbation structure is given 

with two vectors: d picks out the rows to be perturbed, and e picks out the columns to be 

perturbed. For example, to perturb element [3,2] of a 3×3 matrix, input d=c(0,0,1)  and 

e=c(0,1,0)  into the functions. The perturbation magnitude is a range of values that specifies 

how much to change the vital rate(s) by, and is given by a variable called prange . 

inertia.tfa  also needs to either be given the demographic structure with which to calculate 

inertia, or be instructed to calculate the upper or lower bound on inertia. The transfer function 
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relating asymptotic growth to growth rate of young adult tortoises (element [8,7]) is modelled 

using the following code:  

tf1 <- tfa(Tort, d=c(0,0,0,0,0,0,0,1), e=c(0,0,0,0, 0,0,1,0), 

           prange=seq(0,0.25,0.01)) 

plot(tf1)  

Sensitivity analysis of asymptotic growth underestimates the effort needed to reverse 

long-term population decline (Fig. 4.3a): sensitivity (dashed line) suggests that increasing 

growth of young adults by approximately 0.12 would achieve λmax = 1, whereas the transfer 

function (solid line) indicates that an increase of approximately 0.25 is required. As this would 

bring the overall survival rate of young adults to above 1 (0.851 + 0.016 + 0.25 = 1.117), it is a 

biologically unrealistic solution.  

For the same perturbation, the transfer function for inertia of a specified demographic 

structure is modelled using:  

n0 <- c(1,1,2,3,5,8,13,21)  

tf2 <- inertia.tfa(Tort, vector=n0, d=c(0,0,0,0,0,0 ,0,1),  

                   e=c(0,0,0,0,0,0,1,0), 

                   prange=seq(0,0.25,0.01))  

plot(tf2)  

Sensitivity analysis of inertia overestimates the negative effect of larger perturbations 

(Fig. 4.3b): sensitivity predicts a decline in inertia with an increase in perturbation (dashed line), 

but the transfer function demonstrates a dramatic shift to increasing inertia at larger perturbation 

magnitudes (solid line). Nonlinear effects such as these highlight that management strategies 

based on sensitivity analyses may be ecologically and/or economically inefficient at achieving 

desired goals.  

Deciding on potential management regimes can be difficult. To aid this process, 

popdemo provides functions to perform transfer function analyses across the whole life cycle. 

The functions tfamatrix  and inertia.tfamatrix  generate multiplots of transfer 

functions, one for every life cycle transition. These plots are laid out in the same way as the 

PPM, so that the position of each panel in the multiplot indicates which PPM element it 

corresponds to. Analysing such plots by eye gives an impression of which vital rates are best to 

target. We provide an example here for inertia.tfamatrix  using the desert tortoise PPM:  

tfmat <- inertia.tfamatrix(Tort, vector=n0)  

plot(tfmat)  

Overall, it seems that increasing fecundity may be the best way to promote population 

amplification (Fig. 4.4, top row). The plot also shows that most perturbations have a highly 

nonlinear effect on transient population dynamics.  

Another key advantage of using transfer functions is that they can model complex 

perturbation structures, including simultaneous perturbation to multiple vital rates, different 
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perturbation magnitudes for different vital rates and life cycle trade-offs (Hodgson & Townley 

2004; Stott, Hodgson & Townley 2012b [Chapter 2]). This means that transfer functions can 

accurately model the effect of complicated management regimes [see demo(transfer) ].  

 

 

CONCLUSIONS 

The tools provided in popdemo facilitate the use of novel analytical methods for basic PPM 

models. Used alongside traditional analytical approaches, these enable more comprehensive and 

more predictive analyses of population dynamics, without demand for extra data. The software 

tools showcased here will likely be of most use for informing population management for 

relatively data-deficient species. They are also likely to be of use in comparative ecology (Stott 

et al. 2010a [Chapter 5]). They have potential application in studying life history evolution: for 

example, transient dynamics can be used as a measure of resilience (Neubert & Caswell 1997) 

and transfer functions could be used to model life cycle trade-offs. Lastly, these methods could 

find application in modelling stage-structured ecological or evolutionary systems other than 

populations. 

For a full index of functions available in popdemo and links to their documentation, 

run ?popdemo. 
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FIGURES 

 

 

FIG. 4.1: Population projection for the desert tortoise population projection matrix, generated 

using the project  function (Appendix 4.1). 
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FIG. 4.2: Transient dynamics of the desert tortoise population projection matrix. Plots are 

generated using the project function (Appendix 4.1) and are standardised to remove asymptotic 

dynamics and to assume an initial overall density of 1. Transient indices and bounds are added  

to plots in red. (a) A population where adults are overrepresented amplifies: reactivity ( 1P ) = 

2.63; maximum amplification (maxP ) = 5.11; inertia ( ∞P ) = 4.14, whilst a population where 

juveniles are overrepresented attenuates: first-timestep attenuation (1P ) = 0.92; maximum 

attenuation ( minP ) = 0.84; inertia ( ∞P ) = 0.91. (b) Transient bounds result from stage-biased 

population projections: reactivity (1ρ ) = 3.58; first-timestep attenuation (
1

ρ ) = 0.75; maximum 

amplification ( maxρ ) = 6.83; maximum attenuation (
min

ρ ) = 0.12; upper inertia (∞ρ ) = 5.12; 

lower inertia (
∞

ρ ) = 0.20. 
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FIG. 4.3: Transfer functions generated by the tfa  and inertia.tfa  functions (Appendix 
4.1). Perturbation affects element [8,7] of the desert tortoise population projection matrix. 
Sensitivity slopes are added to the plots in red. (a) Transfer function of asymptotic growth 
generated using tfa , showing the how perturbation magnitude (p) affects asymptotic 
population growth (lambda). (b) Transfer function of population inertia generated using 
inertia.tfa , showing how perturbation magnitude (p) affects population inertia. 
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FIG. 4.4: A multiplot of transfer functions for inertia of the desert tortoise population projection 
matrix, generated using the inertia.tfamatrix  function (Appendix 4.1). Perturbation 
magnitude is on the x axis, inertia is on the y axis. The layout of the multiplot corresponds with 
the layout of the PPM. Similar plots can be generated for the transfer function of asymptotic 
growth using the function tfamatrix . 
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_______________ 

CHAPTER 5 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Having synthesised and developed methods for the analysis of transient dynamics, and written 

code for their implementation, we wished to use these to answer interesting ecological and 

evolutionary questions. To do this, we exploit a large database of PPM models for plant species. 

Chapter 5 is the first paper published as part of this thesis, and is (to our knowledge) the first 

large-scale comparative analysis of transient population dynamics ever done. With transient 

theory in its infancy, the importance of transient dynamics in ecological systems is poorly 

understood. In this chapter we explore patterns in the potential range of transient dynamics that 

may be exhibited by populations. We seek patterns according to life form, and phylogenetic 

relatedness. Alongside this, we test the effect of model parameters on indices of transient 

dynamics. Because this was the first study published, the methods used are perhaps somewhat 

different to what we might choose now: we make use of the Kreiss bound rather than population 

inertia, and would perhaps choose differently from the more diverse range of methods for 

comparative study. However, the tools available to us at the time enabled us to uncover some 

interesting results. 

 

 

Chapter 5: 

Stott, I., Franco, M., Carslake, D., Townley, S. & Hodgson, D.J. (2010) Boom or bust? A 

comparative analysis of transient population dynamics in plants. Journal of Ecology, 98, 302-

311. doi: 10.1111/j.1365-2745.2009.01632.x 
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BOOM OR BUST? A COMPARATIVE ANALYSIS OF TRANSIENT 

POPULATION DYNAMICS IN PLANTS  

 

 

ABSTRACT 

1. Population dynamics often defy predictions based on empirical models, and explanations for 

noisy dynamics have ranged from deterministic chaos to environmental stochasticity. 

Transient (short-term) dynamics following disturbance or perturbation have recently gained 

empirical attention from researchers as further possible effectors of complicated dynamics. 

2. Previously published methods of transient analysis have tended to require knowledge of 

initial population structure. However, this has been overcome by the recent development of 

the parametric Kreiss bound (which describes how large a population must become before 

reaching its maximum possible transient amplification following a disturbance) and the 

extension of this and other transient indices to simultaneously describe both amplified and 

attenuated transient dynamics. 

3. We apply the Kreiss bound and other transient indices to a data base of matrix models from 

108 plant species, in an attempt to detect ecological and mathematical patterns in the 

transient dynamical properties of plant populations. 

4. We describe how life history influences the transient dynamics of plant populations: species 

at opposite ends of the scale of ecological succession have the highest potential for transient 

amplification and attenuation, whereas species with intermediate life history complexity 

have the lowest potential. 

5. We find ecological relationships between transients and asymptotic dynamics: faster-growing 

populations tend to have greater potential magnitudes of transient amplification and 

attenuation, which could suggest that short- and long-term dynamics are similarly influenced 

by demographic parameters or vital rates. 

6. We describe a strong dependence of transient amplification and attenuation on matrix 

dimension: perhaps signifying a potentially worrying artefact of basic model 

parameterization. 

7. Synthesis. Transient indices describe how big or how small plant populations can get, en 

route to long-term stable rates of increase or decline. The patterns we found in the potential 

for transient dynamics, across many species of plants, suggest a combination of ecological 

and modelling strategy influences. This better understanding of transients should guide the 

formulation of management and conservation strategies for all plant populations that suffer 

disturbances away from stable equilibria. 
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INTRODUCTION 

The dynamics of natural systems are highly complex and as such often prove difficult to predict. 

Yet, it is in the interest of ecologists to be able to predict the natural dynamics of ecological 

systems. Populations have received perhaps the most attention in the ecological modelling 

literature, with population projection matrices (PPMs) emerging as a prevailing modelling tool. 

This is hardly surprising, considering their wide application in pest control (Smith & Trout 

1994; Shea & Kelly 1998; Hastings, Hall & Taylor 2006; Dudas, Dower & Anholt 2007), 

harvesting (Cropper & DiResta 1999; Souza & Martins 2006) and conservation (Price & Kelly 

1994; Esparza-Olguín, Valverde & Vilchis-Anaya 2002; Linares et al. 2007), and although there 

is an increasing interest in habitat- and ecosystem-level practice (Harding et al. 2001), the 

population still remains a popular target for management. Often population dynamics defy 

simple model predictions, and current explanations for fluctuations in dynamics of populations 

range from deterministic chaos (Hastings et al. 1993) to environmental stochasticity (Dennis & 

Costantino 1988) and various combinations of these (Dennis et al. 1997, 2001; Bjørnstad & 

Grenfell 2001). 

Transient dynamics have recently emerged as a further explanation for unpredictable 

population behaviour (Hastings 2001). Typically, ecological systems are not at equilibrium, and 

disturbances are integral to ecosystem function (Wallington, Hobbs & Moore 2005). As such, 

populations may be subject to frequent exogenous disturbances to stage structure (Koons et 

al. 2005; Townley et al. 2007; Townley & Hodgson 2008), such as weather events, disease, 

human impacts, invasive species or migration. Following a disturbance, short-term transient 

dynamics often prove to be radically different from long-term trajectories (Caswell 2007). Thus, 

in reality, population dynamics are likely to be dominated by transient responses to exogenous 

disturbances (Townley et al. 2007) – deterministic reactions to largely stochastic events. 

Additional complications arise because studies of plant demography usually last only a few 

years (Jongejans et al.2010), and short-term goals are often the norm in management strategies 

(Hastings 2004). 

With only a relatively recent interest in transients and their quantification, PPM models 

have commonly undergone asymptotic analyses (but see Hastings 2004; Koons et al. 2005; 

Townley et al. 2007; Townley & Hodgson 2008; Maron, Horvitz & Williams 2010) – eigendata 

of matrices, used to describe such long-term trends, have proven analytically tractable and 

conceptually simple (Caswell 2001). Studies have considered the asymptotic responses of plant 

populations to disturbances such as fire (Hoffmann 1999), grazing (O’Connor 1993) and 

hurricanes (Batista, Platt & Macchiavelli 1998). In addition to this, there are established means 

of analysing the contributions of demographic parameters to long-term growth rates in the forms 

of sensitivity and elasticity analyses (Caswell 2001) and, more recently, transfer function 

analysis (Hodgson & Townley 2004). Many studies have utilized such analyses, with results 

often advocated for use in informing policy and management of species (e.g. Fiedler 
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1987; Menges 1990; Nault & Gagnon 1993). Larger comparative analyses have found general 

patterns according to life history (Silvertown et al. 1993; Franco & Silvertown 2004; Burns et 

al.2010). But, if transients do dominate ecological systems, then policy, management and 

conservation decisions based on asymptotic analyses may be severely limited, risking the waste 

of resources on suboptimal population management strategies. Indeed, in plants, there is 

evidence that long-term (asymptotic) trends in population models can provide very poor 

predictions of the true long-term behaviour of populations over time (Bierzychudek 1999). 

Transients and their sensitivities, however, have proven to be difficult to quantify. 

Published methods of transient analysis have often either lacked applicability to every PPM 

model (Neubert & Caswell 1997) have needed large amounts of demographic information (Fox 

& Gurevitch 2000) or have required intensive computation (Yearsley 2004; Caswell 2007). The 

largest drawback of published methods of transient analysis is that none have truly managed to 

divorce the need for knowledge of initial population structure – something that asymptotic 

analysis benefits hugely from. Population ecologists have hence been ill-equipped to utilize 

transient analysis to inform management and conservation strategies. Thus, although now 

gaining greater attention in the literature (e.g. Drake 2005; Koons et al.2005), transients have 

yet to gain wide popularity in practice. 

However, Townley & Hodgson (2008) recently developed a computationally simple 

new set of indices that builds in part on the work of Neubert & Caswell (1997), aimed at 

providing a means of calculating best- and worst-case scenarios following disturbance. These 

included the Kreiss bound, a flexible parametric index that may be calculated independently of 

initial population structure. They also extended transient measurements to include both 

population amplification (transient increase in population size or density) and attenuation 

(transient decrease in population size or density) following disturbance events. It is these indices 

that we employ in this study. We have chosen not to analyse other established indices of 

transient population size or density, such as population momentum and inertia (the long-term 

population amplification following perturbations to demographic rates; see Koons, Holmes & 

Grand 2007). These differ from our indices primarily in that they measure responses to specified 

disturbances or perturbations – here, we focus instead on indices of maximal transient 

amplification and attenuation as measures of the overall transient dynamical properties of 

populations. 

This article reports the first large-scale analysis of global patterns in transient dynamical 

properties of populations. We scrutinize a data base of models for 108 plant species with the 

aim of detecting deterministic biological and mathematical signals in patterns of transient 

dynamics. With relevance to plant ecology, we describe how life history influences the transient 

dynamical properties of populations. Our results also indicate relationships between magnitudes 

of transient departure from long-term growth and long-term growth itself, perhaps suggesting 

that short- and long-term dynamics are similarly influenced by the vital rates (e.g. survival, 
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growth, fecundity) of members of populations. In an attempt to further inform the building of 

more predictive models and reliable analyses, we describe dependence of transients on matrix 

dimension and explore the influence of matrix structure on transients. 

 

 

MATERIALS AND METHODS 

 

DATA BASE 

Population projection matrices were collected from the literature, with the current data base of 

plant PPMs at the time of analysis numbering 500 matrices for 113 plant species of 11 different 

Subclasses and 52 Families. The taxonomy for each species was found using Tudge (2000) for 

the taxonomic level of Order and above and Systema Naturae 2000 (Brands 1989–2005) for 

taxonomic levels below Order. 

One matrix was chosen for each species for use in analyses. This ‘species reference 

matrix’ was, where possible, an average of a number of subpopulation matrices of spatial and/or 

temporal replication. Where it was not biologically justifiable to take an average, the selected 

species reference matrix was chosen as the matrix for the (sub)population subject to conditions 

that most closely resembled the species’ ecological ‘norm’ (e.g. before, rather than after, 

hurricane disturbance). Matrices with redundant seed stages (the ‘seeds’ problem, highlighted 

in Caswell 2001, pp. 60–62) were corrected in the appropriate manner. 

Each matrix was tested for reducibility using the argument that a square matrix A is 

irreducible if, and only if, (I  + A)s−1 is positive (i.e. every element of the new matrix is greater 

than zero), where I  is the identity matrix of same dimension as A, and s represents the 

dimension (number of columns or rows) in the matrix (Caswell 2001). Reducible matrices were 

not used in analyses because they often represent biologically implausible life cycles and defy 

asymptotic analysis. One hundred and eight species reference matrices remained after reducible 

matrices were removed (see Appendix 7 for a full list). 

 

INDICES OF TRANSIENT DYNAMICS 

The indices of transient dynamics used were measures described by Townley & Hodgson 

(2008). The method of calculation uses theoretical stage-biased disturbances to initial 

population structure (i.e. with all individuals in a single stage class and a density of 1), thus 

modelling extreme transient dynamics of populations in response to such disturbances. We 

studied transient amplification and attenuation of each population relative to the long-term 

growth or decline predicted by the dominant eigenvalue of its PPM. This avoided the problem 

of there not being any upper bounds on the transient growth of an asymptotically growing 

population, or any lower bounds on the transient attenuation of an asymptotically declining 

population. Hence, all our transient indices describe how much bigger or smaller a population 
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could get, relative to how big it would be if it started out at stable stage structure. This is 

equivalent to measuring the dynamics of a geometrically weighted population λ−tN(t), 

where N(t) is the population size or density at time t. In practice, we did this by measuring 

transient indices, not of the PPM A itself, but of the ‘standardized’ PPM Â (equal to A divided 

by its dominant eigenvalue λ). This standardized λ of all Â to be 1, allowing direct comparison 

of both amplified and attenuated dynamics across all populations (Fig. 5.1). This particular 

method also has the advantage of removing the effect of the dominant eigenvalue on the indices 

that we measure, allowing us to infer relationships between those indices and the asymptotic 

growth rate of the population as predicted by the PPM A. 

 Six indices were calculated for each PPM, with three indices describing amplified 

dynamics and three analogous indices describing attenuated dynamics. Figure 5.1 illustrates the 

indices graphically with respect to the matrix projections. Table 5.1 provides formulae for 

calculation and biological interpretations of each index. In brief, our amplification indices 

are reactivity (the largest possible population density achieved in one timestep after 

disturbance), maximum amplification (the largest possible population density achieved in any 

timestep after disturbance) and the upper Kreiss bound (an analytical lower bound for maximum 

amplification). These are partnered by indices of attenuation, which are first-timestep 

attenuation, maximum attenuation and the lower Kreiss bound, respectively. Code to calculate 

the 6 indices is available in the R package popdemo. Table 5.2 is a correlation matrix of the 

indices, which shows that by nature, these indices are interrelated. To account for this non-

independence, we conducted a principal components analysis (PCA) on the six indices. 

 

PRINCIPAL COMPONENTS ANALYSIS 

Principal components analysis distils variation in a large number of correlated (i.e. non-

independent) variables into just one or two uncorrelated measurements, called principal 

components. In our case, this means that the variation held in the six indices of transient 

dynamics can potentially be described instead by just one or two measurements, thus 

simplifying the analytical process and reducing the probability of type I statistical errors by 

accounting for the high correlates between indices. 

The PCA was conducted on log10-transformed indices, as this describes more accurately 

the multiplicative nature of these transient dynamics. Hence, amplified transients become 

positive, whereas attenuated transients become negative. Detailed results for the PCA are 

presented in Appendix 5.1. These results suggest that more than 90% of the variance can be 

accounted for by principal components 1 and 2. Each index has an associated ‘loading’, which 

is the coefficient associated with that index in the principal component’s linear function. In our 

case, for principal component 1 (PC1), amplified transients have a positive loading and 

attenuated transients have a negative loading. For principal component 2 (PC2), both amplified 

and attenuated transients have a positive loading. This means that PC1 describes the overall 
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tendency of the population to produce transients of large magnitude (i.e. a large PC1 

corresponds to a population with both amplified and attenuated transients of large magnitude, 

and a small PC1 corresponds to a population with both amplified and attenuated dynamics of 

small magnitude). PC2 describes the tendency of the population to be biased towards either 

relatively larger amplified dynamics or relatively larger attenuated dynamics (i.e. a large PC2 

corresponds to a population with amplified dynamics that are large relative to its attenuated 

dynamics, and a small PC2 corresponds to a population with attenuated dynamics that are large 

relative to its amplified dynamics). 

 

STATISTICAL MODELS 

To find ecological and model parameterization patterns in the observed variation in transient 

dynamics, we regressed PC1 and PC2 against four different explanatory variables using general 

linear modelling. The life history of a plant is a categorical variable equivalent to those 

described in Franco & Silvertown (2004): monocarpic (semelparous) plants from open and/or 

disturbed habitats, perennial (iteroparous) herbs from open and/or disturbed habitats, perennial 

herbs from forest habitats, shrubs and trees. The long-term (asymptotic) intrinsic population 

growth rate r is equal to ln(λ), where λ is the dominant eigenvalue of PPM A. The dimension of 

the matrix is equal to the number of matrix columns or rows, and is equivalent to the number of 

stage-classes in the life cycle model. Last, the matrix type is distinguished by the position of 

non-zero data in the matrix and represents a qualitative description of the complexity of the 

demographic model. Our descriptions are consistent with Carslake, Townley & Hodgson 

(2009b). Leslie+ matrices are traditional Leslie matrices (Leslie 1945) incorporating growth and 

fecundity but also allowing for stasis of the last stage class, therefore containing positive data in 

the first row, the first subdiagonal and the last entry. These are usually age-structured models, in 

which ‘old’ individuals are grouped into a single stage class whose members die at a fixed rate 

per projection interval. Progression matrices are like Leslie+ matrices, but additionally 

incorporate stasis of all stage classes (individuals can remain within a stage-class between 

projection intervals; e.g. where stages are determined by the size of the individual) and therefore 

contain data in the first row, the first subdiagonal and the diagonal. Growth matrices are like 

progression matrices, but allow for skipped stage classes and therefore may include additional 

data anywhere in the lower triangle of the matrix. Lefkovitch matrices (after Lefkovitch 1965) 

represent a generalized, stage-structured life cycle which can contain data anywhere in the 

matrix, including regression through the life cycle: individuals can, e.g. get smaller, undergo 

fission or produce smaller vegetative offspring. 

Statistical models considered the effects of all explanatory variables simultaneously on 

a single principal component, although interactions between explanatory variables were not 

considered. We used general linear models with Gaussian error structure, identity link function 

and stepwise model simplification from the maximal model, in order of least significance, 
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using F-test analysis of deviance model comparisons and a significance threshold of p = 0.05, 

until a minimal adequate model was achieved (i.e. one where only significant effects remain). 

One clear outlier was removed in all analyses that involved r as an explanatory variable 

(Digitalis purpurea, λ = 11.8; r = 2.5). All minimal adequate models were checked for 

normality of standardized residuals and homoscedasticity. 

All analyses were conducted in a TIPS framework, where every species is treated as an 

independent data point (Silvertown & Dodd 1996; the name of the analysis refers to using the 

data from the ‘tips’ of the phylogenetic tree). However, previous statistical analyses that were 

conducted on the raw transient indices employed both TIPS and phylogenetically independent 

contrasts (PICs), where the degree of relatedness between species is controlled for (Felsenstein 

1985; Freckleton 2000). Each included matrix dimension as a covariate (cf. Salguero-Gómez & 

Casper 2010). The results from PIC analyses corroborated those of TIPS analyses, although they 

are not presented here. Phylogeny was obtained using Phylomatic, using taxonomic groups 

recognized by the Angiosperm Phylogeny Group (2003). 

All mathematical and statistical modelling was performed using R version 2.8.0 (R 

Development Core Team 2008). 

 

 

RESULTS 

 

EFFECTS OF LIFE HISTORY 

Plants with different life histories exhibit different potential magnitudes of transient 

amplification and attenuation. Analyses showed there to be a significant relationship between 

life history and PC1 (F4,100 = 3.6, p = 0.009; Fig. 5.2), however, there was no significant 

relationship between life history and PC2 (F4,100 = 0.5, p = 0.72). Monocarpic plants and trees 

are probably to exhibit both amplified and attenuated transients of greater magnitude than 

perennial, iteroparous herbs from open habitats and shrubs, which in turn are probably to exhibit 

amplified and attenuated transients of greater magnitude than perennial, iteroparous herbs from 

forest habitats. There is no bias towards either relatively larger amplification or relatively larger 

attenuation. Statistically, life histories can be grouped as indicated in Fig. 5.2 with perennials 

(both open and forest) and shrubs having similar transients, being lower in magnitude than those 

of monocarps. Trees can be grouped with either monocarps or perennials and shrubs, having 

transients of a lower magnitude than monocarps but of a higher magnitude than perennials and 

shrubs. 

 

RELATIONSHIPS BETWEEN TRANSIENTS AND ASYMPTOTIC GROWTH 

Populations that grow faster in the long term show both amplified and attenuated transients of a 

greater magnitude than those that are slower-growing or declining (significant positive 
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relationship between r and PC1; F1,100 = 4.2, p = 0.042; Fig. 5.3), with no bias towards either 

relatively larger amplification or relatively larger attenuation (no significant relationship 

between r and PC2; F1,99 = 0.04, p = 0.83). 

 

INFLUENCE OF MATRIX STRUCTURE 

Matrices with a greater dimension are probably to exhibit both amplified and attenuated 

transients of a greater magnitude than matrices with a smaller dimension (significant positive 

relationship between matrix dimension and PC1; F1,100 = 36.2, p < 0.001; Fig. 5.4), with no bias 

towards either relatively larger amplification or relatively larger attenuation (no significant 

effect of dimension on PC2; F1,104 = 0.3, p = 0.60). 

 Matrix type was not influential in determining the transient dynamical properties of the 

PPM models: it had no significant effect on PC1 (F1,99 = 0.52, p = 0.47) or PC2 

(F1,105 = 2.1, p = 0.15). 

 

 

DISCUSSION 

 

RELATIONSHIPS BETWEEN TRANSIENTS AND LIFE HISTORY 

Analyses showed there to be a U-shaped relationship between life-history strategy, defined 

along a continuum of ecological succession, and the magnitude of both amplified and attenuated 

transient dynamics. Monocarpic plants (a grouping of annuals and monocarpic perennials) and 

trees, representing opposite ends of a scale of ecological succession, generally have amplified 

and attenuated transients of greater magnitude than shrubs and iteroparous perennials. This is an 

intriguing observation – the expected relationship might be one of monotonic decline with 

increasing life history complexity, at least for amplified dynamics: several studies have shown 

that annuals and species of early succession have greater reproductive allocation than perennials 

and species of later succession (Gleeson & Tilman 1990; Aarssen & Taylor 1992; Silvertown & 

Dodd 1996; Fenner 2000). 

Selective environmental pressures acting on life-history trade-offs may account for our 

findings. Early-successional species inhabiting open habitats will benefit from a quick pre-

emption of abundant resources. For trees, gaps in the forest are ephemeral and may be filled by 

a few individuals at most. In both situations, under models of ‘lottery’ recruitment, where 

successful establishment of juveniles is random and indiscriminate (Chesson & Warner 

1981; Chesson 1991; Turnbull, Crawley & Rees 2000), producing many viable offspring may 

give the best chance of successful colonization (which increases the potential for transient 

amplification). Due to subsequent space constraints and/or competition for resources, juvenile 

mortality would be high (which increases the potential for transient attenuation). This would 

account for the boom-and-bust transient properties exhibited by these life histories. Perennials 
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in forest habitats, in contrast, experience a relatively constant environment, where colonization 

opportunities are more predictable. Therefore, whilst still experiencing space and resource 

constraints once established, they might be less exposed to the pressure of ‘lottery’ colonization. 

Thus, their best strategy may be to weigh the costs of (unnecessary) reproduction against the 

benefits of survival and vice versa, resulting in decreased fecundity and increased juvenile 

survival (and therefore more stable transient properties as a result). There is ample evidence for 

trade-offs such as these in plants (Mitchell-Olds 1996a,b; Ehrlén & van Groenendael 1998 and 

citations therein). It is worth bearing timescale in mind when considering this: tree populations 

are slow-growing, and their ‘transient state’ will therefore probably last far longer than that of 

an annual. Transient dynamics can be just as extreme for both, but over entirely different 

timescales. 

The discrepancy between our findings and results for reproductive allocation theory 

(Silvertown & Dodd 1996) perhaps reflect the differences between studying individual 

demographic traits and demographics (the size, structure and dynamics of populations) per se. 

The number of offspring produced is a product not only of reproductive allocation, but of many 

vital rates. For example, trees may allocate comparatively less resources to reproduction than 

annuals, but given increased pollination success, greater number of seeds produced or greater 

seed set, a tree may produce as many individual offspring in a single year, and hence have the 

capacity to exhibit the same magnitude of transient amplification. Indeed, seed size (and 

therefore number) is not necessarily proportional to individual size across species, and shows 

great variation across taxa and life histories (Moles et al. 2005). In addition, measures of 

reproductive allocation do not account for adult survival: increased adult survival in trees will 

probably contribute to greater population amplification. 

Further analysis of how life history and transient dynamics are related is needed. 

Sensitivity, elasticity and/or transfer function analyses of transient indices would inform on 

whether, as for asymptotic elasticity (Silvertown et al. 1993; Silvertown, Franco & Menges 

1996; Franco & Silvertown 2004), specific life histories show individual patterns in their 

responses to perturbation. Such results would equip population managers with the information 

on the ability of populations of certain species to amplify and/or attenuate. 

 

RELATIONSHIPS BETWEEN TRANSIENTS AND LONG-TERM DYNAMICS 

Populations with rapid asymptotic growth (greater r) are likely to harbour the potential for 

greater magnitudes of both transient amplification and attenuation. 

For transient amplification, this relationship is relatively intuitive: vital rates such as 

survival and fecundity that contribute to long-term population growth also contribute greatly to 

transient amplification. However, the relationship with transient attenuation is less intuitive, 

since attenuation is associated with low sub-adult survival, and low or zero fecundity. Again, 

given trade-offs in allocation of resources to survival and reproduction, a plant that has high 
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adult survival (hence increasing asymptotic growth rates and the potential for transient 

amplification) may invest less in sub-adult survival (hence simultaneously increasing the 

potential for transient attenuation). Our discovery of positive relationships between long-term 

rates of growth and the magnitude of short-term population amplification and attenuation may 

suggest that all of these are similarly influenced by vital rates of members of the population, 

which in turn will be determined by evolutionary history or environmental resources and 

stressors. We explore this possibility by relating our results to reported patterns in both 

asymptotic and transient sensitivities and elasticities. 

The popularity of asymptotic analyses is accompanied by an abundance of literature on 

sensitivities of long-term population dynamics to vital rates of plants. Comparative studies 

utilizing empirical models have explored patterns in elasticity of asymptotic growth to both 

compound transition rate elasticities (Silvertown et al. 1993; Silvertown, Franco & Menges 

1996; Crone 2001) and vital rate elasticities (Franco & Silvertown 2004; Burns et al. 2010). 

Simulation studies have also explored relationships between elasticities of matrix elements 

(Carslake, Townley & Hodgson 2009b). In the vast majority of these cases, it has been reported 

that elasticity of asymptotic growth to survival is greater than elasticity to fecundity. As outlined 

earlier, we might intuitively expect transient amplification to respond to adult survival (as well 

as fecundity), but attenuation to respond to sub-adult survival. 

Despite the wealth of studies of sensitivities of asymptotic growth rates to vital rates, 

there is a dearth of similar studies for the sensitivity of transient dynamics to recruitment, 

survival and growth in plants. Perhaps, the only investigation into patterns of sensitivity in 

transient dynamics was made by Koons et al. (2005). They considered three bird and three 

mammal species at various points on the fast–slow life-history continuum. They found that for 

populations close to stable stage structure, transient sensitivities showed a greater dependence 

on sub-adult survival than on fecundity (which is similar to results for asymptotic elasticity in 

mammals and birds – see Heppell, Caswell & Crowder 2000 and Sæther & Bakke 2000). 

Conversely, for populations disturbed away from stable stage structure, transient sensitivities 

showed a greater dependence on fecundity and adult survival than on sub-adult survival. Our 

indices utilize initial structures that represent significant departures from stable structure, and as 

such they would be more likely to exhibit this second pattern. This agrees with expectations as 

outlined above for amplified dynamics, but not with expectations for attenuated dynamics. It is 

noteworthy that Koons et al.’s results are not directly comparable with those described for 

asymptotic dynamics as one is a measure of sensitivity and the other is a measure of elasticity 

(for formal definitions see Caswell 2001). However, it appears that, for animals at least, 

transient sensitivities do not conform to the neat, global patterns of asymptotics and are far more 

attuned to variation in initial conditions. 

It is difficult to infer how vital rates may determine the transient dynamics of plant 

populations using studies of asymptotic dynamics in plant populations or transient dynamics in 
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animal populations. However, patterns of transient sensitivity in plants could be complex, and 

amplified and attenuated dynamics might show differing responses to variation in vital rates. A 

study explicitly concerning transient sensitivity, elasticity and/or transfer function analyses in 

plants needs to be performed to infer these relationships. For now, we are left with the 

intriguing observation that plant populations predicted to grow faster in the long term tend to 

exhibit the potential for larger magnitudes of transient amplification and attenuation than 

(asymptotically) slower-growing or declining populations. 

 

EFFECTS OF MATRIX STRUCTURE ON TRANSIENT INDICES 

Both amplified and attenuated dynamics increase in magnitude with increasing matrix 

dimension. 

One explanation for this is that it is an artefact of model design. A larger matrix (i.e. one 

with a larger number of stages in the life cycle model) will house comparatively more 

demographic transition rates and hence will capture peak rates of fecundity and mortality more 

efficiently. A small (low-dimension) matrix used to describe the same life cycle will effectively 

average out variation in fecundity and mortality rates, so that peak rates of a small matrix will 

always be of lesser magnitude than those of a large matrix for the same population. This 

‘averaging effect’ is a parsimonious explanation for an increase in transient magnitude with 

increasing matrix dimension, since maximum (and minimum) column sums of a larger matrix 

are likely to be larger (and smaller) than for an averaged, smaller matrix. This is an important 

consideration, because it highlights that populations may amplify or attenuate beyond bounds 

predicted by simplified models. 

However, if the number of stages chosen is a true reflection of the life cycle, then this 

should not be the case – modelled transient dynamics would be indicative of the true transient 

dynamical properties of the population. An organism with greater stage specificity (i.e. greater 

heterogeneity in demographic rates across the life cycle) will require a life cycle model with 

more stages (and hence a larger projection matrix) to capture that heterogeneity. In this case, our 

finding that magnitudes of transient dynamics increase with increasing matrix dimension would 

indicate that organisms with greater stage specificity exhibit more extreme transient dynamics. 

As a comparative study, ours does not control for stage specificity and as such we 

cannot reliably distinguish between these two explanations. However, a recent study 

by Tenhumberg, Tyre & Rebarber (2009) provides some support for the former. They collected 

demographic data from the pea aphid, Acyrthosiphon pisum, and used it to create matrices of 

differing dimension. They then compared model predictions from these matrices to empirical 

dynamics of laboratory populations. They found that larger matrices modelled greater transient 

growth rates and captured observed transient growth rates more effectively than smaller 

matrices. This further supports our hypothesis that magnitudes of transient dynamics increase 

with increasing matrix dimension. 
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Approaches to parameterizing matrix models are often based upon data availability 

(Vandermeer 1978; Moloney 1986) or are taxon-specific (e.g. Noon & Sauer 1992), whilst 

reviews of methods for modelling complex factors such as environmental stochasticity (Fieberg 

& Ellner 2001) or spatial heterogeneity (Day & Possingham 1995) reveal a diversity of 

approaches. Matrix dimension is known to have a significant effect on the elasticities of matrix 

elements (Enright, Franco & Silvertown 1995). However, its effect on population size, density 

or growth rate has not often been studied (but see de Matos & Silva Matos 1998; Lamar & 

McGraw 2005; Ramula & Lehtilä 2005; Tenhumberg, Tyre & Rebarber 2009) and is less often 

controlled for in demographic analyses. Our results indicate that it could have consequences for 

these measures and hence for management strategies based upon them. Perhaps there is a need 

for more stringent rules in matrix parameterization to assure that models are predictive and 

comparative. Enright, Franco & Silvertown (1995) suggested that matrix dimension should 

either be a function of longevity or equal for different models that require comparison (see 

also Salguero-Gómez & Casper 2010 for homogenizing matrix dimension across models). Our 

results indicate that either solution could have an effect on transient dynamics depending on the 

population under study. We also note that the discretization of infinite-dimensional integral 

projection matrices (see Ellner & Rees 2006), for numerical analysis, should consider the 

impacts of dimensionality not just on asymptotic predictions, but also on the transient properties 

of the discretized model. 

Matrix type did not show a significant relationship with transient magnitude and so 

appears to have no effect on the transient dynamics of the model. This may be because real-

world populations do not conform rigidly to the definite boundaries of classification used to 

describe empirical models. For example, inclusion of just one extra stasis parameter in a Leslie+ 

matrix changes it into a growth matrix. However, this single parameter is unlikely to have huge 

effects on the model output. Whilst it is a good idea to incorporate possible model effects in 

analyses, perhaps a more robust definition of matrix ‘type’ is required. 

 

 

CONCLUSIONS 

The indices of transient dynamics that we employ here should prove to be useful in many 

scenarios. In the fields of in situ conservation and pest control, measures such as reactivity and 

first-timestep attenuation would allow demographers to calculate ‘best-case’ and ‘worst-case’ 

scenarios, so establishing the ability of disturbance to cause population booms and crashes in 

the very near term, and enabling attempts to design ‘quick fixes’ to buffer against population 

disturbances. In the contrasting fields of ex situ population management (including species 

reintroduction) and harvesting, indices such as maximum amplification and attenuation may 

enable demographers to utilize population disturbance to their advantage and enable population 

managers to maximize population size and viability without compromising costs or harvest 
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rates. In fundamental research, these indices (and in particular, the Kreiss bounds) are useful in 

comparative analyses as measures of the overall transient dynamical properties of a population 

or species. Primarily, however, all of these indices would be of use to anyone who does not 

have knowledge of initial population structure. Where information on population structure is 

available, other methods may prove more pertinent. For example, the measures of transient 

growth employed in Maron, Horvitz & Williams (2010) may be more useful to demographers 

who have information on current population structure and are interested in population growth 

rate rather than size (e.g. to identify whether a population is currently undergoing short-term 

decline or increase). Population momentum and inertia (Koons, Holmes & Grand 2007) may be 

more useful to demographers who are interested in population size or density but have 

information on current population structure. In research, measuring transient growth rates or 

population inertia and/or momentum would be more useful when comparing within, rather than 

between, species or populations exposed to differing conditions, e.g. as a measure of fitness. 

Our results have shown that there are strong correlations between the Kreiss bounds and 

immediate and maximum measures of population amplification and attenuation. The 

relationships of these indices with one another, and with other indices of transient dynamics 

such as population momentum and inertia, warrant further exploration. In addition, we have 

uncovered several patterns in the transient dynamical properties of populations. First, life 

history and transient dynamical properties of populations are related. Second, transient and 

long-term dynamics are positively correlated. To shed more light on both of these findings, a 

study that looks at the sensitivity of transients to changes in transition rates would be ideal. Last, 

transient dynamics are sensitive to matrix dimension with consequences for management 

strategies based upon such models. It is debateable whether this is an artefact of the model or 

because of larger matrices modelling organisms with greater stage specificity and life cycle 

complexity. In either case, matrix dimension ought to be controlled for in any transient analysis 

of population dynamics. Transient analysis is likely to see increased popularity in the near 

future – these results and further studies of transient population dynamics should aid population 

managers and conservationists working with wild plant populations. 
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TABLES  

 

TABLE 5.1: The transient indices used in analyses, accompanied by formulae for calculation, and biological descriptions. After Townley & Hodgson (2008). See 

also Fig. 5.1. minCS, minimum column sum of the matrix. Note that r used in Kreiss bound calculations is different from r used to describe intrinsic population 

growth rate. 

DESCRIPTION INDICES 
BIOLOGICAL MEANING 

(AMPLIFICATION/ ATTENUATION) 

STRENGTHS/ 

WEAKNESSES 

ADDITIONAL 

INFORMATION 

 

Immediate 

(first-timestep) 

transient index 

bcdefghgfi � ����� 

Egbjf	fgkcjfcl 

dffcmndfgom � kgmpq7��8 

 

REACTIVITY 

 

FIRST-TIMESTEP 

ATTENUATION 

 

 

The largest/smallest possible density (relative 

to asymptotic dynamics) that may be reached 

by the population in the first projection 

interval. 

 

Simple; amenable to 

perturbation analysis / 

Does not always capture 

largest transient. 

 

 �A��� ≤  ρ��� 
kgmpq7��8 ≥ ρ�*+ 

Kreiss bound 

KtN∗ � maxv�� w7r = 18�7r< = ��8:���x 

KN∗ � minv�� y7r = 18kgmpq7r< = ��8:�z 

UPPER KREISS BOUND 

 

LOWER KREISS BOUND 

The density a population must amplify/ 

attenuate to (relative to asymptotic dynamics) 

before reaching its maximum/minimum 

overall size; therefore inner bounds on 

transient amplification/attenuation. 

Amenable to perturbation 

analysis; captures largest 

transient more effectively / 

Inner rather than outer bound 

on transient magnitude. 

KtN∗  < ρ��� 
KN∗  > ρ�*+ 
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Maximum 

transient index ρ��� � max�{ w������x 

ρ�*+ � min�{ ykgmpq7���8z 

MAXIMUM AMPLIFICATION 

 

MAXIMUM ATTENUATION 

 

The largest/smallest density (relative to 

asymptotic dynamics) that may be reached by 

the population overall. 

 

Captures outer bound, 

maximum transient / 

Not amenable to perturbation 

analysis. 

May or may not 

result from the 

same stage-bias as 

�����  / 
	kgmpq7��8 
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TABLE 5.2: Spearman’s rank correlation matrix for the log10-transformed transient indices used 

in analyses. Values reported are Spearman’s ρ values. All p < 0.001. 

 ρ��� KtN∗  ����� ρ�*+ KN∗  
KtN∗  0.99     

����� 0.97 0.96    

ρ�*+ -0.66 -0.65 -0.65   

KN∗  -0.48 -0.49 -0.46 0.92  

kgmpq7��8 -0.44 -0.41 -0.56 0.70 0.55 
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FIGURES 

 

 

FIG. 5.1: Graphical representation of the indices of transient dynamics used in analyses. Each 

solid line represents a single stage-biased projection (of the standardized matrix) initiated with a 

total density of one (i.e. each projection starts with all individuals clustered in a single stage 

class: a population initiated at stable stage distribution would follow a flat line at y = 1). 

Therefore, in this example from a six-stage PPM, there are six projections. The vertical axis is 

on a logarithmic scale to illustrate the multiplicative nature of the measurements. Note that 

maximum amplification maxρ  and reactivity ||Â||1 may or may not result from the same initial 

stage structure, which is also true for first-timestep attenuation minCS(Â) and maximum 

attenuation
min

ρ . *K λ < maxρ and 
*K λ >

min
ρ . ||Â||1 ≤ maxρ and minCS(Â) ≥ 

min
ρ . Example PPM 

used for projection is for the palm Iriartea deltoidea (Pinard 1993). 
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FIG. 5.2: On average, plants at the extremities of life history complexity (i.e. monocarps and 

trees) tend to have transients of greater magnitude than those of mid-range complexity (i.e. 

perennial herbs and shrubs). Lowercase letters signify groupings of life history by statistical 

significance. M = monocarpic plants from open and/or disturbed habitats, O = perennial herbs 

from open and/or disturbed habitats, F = perennial herbs from forest habitats, S = shrubs, 

T =trees. Means and SD are plotted for an average matrix dimension and average r where 

relevant, using the minimum adequate model. 
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FIG. 5.3: The potential magnitudes of transient dynamics (both amplified and attenuated 

measures) have a positive association with r, the measure of long-term population growth or 

decline, although there is a lot of scatter in the relationship, as is evident from the graph. 

The fitted line is plotted for an average matrix dimension using the minimal adequate model 

(but excluding life history because of the difficulty of calculating an ‘average’ value for this 

parameter).
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FIG. 5.4: The dimension of the matrix model (equal to the number of stages chosen in the life 

cycle model) shows a positive relationship with the potential magnitudes of transient dynamics 

(both amplified and attenuated transient measures). Fitted curves are plotted for average r where 

relevant, using the minimum adequate model (but excluding life history due to the difficulty of 

calculating an ‘average’ value for this parameter). 
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_______________ 

CHAPTER 6 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Exploring patterns of the range of transient dynamics naturally led to questions regarding the 

probability of models exhibiting certain transient dynamics over others. Chapter 6 is the one 

unpublished chapter of this thesis. As the last chapter written, it improves on the methods used 

in chapter 5. We choose to analyse population inertia given its strength and tractability as an 

index of transient dynamics. We make use of the innovative MCMCglmm analysis framework, 

which uses Bayesian inference to fit complex models to data, most importantly enabling an 

accurate modelling of phylogenetic signal. We explore whether populations tend to amplify or 

attenuate following disturbance, and nudge transients into the realms of evolutionary biology by 

linking our results to life history theory. The results presented in this chapter suggest that 

transient dynamics may not just be important to our understanding of ecological dynamics, but 

also to our understanding of how life histories may evolve over time. 

 

 

Chapter 6:  

Stott, I., Townley, S. Franco, M., Matsikis, I., Carslake, D.J., & Hodgson, D.J. (2012) Stage-

structured life cycles favour demographic resilience of plant populations. In prep. 
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STAGE-STRUCTURED LIFE CYCLES FAVOUR DEMOGRAPHIC 

RESILIENCE OF PLANT POPULATIONS 

 

 

ABSTRACT 

The importance of incorporating environmental variation into demographic studies is well-

recognised. However, little is understood about the short-term responses of populations to 

demographic disturbance events, which act over short periods of time to directly alter 

population size and structure, but have little effect on the longer-term vital rates of the 

population. Recent interest in transient dynamics of populations has enabled study of the 

response of populations to disturbance. Using novel transient analyses, we show that 

populations have a remarkable tendency to boom in response to disturbance by exhibiting short-

term increase in population density. This is true both across the entire range of possible 

disturbances and for disturbances that have been recorded in the field. We uncover patterns in 

this booming behaviour, according to life history and phylogeny. We argue that this 

demographic resilience to disturbance should be an evolved property of populations living in 

disturbed environments, and tentatively suggest a link between tendency towards amplification 

and the evolution of stage-structuring in natural life cycles. 

 

 

INTRODUCTION 

Natural populations are subject to an ever-changing environment.  Sources of heterogeneity that 

may influence a population’s vital rates and structure include variation in abiotic factors such as 

temperature (Egley 1990) or light availability (Ballantine & Forde 1960), biotic factors such as 

disease (Tompkins, White & Boots 2003) or competition (Connell 1983), and anthropogenic 

factors such as harvesting (Pinard 1993) or habitat destruction (Tilman et al. 1994).  Changes in 

a population’s vital rates and structure translate over time into changes in its dynamics: 

consequently the environment influences population density and growth (Savage et al. 2004).  

Population density and growth are key components of fitness (Hunt & Hodgson 2010), therefore 

environmental variation imposes an important selection pressure on populations.   

The importance of modelling environmental variation in population dynamic and 

evolutionary studies is well-recognised. Stochastic models of demography are established in 

population ecology (Fieberg & Ellner 2001), and stochastic measures of fitness have long been 

used in evolutionary ecology (Gillespie 1974).  Stochastic models usually incorporate 

environmentally-induced variation in survival, fecundity, growth or regression, termed 

perturbations to life cycle rates. An alternative (although less common) approach to stochastic 

analysis is to model disturbance to population structure. In this case, stochastic variation is not 
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forced through changes in matrix entries, but through changes in the population vector (Stott, 

Townley & Hodgson 2011 [Chapter 1]). Hence, in a model with perturbation, population 

dynamics are dictated by a changing schedule of vital rates that slowly mould structure and 

density over time. On the other hand, population dynamics of a model with disturbance follow 

the schedule of an unchanging set of vital rates, punctuated by sudden changes in structure and 

density. While it might be possible to model demographic disturbances via perturbations to vital 

rates (e.g. a disease epidemic will cause a sudden increase in mortality; the ploughing of a field 

will cause a sudden increase in seed bank germination), we suggest there is value in modelling 

such events as disturbances to demographic structure. From a modelling perspective, it may be 

more revealing to disturb the state rather than to perturb the system.  

Whichever form a stochastic model takes, analyses usually focus on long-term 

dynamics: mean and variance in long-term population growth and density (Fieberg & Ellner 

2001). In the long term, expected growth rate is independent of the population’s current 

structure.  However, patterns of short-term growth can prove to be very different to expected 

long-term trends, and are highly dependent on the current structure of the population (Townley 

et al. 2007; Townley & Hodgson 2008). These ‘transient’ dynamics have seen increased 

research interest in recent years, both as a means of increasing accuracy of models for 

population management (Stott, Hodgson & Townley 2012b [Chapter 2]), and as a means of 

explaining the complicated time series of population dynamics in nature (Koons et al. 2005a; 

Stott et al. 2010a [Chapter 5]; Maron, Horvitz & Williams 2010). Although some methods 

explore transient response to perturbation (Neubert and Cawell 1997), studying transient 

dynamics in the context of disturbance has proven more tractable and meaningful. Hence, the 

vast majority of transient analyses consider population response to disturbance (Fox & 

Gurevitch 2001; Yearsley 2004; Koons et al. 2007; Caswell 2007; Townley et al. 2007; 

Townley & Hodgson 2008; Stott, Townley & Hodgson 2011 [Chapter 1]).  

Transient response of populations to disturbance will matter from an evolutionary 

perspective: a population that can boom in response to disturbance, thus quickly rebounding 

from reduced density, will have significant competitive advantage over a population that busts 

in response to disturbance.  Evolutionary studies often use measures of long-term growth as 

surrogates for fitness (Hunt & Hodgson 2010). Theoretically however, populations in disturbed 

environments should evolve to maximise not only this long-term growth, but also their ability to 

rebound from disturbance in the short term. This observation yields the notion of demographic 

resilience, which we define as the ability of a population to bounce back from disturbance in the 

short term by booming in density.  This definition differs importantly from many established 

concepts of ecological ‘resilience’: such measures more commonly estimate the rate of return to 

stability or the time taken to reach stability, following disturbance or perturbation (Gunderson 

2000).  The concept of demographic resilience is complementary to these ideals: we don’t look 

to redefine the concept of ecological resilience, but to extend the concept of resilience to the 
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study of transient demography (Neubert & Caswell 1997). We study demographic resilience in 

the very short term as the propensity to be reactive (Neubert & Caswell 1997): in other words 

the probability of growing faster than the stable rate of increase following disturbance. We 

study demographic resilience in the longer term as the propensity to have positive inertia 

(Koons 2007): in other words the probability of ending up larger than a stable population, 

following disturbance. These measures fit with the general concept of resilience: the former 

measures the instant rate at which a disturbed population bounces back (towards carrying 

capacity or to regain numerical advantage); the latter measures whether this ‘rate of return’ 

advantage can be maintained through time. A life history that can achieve quicker numerical 

replacement following disturbance and maintain high density in the longer term will, all else 

being equal, dominate a disturbed system. As high demographic resilience to disturbance will 

infer superior competitive advantage, it might be expected that rates of high demographic 

resilience should be found in nature. 

In this study, we explore patterns of demographic resilience in natural populations of 

angiosperm plants.  First of all, we merely seek to measure rates and distributions of 

demographic resilience in populations.  Second, we explore how patterns of demographic 

resilience change according to shared ancestry and life history.  We employ a recently-

established framework for measuring transient dynamics (Stott, Townley & Hodgson 2011 

[Chapter 1]), as well as introducing novel statistical sampling procedures for studying transient 

dynamics in the context of demographic resilience.  We explore rates and distributions of 

demographic resilience using simple but robust statistical methods, and extend this exploration 

into patterns according to phylogeny and life history using cutting-edge Bayesian generalised 

linear mixed models (Hadfield 2010). 

Our results indicate that populations show remarkably high rates of demographic 

resilience to disturbance.  Patterns in these rates are linked to both phylogenetic history and life 

form.  We argue that this emergent property of populations is highly likely to be an evolved 

response to a disturbed environment.  We analytically link high demographic resilience to the 

stage-structuring of life cycles, including delayed reproduction and asymmetry in juvenile and 

adult survival, and discuss how the differences in disturbance regimes experienced by different 

species may shape differences in their patterns of demographic resilience.  Last, we speculate on 

how transient dynamics may contribute to understanding fitness of populations in stochastic 

environments. 
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MATERIALS AND METHODS 

 

DATABASE 

We use a database of 620 population projection matrix (PPM) models for 147 angiosperm 

species representing 57 different families.  These models have been collected from the 

published literature, and for some species include within-species replicates (multiple 

populations per species) and/or within-population replicates (multiple PPM models per 

population, measured at different times).  We found 133 of the models in the database to be 

reducible.  Reducible models present problems for analysis as they often represent biologically 

implausible life cycles, and may be non-ergodic, thus violating certain assumptions of many 

PPM analyses (Stott et al. 2010b [Chapter 3]).  In all analyses, we excluded reducible models, 

leaving 487 irreducible PPM models for 143 species representing 56 different families.  To 

these remaining models, we applied the ‘seeds’ correction (Caswell 2001 p.60-62) to matrices 

with redundant seed stages, which are sometimes a by-product of incorrect modelling of fast 

germination rates. 

Only a portion of our database contained information on the current demographic 

structure of populations, which is a necessary prerequisite for some of our analyses.  This subset 

numbers 215 irreducible PPM models for 70 species representing 36 different families.  Some 

demographic vectors excluded measures of certain life stages (usually seeds and early life 

stages): in this case we took the conservative approach of fixing densities of those stages at their 

stable-stage density and combining these with the recorded demographic densities of other life 

stages.  All demographic vectors were scaled to sum to 1 in analyses. 

Appendix 7 contains the database of PPM models and associated information. 

 

BASIC PPM MODELS 

We study the dynamics of density-independent, non-stochastic (i.e. linear, time-invariant) 

population projection matrix models, which are discrete-time models that take the form nt=Atn0. 

In this equation, nt and n0 are the demographic vectors at time t and time 0 respectively, 

containing numbers or densities of individuals in each stage class. A is a square, nonnegative 

matrix representing the life cycle of the organism, incorporating measures of survival, growth, 

retrogression and fecundity.  If A is primitive (which should usually be the case), then whatever 

its demographic structure, the population is predicted to settle to a stable state, with long-term 

(asymptotic) stable rate of growth or decline equal to the dominant eigenvalue λmax of the PPM, 

and stable demographic structure with ratios of stages equal to the dominant right eigenvector w 

of the PPM (Caswell 2001).  The relative reproductive value of each stage is embodied in the 

dominant left eigenvector v of the PPM. 

 

TRANSIENT DYNAMICS 
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Population projections of linear, time-invariant models are a combination of both the long-term 

asymptotic dynamics described above, and short-term transient dynamics.  Transient dynamics 

can differ dramatically from long-term trends (Townley & Hodgson 2008): in the short term, 

populations may either boom by growing faster than their stable rate of growth (amplify) or bust 

by growing slower than their stable rate of growth (attenuate).  Hence, a population that 

amplifies becomes larger in size/density than an equivalent stable population, and a population 

that attenuates becomes smaller (Townley & Hodgson 2008; Stott, Townley & Hodgson 2011 

[Chapter 1]).  Whether a population amplifies or attenuates is dictated by its demographic 

structure.  In this study we introduce the notion of ‘demographic resilience’: a population that 

amplifies in response to a disturbance is considered to be resilient in the short-term to that 

disturbance, whilst a population that attenuates is considered to be non-resilient. 

We employ two measures of transient amplification and attenuation, following Stott, 

Townley & Hodgson (2011) [Chapter 1].  These measures use the standardised matrix Â (equal 

to A scaled by λmax) and the standardised vector 0n̂  (equal to n0 scaled to sum to 1) in their 

calculation.  Thus, they remove any confounding effects of differing asymptotic growth and 

differing initial density to give transient indices that are comparable both among and within 

models.  These standardisations mean that the indices we employ measure the transient density 

of a non-stable population projection, relative to the density of an equivalent population 

projection initiated with stable stage structure.  As a result of this, indices with values greater 

than 1 indicate population amplification whereas indices with values less than 1 indicate 

population attenuation. 

The first index, reactivity, measures the transient amplification or attenuation of the 

population in the first timestep (note that Stott, Townley & Hodgson 2011 [Chapter 1] 

distinguish between ‘reactivity’ being amplification in the first timestep and ‘first-timestep 

attenuation’ being attenuation in the first-timestep: for ease, here we use reactivity as a catch-all 

term for first-timestep response).  Reactivity is measured as: 

 

bcdefghgfi � P� � ���	�	
��	. 
 

The second index we employ is population inertia.  As a result of transient dynamics, a non-

stable population will settle at a density above or below its predicted stable density when it 

reaches stable state.  Inertia is the measure of this long-term population amplification or 

attenuation and is measured as: 

 

gmcbfgd � P, � 01�	
‖/‖�01/ 	. 
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By using both reactivity and inertia, we are able to assess first whether populations are resilient 

to disturbance in the very near term, and second whether they maintain that resilience in the 

long term. 

 

DATA SIMULATION 

We explore demographic resilience in two settings: first, we measure ‘general demographic 

resilience’ to all possible disturbances.  Second, we measure ‘specific demographic resilience’ 

to recorded disturbances in the field.  

GENERAL DEMOGRAPHIC RESILIENCE: We consider the general demographic 

resilience of the population to be the probability of amplification across all possible 

disturbances.  We compute this by calculating the reactivity and inertia of the population for 

randomly generated demographic structures that cover the entire range of possible population 

structures.  We achieve this unbiased sampling of demographic vectors by drawing population 

structures from the Dirichlet distribution.  The Dirichlet is a multivariate generalisation of the 

beta distribution, and is parameterised by a vector of shape parameters α.  The distribution 

concentrates on this vector, with the degree of concentration modelled by a scaling factor: 

increasing the scale of α increases the probability of sampling near α.  Hence, when all αi are 

equal, the distribution is symmetric, and when all αi equal one, the Dirichlet is equal to the 

multivariate uniform [0,1] distribution.   

We calculated a mean PPM per species (using all irreducible PPM models), and drew 

one million random demographic distributions from the symmetric Dirichlet with all αi equal to 

one for each mean matrix.  We then calculated both reactivity and inertia for each matrix-vector 

pair, giving 1 million measures each of reactivity and inertia for every mean species matrix.  

From these one million samples we were then able to calculate the probability of immediate 

amplification p(P1>1) and the probability of long-term amplification p(P∞>1) for each species. 

These measures of general resilience were calculated using the preactivity and pinertia 

functions in the R package popdemo (Stott, Hodgson & Townley 2012a [Chapter 4]). 

SPECIFIC DEMOGRAPHIC RESILIENCE: We consider the specific demographic 

resilience of the population to be the transient response of the population to a specific, observed 

demographic disturbance.  Observed demographic disturbance is modelled using the recorded 

non-stable structure of the population.  We calculated reactivity and inertia for each population 

(using all irreducible PPM models with recorded demographic structures), and from this data, 

calculated a mean reactivity and a mean inertia per species. 

Reactivity and inertia were calculated using the reactivity, firststepatt and inertia 

functions in the R package popdemo (Stott, Hodgson & Townley 2012a [Chapter 4]). 

 

STATISTICAL METHODS 

Our first question is simply: in the short term, how resilient are species to disturbance?   



125 
 

EXACT BINOMIAL TESTS: We initially explore this question non-parametrically, and 

conservatively, with exact binomial tests.  For general demographic resilience, we binary-

transformed probabilities of reactivity and inertia by assigning a 0 if there was higher 

probability of attenuation (i.e. if p(P1>1) or p(P∞>1) were <0.5), or assigning a 1 if there was 

higher probability of amplification (i.e. if p(P1>1) or p(P∞>1) were >0.5).  We conducted an 

exact binomial test on this data against a null value of 0.5, representing a null hypothesis that 

each case occurs with equal probability.  For specific demographic resilience, we binary-

transformed measures of reactivity and inertia by assigning a value of 0 if the population 

attenuated (i.e. if P1 or P∞ were <1) or a value of 1 if the population amplified (i.e. if P1 or P∞ 

were >1).  We conducted an exact binomial test on this data against a null value of 0.5, again 

representing a null hypothesis that amplification and attenuation are equally likely to occur. 

BOOTSTRAP T TESTS: Second, we explore this question parametrically using two-

tailed, one-sample bootstrap t-tests.  For general demographic resilience, we tested mean 

probability of amplification in reactivity and inertia against the null hypothesis that 

amplification and attenuation are equally likely overall (i.e. we tested E[p(P1>1)] and 

E[p(P∞>1)]  against a null mean value of 0.5).  For specific demographic resilience we log-

transformed reactivity and inertia (as this better represents the multiplicative nature of the 

indices for parametric statistical analysis, and yields values >0 for amplification and <0 for 

attenuation), and tested these against a null hypothesis that populations are equally likely to 

amplify or attenuate to the same magnitude overall (i.e. we tested E[log(P1)] and E[log(P∞)] 

against a null mean value of 0).  Significance was determined by assessing whether confidence 

intervals calculated from t-distributions overlapped with null mean values. 

 

Our second question is, does demographic resilience show relationships with shared ancestry or 

life history? 

MCMCglmm: To address this question, we employ generalised linear mixed models 

(glmm) that use Markov Chain Monte Carlo (MCMC) algorithms in a Bayesian inference 

framework, using the R package MCMCglmm (Hadfield 2010).   

Random effects: We constructed a phylogeny including branch lengths for all species, 

using phylomatic (http://phylodiversity.net/phylomatic) to find topology down to family level, 

phylocom (Webb, Ackerly & Kembel 2008) to calculate branch lengths down to family level, 

and then taxonomic literature to find topology and branch lengths for remaining within-family 

polytomies.  This yielded an almost fully-resolved phylogeny, with just 2 remaining polytomies.  

Phylogeny was modelled as a random effect in MCMCglmm models, in each analysis trimming 

species from the tree that did not appear in the data for that analysis.  The final phylogeny and 

full details on its inference can be found in Appendix 6.1. 

Fixed effects: We assigned each species a life form of either monocarpic (M), perennial 

herb in open habitat (O), perennial herb in forest habitat (F), shrub (S) or tree (T) following 
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Franco & Silvertown (2004).  This was modelled as a 5-level, categorical, fixed effect in 

MCMCglmm models. 

Model structure: For both general and specific demographic resilience measures, we 

assessed the following 4 models: including both phylogeny and life form, including phylogeny 

but excluding life form, excluding phylogeny but including life form, and excluding both 

phylogeny and life form.  Support for phylogeny and life form were assessed using the deviance 

information criterion (DIC), with lowest DIC indicating the most informative model.  For 

general demographic resilience, we logit-transformed per-species measures of p(P1>1) and 

p(P∞>1), converting any values of 1 to 1-10-6 as probabilities of 1 cannot be modelled by the 

logit distribution.  We analysed both logit{p(P1>1)} and logit{p(P∞>1)} simultaneously in a 

bivariate gaussian glmm, allowing interactions between the two responses and fixed effects, and 

full variance-covariance between the two responses when estimating random and residual 

variance.  We used default uninformative priors for fixed effects, and specified parameter-

expanded uninformative priors for random and residual variance, which gave relatively good 

chain mixing.  Our number of iterations was 300000, with a 10% burnin and a thinning interval 

of 100, which achieved low autocorrelation in fixed effect posteriors and high repeatability of 

results.  For specific demographic resilience, we binary-transformed reactivity and inertia by 

assigning a value of 0 if the population attenuated (i.e. if P1 or P∞ <1) and a value of 1 if 

reactivity or inertia were >1(i.e. if P1 or P∞ >1).  The two binary responses were analysed 

separately in univariate binomial glmms, therefore modelling the probability of amplification in 

response to recorded disturbance. We specified an uninformative prior on the probability scale 

for fixed effects, parameter-expanded uninformative priors for random effects, and fixed 

residual variance at 1, which gave relatively good chain mixing for scaled posteriors.  The 

number of iterations was also 300000, with 10% burnin and a thinning interval of 100, which 

again achieved low autocorrelation of fixed-effect solutions and high repeatability of results.  

For more information on all statistical models, and especially detailed explanations and 

justifications of MCMCglmm model structure, prior choice and model fit, please see Appendix 

6.2. 

 

 

RESULTS 

 

HOW RESILIENT ARE SPECIES TO DISTURBANCE? 

Populations show remarkable demographic resilience, with the large majority amplifying in 

response to disturbance, and maintaining amplification in the long term. 

EXACT BINOMIAL TESTS: Exact binomial tests were highly significant in all cases 

(p<0.001 for all tests), which indicates a higher probability of amplification in all data.  For 

general demographic resilience, this means that greater probability of amplification across all 
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possible demographic structures is significantly more likely both in the immediate and long 

term (i.e. p(P1>1) > 0.5 and p(P∞>1 )> 0.5 occur significantly more often than p(P1>1) < 0.5 and 

p(P∞>1) < 0.5 respectively).  For specific demographic resilience, this means that amplification 

in response to recorded disturbance is significantly more likely both in the immediate and long 

term (i.e. P1 > 1 and P∞ > 1 occur significantly more often than P1 < 1 and P∞ < 1 respectively). 

BOOTSTRAP T TESTS: Bootstrap t tests showed that this result also holds 

parametrically (p<0.01 for all tests), which again indicates a higher probability of amplification 

in all cases.  For general demographic resilience, this means that the average probability of 

amplification is significantly greater than 0.5, both in the immediate and the long term (i.e. 

E[p(P1>1)] > 0.5 and E[p(P∞>1)] > 0.5 Figs. 6.1a & 6.1b).  For specific demographic resilience, 

this means that the average magnitude of log-transformed immediate and long-term transient 

dynamics are both significantly greater than 0 (i.e. E[log(P1)] > 0 and E[log(P∞)] > 0 Fig. 6.1c, 

Fig. 6.1d). 

 

DOES DEMOGRAPHIC RESILIENCE SHOW RELATIONSHIPS WITH SHARED 

ANCESTRY OR LIFE HISTORY? 

Populations show patterns of general demographic resilience according to both phylogeny and 

life history, but we identified no such patterns for specific demographic resilience. 

MCMCglmm: Analyses of general demographic resilience indicated interesting 

relationships with both phylogeny and life form.  DIC indicated that the inclusion of life form 

was supported over its exclusion (Table 6.1).  Parameter estimates show a U-shaped relationship 

along the axis of ecological succession (M-O-F-S-T) for probability of both reactivity and 

inertia (Figs. 6.2a & 6.2b).  Thus, monocarps and trees show the highest probabilities of 

amplification in the immediate and long term, whilst perennials and shrubs have relatively 

lower probabilities of amplification.  However, the model with lowest DIC was the phylogeny-

only model (Table 6.1), which indicates that this relationship is better explained through 

modelling longitudinal shared ancestry than through cross-sectional categories of life form, 

pointing to a degree of conservation of transient demography within clades.  MCMCglmm 

analyses for specific demographic resilience indicated that there was no support for inclusion of 

either phylogeny or life form in the model (Table 6.1).  Parameter estimates for different life 

forms were very similar (Figs. 6.2c & 6.2d), and the lack of support for phylogeny indicates that 

response of species to disturbances experienced in the field is not conserved within clades. 

 

 

DISCUSSION 

Populations show a remarkable tendency towards amplification in response to disturbance.  

When assessing population response to every conceivable disturbance, we found that the 

overwhelming majority of species are significantly more likely to amplify rather than attenuate, 
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both in the immediate and long term.  We also found that populations show a high tendency 

towards both immediate and long-term amplification in response to real-world disturbances.  At 

the least, this represents an interesting ecological phenomenon. However we also link this result 

to life history theory: we argue that amplification in response to disturbance should be an 

emergent, evolved property of natural populations, and present analytical results that suggest 

our observations can be explained in part by the stage-structuring of life cycles, including 

asymmetry across the life cycle in rates of survival and reproduction. 

 

LINKING DEMOGRAPHIC RESILIENCE AND LIFE HISTORY 

Population dynamics are a consequence of the interaction between an organism’s life cycle, and 

its demographic structure.  Hence, the transient response of a population to disturbance is 

mediated through the life cycle.   

It is possible to obtain an analytical solution to the Dirichlet sampling procedures we 

present here, and we illustrate this geometrically using a 3-stage model for Carlina vulgaris 

(Lofgren et al. 2000): 

 

� � |0.500 0 2.8000.250 0.222 00 0.667 0 } , �� � |0.479 0 2.6820.239 0.213 00 0.639 0 } ,/ � |0.6670.2030.130} , 0 � |0.6861.4941.841}
1
 

 

Figure 6.3 shows a unit triangle plotted in three-dimensional space.  The complete set of 

relative densities of a three-stage demography lie on its surface.  The unit triangle is bisected by 

another triangle which defines the boundary of amplification versus attenuation.  For reactivity, 

the vertices of the bisecting triangle are defined by the reciprocals of the column sums of the 

standardised PPM Â.  For inertia, vertices are defined by the reciprocals of the entries of the 

reproductive value vector v (after scaling v and w so that vTw equals 1 and the sum of w equals 

1).  Above the bisection boundary the population amplifies, whilst below the boundary the 

population attenuates.  Therefore the area within the unit triangle above the bisection boundary 

equals our measure of general demographic resilience: the probability of amplification in 

response to any conceivable disturbance.  This geometric representation generalises to an (n-1)-

dimensional unit simplex plotted in n-dimensional hyperspace, bisected by another (n-1)-

dimensional simplex whose vertices are defined in the same manner.   

We provide the algebraic solution to the three-dimensional case in Appendix 6.3, but 

the n-dimensional generalisation of this equation is far more difficult to deduce.  However, we 

can speculate on how the entries of Â and v affect the response of the population to disturbance.  

For a non-stage-structured demography, the vertices of the bisecting simplex would be equal to 

the vertices of the unit simplex. In this case, no demographic structures achieve either 

amplification or attenuation. For a stage-structured demography with varying rates of survival, 

growth, retrogression and fecundity, one or more simplex vertices are greater than 1, and one or 
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more simplex vertices are less than 1. This means that the unit simplex is bisected into regions 

of amplification and attenuation. Thus, stage-structuring is a necessary prerequisite for transient 

dynamics. The position of vertices of the bisecting simplex dictates the amplification-

attenuation boundary in the unit simplex.  Therefore, the relative column sums of the PPM and 

the relative reproductive value of each stage determine what proportions of demographic vectors 

achieve amplification immediately and in the long term respectively. It is evident from figure 

6.3 that asymmetry in the vertices of bisecting triangles (i.e. some vertices larger than 1 and 

some vertices smaller than 1) achieve boundaries giving relatively high probability of 

amplification for both reactivity and inertia, and we provide algebraic support for this assertion 

in Appendix 6.3. In the case of Carlina, this asymmetry is achieved through delayed 

reproduction and differential juvenile and adult survival. Conversely, early reproduction and/or 

reduced asymmetry in survival would result in a life history with decreased probabilities of 

amplification (as vertices >1 are moved down their axes and/or vertices <1 are moved up their 

axes). Generalising this geometric interpretation to n-dimensional space is more difficult, as the 

number of simplex vertices increases.  However, the core results that stage-structuring achieves 

transient dynamics and that asymmetry in the life cycle achieves asymmetric probability of 

amplification or attenuation will still apply. 

It is difficult to determine cause and effect without experimental evidence. A tendency 

towards amplification may be a desirable side-effect of stage-structured life histories, or it could 

be a target of selection. It is generally accepted that populations evolve to maximise their rate of 

numerical increase, and measures of population growth are commonly used to represent 

genotype ‘fitness’ (Hodgson & Hunt 2010).  Although simple conceptual models might suggest 

that early reproduction and semelparity should be favoured in life histories (Cole 1954), various 

different explanations for the evolution of delayed reproduction, iteroparity and structured life 

cycles have been explored. Early reproduction may be constrained by resource availability (Bell 

1980), and iteroparity may be favoured when there is differential juvenile and adult survival 

(Roff 2002; Charnov & Schaffer 1973). Fitness necessarily depends on the environment, and 

structured life cycles and delayed reproduction may have evolved as a bet-hedging strategy in 

stochastic environments (Wilbur & Rudolf 2006; Koons 2008). High demographic resilience 

may be a beneficial consequence of such evolutionary process that favour structured life cycles. 

Alternatively, a tendency towards amplification in response to disturbance could be selected for. 

The environment influences population structure through disturbance, and in the same way that 

fitness may depend on population sex ratio (Carrillo et al. 2012), fitness in a disturbed world 

may depend on population structure.  A life history that is able to achieve high rates of 

numerical replacement both in the long term and in the short term following disturbance should 

be fitter than a life history that achieves either one, but not the other. 

 

 



130 
 

THE EFFECT OF DISTURBANCE REGIME 

The optimal life history for promotion of amplification is obviously going to depend on the 

disturbance regime that the population experiences.  When modelling general demographic 

resilience of populations, we analysed overall population response to uniform random 

disturbance.  This null disturbance regime may admittedly be unlikely to occur in nature.  First, 

disturbance may be non-uniform: this gives peak(s) in the sampling distribution of demographic 

structures.  For example, populations may be more likely to be disturbed closer to their current 

demographic structures.  Second, disturbance may be non-random: this biases the parameter 

space that demographic structure is pushed into, changing the slope(s) of the sampling 

distribution.  For example, a hurricane may damage large trees but leave saplings unscathed, so 

that disturbance is relatively more likely to cause demographic structures with more saplings 

and less adults.  These two caveats present a significant conceptual impasse in our approach: 

disturbances may be non-uniform and/or non-random, but it is almost impossible to state what 

distributions of non-uniformity and non-randomness exist in nature.  On the one hand, our null 

approach may be a poor representation of real-world disturbance regimes.  On the other hand, 

by avoiding bias altogether, we avoid the pitfall of biasing distributions in the wrong manner.   

Timing of disturbances is also likely to be important, and the interaction between type 

of disturbance and timing of disturbance should conceptually dictate a population’s optimal 

response.  A population that experiences frequent, relatively uniform and relatively random (i.e. 

relatively unpredictable) disturbances would want to be resilient to a large range of disturbance 

types.  Conversely, a population that experiences infrequent, non-uniform and non-random (i.e. 

relatively predictable) disturbances might wish to be highly resilient to that particular type of 

disturbance whilst potentially sacrificing resilience to other disturbance types.  Various different 

optima could exist in between these two extremes.  Different disturbance regimes can be 

modelled by changing the sampling pattern within the unit simplex.  It is worth noting that the 

Dirichlet distribution provides the opportunity to model biased disturbance regimes: asymmetry 

in the distribution is easily achievable by varying the relative values and scale of αi shape 

parameters of the distribution.  However, the question still remains as to how non-uniformity 

and non-randomness should be modelled. 

Although it is difficult to say what disturbance regimes populations have experienced 

historically, we found that populations show a substantial tendency towards amplification in 

response to observed disturbances, albeit a weaker relationship than for resilience across all 

possible disturbances.  This represents a cross-sectional snapshot of natural disturbance regimes, 

and so it is difficult to discern whether recorded disturbances are frequent or infrequent, random 

or non-random, and uniform or non-uniform in their respective systems.  However, the 

observation still remains that populations tend, on the whole, to be resilient to them. 
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PATTERNS ACCORDING TO PHYLOGENY AND LIFE FORM 

If demographic resilience is a target of natural selection, then we may expect to find a 

relationship between demographic resilience and phylogeny if demographic resilience is 

phylogenetically constrained.  Equally, if disturbance regimes dictate optimum patterns in 

demographic resilience then we may expect to find a relationship between demographic 

resilience and life form if different life forms experience different disturbance regimes.   

We found that plants exhibit patterns of general demographic resilience according to 

both phylogeny and life form.  Plants show a U-shaped relationship between life history (as 

defined on a continuum of ecological succession) and probability of amplification across all 

possible population structures (Fig. 6.2a & 6.2b).  This echoes results from Stott et al. (2010a) 

[Chapter 5] that found a U-shaped relationship between life history and potential magnitude of 

both amplified and attenuated transient dynamics.  There are two key differences between this 

study and our earlier study: first of all, here we consider population response to specific 

disturbances, whereas in Stott et al. (2010a) [Chapter 5] we focussed on transient bounds, which 

represent the most extreme possible transient dynamics that a population can exhibit.  Second, 

in this study we assess the probability of amplification, whereas in Stott et al. (2010a) [Chapter 

5] we worked with measures of the magnitude of transient dynamics.  Combining both results, 

we find that monocarps and trees show more extreme transient bounds (i.e. a larger transient 

envelope), alongside a greater probability of amplification in response to disturbance.  On the 

other hand, perennials and shrubs show a decreased range of potential transient dynamics, 

alongside a relatively lower probability of amplification in response to disturbance.   

We previously linked patterns in transient bounds to patterns of recruitment competition 

mediated by life history trade-offs.  Monocarps and trees may experience relatively greater 

lottery recruitment competition, as opportunities for seedling establishment are relatively more 

ephemeral than for perennials and shrubs (Chesson & Warner 1981; Chesson 1991; Turnbull, 

Crawley & Rees 2000).  Thus, monocarps and trees benefit from large magnitude of 

amplification enabling fast population establishment.  The flipside of this is that trade-offs 

between survival and fecundity (Ehrlén & van Groenendael 1998) mean they are more exposed 

to greater magnitude of attenuation.  Conversely, perennials and shrubs experience relatively 

more stable environments, so are able to weigh survival against fecundity to achieve optimal 

fitness without the need for such extreme transient dynamics.  In this context, the results we find 

in this study have two possible interpretations.  First, greater probability of amplification for 

monocarps and trees will aid potential population growth under increased lottery competition: 

whatever the population structure, populations are able to take advantage of ephemeral 

resources by having a higher probability of amplifying, and by amplifying to a greater 

magnitude.  Second, increased probability of amplification in monocarps and trees will 

counteract the potential detrimental impacts of attenuation: if life cycle trade-offs necessarily 

mean that the population also has the potential to attenuate to a greater magnitude, then having a 
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life cycle with lower probability of attenuation is one way to deal with this.  Conversely, 

perennials and shrubs can endure a relatively higher probability of attenuation because their 

magnitude of attenuation is relatively smaller. Alternatively, it may simply be that life histories 

that favour increased potential range in transient dynamics also necessarily favour increased 

probability of amplification. 

We previously found no relationship between range of transient dynamics and 

phylogeny, but our analyses here show that a phylogeny-only model best explains variation in 

probability of amplification.  This may be a consequence of different analytical techniques: here 

we incorporate phylogeny with branch lengths into an MCMCglmm model, which may be more 

robust to some of the pitfalls of comparative analysis (Freckleton 2009) than our previous 

method of using comparative contrasts (Freckleton 2000) calculated from a phylogeny without 

branch lengths. Alternatively, we may have uncovered a true result relating to the conservation 

of life histories within plant clades. Transient bounds on amplification are dictated by the largest 

matrix column sum (reactivity) or the largest entry in the reproductive value vector (inertia).  

However, probability of amplification is affected by the relative sizes of all column sums 

(reactivity) or all stage-specific reproductive values (inertia).  Hence, whilst both metrics will be 

affected by variation in magnitude of vital rates, probability of amplification is additionally 

affected by aspects of life cycle structure such as delayed reproduction and ability to skip stages 

or regress through the life cycle.  It may be that life cycle structure is conserved within clades, 

whilst the sizes of vital rates within that structure are less constrained. There is scant evidence 

for this, although it has been found that sizes of vital rates are relatively independent of 

phylogeny, whilst the absolute importance of those vital rates to long-term population growth is 

more constrained (Burns et al. 2010). How these patterns affect transient dynamics is unclear, as 

broad comparative analyses of response of transient dynamics to perturbation are yet to be 

conducted. On the whole however, conservation of life history within plant clades is not 

particularly well-understood, and phylogenetic signal in studies of life history is often lacking 

(Burns et al. 2010; Buckley et al. 2011).  

Whilst we found patterns according to general demographic resilience, we found no 

support for a relationship between either phylogeny or life history and specific demographic 

resilience.  Conceptually, this could provide support for the idea that different life forms have 

found different optimum solutions according to the different disturbance regimes they 

experience.  Therefore, despite the fact that different life forms show different patterns of 

general demographic resilience, they show the same patterns of response to real-world 

disturbances.  However, this hinges on the assumption that recorded disturbances in our 

database are a representative sample of the disturbances experienced by plants in nature, and 

there is no simple way to tell whether this is the case.  
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DENSITY DEPENDENCE AND STOCHASTICITY 

Our use of linear, time-invariant PPM models means that we do not account for either density-

dependent effects (Benton & Grant 1996) or environmental stochasticity (Tuljapurkar, Horvitz 

& Pascarella 2003).  Consensus techniques for transient analyses are yet to be extended to these 

modelling systems, so for the moment at least we are limited to studying transients using basic 

PPM models.  However we note that in any case, most systems lack adequate information on 

the ways in which density dependence and environmental stochasticity affect populations.  

Many studies may collect demographic information under varying population densities, and/or 

varying environmental conditions, yet it is another thing altogether to understand the 

mechanisms of density-dependent action or possible time series of environmental perturbation, 

which are crucial to modelling such effects. 

A common criticism of comparative analyses that use projection matrices or life tables 

is that they do not account for density dependence of vital rates (Caughley 1966; Gaillard et al. 

1994).  However, the assumption of density-independence is often the best option in the absence 

of information on the form and strength of density dependence in each species.  Despite this, we 

can speculate on how transient dynamics may behave in density-dependent systems.  Density of 

all or part of the population may affect overall population growth.  The relationship between 

density and growth may be positive, mediated through Allee effects (Stephens et al. 1999).  In 

this case, if disturbance tends to decrease population density then amplification may be the only 

thing that rescues the population from being pushed over an Allee threshold into a phase of 

decline.  Alternatively, the relationship between density and growth may be negative: for 

example, intraspecific competition may slow growth of a plant population at high densities 

(Lewontin & Levins 1989).  Below carrying capacity, the benefits of amplification in response 

to disturbance will still exist: populations that tend to amplify will reach carrying capacity 

soonest.  However, this benefit may change as the population increases and approaches its 

attractor: close to carrying capacity, populations that amplify may risk overcompensating 

density dependence (May 1975; Grenfell et al. 1992). 

Environments are rarely constant, and the importance of modelling environmental 

heterogeneity in natural systems is widely recognised (Fieberg & Ellner 2001).  Stochastic 

models usually incorporate such environmental stochasticity by modelling variation in vital 

rates (perturbation) of the population over time.  It is well-established that long-term mean 

stochastic growth rate is lower than asymptotic deterministic growth of a mean population, 

which is due to variation in per-timestep growth (Tuljapurkar 1990; Lande et al. 2003).  

Transient dynamics are an integral part of this stochasticity: per-timestep growth is 

deterministic, combining asymptotic growth rate (which is independent of population structure) 

and transient dynamics (which are dependent on population structure).  A propensity for 

amplification may increase mean per-timestep growth and/or decrease variance in per-timestep 

growth, in both cases increasing long-term mean stochastic growth rate.  Demographic 
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resilience will certainly be important in stochastic systems that experience relatively constant 

environments that are punctuated by large disturbance events.  For example, coral reefs 

experience relatively constant environmental conditions, but populations endure heavy 

disturbance in hurricane years (Mumby, Vitolo & Stephenson 2011).  An ability to rebound 

from such disturbance events will be key to population persistence, by avoiding lethal 

consequences of reduced population density such as susceptibility to interspecific competition, 

demographic stochasticity and Allee effects. 

 

 

CONCLUSIONS 

We have shown that plant populations exhibit a remarkable propensity towards amplification in 

response to demographic disturbance, patterns of which vary according to life form and 

phylogeny.  We strongly believe that this demographic resilience will be a target for natural 

selection: it ameliorates detrimental effects of disturbance, facilitates successful exploitation of 

ephemeral opportunities for colonisation, avoids harmful Allee effects associated with reduced 

population density and may contribute positively to long-term stochastic growth.  We have 

analytically linked demographic resilience to the stage-structuring of life cycles, including 

delayed reproduction and asymmetry in juvenile and adult survival.  However, the intricate 

mechanisms underpinning the relationship between stage-structured life cycles and a tendency 

towards amplification are unclear.  Additionally, the causal relationship between the two is 

uncertain: demographic resilience may be a desirable consequence of other selection pressures 

that favour stage-structuring, or it may be a selection target that has helped to mould stage-

structuring in organismal life cycles.   

Transient theory is a burgeoning field in ecology.  Over time it has gained significant 

traction in the disciplines of population management and comparative demography, and will 

doubtless continue to contribute to these fields in the future.  But perhaps transient theory also 

has a significant contribution to make in the study of life history evolution.  Evolutionary 

studies often use demographic measures as fitness surrogates.  Just as ecologists are 

increasingly realising the benefits of thinking in the short-term, it may pay evolutionary 

biologists to do the same.  Effects of population structure on fitness and the different selection 

pressures acting on short- and long-term demographics could be important to understanding 

evolutionary processes.  Consequently, transient dynamics may provide a new perspective for 

understanding the complex arrays of life history found in nature. 
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TABLES 

 

TABLE 6.1: Results of MCMCglmm analyses 

 

Model Type Response Fixed Random DIC 

General 

resilience 

Bivariate p(P1>1) and p(P∞>1) Life form Phylogeny 1391.34 

  None Phylogeny 840.15 

   Life form None 1430.27 

   None None 1453.84 

      

Specific 

resilience 

Univariate Binary-transformed P1 Life form Phylogeny 89.04 

  None Phylogeny 88.50 

   Life form None 88.05 

   None None 87.45 

      

Specific 

resilience 

Univariate Binary-transformed P∞ Life form Phylogeny 96.49 

  None Phylogeny 89.23 

   Life form None 88.41 

   None None 87.44 
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FIGURES 

 

 

FIG. 6.1: Distributions of measures of demographic resilience. (a) the probability of immediate 

amplification in response to every possible disturbance (p(P1>1)), (b) the probability of 

immediate amplification in response to every possible disturbance (p(P∞>1)), (c) long-

transformed immediate transient response (reactivity) of species to recorded disturbances 

(log(P1)), (d) log-transformed long-term transient response (inertia) of species to recorded 

disturbances (log(P∞)). In each panel, red lines indicate the mean and 95% confidence intervals 

calculated from bootstrap t-tests. Significance is indicated by the fact that 95% confidence 

intervals do not overlap with 0.5 in panels a and b, and 0 in panels c and d. 
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FIG. 6.2: Relationship between life form and demographic resilience. (a) probability of 

immediate amplification (reactivity) across all possible demographic structures; (b) probability 

of long-term amplification (inertia) across all possible demographic structures; (c) probability of 

immediate amplification (reactivity) in response to recorded disturbance; (d) probability of 

long-term amplification (inertia) in response to recorded disturbance. Inclusion of life form is 

supported in a and b, but not in c and d. All coefficients are taken from models that include 

phylogeny. In all cases, probabilities are plotted on a logit scale but the probability scale is 

shown on the right-hand axis for clarity. 
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FIGURE 6.3: Geometric representation of general demographic resilience for a 3-stage model 

for Carlina vulgaris. Regions of amplification are shaded yellow, and regions of attenuation are 

shaded blue. 
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_________________ 

DISCUSSION 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

Thinking in the short term can help demographers understand the ecological and evolutionary 

processes underpinning population dynamics. Using a framework for studying transient 

dynamics (Stott, Townley & Hodgson 2011 [Chapter 1]), we have presented methods (Stott, 

Hodgson & Townley 2012b [Chapter 2]) and software tools (Stott, Hodgson & Townley 2012a 

[Chapter 4]) that enable demographers to incorporate transient analyses into their work. Using 

case studies, we have shown that such transient analyses are important for informing population 

management for conservation and pest control. Using comparative analyses, we have shown 

that different life forms show different ecological patterns of transient dynamics, and that 

certain aspects of transient demography may be heritable (Stott et al. 2010a [Chapter 5]; 

Chapter 6). Finally, we have linked transient demography to stage-structuring in life cycles and 

ventured the possibility that transient dynamics may act as a target for selection (Chapter 6). 

 

Modern ecological paradigms assume a dynamic environment, where systems are constantly 

subject to factors that force changes in their dynamics (Cuddington 2001). Ecological studies 

are often conducted over relatively short timescales where such changes in dynamics will be 

important. Yet even now, analyses of ecological models invariably focus on long-term 

dynamics (Hastings 2001, 2004). Although transient theory is not a new idea (Kermack & 

McKendrick 1927), until recently the quantitative analysis of transient dynamics remained 

somewhat of a black box. New developments in the field of transient demographic analysis, 

including those presented in this thesis, should help to broaden the use of transient analyses in 

population management, comparative ecology, and evolution.  

The need for more widespread application of transient analyses is not merely 

conceptual: as we have shown, transient dynamics are important to population management 

(Stott, Townley & Hodgson 2011 [Chapter 1]; Stott, Hodgson & Townley 2012a [Chapter 3]; 

Stott, Hodgson & Townley 2012b [Chapter 2]). Ignoring transients in management of 

populations can be detrimental in many ways: first, management may not identify and deal with 

patterns of short-term growth or decline that are antagonistic to management goals. Second, 

management may have detrimental effects on transients, creating short-term dynamics that are 

detrimental to management goals. Third, management may overlook the opportunity to exploit 

transient dynamics to achieve management goals in a more ecologically and economically 

efficient manner. Few applied ecological studies have considered transient dynamics to date 

(although see McMahon & Metcalf 2008). The methods and software tools presented here 

should allow that to change, giving population managers and conservationists the opportunity to 
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conduct analyses that are more predictive of future population dynamics. In many cases, this 

could result in management schemes that are more ecologically and economically efficient than 

would otherwise be possible.  

We have also shown the methods presented in this thesis to be useful in comparative 

analyses of transient dynamics (Stott et al. 2010a [Chapter 5]; Chapter 6). The prevalence and 

importance of transients in nature is poorly understood: again, very few studies have explored 

ecological and evolutionary patterns of transient dynamics (although see Koons et al. 2005; 

Maron, Horvitz & Williams 2010). There is ample evidence, particularly in the plant ecology 

literature, which show that observed demographic structures differ from predicted stable 

demographic structures (Bierzychudek 1999; Doak & Morris 1999; Ramula & Lehtilä 2005; 

Williams et al. 2010). However, there is little consensus on whether such deviations tend to be 

large or small, and whether they have positive or negative consequences for population 

dynamics. We have shown that observed demographic structures found in natural populations 

tend to result in amplification, and that this phenomenon extends to the entire range of possible 

demographic structures a population may take (Chapter 6). This represents early evidence that 

natural structuring of populations has important consequences for their dynamics. We have 

shown that these patterns of response to disturbance show links to a plant’s life history and 

ancestry (Chapter 6) and that populations show heterogeneity in the ways in which they can 

respond to disturbance (Stott et al. 2010a [Chapter 5]). This represents early evidence that the 

dynamical consequences of natural population structuring may induce selection pressures on 

transients. 

 

These tantalising early results open the door for substantive research into the ecological and 

evolutionary importance of transient dynamics, and there are many questions yet to be asked. 

First of all, we need a greater understanding of transients and what influences them. Our 

understanding of how long-term population dynamics are shaped is comparatively good, as a 

result of the numerous studies linking long-term growth to life cycles through perturbation 

analysis. We know that sensitivity of long-term growth to different vital rates depends on an 

organism’s life history. For example, long-term growth is often more sensitive to changes in 

survival than fecundity (Carslake, Townley & Hodgson 2009b). In plants, long-term growth in 

tree populations is relatively more sensitive to individual survival, whilst long-term growth in 

annual plant populations is relatively more sensitive to fecundity (Silvertown et al. 1993; 

Franco & Silvertown 2004). In mammals, age of first reproduction is more important to long-

term growth of animal populations than fecundity per se (Oli & Dobson 2003).  Having 

identified that patterns of transient dynamics exist amongst different life forms, the logical next 

step is to identify what most influences those dynamics. Perturbation analyses are the way to 

answer this. The best method is debateable: sensitivity analyses (Caswell 2007; Stott, Hodgson 

& Townley 2012b [Chapter 5]) are amenable to statistical study, but pronounced nonlinearity in 
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perturbation curves of transients may mean that transfer functions (Stott, Hodgson & Townley 

2012b [Chapter 2]) are more accurate, if more unwieldy.  

 We have linked high demographic resilience to the stage-structuring of life cycles 

(Chapter 6). An important next step is to explore whether there is enough selection pressure on 

demographic resilience to favour stage-structured life cycles. This will help answer the question 

as to whether high demographic resilience is a desirable consequence of stage-structured life 

histories or whether it may have helped to drive the evolution of stage-structuring. To answer 

such questions using experiments would require a highly tailored study system: an organism 

that exhibits a stage-structured life cycle, is amenable to tailored population disturbances, and 

evolves fast enough to detect changes in the life cycle over the course of a single experiment. In 

the first instance, in silico modelling experiments of the same nature may provide a theoretical 

support for a selection pressure on transient dynamics. A third option may be to conduct 

invasion experiments that assess whether populations with higher probability and magnitude of 

transient amplification have competitive advantage. However, this evidence wouldn’t be so 

concrete in its support for transient dynamics as a target for selection, and it would be very hard 

to delineate effects of transient demography from confounding competitive effects. Perturbation 

analyses may also help to understand evolutionary patterns of transient dynamics. They could 

be effective in identifying the main areas of the life cycle that may be targeted by selection: the 

vital rates that transient dynamics are most sensitive to. 

 

To fully understand how transient dynamics are shaped, our knowledge of transients will have 

to move beyond density-independent, non-stochastic models. The advances that have been seen 

in this modelling framework are substantial, and important, and such models may remain the 

easiest modelling systems with which to study transients. However, transient analyses will need 

to be migrated to density-dependent and stochastic modelling systems if we are to gain a full 

appreciation of how transient dynamics can further our understanding of demography. At 

present, it is unclear how transient dynamics will fit into these systems. In density-dependent 

models, transient dynamics will still exist in populations that have densities below carrying 

capacity. However, we might expect that density-dependent effects will dampen transient 

dynamics as populations approach carrying capacity. Therefore, whilst it may be possible to 

study near-term transient dynamics, density-dependent systems may not benefit from the 

existence of an analogue to population inertia. 

 The study of transient dynamics in stochastic systems raises even more issues. At one 

level, deterministic transient dynamics are an integral part of stochastic dynamics, as they are a 

result of the perturbations and disturbances that characterise stochastic systems. However, there 

may yet be merit in studying stochastic-transient dynamics of systems that experience 

occasional, significant disturbance events. Disturbances of large enough magnitude may still 

result in amplification or attenuation that moves population density outside what may be 
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reasonably expected of ‘normal’ stochastic effects. In this respect, stochastic systems may 

exhibit their own transient dynamics at the stochastic level where, for short time periods 

following disturbance, population growth is significantly larger or smaller than long-term 

stochastic growth. In such cases, populations could still see stochastic transient amplification 

and attenuation both immediately and in the long term. 

Another future requirement for a fuller understanding of transients is the migration of 

transient dynamics to other classes of population model. Integral projection models (IPMs) are 

gaining popularity as alternatives to PPMs in demographic research (Ellner & Rees 2006, 2007). 

As these are essentially infinite-dimensional PPM models, the migration of transient analyses to 

IPMs shouldn’t present too much of a conceptual problem. Other popular modelling 

frameworks include individual-based models (van Winkle, Rose & Chambers 1993), difference 

equation models (May 1975) and metapopulation models (Hanski 1998). Each of these model 

classes may stand to gain the same kinds of insight that transient dynamics has afforded PPM 

modelling. The formulation of meaningful indices of transient dynamics for these systems is an 

important methodological challenge in population biology.  

 

Finally, as mentioned throughout this thesis, there is merit in considering the application of 

transient theory to other areas of biology. If transient dynamics have proven to be important in 

stage-structured populations, then theoretically they may be important in other stage-structured 

biological systems. Biological systems at all levels of organisation may be considered as ‘stage-

structured’, and often very different systems are modelled in very similar ways. For example, at 

the level of the gene, matrix models are used to represent genetic algorithms (Nix & Vose 

1992). At the level of the cell, matrix models are used to represent stoichiometric metabolic 

networks (Papin et al. 2002; Reed et al. 2006). At the level of the community they are used to 

model species distributions (Cherrill et al. 1995). At the level of the ecosystem, they are used to 

represent energy flow (McGinnis et al. 1969). It may prove a simple task to apply the sorts of 

transient analyses developed in matrix population models to these systems. Many other systems 

may be considered to be stage-structured, even if they are not modelled using matrices: gene 

expression networks, hormone regulation, models of disease progression, epidemiological 

models, food webs, speciation models and nutrient cycles are just a few examples. However, 

once transient analyses are formulated for various model classes (network models, individual-

based models, differential equation models, and so on), the application of those analyses 

between different biological systems could be a relatively easy process. 

 

Transient theory has come a long way in a short time in the field of population ecology. There 

are a number of challenges that lie ahead, in both methodological development and in exploring 

the importance of transients in the ecology and evolution of populations. In any case, transients 

should have a lot more to offer yet in helping to explain the natural variation found in 
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population dynamics. Results presented in this thesis suggest that transients may even help 

explain some of the variety found in the life histories of different species. Indeed, if transient 

analyses are extended beyond demography to other areas of biological research, they may yet 

help in explaining all sorts of variation found at other levels of biological organisation, across 

new scales of time and space. 
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__________________ 

APPENDICES 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

 

APPENDIX 1.1 

Detailed information on methodology and results of correlation analyses between transient 

indices and simulated time to convergence (Chapter 1).  

 

We calculated time to convergence as the time taken for the population to settle to within 1% of 

predicted asymptotic growth. We did this by projecting population size using the population 

projection matrix (PPM) and randomly generated case-specific initial demographic distribution, 

and calculating time-dependent growth (λt) at each time interval. Once λt remained within a 

window of (0.99*λmax) < λt < (1.01*λmax) for 10*s intervals (where s is the dimension of the 

PPM) then convergence was deemed to have been reached. So, for example, a 3×3 matrix with 

λmax=1.05 would be considered to be converged within 1% of λmax when it exhibits 0.1395 < λt < 

1.0605 for 30 consecutive time intervals. The value of 10*s was used to prevent miscalculation 

of convergence: some matrices (especially large Leslie-type matrices with similar mortality and 

fecundity values for each age class) may exhibit ‘stable’ growth for many consecutive time 

intervals, when in fact they have not yet converged. Ensuring that our window for stable growth 

is much larger than s prevents the algorithm from prematurely thinking that such models may 

have converged. This is additionally preferable than using the same, very large window for 

every matrix, as it saves on computation time. The same code for calculating convergence time 

is included in the function convergence.time  of the R package popdemo. 

The first figure in this appendix shows relationships between indices of transient 

population density and time to convergence. The left hand side of the figure shows distributions 

of Spearman’s correlation coefficient between case-specific transient indices (Table 1.2 in 

Chapter 1) and time to convergence. These were computed by randomly generating an initial 

demographic distribution for each PPM, computing case-specific transient indices and time to 

convergence, and correlating this data. This was then repeated 1000 times to find distributions 

of correlation coefficients for the indices. The right hand side of the figure shows correlations 

between the transient bounds on population density (Table 1.2 in Chapter 1) and the median 

time to convergence for each PPM (over 1000 iterations). Neither transient bounds nor case-

specific indices show a strong relationship with time to convergence, indicating that larger 

transient departures from asymptotic growth are not necessarily linked to a longer time to 

convergence. 
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The second figure in this appendix shows results for correlations between the damping 

ratio and median time to convergence for each PPM. Neither the damping ratio nor estimates of 

time to convergence using the damping ratio show a strong relationship with realised time to 

convergence, indicating that the damping ratio is not necessarily a good predictor of realised 

time to convergence.  

 

 

 

FIG. A1.1.1: Relationships between indices of transient population density and time to 

convergence. 
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FIG. A1.1.2: Correlations between the damping ratio and median time to convergence.
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APPENDIX 1.2 

Table of published indices of transient dynamics (Chapter 1). 

 

Some formulae differ slightly to those given in the original articles: we present using a common notation, have simplified some formulae and present some formulae 

using their analytical solutions. Matrices are presented capitalised, and in bold. Vectors are in small type, and in bold. Numbers and scalars are in normal font. ||m||1 

is the one-norm of m. Where m is a nonnegative vector, this is equal to the sum of all the entries in the vector. Where m is a nonnegative matrix, this is equal to the 

largest column sum of the matrix. A represents the population projection matrix; λmax represents the dominant eigenvalue of A; w represents the dominant right 

eigenvector of A (the stable demographic distribution vector); v represents the dominant left eigenvector of A (the reproductive value vector); represents the current 

demographic distribution vector of the population. An addition of a hat symbol represents scaling as specified of a vector or matrix. 

 

TRANSIENT INDEX REFERENCE FORMULA NOTES INTERPRETATION 

DAMPING RATIO Caswell 

(2001) 
Damping	ratio � |λ���||λC| 																																718 Transient bound; measure of convergence 

rate.  λ2 is the first subdominant eigenvalue 

of A, including both real and imaginary 

components where applicable. 

 

The intrinsic resilience of the population 

to disturbance, excluding the influence 

of the current demographic distribution. 

 

KEYFITZ’S ∆ Keyfitz (1968) Keyfitz′s	∆	� 1	2 ‖�	A =/	‖�																											728 Distance measure; case-specific.  �	
 is the 

current demographic distribution, scaled so 

that ‖�	
‖� � 1 and /	 is the stable 

demographic distribution, where  /	 �
//‖/‖#. 

The proportional difference between the 

current and stable demographic 

distributions, excluding the influence 

that the PPM has on the path of 

population projection. 
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PROJECTION 

DISTANCE 

 α  

Haridas & 

Tuljapurkar 

(2007) 

α � 0�1�
 = 1																																																		738 Distance measure; case-specific.  0� is the 

reproductive value vector scaled so that 

0�1/	 � 1 with /	 as in (2). 

The difference in the reproductive value 

of the current and stable demographic 

distributions. 

 

COHEN’S 

CUMULATIVE 

DISTANCE 

D� 

Cohen (1979) D� � ��< 3 /	0�1 = �
λ����

:� =/	0�1� �
					748 Distance measure; case-specific.  Analytical 

solution is presented.  I  is the identity matrix 

of same dimension as A; 0� and /	 are as in 

(3). 

The distance from current to stable 

demographic distribution, including the 

influence that the PPM has on the path 

of population projection. 

 

POPULATION 

INERTIA AND 

MOMENTUM 

Koons 

(2007a); 

Keyfitz (1971) 

Inertia � 0�1�
‖�
‖� 																																															758 
Case-specific measure.  Simplified formula 

is presented.  0� is scaled in the same way as 

for (3) and (4).  Momentum – following the 

original Keyfitz (1971) definition – is a 

special case of inertia for a population where 

λmax = 1, following perturbation to vital rates. 

 

The asymptotic density of the 

population, relative to density that 

would occur given an initial population 

with the same overall density but stable 

demographic distribution.   

REACTIVITY Townley & 

Hodgson 

(2008); 

Neubert & 

Caswell 

(1997) 

 

Reactivity � �����																																											768 Transient bound.  �� is the PPM A scaled by 

λmax. 

The maximum overall population 

density that may be achieved in the first 

time interval of projection, relative to 

asymptotic growth and initial population 

density. 
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FIRST-TIMESTEP 

ATTENUATION 

Townley & 

Hodgson 

(2008) 

 

First	timestep	attenuation � minCS����		778 Transient bound.  �� is as in (6).  minCS 

denotes the minimum column sum of the 

matrix. 

 

The minimum overall population 

density that may be achieved in the first 

time interval of projection, relative to 

asymptotic growth and initial population 

density. 

 

MAXIMUM 

AMPLIFICATION 

ρ��� 

Townley & 

Hodgson 

(2008); 

Neubert & 

Caswell 

(1997) 

 

ρ��� � max�� !���"�#$																																						788 Transient bound.  �� is as in (6).  May be 

equal to reactivity as defined in (6), and/or 

ρ
∞
 as defined in (10). 

 

The maximum overall population 

density that may be achieved, relative to 

asymptotic growth and initial population 

density. 

MAXIMUM 

ATTENUATION 

ρ�*+ 

Townley & 

Hodgson 

(2008) 

 

ρ�*+ � min�� !minCS���"�$																													798 Transient bound.  �� and minCS are as in (7).  

May be equal to first-timestep attenuation as 

defined in (7) and/or ρ
∞
 as defined in (11). 

 

The minimum overall population 

density that may be achieved, relative to 

asymptotic growth and initial population 

density. 

 

AMPLIFIED 

ASYMPTOTIC 

MULTIPLICATION 

ρ
∞
 

Townley & 

Hodgson 

(2008) 

 

ρ
∞
� v���‖/‖�01/ 																																												7108 Transient bound.  �� is as in (6).  v��� is the 

largest entry of the reproductive value vector 

v.  Equal to population inertia as defined in 

(5) for the stage-biased demographic vector 

that achieves ρ
∞
. 

 

The maximum asymptotic population 

density that may be achieved, relative to 

asymptotic growth and initial population 

density. 
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ATTENUATED 

ASYMPTOTIC 

MULTIPLICATION 

ρ
∞
 

Townley & 

Hodgson 

(2008) 

 

ρ
∞
� v�*+‖/‖�01/ 																																													7118 Transient bound.  �� is as in (6).  v�*+ is the 

smallest entry of the reproductive value 

vector v.  Equal to population inertia as 

defined in (5) for the stage-biased 

demographic vector that achieves ρ
∞
. 

 

The minimum asymptotic population 

density that may be achieved, relative to 

asymptotic growth and initial population 

density. 

 

UPPER KREISS 

BOUND 

Kλ∗ 

Townley & 

Hodgson 

(2008) 

 

Kλ∗ � maxv�� 7r = 18��r< = ���:��� 														7128 Transient bound.  �� is as in (6).  I is the 

identity matrix with the same dimension as 

A.  Equal to ρ
∞
 as defined in (10) where 

maximum occurs at r�1. 

 

The analytical lower bound on 

maximum amplification as defined in 

(8). 

LOWER KREISS 

BOUND 

Kλ∗ 
Townley & 

Hodgson 

(2008) 

Kλ∗ � minv�� 7r = 18minCS�r< = ���:�										7138 Transient bound.  �� and minCS are as in (7).  

I is as in (12). Equal to ρ
∞
 as defined in (11) 

where maximum occurs at r�1. 

 

The analytical upper bound on 

maximum attenuation as defined in (9). 
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APPENDIX 2.1 

Algebraic proofs of formulae (Chapter 2). 

 

 

DEFINITION OF TERMS 

Throughout, we use a common notation where matrices are presented upper-case bold (e.g. A), 

vectors are presented lower-case bold (e.g. a), numbers and scalars are presented in normal font 

(e.g. a) and functions are rendered in italics (e.g. a(λ)).   

A perturbed matrix can be represented as: 

 

�� � � 3 δ451																																																																		718 
 

where A is the stage-structured PPM, δ is the perturbation magnitude, and d and e are column 

vectors of the same dimension as A that determine the perturbation structure.  These matrices 

have some emergent properties relating to asymptotic population dynamics: with respect to A, 

the dominant eigenvalue λmax represents the long-term (asymptotic) growth of the population, 

the dominant right eigenvector w represents the ratio of stages in the stable demographic 

distribution and the dominant left eigenvector v represents the reproductive value of each stage.  

The analogues of these for Aδ are termed λδ, wδ and vδ respectively. 

We use δ to represent a continuous set of perturbation magnitudes: 

 

δ ∈ �	;	δ�*+ � 	δ � δ��� 
 

and λ represents the corresponding set of λδ: 

 

λ ∈ �	; 	0 � 	λ � ∞	. 
 

 

TRANSFER FUNCTION OF ASYMPTOTIC GROWTH 

If λ is an eigenvalue of Aδ then the following is true: 

 

1 � δ517λ< = �8:�4 

 

therefore, 

 

δ:� � 517λ< = �8:�4	.																																																										728 
 

This makes it possible to discern the exact relationship between δ and λ. 
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TRANSFER FUNCTION OF POPULATION INERTIA 

Population inertia is calculated using: 

 

P, � 01�	
‖/‖�01/ 	.																																																																738 
 

Note that the upper and lower bounds on population inertia (ρ, and ρ, respectively) are 

calculated by substituting �	
 (the population’s demographic distribution, scaled to sum to 1) 

with vmax or vmin, (the standard basis vectors that maximise and minimise population inertia 

respectively): this is true for all subsequent formulae. 

 

(3) is equivalent to: 

 

P, � 01�	
B1/01/ 																																																																	748 
 

where c is a column vector of ones with the same dimension as A.  Substituting v and w with vδ 

and wδ respectively will give population inertia of Aδ.  We know that (by definition), 

 

λ�0�1 � 0�1��			and			λ�/� � ��/�	.																																															758 
 

Substituting (1) into (5) gives: 

 

λ�0�1 � 0�1�� 3 δ451�				and			λ�/� � �� 3 δ451�/�	. 
 

Rearranging, 

 

																														λ�0�1 = 0�1� � δ0�1451				and			λ�/� = �/� � 4δ51/� 

⇔																											 0�17λ�< = �8 � δ0�1451			and			7λ�< = �8/� � 4δ51/� 

⇔																							 0�1 � δ0�14517λ�< = �8:�			and			/� � 7λ�< = �8:�4δ51/�	. 
 

Given that δvδd and δeTwδ are both non-zero scalars, they can be ignored: 

 

0�1 � 517λ�< = �8:�			and			/� � 7λ�< = �8:�4	.																																			768 
 

Substituting from (6) into (4) and using λ in place of λδ gives: 
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P, � 517λ< = �8:��	
B17λ< = �8:�4517λ< = �8:C4 	.																																												778 
 

Hence it is possible to discern the exact relationship between population inertia (whether P∞, ρ, 

or ρ,) and λ, and using both (7) and (2) together, it is possible to discern the exact relationship 

between population inertia and δ. 

 

 

SENSITIVITY OF POPULATION INERTIA 

 

Using the transfer function method, it is fairly simple to obtain a value for the sensitivity of 

population inertia through differentiation of the transfer functions themselves.  (7) may be 

represented as: 

P, �	E�7λ8EC7λ8EF7λ8 	.																																																																788 
In (8), 

 

E�7λ8 � 517λ< = �8:��	
							,							EC7λ8 � B17λ< = �8:�4 

																		and							EF7λ8 � 517λ< = �8:C4	.																																																									768	 
 

Differentiating (9) with respect to λ gives: 

 

E�J7λ8 � =517λ< = �8:C�	
							,								ECJ7λ8 � =B17λ< = �8:C4 

																		and							EFJ7λ8 � =2517λ< = �8:F4	.																																																				778 
 

Using (9), (10) and the product and quotient rules allows differentiation of (8): 

 

LP,Lλ � limN→NPQR S
E�J7λ8EC7λ8EF7λ8 3 E�7λ8ECJ7λ8EF7λ8 = E�7λ8EC7λ8EFJ7λ8EF7λ8C T	.														788 

 

Differentiating (2) with respect to λ and rearranging: 

 

0 � 517λ< = �8:�4 = δ517λ< = �8:C4∂λ∂δ																																								7128 
rearranging this, 

δ517λ< = �8:C4∂λ∂δ � 517λ< = �8:�4 

so that 
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∂λ∂δ � 517λ< = �8:�4δ517λ< = �8:C4	. 
Substituting from (2) gives 

∂λ∂δ � 517λ< = �8:�4517λ< = �8:C4517λ< = �8:�4 

and therefore 

∂λ∂δ � limN→NPQR W
�517λ< = �8:�4�C517λ< = �8:C4 X	.																																														7138 

 

In both (11) and (13), the limit as λ approaches λmax must be used to avoid singularity of 

matrices when λ = λmax.  Finally, the chain rule is used to find the sensitivity of population 

inertia to δ: 

   

LP,LZ � LP,L[ LλLZ 	.																																																															7148 
 

These formulae are available as part of the R package popdemo.  The transfer function of 

inertia can be calculated using the function inertia.tfa , and the sensitivity of inertia can be 

calculated using the function inertia.tfsens .  The transfer function of asymptotic growth 

can be calculated using the function tfa , and the sensitivity of asymptotic growth can be 

calculated using tfsens . 
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APPENDIX 2.2 

Matrix multi-plots of transfer functions (Chapter 2) 

 

Here we present a series of plots that illustrate the transfer functions of inertia across the cactus 

(Neobuxbaumia macrocephala) and koala (Phascolarctos cinereus) life cycles.  An individual 

transfer function is presented for each life cycle transition.  Plots are laid out in accordance with 

the layout of the matrices, so that the position of each plot within the multi-plot indicates which 

life cycle transition it pertains to.  Perturbation ranges are chosen such that fecundity parameters 

are bounded at a minimum of 0, and a maximum of 5 times the parameter value.  Survival/stasis 

values are bounded at a minimum of 0 and a maximum of either 5 times the parameter value or 

1, whichever is smaller.  The x axis of each plot is the perturbation value, and the y axis of each 

plot is the corresponding value of population inertia. 

 

 

 

FIG. A2.2.1: Plots for the transfer function of the upper bound on inertia of the cactus model. 

In
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tia
 

Perturbation magnitude 
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FIG. A2.2.2: Plots for the transfer function of the case-specific inertia of the cactus model for 

the current population structure.  
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FIG. A2.2.3: Plots for the transfer function of the lower bound on inertia of the cactus model. 

  

In
er

tia
 

Perturbation magnitude 



160 
 

 

 

 

FIG. A2.2.4: Plots for the transfer function of the upper bound on inertia of the koala model. 
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FIG. A2.2.5: Plots for the transfer function of the case-specific inertia of the koala model for the 

current population structure.  
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FIG. A2.2.6: Plots for the transfer function of the lower bound on inertia of the koala model. 
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APPENDIX 3.1 

Precise mathematical statement and proof of the ergodicity test (Chapter 3) 

 

A population projection model is ergodic if 

 

lim�→, �1t log	7N�8�	, 
 

i.e. the asymptotic rate of growth of population density is independent of initial population 

structure. Populations described by irreducible PPMs are ergodic. In many published PPMs, 

missing transition rates, typically missing growth probabilities caused by lack of observed 

transitions, lead to reducible population projection matrices. So when is a reducible PPM not 

ergodic? This non-ergodicity can be detected via long simulation runs by seeking out 

differences in the asymptotic growth rate of population densities. In fact, we can, as described 

below, test for ergodicity/non-ergodicity by inspection of the dominant left eigenvector of 

the PPM. 

A reducible PPM A will, after permutations of coordinates, take the form 

 

� �
��
��
A� U�C ⋯ U�¡0 ⋱ ⋱ ⋮⋮ ⋱ ⋱ U¡:�¡0 ⋯ 0 A¡ ¤¥

¥¦	. 
 

Here each Ai is irreducible and typically each column block-matrix 

 

U* � | U�*⋮U*:�*}	 , i � 2,… , q, 
 

formed from the block matrices Uij, contains a non-zero entry. The condition on the Ui means 

there are no backward hanging chains, i.e. in the decomposition of the life cycle graph of the 

PPM into sub-graphs determined by the Ai, each sub-graph i = 2,…, q is linked by a path back 

to sub-graph i = 1. 

In this reducible case, we have observed in our simulation study of the data base of 

PPMs that the system is ergodic when the dominant eigenvalue of A1 is the dominant 

eigenvalue of A. To test for such ergodicity, i.e. whether the dominant eigenvalue of A1 is the 

dominant eigenvalue of A, we only need to look at the corresponding dominant left eigenvector 

of A. 

 

ERGODICITY TEST 
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The system is ergodic, i.e. λ(A) = λ(A1), if, and only if, A has a positive left eigenvector 

corresponding to the eigenvalue λ(A). 

 

PRECISE STATEMENT AND MATHEMATICAL PROOF 

Assume that the reducible PPM A can be mapped via a permutation of coordinates, x → Πx, to 

a form 

 

�© � ©:��© �
��
��
A� U�C ⋯ U�¡0 ⋱ ⋱ ⋮⋮ ⋱ ⋱ U¡:�¡0 ⋯ 0 A¡ ¤¥

¥¦	, 
 

where 

1. Each Ai, i = 1,…, q, is irreducible; 

2. The dominant eigenvalue of A, λ(A), is an eigenvalue of only one Ai; 

3. Each column block-matrix 

 

U* � | U�*⋮U*:�*}	 , i � 2,… , q, 
 

    formed from the block matrices Uij , contains a non-zero entry. 

Then the dominant eigenvalue of A is the dominant eigenvalue of A1 if, and only if, the left 

eigenvector of A, corresponding to the dominant eigenvalue, is positive. 

 

PROOF 

Suppose first that λ(A) = λ(A1). Then by Assumption 1, λ(A1) > λ(A i), for each i ≠ 1. Using the 

permuted block form, the left eigenvector equation 

 

01� � ª7A�801 

 

Becomes 

 

«v�1, … , v¡1¬
��
��
A� U�C ⋯ U�¡0 ⋱ ⋱ ⋮⋮ ⋱ ⋱ U¡:�¡0 ⋯ 0 A¡ ¤¥

¥¦ � [7A�8«v�1, … , v¡1¬ 
 

where 
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01©:� � «v�1, … , v¡1¬	. 
 

Then 

 

v�1A� � λ7A�8v�1 

 

and irreducibility of A1 means that this equation has a positive solution v1.  Then 

 

v�1U�C 3 vC1AC � λ7A�8vC1 

 

and since λ(A2) < λ(A1) we have that 

 

vC1 � v�1U�C7λ7A�8I = AC8:�	. 
 

But 

 

vC1 � v�1U�C7λ7A�8I = AC8:� � 1λ7A�8 ­I 3
ACλ7A�8 3 � ACλ7A�8�

C 3⋯® 

 

is positive because of the irreducibility of A2.  Hence  

 

vC1 � v�1U�C7λ7A�8I = AC8:�	. 
 

is positive.  Continuing that we have that 

 

v�1U�F 3 vC1UCF 3 vF1AF � λ7A�8vF1	. 
 

Then 

 

vF1 � λ7�801 � λ7A¯801 

 

becomes 

 

«v�1, … , v¡1¬
��
��
A� U�C ⋯ U�¡0 ⋱ ⋱ ⋮⋮ ⋱ ⋱ U¡:�¡0 ⋯ 0 A¡ ¤¥

¥¦ � [7A¯8«v�1, … , v¡1¬	. 
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Then 

v�1A� � λ7A¯8v�1. 
 

But λ(Ak) is not an eigenvalue of A1, therefore v1 = 0 and v is not positive. 

 

Notice that when A is ergodic in the sense that A can be permuted to the block form with λ(A1) 

dominant, then the eigenmode expansion of the solution of 

 

��°� � ��� 
 

is 

 

�� � [7�8� 01� 01/ /3 of±cb	fcbkj	, 
 

Where some of the ‘other terms’ may, if A1 is imprimitive, grow geometrically like λ(A)t but 

oscillate with the rest decaying faster than λ(A)t, but possibly with oscillations. Importantly, n0 

and w are non-negative, non-zero vectors, which combined with positivity of v guarantees that 

 

01� 01/  

 

Is positive and finite. It follows that 

 

lim�→, �1t log	7N�8�, 
 

i.e. the asymptotic rate of growth of population density, is independent of initial population 

structure. 
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APPENDIX 3.2 

Notes on block-permuting a reducible matrix by hand (Chapter 3) 

 

Here, we provide a step-by-step walkthrough of methods to block-permute a reducible matrix 

by hand.  The method mainly uses the life cycle graph associated with the matrix.  The method 

is illustrated using a reducible matrix based upon the matrix used in our theoretical models.  The 

empirical reducible matrices are shown as further examples.  Block-permuting a reducible 

matrix is sometimes not an easy process – how simple a process it is will depend on the size of 

the matrix and the number of isolated sections there are in the life cycle.  The R package 

popdemo contains a function blockmatrix  that will block-permute a reducible matrix 

quickly and easily (with sufficient notes and annotation to allow translation of the code to other 

programs capable of matrix multiplication). 

 

METHOD 

Start with a reducible PPM.  For this example, we have taken the PPM used in our theoretical 

models and eliminated transition rates a4,3, and a5,6. 

  1 2 3 4 5 6  

1  0.5 0.01 0.75 1 1.25 1.5  

2  0.1 0.525 0.01     

3   0.08 0.55 0.01    

4     0.575 0.01   

5     0.04 0.6   

6      0.02 0.625  

 

Step 1: Draw the life cycle graph associated with this PPM.  It’s easiest if all arrows that move 

forwards through the life cycle are drawn below arrows that move backwards through the life 

cycle. 

 In this example, the life cycle is: 

 

 

Step 2: Identify groups of stages in the life cycle that communicate fully with one another (i.e. 

have transitions that link every stage in the group with every other stage in the group).  The 
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easiest way to do this is to find the longest loops in the life cycle.  A group may constitute any 

number of stages (i.e. a ‘group’ of just one stage is possible). 

 In this example, there are 3 groups: [1,2,3], [4,5] and [6].  These groups and the life 

cycle loops associated with them are indicated in red below. 

 

 

Step 3: Write out a simplified life cycle using these groups instead of individual stages.  Arrows 

indicate which groups contribute to which other groups.  There should be no loops in this 

simplified, group-based life cycle.  Again, try to keep arrows moving forwards through the life 

cycle below arrows moving backward through the life cycle. 

 In this example, group [4,5] contributes to both other groups, and group [6] contributes 

to group [1,2,3]. 

 

 

Step 4: Re-write the simplified life cycle so that arrows ONLY face backwards.  If steps 1, 2 

and 3 have been done correctly then this should be possible.  A useful tip is to identify whether 

the groups have transitions in but not out, out but not in, or both out and in.  Groups with 

transitions in but not out go on the left.  Groups that have transitions out but not in go on the 

right.  Groups with transitions both out and in go in the middle.  Note that there may be more 

than one way to do this (see example for Ardisia escallonioides, below), and some block-

permuted forms are easier to intuitively understand than others. 

 In this example: 

 

 

Step 5:  Re-write the matrix with the columns and rows in this order.  The order of stages within 

groups does not matter. 

 So the block-permuted matrix looks something like this: 
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  1 2 3 6 4 5  

1  0.05 0.01 0.75 1.5 1 1.25  

2  0.1 0.525 0.01     

3   0.08 0.55  0.01   

6     0.625  0.02  

4      0.575 0.01  

5      0.04 0.6  

 

 

 

EMPIRICAL EXAMPLES 

 

NUTTALLIA OBSCURATA 

  1 2 3 4 5  

1  0.026 0.002 0.009 0.034 0.062  

2   0.126     

3  0.326 0.564 0.428    

4    0.211 0.547   

5     0.095 0.716  

 

Step 1: 

 

 

Step 2: 

 

There are 2 groups: [2] and [1,3,4,5]. 

 

Step 3: 
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Step 4: 

 

 

Step 5:  The block-permuted matrix is: 

  1 3 4 5 2  

1  0.026 0.009 0.034 0.062 0.002  

3  0.326 0.428   0.564  

4   0.211 0.547    

5    0.095 0.716   

2      0.126  

 

ARDISIA ESCALLONIOIDES 

  1 2 3 4 5 6 7 8  

1      0.9 2.3 2.6 0.8  

2  0.1         

3   0.7 0.95 0.17      

4    0.01 0.66      

5     0.17 0.96     

6      0.04 0.88 0.04   

7        0.96   

8         1  

 

Step 1: 

 

 

Step 2: 
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There are 3 groups: [1,2,3,4,5,6], [7] and [8]. 

 

Step 3: 

 

All arrows are facing backwards already.  However, in this case, this could also be represented 

as: 

 

Both of these lead to correct block-permutations of the matrix.  As detailed in the manuscript, 

the situation that results is one where two (or more) submatrices are not fixed relative to one 

another, therefore their eigenvalues are not dominant relative to one another. 

 

Step 5:  The block-permuted matrix is: 

 

  1 2 3 4 5 6 7 8  

1      0.9 2.3 2.6 0.8  

2  0.1         

3   0.7 0.95 0.17      

4    0.01 0.66      

5     0.17 0.96     

6      0.04 0.88 0.04   

7        0.96   

8         1  

 

Or: 
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  1 2 3 4 5 6 8 7  

1      0.9 2.3 0.8 2.6  

2  0.1         

3   0.7 0.95 0.17      

4    0.01 0.66      

5     0.17 0.96     

6      0.04 0.88  0.04  

8        1   

7         0.96  

 

PINUS JEFFREYI 

  1 2 3 4 5  

1  0.804    0.073  

2  0.174 0.792     

3   0.167 0.944    

4    0.028 0.778   

5      0.945  

 

Step 1: 

 

 

Step 2: 

 

There are 5 groups: [1], [2], [3], [4] and [5]. 

 

Step 3: 
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Step 4: 

 

 

Step 5:  The block-permuted matrix is: 

  4 3 2 1 5  

4  0.778 0.028     

3   0.994 0.167    

2    0.792 0.174   

1     0.804 0.073  

5      0.945  
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APPENDIX 4.1 

R code for figures (Chapter 4) 

 

#This appendix provides R code for producing the fi gures included in the main  

#manuscript. 

# 

#Install the library using install.packages() or by  downloading from  

#http://cran.R-project.org 

#Load the library 

library(popdemo) 

# 

#These figures use a matrix for the desert tortoise  Gopherus agassizii: 

data(Tort) 

 

#This matrix is size-based, with medium fecundity. The size classes are as  

#follows: 

#1: Yearling 

#2: Juvenile 1 

#3: Juvenile 2 

#4: Immature 1 

#5: Immature 2 

#6: Subadult 

#7: Adult 1 

#8: Adult 2 

 

 

 

 

################################################### ########################### 

 

#FIGURE 1: POPULATION PROJECTION 

# 

#This figure is designed to be 3.5" by 3.5" 

#(Check size of plot window using 'par(din)'). 

# 

# 

#Set margins: 

par(mar=c(5,4,1,1)) 

 

#Create a population vector.  This one is biased to wards adults. 

Tortvec<-c(1,1,2,3,5,8,13,21) 

 

#Project the tortoise PPM and population vector.  I n this case, we are 

#projecting for 50 time intervals.  The torotoise i nterval is one year, so 

#this projection is for 50 years.  We use the funct ion 'project'. 

pr1 <- project(Tort, vector=Tortvec, time=50) 
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#Plot the projection. This uses an S3 plotting meth od for projections. For 

#info, see '?plot.projection'.   

plot(pr1) 

 

#For a primitive matrix (see below), the long-term growth rate is the real  

#part of the first dominant eigenvalue of the PPM. 

eigs<-eigen(Tort) 

lambdamax<-Re(eigs$values[1]) 

lambdamax 

 

#the dominant right eigenvector is the absolute val ue of the real part of the  

#first eigenvector  

w<-abs(Re(eigs$vectors[,1])) 

w 

 

#Note that the package popbio provides functions 'l ambda' and 'stable.stage'  

#that will provide these also. 

 

#For more info on projecting population dynamics, s ee demo(projection). 

 

 

 

################################################### ########################### 

 

#FIGURE 2: TRANSIENT DYNAMICS 

 

#__________________________________________________ ___________________________ 

# 

#Fig. 2a: Population-specific transient dynamics 

# 

#This figure is designed to be 3.5" by 3.5" 

#(Check size of plot window using 'par(din)'). 

# 

#Set margins: 

par(mar=c(5,4,1,1)) 

 

#Create 2 population vectors.  One is adult-biased,  and it amplifies.  One is  

#juvenile-biased and it attenuates. 

Tortamp <- c(1,1,2,3,5,8,13,21) 

Tortatt <- c(21,13,8,5,3,2,1,1) 

 

#Project these vectors using the project function. We are standardising the  

#matrix using 'standard.A=T' to remove effects of a symptotic dynamics. This  

#means that the projection has a long-term growth r ate of unity, i.e. it does  

#not grow or decline in the long-term.  We also sta ndardise the population  

#vector to sum to 1 using 'standard.vec=T'. These s tandardisations make it  
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#easier (and fairer) to compare between models with  different population  

#sizes, and different long-term growth rates. 

pr2.1 <- project(Tort, vector=Tortamp, time=50,  

                 standard.A=T, standard.vec=T) 

pr2.2 <- project(Tort, vector=Tortatt, time=50,  

                 standard.A=T, standard.vec=T) 

 

#Plot the amplification projection and label it 

plot(pr2.1, ylim=c(0.5,10), log="y", cex.axis=0.8) 

text(52, pr2.1[51], "amplification",  

     adj=c(1,-0.5), cex=0.8) 

 

#Calculate the transient dynamics of the amplificat ion projection 

reac <- reactivity(Tort, vector=Tortamp) 

maxamp <- maxamp(Tort, vector=Tortamp, return.t=T) 

upinertia <- inertia(Tort, vector=Tortamp) 

 

#Add points on the projection for amplification and  label them 

points(c(1,maxamp$t,31), c(reac,maxamp$maxamp,upine rtia),  

       pch=3, col="red") 

text(1, reac, expression(bar(P)[1]),  

     adj=c(-0.3,0.5), col="red", cex=0.8) 

text(maxamp$t, maxamp$maxamp, expression(bar(P)[max ]),  

     adj=c(0.1,-0.5), col="red", cex=0.8) 

text(31, upinertia, expression(bar(P)[infinity]),  

     adj=c(0.1,-0.5), col="red", cex=0.8) 

 

#Add in the second projection using the 'lines' com mand and label it 

lines(0:50, pr2.2) 

text(52, pr2.2[51], "attenuation", adj=c(1,1), cex= 0.8) 

 

#Calculate the transient dynamics of the attenuatio n projection 

firstep <- firststepatt(Tort, vector=Tortatt) 

maxatt <- maxatt(Tort, vector=Tortatt, return.t=T) 

lowinertia <- inertia(Tort, vector=Tortatt) 

 

#Add points on the attenuation projection and label  them 

points(c(1,maxatt$t,31), c(firstep,maxatt$maxatt,lo winertia),  

       pch=3, col="red") 

text(1, firstep, expression(underline(P)[1]),  

     adj=c(0,-0.6), col="red", cex=0.8) 

text(maxatt$t, maxatt$maxatt, expression(underline( P)[min]),  

     adj=c(0.1,1.5), col="red", cex=0.8) 

text(31, lowinertia, expression(underline(P)[infini ty]),  

     adj=c(0.1,1.5), col="red", cex=0.8) 

 

#Add in a dotted line at y=1 
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lines(c(0,50),c(1,1),lty=2) 

 

#__________________________________________________ ___________________________ 

 

#Fig. 2b: Transient bounds 

#This figure is designed to be 3.5" by 3.5" 

#(Check size of plot window using 'par(din)'). 

# 

#Set margins: 

par(mar=c(5,4,1,1)) 

 

#Transient bounds result from projections of the st age-biased dynamics of the  

#model. When using the function 'project', the stag e-biased model dynamics are  

#projected automatically if no population vector is  specified. We can do this  

#for the desert tortoise, using a standardised matr ix like before: 

pr2 <- project(Tort, standard.A=TRUE, time=50) 

 

#Now we need to plot these population dynamics. The  S3 method for projections  

#automatically plots all stage-biased projections: 

plot(pr2, log="y", cex.axis=0.8, ylim=c(0.1,10)) 

 

#Add in a dotted line at y=1 

lines(c(0,50), c(1,1), lty=2) 

 

#Calculate the bounds on transient dynamics for the  desert tortoise.  This is 

#also done automatically if no population vector is  specified. 

reacb<-reactivity(Tort) 

firstepb<-firststepatt(Tort) 

maxampb<-maxamp(Tort,return.t=T) 

maxattb<-maxatt(Tort,return.t=T) 

upinertiab<-inertia(Tort, bound="upper") 

lowinertiab<-inertia(Tort, bound="lower") 

 

#Add points on the projection and label them 

points(c(1,1,maxampb$t,maxattb$t,31,31), 

       c(reacb,firstepb,maxampb$maxamp,maxattb$maxa tt,upinertiab,lowinertiab), 

       pch=3,col="red") 

text(1, reacb, expression(bar(rho)[1]),  

     adj=c(-0.5,0.5), col="red", cex=0.8) 

text(1, firstepb, expression(underline(rho)[1]), 

     adj=c(-0.5,1.5), col="red", cex=0.8) 

text(maxampb$t, maxampb$maxamp, expression(bar(rho) [max]), 

     adj=c(0.1,-0.5),col="red",cex=0.8) 

text(maxattb$t, maxattb$maxatt, expression(underlin e(rho)[min]), 

     adj=c(0.1,1.5), col="red", cex=0.8) 

text(31, upinertiab, expression(bar(rho)[infinity]) ,  

     adj=c(0.1,-0.5), col="red", cex=0.8) 
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text(31, lowinertiab, expression(underline(rho)[inf inity]), 

     adj=c(0.1,1.5), col="red", cex=0.8) 

 

#Amplification bounds result from the projection of  a population with 100%  

#stage 8 individuals.  Attenuation bounds result fr om the projection of a  

#population with 100% stage 1 individuals. 

 

 

 

################################################### ########################### 

 

#FIGURE 3: TRANSFER FUNCTIONS 

 

#__________________________________________________ ___________________________ 

 

#Fig. 3a: Transfer function of asymptotic growth 

# 

#This figure is designed to be 3.5" by 3.5" 

#(Check size of plot window using 'par(din)'). 

# 

#Set margins: 

par(mar=c(5,4,1,1)) 

 

#Create a transfer function using 'tfa'. The pertur bation structure is  

#determined by two vectors d and e.  The matrix d%* %e gives the structure,  

#where nonzero elements in this matrix are the elem ents of the PPM to be  

#perturbed.  The relative size of entries in this m atrix are the relative  

#sizes of perturbation to those elements. In this c ase, we are perturbing  

#element [8,7]. We are going to look at the effect of perturbing up to 0.25.   

#The largest biologically reasonable perturbation i s about 0.12. 

tf1 <- tfa(Tort, d=c(0,0,0,0,0,0,0,1), e=c(0,0,0,0, 0,0,1,0),  

         prange=seq(0,0.25,0.01)) 

 

#Now we plot this using an S3 method for transfer f unctions (for information  

#see '?plot.tfa'). 

plot(tf1, cex.axis=0.8) 

 

#Now we're going to add in the sensitivity tangent.   This has an intercept of  

#lambda-max, and a slope of the sensitivity of the same transfer function.  

#Calculate lambda-max of the desert tortoise PPM: 

lambda <- Re(eigen(Tort)$values[1]) 

 

#Calculate the sensitivity using the function 'tfse ns': 

sens1<-tfsens(Tort, d=c(0,0,0,0,0,0,0,1), e=c(0,0,0 ,0,0,0,1,0)) 

 

#Now add in the line, specifying the correct interc ept and slope: 

abline(lambda, sens1, lty=2, col="red") 
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#__________________________________________________ ___________________________ 

 

#Fig. 3b: Transfer function of population inertia 

# 

#This figure is designed to be 3.5" by 3.5" 

#(Check size of plot window using 'par(din)'). 

# 

#Set margins: 

par(mar=c(5,4,1,1)) 

 

#The process is very similar to above.  We need to specify a PPM, perturbation  

#structure and perturbation range.  For inertia we either have to specify a  

#population vector using the 'vector' argument, or the bound to be calculated  

#using the 'bound' argument. Create a population ve ctor: 

Tortvec <- c(1,1,2,3,5,8,13,21) 

 

#Now calculate the transfer function using inertia. tfa: 

tf2 <- inertia.tfa(Tort, vector=Tortvec, d=c(0,0,0, 0,0,0,0,1),  

                 e=c(0,0,0,0,0,0,1,0), prange= seq( 0,0.25,0.01)) 

 

#Plot the transfer function using the same S3 metho d as before: 

plot(tf2,cex.axis=0.8,ylim=c(3.9,4.43)) 

 

#The sensitivity tangent for transfer function of i nertia has an intercept of  

#equal to the relevant inertia (either using the sa me population vector, or  

#the correct bound), and a slope of the sensitivity  of the same transfer  

#function. Calculate inertia of the desert tortoise  PPM using the population  

#vector: 

inertia <- inertia(Tort, vector=Tortvec) 

 

#Calculate the sensitivity using the function 'iner tia.tfsens': 

sens2 <- inertia.tfsens(Tort, vector=Tortvec, d=c(0 ,0,0,0,0,0,0,1),  

                        e=c(0,0,0,0,0,0,1,0), toler ance=1e-5) 

 

#(Here the 'tolerance' has had to be lowered to avo id calculation error: try  

#the function without that argument and it will hav e trouble running) 

 

#Now add in the line, specifying the correct interc ept and slope: 

abline(inertia, sens2, lty=2, col="red") 

 

 

 

################################################### ########################### 

 

#FIGURE 4: TRANSFER FUNCTION MATRIX 

# 
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#This figure is designed to be 7" by 7" 

#(Check size of plot window using 'par(din)'). 

# 

#This is a nice, easy plot because the function doe s it all for you. The  

#functions 'tfmat' and 'inertia.tfmat' calculate a transfer function for every  

#PPM element.  They are saved as arrays of values.  The functions are  

#customisable: see '?tfmat' and '?inertia.tfmat'. 

# 

#Create the array for inertia, using a specific pop ulation vector: 

Tortvec <- c(1,1,2,3,5,8,13,21) 

tfmat<-inertia.tfamatrix(Tort, vector=Tortvec) 

 

#...and plot it! 

plot(tfmat) 
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APPENDIX 5.1 

Detailed results from principal components analyses (Chapter 5) 

 

 

FIG. A5.1.1: Barplot of variance explained by the principal components 

 

 

TABLE A5.1.1: Table of variances according to principal component, detailing percentage and 

cumulative percentages explained. PC1 and PC2 explain >90% of variance in all transient 

indices. 

 
PC1 PC2 PC3 PC4 PC5 PC6 

Standard deviation 2.003 1.212 0.6563 0.2526 0.15039 0.05195 

Proportion of 

Variance 
0.669 0.245 0.0718 0.0106 0.00377 0.00045 

Cumulative 

Proportion 
0.669 0.913 0.9851 0.9958 0.99955 1 
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FIG. A5.1.2: Plot of PC1 against PC2, detailing loadings of the transient indices. "l" denotes 

log10, so e.g. lKmax=log10(Kmax). The amplified transients (Kmax = upper Kreiss bound, 

rhomax = maximum amplification and react = reactivity) show positive loadings on both PC1 

and PC2.  The attenuated transients (Kmin=lower Kress bound, rhomin=maximum attenuation, 

firstep=first-timestep attenuation) show negative loadings on PC1 but positive loadings on PC2. 

 

 

TABLE A5.1.2: Table of loadings by transient index and principal component. 

 
PC1 PC2 PC3 PC4 PC5 PC6 

log10(Kmax) 0.439149 0.380868 -0.05002 0.334535 -0.42675 0.604616 

log10(Kmin) -0.34274 0.521909 0.504305 -0.52118 -0.2861 0.048327 

log10(ρmax) 0.444282 0.373189 -0.00173 0.124331 -0.21215 -0.77645 

log10(ρmin) -0.4339 0.348342 0.270527 0.716311 0.318156 -0.05368 

log10(reactivity) 0.454045 0.317374 0.13277 -0.25652 0.763771 0.162289 

log10(first-timestep attenuation) -0.31284 0.470332 -0.80769 -0.14864 0.080359 0.00309 
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APPENDIX 6.1 

Detailed information on construction of angiosperm phylogeny (Chapter 6) 

 

The phylogeny used in MCMCglmm analyses is presented in Figure A6.1.1. The full phylogeny 

consists of 147 angiosperm species representing 57 different families. This phylogeny was 

trimmed to 143 species for general resilience analyses and 70 species for specific resilience 

analyses. Details on which species were used in each analysis can be found in Appendix 7, 

which also includes species’ taxonomic information. 

 The topology of the phylogeny to family level was found using phylomatic 

(http://phylodiversity.net/phylomatic), and branch lengths of this tree were fitted using the 

bladj  function included in phylocom (Webb, Ackerly & Kembel 2008). Remaining within-

family polytomies were resolved using information from the literature. These polytomies, and 

the studies used to resolve them, are listed below. 

 

POLYTOMIES AT FAMILY LEVEL: 

Arecaceae (Astrocaryum mexicanum, Borassus aethiopum, Chamaedorea radicalis, 

Coccothrinax readii, Euterpe edulis, Euterpe precatoria, Geonoma deversa, Geonoma 

orbignyana, Iriartea deltoidea, Neodypsis decaryi, Phytelephas seemannii, Podococcus 

barteri, Thrinax radiata): Baker et al. (2009) 

Asteraceae (Asteroidea, Carduoidea, Cichorioidea) 

Asteroidea (Ambrosia dumosa, Eupatorium perfolatium, Eupatorium resinosum, 

Helianthus divaricatus): Stevens (2001) 

Carduoidea (Carduus nutans, Carlina vulgaris, Centaurea maculosa, Cirsium palustre): 

Haffner & Hellwig (1999) 

Cichorioidea (Hieracium floribundum, Picris hieracioides, Scorzonera humilis): 

Whitton, Wallace & Jansen (1995) 

Cacataceae (Carnegiea gigantica, Neobuxbaumia mezcalaensis, Neobuxbaumia tetetzo, 

Neobuxbaumia macrocephala, Mammillaria crucígera, Mammillaria magnimamma, 

Pterocereus gaumeri): Gibson & Horak (1978) 

Caryophyllaceae (Minuartia obtusiloba, Paryonychia pulvinata, Silene acaulis, Silene 

douglasii): Fior et al. (2006) 

Fabaceae (Anthyllis vulneraria, Astragalus scaphoides, Cassia nemophila, Dicymbe altsonii, 

Lathyrus vernus, Machaerium cuspidatum, Pentaclethra macroloba, Periandra 

mediterranea, Prosopis glandulosa, Ulex gallii, Ulex minor): Wojciechowski et al. (2004) 

Liliaceae (Calochortus, Clintonia borealis, Erythronium japonicum, Fritillaria meleagris): 

Peruzzi et al.(2009) 

Calochortus: Patterson & Givnish (2003) 

Poaceae (Chloridoidea, Panicoideae, Pooideae) Liang & Hilu (1996) 
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Chloridoidea (Aristida bipartita, Danthonia sericea, Spartina alterniflora, Swallenia 

alexandrae): Peterson et al. (2010). 

Panicoideae (Andropogon semiberbis, Bothriochloa insculpta, Digitaria eriantha, 

Heteropogon contortus, Themeda triandra, Setaria incrassata): Giussani et al. 

(2001), Teerawatananon et al. (2011) 

Pooideae (Achnatherum calamigrostris, Agropyron repens): Hsiao et al.(1995) 

Primulaceae (Ardisia escallonioides, Myrsine guianensis, Primula vulgaris, Primula veris): 

Anderberg, Ståhl & Källersjö (1998), Mast et al. (2001) 

Proteaceae (Banksia ericifolia, Petrophile pulchella, Roupala montana): Stevens (2001) 

Rosaceae (Agrimonia eupatoria, Geum rivale, Geum reptans, Potentilla anserina): Stevens 

(2001) 
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FIG. A6.1.1: 

Phylogeny used in 

MCMCglmm 

analyses, including 

branch lengths. 

Species’ taxonomy 

can be found in 

Appendix 7. 
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APPENDIX 6.2 

Detailed information on MCMCglmm analyses (Chapter 6) 

 

We used the R package MCMCglmm to explore how shared ancestry and life history affects 

propensity for transient amplification. The software uses Markov Chain Monte Carlo algorithms 

to fit parameter estimates to data in a Bayesian framework. Bayesian glmm models are 

relatively robust to non-gaussian data, such as the proportion and binary data that we use in this 

study. 

 

 

MODEL STRUCTURE 

MCMCglmm allows multivariate responses, fixed effects, random effects and residuals. There are 

many different combinations of interactions to choose from when estimating fixed effect means 

and variances, and random effect (co)variances.   

 

RANDOM EFFECTS 

MCMCglmm allows incorporation of a phylogenetic relatedness variance-covariance matrix in 

the random effects structure. This means that the exact relationship between species can be 

modelled, including both topological relatedness and phylogenetic distance. We built a 

phylogeny representing the 147 species in our dataset (see Appendix 6.1). This phylogeny was 

converted to a Newick-coded format, read into R as a phylo  object in the ape  package, 

trimmed using the drop.tip  function to exclude species for which there were no irreducible 

matrices, where appropriate trimmed further to exclude species for which there were no 

recorded demographic distribution, and modelled in MCMCglmm analyses using the pedigree  

argument. 

 

FIXED EFFECTS 

We modelled life form as a fixed effect, with 5 levels: monocarps (M), perennial herbs in open 

habitats (O), perennial herbs in forest habitats (F), shrubs (S) and trees (T), following Franco & 

Silvertown (2004). 

 

RESPONSE VARIABLES 

Data generated from Dirichlet draws (general resilience) consists of a mean probability of 

amplification per species for any possible demographic structure, either in the first timestep 

[reactivity; p(P1>1)], or the long term [inertia; p(P∞>1)]. This proportion data was logit-

transformed and analysed in a Gaussian glmm. An alternative would be to use raw 'counts' of 

amplification and attenuation and analyse the data in a binomial glmm with logit link, but as 
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each data point is calculated from the same number of Dirichlet draws, the two approaches are 

almost equivalent. Due to the high number of proportions close to 1, this had a bimodal 

distribution after transformation and we relied on the robustness of MCMCglmm to cope with 

this. We analysed both variables simultaneously as bivariate responses, fitting an interaction 

between trait and life form, and using the us  function to fit full variance and covariance 

between the two traits in random and residual variance, which accounts for the correlation 

between the two responses.   

 

Case-specific transient data (specific resilience) consists of the mean projected first-timestep 

(reactivity) and long-term (inertia) transient dynamics per species. This data was transformed 

into binary response variables, where a 0 was assigned if the population attenuates and a 1 was 

assigned if the population amplifies. We then fit a binary glmm model to this data, which 

effectively fits the probability of amplification of populations given their recorded demographic 

structure. This is subtly, but notably, different to the proportion models, which estimate the 

probability of amplification given any possible random demographic structure. In binary glmm 

models, the residual variance is not used in calculation of the log-likelihood, and the 

MCMCglmm course notes recommend that the best approach to take is to fix the residual 

variance at an arbitrary value and then rescale posterior distributions after the model is fit. As 

MCMCglmm does not yet allow multivariate models where variance is fixed but covariance is 

still fit by the model, we were not able to model this data in a bivariate model and so univariate 

models were used, with residual variance fixed at 1. 

 

ITERATIONS/BURNIN/THINNING 

Chains seemed to mix well in all cases when using 300000 iterations and a burnin interval of 

30000.  For both sets of models, we used a thinning interval of 100 to deal with autocorrelated 

chains. We checked autocorrelation of fixed parameters of all models to ensure it was kept low 

at the level of the thinning interval (at least <0.1 as suggested in the MCMCglmm course notes, 

but usually far lower). Autocorrelation remained high in chains estimating random effects and 

residuals, and increasing thinning intervals did not remedy this. This might be expected, given 

that variance estimates are bounded at 0, and we note that it should have little effect on 

parameter estimates (Link & Eaton 2012).  

 

 

PRIORS 

MCMCglmm models fixed-effect priors using a gaussian distribution, which takes 2 parameters: 

mean and variance. Random and residual priors are usually modelled using an inverse Wishart 

distribution, which is a multivariate relative of the inverse gamma distribution and takes a shape 

parameter ν (nu) and a scale parameter V. This distribution tends to a point mass on V as ν goes 
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to infinity, therefore V can be thought of as a prior variance and ν can be thought of as a 

'degree-of-belief' parameter: the higher ν is, the more confidence is placed in the prior variance. 

We aimed to make all priors as uninformative as possible. It is possible to specify improper 

priors for random effects and residuals using V≈0 and/or ν ≤0: such priors are very 

uninformative, however none of our models would accept improper priors and so we used 

proper uninformative priors for all random and residual parameters. 

 

LOGIT-TRANSFORMED DIRICHLET DATA (GENERAL RESILIENCE) 

We used default uninformative priors for fixed effects (mean=0, variance=108) in general 

resilience data, and this gave gaussian marginal posteriors for fixed effects in all models. There 

are no default priors for random effects and residuals, but the MCMCglmm course notes suggest 

an uninformative proper of V=1 and ν =0.002, with V split evenly over the number of 

parameters being estimated. However, for our models these priors gave bad mixing for random 

effects and residuals as chains became stuck at 0. To deal with this, we decided to use 

parameter-expanded priors. This method introduces variables into the prior that are not 

identified in the log-likelihood (and therefore should not affect DIC, unlike changing V or ν).  

The prior is multiplied by the extra variables, which convert the posterior distribution to a non-

central scaled F distribution. Parameter expansion prevented chains from sticking at 0, and 

latent variables estimated by parameter-expanded priors were similar to those from models that 

didn’t use parameter expansion. Posteriors for random effects and residuals were positively-

skewed, however this is expected to a lesser or greater extent, as variances are bounded at 0 and 

+∞. 

 

BINARY-TRANSFORMED TRANSIENT DATA (SPECIFIC RESILIENCE) 

Whilst the default fixed effects priors of MCMCglmm are uninformative on the logit scale, where 

within-group proportions are close to 1 in binary response models, they are often not 

uninformative on the probability scale (see figure A6.2.2). In our specific resilience data, 

within-group probabilities for life form were close to or equal to 1 as most species amplify in 

both the short- and long-term. Because of this, default fixed effects priors had chains with bad 

mixing (especially for monocarpic species, which all amplify) and so we used a prior that is 

uninformative on the probability scale as suggested in the MCMCglmm course notes (in our case 

mean = 0, variance = σ2
units+π

2/3 = 1+ π2/3). This gave much better mixing and gaussian 

posteriors for fixed effects. Again, we used an uninformative prior of V=1, ν=0.002 for random 

effects in binary models. However, we fixed variance for residuals at 1 (as recommended in the 

MCMCglmm course notes), as residual variance is not identified in the log-likelihood of binary 

response models. Again, chains for random effects frequently stuck at 0. The MCMCglmm 

course notes suggest parameter expansion in binary response models where this is the case, and 

so we also used parameter expansion here to give chains with better mixing, which didn't stick 
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at 0. We rescaled fixed and random chains to assume a residual variance of 0 for posterior 

checks, again following suggestions in the MCMCglmm course notes. Posterior distributions for 

random effects variances were quite positively skewed, as variances were close to 0. 

 

 

BEST-FIT MODELS 

For both data sets, we fit four models: 1. including both phylogeny and life form; 2. including 

phylogeny and excluding life form; 3. excluding phylogeny and including life form; 4. 

excluding both phylogeny and life form.   

 

LOGIT-TRANSFORMED DIRICHLET DATA (GENERAL RESILIENCE) 

The best-fit model was including phylogeny and excluding life form. Including life form was 

supported over excluding life form, but the fact that the phylogeny-only model was preferred 

overall suggests that most of the similarity between life forms is better explained by ancestral 

relatedness. 

 

BINARY-TRANSFORMED TRANSIENT DATA (SPECIFIC RESILIENCE) 

The null model was the best-fit model, excluding both phylogeny and life form. This indicates 

that the distribution of amplification and attenuation is very similar across life forms, and shows 

no relationship to phylogeny. 

 

 

CODE 

The following presents the code used for MCMCglmm analyses: 

 

#LOGIT-TRANSFORMED MODELS (GENERAL RESILIENCE) 

#model 1.1: 2-response, +phylogeny, +Ecotype 

#set prior model 1.1 

prior1.1<-list(R = list(V = diag(2)*0.5, nu=0.002),  

               G = list(G1=list(V = diag(2)*0.5, nu =0.002, alpha.mu=c(0,0), 

                                alpha.V=diag(2)*100 0))) 

#model 1.1 

m1.1<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log it) ~ trait:Ecotype - 1,  

               random=~us(trait):animal, rcov=~us(t rait):units, 

               family=c("gaussian","gaussian"), 

               prior=prior1.1, data=meandata, pedig ree=meantree, nodes="TIPS", 

               thin=100, nitt=150000, burnin=30000,  verbose=F) 

 

###2-response, +phylogeny, -Ecotype 

#set prior model 1.2 

prior1.2<-list(R = list(V = diag(2)*0.5, nu=0.002),  
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               G = list(G1=list(V = diag(2)*0.5, nu =0.002, alpha.mu=c(0,0), 

                                alpha.V=diag(2)*10) )) 

#model 1.2 

m1.2<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log it) ~ trait - 1,  

               random=~us(trait):animal, rcov=~us(t rait):units, 

               family=c("gaussian","gaussian"), 

               prior=prior1.2, data=meandata, pedig ree=meantree, nodes="TIPS", 

               thin=100, nitt=150000, burnin=30000,  verbose=F) 

 

###2-response, -phylogeny, +Ecotype 

#set prior model 1.2 

prior1.3<-list(R = list(V = diag(2)*0.5, nu=0.002))  

#model 1.3 

m1.3<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log it) ~ trait:Ecotype - 1,  

               rcov=~us(trait):units, family=c("gau ssian","gaussian"), 

               prior=prior1.3, data=meandata, 

               thin=100, nitt=150000, burnin=30000,  verbose=F) 

 

###2-response, -phylogeny, -Ecotype 

#set prior model 1.2 

prior1.4<-list(R = list(V = diag(2)*0.5, nu=0.002))  

#model 1.4 

m1.4<-MCMCglmm(cbind(reac.prob.logit,inert.prob.log it) ~ trait - 1,  

               rcov=~us(trait):units, family=c("gau ssian","gaussian"), 

               prior=prior1.4, data=meandata, 

               thin=100, nitt=150000, burnin=30000,  verbose=F) 

 

#BINARY MODELS (SPECIFIC RESILIENCE) 

#set prior model 1.1 

#Use a non-informative prior on the probability sca le to prevent 

autocorrelation. 

#Use an uninformative prior for random effects, add ing parameter expansion to  

#prevent random effects chains sticking at 0.  alph a.V=100 gives good mixing,  

#large effective sample and is robust. 

#Fix residual variance at 1 

prior1.1<-list(R = list(V = 1, fix=1), 

               G = list(G1=list(V = 1, nu=0.002, al pha.mu=0, alpha.V=100)), 

               B = list(mu=rep(0,5), V=diag(5)*(1+p i^2/3))) 

#model 1.1: Reactivity, +phylogeny, +Ecotype 

m1.1<-MCMCglmm(reac.mean.bin ~ Ecotype,  

               random=~animal, family="categorical" , 

               prior=prior1.1, data=meanvecdata, pe digree=vectree, 

               nodes="TIPS", thin=50, nitt=150000, burnin=30000, verbose=F) 

 

#set prior model 1.2 

prior1.2<-list(R = list(V = 1, fix=1), 

               G = list(G1=list(V = 1, nu=0.002, al pha.mu=0, alpha.V=100)), 
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               B = list(mu=0, V=(1+pi^2/3))) 

#model1.2: 1 Reactivity, +phylogeny, -Ecotype 

m1.2<-MCMCglmm(reac.mean.bin ~ 1,  

               random=~animal, family="categorical" , 

               prior=prior1.2, data=meanvecdata, pe digree=vectree, 

               nodes="TIPS", thin=50, nitt=150000, burnin=30000, verbose=F) 

 

#set prior model 1.3 

prior1.3<-list(R = list(V = 1, fix=1), 

               B = list(mu=rep(0,5), V=diag(5)*(1+p i^2/3))) 

#model 1.3: 1 Reactivity, -phylogeny, +Ecotype 

m1.3<-MCMCglmm(reac.mean.bin ~ Ecotype,  

               family="categorical", 

               prior=prior1.3, data=meanvecdata,  

               thin=50, nitt=150000, burnin=30000, verbose=F) 

 

#set prior model 1.4 

prior1.4<-list(R = list(V = 1, fix=1), 

               B = list(mu=0, V=(1+pi^2/3))) 

#model 1.4: 1 Reactivity, -phylogeny, -Ecotype 

m1.4<-MCMCglmm(reac.mean.bin ~ 1,  

               family="categorical", 

               prior=prior1.4, data=meanvecdata,  

               thin=50, nitt=150000, burnin=30000, verbose=F) 
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APPENDIX 6.3 

Analytical solutions to Dirichlet sampling procedures for calculating general transient 

resilience (Chapter 6) 

 

Figure 6.3 shows a geometric representation of the Dirichlet sampling procedures that we used 

to calculate general transient resilience. Below we present the algebraic solution for calculating 

probability of amplification in this 3-stage case. 

 

These equations use either c (the vector of column sums of the standardised PPM Â = A/λmax), 

or v (the reproductive value vector, equal to the dominant left eigenvector of the PPM Â, 

rescaled so that vTw = 1 where ||w||1 = 1). c is used for calculating the probability of 

amplification in the first timestep (reactivity), whereas v is used for calculating the probability 

of amplification in the long term (inertia). In both cases, the algebraic solution is the same. 

 

The first case exists when two ci<1 and one ci>1, or two vi<1 and one vi>1: 

p7P� � 18 � 71 = c��8C7c²�,� = c��87c²�,C = c��8 			,			p7P, � 18 � 71 = v��8C7v²�,� = c��87v²�,C = c��8 
 

The second case exists when one ci<1 and two ci>1 or one vi<1 and two vi>1: 

p7P� � 18 � 1 = 71 = c²�8C�c��,� = c²���c��,C = c²�� 			,			p7P, � 18 � 1 = 71 = v²�8C7v��,� = c²�87v��,C = c²�8 
 

The first case is illustrated in Figure 6.3a, and the second is illustrated in Figure 6.3b (note that 

the dashed triangles plotted in Figure 6.3 have vertices that lie on the reciprocals of c and v). 

 

In the first case, a higher probability of amplification is achieved by increasing the numerator of 

the fraction and/or decreasing the denominator of the fraction. The former is achieved by 

increasing the c>1 or v>1, and the latter is achieved by keeping the c<1 or v<1 close to 1. In the 

second case, a higher probability of amplification is achieved by increasing the denominator of 

the fraction and/or decreasing the numerator of the fraction. Again, the former is achieved by 

increasing c>1 or v>1, and the latter is achieved by keeping the c<1 or v<1 close to 1. Given that 

the vertices of the dashed simplexes in Figure 6.3 lie on the reciprocals of c and v, the c>1 or v>1 

result in vertices <1 of the dashed simplexes in Figure 3, and the c<1 or v<1 result in vertices >1. 

Therefore, increasing c>1 or v>1 moves vertices <1 closer to 0 whilst increasing c<1 or v<1 

therefore moves vertices >1 closer to 1. 

 These equations show that stage-structuring achieves transient dynamics. If all ci or vi 

equal 1, then there is no solution to the above equations: there is no amplification or attenuation. 

There are two ways to achieve stage-structuring in life cycles: asymmetry in survival and 
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asymmetry in reproduction. Concentrating reproduction effort to one area of the life cycle is an 

efficient way to increase c>1 and v>1, giving high probability of amplification both immediately 

and in the long term. Hence, delaying reproduction will favour amplification. Maintaining 

relatively high adult survival will also increase c>1 and v>1, whilst maintaining relatively high 

juvenile survival keeps c<1 and v<1 close to 1, in both cases favouring high probabilities of 

amplification. However, trade-offs will dictate that an organism cannot maintain high juvenile 

survival, adult survival and reproduction. Maintaining relatively high adult survival causes a 

disproportionate increase in v>1 whilst giving a relatively smaller increase in c>1, therefore 

populations that experience relatively irregular disturbance may wish to invest in adult survival 

over juvenile survival to ensure amplification is maintained in the long term. On the other hand, 

investing in high juvenile survival over adult survival will ensure c<1 close to 1 giving high 

probability of immediate amplification, but will disproportionately decrease v>1 giving lower 

probability of long-term amplification. This strategy may be favourable for organisms that 

experience frequent disturbance, where high probability of long-term amplification is less 

important. 

 In summary, stage-structuring achieves transient dynamics. An efficient way to achieve 

this and simultaneously favour high probabilities of amplification is through delayed 

reproduction. High survival across the life cycle favours amplification, but allocation of 

resources to either juvenile or adult survival may be differentially favoured according to what 

sort of disturbance regime they experience. Of course, life cycles are shaped by countless other 

factors, but it seems that features common in natural life cycles (stage-structuring, delayed 

reproduction, asymmetry in survival) favour amplification of population dynamics, inferring a 

high transient resilience to disturbance. Generalising the above equations to n dimensions is 

difficult. However, we may assume that the same results may hold: increasing any c>1 and v>1 

will favour amplification, as will keeping any c<1 and v<1 close to 1. Hence, whatever the 

dimension of the life cycle, the same solutions to achieving high probability of amplification 

should exist. 
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APPENDIX 7 

Metadata for database of PPM models(Chapter1, Chapter 5, Chapter 6) 

 

This appendix presents metadata for the PPM models used in comparative analyses in chapters. The models themselves and their associated data are available as an 

excel file upon request. This metadata presents the species present in the database, their taxonomy, the reference(s) from which models were obtained, the number of 

matrices in the database, the number of different populations for which matrices are available, whether or not at least one irreducible matrix is available, and whether 

or not at least one model includes a known demographic vector.  
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PLANTS 

Class  Order Family Species Reference Number 

matrices 

Number 

populations 

Irreducible Vector 

Gymnospermae Pinales Pinaceae  Abies concolor van Mantgem & Stephenson (2005) 5 5 Y N 

Gymnospermae Pinales Pinaceae  Abies magnifica van Mantgem & Stephenson (2005) 4 4 Y N 

Gymnospermae Pinales Cupressaceae  Calocedrus decurrens van Mantgem & Stephenson (2005) 3 3 Y N 

Angiospermae Poales Poaceae Achnatherum 

calamagrostis 

Guardia et al. (2000) 1 1 Y Y 

Angiospermae Sapindales Sapindaceae Aesculus turbinata Kaneko et al. (1999) 2 1 Y Y 

Angiospermae Rosales Rosaceae Agrimonia eupatoria Kiviniemi (2002) 10 2 Y Y 

Angiospermae Poales Poaceae Agropyron repens Mortimer (1983) 1 1 Y N 

Angiospermae Asparagales Alliaceae Allium tricoccum Nault & Gagnon (1993) 5 1 Y Y 

Angiospermae Corylales Betulaceae Alnus incana Huenneke & Marks (1987) 7 2 Y N 

Angiospermae Asterales Asteraceae Ambrosia dumosa Miriti et al. (2001) 2 1 Y Y 

Angiospermae Poales Poaceae Andropogon 

semiberbis 

Silva et al. (1991) 2 2 Y Y 

Angiospermae Fabales Fabaceae Anthyllis vulneraria Sterk (1975) 3 2 Y N 

Angiospermae Brassicales Brassicaceae Arabis fecunda Lesica & Shelly (1995) 15 3 Y N 

Gymnospermae Pinales Araucariaceae Araucaria 

cunninghamii 

Enright & Watson (1991) 3 1 Y Y 

Gymnospermae Pinales Araucariaceae Araucaria hunsteinii Enright (1982) 3 3 Y Y 

Angiospermae Ericales Primulaceae Ardisia escallonioides Pascarella & Horvitz (1998) 7 4 Y N 

Angiospermae Arales Araceae Arisaema serratum Kinoshita (1987) 1 1 Y Y 

Angiospermae Arales Araceae Arisaema triphyllum Bierzychudek (1982) 7 2 Y Y 
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Angiospermae Poales Poaceae Aristida bipartita O'Connor (1993) 11 1 Y N 

Angiospermae Plumbaginales Plumbaginaceae Armeria maritima Lefèbvre & Chandler- 

Mortimer (1984) 

1 1 Y N 

Angiospermae Aristolochiales Aristolochiaceae Asarum canadense Damman & Cain (1998) 44 2 Y N 

Angiospermae Asparagales Orchidaceae Aspasia principissa Zotz & Schmidt (2006) 1 1 Y Y 

Angiospermae Fabales Fabaceae Astragalus scaphoides Lesica (1995) 11 2 Y N 

Angiospermae Arecales Arecaceae Astrocaryum 

mexicanum 

Piñero et al. (1984) 7 6 Y Y 

Angiospermae Caryophyllales Amaranthaceae Atriplex vesicaria Hunt (2001) 27 9 Y Y 

Angiospermae Lamiales Acanthaceae Avicennia marina Burns & Ogden (1985) 1 1 N Y 

Angiospermae Proteales Proteaceae Banksia ericifolia Bradstock & O'Connell (1988) 1 1 Y N 

Angiospermae Lecythidales Lecythidaceae Bertholletia excelsa Zuidema & Boot (2002) 1 1 Y Y 

Angiospermae Corylales Betulaceae Betula nana Ebert & Ebert (1989) 1 1 Y N 

Angiospermae Arecales Arecaceae Borassus aethiopum Barot et al. (2000) 1 1 Y Y 

Angiospermae Poales Poaceae Bothriochloa insculpta O'Connor (1993) 11 1 Y N 

Angiospermae Rosales Moraceae Brosimum alicastrum Peters (1990) 1 1 Y N 

Angiospermae Zingiberales Marantaceae Calathea ovandensis Horvitz & Schemske (1995) 17 4 Y Y 

Angiospermae Ericales Ericaceae Calluna vulgaris Barclay-Estrup & Gimingham (1975) 1 1 Y N 

Angiospermae Liliales Liliaceae Calochortus albus Fiedler (1987) 3 2 Y N 

Angiospermae Liliales Liliaceae Calochortus 

obispoensis 

Fiedler (1987) 3 2 Y N 

Angiospermae Liliales Liliaceae Calochortus pulchellus Fiedler (1987) 3 2 Y N 

Angiospermae Liliales Liliaceae Calochortus 

tiburonensis 

Fiedler (1987) 3 2 Y N 
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Angiospermae Asterales Asteraceae Carduus nutans Shea & Kelly (1998) 2 2 Y N 

Angiospermae Asterales Asteraceae Carlina vulgaris Löfgren et al. (2000) 8 8 Y Y 

Angiospermae Caryophyllales Cactaceae Carnegiea gigantea Steenbergh & Lowe (1977) 1 1 Y N 

Angiospermae Fabales Fabaceae Cassia nemophila Silander (1983) 1 1 Y Y 

Angiospermae Poales Bromeliaceae Catopsis sessiliflora Winkler et al. (2007) 1 1 Y Y 

Angiospermae Rosales Urticaceae Cecropia obtusifolia Alvarez-Buylla (1994) 5 1 Y N 

Angiospermae Asterales Asteraceae Centaurea maculosa Emery & Gross (2005) 7 1 Y Y 

Cycadopsida Cycadales Zamiaceae Ceratozamia mirandae Perez-Farrera et al. (2006) 2 2 Y N 

Angiospermae Arecales Arecaceae Chamaedorea radicalis Endress et al. (2004) 2 1 Y Y 

Angiospermae Laurales Lauraceae Chlorocardium rodiei Zagt (1997) 2 2 Y N 

Angiospermae Asterales Asteraceae Cirsium palustre Ramula et al. (2009) 1 1 Y Y 

Angiospermae Brassicales Brassicaceae Cleome droserifolia Hegazy (1990) 1 1 Y N 

Angiospermae Myrtales Melastomataceae Clidemia hirta De Walt (2006) 6 2 Y Y 

Angiospermae Liliales Liliaceae Clintonia borealis Pitelka et al. (1985) 1 1 Y Y 

Angiospermae Arecales Arecaceae Coccothrinax readii Olmsted & Alvarez-Buylla (1995) 1 1 Y N 

Angiospermae Boraginales Boraginaceae Cynoglossum officinale Boorman & Fuller (1984) 1 1 Y N 

Angiospermae Boraginales Boraginaceae Cynoglossum 

virginianum 

Cipollini et al. (1993) 1 1 Y N 

Angiospermae Poales Poaceae Danthonia sericea Moloney (1988) 11 2 Y Y 

Angiospermae Apiales Apiaceae Daucus carota Verkaar & Schenkeveld (1984) 1 1 Y N 

Angiospermae Fabales Fabaceae Dicymbe altsonii Zagt (1997) 2 2 Y N 

Angiospermae Lamiales Plantaginaceae Digitalis purpurea van Baalen (1982) 1 1 Y N 

Angiospermae Poales Poaceae Digitaria eriantha O'Connor (1993) 10 10 Y N 

Angiospermae Dipsacales Caprifoliaceae Dipsacus sylvestris Werner & Caswell (1977) 1 1 Y N 
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Angiospermae Liliales Colchicaceae Disporum sessile Kawano et al. (1987) 1 1 N N 

Angiospermae Liliales Colchicaceae Disporum smilacinum Kawano et al. (1987) 1 1 Y N 

Angiospermae Annonales Annonaceae Duguetia neglecta Zagt (1997) 2 2 Y N 

Angiospermae Boraginales Boraginaceae Echium vulgare Klemow & Raynal (1985) 1 1 Y N 

Angiospermae Lamiales Scrophulariaceae Eremophila forrestii Watson et al. (1997) 7 2 Y N 

Angiospermae Lamiales Scrophulariaceae Eremophila maitlandii Watson et al. (1997) 13 2 Y N 

Angiospermae Liliales Liliaceae Erythronium 

japonicum 

Kawano et al. (1987) 1 1 Y N 

Angiospermae Asterales Asteraceae Eupatorium 

perfoliatum 

Byers & Meagher (1997) 4 3 Y Y 

Angiospermae Asterales Asteraceae Eupatorium resinosum Byers & Meagher (1997) 4 2 Y N 

Angiospermae Arecales Arecaceae Euterpe edulis Silva Matos et al. (1999) 4 1 Y Y 

Angiospermae Arecales Arecaceae Euterpe precatoria Peña-Claros & Zuidema (2000) 1 1 Y N 

Angiospermae Fagales Fagaceae Fagus grandifolia Batista et al. (1998) 2 1 Y Y 

Angiospermae Liliales Liliaceae Fritillaria meleagris Zhang (1983) 3 2 Y N 

Angiospermae Malvales Cistaceae Fumana procumbens Bengtsson (1993) 7 1 Y N 

Angiospermae Malpighiales Clusiaceae Garcinia lucida Guedje et al. (2003) 1 1 Y Y 

Angiospermae Gentianales Gentianaceae Gentiana 

pneumonanthe 

Chapman et al. (1989) 1 1 Y N 

Angiospermae Arecales Arecaceae Geonoma deversa Zuidema (2000) 1 1 Y N 

Angiospermae Arecales Arecaceae Geonoma orbignyana Rodríguez-Buriticá et al. (2005) 1 1 Y Y 

Angiospermae Rosales Rosaceae Geum reptans Weppler et al. (2006) 4 2 Y Y 

Angiospermae Rosales Rosaceae Geum rivale Kiviniemi (2002) 6 2 Y Y 

Angiospermae Lecythidales Lecythidaceae Grias peruviana Peters (1991; 1992) 1 1 Y N 
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Angiospermae Asterales Asteraceae Helianthus divaricatus Nantel & Gagnon (1999) 9 4 Y N 

Angiospermae Zingiberales Heliconiaceae Heliconia acuminata Bruna (2003) 6 1 Y Y 

Angiospermae Poales Poaceae Heteropogon contortus O'Connor (1993) 11 1 Y N 

Angiospermae Asterales Asteraceae Hieracium floribundum Thomas & Dale (1975) 1 1 Y N 

Angiospermae Asparagales Orchidaceae Himantoglossum 

hircinum 

Pfeifer et al. (2006) 1 1 Y Y 

Angiospermae Malvales Cistaceae Hudsonia montana Gross et al. (1998) 4 1 Y N 

Angiospermae Cornales Hydrangeaceae Hydrangea paniculata Hara et al. (2004) 1 1 Y Y 

Bryopsida Hypnales Hylocomiaceae Hylocomium splendens Okland (1995) 1 1 Y Y 

Angiospermae Arecales Arecaceae Iriartea deltoidea Pinard (1993) 6 5 Y Y 

Angiospermae Brassicales Brassicaceae Isatis tinctoria Farah et al. (1988) 1 1 Y N 

Angiospermae Fabales Fabaceae Lathyrus vernus Ehrlén & van Groenendael (1998); 

Ehrlén (1995) 

19 7 Y Y 

Angiospermae Laurales Lauraceae Lindera benzoin Cipollini et al. (1994) 3 2 N N 

Angiospermae Laurales Lauraceae Lindera umbellata Hara et al. (2004) 1 1 Y Y 

Angiospermae Malphigiales Linaceae Linum catharticum Verkaar & Schenkeveld (1984) 1 1 Y N 

Angiospermae Fabales Fabaceae Machaerium 

cuspidatum 

Nabe-Nielsen (2004) 2 1 Y Y 

Angiospermae Magnoliales Magnoliaceae Magnolia salicifolia Hara et al. (2004) 1 1 Y Y 

Angiospermae Caryophyllales Cactaceae Mammillaria crucigera Contreras & Valverde (2002) 3 2 Y Y 

Angiospermae Caryophyllales Cactaceae Mammillaria 

magnimamma 

Valverde et al. (2004) 4 2 Y Y 

Angiospermae Myrtales Melastomataceae Miconia albicans Hoffmann (1999) 3 1 Y N 

Angiospermae Caryophyllales Caryophyllaceae Minuartia obtusiloba Forbis & Doak (2004) 1 1 Y Y 
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Angiospermae Ericales Primulaceae Myrsine guianensis Hoffmann (1999) 3 1 Y N 

Angiospermae Asparagales Amaryllidaceae Narcissus 

pseudonarcissus 

Barkham (1980) 3 2 Y Y 

Angiospermae Caryophyllales Cactaceae Neobuxbaumia 

macrocephala 

Esparza-Olguin et al. (2002); 

Godínez-Alvarez & Valiente-Banuet 

(2004) 

4 2 Y Y 

Angiospermae Caryophyllales Cactaceae Neobuxbaumia 

mezcalaensis 

Esparza-Olguín et al. (2005) 1 1 Y Y 

Angiospermae Caryophyllales Cactaceae Neobuxbaumia tetetzo Godínez-Alvarez & Valiente-Banuet 

(2004) 

1 1 Y Y 

Angiospermae Arecales Arecaceae Neodypsis decaryi Ratsirarson et al. (1996) 4 3 Y Y 

Angiospermae Fagales Nothofagaceae Nothofagus fusca Enright & Ogden (1979) 1 1 Y Y 

Angiospermae Oxalidales Oxalidaceae Oxalis acetosella Berg (2002) 6 3 Y Y 

Angiospermae Apiales Araliaceae Panax quinquefolium Nantel et al. (1996) 5 4 Y N 

Angiospermae Caryophyllales Caryophyllaceae Paronychia pulvinata Forbis & Doak (2004) 1 1 Y Y 

Angiospermae Lamiales Orobanchaceae Pedicularis furbishiae Menges (1990) 1 1 Y N 

Angiospermae Fabales Fabaceae Pentaclethra 

macroloba 

Hartshorn (1975) 1 1 Y N 

Angiospermae Fabales Fabaceae Periandra 

mediterranea 

Hoffmann (1999) 3 1 Y N 

Angiospermae Proteales Proteaceae Petrophile pulchella Bradstock & O'Connell (1988) 1 1 Y N 

Angiospermae Arecales Arecaceae Phytelephas seemannii Bernal (1998) 1 1 Y Y 

Angiospermae Asterales Asteraceae Picris hieracioides Klemow & Raynal (1985) 1 1 Y N 

Angiospermae Lamiales Lentibulariaceae Pinguicula alpina Svensson et al. (1993) 1 1 Y Y 
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Angiospermae Lamiales Lentibulariaceae Pinguicula villosa Svensson et al. (1993) 1 1 Y Y 

Angiospermae Lamiales Lentibulariaceae Pinguicula vulgaris Svensson et al. (1993) 1 1 N Y 

Gymnospermae Pinales Pinaceae Pinus jeffreyi van Mantgem & Stephenson (2005) 1 1 N N 

Gymnospermae Pinales Pinaceae Pinus lambertiana van Mantgem & Stephenson (2005) 3 3 Y N 

Gymnospermae Pinales Pinaceae Pinus palustris Platt et al. (1988) 1 1 Y N 

Gymnospermae Pinales Pinaceae Pinus ponderosa van Mantgem & Stephenson (2005) 1 1 Y N 

Angiospermae Lamiales Plantaginaceae Plantago media Eriksson & Eriksson (2000) 8 2 Y Y 

Angiospermae Arecales Arecaceae Podococcus barteri Bullock (1980) 1 1 Y N 

Angiospermae Rosales Rosaceae Potentilla anserina Eriksson (1986) 4 1 Y N 

Angiospermae Ericales Primulaceae Primula veris Ramula et al. (2009) 1 1 Y Y 

Angiospermae Ericales Primulaceae Primula vulgaris Valverde & Silvertown (1998) 14 8 Y Y 

Angiospermae Fabales Fabaceae Prosopis glandulosa Golubov et al. (1999) 1 1 Y N 

Angiospermae Caryophyllales Cactaceae Pterocereus gaumeri Mendéz et al. (2004) 4 2 Y Y 

Angiospermae Lamiales Gesneriaceae Ramonda myconi Picó & Riba (2002) 5 5 Y Y 

Angiospermae Burserales Anacardiaceae Rhus aromatica Nantel & Gagnon (1999) 9 4 Y N 

Angiospermae Proteales Proteaceae Roupala montana Hoffmann (1999) 3 1 Y N 

Angiospermae Connarales Connaraceae Rourea induta Hoffmann (1999) 3 1 Y N 

Angiospermae Saxifragales Saxifragaceae Saxifraga cotyledon Dinnétz & Nilsson (2002) 8 2 Y Y 

Angiospermae Dipsacales Caprifoliaceae Scabiosa columbaria Verkaar & Schenkeveld (1984) 1 1 Y N 

Angiospermae Sapindales Anacardiaceae Sclerocarya birrea Emanuel et al. (2005) 1 1 Y Y 

Angiospermae Asterales Asteraceae Scorzonera humilis Colling & Matthies (2006) 1 1 Y Y 

Gymnospermae Pinales Cupressaceae Sequoia sempervirens Bosch (1971);  

Namkoong & Roberds (1974) 

3 2 Y Y 

Angiospermae Poales Poaceae Setaria incrassata O'Connor (1993) 20 2 Y N 
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Angiospermae Caryophyllales Caryophyllaceae Silene acaulis Gross et al. (2006); 

Morris & Doak (2005) 

25 5 Y N 

Angiospermae Caryophyllales Caryophyllaceae Silene douglasii Kephart & Paladino (1997) 2 2 Y Y 

Angiospermae Poales Poaceae Spartina alterniflora Hastings et al. (2006) 1 1 Y Y 

Angiospermae Ericales Styracaceae Styrax obassia Abe et al. (1998) 3 2 Y Y 

Angiospermae Poales Poaceae Swallenia alexandrae Pavlik & Barbour (1988) 1 1 Y N 

Angiospermae Poales Poaceae Themeda triandra O'Connor (1993) 21 2 Y N 

Angiospermae Arecales Arecaceae Thrinax radiata Olmsted & Alvarez-Buylla (1995) 5 4 Y N 

Angiospermae Poales Bromeliaceae Tillandsia 

brachycaulos 

Mondragón et al. (2004) 3 1 Y Y 

Angiospermae Poales Bromeliaceae Tillandsia deppeana Winkler et al. (2007) 1 1 Y Y 

Angiospermae Poales Bromeliaceae Tillandsia juncea Winkler et al. (2007) 1 1 Y Y 

Angiospermae Poales Bromeliaceae Tillandsia multicaulis Winkler et al. (2007) 1 1 Y Y 

Angiospermae Poales Bromeliaceae Tillandsia punctulata Winkler et al. (2007) 1 1 N Y 

Angiospermae Liliales Melanthiaceae Trillium grandiflorum Rooney & Gross (2003) 1 1 Y Y 

Angiospermae Fabales Fabaceae Ulex gallii Stokes et al. (2004) 1 1 Y N 

Angiospermae Fabales Fabaceae Ulex minor Stokes et al. (2004) 1 1 Y N 

Angiospermae Dipsacales Adoxaceae Viburnum furcatum Hara et al. (2004) 1 1 Y Y 

Angiospermae Myrtales Vochysiaceae Vochysia ferruginea Boucher & Mallona (1997) 1 1 Y Y 
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ANIMALS 

Class  Order Family Species Reference Number 

matrices 

Number 

populations 

Irreducible Vector 

Mammalia Carnivora Felidae Acinonyx jubatus Crooks et al. (1998) 1 1 Y N 

Osteichthyes Acipenseriformes Acipenseridae Acipenser medirostris Simpson & Kopp (2006) 1 1 Y Y 

Pterygota Hemiptera Aphididae Acyrthosiphon pisum Gross et al. (2002) 4 2 Y Y 

Aves Strigiformes Strigidae Aegolius funereus Hayward & McDonald, 2nd Owl 

Symposium. 

1 1 Y N 

Anthozoa Scleractinia Agariciidae Agaricia agaricites Hughes & Tanner (2000) 4 1 Y Y 

Mammalia Carnivora Ursidae Ailuropoda 

melanoleuca 

Carter et al. (1999) 1 1 N N 

Mammalia Artiodactyla Cervidae Alces alces Gaillard & Yoccoz (2003) 1 1 Y N 

Anthozoa Alcyonacea Alcyoniidae Alcyonium sp McFadden (1991) 4 4 Y N 

Aves Anseriformes Anatidae Anser caerulescens Rockwell et al. (1997) 1 1 Y N 

Mammalia Artiodactyla Antilocapridae Antilocapra americana Berger & Conner (2008); Gaillard 

and Yoccoz (2003) 

4 3 Y N 

Mammalia Cetacea Balaenopteridae Balaenoptera musculus Usher (1972) 1 1 Y N 

Mammalia Artiodactyla Bovidae Bos taurus Gaillard & Yoccoz (2003) 1 1 Y N 

Mammalia Primates Atelidae Brachyteles 

hypoxanthus 

Lawler (2010) 1 1 Y N 

Amphibia Anura Bufanoidea Bufo boreas Biek et al. (2002) 1 1 Y N 

Aves Charadriiformes Scolopacidae Calidris pusilla Hitchcock & Gratto-Trevor (1997) 1 1 Y N 

Malacostraca Decapoda Portunidae Callinectes sapidus Miller (2001) 4 1 Y N 

Mammalia Carnivora Phocidae  Callorhinus ursinus Barlow & Boveng (1991) 1 1 N N 
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Mammalia Carnivora Canidae Canis lupis Miller et al. (2002) 1 1 Y N 

Mammalia Artiodactyla Bovidae Capra ibex Gaillard & Yoccoz (2003) 1 1 Y N 

Mammalia Artiodactyla Bovidae Capra pyrenaica Escos et al. (1994) 2 2 Y N 

Mammalia Artiodactyla Cervidae Capreolus capreolus Gaillard & Yoccoz (2003) 1 1 Y N 

Chondrichthyes Lamniformes Odontaspididae Carcharias taurus Otway et al. (2004) 1 1 Y N 

Reptilia Testudines Cheloniidae Caretta caretta Crouse et al. (1987); Crowder et al. 

(1994) 

2 1 Y N 

Mammalia Primates Cebidae Cebus capucinus Lawler (2010) 1 1 Y N 

Aves Galliformes Phasianidae Centrocercus 

urophasianus 

Johnson & Braun (1999) 1 1 Y N 

Mammalia Primates Cercopithecidae Cercopithecus mitis 

stuhlmanni 

Cords & Chowdhury (2010) 1 1 N N 

Mammalia Artiodactyla Cervidae Cervus elaphus Benton et al. (1995) 1 1 Y N 

Reptilia Testudines Cheloniidae Chelonia mydas Chaloupka (2002) 1 1 Y N 

Sauropsida Testudines Chelydridae Chelydra serpentina Congdon et al. (1994) 1 1 Y N 

Aves Passeriformes Tyrranidae Chiroxiphia linearis McDonald (1993) 2 1 Y N 

Actinopterygii Scorpaeniformes Cottidae Clinocottus globiceps Pfister (1996) 3 1 N N 

Mammalia Artiodactyla Bovidae Connochaetes taurinus Grange et al. (2004) 1 1 Y N 

Sauropsida Falconiformes Cathartidae Coragyps atratus Blackwell et al. (2007) 2 1 Y N 

Reptilia Squamata Elapidae Cryptophis nigrescens Webb et al. (2002) 1 1 Y N 

Mammalia Rodentia Sciuridae Cynomys gunnisoni Cully (1997) 2 2 N N 

Branchiopoda Cladocera Daphniidae Daphnia magna DJC unpublished 2 1 Y N 

Branchiopoda Cladocera Daphniidae Daphnia pulex Frank et al. (1957) 1 1 N N 

Chondrichthyes Rajiformes Dasyatidae Dasyatis violacea Mollet & Cailliet (2002) 1 1 Y N 
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Aves Procellariiformes Diomedeidae Diomedea 

amsterdamensis 

Inchausti & Weimerskirch (2001) 1 1 Y N 

Mammalia Rodentia Geomyidae Dipodomys stephensi Price & Kelly (1994) 1 1 N N 

Sauropsida Testudines Emydidae Emydoidea blandingii Congdon et al. (1993) 1 1 Y N 

Actinopterygii Clupeiformes Engraulidae Engraulis mordax Lo et al. (1995) 1 1 Y N 

Mammalia Carnivora Mustelidae Enhydra lutris nereis Krkosek et al. (2007) 1 1 Y N 

Mammalia Perissodactyla Equidae Equus burchelli Grange et al. (2004) 1 1 Y N 

Mammalia Perissodactyla Equidae Equus caballus Garrott & Taylor (1990);  

Fernandez et al. (2006) 

6 6 Y N 

Mammalia Cetacea Balaenidae Eubalaena glacialis Fujiwara & Caswell (2001) 1 1 Y N 

Mammalia Carnivora Otariidae Eumetopias jubatus York (1994) 1 1 Y N 

Aves Falconiformes Falconidae Falco naumanni Hiraldo et al. (1996) 1 1 Y N 

Aves Falconiformes Falconidae Falco peregrinus Wootton & Bell (1992) 1 1 Y N 

Actinopterygii Cyprinodontiformes Fundulidae Fundulus grandis Sable (2007) 1 1 Y N 

Anthozoa Scleractinia Faviidae Goniastrea aspera Orive (1995) 1 1 Y Y 

Anthozoa Scleractinia Faviidae Goniastrea favulus Orive (1995) 1 1 Y Y 

Reptilia Testudines Testudinidae Gopherus agassizii Doak et al. (1994) 1 1 Y N 

Mammalia Primates hominidae Gorilla beringei Lawler (2010) 1 1 Y N 

Mammalia Carnivora Phocidae  Halichoerus grypus Harding et al. (2007) 1 1 Y N 

Gastropoda Archegastropoda Haliotidae Haliotis rufescens Rogers-Bennett & Leaf (2006) 1 1 Y N 

Gastropoda Archegastropoda Haliotidae Haliotis sorenseni Rogers-Bennett & Leaf (2006) 1 1 Y N 

Gastropoda Pulmonata Helicidae Helix aspera Laskowski & Hopkin (1996) 1 1 Y N 

Mammalia Artiodactyla Bovidae Hemitragus jemlahicus Caughley (1966) 1 1 Y N 

Mammalia Artiodactyla Cervidae Hippocamelus bisulcus Wittmer et al. (2010) 1 1 Y N 
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Reptilia Squamata Elapidae Hoplocephalus 

bungaroides 

Webb et al. (2002) 1 1 Y N 

Aves Passeriformes Turdidae Hylocichla mustelina Noon & Sauer (1992) 1 1 Y N 

Reptilia Testudines Kinosternidae Kinosternon flavescens Heppell et al. (1996) 1 1 Y N 

Pterygota Coleoptera NA Lasioderma serricorne Lefkovitch (1965) 1 1 Y N 

Reptilia Testudines Cheloniidae Lepidochelys kempi Heppell et al. (1996) 1 1 Y N 

Anthozoa Gorgonacea Gorgoniidae Leptogorgia virgulata  Gotelli (1991) 1 1 Y N 

Anthozoa Scleractinia Agariciidae Leptoseris cucullata Hughes & Tanner (2000) 4 1 Y Y 

Mammalia Rodentia Geomyidae Liomys adspersus Oli & Zinner (2001) 1 1 Y N 

Mammalia Primates Cercopithecidae Macaca fascicularis Crockett et al. (1996) 9 1 N N 

Mammalia Primates Cercopithecidae Macaca Thibetana Oli & Zinner (2001) 1 1 Y N 

Mammalia Cetacea Balaenopteridae Megaptera 

novaeangliae 

Barlow & Clapham (1997) 1 1 N N 

Mammalia Carnivora Mustelidae Meles meles Messick & Hornocker (1981) 1 1 N Y 

Mammalia Rodentia Muridae Microtus orcadensis Leslie et al. (1965) 1 1 N N 

Mammalia Rodentia Muridae Microtus 

pennsylvanicus 

Oli & Dobson (1999) 3 1 Y N 

Anthozoa Scleractinia Faviidae Montastrea annularis Hughes & Tanner (2000) 4 1 Y Y 

Mammalia Carnivora Mustelidae Mustela erminea Wittmer et al. (2007) 5 1 Y N 

Mammalia Carnivora Mustelidae Mustela nigripes Grenier et al. (2007) 1 1 N N 

Chondrichthyes Carchariniformes Carcharhinidae Negaprion brevirostris Hoenig & Gruber (1990) 1 1 Y N 

Aconoidasida Piroplasmorida Babesiidae Nuttallia obscurata Dudas et al. (2007) 2 2 Y Y 

Mammalia Lagomorpha Ochotonindae Ochotona princeps Smith (1974) 1 1 N Y 

Mammalia Artiodactyla Cervidae Odocoileus hermionus Gaillard & Yoccoz (2003) 1 1 Y N 
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Mammalia Artiodactyla Cervidae Odocoileus virginianus Jensen (1996) 1 1 N N 

Actinopterygii Scorpaeniformes Cottidae Oligocottus maculosus Pfister (1996) 3 1 N N 

Actinopterygii Salmoniformes Salmonidae Onchorhynchus clarki Hilderbrand (2003) 1 1 Y N 

Actinopterygii Salmoniformes Salmonidae Onchorhynchus 

tshawytscha 

Kareiva et al. (2000); Wilson 2003 4 5 Y N 

Mammalia Marsupialia Macropodidae Onychogalea fraenata Fisher et al. (2000) 1 1 Y Y 

Mammalia Cetacea Delphinidae Orcinus orca Brault & Caswell (1993) 19 18 N N 

Mammalia Artiodactyla Bovidae Oreamnos americanus Gaillard & Yoccoz (2003) 1 1 Y N 

Mammalia Artiodactyla Bovidae Ovis aeries Gaillard & Yoccoz (2003) 1 1 Y N 

Mammalia Artiodactyla Bovidae Ovis canadensis Gaillard & Yoccoz (2003) 1 1 Y N 

Mammalia Artiodactyla Bovidae Ovis dall Gaillard & Yoccoz (2003) 1 1 Y N 

Malacostraca Decapoda Paguroidea Pagurus longicarpus Damiani (2005) 1 1 Y N 

Malacostraca Decapoda Palaemonoida Palaemonetes pugio Sable (2007) 1 1 Y N 

Mammalia Primates hominidae Pan troglodytes 

schweinfurthii 

Lawler (2010) 1 1 Y N 

Mammalia Carnivora Felidae Panthera leo Oli & Zinner (2001) 1 1 Y N 

Mammalia Primates Cercopithecidae Papio cynocephalus Oli & Zinner (2001) 1 1 Y N 

Anthozoa Gorgonacea Plexuridae Paramuricea clavata Linares et al. (2007) 6 2 Y Y 

Aves Passeriformes Passeridae Passer domesticus Maclean et al. (2008) 1 1 Y N 

Mammalia Artiodactyla Suidae Phacochoerus 

aethiopicus 

Oli & Zinner (2001) 1 1 Y N 

Mammalia Marsupialia Phascolarctidae Phascolarctos cinereus Baxter et al. (2006) 1 1 Y N 

Sauropsida Galliformes Phasianidae Phasianus colchicus 

torquatus 

Clark et al. (2008) 3 2 Y N 
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Aves Procellariiformes Diomedeidae Phoebastria nigripes Lewison & Crowder (2003) 1 1 Y N 

Aves Piciformes Picidae Picoides borealis MacGuire et al. (1995) 4 1 Y N 

Anthozoa Scleractinia Faviidae Platygyra sinensis Orive (1995) 1 1 Y Y 

Osteichthyes Cyprinodontiformes Poeciliidae Poecilia reticulata Branikowski et al. (2002) 5 1 Y N 

Mammalia Primates Indridae Propithecus Verreuxi Lawler et al. (2009) 1 1 Y N 

Mammalia Artiodactyla Bovidae Pseudois nayaur Oli & Zinner (2001) 1 1 Y N 

Aves Procellariiformes Procellariidae Pterodroma 

phaeopygia 

sandwichensis 

Simons (1984) 1 1 Y N 

Aves Procellariiformes Procellariidae Puffinus opisthomelas Keitt et al. (2002) 1 1 Y N 

Amphibia Anura Ranidae Rana aurora Biek et al. (2002) 1 1 Y N 

Amphibia Anura Ranidae Rana catesbeiana Purnima et al. (2005) 1 1 N N 

Amphibia Anura Ranidae Rana sylvatica US EPA (2003) 2 2 N N 

Amphibia Anura Ranidae Rana temporaria Biek et al. (2002) 1 1 Y N 

Mammalia Artiodactyla Cervidae Rangifer tarandus Oli & Zinner (2001) 1 1 Y N 

Aves Falconiformes Accipitridae Rostrhamus sociabilis Beissinger (1995) 3 1 Y N 

Actinopterygii Salmoniformes Salmonoidae Salvelinus fontinalis Letcher et al. (2007) 1 1 Y N 

Actinopterygii Clupeiformes Clupeoidae Sardinops sagax Lo et al. (1995) 1 1 Y N 

Mammalia Rodentia Sciuridae Sciurus carolinensis Barkalow et al. (1970) 1 1 Y Y 

Mammalia Rodentia Sciuridae Spermophilus armatus Slade & Balph (1974) 8 3 Y N 

Mammalia Rodentia Sciuridae Spermophilus 

columbianus 

Dobson & Oli (2001) 6 6 Y N 

Mammalia Rodentia Sciuridae Spermophilus lateralis Bronson (1979) 4 4 Y N 

Demospongiae Dictyoceratida Spongiidae Spongia graminea Cropper & Di Resta (1999) 3 1 Y Y 



209 
 

Sauropsida Charadriiformes Laridae Sterna antillarum Akçakaya et al. (2003) 6 1 Y N 

Polychaeta Spionida Spionidae Streblospio benedicti Levin et al. (1987) 2 1 Y N 

Aves Strigiformes Strigidae Strix occidentalis Lande (1988) 1 1 Y N 

Mammalia Artiodactyla Suidae Sus scrofa Bieber & Ruf (2005) 3 1 Y N 

Mammalia Artiodactyla Bovidae Syncerus caffer Grange et al. (2004) 1 1 Y N 

Mammalia Rodentia sciuridae Tamiasciurus 

hudsonicus 

McAdam et al. (2007) 1 1 N N 

Mammalia Marsupialia Didelphidae Thylamys elegans Lima et al. (2001) 5 1 Y N 

Mammalia Artiodactyla Bovidae Tragelaphus 

strepsiceros 

Gaillard & Yoccoz (2003) 1 1 Y N 

Pterygota Coleoptera NA Tribolium sp Costantino (1987) 2 1 Y N 

Mammalia Sirenia Trichechidae Trichechus manatus 

latirostris 

Runge et al. (2004) 4 4 Y N 

Aves Passeriformes Troglodytedae Troglodytes troglodytes Maclean et al. (2008) 1 1 Y N 

Mammalia Cetacea Delphinidae Tursiops truncatus Stolen & Barlow (2003) 3 1 Y N 

Aves Galliformes Phasianidae Tympanuchus cupido 

pinnatus 

Wisdom & Mills (1997) 3 1 N N 

Gastropoda Archegastropoda Trochidae Umbonium costatum Noda & Nakao (1996) 9 1 Y N 

Aves Charadriiformes Alcidae Uria lomvia Wiese et al. (2004) 1 1 Y N 

Mammalia Carnivora Canidae Urocyon littoralis Roemer et al. (2001) 4 3 Y N 

Mammalia Carnivora Ursidae Ursus americanus Oli & Zinner (2001) 1 1 Y N 

Mammalia Carnivora Ursidae Ursus arctos Wielgus (2002) 1 1 Y N 

Mammalia Carnivora Ursidae Ursus maritimus Hunter (2010) 6 1 Y N 

Reptilia Squamata Viperidae Vipera aspis Altwegg et al. (2005) 3 2 Y N 
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Aves Passeriformes Vireonidae Vireo latimeri Woodworth (1999) 8 1 Y N 

Aves Passeriformes Vireonidae Vireo olivaceus Noon & Sauer (1992) 1 1 Y N 

Mammalia Carnivora Canidae Vulpes vulpes Nelson et al. (2010) 1 1 Y N 

Reptilia Squamata Xenosauridae Xenosaurus grandis Zuniga-Vega et al. (2007) 5 1 Y Y 

Bivalvia Nuculoida Yoldiidae Yoldia notabilis Nakaoka (1997) 3 2 Y N 

Mammalia Carnivora Otariidae Zalophus californianus Wielgus et al. (2008) 1 1 Y N 
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GLOSSARY 

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯  

AMPLIFICATION   

Short-term increase in population density relative to asymptotic growth. 

 

ASYMPTOTIC GROWTH   

The long-term, geometric rate of population increase or decline that the model exhibits when it 

reaches stable state; mathematically, equal to the dominant eigenvalue of the PPM, λmax. 

 

ATTENUATION  

Short-term decrease in population density relative to asymptotic growth. 

 

CASE-SPECIFIC TRANSIENT DYNAMICS  

The transient dynamics resulting from a specified initial demographic distribution. 

 

INITIAL DEMOGRAPHIC DISTRIBUTION  

The actual ratios of life stages in the population; mathematically, the vector used to project 

population dynamics. Represented here using n0, where ||n0||1 (the one-norm or column sum 

of n0) is equal to overall population size or density. 

 

DISTURBANCE  

A change to the demographic structure of the population (usually as a result of exogenous 

forces); mathematically, a change in the ratio of life stages in the initial demographic 

distribution vector. 

 

ELASTICITY 

The change in population density or growth resulting from a perturbation of one or more vital 

rates of a population, relative to the magnitude of the vital rate(s) perturbed. 

 

PERTURBATION  

A change to the vital rates of the population (usually as a result of exogenous forces); 

mathematically, a change in one or more PPM elements. 

 

PERTURBATION ANALYSIS  
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Any analysis that considers the change of a model output with respect to the change of a model 

input; usually considering the change in population density or growth resulting from 

perturbation of one or more vital rates of the population. 

 

SENSITIVITY  

The absolute rate of change in population density or growth resulting from infinitesimal 

perturbations of one or more vital rates of a population. 

 

STABLE DEMOGRAPHIC DISTRIBUTION  

The ratios of life stages in the population when it reaches stable state; mathematically, equal to 

the dominant right eigenvector of the PPM, w. 

 

STAGE-BIASED VECTOR  

An initial demographic distribution vector that has all individuals in a single stage and an 

overall density of 1; mathematically, a standard basis vector with zeroes in each entry, except 

for a single entry that is equal to one. 

 

TRANSFER FUNCTION  

A means of perturbation analysis derived from systems and control theory. Describes the exact 

nonlinear relationship between a perturbation to a vital rate and resultant change in population 

density or growth. 

 

TRANSIENT BOUND  

The most extreme values of transient dynamics that may result from a PPM. Any case-specific 

transient dynamics must lie between the bounds on amplification and attenuation. 

 

TRANSIENT DYNAMICS  

The short-term dynamics of the population, which are dependent on the initial conditions of the 

model. 

 

TRANSIENT ENVELOPE  

The area between the transient bounds, in which case-specific transient dynamics must lie. 

 

TRANSIENT PERIOD  

The period of time in which the model exhibits transient dynamics, before it settles to stable 

state. 
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