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Abstract 
 

In mammalian cells and fungi, early endosomes form a dynamic compartment 

that undergoes bi-directional motility along microtubules. Previous work has 

shown that in the model system Ustilago maydis early endosome motility 

involves the opposing motor proteins dynein and kinesin-3. Here I performed a 

detailed analysis of the role of the motors in early endosome motility, using 

quantitative live cell imaging of kinesin-3, dynein and the endosomal GTPase 

Rab5a. In the first part of my work, I analysed the role of dynein at MT plus-

ends, where the motor forms a strong accumulation that was thought to be 

involved in capturing early endosomes. I could demonstrate that ~55 dynein 

motors build up the dynein accumulation. In collaboration with Ms. Congping Lin 

and Prof. Peter Ashwin (Institute for Mathematics, Exeter), I found theoretical 

evidence that ~25 dynein motors concentrate and leave the plus-ends 

stochastically. In addition, dynein motors are captured by an interaction of 

dynactin and the plus-end binding protein EB1. Together both mechanisms 

increase the number of motors, which ensures that EEs will be loaded onto 

dynein before they reach the end of their track. In a second project, I provide 

evidence that loading of dynein is not restricted to the plus-ends. Instead, 

dynein leaves the plus-ends and is able to bind to kinesin-3 delivered early 

endosomes, which changes their transport direction from anterograde to 

retrograde. Kinesin-3 remains bound to these retrograde EEs. When dynein 

leaves the organelle, it switches back to anterograde motility. Interestingly, a 

single dynein wins over three to five kinesin-3 motors. I discuss these findings in 

the light of current motor cooperation concepts. In a third part, I demonstrated 

that kinesin-3 has an unexpected role in long-range retrograde endosome 

motility. In contrast, dynein is only responsible for the distal 10-20 µm. This is 

possible because most of the hyphal cells contain a symmetric and bi-polar MT 

array. This MT organization is reminiscent of that in dendrites. Kinesin-3-based 

retrograde motility is required to mix the organelles and might support long-

range communication between both cell poles. 
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