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Abstract 

The whitefly Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae) is a 

serious pest of protected vegetable and ornamental crops in most temperate regions of 

the world. Neonicotinoids, pymetrozine (a feeding blocker), spiromesifen (a tetronic 

acid derivative), bifenthrin (a pyrethroid), and pyriproxyfen (a juvenile hormone 

mimic) are among the most important insecticides used to control this species. 

Bioassays were used to quantify responses of recently-collected strains of T. 

vaporariorum to three neonicotinoids (imidacloprid, thiamethoxam, and acetamiprid), 

pymetrozine, spiromesifen, bifenthrin, and pyriproxyfen. 454 pyrosequencing was 

exploited to generate the first transcriptome for this species. PCR-sequencing was 

used to identify mutations in the target proteins of spiromesifen and bifenthrin 

potentially associated with resistance to these compounds. Microarray sequencing 

technology was employed to investigate differences in gene expression associated 

with pyriproxyfen resistance. 

Resistance to neonicotinoids was age-specific in expression and consistently 

associated with resistance to pymetrozine, supporting a hypothesis of metabolic 

resistance analogous to that in the tobacco whitefly, Bemisia tabaci. Bioassays also 

showed moderate to high level resistance to spiromesifen, bifenthrin and 

pyriproxyfen in some strains. Analysis of the transcriptome identified genes encoding 

enzymes involved in the detoxification of xenobiotics (cytochrome P450s, 

carboxyl/cholinesterases, and glutathione-s transferases) and ones encoding 

insecticide targets:  acetyl-coA carboxylase (ACCase), the target of spiromesifen and 

the voltage-gated sodium channel protein targeted by pyrethroids. PCR-sequencing 

revealed a single nucleotide polymorphism in the ACCase gene, which was 

consistently associated with spiromesifen resistance. Three amino-acid substitutions 

in the sodium channel of pyrethroid-resistant T. vaporariorum were found in 

positions previously implicated in pyrethroid resistance in B. tabaci. Microarray 

sequencing disclosed that a cytochrome P450 gene (CYP4G61) was overexpressed in 

a strain selected for increased pyriproxyfen resistance. The implications of these 

results and opportunities for further work are discussed. 
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Chapter 1 

Introduction 

 

1.1 INSECTICIDE USE - PAST AND PRESENT 

Insecticides are toxic compounds used against all developmental stages of insect pests 

of agriculture, humans and livestock. Even before 1000 BC, the burning of sulphur to 

fumigate houses against pests and diseases was mentioned by Homer (van Emden & 

Service, 2004). The organochlorine dichlorodiphenyltrichloroethane (DDT) was first 

synthesized in 1874 and started being used as an insecticide during World War II to 

control human disease vectors. DDT and related compounds were then adopted for 

agricultural use, leading to a revolution in the development of new insecticides. 

Nicotine is an important naturally-occurring insecticidal compound with a long 

history, which later prompted the development of a major group of synthetic 

molecules, the neonicotinoids (Yamamoto, 1999). Nicotine is still in use today as a 

fumigant and a foliar spray of a range of horticultural pests.  

Insecticides are one of the main reasons for the increase in agricultural productivity in 

the 20th century (Maredia et al., 2003), along with the development of high yielding 

crops and new fertilizers. However, DDT and other insecticides have been banned in 

many countries, because of their persistence, damage to the environment and/or their 

toxicity to mammals and non-target organisms (van Emden & Service, 2004). Today, 

the approval and use of insecticides is subject to increasingly stringent regulation. It is 

necessary to balance agricultural needs for development of efficient and profitable 

insecticides, with environmental and health issues. Many modern agricultural systems 
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often still rely on multiple applications of insecticides for the control of insect pests. 

However, there are many drawbacks to the overuse of insecticides. In particular, after 

prolonged exposure to a limited number of insecticides, pests can adapt to survive 

insecticides’ toxic effects. 

 

1.2 INSECTICIDE RESISTANCE AND MECHANISMS OF RESISTANCE 

Insecticide resistance is an evolutionary phenomenon. It is a heritable trait selected by 

insecticides that allows a pest to survive chemical control tactics. More specifically, 

insecticide resistance allows an insect to survive doses of insecticides that would 

normally kill susceptible populations of the same species (Onstad, 2008). Melander 

(1914) was the first author who described the occurrence of insecticide resistance. 

Georghiou and Lagunes-Tejeda (1991) reported that by 1989, more than 500 species 

of insects, mites and other arthropods were known to have developed resistance to 

one or more pesticides. This problem is continuously increasing, affecting almost all 

the chemical classes. 

According to the Insecticide Resistance Action Committee (IRAC) insecticide 

resistance is “a heritable change in the sensitivity of a pest population that is reflected 

in the repeated failure of a product to achieve the expected level of control when used 

according to the label recommendation for that pest species” (IRAC, 2007). 

Insecticide resistance is caused by mutations that arise randomly and protect 

individuals that possess them from insecticide applications. The rate of development 

of resistance depends mainly on the selection pressure imposed upon the pest by the 

insecticide; increased exposure of a population to a toxin increases the frequency of 

resistant individuals in that population. Resistance can increase faster in the confined 
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environment of greenhouses, were the pests reproduce more rapidly with very little or 

no immigration of susceptible individuals.  

Insecticide resistance can result from two main types of mechanism: 1) reduced 

binding of the insecticide to its target through target site mutations (e.g. 

acetylcholinesterase for organophosphates/carbamates, the voltage-gated sodium 

channel for pyrethroids and the nicotinic acetylcholine receptor for neonicotinoid 

insecticides) (Pittendrigh et al., 2008) and 2) increased detoxification or sequestration 

of insecticides (Ranson et al., 2002; Pittendrigh et al., 2008) by enzymes such as 

carboxyl-cholinesterases (CCEs) (Oakeshott et al., 2005), glutathione-S-transferases 

(GSTs) (Ranson & Hemingway, 2005) and cytochrome P450 monooxygenases 

(Feyereisen, 2005). Also, there are cases of resistance caused by reduced toxin 

penetration, increased toxin excretion or even behavioural resistance (avoidance of 

insecticide). A pest can develop more than one mechanism of resistance (multiple-

resistance) to one or more different compounds. Cross resistance, occurs when the 

genetic mutation that made the pest resistant to one pesticide also makes it resistant to 

other pesticides, more commonly affecting compounds with similar modes of action 

(Pittendrigh et al., 2008). 

 

1.3 WHITEFLIES AS AGRICULTURAL PESTS 

Whiteflies are major pests of many agricultural crops worldwide. They belong to the 

family Aleyrodidae of the order Hemiptera. More than 1450 species have been 

described as belonging to two subfamilies and the most economically important pest 

species are members of the Aleyrodinae (Bink-Moenen & Mound, 1990; Martin et 

al., 2000). The most damaging species are the cotton whitefly, Bemisia tabaci 

(Gennadius) and the greenhouse whitefly, Trialeurodes vaporariorum (Westwood). 
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Whiteflies are small phloem-feeding insects, most of them measuring between 1-

3mm. They usually have short life cycles, which are temperature-dependent and have 

multiple generations per year (Martin et al., 2000).  

Whiteflies are partially parthenogenetic, arrhenotokous insects. Haploid males are 

produced asexually and contain half the chromosomes of the sexually produced 

females, which are diploids and contain the full genetic material. This means that 

unfertilised females lay haploid eggs, resulting only in male progeny (Byrne & 

Devonshire, 1996; Calvitti et al., 1998; Carrière, 2003). Thus, males can never be 

heterozygous, as they possess only half of the alleles of their mother (Horowitz et al., 

2003). Haplodiploid breeding systems encourage the selection of pesticide resistance 

genes, leading to rapid and widespread pesticide resistance development. This 

happens because resistance genes arising by mutations are exposed to selection from 

the outset in hemizygous males, irrespective of intrinsic dominance or recessiveness 

(Denholm et al., 1998; Horowitz et al., 2003). However, the assumption that pesticide 

resistance evolves rapidly in haplodiploid arthropods is based on the belief that 

resistant males are as tolerant as resistant females (Carrière, 2003). Results from 

studies with the sweet potato whitefly and the greenhouse whitefly, indicate that 

males are less tolerant to pesticides than females (Horowitz et al., 1988; Sanderson & 

Roush, 1992; Carrière, 2003). Further research toward that aspect is necessary as 

these findings could have important implications in pesticide resistance development 

and management. 

 

1.3.1 The greenhouse whitefly, Trialeurodes vaporariorum 

Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae) (Figure 1.1), also 

known as the greenhouse or glasshouse whitefly, is a cosmopolitan species of 
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temperate regions. It is widely distributed throughout Europe, although in northern 

countries and the UK it is primarily found in crops grown under glass or plastic 

(Martin et al., 2000). It is a highly polyphagous pest that causes economic damage to 

Brassicaceae (watercress), Fabaceae (bean, soybean and pea), Cucurbitaceae 

(cucumber, melons, pumpkin and edible gourds), Rosaceae (rose, strawberry), 

Asteraceae (lettuce), Euphorbiaceae (poinsettia) and Solanaceae (tomato, potato, 

aubergine) plant families. Many weed species serve as alternate hosts for T. 

vaporariorum (Mound & Halsey, 1978; Byrne et al., 1990; Brødsgaard & Albajes, 

1999).  

The importance of T. vaporariorum as a pest is fuelled by its wide host range, small 

size (adults are 1-2 mm long) and rapid reproductive rate, due to a short 

developmental time and high fecundity. It congregates on the underside of leaves, 

which makes pesticide delivery difficult (Brødsgaard & Albajes, 1999). The life cycle 

of T. vaporariorum is shown in Figure 1.2. Females deposit their eggs on the 

undersides of leaves in characteristic circles, as the insect rotates about her rostrum 

while continuing to feed (Martin et al., 2000). Females are capable of mating less 

than 24 hours after emergence and can lay up to 30 eggs per day. The newly hatched 

larvae, often known as crawlers, are mobile, while the two subsequent scale-like 

immature stages are immobile and difficult to distinguish with the naked eye. During 

the fourth and final immature stage, known as the puparium, the larva thickens and 

the eyes and other body tissues become visible (Curry & Pimentel, 1971; Gill, 1990).  
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Figure 1.1 Adults, nymphs and eggs of Trialeurodes vaporariorum (Photograph by 

Kevin Gorman) 

 

All the life stages, apart from the egg can cause damage to crops either by direct 

feeding or by the excretion of honeydew, which leads to sooty mould contamination. 

Large populations can result in stunted plants and leaf necrosis (Byrne et al., 1990). 

T. vaporariorum is also a vector of numerous plant viruses, with all of them 

belonging in the Closteroviridae. It transmits Beet pseudo-yellow virus (BPYV) that 

affects cucumber, melon, lettuce and sugar beet. It also transmits Melon yellow virus 

(MYV), Potato yellow vein virus (PYVV), Tomato infectious chlorosis virus (TICV) 

and Tomato chlorosis virus (ToCV) (Byrne et al., 1990; Wisler et al., 1998; Jones, 

2003; Antignus, 2004; Khurana & Garg, 2004).  
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Figure 1.2 Life cycle of Trialeurodes vaporariorum at 22
o
C 

 

1.3.2 The tobacco whitefly, Bemisia tabaci 

Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), also known as cotton, tobacco 

or sweet-potato whitefly, is a cosmopolitan species found outdoors in tropical and 

sub-tropical regions. In temperate countries it can be found only in crops grown under 

protection (Martin et al., 2000). It is a highly polyphagous pest, affecting hundreds of 

different plant species (Byrne et al., 1990; Martin et al., 2000) and transmitting more 

than 110 plant viruses, belonging in the Begomovirus, Crinivirus and Carlavirus 

genera (Jones, 2003). Most of those viruses can cause severe damage to crops and so 

even very low populations of this pest can result in major crop failures. Adults are 

smaller than those of T. vaporariorum (1 mm long). Several biotypes of B. tabaci 

have been identified; the two currently of most importance to agricultural 

environments are termed biotypes B and Q (Perring, 2001).  
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1.4 CONTROL OF TRIALEURODES VAPORARIORUM 

1.4.1 Biological control and Integrated Pest Management (IPM) of Trialeurodes 

vaporariorum 

In glasshouses, whiteflies can potentially be controlled by the use of biological 

control agents, such as species of parasitic Hymenoptera, predatory Hemiptera and 

Coleoptera (Gerling, 1990), as well as by the use of entomopathogenic fungi 

(Fransen, 1990). In greenhouses throughout Europe, effective biological control of 

the greenhouse whitefly is achieved by the use of parasitoids such as Encarsia spp. 

and Eretmocerus spp. (Hymenoptera: Aphelinidae), the use of predators Macrolophus 

spp. (Heteroptera: Miridae) and entomopathogens such as Verticillium, Paecilomyces 

and Aschersonia spp. (van Lenteren & Martin, 1999; van Lenteren, 2003).  

IPM strategies for the control of whiteflies in greenhouses have long since been 

advocated (Dowell, 1990) and represent the most flexible and effective approach. 

These growing systems integrate physical and cultural control tactics with the use of 

biological control and selective pesticides. Underpinning measures include the 

physical exclusion of whiteflies from greenhouses, the elimination of any source of 

whitefly infestation (such as weeds and plant debris) and preventative releases of 

natural enemies. Compatible insecticides should ideally be used only if they are 

essential and always in the context of Insecticide Resistance Management (IRM). For 

accurate decision making, frequent monitoring of pest and natural enemy populations 

is required. 
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1.4.2 Chemical control of Trialeurodes vaporariorum 

Today, there are a limited number of either systemic or contact insecticides that are 

available for whitefly control, with most of them belonging in one of the following 

broad groups: insect growth regulators, neonicotinoids, pyrethroids and 

organophosphates. Compounds of low specificity, such as carbamates, 

organochlorines and pyrethroids are becoming less favourable due to high 

persistence, resistance development and incompatibility with beneficial organisms 

(van Emden & Service, 2004). Other chemical classes used for whitefly control 

include the spinosyns, with spinosad being the forerunner of the class (Ishaaya et al., 

2007; Millar & Denholm, 2007) and the more recently introduced tetronic acid 

derivatives. 

 

1.4.2.1 Organophosphate and carbamate insecticides 

Organophosphates (OPs) are a group of broad-spectrum insecticides that bind to 

acetylcholinesterase (AChE) and inhibit irreversibly the hydrolysis of the 

neurotransmitter acetylcholine. Acetylcholine therefore accumulates at the synapses, 

resulting in paralysis and death (Fukuto, 1990). There are a number of OPs available 

for whitefly control, such as malathion and chlorpyrifos (Figure 1.3). Carbamates are 

another class of insecticides that target the AChE of insects by acting as agonists for 

binding to the enzyme’s substrate surface (Fukuto, 1990). Although 

organophosphates and carbamates were once the most widely used chemical groups 

worldwide, they have high mammalian toxicity and long persistence. This led to a 

severe reduction in their commercial availability, with most carbamates being banned 

and only a very limited number of organophosphates being in the approved list of the 

EU pesticide database. 
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Figure 1.3 Chemical structures of the organophosphate insecticides malathion and 

chlorpyrifos 

 

1.4.2.2 Pyrethroid insecticides 

Pyrethroid insecticides were invented at Rothamsted Research during the early 1970s. 

They are synthetic analogues of natural pyrethrins produced by the pyrethrum daisy 

Tanacetum cinerariifolium L. and are one of the most successful chemical classes of 

insecticides, due to their efficacy, low mammalian toxicity and high photo-stability 

(Casida & Quistad, 1995; Elliott, 1996). Pyrethroids are axonic poisons that work by 

binding to the voltage-gated sodium channels in the neuronal membranes of insects. 

The sodium channel is a small pore through which sodium ions are permitted to enter 

the axon and cause excitation. Pyrethroids initially stimulate nerve cells to produce 

repetitive discharges and as the nerves cannot de-excite, the insect is paralyzed (Ware 

& Whitacre, 2004). The first widely used synthetic pyrethroid was permethrin 

followed by cypermethrin and deltamethrin (Davies et al., 2007). Bifenthrin (Figure 

1.4) was one of the pyrethroids most widely used against T. vaporariorum (Bi & 

Toscano, 2007) but it was recently withdrawn due to an EU pesticides review 

(http://ec.europa.eu/sanco_pesticides/public/index.cfm?event=activesubstance.selecti

on). 
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Figure 1.4 Chemical structures of the pyrethroid insecticides bifenthrin and 

deltamethrin 

 

1.4.2.3 Insect growth regulators 

Insect growth regulators (IGRs) are chemicals that disrupt insect growth and 

development, and due to their usual high specificity, are well placed for incorporation 

in IPM programs. There are mainly two types commercially available: the chitin 

synthesis inhibitors (DeCock & Degheele, 1993; DeCock et al., 1995) and the 

juvenile hormone analogues (JHA) (Eto, 1990; Ishaaya & Horowitz, 1992). The first 

of these inhibit the production or deposition of chitin, resulting in an interruption of 

the moulting process and the death of the insect within the old cuticle (DeCock & 

Degheele, 1993; DeCock et al., 1995). In Europe, the chitin synthesis inhibitors 

buprofezin and teflubenzuron (Figure 1.5) are the most widely used IGRs for the 

control of T. vaporariorum (Hegazy et al., 1990; DeCock & Degheele, 1993; DeCock 

et al., 1995; Ishaaya et al., 2007). The novel JHAs compete for juvenile hormone 

(JH) binding site receptors, regulating embryogenesis and metamorphosis (Eto, 1990; 

Ishaaya & Horowitz, 1992; Ishaaya et al., 1994; Ishaaya & Horowitz, 1995; Horowitz 

& Ishaaya, 2004; Ishaaya et al., 2007). Pyriproxyfen (Figure 1.5) is the most widely 

used JHA against whiteflies (Ishaaya et al., 2007). The insecticidal action of JHAs 

(such as methoprene and pyriproxyfen) is still not understood due to the lack of a 

known signalling pathway and/or a receptor molecule. However, the Methoprene-
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tolerant gene (Met) (also known as Resistance to juvenile hormone) is a good 

candidate for the JH receptor as it has been shown to confer resistance to toxic doses 

of JH when mutated (Shemshedini & Wilson, 1990; Dubrovsky, 2005). 

 

 

Figure 1.5 Chemical structures of the chitin synthesis inhibitors, buprofezin and 

teflubenzuron, and of the juvenile hormone analogue, pyriproxyfen 

 

1.4.2.4 Neonicotinoid insecticides 

Neonicotinoid insecticides target the nicotinic acetylcholine receptor (nAChR), 

causing paralysis followed by death (Millar & Denholm, 2007). There is an 

increasing range of compounds within this chemical class, formulated for foliar, 

systemic, stem and soil applications. The most widely used neonicotinoid compound 

is imidacloprid, followed by thiamethoxam and acetamiprid (Figure 1.6). As well as 

having strong insecticidal activity against sucking pests like aphids, whiteflies and 

planthoppers, the high systemicity of specific neonicotinoids enables them to be more 

effectively targeted at the pest, reducing impacts on beneficial organisms and 

improving their compatibility with IPM programs (Ishaaya et al., 2007; Millar & 

Denholm, 2007). Consequently, there is the potential for these compounds to be used 

as rotational partners within contemporary protected cropping systems. 
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Figure 1.6 Chemical structures of the neonicotinoid insecticides imidacloprid, 

thiamethoxam and acetamiprid 

 

1.4.2.5 Novel insecticides 

Over recent decades there have been many attempts to develop novel compounds 

with selective properties and different modes of action from conventional 

insecticides. Pymetrozine (Figure 1.7), a triazine derivative, is a relatively narrow-

spectrum insecticide that disrupts the feeding behaviour of sucking insects, leading to 

starvation and death (Harrewijn & Kayser, 1997; Polston & Sherwood, 2003; 

Ausborn et al., 2005). Although pymetrozine has strong insecticidal activity against 

whiteflies, it has no appreciable effect on natural enemies and the environment and 

thus it is considered as highly compatible with IPM programs (Ishaaya et al., 2007). 

In a study with the peach potato aphid Myzus persicae Sulzer (Hemiptera: Aphididae) 

it was revealed that pymetrozine acts via a novel mechanism that is linked to the 

signalling pathway of serotonin (Kaufmann et al., 2004). Studies with the migratory 

locust Locusta migratoria L. (Orthoptera: Acrididae) revealed that pymetrozine 

affects chordotonal mechanoreceptors. The femoral chordotonal organ, which 

monitors joint position and movement, and the chordotonal sensillae in general 

appear to be the sites of pymetrozine action in locusts (Ausborn et al., 2005). 
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Figure 1.7 Chemical structure of the triazine derivative pymetrozine 

 

The spirocyclic tetronic and tetramic acid derivatives (spirodiclofen, spiromesifen and 

spirotetramat) are a new class of effective insecticides and acaricides, with 

spiromesifen and spirotetramat becoming increasingly important for whitefly control 

(Figure 1.8). They act as inhibitors of acetyl-CoA carboxylase (ACCase) and cause 

significant reductions in total lipid biosynthesis (Nauen et al., 2003; Nauen, 2005; 

Nauen et al., 2005; Kontsedalov et al., 2009). 

 

 

Figure 1.8 Chemical structures of the tetronic acid derivatives spiromesifen and 

spirotetramat 

 



Chapter 1 - Introduction 29 

 

1.5 INSECTICIDE RESISTANCE AND CROSS-RESISTANCE IN 

TRIALEURODES VAPORARIORUM 

Trialeurodes vaporariorum has developed resistance to several insecticide groups. 

The first documented occurrence of resistance involved pyrethroid and 

organophosphate insecticides during the 70s and 80s. By the mid-80s, this resistance 

had become widespread in the UK (Wardlow et al., 1976; Wardlow, 1985; Wardlow, 

1987). Furthermore, resistance to the insect growth regulators buprofezin and 

teflubenzuron has been documented in Northern Europe and the Mediterranean region 

(De Cock et al., 1995; Gorman et al., 1998; Gorman et al., 2002). Organophosphate 

resistance in whiteflies arises most likely through changes in target site (AChE) 

sensitivity and/or insecticide detoxification by CCEs or P450s (Cahill et al., 1995; 

Gorman et al., 1998; Javed et al., 2003; Alon et al., 2008). The status and 

mechanisms of pyrethroid resistance in the greenhouse whitefly is explored in 

Chapter 4.  

Imidacloprid resistance (Cahill et al., 1996; Nauen & Denholm, 2005) was first 

documented in Spanish populations of Q-biotype tobacco whitefly, B. tabaci. 

Resistance to imidacloprid was more recently found in T. vaporariorum strains from 

the UK, The Netherlands and the USA (Gorman et al., 2007; Bi & Toscano, 2007) 

and may be becoming widespread due to increased reliance on neonicotinoid 

compounds.  

In B. tabaci, cross-resistance has been documented between neonicotinoids (Nauen et 

al., 2002; Rauch & Nauen, 2003). Furthermore, there is evidence in B. tabaci for the 

presence of cross resistance between neonicotinoids and pymetrozine (Gorman et al., 

2010). There are no previous reports of the presence of cross-resistance within the 
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class of neonicotinoids neither for the greenhouse whitefly, nor between 

neonicotinoids and other compounds with different modes of action such as 

pymetrozine. The status of resistance to neonicotinoid insecticides and the unrelated 

pyridine azomethine pymetrozine is explored further in Chapter 2. 

 

1.6 AIMS, OBJECTIVES AND THESIS FORMAT 

The main aim of this project was to investigate the status of insecticide resistance in 

UK and European populations of T. vaporariorum and to investigate underlying 

mechanisms. Furthermore, parallels with resistance in B. tabaci were studied. The 

work presented in the following chapters is published or has been submitted for 

publication in peer-reviewed journals. Each experimental chapter consists of an 

introduction, complete materials and methods, and results/discussion and a 

conclusion section. Supplementary materials (additional files in chapters 3-6) are 

included in a Compact Disc in a folder on the back of this thesis.  In the following 

paragraphs, the main objectives and author contributions for each chapter are 

discussed. 

The objective of Chapter 2 was to characterise and quantify the phenotypic 

expression of neonicotinoid and pymetrozine resistance in UK and European strains 

of the glasshouse whitefly and to investigate any parallels with that already 

established for B. tabaci. This work was published in the journal Pest Management 

Science (Karatolos et al., 2010). In this work, Nikos Karatolos (NK), Ian Denholm 

(ID), Martin Williamson (MW), Ralf Nauen (RN) and Kevin Gorman (KG) 

conceived the study. NK did the experimental work, data analysis and constructed the 

initial manuscript. All authors contributed to the preparation of the final version of the 

manuscript. 
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In Chapter 3, 454-based pyrosequencing technology was used to generate a 

substantial EST dataset of the T. vaporariorum transcriptome in order to identify and 

characterise genes encoding detoxification enzymes and insecticide target proteins. 

These data will elucidate further the molecular mechanisms underlying insecticide 

resistance. This chapter was published in the journal BMC Genomics (Karatolos et 

al., 2011a). ID, Richard ffrench-Constant (RFC), MW, KG and NK conceived the 

study. Yannick Pauchet (YP) generated the cDNA libraries. YP and Paul Wilkinson 

(PW) conducted preliminary data curation and transcriptome assembly. NK and 

Ritika Chauhan (RC) annotated, and manually curated genes of interest. David 

Nelson (DN) named the manually curated P450 genes. NK analysed the data (gene 

homology searches and annotation) using BLAST2GO software. NK constructed the 

initial manuscript and all authors contributed to the preparation of the final version. 

The work presented in Chapter 4 correlates the phenotypic expression of resistance to 

the pyrethroid bifenthrin in T. vaporariorum with the presence of domain II mutations 

in the voltage-gated sodium channel, implicating target site insensitivity as a major 

mechanism of pyrethroid resistance in this species. This work was accepted for 

publication in the journal Pest Management Science (Karatolos et al., 2011b). In this 

work, NK, ID, MW and KG conceived the study. NK did the experimental work, data 

analysis and constructed the initial manuscript. All authors contributed to the 

preparation of the final version of the manuscript. 

In Chapter 5, the effect of the tetronic acid derivative spiromesifen was evaluated on 

field populations of T. vaporariorum and moderate resistance was found in some 

populations. Nucleotide sequencing was used to search for point mutations within the 

target of spiromesifen acetyl-CoA carboxylase (ACCase), which correlated with 
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spiromesifen resistance. This work is under review in the journal Insect Molecular 

Biology (Karatolos et al., 2011c). NK, ID, KG, MW and RN conceived the study. NK 

did the experimental work, data analysis and constructed the initial manuscript. All 

authors contributed to the preparation of the final version of the manuscript. 

The aim of the work presented in Chapter 6 was to exploit the data generated by 454-

based pyrosequencing to investigate potential mechanisms of pyriproxyfen resistance 

in a laboratory selected strain which shows more than 4000-fold resistance to 

pyriproxyfen. For this reason microarray technology was used to investigate 

differences in the gene-expression of the selected strain compared to a susceptible 

strain. This work is under review in the journal PLoS ONE (Karatolos et al., 2011d). 

NK and Chris Bass (CB) conceived the study. NK did the experimental work and data 

analysis. NK constructed the initial manuscript. All authors contributed to the 

preparation of the final version of the manuscript. 
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insecticides and pymetrozine in the greenhouse whitefly, Trialeurodes 
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Abstract 

BACKGROUND: Trialeurodes vaporariorum (Westwood), also known as the 

greenhouse whitefly, is a serious pest of protected vegetable and ornamental crops in 

most temperate regions of the world. Neonicotinoid insecticides are used widely to 

control this species, although resistance has been reported and may be becoming 

widespread.  

RESULTS: Mortality rates of UK and European strains of T. vaporariorum to a 

range of neonicotinoids and pymetrozine, a compound with a different mode of 

action, were calculated and significant resistance was found in some of those strains. 

A strong association was found between neonicotinoids and pymetrozine and 

reciprocal selection experiments confirmed this finding. Expression of resistance to 

the neonicotinoid imidacloprid and pymetrozine was age-specific and resistance in 

nymphs did not compromise recommended application rates.  

CONCLUSION: This study indicates strong parallels in the phenotypic 

characteristics of neonicotinoid resistance in T. vaporariorum and the tobacco 

whitefly Bemisia tabaci, suggesting possible parallels in the underlying mechanisms. 
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2.1 INTRODUCTION 

Trialeurodes vaporariorum Westwood (Hemiptera: Aleyrodidae), also known as the 

greenhouse or glasshouse whitefly, is an important pest of protected vegetable and 

ornamental crops in temperate regions of the world (Wardlow et al., 1976; Byrne et 

al., 1990; Brødsgaard & Albajes, 1999). Its pest status reflects a high degree of 

polyphagy combined with a rapid reproductive rate and potential for inadvertent 

transfer between sites on infested plant material. T. vaporariorum causes damage by 

direct feeding or by excretion of honeydew, and large infestations can result in 

stunted plants and leaf necrosis (Byrne et al., 1990), and it also transmits numerous 

plant viruses belonging to the Closteroviridae family (Jones, 2003; Khurana & Garg, 

2004). 

Neonicotinoid insecticides, including imidacloprid, thiamethoxam, thiacloprid and 

acetamiprid, have become important agents for controlling T. vaporariorum. These 

compounds target nicotinic acetylcholine receptors (nAChRs) in the insect central 

nervous system, causing paralysis followed by death (Millar & Denholm, 2007). The 

increasing number of commercialised neonicotinoids can be formulated as foliar, 

systemic, stem and soil applications. The unrelated pyridine azomethine pymetrozine 

is a whitefly control agent that disrupts feeding behaviour, leading to starvation and 

death (Harrewijn & Kayser, 1997; Ausborn et al., 2005). Both neonicotinoids and 

pymetrozine have the potential to be used in combination with natural enemies in 

coordinated integrated pest management programmes (Harrewijn & Kayser, 1997; 

Ausborn et al., 2005; Millar & Denholm, 2007). Consequently, there is a need to 

optimise their use to exploit IPM compatibility, as well as minimise risks of 

resistance that have compromised effective control of T. vaporariorum in the past 

(Wardlow et al., 1976; Gorman et al., 2002; Gorman et al., 2007). 
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Resistance to imidacloprid and other neonicotinoids was first characterised in Spanish 

populations of the tobacco whitefly, Bemisia tabaci Gennadius (Hemiptera: 

Aleyrodidae) (Cahill et al., 1996; Nauen et al., 2002; Rauch & Nauen, 2003; Nauen 

& Denholm, 2005). Resistance to imidacloprid was reported more recently in T. 

vaporariorum strains from the United Kingdom, the Netherlands and the United 

States following increasing reliance on these compounds for whitefly control (Bi & 

Toscano, 2007; Gorman et al., 2007). Other insect species known to have developed 

neonicotinoid resistance are the rice brown planthopper, Nilaparvata lugens Stål 

(Hemiptera: Delphacidae) (Zewen et al., 2003; Gorman et al., 2008), the Colorado 

potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) (Zhao et 

al., 2000; Alyokhin et al., 2007), and the peach potato aphid, Myzus persicae Sulzer 

(Hemiptera: Aphididae) (Foster et al., 2003). 

In B. tabaci, the primary mechanism of neonicotinoid resistance is enhanced 

detoxification due to overexpression of a gene (CYP6CM1) encoding a cytochrome 

P450-dependent monooxygenase enzyme (Karunker et al., 2008; Karunker et al., 

2009). This mechanism shows the unusual phenomenon of age specificity, with 

resistance becoming more potent in the adult stage (Nauen et al., 2008). Another 

feature of this mechanism is unexpected cross-resistance to pymetrozine, in spite of 

structural and functional differences from neonicotinoids (Gorman et al., 2010). The 

objective of this study was to characterise further the phenotypic expression of 

resistance in T. vaporariorum and to investigate any parallels with that already 

established for B. tabaci. 
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2.2 MATERIALS AND METHODS 

2.2.1 Insect strains 

Eight strains of T. vaporariorum including a laboratory susceptible reference strain 

(TV1) were used in this study (Table 2.1). These encompassed five countries of 

origin and both edible and ornamental plant hosts.  All strains were reared at 

Rothamsted without exposure to insecticides on French bean plants, Phaseolus 

vulgaris L., cv. ’Canadian Wonder’ (Fabaceae), under a 16:8 h light:dark photoperiod 

at 24 °C. 

 

Table 2.1 Trialeurodes vaporariorum strains, origins, years of collection and original 

hosts 

Strain Country of origin Year of collection Original host 

TV1 UK 1971 French bean 

TV2 UK 2004 Ornamentals 

TV3 UK 2008 Roses 

TV4 UK 2008 Ornamentals 

TV5 Spain 2008 Tomato 

TV6 Turkey 2006 Vegetables 

TV7 

TV8 

China 

Germany 

2008 

2008 

Aubergine 

Ornamentals 

 

2.2.2 Insecticides 

All insecticides were used as commercially-available formulations. These included 

three neonicotinoids, imidacloprid 200 g L
-1

 SL (Confidor
®
; Bayer CropScience), 

thiamethoxam 250 g kg
-1

 WG (Actara
®
; Syngenta) and acetamiprid 200 g kg

-1
 SP 

(Gazelle
®
; Syngenta), as well as pymetrozine 500 g kg

-1
 WG (Plenum

®
; Syngenta). 

All compounds were diluted to the required AI concentrations in distilled water 

containing 0.1 g L
-1

 of the non-ionic wetter Agral
®

 (Syngenta). 
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2.2.3 Bioassays 

Responses of adults and second instar nymphs were quantified using leaf-dip 

bioassays (Nauen et al., 2008).
 
For testing adults, leaf discs were cut from bean plants 

and dipped for 20 s into the required concentration of insecticide or into 0.1 g L
-1

 

Agral
®
 for controls. Treated leaf discs were placed on 1 % agar inside petri dishes and 

allowed to air-dry, and 20-30 adult females of the required strain were then placed in 

each petri dish and confined with an absorbent cellulose pad and lid in order to 

minimise static and humidity. Three replicates were used for each concentration. All 

bioassays were maintained at 24 °C and mortality was scored after 72 h for 

neonicotinoids and 96 h for pymetrozine. Nymphs were tested by trimming leaves on 

intact bean plants into rectangles of approximately 40 mm x 50 mm. The trimmed 

plants were placed in cages with at least 200 adult whiteflies for 24 h to obtain a 

synchronised cohort of eggs, following which the adults were removed. Leaves were 

dipped after 11 days (when the majority of immature whiteflies had reached second 

instar) for 15 s in the required concentration of insecticide or into 0.1 g L
-1

 Agral
®

 for 

controls. Three replicates were used for each concentration. All bioassays were 

maintained at 24 °C and mortality was scored after 22-25 days after counting dead 

immature stages and pupae from which adults had emerged. 

 

 2.2.4 Reciprocal selection experiment 

 Potential cross-resistance between imidacloprid and pymetrozine was investigated by 

selecting whiteflies of the TV6 strain with each of the insecticides and testing for a 

correlated change in response to the other. A total of 2000 adult whiteflies were 

exposed in a leaf-dip bioassay to 300 mg L
-1

 of either imidacloprid or pymetrozine, 

and survivors were reared for a single untreated generation to build up numbers. 
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Adults of the next generation were selected further with 1000 mg L
-1

 of either 

imidacloprid or pymetrozine, and survivors were reared to obtain the next generation 

for dose-response bioassays with both insecticides.  

 

2.2.5 Statistical analysis 

Concentration-mortality relationships were fitted by probit analysis, using the 

software GenStat 12
th
 edition (VSN International Ltd, Hertfordshire, UK). Resistance 

factors were calculated by dividing LC50 values for field-collected strains by those for 

the susceptible standard (TV1). Selection factors (SFs) were calculated by dividing 

LC50 values of selected strains by those of the unselected parental strain. Lack of 

overlap of 95 % confidence limits on fitted LC50 values denoted significant 

differences between responses of strains. Correlations between responses to different 

compounds were investigated using Kendall’s coefficient of concordance, calculated 

from ranking each of the estimated LC50 values. 

 

2.3 RESULTS 

2.3.1 Resistance of adults to neonicotinoids and pymetrozine 

Resistance factors (RFs) for imidacloprid ranged from 2.6 (TV4) to 22 (TV8) in 

adults (Table 2.2). Five strains (TV3, TV5, TV6, TV7 and TV8) were significantly 

less susceptible at LC50 than TV1. There was a clear association between resistance 

factors for imidacloprid, thiamethoxam and acetamiprid, with the same four strains 

(TV3, TV5, TV7 and TV8) being consistently the most resistant. All field strains 

were significantly less susceptible than TV1 to pymetrozine, with TV3, TV5, TV7 

and TV8 again being the most resistant, yielding RF values between 7.5 and 20.  
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Table 2.2 Responses of Trialeurodes vaporariorum adults to imidacloprid, 

thiamethoxam, acetamiprid and pymetrozine. Resistance factors (RFs) relative to 

TV1 are given for all the field strains. 

Chemical Strain 
LC50 (mg L

-1
) * 

(95 % CL) 
Slope RF 

Imidacloprid 

TV1 17.2 (9.30-32.6) a 0.99±0.16 1 

TV2 47.9 (21.4-99.4) ab 0.73±0.12 2.78 

TV3 358 (170-827) bc 0.80±0.14 20.8 

TV4 44.9 (26.1-74.2) ab 1.06±0.14 2.61 

TV5 185 (66.2-278) bc 2.43±0.86 10.8 

TV6 102 (54.0-189) b 1.11±0.17 5.92 

TV7 214 (142-324) bc 1.43±0.20 12.4 

TV8 374 (227-638) c 0.87±0.12 21.8 

Thiamethoxam 

TV1 18.6 (11.4-29.5) a 1.51±0.27 1 

TV2 25.1 (14.5-43.6) a 1.33±0.24 1.35 

TV3 169 (80.6-361) bc 1.06±0.20 9.09 

TV4 38.2 (23.0-62.5) a 1.35±0.21 2.05 

TV5 283 (175-444) bc 1.48±0.24 15.2 

TV6 40.4 (23.8-68.5) a 2.04±0.53 2.17 

TV7 379 (235-641) c 1.08±0.15 20.4 

TV8 119 (78.2-183) b 1.64±0.28 6.41 

Acetamiprid 

TV1 44.2 (27.0-71.1) a 1.24±0.17 1 

TV2 114 (60.5-211) ab 0.81±0.11 2.57 

TV3 374 (210-710) bc 0.82±0.11 8.45 

TV4 153 (83.9-263) b 0.83±0.11 3.45 

TV5 822 (437-1798) c 0.94±0.17 18.6 

TV6 41.7 (23.4-69.4) a 1.43±0.24 0.94 

TV7 185 (119-300) b 1.17±0.16 4.18 

TV8 165 (101-260) b 1.44±0.25 3.73 

Pymetrozine 

TV1 38.8 (23.8-63.7) a 1.43±0.24 1 

TV2 160 (106-237) b 1.47±0.22 4.13 

TV3 290 (177-511) bc 1.57±0.32 7.48 

TV4 269 (169-450) bc 1.19±0.17 6.93 

TV5 646 (454-934) c 2.03±0.33 16.6 

TV6 204 (122-343) bc 1.13±0.17 5.25 

TV7 792 (568-1107) c 1.73±0.24 20.4 

TV8 484 (329-715) c 1.70±0.28 12.5 

* Different letters indicate significant difference between strains, based on 

overlapping 95 % CL of LC50 values. 

 

Kendall’s coefficient (KC) for the three neonicotinoids (KC = 0.815, χ
2 

= 17, 1, df = 

7, P = 0.017) showed a strong concordance in the ranking of LC50 values. A strong 
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association was also found between the three neonicotinoids and pymetrozine (KC = 

0.833, χ
2 

= 23.3, df = 7, P ≤ 0.001), supporting a hypothesis of cross-resistance 

between neonicotinoids and pymetrozine. 

 

2.3.2 Response of nymphs to imidacloprid and pymetrozine 

No significant reduction in susceptibility of second-instar nymphs to imidacloprid 

was observed with any of the field strains (Table 2.3). Although TV3, TV5, TV7 and 

TV8 still yielded the four highest LC50 values, resistance factors were consistently 

less than 4. Furthermore, the highest LC50 values for nymphs did not significantly 

exceed that of susceptible adults. Similarly, there was no significant resistance of 

second-instar nymphs to pymetrozine in any of the field strains (Table 2.4). 

 

Table 2.3 Responses of Trialeurodes vaporariorum second-instar nymphs to 

imidacloprid. Resistance factors (RFs) relative to TV1 are given for all strains 

Strain LC50 (mg L
-1

) * (95 % CL) Slope RF 

TV1 7.54 (3.67-30.0) a 1.26±0.39 1 

TV2 9.67 (5.59-19.7) a 0.85±0.15 1.28 

TV3 13.7 (7.02-28.2) a 1.19±0.30 1.81 

TV4 4.65 (3.34-6.21)
 
a 1.25±0.11 0.62 

TV5 28.0 (22.4-36.3)
 
a 1.47±0.19 3.71 

TV6 10.2 (5.27-24.2)
 
a 0.74±0.13 1.35 

TV7 20.3 (15.2-27.4)
 
a 1.53±0.24 2.70 

TV8 17.3 (12.3-25.5)
 
a 1.00±0.13 2.30 

* Different letters indicate significant difference between strains, based on 

overlapping 95 % CL of LC50 values. 
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Table 2.4 Responses of Trialeurodes vaporariorum second-instar nymphs to 

pymetrozine. Resistance factors (RFs) relative to TV1 are given for all the field 

strains. 

Strain LC50 (mg L
-1

) * (95 % CL) Slope RF 

TV1 126 (54.6-345)
 
a 0.15±0.02 1 

TV2 171 (105-304)
 
a 0.36±0.03 1.35 

TV3 213 (127-396)
 
a 0.34±0.03 1.69 

TV4 208 (134-346)
 
a 0.36±0.03 1.65 

TV5 54.0 (29.9-101)
 
a 0.28±0.03 0.43 

TV6 78.0 (47.8-139)
 
a 0.35±0.04 0.62 

TV7 207 (114-437)
 
a 0.29±0.03 1.64 

TV8 120 (70.4-224)
 
a 0.31±0.03 0.95 

* Different letters indicate significant difference between strains, based on 

overlapping 95 % CL of LC50 values. 

 

2.3.3 Reciprocal selection with imidacloprid and pymetrozine 

Exposure of adults to 300 and subsequently 1000 mg L
-1

 imidacloprid increased 

resistance of TV6 to both imidacloprid and pymetrozine (43- and 3.8-fold 

respectively). Selection with the same concentrations of pymetrozine increased 

resistance to both compounds more than 14-fold (Table 2.5). These results support 

those from cross-resistance bioassays, demonstrating a correlated response to 

imidacloprid and pymetrozine.  
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Table 2.5 Post-selection responses of imidacloprid- and pymetrozine-selected 

Trialeurodes vaporariorum adults to both compounds. Selection factors (SFs) relative 

to the unselected TV6 are given. 

Selection 

regime 

Imidacloprid Pymetrozine 

LC50 (mg L
-1

)
a 

(95 % CL) 
SF 

LC50
 
 (mg L

-1
)

a 

(95 % CL) 
SF 

TV6 

unselected  

43.2 

(27.1-65.7) 
1 

116 

(60-213) 
1 

TV6 

imidacloprid selected 

1860 

(864-5670) * 
43.1 

444 

(234-702) * 
3.83 

TV6 

pymetrozine selected 

1090 

(296-14600) * 
25.2 

1650 

(536-9550) * 
14.2 

a 
* indicates significant difference compared with the unselected TV6 (based on 

overlapping 95 % CL of the LC50 values) 

 

2.4 DISCUSSION 

Results from bioassays extend those reported previously demonstrating the 

occurrence of resistance to neonicotinoids in T. vaporariorum (Bi & Toscano, 2007; 

Gorman et al., 2007). The highest resistance factor recorded for any of the three 

neonicotinoids (imidacloprid, thiamethoxam and acetamiprid) was 22, for a German 

strain (TV8) tested with imidacloprid. Although this is substantially lower than the 

very high resistance (up to 1000-fold) documented for some strains of B. tabaci 

populations (Rauch & Nauen, 2003; Nauen & Denholm, 2005), it was associated with 

claims of control failures and significant crop losses at the site of collection. All the 

strains used in this study were taken from sites where neonicotinoid insecticides had 

been used for whitefly control. Cross-resistance between neonicotinoids has already 

been reported for B. tabaci (Nauen et al., 2002; Rauch & Nauen, 2003; Horowitz et 

al., 2004; Prabhaker et al., 2005), N. lugens (Zewen et al., 2003), L. decemlineata 

(Alyokhin et al., 2007), and peach potato aphid, M. persicae (Foster et al., 2008). 
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Correlations between data for the three neonicotinoids used in this study demonstrate 

the presence of intragroup cross-resistance in T. vaporariorum also. 

Although none of the field strains had any known previous exposure to pymetrozine, 

treatment histories were not always complete, and this cannot be discounted. 

Bioassay results demonstrated at least a low level of reduced susceptibility to 

pymetrozine in all strains; the highest observed resistance factor was again 

approximately 20 (TV7). Results of cross-resistance bioassays and selection 

experiments were consistent in showing a correlation in responses to neonicotinoids 

and pymetrozine, implying a common resistance mechanism in spite of differences in 

chemical structure and mode of action. This finding closely parallels results for B. 

tabaci (Gorman et al., 2010), but there is no evidence of such cross-resistance in 

other species, including M. persicae (Foster et al., 2002). Given clear similarities in 

the phenotypic characteristics of resistance in T. vaporariorum and B. tabaci, 

including cross-resistance between neonicotinoids and pymetrozine (Gorman et al., 

2010) and its differential expression across life-stages (Nauen et al., 2008), there are 

likely to be parallels in the underlying mechanism(s). Resistance in B. tabaci 

primarily reflects overexpression of a monooxygenase enzyme (Karunker et al., 

2008) that has been confirmed to facilitate the breakdown of imidacloprid to its major 

metabolite (Karunker et al., 2009). Work is now underway to isolate genes encoding 

detoxification enzymes in T. vaporariorum, to investigate whether overexpression of 

a homologue of CYP6CM1 in B. tabaci or a related monooxygenase gene is 

responsible for neonicotinoid and pymetrozine resistance in T. vaporariorum also. 
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Abstract 

BACKGROUND: The whitefly Trialeurodes vaporariorum is an economically 

important crop pest in temperate regions that has developed resistance to most classes 

of insecticides. However, the molecular mechanisms underlying resistance have not 

been characterised and, to date, progress has been hampered by a lack of nucleotide 

sequence data for this species. Here, we use pyrosequencing on the Roche 454-FLX 

platform to produce a substantial and annotated EST dataset. This „unigene set‟ will 

form a critical reference point for quantitation of over-expressed messages via digital 

transcriptomics. 

RESULTS: Pyrosequencing produced around a million sequencing reads that 

assembled into 54,748 contigs, with an average length of 965 bp, representing a 

dramatic expansion of existing cDNA sequences available for T. vaporariorum (only 

43 entries in GenBank at the time of this publication). BLAST searching of non-

redundant databases returned 20,333 significant matches and those gene families 
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potentially encoding gene products involved in insecticide resistance were manually 

curated and annotated. These include, enzymes potentially involved in the 

detoxification of xenobiotics and those encoding the targets of the major chemical 

classes of insecticides. A total of 57 P450s, 17 GSTs and 27 CCEs were identified 

along with 30 contigs encoding the target proteins of six different insecticide classes.  

CONCLUSION: Here, we have developed new transcriptomic resources for T. 

vaporariorum. These include a substantial and annotated EST dataset that will serve 

the community studying this important crop pest and will elucidate further the 

molecular mechanisms underlying insecticide resistance. 

 

3.1 INTRODUCTION 

Whiteflies (Hemiptera: Aleyrodidae) are important pests of agriculture that feed on 

and transmit viruses to a wide range of crops. The two most damaging and 

widespread species are the tobacco or cotton whitefly (Bemisia tabaci Gennadius) 

and the greenhouse whitefly (Trialeurodes vaporariorum Westwood). 

One factor enhancing the pest status of whiteflies is their ability to evolve resistance 

to insecticides. Both B. tabaci and T. vaporariorum are known to exhibit resistance to 

several insecticide groups including the neonicotinoids, the most widely-used 

compounds for whitefly control (Gorman et al., 2010; Karatolos et al., 2010). 

Insecticide resistance commonly arises through two main mechanisms 1) reduced 

binding of the insecticide to its target through target site mutation (Pittendrigh et al., 

2008) (e.g. acetylcholinesterase for organophosphates/carbamates, the voltage-gated 

sodium channel for pyrethroids) and 2) enhanced metabolism or sequestration of 

insecticide by enzymes such as carboxyl-cholinesterases (CCEs), glutathione-S-

transferases (GSTs) and cytochrome P450 monooxygenases (Ranson et al., 2002; 
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Feyereisen, 2005; Oakeshott et al., 2005; Ranson & Hemingway, 2005; Pittendrigh et 

al., 2008). 

CCEs, GSTs and P450s are encoded by large and diverse gene families that are 

difficult to fully characterise by traditional biochemical methods. Identification and 

cloning of genes encoding insecticide target sites composed of multiple subunit 

proteins (such as the nicotinic acetylcholine receptor) by degenerate PCR is also a 

lengthy and sometimes difficult process. The recent and rapid growth of the use of 

next generation sequencing has made it easier to study large complex genes or gene 

families such as insecticide target sites and those involved in detoxification of 

xenobiotics via the de novo sequencing of whole insect transcriptomes (Pauchet et al., 

2009; Pauchet et al., 2010). Although there is a significant amount of genomic data 

for B. tabaci in this regard, including an expressed sequence tag (EST) library (Wang 

et al., 2010) and an ongoing genome project (Leshkowitz et al., 2006), very little 

comparable data for T. vaporariorum exist, with only 43 nucleotide sequences 

currently available at NCBI. 

Cost-effective high-throughput DNA sequencing technologies such as 454-based 

pyrosequencing of ESTs are a powerful new approach to characterise the 

transcriptome of insect species that lack a fully sequenced genome (Papanicolaou et 

al., 2009; Pauchet et al., 2009; Pauchet et al., 2010). The amount of sequence 

information generated by these methods also facilitates the global analysis of gene 

expression by providing a reference transcriptome for cDNA microarray design 

and/or Serial Analysis of Gene Expression (SAGE) (Morozova et al., 2009; Puinean 

et al., 2010; Wang et al., 2010). Here, we have used 454-based pyrosequencing to 
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generate a substantial EST dataset of the T. vaporariorum transcriptome and then 

characterised genes encoding detoxification enzymes and insecticide target proteins. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Insects and RNA extraction 

Whiteflies for the generation of cDNA libraries were obtained from two different 

strains of T. vaporariorum. One was an insecticide susceptible standard strain (TV1) 

and the other was a strain from Turkey (TV6) selected with a 1000 ppm dose of the 

neonicotinoid insecticide, imidacloprid (Confidor; Bayer CropScience). TV6 was 

collected from a greenhouse with a history of intensive insecticide use, although the 

complete treatment history is unknown for this strain. Insects were maintained on 

French bean plants, Phaseolus vulgaris L., cv. „Canadian Wonder‟ (Fabaceae), under 

a 16h photoperiod at 24 °C. More than 2000 adults of each strain were collected in 

two separate 2 ml Eppendorf tubes and flash frozen in liquid nitrogen. Samples were 

sent to the University of Exeter (Cornwall Campus, Penryn, UK) in dry ice and stored 

at -80 °C prior to RNA extraction.  

RNA was isolated using TRIzol reagent (Invitrogen) according to the manufacturer‟s 

protocol. Genomic DNA contamination was removed by DNase treatment (TURBO 

DNAse, Ambion) for 30 min at 37 °C, RNA was further purified (RNeasy MinElute 

Clean up Kit, Qiagen) following the manufacturer‟s protocol and eluted in 20 μl of 

RNA storage solution (Ambion). 

 

3.2.2 cDNA library preparation, sequence pre-processing and assembly 

Two cDNA libraries were used for two main reasons. Firstly, in order to identify as 

many genes encoding detoxification enzymes as possible. This may have been 
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influenced by differences in gene expression levels in the two libraries, despite the 

fact that both libraries were normalised. Another reason for the use of the two cDNA 

libraries was to look for potential SNPs in target-site genes associated with insecticide 

resistance. Full-length, enriched, cDNAs were generated from 2 μg total RNA 

(SMART PCR cDNA synthesis kit, BD Clontech) following the manufacturer‟s 

protocol. Reverse transcription was performed using the PrimeScript reverse 

transcription enzyme (Takara) for 60 min at 42 °C and 90 min at 50 °C. In order to 

reduce over-abundant transcripts, double-stranded cDNAs were normalised using the 

Kamchatka crab duplex-specific nuclease method (Trimmer cDNA normalisation kit, 

Evrogen) (Zhulidov et al., 2004). Two aliquots, one of each of the normalised cDNA 

libraries, were 454 sequenced at the Advanced Genomics facility at the University of 

Liverpool. The two cDNA libraries were tagged prior to sequencing using molecular 

barcodes (Multiplex Identifiers, Roche Applied Sciences). A single full plate run 

(using both the TV1 and TV6 cDNA tagged libraries) was performed on the 454 GS-

FLX Titanium series pyrosequencer (Roche Applied Science) using 3 μg of 

normalised cDNAs processed by the “shotgun” method. For raw reads pre-processing 

(removal of Poly-A tails and SMART adapters) and assembly, the custom pipeline 

est2assembly was used (Papanicolaou et al., 2009). A pool of the processed reads 

from both cDNA libraries (TV1 and TV6) were clustered using the MIRA v2.9.26x3 

assembler with the “de novo, normal, EST, 454” parameters, specifying a minimum 

read length of 40 nucleotides, a minimum sequence overlap of 40 nt, and a minimum 

percentage overlap identity of 80 %. 
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3.2.3 Blast homology searches and sequence annotation 

Blast homology searches and sequence annotations were carried out following a 

method that was successfully used for a midgut transcriptome of the tomato 

hornworm, Manduca sexta Linnaeus (Lepidoptera: Sphingidae) (Pauchet et al., 

2010). BLAST2GO software v.2.3.1 (http://www.blast2go.org) was used to perform 

several analyses of the EST assembly (contigs) (Conesa & Götz, 2008). Initially, 

homology searches were performed remotely on the NCBI server through QBLAST 

in a sequential strategy. Firstly, contig sequences were searched via BLASTx against 

the NCBI non-redundant (nr) database, using an E-value cut-off of 1E
-3

 and selecting 

predicted polypeptides of a minimum length of 10 amino acids. Secondly, the 

sequences that did not receive any BLASTx hit were searched via BLASTn against 

the NCBI nr nucleotide database using an E-value cut-off of 1E
-10

. Also, BLASTx 

searches with an E-value cut-off of 1E
-5

 were performed against the Drosophila 

melanogaster Meigen (Diptera: Drosophilidae) uniprot (100) database. For gene 

ontology mapping (GO; http://www.geneontology.org), the program extracts the GO 

terms associated with homologies identified with NCBI‟s QBLAST and returns a list 

of GO annotations represented as hierarchical categories of increasing specificity. 

BLAST2GO allows the selection of a significance level for the false discovery rate, 

here used at a 0.05 % probability level cut-off. GO terms were modulated using the 

annotation augmentation tool ANNEX (Myhre et al., 2006), followed by GOSlim. 

GOSlim consists of a subset of the GO vocabulary encompassing key ontological 

terms and a mapping function between the full GO and the GOSlim. Here, we used 

the „generic‟ GOSlim mapping term (goslim_generic.obo) available in BLAST2GO. 

Enzyme classification (EC) codes, and KEGG (Kyoto Encyclopedia of Genes and 

Genomes) metabolic pathway annotations, were generated from the direct mapping of 
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GO terms to their enzyme code equivalents. Finally, InterPro (InterProScan, EBI) 

searches were performed remotely from BLAST2GO via the InterPro EBI web 

server. Potential ORFs (open reading frames) were identified using the ORF-predictor 

server (http://proteomics.ysu.edu/tools/OrfPredictor.html) (Min et al., 2005). An ORF 

cut-off of 200 bp was used. 

 

3.2.4 Manual curation of genes of interest, phylogenetic analysis and SNP 

identification 

Contigs that had a protein motif of a cytochrome P450 or a protein domain of a CCE 

or a GST, as well as contigs that corresponded to the target sites of the most 

important chemical classes of insecticides were searched by BLASTn against all the 

assembled processed reads (http://www.rfc.ex.ac.uk/iceblast/iceblast.php) using an E-

value cut-off of 1E
-4

. Each contig was reassembled from the reads that returned a 

BLAST hit and manually curated using Geneious software v.4.8.5 (Biomatters Ltd, 

Auckland, New Zealand). Nucleotide sequences were dynamic translated using the 

EXPASY Proteomics Server (http://www.expasy.ch/tools/dna.html, Swiss Institute of 

Bioinformatics). All the identified sequences were searched by BLASTx against all 

the assembled contigs in the iceblast server using an E-value cut-off of 1E
-4

 and the 

results with more than 99 % similarity with the query sequence were eliminated as 

allelic variants (note that from those sequences, only the longest contigs with the best 

coverage were manually curated). MEGA 4.0 software (Tamura et al., 2007) was 

used to perform multiple sequence alignment of P450s, CCEs, GSTs and nAChRs to 

construct consensus phylogenetic trees using the neighbour-joining method. 

Bootstrap analysis of 1,000 replication trees was performed in order to evaluate the 

branch strength of each tree. The manually curated re-assembled contigs that encoded 
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an insecticide target were investigated for the presence of SNPs arising due to 

nucleotide divergence between the two strains. 

 

3.2.5 Sequence submission 

The raw nucleotide reads obtained by 454 sequencing were submitted to the Sequence 

Read Archive (SRA) database at NCBI with accession number SRA024353.1. An 

assembly of the T. vaporariorum data as well as the unassembled reads was uploaded 

to the InsectaCentral database (http://www.insectacentral.org/) and is searchable by 

BLAST at the following URL: http://www.rfc.ex.ac.uk/iceblast/iceblast.php. 

InsectaCentral is a central repository of insect transcriptomes, similar to the 

ButterflyBase, produced using traditional capillary sequencing or 454 pyrosequencing 

(NGS) (Papanicolaou et al., 2008). Note that the names of the validated enzymes (see 

additional files 3.5-3.8) are made from the letters Tv followed by the number of the 

contig from the InsectaCentral database (For example IC88556AaEcon23678 is 

called Tv23678). 

 

3.3 RESULTS AND DISCUSSION 

3.3.1 454 pyrosequencing and assembly 

Over-abundant 0.6-6 kb transcripts were reduced by normalisation of the whitefly 

cDNAs and an even distribution of transcripts ranging from 0.5 to 6 kb in size was 

produced. 454 pyrosequencing of two libraries (from the insecticide-susceptible TV1 

and the imidacloprid selected TV6 T. vaporariorum strains) resulted in a total of 

1,104,651 reads. After quality scoring of the reads, 990,945 high-quality reads with 

an average length of 362 bp were entered to assembly (est2assembly). One pooled 

assembly was done incorporating both libraries (52,832,938 bp of sequencing), which 
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resulted in 54,748 contigs with an average length of 965 bp (Table 3.1). 55.8 % 

(30,552 contigs) of these had an ORF (open reading frame) ≥ 200 bp, with an average 

length of 540 bp. The characteristics of the assembled T. vaporariorum 454 contigs 

and BLASTx alignments against the D. melanogaster uniprot database are shown in 

Additional file 3.1. Figure 3.1 demonstrates that contigs that were assembled from up 

to 200 reads displayed a linear relationship between sequence read number and contig 

length (R = 0.716, P < 0.001). 

 

 

Figure 3.1 Scatter plot of number of reads representing a contig versus the contig 

length. Summary of correlation statistics is shown. 
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Table 3.1 Summary statistics for Trialeurodes vaporariorum EST assembly and 

annotation. 

Assembly  

Total number of reads 1,104,651 

Number of reads after pre-processing 990,945 

Average read length after pre-processing 362 bp 

Total number of contigs 54,748 

Average contig length 965 bp 

Sequencing length 52,832,938 bp 

Contigs with ORF ≥ 200 bp (average length) 30,552 (540bp) 

Average read coverage per contig 4.34x 

Average GC % content of contigs 37.77 % 

Annotation   

% contigs with at least 1 GO term  30.01 % 

% contigs with an EC number  6.10 % 

% contigs with at least 1 IPR  33.27 % 

Contigs with at least 1 blast hit against nr  

Total number 20,333 

Average length 1,394 bp 

% of those contigs with at least 1 IPR  42.61 % 

% of those contigs with at least 1 GO term  78.43 % 

Contigs with ORF ≥ 200 bp (average length) 18,080 (704 bp) 

Contigs with no blast hits  

Total number 34,416 

Average length 712 bp 

% of those contigs with at least 1 GO term  1.41 % 

% of those contigs with at least 1 IPR  28.01 % 

Contigs with ORF ≥ 200 bp (average length) 12,472 (301 bp) 

* nr: non-redundant database, GO: gene ontology term, EC: enzyme commission 

number, IPR: inter-pro result, ORF: open reading frame. 

 

3.3.2 Homology searches, gene ontology and protein classification 

Approximately 37 % (20,333 sequences) of the contigs returned an above cut-off 

BLAST hit to the NCBI nr database (1E
-3

 for BLASTx resulted in 19,983 and 1E
-10

 

for BLASTn resulted in 350 additional BLAST results) (Additional file 3.2). The 

average read length of these contigs was 1,394 bp and E-value and sequence 
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similarity distributions are detailed in Additional file 3.3. As expected, the pea aphid 

Acyrthosiphon pisum Harris (Hemiptera: Aphididae) is the species that returned the 

most BLAST hits (16 %) with the T. vaporariorum contigs (Figure 3.2A), since this 

species‟ genome was recently fully sequenced (International Aphid Genomics 

Consortium, 2010) and currently represents the vast majority of hemipteran 

sequences available in GenBank. 

The remaining 34,416 contigs that did not return a significant BLAST result against 

the NCBI nr database, had an average read length of 712 bp. More than 36 % of those 

contigs (12,472 sequences) were found to have a significant ORF ≥ 200 bp  with an 

average length of 301 bp. 28 % of these contigs (9,553 sequences) returned an 

InterPro result and 1.4 % (488 sequences) returned a GO term (Table 3.1). These 

results give some indication of the limitation of BLAST comparison as a tool for 

inferring the relevant biological function of tentative unique genes assembled from 

sequencing data for species with very limited existing transcriptomic information. 

However, it is likely that the rapid expansion in sequence data from ongoing small 

and large scale insect sequencing projects will facilitate the future annotation of these 

genes. 

GO terms were used for the classification of the functions of the predicted whitefly 

proteins, producing 21,899 terms for biological process categories, 15,571 for 

molecular function categories, and 14,966 for cellular component categories. Enzyme 

classification shows that hydrolases account for the largest proportion of T. 

vaporariorum enzymes (38 %), followed by transferases (32 %) and oxidoreductases 

(15 %) (Figure 3.2B). Most of the molecular function GO terms (Figure 3.3A) were 

involved in binding (45 %) followed by catalytic activity (35 %). Metabolic and 
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cellular processes were involved with more than a half of the biological process GO 

terms (Figure 3.3B). The overall distribution suggests that the sequencing provided a 

comprehensive representation of the T. vaporariorum transcriptome and that 454 

pyrosequencing of ESTs can achieve a great number and depth of sequence contigs. 

 

 

Figure 3.2 Species distribution of the top BLAST hit in the nr database (A) and 

general Enzyme Classification (EC) terms (B) for the contigs of Trialeurodes 

vaporariorum. 
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Figure 3.3 Gene ontology (GO) assignments for the Trialeurodes vaporariorum 

transcriptome. A. Molecular function GO terms, B. Biological process GO terms, C. 

Cellular component GO terms. The data presented represent the level 2 analysis, 

illustrating general functional categories. 
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3.3.3 Transcripts encoding genes involved in insecticide detoxification 

Trialeurodes vaporariorum, like most insect species, metabolises xenobiotics such as 

secondary plant chemicals and insecticides using a suite of detoxification enzymes 

such as P450s, GSTs and CCEs. Representatives of all three enzyme families were 

identified in the T. vaporariorum transcriptome and the average sequence length and 

coverage obtained for members of these gene families using one full plate of 454 

sequencing was comprehensive (Table 3.2).  

 

Table 3.2 Summary information for the identified cytochrome P450s, 

carboxyl/cholinesterases (CCEs) and glutathione-S transferases (GSTs) in the 

Trialeurodes vaporariorum transcriptome. 

Genes Contigs 
Average 
contig 

size 

Average 
reads per 

contig 

Average 
coverage 

per contig 

Average ORF length 

Trialeurodes 
vaporariorum 

1 
Acyrthosiphon 

pisum 
2 

P450s 123 1,532 bp 37 6.3x 1,442 bp 1,508 bp 

CCEs 78 1,394 bp 27 4.9x 1,487 bp 1,768 bp 

GSTs 44 1,111 bp 44 11.3x 672 bp 756 bp 
1
 The average ORF length of all the manually curated genes belonging to a certain 

family identified in Trialeurodes vaporariorum; 
2
 The average ORF length of the full-

length genes belonging to a certain family identified in the fully-annotated genome of 

Acyrthosiphon pisum. The sequences were taken from 

http://www.aphidbase.com/aphidbase. 

 

Table 3.2 reveals that the average ORF length of each of these gene families obtained 

for T. vaporariorum was more than 84 % of that of the same gene families in the 

fully-annotated genome of A. pisum. Candidate contigs were manually curated to 

identify allelic variants of the same gene or those with a high number of sequencing 

errors. Most contigs were assembled from at least 4 sequencing reads and were 

identified in both T. vaporariorum libraries (TV1 and TV6). The only exception was 
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contig 12863, which was assembled from 19 reads from only the imidacloprid 

resistant strain (TV6) library and had a protein motif of a CCE. 

 

3.3.3.1 Transcripts encoding putative P450s 

A total of 123 P450 related contigs were identified in the transcriptome. Of these, 57 

were manually curated (Additional file 3.4 and Additional file 3.5) as the remainder 

were found to be either allelic variants of the same P450 gene or contained too many 

sequencing errors. These 57 P450 sequences were named by Dr David Nelson in 

accordance with the P450 nomenclature committee convention 

(http://drnelson.uthsc.edu/cytochromeP450.html) (Nelson, 2009) and 40 of them were 

found to represent full length ORFs. Based on the closest BLAST hits in the NCBI nr 

database, and when possible, by phylogenetic analyses with other known insect P450 

genes, P450s were assigned to appropriate CYP clades and families. Representatives 

of all 4 major insect CYP clades (CYP2-4 and mitochondrial) were found in this 

dataset (Figure 3.4). A majority of identified P450s belonged to the CYP3 family 

(34/57 P450s), 13 to the CYP4 family, and the rest to the CYP2 and mitochondrial 

families (3 and 7 respectively) (Table 3.3). Phylogenetic analysis of the T. 

vaporariorum P450s with those of A. pisum (Figure 3.4) revealed significant 

divergence in this gene family between these two species with only a few putative A. 

pisum orthologues identified (Additional file 3.4). Two sequences were considered 

orthologues if they were paired in the phylogeny with bootstrap support greater than 

50 %. Duplication events specific to T. vaporariorum are also apparent from the 

phylogeny, with the best example being the three CYP4-type sequences CYP4G59, 

CYP4G60 and CYP4G61. The potential role of these duplication events in insecticide 

resistance warrants further investigation as amplification of a P450 gene has recently 
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been implicated in insecticide resistance in Myzus persicae Sulzer (Hemiptera: 

Aphididae) (Puinean et al., 2010). 

CYP3 and CYP4 P450 families in other insect species are implicated in the 

metabolism of plant secondary metabolites and synthetic insecticides (Feyereisen, 

2005). In the other hemipterans B. tabaci and M. persicae, over-expression of 

cytochrome P450s (CYP6CM1 and CYP6CY3 respectively) contribute to resistance to 

neonicotinoid insecticides (Karunker et al., 2008; Puinean et al., 2010). The closest 

hits of these two P450s in T. vaporariorum are CYP6CM2, CYP6CM 3 (68 % and 67 

% similarity to CYP6CM1 respectively) and CYP6DP1, CYP6DZ1 (60 % and 59 % 

similarity to CYP6CY3 respectively). These genes and the other CYP3 and CYP4 

P450 genes identified in this study are candidates for a potential role in neonicotinoid 

resistance in T. vaporariorum. 

Although the number of P450s in the T. vaporariorum transcriptome (57) is within 

the range of P450s identified in other insect species (46-164) (Oakeshott et al., 2010), 

additional P450 genes may await discovery due to their absence from the current 

transcriptomic dataset. Analysis of fully sequenced insect genomes have identified 

164 P450s in Aedes aegypti Linnaeus (Diptera: Culicidae), 106 in Anopheles gambiae 

Giles (Diptera: Culicidae), 85 in D. melanogaster, 115 in the green peach aphid M. 

persicae, 83 in the green pea aphid A. pisum, and 46 in the western honey bee Apis 

mellifera Linnaeus (Hymenoptera: Apidae) (Adams et al., 2000; Holt et al., 2002; 

Claudianos et al., 2006; The Honeybee Sequencing Consortium, 2006; Strode et al., 

2008; Oakeshott et al., 2010; Ramsey et al., 2010). The current number of 57 P450s 

in T. vaporariorum is at the lower end of this range, almost half of that for M. 

persicae. 
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Figure 3.4 Neighbour-joining phylogenetic analysis of cytochrome P450s from 

Trialeurodes vaporariorum (Tv) and other insect species. Bootstrap values next to the 

nodes represent the percentage of 1,000 replicate trees that preserved the 

corresponding clade. Positions containing alignment gaps and missing data were 

eliminated with pairwise deletion. Acyrthosiphon pisum (Ap), Bemisia tabaci (Bt), 

Myzus persicae (Mp), Drosophila melanogaster (Dm), Anopheles gambiae (Ag), 

Tribolium castaneum (Tc) and Apis mellifera (Am) sequences were taken from 

http://drnelson.uthsc.edu/aphid.htm (Nelson, 2009). 



Chapter 3 – Pyrosequencing the transcriptome of Trialeurodes vaporariorum 62 

 

Table 3.3 Number of validated GSTs, CCEs and cytochrome P450s annotated in 

Trialeurodes vaporariorum (this study), Acyrthosiphon pisum, Myzus persicae 

(Ramsey et al., 2010) and Apis mellifera (Claudianos et al., 2006; The Honeybee 

Sequencing Consortium, 2006) genomes and their distribution across classes and 

clades.  

Enzymes/Class 

Gene numbers 

Trialeurodes 

vaporariorum 

Acyrthosiphon 

pisum 

Myzus 

persicae 

Apis 

mellifera 

Cytochrome P450s     

CYP2 3 10 3 8 

CYP3 34 33 63 28 

CYP4 13 32 48 4 

Mitochondrial P450s 7 8 1 6 

Total P450s 57 83 115 46 

Carboxyl/cholinesterases     

Dietary class     

A clade 11 5 5 8 

B clade 0 0 0 0 

C clade 1 0 0 0 

Hormone/semiochemical 

processing 
    

D clade 0 0 0 1 

E clade 6 18 12 3 

F clade 0 0 0 0 

G clade 0 0 0 1 

Neurodevelopmental     

H clade 1 1 0 0 

I clade 1 0 1 2 

J clade 2 2 3 2 

K clade 1 1 1 1 

L clade 3 3 0 5 

M clade 1 0 0 1 

Total CCEs 27 30 22 24 

Cytosolic GSTs     

Delta 9 10 8 1 

Epsilon 1 0 0 0 

Omega 0 0 0 1 

Sigma 5 6 8 4 

Theta 0 2 2 1 

Zeta 1 0 0 1 

Microsomal 1 2 2 2 

Total cytosolic GSTs 17 20 20 10 
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3.3.3.2 Transcripts encoding putative CCEs 

A total of 78 contig sequences with a protein motif of a CCE were identified. Of 

these, 27 were manually curated (Additional file 3.4 and Additional file 3.6) as some 

of the original sequences were found to be either allelic variants of the same CCE 

gene or contained too many sequencing errors, and 14 were found to be full length. 

Based on the closest BLAST hits in the NCBI nr database and when possible by 

phylogenetic analyses with other known CCE genes from other insect species, these 

enzymes were assigned to three known classes of CCEs (Figure 3.5; Table 3.3). 

Known CCEs can be divided into 13 clades, nine of which are represented in T. 

vaporariorum. Clades without identifiable T. vaporariorum homologues are clade B 

(alpha esterase), integument esterases (D) and lepidopteran juvenile hormone esterase 

(F and G). Esterases involved in the detoxification of insecticides belong to clades A-

C and 12 sequences were assigned to these clades. A phylogenetic analysis indicates a 

potential expansion of T. vaporariorum CCEs in clade A (compared to known, aphid 

CCEs). There is also evidence of a contraction in clade E, which contains the vast 

majority of aphid CCEs, although it is difficult to ascertain if genes in this clade have 

been lost from the genome or simply remain to be discovered (Figure 3.5; Table 3.3). 

In addition, divergence in the CCEs of A. pisum and T. vaporariorum is apparent in 

the same clades (Figure 3.5). The potential A. pisum and B. tabaci orthologues of T. 

vaporariorum CCEs are detailed in Additional file 3.4. Clade A contains the largest 

number of identified T. vaporariorum CCEs (11 sequences), twice as many as in two 

other hemipteran species A. pisum and M. persicae (5 sequences each) (Ramsey et al., 

2010).  
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Figure 3.5 Neighbour-joining phylogenetic analysis of carboxyl/cholinesterases from 

Trialeurodes vaporariorum (Tv) and other insect species (accession numbers are 

given). Bootstrap values next to the nodes represent the percentage of 1,000 replicate 

trees that preserved the corresponding clade. Positions containing alignment gaps and 
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missing data were eliminated only with pairwise deletion. Acyrthosiphon pisum (Ap), 

Bemisia tabaci (Bt), Nasonia vitripennis (Nv), Spodoptera littoralis (Sl), Tribolium 

castaneum (Tc). Acyrthosiphon pisum sequences were taken from 

http://www.aphidbase.com/aphidbase. 

 

Of these, one CCE sequence (contig 12282) had a high homology to a 

carboxylesterase gene in B. tabaci (COE1; accession ABV45410), which is over-

expressed in organophosphate-resistant strains (Alon et al., 2008) and another (contig 

12863) was identified only in the imidacloprid resistant TV6 library and is therefore a 

candidate gene for a potential role in the neonicotinoid resistance of this strain. One 

identified sequence (contig 1172) had high homology to Lepidoptera-specific alpha 

esterase (C). Six sequences had homology to beta esterase (E) and two contigs were 

identified as acetylcholinesterases (AChE, clade J), which are the targets for 

organophosphate and carbamate insecticides. One of these, contig 19680, corresponds 

to a known AChE sequence of T. vaporariorum (ace-2; accession number 

CAE11223). Finally, other clades with identified T. vaporariorum homologues are 

glutactin (H), gliotactin (K), neuroligin (L), neurotactin (M) and an uncharacterised 

group (I).  

 

3.3.3.3. Transcripts encoding putative GSTs 

A total of 44 GST-related contig sequences were identified, 17 of which were unique 

and manually curated (Additional file 3.4 and Additional file 3.7), and thirteen of 

these were full length. Based on the closest BLAST hits in the NCBI nr database and 

when possible by phylogenetic analysis these contigs were assigned to the Delta, 

Epsilon, Omega, Sigma, Theta, Zeta, and microsomal classes (Figure 3.6; Table 3.3). 

Phylogenetic comparison of A. pisum and T. vaporariorum GSTs revealed significant 

divergence in this gene family between the two species (Figure 3.6). Most of the 
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identified GSTs were assigned to the Delta class (9 sequences), members of which are 

known to play a role in insecticide detoxification in other insect species (Claudianos 

et al., 2006). The number of Delta class GSTs in T. vaporariorum (9 sequences) is 

close to that in A. pisum were 10 sequences were identified (Ramsey et al., 2010). 

Although the Epsilon and Zeta classes are absent in A. pisum and M. persicae 

(Ramsey et al., 2010), two contigs (one for each class) were identified in T. 

vaporariorum. One contig, namely Tv7290, was found to encode a microsomal GST. 

 

 

Figure 3.6 Neighbour-joining phylogenetic analysis of glutathione-S-transferases 

from Trialeurodes vaporariorum (Tv) and other insect species (accession numbers 

are given). Bootstrap values next to the nodes represent the percentage of 1,000 

replicate trees that preserved the corresponding clade. Positions containing alignment 

gaps and missing data were eliminated only with pairwise deletion. Acyrthosiphon 

pisum (Ap), Drosophila melanogaster (Dm). Acyrthosiphon pisum sequences were 

taken from http://www.aphidbase.com/aphidbase. 
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3.3.4 Detection of gene sequences encoding insecticide targets 

A number of contigs encoding insecticide target proteins were identified in the T. 

vaporariorum transcriptome. These include the acetylcholinesterase enzyme (AChE), 

nicotinic acetylcholine receptor subunits (nAChRs), the acetyl-CoA carboxylase 

(ACCase), the voltage-gated sodium channel (VGSC), the γ-aminobutyric acid 

(GABA) receptor, the glutamate-gated chloride channel (GluCl) and the ryanodine 

receptor (RyR) (Table 3.4, Figure 3.7 and Additional file 3.8). All contigs that were 

assembled from more than 3 reads and the vast majority of the contigs with lower 

coverage were identified in both T. vaporariorum libraries (TV1 and TV6). Although 

many of these contigs are not full length, they will nevertheless facilitate further 

characterisation of these targets by PCR and/or RACE. As the two cDNA libraries 

were tagged prior to sequencing, we investigated the occurrence of SNPs in contigs 

encoding insecticide target-sites between the resistant and susceptible T. 

vaporariorum strains. A limited number of non-synonymous SNPs were observed 

between the two strains and these are listed in Additional file 3.9. A number of, often 

highly conserved, mutations have been described in many of these target proteins that 

lead to varying degrees of insensitivity such as mutations within the active-site gorge 

of the AChE enzyme (Russell et al., 2004), in domains II or III of the VGSC (Davies 

et al., 2007), in the pore lining M2 region of the GABA receptor (ffrench-Constant et 

al., 2000) and within two alpha subunits of the nAChR (Liu et al., 2005).  
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Table 3.4 Validated genes related to insecticide target sites in Trialeurodes 

vaporariorum.  

Insecticide class Target site Gene name 
Contig 

Number 
Coverage 

Organophosphates, 

Carbamates 

Acetylcholinestera

se (AChE) 

AChE 1 24052 1.59 

AChE 2 19680 1.63 

neonicotinoids 

Nicotinic 

acetylcholine 

receptor (nAChR) 

nAChR alpha 2 

subunit 

19430 

21473 

2.87 

1.66 

nAChR alpha 3 

subunit 
20111 3.16 

nAChR alpha 4 

subunit 
16361 2.47 

nAChR alpha 5 

subunit 

22076 

35554 

21985 

2.01 

1.33 

1.70 

nAChR alpha 6 

subunit 

20921 

29179 

22598 

1.89 

3.37 

1.46 

nAChR alpha 7 

subunit 
12555 3.50 

nAChR alpha 10 

subunit 
1918 15.0 

nAChR beta 1 

subunit 

31493 

36485 

1.55 

1.37 

Tetronic & 

Tetramic acid 

derivatives 

Acetyl-CoA 

carboxylase 

(ACCase) 

ACCase 

28490 

41433 

17359 

1349 

1.84 

1.18 

1.84 

10.7 

Pyrethroids, 

Pyrethrins 

Voltage-gated 

sodium channel 

(VGSC) 

VGSC 

22691 

37637 

21272 

3.98 

1.96 

2.65 

Organochlorines, 

Phenylpyrazoles 

(Fiproles) 

GABA receptor GABA receptor 
16203 

37638 

4.37 

1.47 

Glutamate-gated 

chloride channel 

(GluCl) 

GluCl 

35107 

15229 

35534 

1.36 

2.62 

1.69 

Diamides 

(chlorantraniliprole, 

cyanthraniliprole, 

flubendiamide) 

Ryanodine 

receptor (RyR) 
RyR 

35833 

7799 

1.09 

6.30 

Additional file 3.7 includes their nucleotide sequences. 
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Figure 3.7 Neighbour-joining phylogenetic analysis of nicotinic acetylcholine 

receptors (nAChR) from Trialeurodes vaporariorum (Tv) and other insect species 

(accession numbers are given). Bootstrap values next to the nodes represent the 

percentage of 1,000 replicate trees that preserved the corresponding clade. Positions 

containing alignment gaps and missing data were eliminated only with pairwise 

deletion. Acyrthosiphon pisum (Acyp), Myzus persicae (Mp), Bemisia tabaci (Bt), 

Nilaparvata lugens (Nl) and Aphis gossypii (Ag). 

 

Where possible we examined the two T. vaporariorum libraries for previously 

described mutations at known „hot-spots‟ in other arthropod species but none were 

observed. However, several non-synonymous mutations at alternative positions in 

many of the target site genes were found (Additional file 3.9) and these clearly 

warrant further investigation. Pyrosequencing or TaqMan® assays can now be rapidly 
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developed and used to screen additional whitefly populations with different resistance 

phenotypes to determine the consistency of the correlation of these SNPs with 

resistance. 

 

3.4 CONCLUSION 

T. vaporariorum is an important agricultural pest that has developed resistance to 

several insecticides used for whitefly control. To date, the lack of genomics data 

available for this species has hampered characterisation of the molecular mechanisms 

underlying resistance. The ~55,000 non-redundant EST contigs described in this 

study represent a dramatic expansion of existing cDNA sequence available for T. 

vaporariorum. We have identified the genes and gene families that are potential 

candidates for conferring insecticide resistance in T. vaporariorum including those 

encoding enzymes putatively involved in metabolic detoxification of xenobiotics and 

those encoding the target proteins of the major chemical classes of insecticides. The 

EST contig library developed in this study can be used as a reference transcriptome 

for analysis of gene expression using cDNA microarray and/or SAGE. We plan to use 

these genomic resources to investigate the role of detoxifying enzymes and target-site 

modification in T. vaporariorum populations that are resistant to insecticides. 

However, more broadly the annotated EST library will facilitate the investigation of 

the fundamental biology of T. vaporariorum and its interactions with host plants. T. 

vaporariorum has a similar biology to B. tabaci, offering the prospect of sharing 

information on resistance mechanisms and other biological traits between these major 

crop pests.  
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3.5 ADDITIONAL FILES 

 Additional file 3.1 Characteristics of assembled Trialeurodes vaporariorum 454 contigs 

and BLASTx alignments against Drosophila melanogaster. (A,B) length and coverage of 

contigs, (C,D) percent identity and deduced amino acid alignment length for all blast hits to 

D. melanogaster predicted proteins (Additional file 3.1.pdf) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s1.pdf 

Additional file 3.2 Top BLAST hits in the NCBI nr database for each unique contig. 

Note that only the contigs that returned a BLAST result are shown in this file 

(Additional file 3.2.xls) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s2.xls 

Additional file 3.3 E-value (A) and percentage similarity (B) distributions of the top 

BLAST hit for each contig of Trialeurodes vaporariorum (Additional file 3.3.tiff) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s3.tiff 

Additional file 3.4 Names, corresponding contig numbers, amino-acid sequences and 

Acyrthosiphon pisum or Bemisia tabaci orthologues of contigs that encode 

detoxifying enzymes (Additional file 3.4.xls) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s4.xls 

Additional file 3.5 P450s nucleotide sequences (Additional file 3.5.txt) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s5.txt 

Additional file 3.6 CCEs nucleotide sequences (Additional file 3.6.txt) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s6.txt 
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Additional file 3.7 GSTs nucleotide sequences (Additional file 3.7.txt) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s7.txt 

Additional file 3.8 Nucleotide sequences of target sites of the most important 

insecticide classes (Additional file 3.8.txt) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s8.txt 

Additional file 3.9 Single nucleotide polymorphisms (SNPs) arising due to nucleotide 

divergence between the two strains (TV1 and TV6) (Additional file 3.9.xls) 

http://www.biomedcentral.com/content/supplementary/1471-2164-12-56-s9.xls 
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Chapter 4 

Mutations in the sodium channel associated with pyrethroid 

resistance in the greenhouse whitefly, Trialeurodes vaporariorum 

Nikos Karatolos, Kevin Gorman, Martin S Williamson and Ian Denholm 

Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK 

 

Abstract 

BACKGROUND: Trialeurodes vaporariorum Westwood is an important pest of 

protected crops in temperate regions of the world. Resistance to pyrethroid 

insecticides is long established in this species but the molecular basis of the 

mechanism(s) responsible has not previously been disclosed.   

RESULTS: Mortality rates of three European strains of T. vaporariorum to the 

pyrethroid bifenthrin were calculated and each possessed significant resistance (up to 

662-fold) when compared to a susceptible reference strain. Direct sequencing 

revealed three amino-acid substitutions in the para-type voltage gated sodium 

channel (the pyrethroid and DDT target site) of bifenthrin-resistant T. vaporariorum, 

at positions previously implicated with pyrethroid or DDT resistance (M918L, L925I 

and T929I) in other related species. 

CONCLUSION: This study indicates that resistance to bifenthrin in T. vaporariorum 

is associated with target-site insensitivity, and that the specific mutations in the 

sodium channel causing resistance may differ between localities. 

 

 



Chapter 4 - Pyrethroid resistance in Trialeurodes vaporariorum 74 

 

4.1 INTRODUCTION 

The greenhouse whitefly Trialeurodes vaporariorum Westwood (Hemiptera: 

Aleyrodidae), is an important pest of protected vegetable and ornamental crops in 

temperate regions of the world (Byrne et al., 1990). All feeding life stages cause 

damage through the extraction of nutrients and the excretion of honeydew, and large 

infestations can result in stunted plants and leaf necrosis (Byrne et al., 1990). T. 

vaporariorum also transmits numerous plant viruses of the Closteroviridae family 

(Jones, 2003). 

T. vaporariorum is the target of many insecticides and is known to have developed 

resistance to numerous chemical classes including pyrethroids. Pyrethroid resistance 

and cross-resistance was first documented in UK populations of T. vaporariorum in 

the 1970s (Wardlow et al., 1976; Wardlow, 1985) and continues to compromise 

efficacy. Pyrethroid insecticides share a similar mode of action to the organochlorine 

compound DDT and act by altering the normal functioning of neuronal voltage-gated 

sodium channels causing paralysis and ultimately death of the insect (Narahashi, 

1992). 

Resistance to pyrethroids can result from two distinct types of mechanism; either 

increased detoxification commonly conferred by cytochrome P450 monooxygenases 

(Bergé et al., 1998),
 
carboxylesterases (Wheelock et al., 2005)

 
and occasionally 

glutathione-S transferases (Vontas et al., 2001); or alternatively as a consequence of 

mutations in the para-type sodium channel gene (VGSC) that confer target-site 

insensitivity through traits commonly known as knockdown resistance (kdr and 

super-kdr) (Taylor et al., 1993; Williamson et al., 1993; Dong & Scott, 1994). The 

sodium channel is a large membrane protein consisting of 4 internally repeating 
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homologous domains (I–IV), each with 6 membrane-spanning segments (S1–S6) 

(Catterall, 2000). Previous studies of a range of insect, mite and tick species have 

shown that the mutations that cause these resistant phenotypes are predominantly 

clustered within two regions of the channel protein, The first being domain II S4-S5, 

S5 and S6 segments, encompassing the „original‟ kdr mutation (L1014F) (Miyazaki et 

al., 1996; Williamson et al., 1996) that gives moderate (10-30 fold) levels of 

resistance, and a series of commonly more potent „super-kdr‟ mutations at residues 

M918, L925, T929 and L932 (Davies et al., 2007; Soderlund, 2008). The second 

region is IIIS6 and includes residues F1538, F1534 and G1535 (Davies et al., 2007; 

Soderlund, 2008). The clustering of mutations in these two regions is consistent with 

recent homology modelling studies (based on the structures of closely-related 

potassium channels) that predict that the IIS4-S5, IIS5 and IIIS6 regions of the 

channel contribute to a hydrophobic binding pocket for pyrethroids and DDT, with 

many of the residues identified in resistance forming key side-chain interactions that 

stabilise the high affinity binding of these compounds (O‟Reilly et al., 2006). 

The present study aimed to investigate potential correlations between the phenotypic 

expression of bifenthrin resistance in T. vaporariorum and the presence of domain II 

mutations in the voltage-gated sodium channel, thereby assessing the likelihood of 

target site insensitivity as a major mechanism of pyrethroid resistance in this species. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Insect strains 

Four strains of T. vaporariorum including an insecticide susceptible reference strain 

(TV1) were used in this study (Table 4.1). These encompassed three countries of 

origin and both edible and ornamental plant hosts. All strains were reared at 
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Rothamsted Research without exposure to insecticides on French bean plants, 

Phaseolus vulgaris L., cv. “Canadian Wonder” (Fabaceae), under a 16 h photoperiod 

at 24 °C. 

 

Table 4.1 Trialeurodes vaporariorum strains, origins, years of collection and original 

hosts 

Strain Country of origin Year of collection Original host 

TV1 UK 1971 French bean 

TV3 UK 2008 Ornamentals 

TV6 Turkey 2006 Vegetables 

TV8 Germany 2008 Ornamentals 

 

4.2.2 Insecticides and bioassays 

The pyrethroid bifenthrin 100 g L
-1

 EC (Gyro
®

; CERTIS) was commercially obtained 

and diluted to the required concentrations in distilled water containing 0.1 g L
-1

 of the 

non-ionic wetter Agral
®
 (Syngenta). A stock solution of 10,000 mg L

-1
 DDT 

(technical grade, BDH Chemicals Ltd) in acetone was further diluted to the required 

concentrations using 10 % acetone in distilled water containing 0.1 g L
-1

 of the non-

ionic wetter Agral
®
. 

Responses of adults to bifenthrin and DDT were quantified using leaf-dip bioassays. 

Leaf discs were cut from bean plants and dipped for 20 s into the required 

concentrations of insecticide or into 0.1 g L
-1

 Agral
®

 for controls. Treated leaf discs 

were placed on 1 % agar inside petri-dishes and allowed to air-dry. At each 

concentration, three replicates of 20-30 adult females of the required strain were 

placed in each petri-dish and confined with an absorbent cellulose pad and lid in order 

to minimise static and humidity. All bioassays were maintained at 24 °C and 

mortality was scored after 48 h. For bifenthrin, each concentration consisted of three 
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replicates and concentration-mortality relationships were fitted by probit analysis, 

using GenStat 12
th
 edition software (VSN International Ltd, Hertfordshire, UK). 

Resistance factors were calculated by dividing estimated LC50 values for field-

collected strains by those for the susceptible reference strain (TV1). Lack of overlap 

of 95 % confidence limits on estimated LC50 values denoted significant differences 

between responses of strains. For DDT, assays used five replicates at each of two 

diagnostic concentrations (30 and 100 mg L
-1

). A two-sample unpaired t-test was 

used to investigate the differences in the responses of the four strains to DDT.  

Total esterase activity was detected using 1-naphthyl acetate as a substrate. In each 

well of a 96-well plate, a single female whitefly was homogenised in 200 μl sodium 

phosphate buffer (0.1 M, pH 7.5, 0.1 % Triton X-100). 200 μl substrate solution (0.06 

% Fast Blue RR in sodium phosphate buffer, 0.2 M, pH 6.0) and 1 mM 1-naphthyl 

acetate as substrate were added to 100 μl aliquots of homogenate (equivalent to 0.5 

whiteflies). Microplates were then read kinetically at 450 nm and intervals of 10 sec 

for 20 min at room temperature, using a Vmax kinetic microplate reader (Molecular 

Devices). The amount of protein in the enzyme source was determined using 

Bradford reagent and bovine serum albumin as a standard. Cytochrome P450 

monooxygenase activity was determined by O-deethylation of 7-ethoxycoumarin, 

following a method already described for tobacco whitefly, Bemisia tabaci Gennadius 

(Hemiptera: Aleyrodidae) (Rauch & Nauen, 2003). 

 

4.2.3 RNA, cDNA reverse transcription and gDNAextraction 

Total RNA was extracted from fresh samples of the four strains (TV1, TV3, TV6 and 

TV8). Approximately 100 adult whiteflies from each population were flash frozen in 

liquid nitrogen and total RNA extracted using the Isolate RNA Mini Kit (Bioline) 
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according to the manufacturer‟s protocol. First strand cDNA was synthesised from 1 

µg total RNA by reverse transcriptase (Superscript II
®

, Invitrogen) using the 

manufacturer‟s protocol. cDNA was stored at -20 °C for further use. Genomic DNA 

(gDNA) was extracted from individual adult whiteflies of the strain TV8 and 

homogenised in 100 μl of DNAZOL
®
 (Invitrogen) at a tenth scale of the 

manufacturer‟s protocol. The gDNA was resuspended in 20 μl of nuclease-free water. 

 

4.2.4 RT-PCR and voltage-gated sodium channel sequencing 

Recently, the transcriptome of T. vaporariorum was published (Karatolos et al., 

2011a), where 3 contigs (Tv22691, Tv37637 and Tv21272) and 18 reads 

corresponding to para-type sodium channel partial sequences were identified. The 

contigs and reads were assembled and manually curated using Geneious software 

(Biomatters Ltd, Auckland, New Zealand), resulting in a total of 8 partial sequences 

of the sodium channel (Additional file 4.1). These sequences were used to design 

primers for PCR amplification and sequencing of a fragment of the VGSC gene that 

contained the IIS4-6 region (Table 4.2). PCR reactions (25 μl) contained 1 μl cDNA 

or approximately 40 ng gDNA, 12.5 μl DreamTaq
®
 Green DNA Polymerase 

(Fermentas), 15 pmol of each primer and RNase free water. The cycling conditions 

were 95 °C for 2 min, followed by 30 cycles of 95 °C for 30 s, 50 °C for 30 s and 72 

°C for 90 s for cDNA PCR or 30 s for gDNA PCR. A final extension of 72 °C for 5 

min was included at the end of the cycles. The PCR fragments were purified using the 

Wizard
®

 SV Gel and PCR Clean-up System (Promega) according to the 

manufacturer‟s protocol and sent to Eurofins MWG (Germany) for direct sequencing. 
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Table 4.2 Primer sequences for PCR amplification and sequencing of domain II S4-6 

of the para-type voltage-gated sodium channel (VGSC) of Trialeurodes 

vaporariorum. 

Primer 

name 
Sequence Purpose 

vgsc-f1 ATCTTCTGCGTTTGGGATTG 
PCR amplification of domain IIS4-6 

region (1189 bp) 

vgsc-r1 CATCAAATGGCCTGTGTTTG 
PCR amplification of domain IIS4-6 

region (1189 bp) 

vgsc-f2 GACCCTTTCGTCGAGTTGTT sequencing of PCR fragment 

vgsc-r2 TGTTTGTGACTGCCGTAGGA sequencing of PCR fragment 

vgsc-f3 TAGCAAAATCATGGCCGACA 
gDNA PCR amplification of a 

region in domain IIS4-6 (129 bp) 

vgsc-r3 AGTTGCATGCCCATGACG 
gDNA PCR amplification of a 

region in domain IIS4-6 (129 bp) 

vgsc-r4 CCATGACGGCAAAGATGAA Sequencing of gDNA fragments 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Bioassays and biochemical assays 

The LC50 value for the susceptible strain (TV1) against bifenthrin was 0.95 mg L
-1

. 

All three field strains were significantly resistant compared to TV1, based upon 

overlapping 95 % CL of LC50 values. The highest resistance factor recorded was 662-

fold for the German strain TV8, followed by 471-fold for TV6 and 263-fold for TV3 

(Table 4.3). These results are in accordance with previous reports of pyrethroid 

resistance in T. vaporariorum (Wardlow et al., 1976; Wardlow, 1985). 

There was no evidence for elevated cytochrome P450 activity in any of the 

bifenthrin-resistant strains compared to TV1 (Table 4.3). Total esterase activity with 

1-naphthyl acetate as a substrate did not differ significantly between the strains TV1, 

TV3, and TV6 but it was elevated (1.6-fold compared to TV1) in the most resistant 
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strain TV8 (Table 4.3). This difference in total esterase activity is unlikely to be 

solely responsible for the high resistance of TV8. 

 

Table 4.3 Responses of Trialeurodes vaporariorum adults to the pyrethroid 

bifenthrin, enzyme (esterase and cytochrome P450) activities, and amino-acid 

substitutions disclosed in the sodium channel gene. Resistance factors (RFs) relative 

to TV1 are given for all the field strains. 

Strain 
LC50 (mg L

-1
) 

(95% CL) 

Slope 

(±s.e.) 
RF 

Enzyme activity (±s.e.) kdr 

mutations Esterase
a 

P450
b 

TV1 0.95 (0.71-1.22) a 
1.64 

(±0.17) 
1 0.83±0.10 a 76.5±4.62 a none 

TV3 249 (175-357) b 
1.02 

(±0.09) 
263 1.01±0.05 a 86.2±3.20 a T929I 

TV6 447 (336-576) bc 
2.29 

(±0.29) 
471 0.86±0.12 a 86.6±6.89 a L925I 

TV8 628 (486-805) c 
2.51 

(±0.29) 
662 1.39±0.11 b 79.4±6.71 a 

M918L + 

L925I 
a
Esterase activity (mOD/min/mg protein), 

b
Cytochrome P450-dependent 

monooxygenase activity (pmol/30min/mg protein) (7-ethoxycoumarin O-deethylase). 

Different letters in the same column indicate significant differences between strains. 

 

The mortality of strain TV3 to DDT (Figure 4.1) was significantly reduced compared 

to the strain TV1 after treatments with a diagnostic dose of 30 mg L
-1

 (t = 42.5, df = 

8, P < 0.001) and 100 mg L
-1

 (t = 50.7, df = 8, P < 0.001). The responses of the 

strains TV6 and TV8 to the 30 mg L
-1 

dose of DDT, were significantly different to 

that of TV1 (t = 4.71, df = 8, P = 0.002 and t = 7.33, df =8, P < 0.001 respectively). 

However, there was no difference in the responses of TV1, TV6 and TV8 to the 100 

mg L
-1

 dose, which killed almost all the tested whiteflies of those strains. These data 

confirm the presence of DDT resistance in T. vaporariorum, with TV3 being the most 

resistant strain. 
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Figure 4.1 Effect (percentage mortality) of 30 and 100 mg L

-1
 doses of DDT against 

adults of Trialeurodes vaporariorum for the strains TV1, TV3, TV6 and TV8. 

Different letters (upper case for 30 mg L
-1

 and lower case for 100 mg L
-1

) indicate 

significant differences between strains, based on a two sample unpaired t-test. 

 

4.3.2 Sodium channel gene sequencing 

Direct sequencing of a fragment (1,189 bp) that includes domain II S4-6 of the 

sodium channel (Additional file 4.2), revealed three non-synonymous SNPs 

potentially associated with kdr-type pyrethroid resistance. These caused the following 

amino acid substitutions, methionine 918 to leucine (M918L), leucine 925 to 

isoleucine (L925I) and threonine 929 to isoleucine (T929I) (Table 4.3; Figure 4.2; 

numbering according to the housefly sodium channel (Williamson et al., 1996), 

Genbank accession X96668). Mutations at these  same positions have been implicated 

in pyrethroid resistance for several other closely related hemipteran species, including 

the tobacco whitefly B. tabaci (mutations M918V, L925I and T929V) (Morin et al., 

2002; Alon et al., 2006; Roditakis et al., 2006), the peach potato aphid, Myzus 
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persicae Sulzer (Hemiptera: Aphididae) (M918T, L1014F)
 
(Martinez-Torres et al., 

1999; Eleftherianos et al., 2008) and the cotton aphid, Aphis gossypii Glover 

(Hemiptera: Aphididae) (M918L) (Yang & Williamson, 2001). Interestingly, in the 

two whitefly species T. vaporariorum and B. tabaci, none of the identified mutations 

in domain IIS4-6 were accompanied by the L1014F mutation, as has been found in M. 

persicae and other pest species (Davies et al., 2007; Soderlund, 2008).
 
However, 

recent studies evaluating the functional properties of individual sodium channel 

mutations by their in vitro expression in Xenopus oocytes (Usherwood et al., 2007) 

have shown that mutations at positions M918, L925 and T929 alone are all able to 

significantly reduce the pyrethroid sensitivity of the channel and give rise to the 

„super-kdr‟ phenotypes shown by TV3, TV6 and TV8 (all > 250 fold resistance to 

bifenthrin). 

 

 

Figure 4.2 Amino-acid alignment of the para-type sodium channel of Trialeurodes 

vaporariorum with that of the related species Bemisia tabaci (Morin et al., 2002; 

Alon et al., 2006; Roditakis et al., 2006). Dots represent identical residues to TV1. 

Domain II S5 and domain II S6 are indicated by grey shading. The positions of 

mutation sites associated with pyrethroid resistance in Bemisia tabaci (M918V, L925I 

and T929V), as well as the position of the L1014F mutation found in other insect 

pests but not in whiteflies are boxed. 
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Direct sequencing of mass homogenates of approximately 100 adults of each strain 

was used to investigate the distribution and relative frequencies of the three mutations 

between strains. As expected, for the susceptible strain, TV1, there was no evidence 

of any of the mutations within the sequencing trace chromatograms. In the case of 

TV3 only the T929I mutation was identified, while the more resistant strain TV6 

possessed only the L925I mutation. Direct sequencing of the TV8 strain, with the 

highest levels of bifenthrin resistance, revealed that both the M918L and L925I 

substitutions were present. The sequencing traces indicated that both TV3 and TV6 

appeared to be homozygous for the T929I and the L925I mutations respectively, 

while TV8 was heterozygous for the L925I and M918L mutations. Subsequent 

sequencing of 20 individual TV8 adult males (haploid) revealed that all males had 

either M918L (8 of 20) or L925I (12 of 20), but that these mutations never occurred 

together within the same sodium channel allele. 

The strain TV3, which carried only the T929I mutation (Table 4.3), was the most 

resistant strain to DDT (Figure 4.1). This result suggests that the T929I mutation 

present in TV3 has a more dramatic effect on DDT binding, while the M918L and 

L925I mutations (present in the less resistant TV6 and TV8 strains) have less impact 

on DDT binding. This is consistent with modelling predictions for the 

pyrethroid/DDT binding site, which suggest that DDT overlays the acid group of the 

pyrethroid molecule and occupies the upper part of the binding cavity, away from the 

M918 and L925 residues (O‟Reilly et al., 2006), and also experimental evidence from 

the oocyte expression assays that confirm channels carrying resistance mutations 

from the lower part of the cavity (M918T, L925I) do indeed retain high sensitivity to 

DDT (Usherwood et al., 2007). 
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Previous studies have highlighted similarities in the phenotypic characteristics of 

insecticide resistance between T. vaporariorum and B. tabaci (Nauen et al., 2008; 

Gorman et al., 2010; Karatolos et al., 2010). The fact that both of these whitefly 

species have similar/identical amino-acid substitutions at the same positions of the 

sodium channel provides further support that these residues are indeed important for 

pyrethroid/DDT binding and resistance. 

 

4.4 CONCLUSION 

In this study, significant reductions in bifenthrin sensitivity were found in European 

strains of T. vaporariorum confirming the presence of pyrethroid resistance. Direct 

sequencing of these strains revealed three amino-acid substitutions in the domain II 

S4-S5 and S5 regions of the para sodium channel gene. These mutations (M918L, 

L925I and T929I) were located at the same positions as those of pyrethroid resistant 

B. tabaci, indicating strong parallels in the phenotypic expression and underlying 

mechanisms of pyrethroid resistance in these closely-related species. 

 

4.5 ADDITIONAL FILES 

Additional file 4.1 Partial voltage-gated sodium channel nucleotide sequences 

identified in the Trialeurodes vaporariorum transcriptome (Karatolos et al., 2011a) 

(Additional file 4.1.txt) 

Additional file 4.2 Partial nucleotide sequence of domain IIS4-6 of the para-type 

voltage-gated sodium channel of Trialeurodes vaporariorum (Additional file 4.2.txt) 
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Abstract 

BACKGROUND: Spiromesifen is a novel insecticide and is classed as a tetronic 

acid derivative. It targets the insects‟ acetyl-CoA carboxylase (ACCase) enzyme, 

causing a reduction in lipid biosynthesis. At the time of this publication, there are no 

reports of resistance to this class of insecticides in insects although resistance has 

been observed in several mite species. The greenhouse whitefly Trialeurodes 

vaporariorum (Westwood) is a serious pest of protected vegetable and ornamental 

crops in temperate regions of the world and spiromesifen is widely used in its control. 

RESULTS: Mortality rates of UK and European populations of T. vaporariorum to 

spiromesifen were calculated and up to 26-fold resistance was found. We therefore 

sought to examine the molecular mechanism underlying spiromesifen resistance in 

this important pest. Pre-treatment with piperonyl butoxide did not synergise 

spiromesifen, suggesting a target-site resistance mechanism. The full length ACCase 
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gene was sequenced for a range of T. vaporariorum strains and a strong association 

was found between spiromesifen resistance and a glutamic acid substitution with 

lysine in position 645 (E645K) of this gene. A TaqMan allelic discrimination assay 

confirmed these findings.  

CONCLUSION: Although this resistance is not considered sufficient to compromise 

the field performance of spiromesifen, this association of E645K with resistance is 

the first report of a potential target site mechanism affecting an ACCase inhibitor in 

an arthropod species.  

 

5.1 INTRODUCTION 

The spirocyclic tetronic and tetramic acid derivatives (spirodiclofen, spiromesifen and 

spirotetramat) are a new class of effective insecticides and acaricides (Nauen et al., 

2003; Nauen, 2005; Nauen et al., 2005; Brück et al., 2009). Spirodiclofen is one of 

the most widely used agents for controlling mites, while spiromesifen is also used to 

control whiteflies (Nauen et al., 2005; Kontsedalov et al., 2009). They act as 

inhibitors of acetyl-CoA carboxylase (ACCase) and cause significant reduction in 

total lipid biosynthesis (Nauen et al., 2003; Nauen, 2005; Nauen et al., 2005). 

Spirotetramat is the newest representative of the class and extends the spectrum of 

control to include aphids (Brück et al., 2009). Recently, resistance was found to affect 

spirodiclofen effectiveness against a laboratory selected strain of the mite 

Tetranychus urticae Koch (Acari: Tetranychidae) (van Pottelberge et al., 2009a; van 

Pottelberge et al., 2009b), as well as field and laboratory selected populations of 

Panonychus citri McGregor (Hu et al., 2010) and Panonychus ulmi Koch (both Acari: 

Tetranychidae) (Kramer & Nauen, 2011). However, there are no documented cases of 

resistance to this class of insecticides in any insect. 
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The greenhouse or glasshouse whitefly Trialeurodes vaporariorum Westwood 

(Hemiptera: Aleyrodidae), is an increasingly important pest of protected vegetable 

and ornamental crops in temperate regions of the world (Byrne et al., 1990; 

Brødsgaard & Albajes, 1999). All life stages other than eggs cause damage by 

phloem feeding or by excretion of honeydew, and large infestations can result in 

stunted plants and leaf necrosis (Brødsgaard & Albajes, 1999). T. vaporariorum also 

transmits numerous plant viruses belonging to the Closteroviridae family (Jones, 

2003; Khurana & Garg, 2004). It is the target of many insecticides and has developed 

resistance to numerous chemical classes including pyrethroids (Wardlow, 1985) and 

neonicotinoid insecticides (Bi & Toscano, 2007; Gorman et al., 2007; Karatolos et 

al., 2010). As spiromesifen is now extensively used against T. vaporariorum we 

wanted to examine if this species can also evolve resistance to this novel insecticide. 

ACCase, the target of spiromesifen, is a key enzyme for the metabolism of fatty acid 

and it catalyses the production of malonyl-CoA from acetyl-CoA and CO2, a reaction 

which requires the hydrolysis of ATP (Cronan & Waldrop, 2002). Interestingly, 

ACCase is also the target of two chemical classes of herbicides 

(aryloxyphenoxypropionates and cyclohexanediones) and target site resistance 

mutations have already been reported in several weed species (Délye et al., 2002a; 

Délye et al., 2002b). Here, the effect of spiromesifen was evaluated on field 

populations of T. vaporariorum and moderate resistance was found in some 

populations. Sequencing technology was used to search for point mutations in the 

ACCase gene that are associated with spiromesifen resistance.  
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5.2 MATERIALS AND METHODS 

5.2.1 Insect strains 

Four strains of T. vaporariorum including a laboratory susceptible reference strain 

were used in this study (Table 5.1). These encompassed three countries of origin and 

both edible and ornamental plant hosts.  All strains were reared at Rothamsted 

Research without exposure to insecticides on French bean plants, Phaseolus vulgaris 

L., cv. “Canadian Wonder” (Fabaceae), under a 16 h photoperiod at 24 °C.  

 

Table 5.1 Trialeurodes vaporariorum strains, origins, year of collection and original 

host 

Strain Country of origin Year of collection Original host 

TV1 UK 1971 French bean 

TV3 UK 2008 Ornamentals 

TV6 Turkey 2006 Vegetables 

TV8 Germany 2008 Ornamentals 

 

5.2.2 Insecticides and bioassays 

Spiromesifen (Oberon
®

, 24 %
 
SC, Bayer CropScience) was used as a commercially-

available formulation. Spiromesifen was diluted to the required concentrations in 

distilled water containing 0.1 g L
-1

 of the non-ionic wetter Agral
®

 (Syngenta). 

Spirotetramat was received as a technical grade solution (Bayer CropScience). A 

stock solution in acetone of a 1,000 mg L
-1

 spirotetramat was further diluted to the 

required concentration in 10 % acetone solution in distilled water containing 0.1 g L
-1

 

of the non-ionic wetter Agral
®
. Technical piperonyl butoxide (PBO) (PCP „Ultra‟) 

was provided by Dr. Graham Moores (Rothamsted Research). 

Since spiromesifen is particularly active against juvenile stages of whiteflies (Nauen 

et al., 2003), responses of second instar nymphs were quantified using leaf-dip 

bioassays.
 

Nymphs were tested by trimming leaves on intact bean plants into 
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rectangles of approximately 40 mm x 50 mm. The trimmed plants were placed in 

cages with at least 200 adult whiteflies for 24 h to obtain a synchronised cohort of 

eggs, following which the adults were removed. Leaves were dipped after 11 days 

(when the majority of immature whiteflies had reached second instar) for 15 seconds 

in the required concentration of insecticide or into 0.1 g L
-1

 Agral
®

 for controls. 

Bioassays were maintained at 24 °C and mortality was scored after 22-25 days after 

counting dead immature stages and pupae from which adults had emerged. 

Concentration-mortality relationships were fitted by probit analysis, using the 

software GenStat 12
th
 edition (VSN International Ltd, Hertfordshire, UK). Resistance 

factors were calculated by dividing LC50 values for field-collected strains by those for 

the susceptible standard (TV1). Lack of overlap of 95 % confidence limits on fitted 

LC50 values denoted significant differences between responses of strains.  

Egg hatch suppression after application of a diagnostic concentration of 1000 mg L
-1 

spiromesifen on the strains TV1 and TV6 (pre- and post-selection) was tested using a 

modified leaf dip method whereby 40 mm x 50 mm rectangular trimmed leaves 

infested with one day old whitefly eggs (100-300 eggs) were dipped for 15 seconds in 

1000 mg L
-1 

spiromesifen or into 0.1 g L
-1

 Agral
®
 for controls. Egg hatch suppression 

was scored after 11 days. A two sample unpaired t-test was used to investigate the 

difference in the responses (percentage egg hatch suppression) between the strains, 

using GenStat 12
th
 edition (VSN International Ltd, Hertfordshire, UK). 

 

5.2.3 Selection experiments and PBO synergism  

 Insecticide selections were done using the nymphal leaf dip method for the field 

strains TV3, TV6 and TV8. Initially a concentration of 10 mg L
-1

 spiromesifen was 

used for two successive generations, followed by a single selection with 15 mg L
-1

, 
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resulting in the final selected strains TV3SpSel, TV6SpSel and TV8SpSel. The 

mortality of the selected and unselected strains was investigated using a diagnostic 

concentration of 10 mg L
-1

 spiromesifen and spirotetramat. For synergism bioassays, 

second instar nymphs from the selected strain TV6SpSel and the unselected TV6 as a 

control, were initially dosed with 0.1 % PBO solution in acetone followed 5 h later by 

a diagnostic concentration of 10 mg L
-1

 of spiromesifen. A two sample unpaired t-test 

was used to investigate the difference in the responses (percentage mortality) between 

the strains, using GenStat 12
th
 edition.  

 

5.2.4 RNA extraction and cDNA reverse transcription 

Total RNA was extracted from fresh samples of the four populations (TV1, TV3, 

TV6 and TV8) as well from the spiromesifen selected populations. Approximately 

100 adult whiteflies from each population were flash frozen and total RNA was 

extracted using the Isolate RNA Mini Kit (Bioline) according to the manufacturer‟s 

protocol. First strand cDNA was synthesised from 1000 ng total RNA by reverse 

transcriptase (Superscript II
®
, Invitrogen) using the manufacturer‟s protocol. cDNA 

was stored at -20 °C for further use. 

 

5.2.5 RT-PCR and 5’ RACE-PCR of acetyl-CoA carboxylase 

Recently, the transcriptome of T. vaporariorum was published and four partial 

sequences of the target of spiromesifen ACCase were identified (Karatolos et al., 

2011a). These sequences were used to design primers (Additional file 5.1) for PCR 

amplification and sequencing of the full length ACCase gene. PCR reactions (25 μl) 

contained 1 μl cDNA, 12.5 μl DreamTaq
®
 Green DNA Polymerase (Fermentas), 15 

pmol of each primer and RNase free water. The cycling conditions were 95 °C for 2 
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min, followed by 30 cycles of 95 °C for 30 s, 50 °C for 30 s and 72 °C for the 

appropriate time, depending on the size of the template (Additional file 5.1). A final 

extension of 72 °C for 5 min was included at the end of the cycles. RACE PCR was 

used to amplify the 5‟ end of ACCase. The FirstChoice
®
 RLM-RACE Kit (Ambion) 

was used according to the manufacturer‟s protocol. The PCR and RACE PCR 

fragments were purified using the Wizard
®
 SV Gel and PCR Clean-up System 

(Promega) according to the manufacturer‟s protocol and sent to Eurofins MWG 

(Germany) for direct sequencing. 

 

5.2.6 DNA extractions and TaqMan
®
 allelic discrimination assay 

Direct sequencing revealed a single nucleotide polymorphism (SNP) with a potential 

role in spiromesifen resistance. This was a guanine (G) to adenosine (A) change that 

causes a glutamic acid to lysine substitution. This target SNP was used to design a 

TaqMan
®
 SNP genotyping assay. Genomic DNA (gDNA) for SNP genotyping was 

extracted from individual adult whiteflies homogenised in 100 μl of DNAZOL
®

 

(Invitrogen) at the tenth scale of the manufacturer‟s protocol. The DNA was 

resuspended in 20 μl of RNase free water. In order to identify potential introns on the 

gDNA sequence of ACCase, a fragment that included the identified mutation was 

PCR amplified with the primers mut-f‟‟‟ and mut-r‟‟‟ (Additional file 5.1) using 

gDNA extracted from the strain TV1 as a template. This PCR fragment (1,255 bp) 

was purified and sent to Eurofins MWG for direct sequencing. Two introns of 665 

and 286 bp were identified in this fragment (Additional file 5.2) and this genomic 

sequence was used to design primers and probes of the TaqMan
®
 SNP genotyping 

assay. 
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Two primers and two fluorescent dye-labelled probes were designed and 

manufactured by Applied Biosystems (Foster City, CA, USA). The forward primer 

ACC-mut_F (CATAGCTGATCGTAAAGTAACTGATGCT) and the reverse primer 

ACC-mut_R (AAACTGATGAGAAATGACAGAAAAATTATAAAATTCAAAA) 

were unmodified PCR primers. The probe ACC-mut_V (CCTCTCTTGAAAGGTG) 

was labelled with the reporter dye VIC at the 5‟ end for detection of individuals with 

the G allele, and the probe ACC-mut_M (CCTCTCTTAAAAGGTG) was labelled 

with 6-FAM at the 5‟ end specific for individuals with the A allele. Both probes 

contained a non-fluorescent quencher dye (NFQ) and minor groove binding (MGB) 

groups at the 3‟ ends. The NFQ dye suppresses VIC or 6-FAM fluorescence until the 

probe is broken down during PCR, while the MGB groups increase the stability of 

matched duplexes, thereby resulting in a more accurate allelic discrimination. 

PCR reactions (20 μl) contained 2 μl gDNA, 10 μl SensiMix DNA Kit (Quantace Ltd, 

Neutral Bay, Australia), 900 nM of each primer and 200 nM of each probe, and the 

total volume (20 μl) was made up with RNase free water. Real-time PCR was 

performed on a Rotor-Gene 6000
®

 (Corbett Research). The cycling conditions were 

95 °C for 10 min, followed by 40 cycles of 95 °C for 10 s and 60 °C for 45 s. The 

increase in VIC and 6-FAM reporter dyes, representing individuals with the G and A 

allele respectively, was monitored in real time using the Rotor-Gene software. For 

each assay, fluorescence values of the negative controls were averaged and subtracted 

from the raw data to correct for background fluorescence. The endpoint values of 

fluorescence for each dye were then plotted against each other in bivariate scatter 

plots that gave a clear clustering of the samples and enabled easy scoring of 

individuals with the G or A alleles. 10 haploid males and 10 diploid females were 
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randomly chosen to investigate the frequency of the mutated (nucleotide A) allele for 

each field or selected population. 

 

5.3 RESULTS AND DISCUSSION 

5.3.1 Responses of nymphs to spiromesifen and selection experiments 

The LC50 value for spiromesifen for the susceptible strain TV1 was 0.61 mg L
-1

. The 

susceptibilities of three field strains were significantly lower compared to TV1, based 

upon overlapping 95 % CL of LC50 values. The highest resistance factor recorded was 

26, for TV8 (a German strain), followed by 6.87 for TV3 (from the UK) and 4.49 for 

TV6 (from Turkey) (Table 5.2). This is the first documented case of spiromesifen 

resistance in whiteflies. However, all the LC50 values reported here considerably 

lower than the field application rate of spiromesifen, which is approximately 144 mg 

L
-1

. 

 

Table 5.2 Responses of Trialeurodes vaporariorum nymphs to spiromesifen. 

Resistance factors (RFs) relative to TV1 are given for all the field strains. 

Strain 
LC50 (mg L

-1
)* 

(95% CL) 
Slope RF 

TV1 0.61 (0.48-0.76) a 1.76 (± 0.15) 1 

TV3 4.20 (3.62-4.82) b 1.63 (± 0.79) 6.87 

TV6 2.75 (2.48-3.04) c 1.68 (± 0.06) 4.49 

TV8 15.7 (14.4-17.2) d 2.40 (± 0.11) 25.7 

*Different letters indicate significant difference between strains, based on 

overlapping 95% CL of LC50 values. 

 

Bioassays showed that a concentration of 10 mg L
-1

 spiromesifen usually causes 100 

% mortality of susceptible TV1 insects (Figure 5.1). This concentration was used to 

select all three field strains for two successive generations, followed by one 

generation of selection with 15 mg L
-1

. Selection of nymphs with spiromesifen 
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significantly increased survival of TV3 (t = 11.74, df = 8, P < 0.001) and TV6 (t = 

10.43, df = 8, P < 0.001) at a diagnostic concentration of 10 mg L
-1

 (Figure 5.1). 

However, selection had no effect on the response of TV8 (t = 0.34, df = 8, P = 0.743) 

(Figure 5.1). These results suggest that TV8 was largely homozygous for 

spiromesifen resistance whereas TV3 and TV6 were heterozygous prior to selection. 

Selection of nymphs with spiromesifen also increased resistance of TV3 (t = 12.31, df 

= 6, P < 0.001) and TV6 (t = 9.10, df = 6, P < 0.001) to spirotetramat (Figure 5.1), 

supporting a hypothesis of cross-resistance between these two compounds. 

 

 
Figure 5.1 Percentage mortality of a 10 mg L

-1
 dose of spiromesifen (n = 5) or 

spirotetramat (n = 4) to all the field strains of Trialeurodes vaporariorum pre- and 

post-selections with spiromesifen. Different letters (lower-case for spiromesifen and 

upper-case for spirotetramat) indicate significant differences in the responses between 

the strains, based upon a two sample unpaired t-test. 
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Resistance to spirodiclofen has been reported in several mite species (van Pottelberge 

et al., 2009a; van Pottelberge et al., 2009b; Hu et al., 2010; Kramer & Nauen, 2011), 

with evidence for a role of cytochrome P450 monooxygenases in spirodiclofen 

detoxification (van Pottelberge et al., 2009b; Kramer & Nauen, 2011). Resistance 

was less potent in mite eggs than nymphs, and such age-specificity provides further 

evidence for a detoxification resistance mechanism (van Pottelberge et al., 2009a; van 

Pottelberge et al., 2009b; Hu et al., 2010; Kramer & Nauen, 2011).  However, in T. 

vaporariorum the egg stage of strain TV6 was significantly less susceptible after 

spiromesifen selection, compared to the unselected control (t = 3.08, df = 6, P = 0.02) 

(Figure 5.2). Furthermore, pre-treatment of this TV6 with the detoxification enzyme 

inhibitor piperonyl butoxide (PBO) did not synergise the effect of spiromesifen 

(Table 5.3), with only a slight but not significant decrease in mortality in both the pre- 

and post-selection strains (t = 0.60, df = 8, P = 0.564 and t = 0.95, df = 8, P = 0.368 

respectively). Lack of synergism by PBO indicates that cytochrome P450s and 

carboxylesterases are unlikely to be involved in spiromesifen resistance, providing 

indirect evidence of a target site mechanism. 
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Figure 5.2 Percentage egg hatch suppression of a 1,000 mg L

-1
 dose of spiromesifen 

to the susceptible strain TV1 of Trialeurodes vaporariorum and to TV6 pre- and post-

selections with spiromesifen. Different letters indicate significant differences in the 

responses between the strains, based upon a two sample unpaired t-test. 

 

Table 5.3 Percentage mortality of a 10 mg L
-1

 dose of spiromesifen before and after 

pre-treatment with PBO to the Trialeurodes vaporariorum strain TV6, pre- and post-

selection. 

Insecticide Strain 
% mortality of 10 mg L

-1
 

(± SE)
a 

Spiromesifen TV6 92.1 (± 2.22) a 

Spiromesifen + PBO TV6 90.2 (± 2.17) a 

Spiromesifen TV6SpSel 46.0 (± 3.67) b 

Spiromesifen + PBO TV6SpSel 41.6 (± 2.73) b 
a
Same letters indicate no significant differences in the responses of the strains before 

and after pre-treatment with PBO, based upon a two sample unpaired t-test. 
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5.3.2 Acetyl-CoA carboxylase sequencing 

Direct sequencing and RACE PCR generated the full length coding sequence of the 

wild-type ACCase for T. vaporariorum (Additional file 5.3). The mRNA includes a 

5‟ UTR of 65 bp and a 3‟ UTR of 711 bp. The cDNA contains a 7,035 bp open 

reading frame encoding 2,345 amino acid residues, with a calculated molecular mass 

of 264.886 kDa and a predicted isoelectric point of 5.97 (CLC Main Workbench 6.1). 

The amino-acid sequence of ACCase from T. vaporariorum showed 79 %, 78 % and 

78 % identity with the ACCase sequences from the pea aphid, Acyrthosiphon pisum 

Harris (Hemiptera: Aphididae), the red flour beetle, Tribolium castaneum Herbst 

(Coleoptera: Tenebrionidae) and the body louse, Pediculus humanus corporis 

Linnaeus (Phthiraptera: Pediculidae), respectively. The organisation of the T. 

vaporariorum ACCase protein was the same as those of other known eukaryotic-type 

ACCases (Wakil et al., 1983; Cronan & Waldrop, 2002). The three most conserved 

domains among the insect ACCases, the biotin-carboxylase (BC) domain, the biotin-

carboxyl carrier (BCC) domain and the carboxyl-transferase (CT) domain (Wakil et 

al., 1983; Cronan & Waldrop, 2002), were located at amino-acid positions 111 to 

609, 743 to 807 and 1660 to 2209 respectively (Additional file 5.4). 

ACCase is a key enzyme in lipid biosynthesis and catalyses the production of 

malonyl-CoA from acetyl-CoA and CO2. This carboxylation of the acetyl-CoA is a 

two-step reaction. The first reaction is an ATP-dependend carboxylation of a biotin 

group (carboxybiotin), catalysed by the BC domain and the second reaction is the 

transfer of this activated carboxyl group to acetyl-CoA, catalysed by the CT domain 

(Zhang et al., 2004; Arabolaza et al., 2010). 
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5.3.3 Point mutation within Trialeurodes vaporariorum ACCase 

ACCase is also the target of aryloxyphenoxypropionates (FOP) and 

cyclohexanediones (DIM) herbicides. Resistance to FOP and DIM herbicides in green 

foxtail, Setaria viridis (L.) Beauv. (Cyperales: Poaceae), and black-grass, Alopecurus 

myosuroides Huds (Cyperales: Poaceae) is caused by a point mutation at the first 

nucleotide of an isoleucine codon that causes an isoleucine-leucine substitution within 

the chloroplastic ACCase CT domain (Délye et al., 2002a; Délye et al., 2002b), 

which is the site of action of these herbicides (Zhang et al., 2004). Since the chemical 

structure of these herbicides is close to that of spiromesifen and its relatives, it seems 

justified to assume that all these chemicals bind to the same site (Bretschneider et al., 

2005). 

An initial investigation of the CT domain sequence of the T. vaporariorum ACCase 

did not reveal any single nucleotide polymorphism (SNP) associated with 

spiromesifen resistance. Full length sequencing revealed that ACCase was extremely 

conserved between T. vaporariorum strains and only one non-synonymous SNP was 

identified with a potential association to spiromesifen resistance. This was a guanine 

(G) to adenosine (A) change that causes a substitution of the negative charged 

glutamic acid (E) to the positive charged lysine (K) in amino-acid position 645 

(E645K) of ACCase. The E645K substitution is very drastic as it increases the 

logarithmic constant pKa value of the amino acid side chain from 4.3 to 10.5. Figure 

5.3 shows an amino-acid alignment of a fragment that surrounds the E645K position 

of the sequenced strains of T. vaporariorum, including ACCase sequences of other 

insect and mite species. This mutation was found between the BC and BCC domains 

of the ACCase and amino-acid E in position 645 of the gene appears to be highly 

conserved among insect and mite species (Figure 5.3). Although this mutation is in a 
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different domain than the CT domain (the most likely binding site for spiromesifen) it 

is possible that spiromesifen binding is modulated by allosteric interactions with other 

regions of the gene as shown for human ACCase beta type (Madauss et al., 2009). 

 

 
Figure 5.3 Amino-acid alignment of a partial sequence of ACCase, surrounding the 

E645K SNP position in field and spiromesifen selected strains of Trialeurodes 

vaporariorum, including partial ACCase sequences of Acyrthosiphon pisum 

(XP_003245354), the southern house mosquito Culex quinquefasciatus Say (Diptera: 

Culicidae) (XP_001847001), the common fruit fly, Drosophila melanogaster Meigen 

(Diptera: Drosophilidae) (NP_724636), Tribolium castaneum (XP_969851), 

Pediculus humanus corporis (XP_002429216), the malaria mosquito Anopheles 

gambiae Giles (Diptera: Culicidae) (XP_001688518), the yellow fever mosquito 

Aedes aegypti Linnaeus (Diptera: Culicidae) (XP_001651879), the western honey bee 

Apis melifera Linnaeus (Hymenoptera: Apidae) (XP_003250600), the jewel wasp 

Nasonia vitripennis Ashmead (Hymenoptera: Pteromalidae) (XP_001606974), and 

the deer tick Ixodes scapularis Say (Acari: Ixodidae) (XP_002408386). The dots 

denote amino-acid identity. The position of the E645K mutation is clearly marked in 

the figure. Note that the residue in this position represents the consensus for each 

strain after a sequencing of a mass homogenate of whiteflies. 
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The E645K mutation introduces the protein kinase C (PKC) phosphorylation site 

(SLK motif) of serine in position 643. In the past it was suggested that reversible 

phosphorylation of ACCase by PKC plays a role in concert with allosteric activation 

by citrate to regulate activity of the enzyme in vitro (Vaartjes et al., 1987; Kim et al., 

1989). The introduced phosphorylation site in position 643 of E645K mutants of T. 

vaporariorum could play an important role in spiromesifen resistance, as the 

phosphorylated enzyme could be less sensitive to spiromesifen inhibition. 

Sequencing traces did not reveal any peak corresponding to the mutant allele in the 

susceptible strain, TV1. In the field strains TV3 and TV6, there was a peak related to 

the mutation E645K (the A nucleotide instead of the wild-type G), but the consensus 

sequences were not different from the TV1 ACCase sequence. However, these strains 

after selection with spiromesifen showed an increased proportion of the E645K 

mutation (Figure 5.3). Direct sequencing of the most resistant strain TV8 revealed a 

high proportion of the E645K substitution. Its presence at lower frequencies in TV3 

and TV6 is consistent with the change in response of these strains observed after 

selection with spiromesifen. 

 

5.3.4 TaqMan allelic discrimination assay for the E645K mutation in ACCase  

The identified sequences were used to develop an ACCase assay to diagnose the 

E645K mutation. Initially, 10 haploid males and 10 diploid females of TV1 and all 

the field strains (TV3, TV6 and TV8) were tested individually for the frequency of 

the SNP (A allele instead of G) causing the amino acid substitution. The frequency of 

the mutant allele was 0 in the susceptible strain TV1, 0.93 for TV8 (the most resistant 

strain), 0.2 for TV3 and 0.17 for TV6 (Figure 5.4). There was a significant correlation 
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(R
2 

= 0.997, P < 0.001) between LC50 values for spiromesifen of the four strains and 

the frequency of the mutant allele (Figure 5.4). 

 

 
Figure 5.4 Correlation between the responses of all the strains of Trialeurodes 

vaporariorum (TV1, TV3, TV6 and TV8) to spiromesifen and the frequency of the 

mutant allele (nucleotide A instead of G) in position E645K of the spiromesifen‟s 

target ACCase. The frequency of the mutant allele was calculated from the TaqMan 

allelic discrimination assay. n = 20 for each tested strain (10 haploid males and 10 

diploid females). Summary results of correlation analysis are given. 

 

Selection of strain TV6 with 10 mg L
-1

 spiromesifen substantially increased the 

frequency of the mutant allele (Table 5.4). In contrast, selection of strain TV8 had 

little effect on the mutant frequency. These results mirror closely the observed 

changes in response to spiromesifen, further strengthening an association between the 

mutation and the resistance phenotype. 
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Table 5.4 Percentage survival (± SE) after application of a diagnostic concentration of 

10 mg L
-1

 of spiromesifen and frequency of the mutant allele in position E645K of 

the strains TV6 and TV8 pre- and post-selection. 

Strain 
% survival of a dose of 10 mg L

-1 

spiromesifen (± SE)
a 

Mutation 

frequency
b 

TV6 unselected 9.57 (± 2.18) a 0.17 

TV6 spiromesifen selected 54.04 (± 3.67) b 0.73 

TV8 unselected 65.72 (± 2.87) c 0.93 

TV8 spiromesifen selected 67.26 (± 3.51) c 0.97 
a
Different letters indicate significant differences between the responses of the strains 

based on a two sample unpaired t-test; 
b
The frequency of the mutation was calculated 

from the TaqMan allelic discrimination test of a population of 10 haploid males and 

10 diploid females for each tested strain. 

 

Unfortunately, ACCase activity measurement in small sucking insect pests, such as 

whiteflies and aphids, is extremely difficult. This, along with functional expression 

for the ACCase, would help to characterise the ACCase enzyme of T. vaporariorum 

in order to confirm that the E645K mutation is the direct cause of spiromesifen 

resistance. Based on our findings, it will be important to investigate this region of the 

ACCase for potential point mutations in other arthropod species that develop 

resistance to tetronic or tetramic acid derivatives. 

 

5.4 ADDITIONAL FILES 

Additional file 5.1. Sequences of primers used in this study. Primer sequences are 

listed along with the purpose for which they were designed (Additional file 5.1.xls) 

Additional file 5.2. Partial genomic sequence of the ACCase gene including two 

introns around the position of the E645K mutation (Additional file 5.2.txt) 

Additional file 5.3. Full length nucleotide and amino acid sequences of the wild-type 

ACCase gene of Trialeurodes vaporariorum (Additional file 5.3.txt) 
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Additional file 5.4. Conserved domains (identified on the NCBI conserved domains 

database: http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml) of the ACCase of 

Trialeurodes vaporariorum including the position of the E645K mutation (Additional 

file 5.4.tif) 

 



 

 

 

 



Chapter 6 – Pyriproxyfen resistance in Trialeurodes vaporariorum 105 

 

 

Chapter 6 

Over-expression of a cytochrome P450 is associated with resistance 

to pyriproxyfen in the greenhouse whitefly Trialeurodes 

vaporariorum 

Nikos Karatolos
1
, Martin S Williamson

1
, Ian Denholm

1
, Kevin Gorman

1
, Richard H 

ffrench-Constant
2
,  Chris Bass

1 

1Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom 

2Biosciences, University of Exeter, Penryn, TR10 9EZ, United Kingdom 

 

Abstract 

BACKGROUND: The juvenile hormone mimic, pyriproxyfen is a suppressor of 

insect embryogenesis and development, and is effective at controlling pests such as 

the greenhouse whitefly Trialeurodes vaporariorum (Westwood) which are resistant 

to other chemical classes of insecticides. Although there are reports of insects 

evolving resistance to pyriproxyfen, the underlying resistance mechanism(s) are 

poorly understood. 

RESULTS: Bioassays against eggs of a German (TV8) population of T. 

vaporariorum revealed a moderate level (21-fold) of resistance to pyriproxyfen. This 

is the first time that pyriproxyfen resistance has been confirmed in this species. 

Sequential selection of TV8 rapidly generated a strain (TV8pyrsel) displaying a much 

higher resistance ratio (>4000-fold). The enzyme inhibitor piperonyl butoxide (PBO) 

suppressed this increased resistance, indicating that it was primarily mediated via 

metabolic detoxification. Microarray analysis identified a number of significantly 

over-expressed genes in TV8pyrsel as candidates for a role in resistance including 

cytochrome-P450 dependent monooxygenases (P450s). Quantitative PCR highlighted 
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a single P450 gene (CYP4G61) that was highly over-expressed (81.7-fold) in 

TV8pyrsel. 

CONCLUSION: Over-expression of a single cytochrome P450 gene (CYP4G61) has 

emerged as a strong candidate for causing the enhanced resistance phenotype. Further 

work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in 

detoxifying pyriproxyfen. 

 

6.1 INTRODUCTION 

Insecticide resistance in crop pests usually arises via one of two types of mechanisms: 

either reduced binding of the insecticide to its target through mutation of the target 

site (e.g. acetylcholinesterase for organophosphates/carbamates, the voltage-gated 

sodium channel for pyrethroids and the nicotinic acetylcholine receptor for 

neonicotinoid insecticides) (Pittendrigh et al., 2008), or increased detoxification or 

sequestration of insecticides (Ranson et al., 2002; Pittendrigh et al., 2008) by 

enzymes such as carboxylesterases (CEs) (Oakeshott et al., 2005), glutathione-S-

transferases (GSTs) (Ranson & Hemingway, 2005) and cytochrome P450-dependent 

monooxygenases (Feyereisen, 2005). 

Pyriproxyfen (2-[1-methyl-2-(4-phenoxyphenoxy)-ethoxy] pyridine) is a juvenile 

hormone analogue (JHA) effective against some arthropod pests including the 

greenhouse whitefly Trialeurodes vaporariorum Westwood and the sweet potato 

whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). Pyriproxyfen is a 

potent suppressor of embryogenesis and later development that competes for juvenile 

hormone receptor binding sites and regulates the transition from one developmental 

stage to another (Ishaaya & Horowitz, 1992; Ishaaya et al., 1995; Ishaaya & 

Horowitz, 1995). The mode of action of pyriproxyfen is not fully understood due to 
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the lack of a known signalling pathway and/or a receptor molecule. However, the 

Methoprene-tolerant gene (Met) (also known as Resistance to juvenile hormone) has 

been proposed as a possible candidate for the juvenile hormone (JH) receptor as it has 

been shown to confer resistance to toxic doses of JH when mutated (Shemshedini & 

Wilson, 1990; Dubrovsky, 2005). 

Resistance to pyriproxyfen was first documented in B. tabaci from Israel in 1998 

(Denholm et al., 1998; Horowitz et al., 1999) and early studies suggested that P450s 

were not involved in the catabolism of pyriproxyfen (Devine et al., 1999). However, 

more recent biochemical work on laboratory selected strains from Arizona indicated 

that P450s and GSTs were involved in pyriproxyfen detoxification (Ma et al., 2010). 

To date, resistance to this compound has not been described in T. vaporariorum, an 

important virus vector and pest of protected vegetable and ornamental crops in 

temperate regions of the world (Byrne et al., 1990; Jones, 2003) that has developed 

resistance to numerous other chemical classes including pyrethroids and 

neonicotinoids (Wardlow, 1985; Bi & Toscano, 2007; Gorman et al., 2007; Karatolos 

et al., 2010).  

The aim of the present study was to investigate potential mechanisms of pyriproxyfen 

resistance in a laboratory selected strain of T. vaporariorum exhibiting over 4000-fold 

resistance to pyriproxyfen. 454-based pyrosequencing has recently been used to 

provide a substantial expressed sequence tag (EST) data-set containing over 50,000 

sequence contigs for T. vaporariorum (Karatolos et al., 2011a).  We have used this as 

a reference transcriptome for cDNA microarray design and then to identify candidate 

genes that are associated with the resistance phenotype. 
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6.2 MATERIALS AND METHODS 

6.2.1 Insect strains 

Three strains of T. vaporariorum including an insecticide susceptible reference strain 

(TV1) were used in this study (Table 6.1). All were reared at Rothamsted Research 

without exposure to insecticides on French bean plants, Phaseolus vulgaris L., cv. 

“Canadian Wonder” (Fabaceae), under a 16 h photoperiod at 24 °C. 

 

Table 6.1 Trialeurodes vaporariorum strains, origins, year of collection and original 

host. 

Strain Country of origin Year of collection Original host 

TV1 UK 1971 French bean 

TV3 UK 2008 Ornamentals 

TV8 Germany 2008 Ornamentals 

 

6.2.2 Insecticides and bioassays 

Pyriproxyfen 0.5 G was obtained as a commercial formulation (Sumilarv
®

; Sumitomo 

Chemical Corporation) and diluted to the required concentrations in distilled water 

containing 0.1 g L
-1

 of the non-ionic wetter Agral
®
 (Syngenta). Technical piperonyl 

butoxide (PBO) (PCP „Ultra‟) was provided by Dr. Graham Moores (Rothamsted 

Research). 

The responses of strains TV1 (susceptible standard strain), TV3 and TV8 to 

pyriproxyfen were determined using a leaf-dip bioassay method modified to measure 

egg-hatch suppression. Leaves on intact bean plants were cut into rectangles of 

approximately 40 mm x 50 mm. These plants were placed in cages with at least 200 

adult whiteflies for 24 h to obtain a synchronised cohort of eggs, after which the 

adults were removed. Egg infested leaves were dipped for 15 seconds in the required 

concentration of insecticide or into 0.1 g L
-1

 Agral
®
 as a control. Treated plants were 
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maintained at 24 °C and mortality was scored after 11 days by counting un-hatched 

eggs and live nymphs. Concentration-mortality relationships were fitted by probit 

analysis, using the software GenStat 12
th

 edition (VSN International Ltd, 

Hertfordshire, UK). Resistance factors were calculated by dividing LC50 values for 

field strains by that for the susceptible standard (TV1). Lack of overlap of 95 % 

confidence limits on fitted LC50 values denoted significant differences in response. 

For the synergism bioassays, whitefly eggs were initially dipped into a 0.1 % PBO 

solution in acetone followed 5 h later by insecticide as described above. 

Insects of TV8 were selected for resistance by treating eggs for three successive 

generations with 3 mg L
-1

, 5 mg L
-1

, and 10 mg L
-1

 pyriproxyfen, respectively, to 

generate a selected strain denoted TV8PyrSel. In order to investigate for patterns of 

cross-resistance, the pyriproxyfen selected and the unselected parental strain were 

tested with diagnostic doses of the neonicotinoid imidacloprid 200 g L
-1

 SL 

(Confidor
®
; Bayer CropScience), the pyrethroid bifenthrin 100 g L

-1
 EC (Gyro

®
, 

CERTIS) and the tetronic acid derivative spiromesifen 240 g L
-1

 SC (Oberon
®

; Bayer 

CropScience). 

 

6.2.3 Microarray design 

A SurePrint G3 (8 x 60k) expression array was designed using Agilent‟s eArray 

platform. The base composition and the best probe methodologies were selected to 

design sense orientation 60-mer probes with a 3′ bias. The recently published T. 

vaporariorum EST assembly (54,751 contigs) (Karatolos et al., 2011a) was used as 

the reference transcriptome. 60-mer probes were designed for all 54,751 assembled 

contigs, including contigs encoding detoxification enzymes (P450s, GSTs and CEs). 

Additional probe groups for 15 plant genes of Phaseolus vulgaris Linnaeus (Fabales: 
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Fabaceae) for negative controls and a default set of Agilent controls were also 

included. The array was filled to capacity using alternate 60-mer probes for a 

selection of the T. vaporariorum contigs that returned a blast result in the nr database 

(Karatolos et al., 2011a). The final slide layout consists of 8 arrays of 62,976 

elements. This array design can be made available (and ordered) by third parties on 

request through a shared work space set up on eArray. Additional file 6.1 provides 

information about probes and corresponding contigs, as well as a description of the 

top BLAST hit in the NCBI nr database for each contig (note that only descriptions of 

contigs with a BLAST result are shown in this file). 

This microarray was used to compare gene expression in the highly selected 

pyriproxyfen resistance strain TV8PyrSel with the susceptible standard strain TV1. 

Total RNA was extracted from four pools of approximately 500 whitefly eggs, using 

the Isolate RNA Mini Kit (Bioline) according to the manufacturer‟s protocol. 830 ng 

of each total RNA was used to generate labelled cRNA, which was hybridized to 

arrays and these were washed and scanned as described in Agilent‟s Quick Amp 

Labelling Protocol (Version 6.5). The microarray experiment consisted of four 

biological replicates and for each of these, two hybridisations were done in which the 

Cy3 and Cy5 labels were swapped between samples for a total of eight hybridisations 

between resistant and susceptible strains.  

Microarrays were scanned with an Agilent G2505C US10020348 scanner, and 

fluorescent intensities of individual spots were obtained using the Agilent Feature 

Extraction software with default Agilent parameters. Data normalization, filtering, 

dye flipping and statistical analysis were performed using the GeneSpring GX suit. 

For statistical analysis, a t-test against zero using the Benjamini-Hochberg false 
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discovery rate (FDR) method for multiple testing corrections was used to detect 

significantly differentially expressed genes. Genes meeting a p value cut-off of 0.01 

and showing a transcription ratio > 2 fold in either direction were considered to be 

differentially transcribed between the two strains. All microarray data were MIAME 

compliant and they were submitted to the Gene Expression Omnibus (GEO) database 

with accession number GSE31316. 

 

6.2.4 Quantitative RT–PCR 

Quantitative RT-PCR was used to validate microarray data by examining the 

expression profile of 14 genes (primarily ones encoding P450s) chosen on the basis of 

their likelihood as candidates for causing resistance. Primers were designed to 

amplify a fragment of 90–150 bp in size and are listed in Additional file 6.2. Total 

RNA was prepared as described before and four micrograms was used for cDNA 

synthesis using Superscript III and random hexamers (Invitrogen) according to the 

manufacturer‟s instructions. PCR reactions (20 µl) contained 4 µl of cDNA (10 ng), 

10 µl of SensiMix SYBR Kit (Bioline), and 0.25 mM of each primer. Samples were 

run on a Rotor-Gene 6000 (Corbett Research) using the temperature cycling 

conditions of: 10 min at 95°C followed by 40 cycles of 95 °C for 15 s, 57 °C for 15 s 

and 72 °C for 20 s. A final melt-curve step was included post-PCR (ramping from 72 

°C–95 °C by 1°C every 5 s) to confirm the absence of any non-specific amplification. 

The efficiency of PCR for each primer pair was assessed using a serial dilution of 100 

ng to 0.01 ng of cDNA. Each qRT-PCR experiment consisted of three independent 

biological replicates with three technical replicates for each. Data were analysed 

according to the ΔΔCT method (Pfaffl, 2001), using the geometric mean of two 

selected housekeeping genes (para which encodes the voltage gated sodium channel, 
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and EF1a which encodes the elongation factor 1-alpha) for normalisation according 

to the strategy described previously (Vandesompele et al., 2002). 

 

6.2.5 Determination of P450 gene copy number by quantitative PCR 

Quantitative PCR was used to determine CYP4G61 gene copy number as described 

above but using genomic DNA (from strains TV1, TV8 and TV8pyrsel) as the 

template. For this, DNA from individual adult haploid male whiteflies was extracted 

using DNAZOL
®
 (Invitrogen) at one tenth scale of the manufacturer‟s protocol and 

using RNase A to remove contaminating RNA. The DNA was then diluted to 2.5 

ng/µl and 4 µl used in RT-PCR as detailed above. Data were analysed according to 

the ΔΔCT method (Pfaffl, 2001) and normalised independently using two 

housekeeping genes, para (present in a single copy in insects as revealed by several 

genome sequencing projects (Karunker et al., 2008)), and elongation factor 1-alpha 

(present in two copies in Hymenoptera and Diptera but in a single copy in most other 

insects (Danforth & Ji, 1998)). 

 

6.2.6 Amplification of full length cDNA from CYP4G61 

To verify the assembly, the full length coding sequence of CYP4G61 was amplified 

by nested PCR using primers cyp4g61-f1 and cyp4g61-r1, followed by cyp4g61-f2 

and cyp4g61-r2. Sequencing was performed using primers cyp4g61-f2, cyp4g61-f3, 

cyp4g61-f4, cyp4g61-f5 and cyp4g61-r2, cyp4g61-r3, cyp4g61-r4, cyp4g61-r5 

(Additional file 6.2). PCR reactions (20 µl) contained 4 µl of cDNA (10 ng), 12.5 μl 

DreamTaq
®

 Green DNA Polymerase (Fermentas), 15 pmol of each primer, and 

RNase free water. The cycling conditions were 95 °C for 2 min, followed by 30 

cycles of 95 °C for 30 s, 50 °C for 30 s and 72 °C for 4 min with a final extension of 
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72 °C for 5 min. PCR fragments were purified using the Wizard
®
 SV Gel and PCR 

Clean-up System (Promega) according to the manufacturer‟s protocol and sent to 

Eurofins MWG (Germany) for direct sequencing. 

 

6.2.7 Sequence analysis 

Molecular mass and isoelectric point were predicted by Compute pI/Mw tool 

(http://us.expasy.org/tools/pi_tool.html). The N-terminal transmembrane anchor of 

the CYP4G61 protein was predicted by the TNHMM Server v.1.0 

(http://www.cbs.dtu.dk/services/TMHMM/). DNA and predicted protein sequences 

were assembled, analysed, and aligned using the Vector NTI Advance 10 package 

(Invitrogen). The full length sequence of the CYP4G61 gene in this study was 

identified and manually curated in the recent 454-based transcriptome study of T. 

vaporariorum and it was named by David Nelson (Department of Molecular Science, 

University of Tennessee, Memphis) in accordance with the P450 nomenclature 

committee convention (Nelson, 2009; Karatolos et al., 2011a). Substrate recognition 

sites (SRS) were predicted by aligning the CYP4G61 protein with other P450 proteins 

where SRS positions were known (Gotoh, 1992). 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 Bioassays 

The UK strain TV3 and the German strain TV8 showed 5- and 21-fold resistance to 

pyriproxyfen, respectively (Table 6.2). Selection of TV8 with pyriproxyfen increased 

resistance to 4,574-fold compared to TV1 and 223-fold compared to the unselected 

TV8. These findings provide the first confirmation of pyriproxyfen resistance in T. 

vaporariorum. The response of TV8pyrsel after only three generations of selection 
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demonstrated a very potent resistance to this insecticide. Interestingly, pyriproxyfen is 

not registered for use in Germany. The moderate resistance found in TV8 could be 

due to either cross-resistance between pyriproxyfen and a different class of 

insecticides or transfer of whitefly infested plant materials from regions were 

pyriproxyfen is used for whitefly control. However, selection of TV8 with 

pyriproxyfen did not result in enhanced resistance to other compounds belonging to 

major insecticides classes used for whitefly control, such as neonicotinoids, tetronic 

acid derivatives and pyrethroids (Figure 6.1). This leads to the conclusion that the 

resistance identified in this strain is due to European or global plant trade. 

 

Table 6.2 Responses of Trialeurodes vaporariorum eggs to pyriproxyfen and 

synergism effect of pyriproxyfen after pre-treatment with PBO to the susceptible TV1 

and the pyriproxyfen selected strain TV8pyrsel. Resistance factors (RFs) relative to 

TV1 are given for all the field strains. 

Insecticide Strain 
LC50 (mg L

-1
)

 
(95% 

CL)* 
Slope RF 

pyriproxyfen TV1 0.014 (0.012-0.016) a 2.05 (±0.11) 1 

pyriproxyfen + PBO TV1 0.010 (0.009-0.011) a 2.15 (±0.10) 1 

pyriproxyfen TV3 0.05 (0.04-0.06) b 1.21 (±0.06) 5 

pyriproxyfen TV8 0.29 (0.26-0.31) c 1.89 (±0.08) 21 

pyriproxyfen TV8PyrSel 63.9 (58.3-70.2) d 2.96 (±0.13) 4574 

pyriproxyfen + PBO TV8PyrSel 0.22 (0.18-0.27) c 1.94 (±0.11) 21 

*Different letters indicate significant difference between strains, based on 

overlapping 95% CL of LC50 values. 

 

Pre-treatment of TV8pyrsel with the enzyme inhibitor piperonyl butoxide (PBO) 

reduced resistance to the level found in the pre-selected strain (TV8). There was no 

equivalent synergism of pyriproxyfen by PBO in the susceptible strain TV1 (Table 

6.2).  This result provided strong evidence that pyriproxyfen resistance in TV8pyrsel 

is primarily due to enhanced detoxification by either cytochrome P450 
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monooxygenases or CEs (both enzyme families are inhibited by PBO). This 

hypothesis was investigated further using microarrays and quantitative PCR. 

 

 
Figure 6.1 Percentage mortality of diagnostic doses of imidacloprid (neonicotinoid), 

bifenthrin (pyrethroid), spiromesifen (tetronic acid derivative) and pyriproxyfen in the 

selected strain TV8pyrsel and the unselected parental strain TV8. Different letters 

indicate significant differences between strains based on a two-sample unpaired t-test. 

 

6.3.2 Microarray and quantitative real-time PCR analyses 

Microarray analysis identified 3,474 probes (5.5 % of the probes which corresponded 

to 3,227 unique contigs) as significantly differentially transcribed between the 

pyriproxyfen selected strain TV8pyrsel and the susceptible standard TV1 (Additional 

file 6.3). These genes along with Log2, calculated fold-change values and closest 

BLAST hits are listed in Additional file 6.4. 1,865 probes (1,032 corresponding to 

genes with unknown function) had elevated expression in TV8pyrsel and 1,609 

(1,105 of unknown function) were down-regulated relative to TV1. Of the 833 over-
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expressed probes with a known function, 25 were identified as potential candidates 

for causing insecticide resistance (Table 6.3). These included probes corresponding to 

genes encoding cytochrome P450s (19), CEs (3), GSTs (3), enzymes that have been 

implicated in insecticide resistance in many arthropod species (Feyereisen, 2005; 

Oakeshott et al., 2005; Ranson & Hemingway, 2005). 

 

Table 6.3 Selected metabolic genes identified by microarray as differentially 

transcribed between the pyriproxyfen resistant Trialeurodes vaporariorum strain 

TV8pyrsel and the susceptible TV1. The family/gene names of known genes, as well 

as accession of the top blast hits are given (Karatolos et al., 2011a). 

Contig 

number 

Family/gene 

name 
1 Probe Name 

Fold 

change 

Log

2 
Hit accession 

8639 P450 CYP6DT4 CUST_4671_PI425265390 7.53 2.91 ACT68012 
31414 P450 CYP6DS1 CUST_4667_PI425265390 6.58 2.72 ACT68012 

5194 P450 CYP6CM4 CUST_4669_PI425265390 6.40 2.68 ACD84797 

4648 P450 CYP4G61 CUST_1785_PI425308678 6.00 2.59 XP_001944205 

21292 P450 CYP4G61 CUST_7415_PI425265390 5.59 2.48 XP_001944205 
13018 P450 CYP18A1 CUST_4064_PI425308678 5.36 2.42 XP_002427451 

13018 P450 CYP18A1 CUST_6265_PI425265390 5.29 2.40 XP_002427451 

41451 P450 CYP6DT6 CUST_50026_PI425265390 5.16 2.37 ACT68012 
41451 P450 CYP6DT6 CUST_3539_PI425308678 5.04 2.33 ACT68012 

16136 P450 CYP314A1 CUST_5821_PI425308678 5.05 2.34 XP_001948607 

16136 P450 CYP314A1 CUST_10486_PI425265390 4.98 2.32 XP_001948607 
5866 P450 CYP4G60 CUST_7412_PI425265390 4.25 2.09 XP_001944205 

9000 P450 CYP6DT7 CUST_49998_PI425265390 3.91 1.97 CAZ65617 

45973 P450 CYP6DT5 CUST_4692_PI425265390 3.17 1.67 ACT68012 

50476 P450 CYP6DP2 CUST_50025_PI425265390 2.53 1.34 CAH65682 
41100 P450 CYP6DP2 CUST_4690_PI425265390 2.48 1.31 CAH65682 

50476 P450 CYP6DP2 CUST_3538_PI425308678 2.44 1.29 CAH65682 

4672 P450 CYP353C1 CUST_2054_PI425308678 2.11 1.08 EFA01331 
4672 P450 CYP353C1 CUST_49588_PI425265390 2.08 1.06 EFA01331 

5401 CE clade A CUST_51868_PI425265390 3.26 1.71 ABV45410 

11569 CE clade A CUST_15720_PI425265390 2.98 1.58 XP_001663733 

4777 CE clade A CUST_51886_PI425265390 2.53 1.34 XP_392698 
11236 microsomal gst CUST_54255_PI425265390 4.05 2.02 XP_002428068 

263 microsomal gst CUST_54254_PI425265390 2.02 1.01 XP_002428068 

7168 delta gst CUST_13266_PI425265390 2.49 1.32 EFA01955 
17998 CE clade A CUST_52068_PI425265390 -2.79 -1.48 EFA06762 

42539 P450 CYP306A1 CUST_7409_PI425265390 -2.74 -1.46 XP_001600763 
1
 cytochrome P450 names were given by Dr David Nelson (Nelson, 2009) 
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Twelve gene sequences (Table 6.3) encoding cytochrome P450s (19 probes) were 

elevated in TV8pyrsel (2.08-7.53 fold). In six cases duplicate probes (generated either 

for the same contig or for allelic variant of the same contig) corresponding to the 

same P450 gene (CYP4G61 of the CYP4 family, CYP6DT6 and CYP6DP2 of the 

CYP3, CYP18A1 of the CYP2, and the mitochondrial P450s CYP314A1 and 

CYP353C1) were over-expressed in TV8pyrsel (2.08-6 fold). In other insect pests, 

members of the CYP2, CYP3 and CYP4 microsomal P450 families are most 

commonly implicated in the metabolism of synthetic insecticides (Feyereisen, 2005). 

Microsomal P450s have been implicated in pyriproxyfen resistance in the house fly, 

Musca domestica L. (Diptera: Muscidae) (Bull & Meola, 1994; Zhang et al., 1998), 

the yellow fever mosquito, Aedes aegypti L. (Diptera: Culicidae) (Andrighetti et al., 

2008) and the whitefly, B. tabaci (Ma et al., 2010). In the house fly, P450s were 

shown to metabolise pyriproxyfen into two major metabolites; 4‟-OH-pyr and 5‟‟-

OH-pyr (Zhang et al., 1998). In the TV8pyrsel strain of T. vaporariorum, a total of 

seven genes belonging to the CYP3 family, two to the CYP4 family, and one to the 

CYP2 family were over-expressed. In B. tabaci, it was shown that pyriproxyfen 

treatment in a resistant strain induces expression of the cytochrome P450 CYP9F2 

gene (Ghanim & Kontsedalov, 2007). However, no close ortholog of this gene was 

over-expressed in T. vaporariorum. 

Three sequences encoding CEs (contigs 5401, 11569 and 4777), all of them 

belonging to clade A (Karatolos et al., 2011a) were identified as being over-expressed 

in the resistant strain (Table 6.3). The level of expression of these sequences was 

moderate (2.53–3.26-fold) and the proteins these genes encode are therefore unlikely 

to be playing a significant role in resistance to pyriproxyfen. Three sequences 

encoding GSTs (contigs 7168, 11236 and 263) were elevated in the resistant strain 
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(Table 6.3). Of these contig 7168 belongs to the delta class, members of which have 

been shown to be associated with insecticide resistance. However, this sequence was 

elevated by only 2.49-fold in the resistant strain. 

Of the 504 probes with a known function that were down-regulated in TV8pyrsel, 

only two detoxification genes were identified (Additional file 6.4; Table 6.3). These 

included one contig (42539) encoding a cytochrome P450 (CYP306A1) with a 

negative fold change of -2.74 (0.36-fold) and a single sequence encoding a CE 

(belonging to clade A) with a fold change of -2.79 (0.36-fold). 

Real-time quantitative PCR was used to validate the microarray results by examining 

the expression profile of nine selected P450 genes (8 over-expressed and 1 down-

regulated in the resistant strain), one CE that was found to be down-regulated in 

TV8pyrsel and finally two housekeeping genes (EF1a and para). For each 

housekeeping gene, data were normalised using the other as a reference. In all cases, 

the over- or under-transcription of the genes was confirmed (Table 6.4), although 

expression ratios obtained from RT-PCR were frequently different from those 

generated by microarray. Discrepancies in the data obtained from microarray 

experiments using the Agilent array platform and real-time quantitative RT-PCR have 

been described previously (Poupardin et al., 2008; Marcombe et al., 2009; Puinean et 

al., 2010) and our results again highlight the importance of RT-PCR validation of 

array results. 
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Table 6.4 Fold change in expression of selected metabolic enzymes (P450s and a 

carboxylesterase (CE)), EF1a, and para in the pyriproxyfen resistant Trialeurodes 

vaporariorum strain TV8pyrsel (compared to the standard susceptible strain TV1) 

determined by quantitative PCR and microarray technology. 

Gene name 
contig 

number 

Fold change 

- microarray 

Fold change  compared to TV1 -  

q pcr (95 % CL) 

TV8 TV8pyrsel 

CYP6DT4 8639 7.53 1.19 (0.96-1.42) 1.20 (1.07-1.33) 

CYP6DS1 31414 6.58 1.45 (1.43-1.46) 1.29 (0.98-1.59) 

CYP6CM4 5194 6.40 0.99 (0.97-1.02) 1.15 (0.97-1.33) 

CYP4G61 21292, 4648 5.59-6.00 1.42 (0.69-2.15) 81.7 (81.6-81.9) 

CYP4G60 5866 4.25 1.24 (0.91-1.57) 1.14 (0.98-1.30) 

CYP18A1 13018 5.29-5.36 1.09 (0.90-1.29) 2.54 (2.29-2.78) 

CYP6DT6 41451 5.04-5.16 1.13 (0.98-1.28) 1.43 (1.32-1.55) 

CYP6DT7 9000 3.91 1.59 (0.86-2.32) 1.12 (1.09-1.14) 

CYP6DT5 45973 3.17 1.54 (1.13-1.95) 1.15 (0.93-1.37) 

CE Tv17998 17998 0.36 0.51 (0.33-0.69) 0.75 (0.68-0.81) 

CYP306A1 42539 0.36 0.31 (0.12-0.51) 0.44 (0.13-0.74) 

EF1a
1 

1983 0.93-1.17 0.81 (0.53-1.08) 0.94 (0.32-1.56) 

para
1 

21272, 

22691, 

37637 

1.04-1.58 1.24 (0.98-1.50) 1.06 (0.44-1.68) 

1
 For each housekeeping gene, data were normalised using the other one as a 

reference. 

 

Of the candidate genes encoding detoxification enzymes examined by RT-PCR only a 

single P450 gene (CYP4G61) was found to be highly over-expressed in TV8pyrsel 

displaying an 81.7-fold increase in transcription. The significantly lower expression 

level obtained from the microarray data for this gene may be partially explained by 

the well-known underestimation of expression ratios by microarrays compared with 

RT-PCR (Yuen et al., 2002). The expression of the CYP4G61 gene in the original 

unselected field strain TV8 was also examined by RT-PCR (Table 6.4). The 

expression ratio of this gene in this strain compared to TV1 was 1.41-fold (0.66-2.16) 
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indicating that the enhanced expression of this gene in the highly resistant strain 

TV8pyrsel is a result of sequential selection with pyriproxyfen. 

Members of the CYP4G cytochrome P450 subfamily have been shown to be involved 

in insecticide detoxification in other insect species. Examples are CYP4G8 and 

CYP4G19 which are involved in pyrethroid detoxification in the cotton bollworm, 

Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) (Pittendrigh et al., 1997) and 

the German cockroach, Blattella germanica Linnaeus (Blattodea: Blattellidae) 

(Pridgeon et al., 2003) respectively. Two other genes of this family are known to be 

induced after treatments with insecticides; CYP4G36, induced by imidacloprid in A. 

aegypti (Riaz et al., 2009) and CYP4G2, induced by permethrin in M. domestica (Zhu 

et al., 2008). The CYP4G61 in T. vaporariorum shares 66 % amino acid identity with 

CYP4G8 (AAD33077), 60 % with CYP4G36 (EAT44585), 56 % with CYP4G19 

(AAO20251), 48 % with CYP4G2 (ABV48808). 

 

6.3.3 CYP4G61 copy number 

It has been recently shown that the enhanced transcription of a cytochrome P450 gene 

(CYP6CY3) in a resistant clone of peach potato aphid, Myzus persicae Sulzer 

(Hemiptera: Aphididae) is due to structural amplification of the gene (Puinean et al., 

2010). Quantitative PCR was used to determine CYP4G61 gene copy number using 

genomic DNA from individual adult male whiteflies (haploids) as template. Data 

were normalised using two genes; para (present in a single copy in insects as revealed 

by several genome sequencing projects (Karunker et al., 2008)) and EF1a (present in 

two copies in Hymenoptera and Diptera, but in a single copy in most other insect 

species (Danforth & Ji, 1998)). The mean cycle threshold values of three biological 

replicates in quantitative PCR of the CYP4G61, EF1a and para genes were 
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essentially the same in all strains (for TV1 CTs of 27.5, 27.6 and 27.7 respectively, 

for TV8 27.3, 27.5 and 27.7, and for TV8pyrsel 27.1, 27.5 and 27.5) indicating that 

haploid T. vaporariorum males carry a single copy of the CYP4G61 gene. Neither the 

field strain TV8 or the pyriproxyfen selected TV8pyrsel showed any significant fold 

increase compared to TV1. TV8 showed a fold change of 1.08 (0.56-1.60) and 1.14 

(0.86-1.42) compared to the TV1 using EF1a or para to normalise respectively. 

Similarly, TV8pyrsel showed a fold increase of 1.25 (0.35-2.14) and 1.19 (0.67-1.71) 

compared to the TV1. These results indicate that the increased expression of the 

CYP4G61 gene likely arises through mutation of cis-acting promoter sequences 

and/or trans-acting regulatory loci (Li et al., 2007) rather than gene amplification. 

 

6.3.4 CYP4G61 cDNA characterization 

Two allelic variant contig sequences representing the CYP4G61 gene were identified 

in the InsectaCentral database (http://insectacentral.org) and manually curated 

(Karatolos et al., 2011a). These were contig 21292 (partial sequence, assembled by 

28 454-reads) and contig 4648 (full length sequence, assembled by 106 454-reads). 

These contigs were assembled from reads from two cDNA libraries, one for the 

susceptible strain TV1 and the other for a neonicotinoid resistant strain. These 

libraries were tagged prior to sequencing using molecular markers (Karatolos et al., 

2011a). An initial analysis of these assemblies (after reassembling them from the 

related ESTs) revealed the presence of 10 silent single nucleotide polymorphisms 

(SNPs) at nucleotide positions 126, 435, 774, 867, 966, 1146, 1329, 1356, 1620 and 

1653 (Additional file 6.5). There were only two substitutions, which cause an amino 

acid change; one was a G/C at amino acid position 282 that causes an amino acid 

substitution of a glycine to an alanine (G/A) and an A/T at position 395 that causes an 
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amino acid substitution of a serine to cysteine (S/C) (Additional file 6.5). The 

complete mRNA includes a 5‟ UTR of 164 bp and a 3‟ UTR of 270 bp.   

 

 

Figure 6.2 Complete cDNA sequence of the CYP4G61 gene of Trialeurodes 

vaporariorum for the strains TV1 and TV8pyrsel. Conserved domains common to 

cytochrome P450s are highlighted in grey. These are the helix C motif, the helix I 

motif, the helix K motif, the PERF motif and the heme-binding “signature” motif. 5‟ 

and 3‟ UTR sequences are representing with light blue text. The polyadenylation 

signal, AATAAA is underlined. Sites of SNPs are colour marked: green for silent or 

UTR SNPs and yellow for amino-acid substitutions. Marked in boxes are the N-

terminal transmembrane anchor (red-line box) and the SRS 1-6 (black-line box). 
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The cDNA contains a 1689 bp open reading frame (Figure 6.2) encoding 563 amino 

acid residues, with a calculated molecular mass of 64,449 kDa and a predicted 

isoelectric point of 8.65. The encoded protein contains conserved domains common 

in cytochrome P450s, such as the helix C motif (WxxxR; position 141), helix I 

(oxygen binding) motif ([A/G]Gx[E/D]T[T/S]; position 363), the helix K motif 

(ExxRxxP; position 421), the PERF motif (PxxFxP[E/D]RF; position 472) and the 

heme-binding “signature” motif (PFxxGxxxCxG; position 495). The polyadenylation 

signal AATAAA is located 73 nucleotides downstream of the 3‟ end coding region. 

Variations in the coding sequence of CYP4G61 in two strains of T. vaporariorum 

(TV1 and TV8pyrsel; Additional file 6.6) were investigated by either an analysis of 

the reassembled sequence for the strain TV1 (for which there was excellent sequence 

coverage) or by direct nucleotide sequencing for TV8pyrsel. In TV1, nine 

polymorphic sites were identified (nucleotide positions 126, 435, 774, 845, 867, 966, 

1146, 1356, 1620), but only one change (C/G) at amino acid position 282 results in an 

amino acid substitution of an alanine to a glycine (A/G) (Figure 6.2). Only one 

polymorphism (C/T) for this strain appeared to occur in a conserved protein motif 

(helix C), but this was a synonymous substitution. For TV8pyrsel the coding 

sequence was much more conserved than TV1, probably as a result of selection, and 

only two silent polymorphisms in nucleotide positions 126 and 774 were identified. 

After comparing the consensus cDNA sequence of TV1 and TV8pyrsel, four 

synonymous SNPs at positions 145 (CGC/CGT), 289 (ATT/ATC), 322 (GTT/GTC), 

and 382 (CGG/CGA) and one non-synonymous SNP at position 282 (GCT/GGT) 

conferring an alanine to glycine (A/G) substitution were observed. Interestingly, the 

latter appeared to be at the beginning of the SRS 3. Finally, a single SNP (A/G) was 

found in the 5‟UTR of the CYP4G61 (Figure 6.2). 
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6.4 CONCLUSION 

Based on the results of this study, CYP4G61 emerges as the strongest candidate for 

further investigation into its role in conferring potent resistance to pyriproxyfen in T. 

vaporariorum. In particular, functional characterisation of this P450 to confirm its 

ability to detoxify pyriproxyfen is now required. We have shown that the enzyme 

inhibitor PBO synergises pyriproxyfen resistance and it will be interesting to examine 

the effect of this and other inhibitors on recombinantly-expressed CYP4G61 as a 

mean to identify possible measures for overcoming resistance in the field. 

 

6.5 ADDITIONAL FILES 

Additional file 6.1 Probe IDs, corresponding contigs and closest BLAST hits in the 

NCBI nr database for each unique contig. (Note that only the contigs that returned a 

BLAST result are shown) (Additional file 6.1.xls) 

http://www.editorialmanager.com/pone/download.aspx?id=1753183&guid=62692807

-322d-420b-b189-f686eb237026&scheme=1 

Additional file 6.2 Sequences of primers used in this study. Primer sequences are 

listed along with the purpose for which they were designed (Additional file 6.2.xls) 

http://www.editorialmanager.com/pone/download.aspx?id=1753186&guid=2f9a24ba

-3186-4efa-965d-6b6a73556c7c&scheme=1 

Additional file 6.3 Volcano plot for the Trialeurodes vaporariorum microarray. 

Genes meeting a p value cut-off of 0.01 and showing a transcription ratio > 2 fold in 

either direction were considered to be differentially transcribed between the two 

strains and here are represented by dark dots (Additional file 6.3.tif) 
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http://www.editorialmanager.com/pone/download.aspx?id=1753132&guid=48893cbe

-8339-4d1a-b135-76164daad121&scheme=1 

Additional file 6.4 Genes identified by microarray analysis as significantly 

differentially transcribed between the pyriproxyfen resistant strain TV8pyrsel and the 

susceptible TV1. Here, the full list of these genes, along with probe name, p-value, 

fold-change and log2 fold-change, as well as a description based on the closest 

BLAST hit are detailed (Additional file 6.4.xls) 

http://www.editorialmanager.com/pone/download.aspx?id=1753135&guid=3bc8b612

-c858-456a-bd0d-cff35fba6b13&scheme=1 

Additional file 6.5 Amino acid alignment of two translated contigs (4648 and 21292) 

that they are coding for the full length CYP4G61 gene. Silent SNPs are marked in 

yellow coloured boxes and amino acid substitutions in green boxes (Additional file 

6.5.tiff) 

http://www.editorialmanager.com/pone/download.aspx?id=1753138&guid=ce10d539

-df8e-4fac-943a-b67dcc403e58&scheme=1 

Additional file 6.6 CYP4G61 nucleotide sequences for the strains TV1 (assembled 

from 454 reads for this strain) and TV8pyrsel (identified by direct cDNA sequencing 

of this strain) (Additional file 6.6.txt) 

http://www.editorialmanager.com/pone/download.aspx?id=1753140&guid=609edbde

-3bde-4723-a212-8d317703737f&scheme=1 
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Chapter 7 

Concluding discussion 

 

7.1 NEW TECHNOLOGIES AND ADVANCES IN INSECTICIDE 

RESISTANCE RESEARCH 

The study of the molecular mechanisms underlying insecticide resistance in insect 

pests has been aided greatly by recent advances in sequencing technology 

(Pittendrigh et al., 2008). The high demand for cost-effective sequencing has led to 

new generation, high-throughput DNA sequencing technologies that can rapidly 

produce large amounts of sequence information for insect species lacking a fully 

sequenced genome. These include technologies such as 454-based pyrosequencing of 

expressed sequence tags (EST) and Illumina (Solexa) sequencing that both parallelise 

the sequencing process and produce millions of reads at once (Schuster, 2008; 

Papanicolaou et al., 2009). These technologies were used recently to identify genes 

involved in insecticide resistance of several pests, such as detoxifying enzymes and 

insecticide target proteins (Pauchet et al., 2009; Pauchet et al., 2010; Wang et al., 

2010). 

Before this project, the lack of transcriptomic data for Trialeurodes vaporariorum 

hampered the characterisation of resistance mechanisms. However, the transcriptome 

generated in the present study by 454-pyrosequencing (Chapter 3; Karatolos et al., 

2011a) not only revealed genes potentially involved in insecticide resistance 

(insecticide targets and detoxifying enzymes), but will also facilitate the study of 

several other aspects of the biology of T. vaporariorum. These data and the 
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techniques they generated aided the cost-effective characterisation of insecticide 

resistance to some of the major insecticides used to control this species, such as 

pyrethroids, tetronic acid derivatives and pyriproxyfen. Mutations in the voltage gated 

sodium channel, the target of pyrethroids, and the acetyl-coA carboxylase, the target 

of spiromesifen, were associated with insecticide resistance. Furthermore, the EST 

dataset generated here was used as a reference transcriptome for a cDNA microarray 

design to identify candidate genes associated with pyriproxyfen resistance.  

 

7.2 PARALLEL EVOLUTION OF INSECTICIDE RESISTANCE 

Trialeurodes vaporariorum and Bemisia tabaci are the two most important whitefly 

crop pests in the world. They share similar biology and life cycles, and they are both 

highly polyphagous (Bink-Moenen & Mound, 1990; Byrne et al., 1990). Their 

taxonomic relatedness offers the prospect of transferring information on resistance 

mechanisms and other biological traits between these two species. Furthermore, in 

warm Mediterranean areas, like Southern Spain, these two species often coexist 

(Arnó & Gabarra, 1994; Arnó et al., 2006), affecting a wide range of protected and 

outdoor crops. This coexistence could drive the evolution of insecticide resistance in 

these two species, due to exposure to the same insecticides and similar selection 

pressures, and raises intriguing questions about the similarity of the resulting 

resistance mechanisms. 

Most of the recent research on mechanisms of insecticide resistance in whiteflies has 

focused in B. tabaci, including investigations of resistance to neonicotinoids (Rauch 

& Nauen, 2003; Karunker et al., 2008; Nauen et al., 2008; Karunker et al., 2009; 

Gorman et al., 2010), pyrethroids (Morin et al., 2002; Alon et al., 2006; Roditakis et 

al., 2006) and pyriproxyfen (Ghanim & Kontsedalov, 2007; Ma et al., 2010).  
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Results presented in this thesis highlight some clear parallels in the phenotypic and 

genetic characteristics of insecticide resistance in T. vaporariorum and B. tabaci. One 

example is the cross-resistance identified between neonicotinoids and pymetrozine, 

and their differential expression across life-stages (Nauen et al., 2008; Gorman et al., 

2010; Karatolos et al., 2010; Chapter 2). Furthermore, mutations at the same positions 

of the sodium channel of the two species were found to be implicated with pyrethroid 

resistance (Morin et al., 2002; Alon et al., 2006; Roditakis et al., 2006; Karatolos et 

al., 2011b; Chapter 4). There are therefore strong parallels in the phenotypic 

expression and underlying mechanisms of insecticide resistance in these closely-

related species. 

Examples of parallel evolution of insecticide resistance are analogous mutations of 

insecticide targets, such as the L1014F mutation in the voltage gated sodium channel 

(Soderlund & Knipple, 2003) and the A302S substitution at the Resistance to dieldrin 

(Rdl) locus (ffrench-Constant, 1994) that have independently occurred across a range 

of insect species. Parallel evolution is also found in detoxifying enzymes with a 

primary example being DDT resistance in several Drosophila species (Diptera: 

Drosophilidae), caused by retrotransposon insertions into the CYP6G1 gene that 

results in its overexpression (Schlenke & Begun, 2004). The extent of this parallelism 

demonstrates that the opportunities available to insects to resist insecticides without 

incurring severe biological costs are very limited. 

 

7.3 ROLE OF GLOBAL TRADE AND TRANSPORT IN THE SPREAD OF 

RESISTANCE GENES 

Mutations that confer resistance to insecticides may sometimes arise repeatedly 

within the same species (multiple origins of resistance alleles). Examples of 
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resistance genes having multiple origins in the same species are  cyclodiene resistance 

in the red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) 

(Andreev et al., 1999) and pyrethroid knock-down resistance in several insect species 

(Anstead et al., 2005; Alon et al., 2006; Pinto et al., 2007). However, insecticide 

resistance mutations may also appear only once (single origin) and subsequently 

spread through migration, global trade or transport. As already mentioned, DDT 

resistance in Drosophila species was associated with overexpression of a single P450 

gene (CYP6G1), as shown for a range of strains collected throughout the world. The 

resistant CYP6G1 alleles for these strains were highly conserved, implying a resistant 

allele with a single origin, which subsequently spread globally (Daborn et al., 2001; 

Daborn et al., 2002). In the mosquito Culex pipiens L. (Diptera: Culicidae), a single 

organophosphate resistance allele with a single origin (known as Ester
2
) has a 

worldwide distribution. It is believed that this resistant allele has spread through 

passive migration on ships or airplanes (Raymond et al., 1991; Labbe et al., 2005). 

Similar passive spread of insecticide resistance has been identified in the aphid Myzus 

persicae, where studies of amplified esterase genes, point to a small number of 

isolated mutations that spread rapidly through migration, global trade or transport 

(Field & Devonshire, 1997; Field & Devonshire, 1998; Devonshire et al., 1998). 

In this study, a strain from Germany showed reduced susceptibility to pyriproxyfen, 

although this compound is not registered for use in that country. This is most possibly 

caused by transfer of whitefly infested plant material from regions where 

pyriproxyfen is used for whitefly control. Interestingly, the same strain was found to 

possess the highest resistance to almost all the tested compounds (Chapter 2-6), 

indicating that throughout the years it has accumulated mechanisms of resistance, 

perhaps facilitated by being exposed to selection at different geographical localities. 
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These results demonstrate the importance of the expanding global trade of 

agricultural products, in the spread of arthropod pests and their resistant genes, as 

already discussed in the past (Raymond et al., 1991; Denholm et al., 2002). Thus, 

insecticide resistance management strategies need to take into account the trade of 

plant materials and be implemented on a global scale (Denholm et al., 2002). 

 

7.4 STABILITY OF INSECTICIDE RESISTANCE 

It is often reported or speculated that high insecticide resistance imposes a fitness cost 

on resistant pests, by affecting their fecundity, survival and/or behaviour (Ferrari & 

Georghiou, 1981; Liu & Han, 2006; Onstad & Guse, 2008) through epistatic effects 

of resistance mutations on other biological traits (Coustau et al., 2000; Hall et al., 

2004). Such fitness costs can contribute to a decline of the frequency of resistant 

alleles in the absence of selection by insecticides, as demonstrated  for the whitefly B. 

tabaci (Wilson et al., 2007) and the red spider mite Tetranychus urticae Koch (Acari: 

Tetranychidae) (Dennehy et al., 1990). However, there are cases were insecticide 

resistance carries no apparent fitness cost leading to more stable resistant phenotypes 

(i.e. DDT resistance in Drosophila (McCart et al., 2005) and dicofol resistance in the 

European red mite Panonychus ulmi Koch (Acari: Tetranychidae) (Dennehy et al., 

1990)). In some cases, despite evidence for a fitness cost, resistance can be very 

stable in the absence of selection pressure by a specific insecticide. This can be 

caused by the use of other insecticides that are affected by the same mechanism and 

which impose similar selection pressures (ffrench-Constant et al., 2000; McCart et 

al., 2005). 

Migration of susceptible or resistant insect pests can undoubtedly affect the stability 

of resistance (Denholm & Rowland, 1992). In outdoor field conditions where 
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susceptible individuals can regularly invade, the frequency of the resistance genes is 

diluted and therefore resistance is reduced. However, in the confined environment of 

glasshouses resistance develops faster and is much more stable (Devonshire, 1989; 

Denholm & Rowland, 1992). 

In the past, it was suggested that without selection pressure, neonicotinoid insecticide 

resistance in B. tabaci (Nauen et al., 2002; Rauch & Nauen, 2003) and T. 

vaporariorum (Gorman et al., 2007) was unstable to some extent. In this study, 

neonicotinoid resistance of up to 22-fold was reported for T. vaporariorum (Chapter 

2; Karatolos et al., 2010). However, this resistance has dropped very quickly in the 

laboratory without selection pressure and thus it was not possible to come to any 

conclusions on the mechanisms of neonicotinoid resistance.  

 

7.5 FUTURE WORK 

In the present work, a range of target site modifications or metabolic mechanisms 

were identified in insecticide resistant strains of T. vaporariorum. However, some 

require further investigation in order to functionally characterise the identified 

resistance mechanisms.  

Chapter 2 provides evidence of cross-resistance between neonicotinoids and 

pymetrozine based on insecticide detoxification. Given the similarities in the 

phenotypic characteristics of cross-resistance in T. vaporariorum and B. tabaci 

(Nauen et al., 2008; Gorman et al., 2010; Karatolos et al., 2010; Chapter 2), there are 

likely to be strong parallels in the underlying mechanism(s). In B. tabaci, a 

cytochrome P450 gene (CYP6CM1) has been confirmed to be highly associated with 

neonicotinoid resistance (Karunker et al., 2008; Karunker et al., 2009). Further work 
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is required in order to investigate whether overexpression of a cytochrome P450 is 

responsible for neonicotinoid and pymetrozine resistance in T. vaporariorum and its 

similarity to CYP6CM1. The cDNA microarray designed in Chapter 6 could be used 

to identify candidate genes associated with neonicotinoid resistance in a range of field 

collected or laboratory selected strains of T. vaporariorum. 

In Chapter 5, a mutation in the acetyl-coA carboxylase (ACCase) enzyme was 

associated with spiromesifen resistance. Functional characterisation of this enzyme in 

T. vaporariorum is now required in order to fully understand this resistant 

mechanism. Unfortunately, ACCase activity measurement in small sucking insect 

pests is extremely difficult, preventing the biochemical study of this enzyme in 

whiteflies (Ralf Nauen, personal communication). However, this mutation was found 

to introduce a protein kinase C phosphorylation site in mutant whiteflies. As ACCase 

is known to be regulated by phosphorylation/dephosphorylation (Vaartjes et al., 1987; 

Hardie et al., 1989; Kim et al., 1989), further work on the introduced phosphorylation 

site is required. 

In Chapter 6, overexpression of a cytochrome P450 gene (CYP4G61) was found to be 

associated with pyriproxyfen resistance in T. vaporariorum. Molecular diagnostics 

need to be developed for screening field populations of T. vaporariorum, in order to 

investigate the consistency of this mechanism with pyriproxyfen resistance. 

Furthermore, functional expression of the CYP4G61 gene could assist the 

characterisation of this P450, in order to confirm its ability to detoxify pyriproxyfen. 
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List of abbreviations 

ACCase: Acetyl-CoA carboxylase, the target of tetronic and tetramic acid 

derivatives, as well as the target of FOP and DIM herbicides 

AChE: Acetylcholinesterase, the target of organophosphate and carbamate 

insecticides 

BC: The biotin-carboxylase domain of ACCase 

BCC: The biotin-carboxyl carrier domain of ACCase 

CE: Carboxylesterase 

CCE: Carboxyl/cholinesterase 

CT: The carboxyl/transferase domain of ACCase 

DDT: Dichlorodiphenyltrichloroethane 

DIM: Cyclohexanediones herbicides 

EC: Enzyme Classification term 

EF1a: Elongation factor 1a gene 

EST: Expressed Sequence Tag (a short sub-sequence of a cDNA sequence) 

FOP: Aryloxyphenoxypropionate herbicides 

GABA receptor: γ-aminobutyric acid receptor, the target of organochlorines and 

Phenylpyrazoles (Fiproles) insecticides 

GEO: Gene Expression Omnibus 

GluCl: Glutamate-gated chloride channel 

GST: Glutathione-S transferase 

GO: Gene Ontology 

IGRs: Insect growth regulators 

IPM: Integrated Pest Management 
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IRAC: Insecticide Resistance Action Committee 

IRM: Insecticide Resistance Management 

JH: Juvenile hormone 

JHA: Juvenile hormone analogue 

kdr; super-kdr: knock-down resistance traits 

LC50: The dose required to kill half the members of a tested population 

nAChR: Nicotinic acetylcholine receptor, the target of neonicotinoid insecticides 

Met: Methoprene-tolerant gene, also known as Resistance to juvenile hormone 

OPs: Organophosphate insecticides 

ORF: Open reading Frame; a DNA sequence that does not contain a stop codon in a 

given reading frame 

PBO: The detoxification enzyme inhibitor piperonyl butoxide 

PKC: Protein kinase C 

P450: Cytochrome P450 monooxygenase 

RACE PCR: Rapid Amplification of cDNA Ends 

Rdl: Resistance to dieldrin gene 

RR: Resistance ratio 

RS: Resistance factor 

RyR: Ryanodine receptor, the target of diamides insecticides 

SAGE: Serial Analysis of Gene Expression; a new generation sequencing technology 

SF: Selection factor 

SNP: Single nucleotide polymorphism 

SRS: Substrate Recognition Site 

VGSC: para-type voltage gated sodium channel, the target of pyrethroid insecticides, 

pyrethrins and DDT 
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