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Abstract

This thesis primarily concentrates on stochastic and spectral properties

of the transfer operator generated by piecewise expanding maps (PWEs)

& piecewise isometries (PWIs). We also consider the applications of the

transfer operator in thermodynamic formalism. The original motivation

stems from studies of one-dimensional PWEs. In particular, any one

dimensional mixing PWE admits a unique absolutely continuous invari-

ant probability measure (ACIP) and this ACIP has a bounded variation

density. The methodology used to prove the existence of this ACIP is

based on a so-called functional analytic approach and a key step in this

approach is to show that the corresponding transfer operator has a spec-

tral gap. Moreover, when a PWE has Markov property this ACIP can

also be viewed as a Gibbs measure in thermodynamic formalism.

In this thesis, we extend the studies on one-dimensional PWEs in several

aspects. First, we use the functional analytic approach to study piece-

wise area preserving maps (PAPs) in particular to search for the ACIPs

with multidimensional bounded variation densities. We also explore the

relationship between the uniqueness of ACIPs with bounded variation

densities and topological transitivity/ minimality for PWIs.

Second, we consider the mixing and corresponding mixing rate properties

of a collection of piecewise linear Markov maps generated by composing

x 7→ mx mod 1 with permutations in SN . We show that typical permu-

tations preserve the mixing property under the composition. Moreover,

by applying the Fredholm determinant approach, we calculate the mix-

ing rate via spectral gaps and obtain the max/min spectral gaps when

m,N are fixed. The spectral gaps can be made arbitrarily small when

the permutations are fully refined.

Finally, we consider the computations of fractal dimensions for general-

ized Moran constructions, where different iteration function systems are

applied on different levels. By using the techniques in thermodynamic

formalism, we approximate the fractal dimensions via the zeros of the

Bowen’s equation on the pressure functions truncated at each level.
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Instituto Nacional de Matemática Pura e Aplicada (IMPA) in Rio de

Janeiro, Brazil; Centre de Physique théorique (CPT) in Marseille and
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Chapter 1

Introduction

1.1 Background on piecewise smooth systems

Dynamical systems theory has proved to be a powerful tool with which to analyze

and understand the behaviours of a diverse range of systems. For a system that

is defined by a smooth function of its arguments, there has been a well developed

qualitative approach in understanding the behaviours of many important physical

phenomena such as fluid flows, elastic deformation and nonlinear optical systems.

However, there are many systems in nature for which the functional dependence on

the arguments are not smooth or even discontinuous. Examples include electrical

circuits with switches, mechanical devices where components impact with each other

and so on. These systems are event driven in the sense that smoothness or continuity

is lost at instantaneous events (for example, upon application of a switch), and can

be characterized by piecewise smooth functions. They have fascinating dynamics

and a rich underlying mathematical structure, but are not easily described in terms

of the modern qualitative theory of dynamical systems.

In the work presented, we will primarily provide a detailed study on two classes of

piecewise smooth maps with chaotic behaviour. They are piecewise expanding maps

(PWEs) which are locally and uniformly expanding at any directions and piecewise

isometries (PWIs) where Euclidean distance is locally preserved. When acting on

a compact interval I, a map f is piecewise expanding if its derivative is uniformly

away from ±1, i.e., there exists a κ such that for any x ∈ I, |f ′(x)| > κ > 1; a map f

is piecewise isometry if |f ′(x)| = 1 for any x ∈ I. Both PWEs and PWIs have been

shown individually to exhibit beautiful dynamical properties [14, 43]. Moreover,

there are also increasing evidences showing that a combination of PWEs and PWIs

further creates many interesting systems with non-trivial dynamical behaviours,

for instance intermittency maps [12, 55, 57, 101], or strange non-chaotic attractors

[51, 98].

Generally, PWEs and PWIs share a common feature in terms of chaos, i.e.,

10



Introduction

initial-condition sensitivity. We exemplify this by two text-book popular examples:

g(x) = 2x mod 1 (doubling map) and h(x) = x +

√
2

2
mod 1 (irrational rotation).

(1.1)

Basically, a universal moral is that typical orbits under g (or h) tend to wander

around the phase space in an unpredictable manner. Hence both systems are termed

“chaotic” as it is numerically impossible to forecast the long-term evolutions of

typical trajectories near an initial condition.

This initial-condition sensitivity indicates that these piecewise smooth dynamics

are hard to understand in a deterministic manner. Instead, an ergodic analysis on

an individual invariant measure or on the set of all invariant measures has shown to

be a more reasonable and fruitful approach and this analysis will be our focal point

throughout this thesis.

The structure of invariant measures reveals the profound and intrinsic distinc-

tions on the principles of chaos between PWEs and PWIs. Let us first recall some

basic and necessary terminologies from [121]. For a measure-preserving dynami-

cal system (X, B, µ, T ), it is said to be strongly mixing if for any nonempty sets

A,B ∈ B, one has

lim
n→+∞

|µ(A ∩ T−nB)− µ(A)µ(B)| = 0; (1.2)

and it is said to be weakly mixing if for any nonempty sets A,B ∈ B, one has

lim
n→+∞

1

n

n−1∑

k=0

|µ(A ∩ T−nB)− µ(A)µ(B)| = 0. (1.3)

Strongly mixing implies weakly mixing and means that successive pre-images of B

eventually spread uniformly over A. Similarly, there is also a topological version of

mixing without involving a measure µ. A topological dynamical system (X, B, T )

is said to be topologically mixing, if for any nonempty open subsets U, V ∈ B, there

exists an N ≥ 0 such that for all n > N

T n(U) ∩ V 6= ∅. (1.4)

Additionally, a topological dynamical system (X, B, T ) is said to be topologically

transitive, if for any pair of nonempty open sets U, V ∈ B, there exists an n ≥ 0

such that

T n(U) ∩ V 6= ∅. (1.5)

It is straightforward to see that topologically mixing implies topological transitivity.

Meanwhile, a map T is said to be uniquely ergodic if the set of all invariant

probability measures MI(T ) comprises a singleton. Unique ergodicity is usually
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Introduction

related to minimality, i.e., any point x ∈ X is dense in X. Minimality also implies

topological transitivity. However, it seems hard to illustrate the relationship between

topologically mixing and minimality.

For the doubling map g and irrational rotation h in (1.1), the normalized Lebesgue

measure m is one of their common invariant probability measures. By elementary

arguments in [121], g is strongly mixing but not uniquely ergodic; in contrast, h is

uniquely ergodic but not strongly mixing. Simultaneously, from topological view,

both g and h are topologically transitive, but g is topologically mixing while in

contrast h is minimal.

These differences can be extended for general PWEs and PWIs in some sense. In

particular, for one dimensional PWE f acting on an interval I, Viana has shown that

if the map f is topologically mixing, then f admits a unique absolutely continuous

invariant measure (ACIP) µ which is strongly mixing and fully supported [118].

But as a contrast, for interval exchange transformations (IETs), i.e., a class of one

dimensional PWIs, Katok asserts that they are never strongly mixing [67]. Recently,

Avila & Forni [4] further prove that every transitive interval exchange transforma-

tion which is not a rotation, is weakly mixing. Regarding unique ergodicity, it is

clearly that PWEs are never uniquely ergodic. However, for IETs, Masur [86] and

Veech [117] independently prove that almost all IETs are uniquely ergodic; simulta-

neously, Keane & Rauzy [71] reveal that unique ergodicity holds for a Baire residual

subset of the space of IETs. To the best of my knowledge, it is still unclear whether

there are examples with coexistence of unique ergodicity (with the ergodic measure

non-atomic) and strongly mixing in the piecewise smooth interval (surjective) sys-

tems. Mixing properties and unique ergodicity in higher dimensional PWEs and

PWIs have also made great progress. For multi-dimensional PWEs, they still admit

a strongly mixing ACIP under slightly more technical assumptions besides being

topologically mixing, see [78, 110, 115] for details. Unique ergodicity of rectangle

exchange transformations and cone exchange transformations are also discussed in

the works [2, 52]. However, it is still unclear whether unique ergodicity is a generic

property (in either topological or measurable sense) for general PWIs, the obstacle

lies in the facts that unlike IETs, general PWIs may have infinite number of ergodic

invariant measures concentrated on the invariant set of periodic domains [48].

Measure properties of PWEs and PWIs are coherently related with their topo-

logical properties. Take the doubling map g and the irrational rotation h in (1.1)

as examples again. The doubling map g has periodic orbits of any period as well as

points having dense orbits, which leads to the diversity of MI(g). For the irrational

map h, unique ergodicity and minimality are equivalent. This equivalence is less

clear and may fail in general IETs. For example, minimal but non-uniquely ergodic

IETs are constructed [26]. To fully understand the structure of MI for these non-

uniquely ergodic but minimal examples, it is natural to explore equivalent conditions

12



Introduction

to minimality in IETs in terms of certain appropriate subsets in MI . These will be

further discussed in Chapter 2.

As a derivation of the ergodic analysis on invariant measures, the Kolmogorov-

Sinai entropy hµ of the pair (T, µ) is a nonnegative number (see [121] for the defini-

tion) which measures in some sense the “complexity” or “information production”

of T , viewed through the invariant measure µ. The notion of topological entropy htop

of T is a nonnegative number measuring the topological-dynamical complexity of T .

In particular, when T : X ª is a continuous map on a compact manifold, the topo-

logical entropy htop have the Bowen’s definition using (n, ε)-separated subsets. By

using this definition, the (un-weighted) variational principle (see [121, Section8.2])

holds:

htop = sup{hµ| µ ∈ MI(T )}. (1.6)

The quantifications on entropies are also useful in distinguishing their differences in

the sense of chaos between PWIs and PWEs. A word of caution though, piecewise

version of Bowen’s definition on topological entropy as well as its equivalences with

variational principle require non-trivial adaption while Kolmogorov-Sinai entropy

is still adequate for piecewise smooth systems. It has been shown that PWIs have

zero topological entropy [20], while PWEs admit a unique ACIP of maximal positive

Kolmogorov-Sinai entropy [21, 22, 118]. These differences on entropy values intu-

itively show that the chaos from PWIs exhibit “weak” initial-condition sensitivity

and “slowly” separating nearby starting orbits; this phenomenon is referred to as

pseudo-chaos [81]. However, the dynamics of pseudo-chaotic systems are still far

from trivial and predictable [45].

Iterations of piecewise smooth maps can generate strange attractors (or repellers)

which usually possess fractal structures. The ergodic analysis on the probability

measures of these attractors are helpful in estimating the Hausdorff dimension as

well as other fractal dimensions (e.g., upper box dimension and packing dimension;

see Section 1.3.4 for definitions). The methodology of the estimation introduces

“weights” in the idea of entropies and variational principle in equation (1.6). More

precisely, one can define the notion of topological pressure as the weighted exten-

sions of topological entropy, and the notion of Gibbs measure or equilibrium states

(see Section 1.3.4 for definitions) as the weighted extensions the maximum entropy

measure. In particular, for a conformal expanding f with a corresponding repeller

Λ, Bowen’s formalism states that: dimH Λ is the smallest value of t satisfying the

pressure P (−t log f ′) = 0, and there exists a Gibbs measure as a unique equilibrium

state [95]. Moreover, the study of (existence, uniqueness, etc of) Gibbs measures and

their relationships with equilibrium states in general dynamical systems contribute

the subject of thermodynamical formalism. We discuss thermodynamic formalism

in Section 1.3.4 and also refer to books [106, 99, 35] for a more detailed overview.

In summary, PWEs and PWIs show distinct dynamics, and extensive studies
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have been made individually. For PWEs, the dynamics are usually regarded as an

essentially random sequence with strongly mixing ACIPs being the corresponding

probabilities, and focus on determining their stochastic properties [118]. In par-

ticular, such dynamics usually exhibit “orbit instability” and “structural stability”

[68]. Conversely, unique ergodicity in transitive components for PWIs is an impor-

tant paradigm for elliptic dynamics which have the “orbit stability” and “structural

instability” [68]. Nevertheless, functional analysis approaches turn out to be par-

ticularly useful for studying both classes of systems. Indeed, many operators (e.g.,

renormalization operator [28], Veech operator [119], transfer operator [100, 118] and

etc) are induced, and determine the original dynamical behaviours of the generating

systems.

1.2 Overview

This thesis will particularly concentrate on stochastic and spectral properties of the

transfer (or Ruelle) operator generated by different piecewise smooth maps.

In Chapter 2, we investigate the properties of absolutely continuous invariant

probability measures (ACIPs), especially those measures with bounded variation

densities, for piecewise area preserving maps (PAPs) on Rd, by employing the corre-

sponding transfer operator. The class of PAPs unifies PWIs and piecewise hyperbolic

maps where Lebesgue measure is locally preserved. We explore the relationship be-

tween topological transitivity and uniqueness of ACIPs, and then give an approach

to construct invariant measures with bounded variation densities for PWIs. Our

results ‘partially’ answer one of the fundamental questions posed by Goetz - to de-

termine all invariant non-atomic probability Borel measures in piecewise rotations.

When restricting PAPs to interval exchange transformations (IETs), our results im-

ply that for non-uniquely ergodic IETs with two or more ACIPs, these ACIPs have

very irregular densities, i.e., they have unbounded variation. This is a joint work

with Congping Lin, published in Ergodic Theory and Dynamical Systems [123].

In Chapter 3, we consider the effect on the mixing properties of a piecewise

smooth interval map f when its domain is divided into N equal subintervals and

f is composed with a permutation of these. The case of the stretch-and-fold map

f(x) = mx mod 1 for integers m ≥ 2 is examined in detail. We give a combinatorial

description of those permutations σ for which σ ◦ f is still (topologically) mixing,

and show that the proportion of such permutations tends to 1 as N →∞. We then

investigate the mixing rate of σ◦f (as measured by the modulus of the second largest

eigenvalue of the transfer operator). In contrast to the situation for continuous time

diffusive systems, we show that composition with a permutation cannot improve the

mixing rate of f , but typically makes it worse. Under some mild assumptions on m

and N , we obtain a precise value for the worst mixing rate as σ ranges through all

14
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permutations; this can be made arbitrarily close to 1 as N →∞ (with m fixed). We

illustrate the geometric distribution of the second largest eigenvalues in the complex

plane for small m and N , and propose a conjecture concerning their location in

general. Finally, we give examples of other interval maps f for which composition

with permutations produces different behaviour other than that obtained from the

stretch-and-fold map. This is joint work with Nigel Byott and Mark Holland, which

is accepted in Discrete and Continuous Dynamical Systems-series A [23].

In Chapter 4, we consider the computation of Hausdorff, upper box and packing

dimensions for general Moran set constructions, where the contraction transforma-

tions applied at each step may be different. We allow the transformations to be

nonlinear and contraction rates to have an infimum of zero. Furthermore, the basic

sets of the construction can have a complicated topology. We use the thermody-

namic formalism approach to show the existence of a non-atomic measure that is

supported on the resulting fractal limit set, and using this measure we compute the

corresponding estimations of the dimensions. In addition, we also consider dimen-

sion estimations for stochastic Moran set constructions, where chaotic dynamical

systems are used to generate the contraction ratios at each step.

The dependencies between the chapters are illustrated in Figure 1.1.

One dimensional
PWEs

Transfer
operators

Existence of ACIPs

Thermodynamic
formalism: pressure
functions.

Mixing rates

Functional analytic
approaches

Spectral gaps
Markov partition
(allowing the symbolic
dynamics to be applied)

Gibbs measures/
Equilibrium states

Speed of the
covergence to
equilibrium  states

Chapter 4:
Dimensions of
generalized Moran
construcions

Chaper 3: Effects on
mixing rates after
composing PWIs

Chpater2:PWIs version of
functional analytic
approach and uniqueness
of ACIPs with bounded
variation densities

Bowen’s equation

Lasota-Yorke
inequcation

Figure 1.1: A leitfaden on the dependencies between the chapters.

15



Introduction

1.3 Preliminaries

1.3.1 Basic measure theory

Measure theory will play an essential role throughout this thesis. We denote by m

the normalized Lebesgue measure on a compact manifold (X, B). If the measure is

not specified then Lebesgue measure is meant. We also denote by M(X) the set of all

Borel probability measures with support on X. It is known from [121, Theorem6.1]

and [61, Theorem 5.3] that if µ ∈ M(X) then µ is a Radon measure [87], i.e.,

1. µ(K) < ∞ for any compact subset K ⊂ X;

2. µ(V ) = sup{µ(K) : K ⊂ V is compact} for any open set V ⊂ X;

3. µ(E) = inf{µ(V ) : E ⊂ V, V is open} for any E ⊂ X.

For a measure µ ∈ M(X), a statement is said to hold for µ almost every (a.e.) if a

set A which consists of all values where the statement fails, has a zero measure, i.e.,

µ(A) = 0. Given two measures µ, ν ∈ M(X), the measure µ is said to be absolutely

continuous with respect to ν (denoted by µ ¿ ν) if and only if for any Borel set

A ⊂ X where ν(A) = 0, there is µ(A) = 0. The measure µ is said to be singular

with respect to ν (denoted by µ ⊥ ν) if and only if there exists a Borel set A, such

that ν(A) = 0 and µ(A) = 1.

Lemma 1.1 (Radon-Nikodym). [107] If µ, ν ∈ M(X) with µ ¿ ν then there exists

a unique measurable map ϕ : X → R+ (up to ν-a.e. equivalence) such that

µ(A) =

∫

A

ϕdν, A ∈ B. (1.7)

The map ϕ is called as a Radon Nikodym derivative (density) and is commonly

written as dµ/dν ∈ L1(ν).

The image of a measure µ under a measurable map T is defined by:

T]µ(A) = µ(T−1(A)), A ∈ B. (1.8)

It is straightforward to see µ ∈ MI(T ) if and only if T]µ = µ. Moreover, if the

map T : (X,µ) ª is also non-singular (with respect to µ), then T]µ ¿ µ. By

non-singularity, we mean that f is measurable and if µ(A) = 0 then µ(T−1(A)) =

µ(T (A)) = 0.

Next we consider the convergence of measures in M(X). Let µ, µ1, µ2, · · · ∈
M(X), we say that the sequence {µi} weakly converges to µ, i.e.,

µi ⇀ µ,
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if for all φ ∈ C0(X), i.e., the space of real-valued continuous functions on X.

∫
φdµi →

∫
φdµ.

This weak convergence can be linked with density functions via:

Lemma 1.2. [87] Suppose that ν, µ1, µ2, · · · ∈ M(X) and µi ¿ ν with densities

ϕi := dµi

dν
for each i. If there exists a map ϕ such that ||ϕn − ϕ||1 → 0 as n → ∞,

then there exists a measure µ with dµ = ϕdν such that µn ⇀ µ.

It is well known that every sequence of measures in M(X) has a weakly con-

vergent subsequence [87]. Moreover, if we define a weak* topology on M(X) as the

smallest topology making each of the maps µ 7→ ∫
X

φdµ (∀φ ∈ C0(X)) continuous,

then the following holds.

Lemma 1.3 (Compactness). [121] M(X) is compact under the weak* topology.

By the Riesz representation theorem [107], one can embed M(X) into the dual

space of C0(X), i.e., the set of all continuous complex-valued linear functionals.

More precisely, there exists an isomorphism α : µ 7→ ∫
(·)dµ between M(X) and

{v ∈ C0(X)∗ | v(1) = 1, v(ϕ) ≥ 0 if ϕ ≥ 0}.

For a PWE or a PWI T , it is straightforward to see that the set of invariant

probability measures MI(T ) is a convex and compact subset of M(X). However,

characterizing the elements of MI(T ) is far from trivial in general. In particular,

it is feasible to consider some proper subsets of MI(T ), such as a subset consisting

of absolutely continuous invariant probability measures (ACIPs). The ACIPs are

more feasible to be approximated by computers (see [14, Chapter 5] for the expla-

nations) and one way of investigating these measures is via transfer operators which

is reviewed in the following.

1.3.2 Transfer operator

Let (X, B,m) be a probability space where m is the normalized Lebesgue measure

and let T : X → X be a non-singular map. The transfer operator LT : L1(m) →
L1(m) associated with f is defined up to m− a.e. equivalence as follows [14]:

∫

A

LT ϕdm =

∫

T−1(A)

ϕdm, ϕ ∈ L1(m), A ∈ B. (1.9)

An explicit and equivalent expression is to view LT as a positive weighted compo-

sition operator as:

LT ϕ(x) :=
∑

y∈T−1(x)

ϕ(y)

| det DT (y)| . (1.10)
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with the weight map y 7→ 1
| det DT (y)| . This transfer operator is a special case of Ruelle

operator where the weight map is any measurable map g : X → R such that for

each x ∈ X the sum
∑

y∈f−1(x) g(y) is convergent. Note for further use the following

expression for the nth iterations, (n ≥ 1) of the transfer operator Lf :

Ln
T ϕ(x) :=

∑

y∈T−n(x)

ϕ(y)

| det DnT (y)| . (1.11)

For the n-th iterations of the Ruelle operator, one can replace the weight map

y 7→ 1
| det DnT (y)| by the notation g(n)(y) :=

∏n−1
k=0 g(T k(y)).

Moreover, the transfer operator also possesses the following dual property [118]:

∫
(LT ϕ)ψdm =

∫
ϕ·(ψ◦T )dm, ϕ ∈ Lp(m), ψ ∈ Lq(m) with 1/p+1/q = 1. (1.12)

This dual property associates fixed points of LT with ACIPs via the following lemma.

Lemma 1.4 (Invariant density). [14] For a non-singular map T and ϕ ∈ L1 with

||ϕ||1 = 1, LT ϕ = ϕ if and only if dµ = ϕdm is an invariant measure under T .

Spectral properties of the transfer operators play a central role in the sequel. It

is necessary to recall a few definitions and facts on the basic spectral theory of a

bounded linear operator as a parenthesis before we state a case study in the next

section. We also refer to [66] for a more detailed overview.

Suppose that (B, ||·||) is a Banach space, and the transfer operator LT : B 7→ B is

a bounded linear operator (i.e., there exists a constant C such that ||LT ϕ|| ≤ C||ϕ||
for all ϕ ∈ B, and the smallest such constant is the operator norm of LT ). The

resolvent set of LT is the set of complex numbers z which make LT − zId : B 7→ B

an invertible operator with a bounded inverse (LT −zId)−1 : B 7→ B. The Spectrum

Spec LT is the complement of resolvent set, and the spectral radius r(LT ) is

r(LT ) := sup{|z| | z ∈ Spec LT}. (1.13)

In particular, we recall the spectral radius formula acting on a Banach space (B, ||·||):

r(LT ) = lim
n→∞

(||Ln
T ||)1/n.

An element z ∈ Spec LT is an eigenvalue of LT . The geometric multiplicity of an

eigenvalue z is the dimension 1 ≤ m1(z) ≤ ∞ of the eigenspace {v ∈ B|(LT − z)v =

0}. The algebraic multiplicity of z is the dimension m2 ≤ ∞ of the generalized

eigenspace {v ∈ B| ∃ m0 ≥ 1, (LT − z)m0v = 0}. Clearly, m2 ≥ m1. We then define

the essential spectral radius ress(LT |B) :

ress(LT |B) := inf{r ≥ 0 : λ ∈ Spec(LT |B), |λ| > r

⇒ λ is an isolated eigenvalue of finite multiplicity}. (1.14)
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It is clear that ress(LT ) ≤ r(LT ). Moreover, let B∗ be the dual space of the Banach

space (B, || · ||) and set the dual operator L∗ : B∗ → B∗ via:

(L∗µ)ϕ := µ(LT ϕ), ∀µ ∈ B∗ and ∀ϕ ∈ B. (1.15)

Then LT and L∗ share the same spectrum, essential spectral radius and isolated

eigenvalues.

The easiest case to analysis the spectrum is of course when ress(LT ) < r(LT ),

and this indeed happens when T is an one-dimensional PWE.

1.3.3 Case study: one-dimensional PWEs

In this section, we state the spectral analysis of one-dimensional PWEs, which is

well understood in the space of maps with bounded variation.

Definition 1.1 (One-dimensional PWEs). [74] Let I = [0, 1), we say f : I ª is a

piecewise expanding map(PWE) if:

• there are 0 = ζ1 < ζ2 < · · · < ζN−1 = 1 which define subintervals Ii = [ζi−1, ζi)

such that each fi := f |Ii
∈ C2 and monotone, and

• |f ′| ≥ 2 and f ′ has a bounded variation.

An important technical remark is that: due to the discontinuities of the map f or

its derivative, the transfer operator Lf (defined in Section 1.3.2) does not preserve

the space of (Hölder) continuous functions. Instead, Lf preserves the space of maps

of bounded variation [6, 118] which is defined below. Given a function ϕ : I → R,

we define the total variation of ϕ as

var(ϕ) = sup{
n∑

k=1

|ϕ(xk)− ϕ(xk−1)| : 0 ≤ x0 ≤ . . . ≤ xn = 1}, (1.16)

where the sup is taken over all partitions of I. We say that ϕ has bounded variation

(i.e., ϕ ∈ BV) if var(ϕ) < ∞. Since var(·) is a semi-norm, we equip the norm ‖ · ‖BV

by

||ϕ||BV := ||ϕ||1 + var(ϕ). (1.17)

A bounded variation space which is endowed with this norm is a Banach space.

The Banach space (BV, || · ||BV ) is compactly embedded into the L1 space. That

is, each sequence {ϕn} of L1 functions with uniformly bounded BV−norm has a

subsequence which converges (in L1-norm) to an element in BV . This is known as

Helly’s selection theorem [10].

Additionally, a key inequality for Lf is as follows.
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Lemma 1.5 (Lasota-Yorke inequality). [14] Suppose f : I ª is a PWE, then there

exist constants C0 > 0 and 0 < θ < 1, such that for any ϕ ∈ L1, and any n ≥ 0

||Ln
fϕ||BV ≤ θn||ϕ||BV + C0|ϕ|1. (1.18)

Combining the compact embedding property of BV into L1 and the Lasota-Yorke

inequality gives the following result.

Proposition 1.1 (Existence of invariant ACIPs). [14] Suppose f : I ª is a PWE,

then f has only finitely many ergodic ACIPs. Moreover, all the densities of these

ACIPs are functions of bounded variation and strictly positive. In particular, if f

is also topologically mixing then f admits a unique ACIP, which is also strongly

mixing.

The main idea in proving Theorem 1.1 involves the Birkoff average of a sequence

induced by the transfer operator Lf , which is motivated by the Kryloff-Bogoliouboff

Theorem for continuous maps [77]. A brief sketch of this idea is stated as follows.

Let

ϕn :=
1

n

n−1∑

k=0

Lk
f1. (1.19)

Then the Lasota-Yorke inequality (1.18) implies supn ||ϕn||BV < C1 < ∞ (i.e.,

the sequence {ϕn} is uniformly bounded in BV-norm). Hence, by the compactly

embedding property of BV into L1 (or Helly’s Theorem), ϕn converges to a map

ϕ ∈ BV in L1-norm. By elementary arguments of the transfer operator in Section

1.3.2, this map ϕ is a probability density and invariant under Lf . Moreover, it is

worth noticing that due to ϕ ∈ BV, the support set of measure µ does not appear to

have an irregular geometric structure. This fact together with topologically mixing

property eventually implies the strongly mixing property of µ, which completes the

proof. A word of caution, though the density always has bounded variation, it is

still hard to derive a universal explicit formula in general. Alternative approaches

have focused on approximating the density, see works [41, 63].

The above protocol on searching ACIPs with regular densities can be regarded

as a classical example of a so-called functional analytic approach [77]. Indeed, this

approach has numerous subsequent generalizations, which have been used to search

ACIPs for more general frameworks, e.g., coupled map lattice, hyperbolic maps and

geodesic flow on hyperbolic plane [77].

We adapt the above functional analytic approach for multidimensional PWIs in

Chapter 2. This class of maps has completely no hyperbolicity, which leads to the

lack of a Lasota-Yorke inequity. In fact, the corresponding transfer operator is a uni-

tary operator. Therefore, non-trivial adaption is required to search an appropriate

subspace of bounded variation in order to obtain the L1-norm convergence. More-

over, we show that some invariant densities for PWIs may mutually intermingle,

20



Introduction

which means that the support sets are highly pathological.

Combining the Lasota-Yorke inequality and compactly embedding property fur-

ther allows the applications of the Ionescu-Tulcea/Marinescu Theorem [59] to obtain

the following result:

Theorem 1.1 (Quasi-compactness). [74] If f : I ª is a PWE and topologically

mixing, then there exists 0 < τ := max{|λ|, 1 6= λ ∈ Spec(Lf |BV )} < 1 such that:

exp

{
− lim inf

k→∞
essinfx∈[0,1]

1

k
log |(f ′)k(x)|

}
= ress(Lf |BV ),

and

ress(Lf |BV ) ≤ τ < r(Lf |BV ) = 1. (1.20)

Figure 1.2: Schematic representation of the spectrum (as a subset in complex plane)
for the transfer operator Lf |BV . Image is taken from [40].

Inequality (1.20) is equivalent to say Lf |BV is quasi-compact. This name stems

from the following fact. Recall that a linear bounded operator K is compact if the

closure of the image of the unit ball is compact. A well known result states that

the essential spectral radius of a compact operator is always zero, and its spectrum

consists of isolated eigenvalues of finite multiplicity and accumulates at zero [6].

Figure 1.2 intuitively illustrates that there is a similar scenario in Theorem 1.1:

except for the spectrum inside the closed disc of radius ress, the operator behaves

just like a compact operator as its spectrum consists of isolated eigenvalues of finite

multiplicity. One can thus write a spectral decomposition for Lf |BV . Therefore, the

operator Lf |BV is called quasi-compact.

Inequality (1.20) also implies that Lf |BV has a spectral gap. In this sense, The-

orem 1.1 for Lf |BV is also commonly regarded as the infinite-dimensional extension

of the Perron-Frobenius theorem for non-negative matrices [6].

Transfer operators coincide with non-negative matrices in the class of piecewise

linear Markov maps acting on locally constant-weighted maps. Here, the Markovian

property means that if each branch fi is a homeomorphism from a subinterval Ii onto
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some connected union of other subintervals Ij. The Markovian property directly

induces a transition matrix Af := (aij)1≤i,j≤n as

aij =

{
1, if Ij ⊂ f(Ii);

0, otherwise.

Based on this transition matrix, the coincidence is interpreted via the following

proposition:

Proposition 1.2 (Matrix representation of the transfer operator). [14] Let f : I ª
be a piecewise linear Markov map on the finite partition P = {Ii}n

i=1, then there

exists an n × n matrix M (f) associated with f , such that for every piecewise (with

respect to the same partition P) constant function ψ, one has Lfψ = (M (f))T · π(f),

where π(f) = (π1, · · · , πn)T is the column representative vector. The matrix M (f) is

of form M (f) = (mij)1≤i,j≤n, where

mij =
aij

|f ′| =
m(Ii ∩ f−1(Ij))

m(Ii)
, 1 ≤ i, j ≤ n. (1.21)

Using this matrix representation, one can transform the verification of properties

of the transfer operator to that of the matrix M (f) for piecewise linear Markov maps.

In many situations, such a transformation reduces the infinite dimensional phase

space into finite, and is useful to simplify many discussions of the ergodic properties

on the invariant measures. We state the following as an example.

For a PWE f , if f is topologically mixing then the quasi-compactness of Lf is

inherently related with the speed of convergence to the equilibrium in BV norm [72].

Suppose ϕ is the corresponding invariant probability density and τ is the second

largest eigenvalue of Lf |BV . On one hand, for any ε > 0, the spectral decomposition

of Lf |BV implies that there exists a constant CBV > 0 such that for all n ≥ 0 and

φ ∈ BV with ‖φ‖1 = 1,

||Ln
f (φ)− ϕ||BV ≤ CBV · (τ + ε)n||φ||BV. (1.22)

On the other hand, for any ε > 0, there exists φ ∈ BV with ‖φ‖1 = 1 such that for

any sufficiently large n and for some Cφ > 0,

‖Ln
f (φ)− ϕ‖BV ≥ Cφ(τ − ε)n. (1.23)

Therefore, τ determines the optimal speed of convergence to the equilibrium. A

word of caution, the exact value of τ is far from trivial to estimate in general.

However, by transforming this problem into the analysis of the matrix M (f) again,

the estimation on τ in piecewise linear Markov maps becomes comparably feasible.

Indeed, the Fredholm matrix/determinant approach is the main tool for piecewise

linear Markov maps, see [89, 90, 91].
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Consider a piecewise linear Markov map f : I → I with a finite partition P =

{Ii}q
i=1 and a representative transition matrix B. Here B is a q × q matrix with

Bij = 1 if Ij ⊂ f(Ii), and Bij = 0 if f(Ii)∩Ij = ∅. We assume that f is differentiable

on the interior of each element of P. If Lf is the Perron-Frobenius operator, and

J ⊂ I, we consider the power series defined on C×D with D ⊂ C:

sJ(z, x) :=
∞∑

n=0

znLn
f (XJ)(x) = XJ(x) +

∞∑
n=1

znLn
f (XJ)(x), (1.24)

where XJ(x) is the indicator function of J . When J = Ii ∈ P, we write sJ(z, x) as

s(i)(z, x). We let s(z, x) be the vector (s(i)(z, x))q
i=1, and similarly X(x) = (X(i)(x))q

i=1.

For a Markov system we have the following result.

Proposition 1.3 (Fredholm matrix). For a piecewise linear Markov map f : I → I

with a finite partition P = {Ii}q
i=1, there exists a q × q matrix Φ(z) and such that

s(z, x) = (I − Φ(z))−1X(x). (1.25)

The matrix Φ(z) in Proposition 1.3 is called a Fredholm matrix.

Proof. We only consider the Markov case where the slope is constant on each

Ii (but not constant globally). Our proof is a slight adaption of the calculations

in [89, 90]. In particular we obtain an explicit form of Φ(z). First of all, by the

definition of Lf we have

sJ(z, x) = XJ(x) +
∞∑

n=1

zn
∑

fn(y)=x

XJ(y)

|(fn)′(y)| .

If J = Ii ∈ P, the following hold:

s(i)(z, x) = X(i)(x) + z

∞∑
n=1

zn−1
∑

fn−1(f(y))=x

X(i)(y)

|(fn−1)′(f(y))f ′(y)|

= X(i)(x) + z
∞∑

n=1

zn−1

|(f ′ | Ii)|
∑

fn−1(ỹ)=x

∑
i,j

Bij=1

X(j)(ỹ)

|(fn−1)′(ỹ)|

= X(i)(x) +

(
z

|(f ′ | Ii)|
∑

j

Bij

)
s(j)(z, x).

Hence we obtain a q × q matrix Φ(z) with Φ(z)ij = {z/|(f ′ | Ii)|}Bij and

s(z, x) = (I − Φ(z))−1X(x). (1.26)

This completes the proof.

Given the Fredholm matrix Φ(z), we define the Fredholm determinant to be the
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quantity D(z) := det(I − Φ(z)). For piecewise-linear expanding (Markov) systems,

the Fredholm matrix and Fredholm determinant have the following properties (see

[89, 90]) which are useful in the sequel:

1. The number of ergodic components of f is equal to the dimension of the

eigenspace of I − Φ(1) associated to the eigenvalue of value zero. Moreover,

the number of ergodic components is also equal to the order of the zero at

z = 1 in the equation D(z) = 0.

2. If zero is a simple eigenvalue of I −Φ(1) then the system is ergodic. Moreover

if {|z| = 1} ∩ Spec(Lf |BV) = {1} then the system is mixing

3. If λ ∈ C and |λ| > ress, then λ ∈ Spec(Lf |BV) if and only if z = λ−1 is a zero

root of D(z), i.e., D(1/λ) = 0.

4. If D(1/λ) = 0 then λ is an eigenvalue of Lf |BV.

In addition, the (ergodic) invariant density ρ(x) can also be computed, and is given

by the following formula:

ρ(x) =
∑

i

vi∑
j |Ij|vj

X(i)(x), (1.27)

where v := (vi)
q
i=1 is a left-eigenvector of Φ(1) associated to eigenvalue 1. i.e.,∑

i viΦ(1)i,j = vj. The proof of equation (1.27) is quite straightforward, i.e., by

checking (Lfρ)(x) = ρ(x). Thus, the Fredholm matrix Φ(z) at z = 1 can be viewed

as the dual operator to Lf (relative to the vector space generated by the indicator

functions on the Markov partition P).

It can be further shown that for a piecewise linear (Markov) expanding system,

the Fredholm determinant D(z) is also related to the dynamical zeta function ζ(z)

via: [6, 89]

ζ(z) =
1

D(z)
where, ζ(z) = exp





∞∑
n=1

zn

n

∑

p:fn(p)=p

1

(fn)′(p)



 , (1.28)

Thus, within the region |z| > ress, ζ(z) is meromorphic with singularities (poles) at

the zeros of D(z). In particular ζ(z) is analytic in the region |z| < ress. To see the

relationship between ζ(z) and D(z), the Fredholm determinant can be calculated

as:

det{(I − Φ(z))−1} = exp {−tr (log(I − Φ(z)))} = exp

{ ∞∑
n=1

1

n
tr(Φ(z)n)

}
,

where tr is the trace operation. If, for example Φ(z) = 1
m

B, where f ′ | Ii = m for
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all I ∈ P, then

det(I − Φ(z))−1 = exp

{ ∞∑
n=1

zn

n
· tr(Bn)

mn

}
,

and tr(Bn) is precisely the number of fixed points of fn.

In Chapter 3, we use this Fredholm matrix/determinant approach to study dy-

namics generated by the family of maps x 7→ mx mod 1, (2 ≤ m ∈ N) with compo-

sition of a permutation σ ∈ SN , and show how the mixing rate τ(σ) varies with the

permutation σ.

Instead of considering the speed of convergence to equilibrium, a related quantity

is that of decay of correlations [6, 89, 118]. We say that a mixing measure-preserving

system (f, M, µ) has decay of correlations for some real-valued test functions φ, ψ ∈
L2(µ) with rate function r(n) for positive n if there exists some constant Cφ,ψ such

that

Cn(φ, ψ, µ) :=

∣∣∣∣
∫

φ(ψ ◦ fn) dµ−
∫

φ dµ

∫
ψ dµ

∣∣∣∣ ≤ Cφ,ψr(n). (1.29)

Notice that due to f−invariance of µ, we can rewrite:

Cn(φ, ψ, µ) =

∫
(φ− Eφ)((ψ − Eψ) ◦ fn)dµ,

where Eφ =
∫

φdµ and Eψ =
∫

ψdµ. Therefore we can view Cn(φ, ψ, µ) as n−th

correlation in the language of probability theory.

The Schwartz inequality and the L2 assumption on the observations φ, ψ im-

ply that φ(ψ ◦ fn) is integrable. It is also worth mentioning that if φ = χA and

ψ = χB are characteristic functions of two Borel sets, then the correlation function

Cn(φ, ψ, µ) reduces to the left hand side of Equation (1.2) in the definition of strongly

mixing. Thus, by Lebesgue dominated convergence theorem [107], it follows that

limn→∞ |Cn(φ, ψ, µ)| = 0 for all real-valued L2 test functions φ, ψ. Generally, peo-

ple are interested in the speed at which the correlation function of suitable mixing

dynamical systems decays to zero. Usually, it is necessary to restrict to a subset

of functions in L2(µ) satisfying some smoothness property, so that one can show

the relationship between the correlation function and the speed of convergence to

equilibrium via applying the results of the corresponding transfer operators having

a spectral gap. In particular, if f is a one-dimensional PWE, ψ ∈ L∞ and φ ∈ BV

with
∫

φdµ = 1, then

Cn(φ, ψ, µ) =

∣∣∣∣
∫

ψ{Ln
f (φϕ)− ϕ}dm

∣∣∣∣ ≤ ‖ψ‖∞‖Ln
f (φϕ)− ϕ‖1

≤ ‖ψ‖∞‖Ln
f (φϕ)− ϕ‖BV,

where ϕ is the invariant probability density of an ACIP µ and the last step is from
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‖ · ‖1 ≤ ‖ · ‖BV. Hence the rate of decay of correlations depends on the eigenvalues

of Lf |BV. More precisely, for any ε > 0:

lim
n→∞

(|λ|+ ε)−nC(φ, ψ, µ) = 0, λ−1 = inf{z : z−1 ∈ Spec(Lf |BV) \ {1}}. (1.30)

Due to the Markov property again, a piecewise Markov linear map satisfying

the topologically mixing condition can be conjugated with a sub-shift of finite type.

Therefore, the unique ACIP of the map in Theorem 1.1 can also be viewed as a

Markov measure (see [6] for the definition), which is a special Gibbs measure with

a local constant weight potential [6]. This relationship shows the link between

the spectral properties of transfer operators with the thermodynamic formalism

approach which is stated in next section.

1.3.4 The thermodynamic formalism approach

The thermodynamic formalism approach can be described as a set of ideas and

techniques brought from statistical mechanics to dynamical systems in the pioneer-

ing work of Sinai, Bowen and Ruelle in the early seventies and eighties, see e.g.,

[13, 112, 113, 108]. This approach has been shown as a very powerful tool for a wide

range of problems. We give a short review here of its applications, particularly in

dimension theory (through Bowen’s formalism see e.g., [13, 95, 99]).

Fractal dimensions: We first recall some quantities of fractal dimensions (see

e.g., [34, 87] for a more general discussion).

Among the fractal dimensions, the notion of Hausdorff dimension is probably

the oldest and most important. Suppose F is a non-empty subset in Rd. For any

nonnegative number s and ε > 0, let

Hs
ε(F ) := inf

(∑
i

(diam(Ui))
s

)
, (1.31)

where the infimum is taken over all covers {Ui} with diam(Ui) < ε. As ε decreases,

the class of permissible covers of F in (1.31) is reduced. Therefore, the infimum Hs
ε

increases. This fact implies that the quantity Hs(F ) := limε→0 Hs
ε(F ) exists which

is called as Hausdorff measure. The Hausdorff dimension of F is defined by

dimH(F ) := inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) = ∞}. (1.32)

and is interpreted as a unique critical value of s at which the Hausdorff measure of

F “jumps” from +∞ to 0. The fact that Hausdorff dimension is based on Hausdorff

measure makes this dimension mathematically convenient to be manipulated. How-

ever, a major disadvantage of Hausdorff dimension lies in the calculation difficulties

in many situations. Therefore, to understand the geometrical properties of fractal
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sets, other dimensions are also essential.

(Upper) box dimension is another important fractal dimension which is relatively

easier to estimate than Hausdorff dimension. Given a non-empty set F ⊂ Rd, and

ε > 0, let N(ε) denote the smallest number of ε-balls needed to cover F . The (upper)

box dimension of F is defined by:

dimB(F ) := lim sup
ε→0

log N(ε)

log(1/ε)
. (1.33)

Analogous to Hausdorff dimension, there is an alternative description of upper box

dimension [95]: for any nonnegative number s, let

W s(F ) := limε→0 sup{∑i diam(Bi)
s : Bi is a ball with diam(Bi) ≤ ε,

B◦
i ∩B◦

j = ∅(i 6= j), Bi ∩ F 6= ∅}, (1.34)

then

dimB(F ) := sup {s : W s(F ) = ∞} = inf{s : W s(F ) = 0} . (1.35)

It is worth mentioning that W s(·) in equation (1.34) usually does not define a mea-

sure (due to lack of subadditivity). Hence, upper box dimension is not based on a

measure.

Comparing equation (1.31) with equation (1.34), we have

dimH(F ) ≤ dimB(F ). (1.36)

In order to have a better understanding on the gap between Hausdorff dimension

and upper box dimension in (1.36), we introduce packing dimension and packing

measure. Let

Ps
ε(F ) := sup{

∑
i

diam(Bi)
s}

where the supremum is taken over a collection of disjoint balls {Bi} of radius at

most ε and with centers in F . Similarly, by the monotonicity of Ps
ε on ε, the limit

Ps
0(F ) = limε→0 Ps

ε(F ) exists. However, by considering countable dense sets, it is

easy to see that Ps
0 is not a measure (due to lack of subadditivity again). Hence, we

modify Ps
0 to

Ps(F ) := inf

{∑
i

Ps
0(Fi) : F ⊂

∞⋃
i=1

Fi

}
, (1.37)

which is a measure, and is called an s-dimensional packing measure. The packing

dimension is naturally defined as

dimP (F ) := sup{s : Ps(F ) = ∞} = inf{s : Ps(F ) = 0}. (1.38)
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For a general set F ⊂ Rd, the following relations hold:

dimH(F ) ≤ dimP (F ) ≤ dimB(F ), and Hs(F ) ≤ Ps(F ). (1.39)

Suitable examples show that none of inequalities in (1.39) can be replaced by equal-

ities [35].

The following lemma is useful for studying packing and box dimension, particu-

larly for fractal sets with some kinds of self similarity.

Lemma 1.6. [34, Corollary 3.9] Let F ⊂ Rn be compact and such that

dimB(F ∩ V ) = dimB(F )

for all open sets V that intersect with F . Then dimP (F ) = dimB(F ).

It is important to note that most of Hausdorff dimension calculations involve

an upper and a lower estimate, which are hopefully equal. For the upper estimate,

the inequalities (1.39) provide a useful approach while the lower estimate is usually

more difficult to deal with. As far as I am concerned, Frostman Lemma along with

the notion of local dimension probably is one of the most important approaches and

has been widely studied. We briefly review this approach as follows.

Local dimension is a local study on a Borel probability measure µ. More precisely,

suppose a Borel probability measure µ supports on a fractal set F , then for any point

x ∈ F , the local dimension is defined as

dimloc(µ, x) := lim
r→0

log µ(B(x, r))

log r
, (1.40)

which can be viewed as a function of the point x. As the limit in the definition (1.40)

does not always exist, one can always speak of dimloc or dimloc via replacing lim into

lim or lim respectively. The local dimension is strongly related to the Hausdorff and

packing dimension of a Borel probability measure µ supported on the compact set

F (i.e., µ ∈ M(F )) via following lemma.

Lemma 1.7. [87] Let

dimH(µ) := inf{dimH(E), E ⊆ F, with µ(E) = 1}, (1.41)

dimP (µ) := inf{dimP (E), E ⊆ F with µ(E) = 1}; (1.42)

then

dimH(F ) ≥ dimH(µ) = esssupx dimloc(µ, x),

dimP (F ) ≥ dimP (µ) = esssupx dimloc(µ, x),

where the essential supremum is taken with respect to the measure µ.
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In particular, if µ ∈ M(F ) is Ahlfors-regular [87, Theorem5.7], i.e., there exist

some constants C ≥ 1 and s ≥ 0 such that for all points x ∈ F,

C−1rs ≤ µ(B(x, r)) ≤ Crs,

then s = dimH(µ) = dimH(F ) = dimP (F ) = dimB(F ). This is directly from

Lemma 2.1, and is sometimes called as uniform mass distribution principle [34].

The Frostman lemma below shows an inverse relationship between a Borel prob-

ability measure supported on F and the Hausdorff dimension of F .

Lemma 1.8 (Frostman Lemma). [87] Let F be a Borel set in Rd and s ≥ 0, then

the following are equivalent:

1. Hs(F ) > 0.

2. There is a Borel probability measure supported in F with µ(F ) = 1 such that

µ(B(x, r)) ≤ rs holds for all x ∈ F and r > 0.

After the preparations in fractal dimensions, we now review the thermodynamic

formalism approach and begin with the concept of pressure function.

Pressure function: There are various equivalent definitions of pressure func-

tion, among which, we particularly consider the following two definitions. Suppose

T is a continuous map from a compact set X to itself, and MI(T ) is the set of

all invariant Borel probability measures on X. We endow MI(T ) with the weak*

topology, and for each µ ∈ MI(T ) we denote by hµ the measure theoretic entropy

of µ. Given an α−Hölder continuous potential function φ : X → R+ and a real

number t, the corresponding free energy Ft(µ) of µ ∈ MI is defined as

Ft(µ) := hµ − t

∫
φdµ, (1.43)

and the (geometrical) pressure function P (t) is defined as:

P (t) := sup{Ft(µ)|µ ∈ MI}. (1.44)

For each t ∈ R, we have P (t) < ∞ and the function t → P (t) is convex, non-

increasing and α−Hölder continuous . Therefore, there is a unique solution t0 where

P (t0) = 0. A measure µ ∈ MI is called an equilibrium state, if the supremum (1.44)

is attained for this measure. The central problems in the thermodynamic formalism

approach are the studies of the (non-)existence of equilibrium states, and of the real

analytic dependence of P (t) on the parameter t.

In particular, if the potential function φ = log |T ′| (if T is also differentiable),

then we say χµ =
∫

φdµ =
∫

log |T ′| is the Lyapunov exponent of µ, and such par-

ticular choice of φ leads to a close connection between the corresponding pressure
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function and the dimension spectrum of pointwise dimensions of the Gibbs measure.

To state this connection, we particular consider the finite symbolic dynamical sys-

tems (
∑+

p , σ), where
∑+

p = {0, · · · , p−1}N and σ :
∑+

p →
∑+

p as the left-shift map.

We remark that all the results of the thermodynamic formalism approach on finite

symbolic dynamical systems in the Introduction can be extended into a finite type

sub-shift systems [6, 93], but for simplification, we only concentrate on the full-shift

case.

Consider another version of the pressure function. Given an α−Hölder contin-

uous function φ : Σp → R+ and t ∈ R, let Sk(tφ) :=
∑k−1

i=0 (−tφ) ◦ σi, then the

(topological) pressure P (t) is defined by

P (t) := lim
n→∞

1

n
log

(∑

ω(n)

inf
ξ∈ω(n)

exp(Sn(−tφ)(ξ))

)
, (1.45)

where the sum is taken over all words ω(n) of length n, and within the sum the

infimum is taken over all elements ξ belonging to ω(n).

Weighted Variational Principle: For any α−Hölder continuous function

φ :
∑+

p → R+ and t ∈ R, P (t) = P (t). This is referred to as a weighted vari-

ational principle (in comparison to the un-weighted version, recall equation (1.6))

[121]. Under this assertion, the two definitions of pressure function coincide. More-

over, one can say that it is at the heart of the thermodynamic formalism approach.

The standpoint is that (un-)weighted variational principle is important to select

“interesting” invariant probability measures in a dynamical system. In particular,

Gibbs measures are “selected” in this criterion for a shift map of a symbolic space.

Gibbs measure: For any α−Hölder continuous map φ :
∑+

p → R+, a measure

µ ∈ MI is called a Gibbs measure for the potential φ if there exists a constant D > 1

such that

D−1 ≤ µ{y : yi = xi, i = 0, · · · , n− 1}
exp(−nP (φ) +

∑n−1
k=0 φ(σk(x)))

< D (1.46)

for all x = (x1, x2, · · · ) ∈
∑+

p and n ≥ 0.

In fact, for the shift map σ on a finite symbolic space, the hypothesis of the

α−Hölder continuity of the potential φ ensures the existence and uniqueness of the

Gibbs measure and its coincidence with the equilibrium state for φ. Indeed, we can

motivate the reasons of Gibbs measures (equation (1.46)) maximizing the pressure

(equation (1.44)) with an exquisitely simple fact [6]: Suppose n ≥ 1 is a fixed

integer and consider n fixed real numbers a1, · · · , an. Then the maximum over all

probability vectors (p1, · · · , pn) of the expression

−
n∑

i=1

pi log pi +
n∑

i=1

piai
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is equal to
∑n

i=1 eai and is attained if and only if

pi =
eai

∑n
j=1 eaj

, i = 1, · · · , n.

It is worth remarking that the existence of Gibbs measures and their coincidence

with equilibrium states of the shift maps σ can be extended to differentiable dy-

namical systems acting on a compact set with uniform hyperbolicity conditions in

higher dimensions; c.f., the discussions on Sinai-Ruelle-Bowen (SRB) measures for

diffeomorphisms [6, 13, 109]. However, lack of uniform hyperbolicity (sometimes,

called as non-uniform hyperbolicity) or compactness would make extensions of the

thermodynamic formalism approach much more sophisticated. Indeed, there are

examples where the pressure functions t → P (t) are not necessarily analytic at ev-

ery real value. The value tc at which the pressure function is not real analytic is

called phase transition [80, 92]. The verification on the existence or the uniqueness

of equilibrium state is far to be trivial. To the best of my knowledge, there are no

general theorems describing the thermodynamic formalism approach for arbitrary

non-uniformly hyperbolic systems even in one dimension. Alternatively, researchers

turn to extended the properties on the thermodynamic formalism approach case

by case such as complex rational maps [84, 85, 105, 102, 103, 104] and real uni-

modal/multimodal maps [15, 17, 16, 96].

Transfer operator (Ruelle operator) in Section 1.3.2 is the main tool in con-

structing and studying Gibbs measures on a finite symbolic space. Let Cα(
∑+

p ) be

a space of all α−Hölder continuous functions on
∑+

p and define the Ruelle operator

Lg : Cα(
∑+

p ) → Cα(
∑+

p ) as:

Lgφ(x) :=
∑

y∈σ−1(x)

exp(g(y))φ(y) =
∑

k

exp(g(kx))φ(kx),

along with the dual operator L∗
g : M(

∑+
p ) → M(

∑+
p ). Recall that M(

∑+
p ) denotes

the space of all Borel probability measures on
∑+

p . The following proposition states

the link between the Ruelle operator and the corresponding Gibbs measures.

Proposition 1.4. [93] Let (
∑+

p , σ) be a mixing shift on a finite symbolic space, then

there exists a number λ := exp(P (φ)), a continuous function h :
∑+

p → R+ and a

measure v ∈ M(
∑+

p ) for which Lgh = λh, L∗
gv = λv, and v(h) = 1. Furthermore,

µ := hv ∈ MI(σ) and µ is a Gibbs measure for the potential φ.

A special class of potential φ that only depends on the first coordinate (i.e.,

φ(x) = φ(x1)) plays an important role in the dimension estimation.

Proposition 1.5. [93] Given numbers 0 < λi < 1, i = 1, · · · , p, define the function

φ :
∑+

p → ∑+
p by φ(x) = φ(x1, x2, · · · ) = log λ−1

x1
, then φ is Hölder continuous.
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Furthermore, there exists a unique s ≥ 0 such that P (−sφ) = 0.

From Bowen’s formalism [95], this unique solution s will become the Hausdorff,

packing and box dimension of the repeller generated by the corresponding iterated

function system, when all the λi satisfy some geometrical restrictions. In Chapter

4, we consider the fractal dimensions for generalized Moran constructions. These

constructions are varied in the iterated function systems at each level. The intuitive

idea is to approximate the fractal dimensions via a sequence of {sk}, where each sk

is the unique solution of the pressure function for the symbolic space truncated at

k-th level.
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Chapter 2

Invariant measures with bounded

variation densities

Conservative systems are often used as models of the physical world, where con-

servative is usually understood as energy preserving (i.e., where energy is invariant

under the time evolution). In this chapter we consider conservative systems that

are governed by discrete time dynamical systems. In particular, we focus on multi-

dimensional piecewise area preserving maps (PAPs), which is a general extension of

interval exchange transformations (IETs) into Rd. Regarding IETs, Keane conjec-

tured that minimality implies unique ergodicity in [69] and this conjecture holds for

IETs with two or three intervals. However, counterexamples have been constructed;

see [70, 75]. Thereafter, Masur [86] and Veech [117] have independently demon-

strated that almost every topologically transitive IET (with respect to Lebesgue

measure) is uniquely ergodic; simultaneously, Keane & Rauzy [71] revealed that

unique ergodicity holds for a Baire residual subset of the space of IETs. To fully un-

derstand the densities of absolutely continuous invariant measures (ACIPs) for these

non-uniquely ergodic counterexamples, it is natural to explore equivalent conditions

to the topological transitivity in IETs in terms of ACIPs.

When extending to the multidimensional PAPs, we are facing at least two tech-

nical obstacles: complicated topology in high dimensions and non-local preservation

of distance. For the class of PAPs which preserve distance locally, a special case

of interest is the class of piecewise isometries (PWIs). Establishing the properties

of their ACIPs will partially contribute to answering a fundamental question posed

in [48], i.e., to determine all invariant non-atomic probability Borel measures for

piecewise rotations. This question is still open so far.

For the class of PAPs that do not preserve distance locally, a particular case

is piecewise hyperbolic maps. For these maps, properties that have been studied

include transitivity and possession of a unique physical measure (e.g., see works of

Boyarsky & Góra [14] and Viana [118]). These studies use a functional analytic

approach by choosing a “reasonable” function space and applying a transfer op-
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erator on this space. They study statistical properties of the system by looking

at the operator fixed point and determining if there is a spectral gap. In one-

dimensional piecewise expanding maps, the space of bounded variation functions

has been demonstrated to be such a “reasonable” space [14, 118]. In higher dimen-

sions, the space of multidimensional bounded variation functions can still be chosen

under certain assumptions [19, 73, 116] and contains a classical anisotropic Sobolev

space of Triebel-Lizorkin type [7].

In this chapter, our interest is to explore the structure of ACIPs and the rela-

tionship between the uniqueness of such measures and topological properties, e.g.,

the existence of dense orbits, topological transitivity and minimality for multidimen-

sional PAPs (particularly for PWIs) by applying the functional analytic approach.

Definitions of PAPs and PWIs are given below.

Let X be a compact subset of Rd and (X, B,m) be a probability space. For

convenience, m always denotes d−dimensional normalized Lebesgue measure on X,

and B is the Borel σ-field. We say P = {ωi}r−1
i=0 is a topological partition of X if:

(i) ωi ∩ ωj = ∅, for i 6= j; (ii)
⋃r−1

i=0 ωi = X; and (iii) for each ωi, int(ωi) 6= ∅ and

m(∂ωi) = 0. Here each ωi is called an atom; intA and ∂A are the interior and

boundary of A respectively.

Definition 2.1. A nonsingular map f : (X,B,m) → (X, B,m) with a topological

partition P = {ωi}r−1
i=0 is called a piecewise area preserving map (PAP) if f |int(ωi) ∈

C1 for each ωi and | det Df(x)| ≡ 1 for x ∈ ⋃r−1
i=0 int(ωi). Here non-singularity

means that f is measurable (with respect to B) and m(A) = 0 implies m(f−1(A)) =

m(f(A)) = 0 for any A ∈ B; and Df refers to the Jacobian matrix. We say a PAP

f is piecewise-invertible-area-preserving if f |ωi
is invertible for each ωi, and say f is

an invertible PAP if f is globally invertible. In particular, if each f |int(ωi) is isometry

(i.e., preserving Euclidean distance) then we say f is a piecewise isometry (PWI).

Our definition of PAPs include piecewise hyperbolic maps with determinant ±1,

e.g., baker’s map, Arnold’s cat map, area preserving Hénon map and standard map

[83]. However, we will mainly concentrate on methods working on non-hyperbolic

maps such as PWIs.

For a PAP f : X → X, the ACIPs are classified based on the density properties

as 1

MIA(f) : = {µ is an ACIP with respect to f},
MIB(f) : = {µ ∈ MIA(f) :

dµ

dm
= η|X for some η ∈ BV (Ω), where Ω ⊃ X is an open ball},

MIC(f) : = {µ ∈ MIA(f) :
dµ

dm
is m− a.e. continuous},

1 dµ
dm ∈ L1(m) is m− a.e. continuous means that its equivalence class contains a representative

which is an m− a.e. continuous map.
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where BV (Ω) is the space of bounded variation functions (see Definition 2.2). We

choose to work with MIB and MIC for the following reasons.

• The function spaces mentioned in MIB and MIC are “large enough” Banach

subspaces of L1(m), i.e., they contain discontinuous functions [110].

• Functions in these spaces have “good” geometric properties, e.g., χE ∈ BV (Ω)

implies that the measurable subset E ⊂ Ω has finite perimeter [33].

• These function spaces coincide with those chosen in piecewise hyperbolic maps

in [7, 19, 116].

• These function spaces are invariant under the transfer operator (recall Section

1.3.2 for the definition) for PWIs.

It is clear that MIB ⊂ MIC ⊂ MIA for one dimensional invertible PAPs [120],

while in higher dimensions, MIB ∪ MIC ⊂ MIA. Additionally, for non-invertible

PAPs, the set MIA is possibly empty and conditions for which MIA 6= ∅ are discussed

in Section 2.2.2.

The novelty of this chapter is that we introduce multidimensional bounded vari-

ation functions to analyze ACIPs for PAPs, especially for PWIs. In Theorem 2.1,

we explore the relationship between the set of nomadic points and the sets MIC ,

MIB for invertible multidimensional PAPs. In particular, we demonstrate that when

the set of nomadic points has a positive Lebesgue measure, both MIB and MIC are

singletons. This can be applied to non-uniquely ergodic IETs constructed in [70, 75]

to show the irregularity of densities of their ACIPs. For invertible PWIs, in Theo-

rem 2.2 we give an approach to construct invariant measures with bounded variation

densities. These results partially answer one of Goetz’s questions in [48].

The chapter is organized in the following way. Preliminaries and the main results

are stated in Section 2.1, then applications along with discussions are in Section 2.2

and finally proofs are given in Section 3.3.

2.1 Preliminaries and Main results

In this section, we give the formal definitions of multidimensional bounded variation,

and then state the main results which are connected to one of the open questions in

[48].

2.1.1 Multidimensional bounded variation

There are various definitions of multidimensional bounded variation functions, e.g.,

see Appendix A.1 and [33, 120]. These definitions can be reduced to the usual

notation of bounded variation in one dimension; see Appendix A.1. We state one of

these as follows.
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Definition 2.2. [33] Let Ω be an open set of Rd. A function η ∈ L1(Ω) is a bounded

variation function (η ∈ BV (Ω)) if

var(η) := sup

{∫

Ω

η · div
−→
φ dm :

−→
φ ∈ C1

c (Ω,Rd), ||−→φ ||∞ ≤ 1

}
< ∞. (2.1)

Here
−→
φ = (φi)

d
i=1, div

−→
φ =

∑d
i=1

∂φi

∂xi
, ||−→φ ||∞ := supx |

−→
φ (x)|, and C1

c (Ω,Rd) is

the set of
−→
φ ∈ C1(Ω,Rd) with compact support. We define a norm on BV (Ω) by

||η||BV := ||η||1 + var(η).

For functions of bounded variation, we state the corresponding Helly’s Theorem

[33] below.

Helly’s Theorem [33] Let Ω ⊂ Rd be an open and bounded domain with Lips-

chitz boundary. Assume that {ηn}∞n=1 is a sequence in BV (Ω) satisfying supn ||ηn||BV <

∞, then there exists a subsequence {ηnk
}∞k=1 and a function η ∈ BV (Ω) such that

ηnk
→ η in L1(Ω) as k →∞.

2.1.2 Main results

Let X be a compact subset of Rd and f : X → X be an invertible map. We say

x ∈ X is a nomadic point of f if Of (x) := {f i(x)|i ∈ Z} is dense in X. We denote

nom(f) to be the set of all nomadic points of the map f . If nom(f) = X then f is

called minimal.

Theorem 2.1. Let (X, B,m) be a probability space where m is the normalized

Lebesgue measure and f : X → X be an invertible PAP with a topological parti-

tion P = {ωi}r−1
i=0 . Then the following hold:

(i) if m(nom(f)) > 0 then MIB(f) ∪MIC(f) = {m};

(ii) if f |ωi
is a homeomorphism for each ωi, then MIC(f) = {m} implies nom(f) 6=

∅.
We remark here that even for area preserving diffeomorphisms, nom(f) 6= ∅ does

not necessarily imply m(nom(f)) > 0, see e.g. Fayad & Katok [36].

Corollary 2.1. Suppose f is an invertible PAP with m(nom(f)) > 0 and there exists

a measure m 6= µ ∈ MIA(f), then ϕ := dµ
dm

/∈ BV (Ω) and the set of discontinuities

of ϕ has positive Lebesgue measure.

The following Theorem 2.2 aims to construct ACIPs with bounded variation

densities for invertible PWIs, say f : X → X with a topological partition P =

{ω0, · · · , ωr−1}. As a bounded variation function is defined on an open set, we

choose an open ball Ω ⊃ X and extend f to f : Ω → Ω by

f(x) =

{
f(x), x ∈ X

x, x ∈ Ω\X.
(2.2)
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Given any η ∈ BV (Ω), the sequence of variations {var(Ln
f
η)}∞n=0 are not necessarily

uniformly bounded [73]. Therefore, we alternatively work with functions η which lie

in a plausible proper subset BV ∗(Ω) (see below). This subset is associated with a

Sobolev space.

Let ωr := Ω\X and without ambiguity we still write P = {ω0, · · · , ωr} as a

topological partition of Ω. Moreover, we denote

∂P∞ := {x ∈ Ω : f
n
(x) ∈ ∂P for some n ≥ 0},

where ∂P := ∪r
i=0∂ωi, and define a δ−neighborhood of ∂P∞ by

Nδ := {x ∈ Ω, dist(x, ∂P∞) < δ}. (2.3)

For a given invertible PWI f , the function subspace BV ∗(Ω) that we consider is

defined as

BV ∗(Ω) := {η ∈ BV (Ω) : η|Nδ
∈ W 1,2 for some δ > 0}, (2.4)

where W 1,2 is a Sobolev space (see Appendix A.2). We remark that different invert-

ible PWI f determines different BV ∗(Ω) individually, but in all cases W 1,2(Ω) ⊆
BV ∗(Ω) ⊆ BV (Ω).

Theorem 2.2. Suppose f : X → X is an invertible PWI and Ω ⊃ X an open

ball. Then given any η ∈ BV ∗(Ω) with η|X ≥ 0 and ||η|X ||1 > 0, there exists a

subsequence of the Birkhoff averages of the transfer operator Lf that converges to a

function η ∈ BV (Ω) in L1(m), i.e.,

1

nk

nk−1∑
i=0

Li
f
η → η ∈ BV (Ω), as k →∞,

and by normalization dµ := η|Xdm ∈ MIB(f).

Concerning the open question [48] in piecewise rotations (defined in Appendix A.3),

the following corollaries give a universal approach to partially determine the ACIPs.

Corollary 2.2. Suppose f : X → X is an invertible piecewise rotation, then

(i) MIA(f) = {ϕdm : ϕ = E(ϕ|I), ϕ ∈ L1(m)}, where I = {B ∈ B : f−1(B) = B

mod m};

(ii) given any η ∈ BV ∗(Ω) satisfying η|X ≥ 0 and ||η|X ||1 > 0, any accumulation

point of { 1
n

∑n−1
i=0 Li

f
η}∞n=1 is an invariant density in MIB(f). Furthermore, if

m(nom(f)) > 0 then MIB(f) = {m}.
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Corollary 2.3. Suppose f : X → X is a non-invertible piecewise rotation. Let

X+ :=
⋂∞

i=0 f i(X) and define f+ : X+ → X+ as in equation (2.5) in Section 2.2.2.

Then f+ is m− a.e. invertible. Furthermore,

(i) if m(X+) > 0, then the statements in Corollary 2.2 hold for f+ and

MIA(f) = {µ(·) := ν(· ∩X+),∀ν ∈ MIA(f+)};

(ii) if m(X+) = 0, then MIA(f) = MIB(f) = MIC(f) = ∅.

Proof of Corollary 2.2 is based on Theorems 2.1, 2.2 and Lemma 2.8 while proof

of Corollary 2.3 is based on Lemma 2.1 and Proposition 2.2. We remark that ACIPs

only give a subset of non-atomic probability Borel measures. Therefore, to fully

answer the question in piecewise rotations [48], we have to explore singular non-

atomic probability invariant measures. For instance, when m(X+) = 0, it is natural

to consider Hausdorff measure. This is discussed at the end of Section 2.2.2.

2.2 Applications and Discussions

In this section, we consider two main applications. We first consider IETs (see

Appendix A.4 for the definition) which are non-uniquely ergodic. We apply Theo-

rem 2.1 to show that the densities of their ACIPs can be irregular. We then consider

multidimensional piecewise invertible area preserving maps and apply Theorem 2.1

and Theorem 2.2 to study their invariant densities. At the end of this section, we

give a short discussion on the open question posed in [48] for piecewise rotations.

2.2.1 Interval exchange transformations

For an IET f , the set MIC(f) can be refined to

M′
IC(f) := {µ ∈ MIA(f) :

dµ

dm
:= ϕ has at most countably many discontinuity points},

where m is the normalized Lebesgue measure. Observe that MIB(f) ⊂ M
′
IC(f) ⊂

MIC(f). Moreover, it is known that topological transitivity1 implies minimality for

IETs (see e.g., Corollary 14.5.11 in [68]). Hence by applying Theorem 2.1, we have

the following corollary which characterizes the minimality properties of IETs.

Corollary 2.4. For any IET f : [0, 1) → [0, 1),

f is minimal ⇔ MIC(f) = {m} ⇔ M′
IC(f) = {m}.

1Topological transitivity means that for any open sets U and V , there exists n ∈ Z such that
fn(U) ∩ V 6= ∅.

38



Invariant measures

This corollary can be used to investigate Keane’s conjecture, namely that min-

imality implies unique ergodicity for IETs [69]. This conjecture was shown to be

false and we review two well-known counterexamples here.

Keynes and Newton [75] considered the following map. Let T̂γβ : [0, 1 + β) →
[0, 1 + β) be

T̂γβ(x) =

{
x + 1, if 0 ≤ x < β

x + γ (mod 1), if β ≤ x < 1 + β.

By choosing appropriate β and γ (see [26, 75]), the map Tγβ(x) := 1
1+β

T̂γβ(x(1+β))

is minimal and has an eigenvalue −1. This implies that T 2
γβ is not uniquely ergodic

and its ergodic measures belong to MIA (see [75] for details).

Keane [70] also constructed an IET with four intervals satisfying a strong irra-

tionality condition that implies minimality. Under certain conditions, there exist two

different ergodic measures µ1 and µ2. Moreover, such ergodic measures are either

both in MIA or one is Lebesgue measure and the other is singular. For the measure

that is singular, the Hausdorff dimension has been recently estimated [24]. Together

with our results, we could obtain a better understanding of ergodic measures for

non-uniquely ergodic IETs.

For the examples above, there are no explicit formulae for their densities (even

if these densities belong to MIA). One of the difficulties in constructing counterex-

amples can be seen from the fact that these ergodic measures are in MI(f)\MIC(f)

from Corollary 2.4. In the following proposition, we provide a more explicit descrip-

tion of the invariant densities for non-uniquely ergodic IETs.

Proposition 2.1. Let f be any topologically transitive IET on [0, 1). Suppose m 6=
µ ∈ MIA(f), then the following hold:

(i) the density of µ is a simple function (i.e., a linear combination of finitely many

characteristic functions);

(ii) for any representative from the equivalence class ϕ := dµ
dm

, ϕ is discontinuous

everywhere and supp µ = [0, 1) (recall that if x ∈ supp µ, then for any open

ball Bx containing x, µ(Bx) > 0 holds [68, page 141]).

Remark 2.1. For the two ergodic measures µ1, µ2 ∈ MIA (i.e., µ1, µ2 ¿ m) in the

examples of Keynes & Newton [75] and Keane [70], it can be derived that µ1 ⊥ µ2

(i.e., there exists a subset E ⊂ [0, 1) such that µ1(E) = 1 but µ2(E) = 0) [121] and

moreover, supp µ1 = supp µ2 = [0, 1) from Proposition 2.1. Hence, the measures µ1

and µ2 intermingle with each other in some sense.

2.2.2 Piecewise invertible area preserving maps

In this subsection, we aim to understand the structure of ACIPs for piecewise invert-

ible area preserving maps f : X → X. For such a map f , the set X+ :=
⋂∞

i=0 f i(X)
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is invariant under the map, i.e., f(X+) = X+ [44]. In particular for PWIs, X+ is

almost closed, i.e., m(X+) = m(X+) [1]. Here we show that such almost closedness

of X+ is valid for a broad range of piecewise invertible area preserving maps.

Lemma 2.1. Let f : X → X be a piecewise invertible area preserving map with a

topological partition P = {ω0, · · · , ωr−1}. Suppose fi := f |int ωi
is Lipschitz for each

ωi, then m(X+) = m(X+) and f |X+ is m− a.e. invertible.

Under the conditions of Lemma 2.1, it is not necessary to have the property

f(X+) ⊆ X+, but we can define a map f+ that is m− a.e. equal to f and for which

f+(X+) ⊂ X+ (see below). Since each fi is Lipschitz, then there exists a continuous

extension f̂i : int ωi → fi(int ωi). For any x ∈ (
⋃r−1

i=0 ∂ωi) ∩ X+, let g(x) := f̂i∗(x)

where i∗ := min{i : x ∈ ∂ωi}. Then we can define f+ : X+ → X+ to be

f+(x) =

{
f(x), x ∈ int(ωi) ∩X+

g(x), otherwise.
(2.5)

Moreover, if fi is bi-Lipschitz, the map f+ can be shown to be non-singular and to

be m− a.e. invertible. The non-singularity and m− a.e. invertibility of f+ allow to

obtain Theorem 2.1 and Theorem 2.2 for f+ : X+ → X+. The ACIPs of f+ can

further be used to determine the ACIPs of f as follows.

Proposition 2.2. Let f : X → X be a piecewise invertible area preserving map

with a topological partition P := {ω0, · · · , ωr−1} and f+ : X+ → X+ be defined as

in equation (2.5). Suppose that fi := f |int ωi
is bi-Lipschitz continuous. Then f+ is

non-singular and m− a.e. invertible. Moreover, the following hold:

(i) if m(X+) > 0, then MIA(f) =
{
µ(·) := ν(· ∩X+),∀ν ∈ MIA(f+)

}
;

(ii) if m(X+) = 0, then MIA(f) = ∅.

When m(X+) = 0, it is natural to consider invariant measures that are abso-

lutely continuous with respect to Hausdorff measure. If we let s = dimH X+ and

furthermore, if f+ satisfies the following conditions:

(1) 0 < Hs(X+) = Hs(X+) < ∞;

(2) Hs is an invariant measure for f+;

(3) f+ is non-singular with respect to Hs, i.e., Hs ((f+)−1(A)) = Hs(f+(A)) = 0

whenever Hs(A) = 0;

then by the arguments analogous to those used in Proposition 2.2, we can show that

f+ is Hs − a.e. invertible.

The above three conditions can be achieved for some piecewise invertible area

preserving maps. We take interval translation maps (see Appendix A.4) as exam-

ples. Condition (2) is demonstrated in [18] while condition (3) can be inferred by
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combining condition (2) and the definition of Hausdorff measure. The Hs − a.e.

closedness of X+ can be shown by adapting the proof of Lemma 2.1. Moreover, by

[? , Theorem 9.3], condition (1) hold for particular interval translation maps where

X+ are self similar sets satisfying an open set condition and positive Hausdorff

dimension [18].

Concerning the open question in [48], for non-invertible piecewise rotations in

the case of m(X+) = 0, we consider absolutely continuous (with respect to Hs)

invariant probability measures. We denote

Hs
I(f) := {ν probability invariant measure of f : ν ¿ Hs}.

Proposition 2.3. Suppose f : X → X is a two-dimensional piecewise rotation

with m(X+) = 0 and s := dimH X+ > 1, then X+ is Hs − a.e. closed and f+ is

non-singular with respect to Hs. Moreover, the following hold:

(i) if 0 < Hs(X+) < ∞, then Hs is an invariant measure of f+ and f+ is Hs−a.e.

invertible; furthermore, Hs
I(f) =

{
µ(·) := ν(· ∩X+),∀ν ∈ Hs

I(f
+)

}
;

(ii) if Hs(X+) = 0 then Hs
I(f) = ∅.

Under the condition s := dimH X+ > 1, the proof of Proposition 2.3 is analogous

to the proofs of Proposition 2.2 and Lemma 2.1. However, this condition does not

always hold. For instance, the Cartesian product of interval translation maps (as

defined in [18]) with themselves provides some examples of piecewise rotations with

Hausdorff dimension ranging 0 ≤ s ≤ 1. It might be interesting to explore conditions

for s > 1.

Regarding the determination of all the invariant non-atomic probability measures

for piecewise rotations, it might be necessary to consider the structure of Hs
I(f

+)

in the case of Hs(X+) = ∞. In this case, f+ is not necessarily Hs − a.e. invertible,

however, we note that by [35, Theorem 6.2], there exists a compact subset E ⊂ X+

with 0 < Hs(E) < ∞. We suggest to establish a non-atomic probability invariant

measure of f+ induced by E as a reference measure and leave this for further studies.

2.3 Proofs

We first state a basic lemma regarding MIA(f), i.e., the set of all ACIPs with respect

to a map f , with a standard proof.

Lemma 2.2. Let f : X → X be a nonsingular map and ϕ ∈ L1(m), then Lfϕ = ϕ

if and only if dµ := ϕdm ∈ MIA(f).

Proof: Suppose Lfϕ = ϕ. Let dµ := ϕdm, then for each A ⊂ X,

µ(A) =

∫

A

ϕdm =

∫

A

Lfϕdm =

∫

f−1(A)

ϕdm = µ(f−1(A)),
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which implies µ ∈ MIA(f).

On the other hand, if dµ := ϕdm is an invariant measure of f , i.e., µ(f−1(A)) =

µ(A) for any Borel set A ⊂ X, then
∫

A
Lfϕdm =

∫
f−1(A)

ϕdm = µ(f−1(A)) =

µ(A) =
∫

A
ϕdm, which implies Lfϕ = ϕ. ¤

Proof of Theorem 2.1

To prove statement (i), we first show that MIC = {m} followed by a proof of

MIB = {m}. For statement (ii), we start with a lemma showing the equivalence

between topological transitivity and the existence of a nomadic point.

Proof of the statement (i) in Theorem 2.1: Consider any µ ∈ MIC .

Take a representative ϕ = dµ
dm

from the equivalence class such that ϕ is m − a.e.

continuous. Furthermore, take any point x′ ∈ ⋃r−1
i=0 int ωi where ϕ is continuous.

Since m(nom(f)) > 0, we can choose a nomadic point x∗ such that for any n ∈ Z,

the equality ϕ ◦ f−n(x∗) = ϕ(x∗) holds. Then there exists a subsequence {fkt(x∗)}
such that as |kt| → ∞, fkt(x∗) → x′ because x∗ is a nomadic point. By the continuity

of ϕ at x′, we have

ϕ(x′) = ϕ

(
lim

|kt|→∞
fkt(x∗)

)
= ϕ(x∗).

This implies ϕ ≡ 1, i.e., MIC = {m}.
Consider the case µ ∈ MIB(f), i.e., ϕ = dµ

dm
with ϕ = η|X for some η ∈ BV (Ω).

Hence, by [120, page 178], m−a.e. x ∈ Ω are regular points of η. By a regular point

x0, we mean there exists a unit vector a ∈ Rd such that the limits

lim
x→x0,〈x−x0,a〉>0

η(x) and lim
x→x0,〈x−x0,a〉<0

η(x)

exist, where 〈·, ·〉 is the inner product. Therefore, by analogous arguments to that

used in MIC(f) = {m}, it follows that for any regular point x0 ∈
⋃r−1

i=0 int(ωi),

lim
x→x0,〈x−x0,a〉>0

ϕ(x) = lim
x→x0,〈x−x0,a〉<0

ϕ(x).

Hence, by [120, page 168], we have limx→x0 ϕ(x) = ϕ(x∗) where x∗ is a nomadic

point. In addition, ϕ ∈ L1(m) implies that m − a.e. x ∈ X is a Lebesgue point of

ϕ, i.e.,

lim
r→0+

1

m(B(x, r))

∫

B(x,r)

|ϕ(y)− ϕ(x)|dm(y) = 0.
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Therefore, if a regular point x0 is also a Lebesgue point, then

0 ≤ |ϕ(x0)− ϕ(x∗)| = lim
r→0+

1

m(B(x0, r))

∫

B(x0,r)

|ϕ(x0)− ϕ(x∗)|dm(y)

≤ lim
r→0+

1

m(B(x0, r))

∫

B(x0,r)

|ϕ(y)− ϕ(x0)|dm(y)

+ lim
r→0+

1

m(B(x0, r))

∫

B(x0,r)

|ϕ(y)− ϕ(x∗)|dm(y) = 0.

This implies that ϕ(x0) = ϕ(x∗), meaning that ϕ ≡ 1. ¤
Before proving statement (ii), we first formulate an equivalent condition of topo-

logical transitivity.

Lemma 2.3. Let f : X → X be an invertible PAP with a topological partition

P = {ωi}r−1
i=0 . Suppose f |ωi

is a homeomorphism for each ωi, then the following are

equivalent.

(i) f has a nomadic point;

(ii) f is strongly topologically transitive, i.e., for any open sets U, V , there exists

n ∈ Z such that int(fn(U)) ∩ V 6= ∅;

(iii) f is topologically transitive.

Since PAPs are not necessarily continuous at every point, the proof of Lemma 2.3

will not be standard (see [121] for the continuous version). Therefore, we provide

the details of the proof here.

Proof of Lemma 2.3: “(ii) implies (iii)” is direct and we only need to prove

(i) implies (ii) and (iii) implies (i). For convenience, we denote P(n) :=
∨n

i=0 f−i(P)

for n ≥ 0 and P(n) :=
∨n

i=−1 f−i(P) for n < 0, and denote ω(n) one of the atoms in

the topological partition P(n) for any n ∈ Z.

“(i) ⇒ (ii).” We prove by contradiction. Suppose there exist open sets U, V 6= ∅
such that for any n ∈ Z, int(fn(U)) ∩ V = ∅. Given a nomadic point x∗ of f , there

exist n1, n2 ∈ Z such that fn1(x∗) ∈ U and fn2(x∗) ∈ V . Let t := n2 − n1, then

there exists an atom ω(t) ∈ P(t) such that fn1(x∗) ∈ ω(t).

Suppose fn1(x∗) ∈ int ω(t). Since f t|int ω(t) is homeomorphic, we have f t(U ∩
int ω(t)) = int f t(U ∩ int ω(t)). Therefore,

fn2(x∗) = f t(fn1)(x∗) ∈ f t(U ∩ int ω(t)) ⊂ int f t(U),

which implies fn2(x∗) ∈ int(f t(U)) ∩ V. This is a contradiction.

Suppose fn1(x∗) ∈ ∂ω(t) ∩ ω(t). Let l := n1 + n2, then there exists an atom

ω(l) such that x∗ ∈ ω(l). Since fn1|ω(l) , fn2|ω(l) are continuous, there exists x′ ∈ ω(l)

sufficiently close to x∗ such that fn1(x′) ∈ int ω(t) ∩ U and fn2(x′) ∈ V. Repeat the

same process as the above case, using x′ in place of x∗ and this completes the proof.

43



Invariant measures

“(iii) ⇒ (i).” Suppose {Ui}∞i=1 is a countable base for X. By (iii), there exists

an n1 ∈ Z such that fn1(U1) ∩ U2 6= ∅. Let y := fn1(x) ∈ fn1(U1) ∩ U2 where

x ∈ ω(n1) ∈ P(n1).

If x ∈ int ω(n1), then there exists an open ball x ∈ Bx ⊂ ω(n1) such that fn1(Bx) ⊂
int fn1(U1). Therefore, y ∈ int(fn1(U1)) ∩ U2.

Otherwise, if x ∈ ∂ω(n1)∩ω(n1), by using the approach analogous to that used in

“(i) ⇒ (ii)”, then there exists x′ ∈ int ω(n1)∩U1 and y′ := fn1(x′) ∈ int(fn1(U1))∩U2.

Hence

int(fn1(U1)) ∩ U2 6= ∅.

Therefore, there exists a closed ball B2 such that B2 ⊂ int(fn1(U1))∩U2 ∩ int ω(n1).

Moreover, since fn1|B2 is a homeomorphism, then V1 := f−n1(B2) is closed. Anal-

ogously, for open sets intB2 and U3 there exist n2 ∈ Z and a closed ball B3 ⊂
int(fn2(B2)) ∩ U3, with fn2|B3 being a homeomorphism. Let V2 := f−n2(B3) ⊂ B2,

then V2 is closed and f−n1(V2) ⊂ V1.

If one continues this process, there will exist {ni}∞i=1 and a sequence of nonempty

closed sets {Vi}∞i=1 such that f−ni(Vi+1) ⊂ Vi for each i. Therefore,
⋂∞

i=1 fN(Vi+1) 6=
∅, where N = −∑i

j=1 nj. We note that Vi ⊂ Ui for each i. Fix any x̄ ∈ ⋂∞
i=1 fN(Vi+1),

then x̄ is nomadic. This completes the proof. ¤

Remark 2.2. There does exist a map f that is topologically transitive but has no

nomadic points [94]. However, Lemma 2.3 does not apply to this case as f does not

extend continuously to the boundary from its interior.

Proof of statement (ii) in Theorem 2.1: We argue by contradiction. Sup-

pose f has no nomadic points, so by Lemma 2.3 there will exist two open sets

U, V ⊂ X such that int(fn(U)) ∩ V = ∅ for all n ∈ Z. Therefore, int(f i+n(U)) ∩
int f i(V ) = ∅ mod m, for any n, i ∈ Z. Let

U∗ :=
∞⋃

i=−∞
int f i(U) and V ∗ :=

∞⋃
i=−∞

int f i(V ).

Then U∗∩V ∗ = ∅ mod m and both U∗ and V ∗ are invariant under f up to m−a.e..

Hence both m|U∗ and m|V ∗ are invariant measures and m|U∗ 6= m|V ∗ . Since ∂U∗ ⊂⋃∞
i=−∞ ∂f i(U) and ∂V ∗ ⊂ ⋃∞

i=−∞ ∂f i(V ), then this implies m(∂U∗) = m(∂V ∗) = 0.

I.e., the discontinuity points of χU∗ and χV ∗ lie in a set of zero Lebesgue measure.

Therefore, m|U∗ ,m|V ∗ ∈ MIC , which contradicts the uniqueness of measures in MIC .

¤

Remark 2.3. When restricting PAPs to IETs, each open set of X is a union of

countably many open intervals, therefore, χU∗ and χV ∗ have at most countably many

discontinuities. This fact is used to prove Corollary 2.4.
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Proof of Theorem 2.2

We prove Theorem 2.2 by the following lemmas. Recall that given an invertible

PWI f : X → X and an open ball Ω ⊃ X, we can extend f into an f : Ω → Ω as

in (2.2) and define BV ∗(Ω) ⊂ BV (Ω) as in (2.4).

Lemma 2.4. Let Ω be an open subset of Rd. Then η ∈ BV ∗(Ω) if and only if

η = η(1) + η(2) where η(1) ∈ BV (Ω) with η(1)|Nδ′ = 0 for some δ′ > 0 (recall that Nδ′

is defined in equation (2.3)), and η(2) ∈ W 1,2(Ω).

Proof: We only prove the sufficiency. Suppose η ∈ BV ∗(Ω), then there exists

a δ > 0 such that η|Nδ
∈ W 1,2. Let δ′ = δ/2, then Nδ′ ⊂ Nδ. Hence there exists a

bump function B(x) ∈ C∞
c (Ω) such that B|Nδ′

≡ 1 and B|Nc
δ
≡ 0 (here N c

δ denotes

the complement of Nδ). We define

η(2) := η ·B, η(1) := η − η(2).

It is clear the η(2) ∈ W 1,2(Ω) and η(1) ∈ BV (Ω) with η(1)|Nδ′ = 0. ¤
For convenience, we denote the sequence of the Birkhoff average of Lf on a L1

function η by {ηn}∞n=1, i.e.,

ηn :=
1

n

n−1∑
i=0

Li
f
η.

Lemma 2.5. Suppose f : X → X is an invertible PWI and Ω ⊃ X an open ball.

Then for any η ∈ W 1,2(Ω), there exists a subsequence {nk}∞k=1 such that ηnk
→ η ∈

W 1,2(Ω) in L1 as k →∞.

Proof: Since f : Ω → Ω is a PWI, it follows that f i := f |int ωi
= Aix + ci,

where Ai is an orthogonal matrix and ci is a translation vector. Hence, by using the

orthogonality and the definition of || · ||W 1,2 , we have:

||η2 ◦ f
−i||W 1,2 = ||η2||W 1,2 .

Moreover, since W 1,2(Ω) is a Hilbert space, the lemma can be shown directly by

using the Banach-Saks Theorem [64] (see Appendix A.2). ¤

Lemma 2.6 (Change of Coordinates). [32, Page 535] Let ψ : W → Ω be a C2−
diffeomorphism where W and Ω are open subsets of Rd. Given

−→
φ ∈ C1(Ω,Rd), let

−→
φ ψ(y) := Dψ−1(y)

−→
φ (ψ(y))

then

div(| det Dψ|−→φ ψ) = (div
−→
φ ) ◦ ψ · | det Dψ|. (2.6)

Lemma 2.7. Let f : X → X be an invertible piecewise isometry with a topological

partition P = {ω0, ω1, · · · , ωr−1}. Suppose that η ∈ BV (Ω) with η|Nδ
= 0 for some

δ > 0, then var(Lfη) ≤ var(η) < ∞.
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Proof: Let ωr := Ω\X and f i := f |ωi
for each ωi, i = 0, · · · , r. For any

η ∈ BV (Ω), we have Lfη ∈ BV (Ω). Recall that

var(Lfη) = sup

{∫

Ω

(η ◦ f
−1 · div

−→
φ )dm :

−→
φ ∈ C1

c (Ω,Rd), ||−→φ ||∞ ≤ 1

}
.

Hence, given any ε > 0, there exists
−→
φ ∈ C1

c (Ω,Rd) with ||−→φ ||∞ ≤ 1 such that

var(Lfη)− ε ≤
∫

Ω

(η ◦ f
−1 · div

−→
φ )dm =

r∑
i=0

∫

f i(int ωi)

(η ◦ f
−1

i · div
−→
φ )dm.

Let x = f
−1

i (y) on each ωi, we have

∫

f i(int ωi)

η(f
−1

i (y)) · div
−→
φ (y)dm(y) =

∫

int ωi

η(x) · div(
−→
φ )(f i(x))dm(f i(x))

=

∫

int ωi

η · (div
−→
φ ) ◦ f idm =

∫

int ωi

η · div
−→
φ f idm,

where
−→
φ f i := (Df i)

−1 ·−→φ ◦f i. The second equality is due to | det Df i(x)| ≡ 1 while

the third is due to equation (2.6) in Lemma 2.6. Hence,

var(Lfη)− ε ≤
r∑

i=1

∫

int ωi

η(x) · div
−→
φ f idm.

Moreover, each f i can be written in the form of f i(x) = Ai · x + ci where the

orthogonal matrix Ai preserves the Euclidean metric. Then

sup
x∈int ωi

|−→φ f i(x)| = sup
x∈int ωi

|A−1
i

−→
φ (f i(x))| = sup

x∈int ωi

|−→φ (f i(x))| = sup
y∈f i(int ωi)

|−→φ (y)| ≤ 1.

Since η|Nδ
= 0 for some δ > 0, for each ωi, we let ω

(δ)
i := N c

δ ∩ ωi which is a

compact subset of ωi. Moreover, ω
(δ)
i ⊂ ω

(δ/2)
i ⊂ int ωi. Therefore, there exists a

bump function Bi(x) ∈ C∞
c (Ω) such that 0 ≤ Bi(x) ≤ 1, Bi(x) = 1 on ω

(δ)
i and

Bi(x) = 0 on (intω(δ/2))c. We extend the function
−→
φ f i to be zero outside ωi and

define
−→
ψ (x) :=

r∑
i=0

Bi(x) · −→φ f i(x), x ∈ Ω.

It is apparent to see that
−→
ψ ∈ C1

c (Ω,Rd) and supx∈Ω |
−→
ψ | ≤ supx∈Ω |

−→
φ f i(x)| ≤ 1 for

each i. Moreover, since
−→
ψ |ωδ

=
−→
φ f i|ωδ

and η|Nδ
= 0, we have

var(Lfη)− ε ≤
r∑

i=1

∫

int ωi

η(x) · div
−→
φ f idm =

∫

Ω

η · div
−→
ψ dm ≤ var(η).

Since ε is arbitrary, it follows that var(Lfη) ≤ var(η) < ∞. ¤
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Proof of Theorem 2.2: Given any η ∈ BV ∗(Ω), from Lemma 2.4, we can

write η = η(1) + η(2) where η(1)|Nδ
= 0 for some δ > 0 and η(2) ∈ W 1,2. Moreover, by

Lemma 2.5, there exists a subsequence {η(2)
nk } of {η(2)

n } which converges to a function

η(2) ∈ W 1,2 in L1(m).

Consider the function η(1). Given any n ≥ 1, by analogous arguments used

in Lemma 2.7, we have var(Ln
f
η(1)) ≤ var(η(1)). It follows that ||Ln

f
η(1)||BV ≤

||η(1)||BV . Hence, ||η(1)
n ||BV ≤ ||η(1)||BV < ∞. By Helly’s Theorem [33], there exists

a subsequence, for convenience say, {η(1)
nk } converging to a function η(1) ∈ BV in

L1(m).

By the triangle inequality, for each η(i), i = 1, 2,

||Lfη
(i) − η(i)||1 ≤ ||Lfη

(i) − Lfη
(i)
nk
||1 + ||Lfη

(i)
nk
− η(i)

nk
||1 + ||η(i)

nk
− η(i)||1. (2.7)

It is clear that the first and third term tend to 0 as k →∞. Moreover, we note that

||Lfη
(i)
nk
−η(i)

nk
||1 =

∣∣∣∣∣

∣∣∣∣∣
1

nk

nk∑
j=1

η(i) ◦ f
−j − 1

nk

nk−1∑
j=0

η(i) ◦ f
−j

∣∣∣∣∣

∣∣∣∣∣
1

=
1

nk

||η(i)◦f−nk−η(i)||1 ≤ 2

nk

||η(i)||1,

hence the second term tends to 0 as k →∞. Therefore, Lfη
(i) = η(i), implying that

η := η(1) + η(2) ∈ BV (Ω) in an invariant density of f from Lemma 2.2. Moreover,

since η|X ≥ 0 and ||η|X ||1 = ||η|X ||1 > 0, by normalization dµ = η|Xdm ∈ MIB(f).

¤

Remark 2.4. For a given invertible PWI, if the set Nδ satisfies f−1(Nδ) ⊆ Nδ, then

the above accumulation point η can show to be in BV ∗(Ω) for the following reason.

Since the sequence {η(1)
nk } converges to η(1) in L1, there will exist a subsequence which

pointwise converges to η(1). Moreover, since η(1)|Nδ
= 0 and f

−1
(Nδ) ⊆ Nδ, it follows

that η
(1)
n |Nδ

= 0 for any n ≥ 0. Therefore, η(1)|Nδ
= 0. By Lemma 2.4, this implies

η = η(1) + η(2) ∈ BV ∗(Ω).

Proof of Proposition 2.1

Lemma 2.8. Let (X, B,m) be a probability space and f : X → X be an invertible

PAP, then dµ := ϕdm ∈ MIA(f) if and only if ϕ = E(ϕ|I), where E(ϕ|I) is the

conditional expectation on the σ−field I := {B ∈ B|f−1(B) = B mod m}.

Proof: Suppose dµ = ϕdm ∈ MIA(f), then by Lemma 2.2 we have Lfϕ = ϕ,

which implies ϕ ◦ f = ϕ. Combining with the Birkhoff Ergodic Theorem, we obtain

ϕ = lim
n→∞

1

n

n−1∑
i=0

ϕ ◦ f i = E(ϕ|I).

For the converse, given any fixed L ∈ N, we define ϕL(x) := min{ϕ(x), L}. By
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the Birkhoff Ergodic Theorem, for m− a.e. x ∈ X,

Lf (E(ϕL|I))(x) = E(ϕL|I) ◦ f−1(x) = lim
n→∞

1

n

n−2∑
i=−1

ϕL ◦ f i(x)

= lim
n→∞

[
1

n
(
n−1∑
i=0

ϕL ◦ f i)(x) +
1

n

(
ϕL ◦ f−1(x)− ϕL ◦ fn−1(x)

)
]

.

Since

lim
n→∞

1

n

(
ϕL ◦ f−1(x)− ϕL ◦ fn−1(x)

) ≤ lim
n→∞

2L

n
= 0,

we have LfE(ϕL|I) = E(ϕL|I). Then by the Monotone convergence theorem,

LfE(ϕ|I) = E(ϕ|I).

Therefore, ϕ = E(ϕ|I) implies dµ := ϕdm ∈ MI(f) from Lemma 2.2. ¤
We say a σ−field I is finitely generated, if there exists a partition A := {Ai}r−1

i=0 ⊆
I, and for each B ∈ I, there exist finitely many Ai1 , · · · , Ail ∈ A such that B =⋃l

k=1 Aik mod m.

Proof of Proposition 2.1: We first show statement (i). For a topologi-

cally transitive IET f , since there are only finitely many ergodic measures, say

{νi}r−1
i=0 ∈ MIA(f) [69], the σ−field I is finitely generated by a partition, say

A := {A0, · · · , Ar−1} with 0 < m(Ai) < 1 and νi = m|Ai
∈ MI(f). Therefore,

for any dµ = ϕdm ∈ MIA, by Lemma 2.8 and [14],

ϕ = E(ϕ|I) =
r−1∑
i=0

1

m(Ai)

∫

Ai

ϕdm · χAi
, ∀ ϕ ∈ L1(m). (2.8)

This implies that ϕ is a simple function.

Now we show statement (ii). Since each m|Ai
∈ MIA(f) and m(Ai) > 0, it is

clear that for m− a.e. x ∈ Ai, the orbit Of (x) ⊂ Ai. Moreover, since f is minimal,

each Ai is dense in X. Hence int Ai = ∅. Based on (2.8), if µ := ϕdm ∈ MIA(f)

and µ 6= m then there exists i 6= j such that
∫

Ai
ϕdm/m(Ai) 6=

∫
Aj

ϕdm/m(Aj).

Therefore, ϕ is discontinuous everywhere. Moreover, for any open set U ⊂ [0, 1), we

have m(Ai ∩ U) > 0. Hence µ(U) > 0. It follows that supp(µ) = [0, 1). ¤

Proofs of Lemma 2.1 and Proposition 2.2

Proof of Lemma 2.1: We first show almost closedness of X+. Since fi is Lipschitz

continuous, it can be continuously extended from intωi onto int ωi. If we denote

its continuous extension by f̂i : int ωi → f̂i(int ωi), then each f̂i is also Lipschitz
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continuous. Together with the non-singularity of f , we know 1

X+ := closure
(⋂∞

j=0 f j(
⋃r−1

i=0 ωi)
)

⊆ ⋂∞
j=0 closure

(⋃r−1
i=0 f̂ j

i (int ωi)
)

mod m

⊆ ⋂∞
j=0

⋃r−1
i=0 f̂ j

i (int ωi) mod m

=
⋂∞

j=0

⋃r−1
i=0 fi(ωi) mod m

= X+ mod m.

This implies m(X+) = m(X+).

Denote ω+
i := ωi ∩X+, then X+ = ∪r−1

i=0ω+
i . Consequently,

r−1∑
i=0

m(f(ω+
i )) =

r−1∑
i=0

m(ω+
i ) = m(

r−1⋃
i=0

ω+
i ) = m(X+) = m(f(X+)) = m(∪r−1

i=0f(ω+
i )).

This follows that m(f(ω+
i ) ∩ f(ω+

j )) = 0, implying f |X+ is m− a.e. invertible. ¤
Proof of Proposition 2.2: We note that f+ is piecewise Lipschitz continu-

ous, then for any Borel subset A ⊂ X+ with m(A) = 0, we have m(f+(A)) = 0.

Moreover, since f |ωi
is bi-Lipschitz, it follows m((f+)−1(A)) = 0. Hence f+ is

non-singular. The m− a.e. invertibility of f+ is directly from Lemma 2.1.

When m(X+) > 0, f |X+ can be viewed as a first return map of f on X+.

Therefore, {
µ(·) := ν(· ∩X+),∀ν ∈ MIA(f+)

} ⊆ MIA(f).

Moreover, for any µ ∈ MIA(f), since µ(X) = 1 and f−1 ◦ f(X) = X, µ(f(X)) = 1.

This implies that µ(X+) = 1 and completes the proof of statement (i).

For statement (ii), we argue by contradiction. Suppose that there exists µ ∈
MIA(f), since m(X+) = 0, it follows that µ(X+) = 0. This is a contradiction with

µ(X+) = 1. ¤

1By A ⊆ B mod m we mean that for m− a.e. x ∈ A, we have x ∈ B.
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Chapter 3

On mixing and mixing rate

properties for piecewise expanding

maps composing with

permutations

Mixing processes of various kinds occur throughout nature and are vital in many

technological applications, such as quantum chaos and statistical mechanics [109].

It is therefore an important and interesting problem to understand the properties

of these processes from a mathematical perspective. In the context of discrete time

dynamical systems, transfer operator methods provide a method of investigating

such questions, and this approach has been developed in a variety of settings [8, 6,

9, 14, 50, 54, 72, 118]. The transfer operator L acts on a suitable Banach space of

real-valued functions (or distributions), and its spectrum provides a powerful tool

for analyzing many mixing properties of the system, e.g. whether or not the system

is indeed mixing [14], the mixing rate of the system [6, 72, 118], and the existence

of almost-invariant sets [30, 42].

We restrict our attention to a piecewise smooth map f on a compact interval I.

We briefly recall some facts about this situation; for more details see, for instance,

[29]. We consider the transfer operator Lf of f restricted to the Banach space

BV of functions of bounded variation. The spectrum of Lf |BV is contained in the

unit disk in the complex plane. If f is piecewise expanding, with the expansion

factor uniformly bounded away from 1, then the essential spectral radius ress can be

interpreted as the slowest local mixing rate of the system. The spectrum certainly

contains the eigenvalue 1, corresponding to the equilibrium state of the system,

but may also contain further isolated points of modulus greater than ress. These

isolated eigenvalues come from resonances in the system, and the corresponding

eigenfunctions will converge to equilibrium at a slower rate than would be predicted

from ress. Thus the global mixing behaviour of the system is determined by the
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quantity sup {|λ| : λ ∈ Spec(Lf |BV)\{1}}. For brevity, we will refer to this quantity

as the mixing rate of the system. Thus, good mixing is achieved when the mixing

rate is small, while a mixing rate close to 1 indicates that there are eigenfunctions

for which convergence to equilibrium is very slow.

Even in the case of one-dimensional PWEs, there seems to be no general tech-

nique known for calculating the isolated eigenvalues and hence finding the mixing

rate. A number of examples have nevertheless been investigated in detail. Baladi

[5] constructed an expanding Markov map of constant slope for which the transfer

operator has a complex-conjugate pair of isolated eigenvalues, and this was used by

Collet and Eckmann [27] to construct a two dimensional piecewise hyperbolic func-

tion which is the (skew-)product of piecewise expanding interval map with similar

behaviour to Baladi’s map. Dellnitz et. al. [29] described a parameterized family of

expanding interval maps for which the location of a nontrivial real, positive isolated

eigenvalue may be controlled.

In this chapter we study the effect on mixing of dividing I into N equal subinter-

vals and composing f with a permutation of these. As far as we are aware, this is the

first attempt to investigate the effect of permutations on mixing for discrete dynam-

ical systems. In the continuous setting, Ashwin et al. [3] considered a 1-dimensional

diffusion process, and showed that the mixing rate is typically improved if subinter-

vals of its domain are permuted at regular timesteps. They considered permutations

of various simple kinds (such as simple rotation, secondary rotation and interleav-

ing), and investigated numerically the effect of certain permutations for small N . As

well as treating the discrete setting, the novelty of our approach is that we use com-

binatorial and group-theoretic arguments to treat all permutations systematically

for arbitrarily large N .

We now describe more precisely the situation we investigate and the main results

we obtain. Let f again be a piecewise smooth map on the compact interval I, let

I be divided into N subintervals of equal length, and let σ : I → I be a piecewise

smooth map which simply permutes these intervals. (Thus we may identify σ with

an element of the symmetric group SN , which consists of the N ! permutations of

N objects.) Then the composite function σ ◦ f is again a piecewise smooth map

on I, and we wish to compare the global mixing behaviour of σ ◦ f and f . The

main focus of our study will be the stretch-and-fold map f(x) = mx mod 1 on

the interval I = [0, 1], where m ≥ 2 is an integer. This map is a standard (very

simple) example of a piecewise expanding interval map, and is itself often taken as

the canonical mixing protocol for polymers and pastes [76]. It can also be regarded

as the prototype for the much-studied family of maps x 7→ βx + α mod 1 (see for

example [38, 46, 53]). Our functions σ ◦ f provide a generalisation of the basic map

f in a different direction.

For each choice of the two integer parameters m, N , we are interested in the
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mixing behaviour of the collection of maps σ ◦ f as σ ranges through SN . The

mixing behaviour of f itself is easy to describe. The essential spectral radius of

Lf is 1/m, and there are no isolated eigenvalues λ with |λ| > 1/m apart from the

simple eigenvalue 1. Thus the mixing rate for f is 1/m. To investigate the mixing

behaviour of σ ◦ f , we must first address the issue of whether σ ◦ f is indeed mixing

at all. This is essentially a combinatorial question, depending on m and N as well

as on the particular permutation σ. We will show in Theorem 3.1 that, if m is

fixed, then for many values of N , the function σ ◦ f is mixing for all permutations

σ ∈ SN ; for the remaining values of N , the map σ ◦ f will fail to be mixing for some

permutations σ, but the proportion of such permutations tends to 0 as N →∞.

We will see that the essential spectral radius of Lσ◦f is again 1/m, so that, when

σ ◦ f is mixing, its mixing rate can be no better than that of f . For simplicity, we

assume that N > m and gcd(m,N) = 1. In particular, this guarantees that σ ◦ f is

mixing for all σ ∈ SN . Its mixing rate is

τσ := sup {|λ| : λ ∈ Spec(Lσ◦f |BV)\{1}} ≥ 1/m,

and composition with σ results in a worse mixing rate than for f alone unless we

have equality. We determine in Theorem 3.2 how bad the mixing rate can become:

the maximal value of τσ as σ ranges through SN is sin(mπ/N)/m sin(π/N), which

can be made arbitrarily close to 1 by taking N sufficiently large. The function σ ◦ f

is a Markov map, and an argument using Fredholm determinants [89, 90] shows

that τσ is the modulus of the second largest eigenvalue of the probability transition

matrix for σ ◦ f , which is a doubly stochastic matrix. It is this which enables us

to prove Theorem 3.2, the maximal value of τσ being obtained when the matrix is

conjugate to a circulant matrix. Eigenvalues of various classes of stochastic matrices

have been discussed by many authors (see for instance [11, 31, 60, 65, 124]). We

give a result (Lemma 3.2) on the effect of permuting the columns of such a matrix,

which seems to be new and may be of independent interest. A natural question is

how, as σ varies, the second largest isolated eigenvalues of Lσ◦f (and not just their

moduli) are distributed in the complex plane. We propose a conjecture on their

distribution, on the basis of some numerical investigations.

The results just described relate to the particular maps f(x) = mx mod 1, which

are amenable to detailed combinatorial analysis. We also briefly discuss two further

cases, which exhibit different types of behaviour. Firstly, we give an example to

show that, for a non-uniformly expanding map f with intermittent behaviour, the

composition with permutations may speed up the mixing rate. Secondly, we exhibit

a Markov map f which is mixing, but where the proportion of permutations σ ∈ SN

with σ ◦ f mixing does not tend to 1 as N →∞. These two examples indicate that

one cannot expect general results along the lines of our Theorems 3.1 and 3.2 to hold

for arbitrary interval maps f . Nevertheless, the results we have obtained suggest that
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the effect of composition with permutations is fundamentally different for discrete

and continuous dynamical systems: it typically results in improved mixing in the

continuous case, but frequently leads to worse mixing in the discrete case.

The organisation of this chapter is as follows. In §3.1, we give the necessary

background and then state our main results. We also briefly discuss the location

of the isolated eigenvalues in the complex plane. Since the proof of Theorem 3.1 is

essentially combinatorial in character, it is given in Appendix B, along with some

explicit formulae for the proportion of non-mixing permutations in special cases.

Theorem 3.2 is proved in §3.3. Finally, the two additional examples mentioned

above are presented in §3.2.

3.1 Background and statement of results

3.1.1 Mixing versus non-mixing

In this section we state our main result in relation to the question of mixing versus

non-mixing of σ ◦ f . Given a measure preserving system (f, M, µ), we recall that

the system is (strongly) mixing if

|µ(f−nA ∩B)− µ(A)µ(B)| → 0 as n →∞, (3.1)

where A,B are µ-measurable sets. We also recall (f, M) is topologically mixing if

for all open U, V ⊂ M , there exists a constant n0 = n0(U, V ) such that ∀ n ≥ n0,

fn(U) ∩ V 6= ∅. To show that f is not mixing, it is usually easier to show that f is

not topologically mixing.

For the examples that we consider, it will be also true that topologically mixing

implies strongly mixing, see [118].

We will consider maps on the unit interval I, dividing I into N equal subin-

tervals. To avoid the problem of functions being undefined, or multiply defined,

at endpoints of these subintervals, we work with (non-compact) intervals which are

closed on the left and open on the right. Thus we consider piecewise continuous

maps f : [0, 1) −→ [0, 1). We can of course regard f as a map on the compact

interval [0, 1] (by stipulating f(1) = f(0)) or on the circle S1 = R/Z.

We divide the unit interval as follows. Fix N ≥ 2, and let Ij = [j/N, (j +1)/N),

0 ≤ j < N . For any permutation σ of {0, 1, . . . , N − 1} we write σ also for the

corresponding interval exchange map:

σ(x) = x + (σ(j)− j)/N mod 1 for x ∈ Ij.

We write SN for the group of all permutations of Z/NZ.

The specific map f : [0, 1) −→ [0, 1) we consider is f(x) = mx mod 1 for a fixed
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integer m ≥ 2. Our first result shows that the composite σ ◦ f is mixing for almost

all permutations σ when N is large enough.

Theorem 3.1. Let f be as above. Then

(i) if N is not a multiple of m then σ ◦ f is mixing for all σ ∈ SN ;

(ii) if N > m and N is a multiple of m, say N = m`, then there will be some

σ ∈ SN for which σ ◦ f is not mixing. As ` →∞ (with m fixed), however, the

proportion of permutations σ with σ ◦ f mixing tends to 1.

3.1.2 The main result on mixing rates

In our setting we consider specifically the map f(x) = mx mod 1. When f is com-

posed with a permutation σ ∈ SN , we have seen in Theorem 3.1 that the resulting

piecewise linear transformation σ ◦f is usually (but not always) mixing. When σ ◦f

is mixing, we consider its mixing rate

τσ := sup {|λ| : λ ∈ Spec(Lσ◦f |BV)\{1}} . (3.2)

We state the following result.

Theorem 3.2. Fix m, N ≥ 2 and consider the transformations σ ◦ f where f(x) =

mx mod 1 and σ ∈ SN . Then the following hold.

(i) For all σ ∈ SN , the essential spectral radius is given by ress(Lσ◦f |BV) = 1/m.

(ii) If N > m and gcd(m,N) = 1, then, for each σ ∈ SN , we have

τσ ≤ τmax :=
sin(mπ/N)

m sin(π/N)
.

Moreover, each of the values (−1)m−1e2πij/Nτmax for 0 ≤ j < N and (−1)mτmax

occurs as an isolated eigenvalue of Lσ◦f for an appropriate choice of σ. Thus

τσ = τmax for these σ.

The proof of Theorem 3.2 is given in §3.3.

3.2 Further examples

We give two examples to demonstrate that the conclusions of Theorems 3.1 and 3.2

do not necessarily hold if we replace our standard map f(x) = mx mod 1 by other

interval maps. In §3.2, we give an example of a Markov map f where the proportion

of permutations σ ∈ SN with σ ◦ f non-mixing is bounded away from 0 as N →∞.

Thus the conclusion of Theorem 3.1 does not hold. In §3.2, we give a family of

interval maps f for which composition with permutations typically improves the

mixing rate, in contrast to Theorem 3.2(ii).
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An example with many non-mixing permutations

Consider the piecewise continuous function f : [0, 1) −→ [0, 1) given by

f(x) =





2x if 0 ≤ x < 1
2
,

x− 1
2

if 1
2
≤ x < 1.

(3.3)

Fix ` ≥ 1 and divide [0, 1) into N = 2` equal subintervals

Ij =

[
j

2`
,
j + 1

2`

)
, 0 ≤ j ≤ 2`− 1.

For a permutation σ ∈ S2` of these subintervals, let g = σ◦f . We have the following

result.

Proposition 3.1. The proportion of permutations σ for which g is non-mixing is

bounded away from 0 as ` →∞.

Proof. For any subset A ⊆ {0, . . . , 2`− 1}, define g̃(A) ⊆ {0, . . . , 2`− 1} by

g̃(A) = {σ(2j), σ(2j + 1) : j ∈ A, j < `} ∪ {σ(j − `) : j ∈ A, j ≥ `}.

Then, analogously to Proposition B.1, we have

g

(⋃
a∈A

Ia

)
=

⋃

b∈g̃(A)

Ib.

Note however that Proposition B.2 no longer holds: for example, if A = {0, `, ` + 1}
(with ` ≥ 2) then g̃(A) = {0, 1} has fewer elements than A.

Now if there is some non-empty subset A such that g̃r(A) 6= {0, . . . , 2`− 1} for

all r ≥ 0 then g is non-mixing. But if σ has the property that σ(j− `) = j for some

j ≥ ` then, taking A = {j}, we have g̃r(A) = A for all r. Thus g is non-mixing.

We therefore need to investigate the proportion of permutations with the above

property.

Let 1 ≤ m ≤ ` and let S be a subset of {`, . . . , 2` − 1} of size m. There are

(2`−m)! permutations σ ∈ S2` such that σ(j − `) = j for all j ∈ S. Moreover, the

number of such sets S of size m is
(

`
m

)
. Thus, by the Inclusion-Exclusion Principle,

the proportion of permutations σ ∈ S2` with σ(j − `) = j for at least one j ≥ ` is

∑̀
m=1

(−1)m−1am

where

am =

(
`

m

)
(2`−m)!

(2`)!
.
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Now the terms in the alternating series are decreasing: for 1 ≤ m < ` we have

am+1

am

=
m!(`−m)!(2`−m− 1)!

(m + 1)!(`−m− 1)!(2`−m)!
=

`−m

(m + 1)(2`−m)
<

1

2(m + 1)
.

Hence the required proportion is bounded below by

a1 − a2 =
1

2
− `(`− 1)

2(2`)(2`− 1)
>

3

8
.

So we have proved that, for each ` ≥ 1, the function σ ◦ f is non-mixing for more

than 3/8 of the permutations σ ∈ S2`.

We remark that, although the map f in (3.3) is not expanding throughout its

domain, its second iterate f 2 is piecewise expanding with expansion factor at least

2 everywhere, so our general discussion of mixing rates can still be applied.

An example where permutations speed up mixing

Consider the following family of intermittency maps fα : [0, 1] → [0, 1], α ∈ (0, 1)

given by

fα(x) =





x(1 + 2αxα) if x ∈ [0, 1/2],

2x− 1 if x ∈ (1/2, 1].
(3.4)

This family has been widely studied [57, 79, 122] and optimal decay of correla-

tions/speed of convergence to equilibrium has been established in [49]. In partic-

ular, it is shown that there exists a Banach space B, (e.g., the space of Lipchitz

continuous functions) such that

||Ln
f (φ)− ρ||B ≤ Cn−(1− 1

α
)||ϕ||B, (3.5)

for all φ ∈ B with ‖φ‖1 = 1. Moreover this asymptotic in n is optimal within B.

The sub-exponential mixing rate arises since each fα admits a neutral fixed point

at x = 0, namely f ′(0) = 1. Thus f is expanding but not uniformly expanding,

and the existence of the neutral fixed point inhibits the mixing. In particular, the

functional analytic methods discussed in introduction do not apply since λ = 1 is

no longer an isolated eigenvalue of Lf . i.e. there is no spectral gap.

We now consider fα composed with a permutation σ ∈ SN such that σ ◦ fα is

topologically mixing. Most choices of σ will not fix the interval [0, 1/N ], so that

σ ◦fα no longer has a neutral fixed point and is uniformly expanding on [0, 1]. Thus

σ ◦ fα has bounded variation on [0, 1], and it follows from [72, 118] that σ ◦ f has

absolutely continuous invariant measure, with density in BV. Since the system is

uniformly expanding, the operator Lσ◦f now has a spectral gap, so that rate of

convergence to equilibrium is exponentially fast.
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3.3 Proof of the Theorem 3.2

Since the proof of Theorem 3.1 is purely combinatorics and not quite related with

the spectral property of the transfer operator, we move these proofs into appendix.

In this section, we prove Theorem 3.2. The computation of the essential spectral

radius ress for σ ◦ f is straightforward since σ ◦ f is piecewise linear with constant

slope 1/m. Hence Theorem 3.2(i) is a consequence of [72].

We now turn to Theorem 3.2(ii). This requires a detailed study of the eigenval-

ues of the Fredholm matrices Φ(z) associated to σ ◦ f . We first give the required

background on Fredhom matrices, see [89, 90].

Computation of Fredholm matrix eigenvalues

We now consider Fredholm matrices for our maps σ ◦ f with f(x) = mx mod 1

and σ ∈ SN , where we assume that N > m and gcd(m,N) = 1. Recall that the

definition and basic properties of the Fredholm matrices are stated in Proposition

1.3. These matrices are attached to a partition of [0, 1] on which σ ◦ f is Markov,

so we first need to determine such a partition. For k ≥ 1, consider the partition

Pk := {[(j/k, (j + 1)/k) : 0 ≤ j ≤ k − 1}

of [0, 1) into k equal subintervals. Then the map f is Markov w.r.t. Pm, while the

map σ is Markov w.r.t. PN . The map σ ◦ f , however, is in general not Markov

w.r.t. either of these partitions. For example consider m = 2, N = 3. Clearly any

σ ∈ S3 is Markov on the partition

P3 = {[0, 1/3), [1/3, 2/3), [2/3, 1)}.

However, if we take the permutation σ interchanging the last two subintervals, then

we have

σ ◦ f(x) =





2x if 0 ≤ x < 1/6,

2x + 1/3 if 1/6 ≤ x < 1/3,

so that σ ◦f is not continuous on [0, 1/3] and hence not Markov on P. In general, to

ensure that σ ◦ f is Markov for all σ ∈ SN , we must work with the partition PNm.

Due to our specific choice f(x) = mx mod 1, the Nm × Nm Fredholm matrix

Φ(1) is precisely the probability-transition matrix between the Markov states, and

has all its entries in {0, 1/m}. (Recall that the definition and properties of the

Fredholm matrix were stated in Section 1.3.3). If λ ∈ Spec(Lf |BV) then we know

that z = 1/λ is a solution to D(z) = det(I−Φ(z)) = 0. It is therefore an equivalent

problem to consider the corresponding equation (in λ) to det(B − λI)=0, where B

is the state transition matrix (with entries in {0, 1}). Hence if λ̃ is an eigenvalue of
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B, then λ = λ̃/m ∈ Spec(Lf |BV).

Note that in our case, mΦ(1) is precisely the state transition matrix B. We

will show that the eigenvalues of Φ(1) can in fact be determined from the N × N

transition matrix associated with the partition PN . We remark that the image under

σ ◦ f of a subinterval in PN may have more than one connected component, so σ ◦ f

is not necessarily Markov with respect to PN .

We must first define some notation. Following the conventions of Section 3.1.1,

we index the subintervals in Pk by {0, 1, . . . , k−1}. We therefore begin the number-

ing of the rows and columns in the associated matrices from 0. We define A(m,N)

and B(m,N) to be the state transition matrices for f w.r.t. PN and PNm respec-

tively. Thus for 0 ≤ i, j ≤ N − 1 we have

A(m,N)ij =





1 if j ≡ mi + d mod N with 0 ≤ d ≤ m− 1,

0 otherwise,

and for 0 ≤ i, j ≤ Nm− 1 we have

B(m,N)ij =





1 if j ≡ mi + d mod Nm with 0 ≤ d ≤ m− 1,

0 otherwise.

For example, when m = 2 and N = 3, we have

A(2, 3) =




1 1 0

1 0 1

0 1 1


 , B(2, 3) =




1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1




.

The eigenvalues for A(2, 3) are {±1, 2}, while those for B(2, 3) are {±1, 2, 0}, where

the eigenspace for the eigenvalue 0 has dimension 3. In the case m = 3, N = 5 we

have:

A(3, 5) =




1 1 1 0 0

1 0 0 1 1

0 1 1 1 0

1 1 0 0 1

0 0 1 1 1




,

and the eigenvalues for A(3, 5) are {3,±i,±1}. Note that all row sums and column

sums in both A(m,N) and B(m,N) are m. Each row in either matrix consists of

m consecutive occurrences of 1 (where, in the case of A(m,N) these may “wrap

around” from the last column to the first). The rows of B(m,N) naturally fall into
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m identical blocks each consisting of N rows, and the columns into N blocks each

consisting of m identical columns, as indicated for B(2, 3) above.

The corresponding state transition matrices for σ ◦ f are obtained by permuting

the columns of A(m,N) and B(m,N). More precisely, given a permutation σ of

{0, . . . , N − 1}, let P (σ) be the N ×N permutation matrix given by

P (σ)ij =





1 if j = σ(i),

0 otherwise,

and let Q(σ) be the Nm×Nm matrix obtained by replacing each entry 1 (respec-

tively, 0) in P (σ) by an m×m identity matrix (respectively, zero matrix). Then the

state transition matrices for σ◦f w.r.t. the partitions PN and PNm are A(m,N)P (σ)

and B(m,N)Q(σ) respectively. For example, if m = 2, N = 3 and σ is the 3-cycle

(0, 1, 2) then

P (σ) =




0 1 0

0 0 1

1 0 0


 , Q(σ) =




0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0




,

so that

A(2, 3)P (σ) =




0 1 1

1 1 0

1 0 1


 , B(2, 3)Q(σ) =




0 0 1 1 0 0

0 0 0 0 1 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 1 0 0 0 0




.

Note also that P (σ)A(m,N) is the matrix obtained by applying the inverse permu-

tation σ−1 to the rows of A(m,N).

To determine the mixing rate of σ ◦ f , we need to investigate the eigenvalues

of the Fredholm matrix Φ(1) = m−1B(m,N)Q(σ) corresponding to the partition

PNm on which σ ◦ f is Markov. Clearly λ is an eigenvalue of Φ(1) if and only if mλ

is an eigenvalue of B(m,N)Q(σ), so it suffices to find the eigenvalues of the latter

Nm×Nm matrix. In fact we only need consider N ×N matrices.

Lemma 3.1. For all m, N and all σ ∈ SN , the nonzero eigenvalues of B(m,N)Q(σ)

are the same as those of A(m,N)P (σ).

Proof. For brevity, we write A = A(m,N), B = B(m,N), P = P (σ) and

59



Mixing and mixing rate properties

Q = Q(σ).

We view BQ as determining a linear endomorphism θ on the space V = CNm of

column vectors. Clearly BQ has rank N , since the first N rows are linearly indepen-

dent and the remaining rows merely repeat these. The kernel W of θ therefore has

dimension N(m−1), and θ induces an endomorphism θ on the quotient space V/W

of dimension N . The eigenvalues of θ (that is, of BQ) are therefore the eigenvalues

of θ, together with the eigenvalue 0 of multiplicity N(m− 1) coming from W . The

result will therefore follow if we show that the matrix AP represents θ.

We define vectors vr,s for 0 ≤ r ≤ N − 1, 0 ≤ s ≤ m− 1 (independent of σ) as

follows. For s = 0, set

vr,0
i =





1 if i = mr,

0 otherwise,

and for s > 0,

vr,s
i =





−1 if i = mr,

1 if i = mr + s,

0 otherwise.

For example, if m = 2 and N = 3 we have

v0,0 =




1

0

0

0

0

0




, v0,1 =




−1

1

0

0

0

0




, v1,0 =




0

0

1

0

0

0




, v1,1 =




0

0

−1

1

0

0




, v2,0 =




0

0

0

0

1

0




, v2,1 =




0

0

0

0

1

−1




,

where the horizontal lines correspond to the division of the columns of B(2, 3)Q(σ)

into blocks.

It is clear that the vr,s form a basis for V , and that if s 6= 0 then BQvr,s = 0.

Hence the N(m − 1) vectors vr,s for s 6= 0 form a basis for W . Thus the N cosets

vr,0+W form a basis for V/W . If we partition BQ into m×m blocks (as in the above

example), the matrix of θ with respect to this basis is then obtained by replacing

each block with the sum of one of its (identical) columns. This gives precisely the

matrix AP .

We next consider a matrix related to A(m,N) but with eigenvalues that are

easy to determine. By permuting the rows of A(m,N), we can obtain a symmetric

circulant matrix C(m,N). Its explicit description depends on the parity of m. Let

δ =





(1−m)/2 if m is odd;

(1−m + N)/2 if m is even.
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Then δ ∈ Z in both cases since gcd(m,N) = 1, and C(m,N) has entries

C(m,N)ij =





1 if j ≡ i + δ + r mod N with 0 ≤ r ≤ m− 1,

0 otherwise
(3.6)

for 0 ≤ i, j ≤ N − 1. Observe that C(m,N) is indeed symmetric since

j ≡ i + δ + r mod N ⇔ i ≡ j + δ + (m− 1− r) mod N.

For example,

C(2, 5) =




0 0 1 1 0

0 0 0 1 1

1 0 0 0 1

1 1 0 0 0

0 1 1 0 0




; C(3, 5) =




1 1 0 0 1

1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 0 0 1 1




.

Since C(m,N) is a real symmetric matrix, its eigenvalues are real. Since C(m,N)

is a circulant matrix, we can write these eigenvalues down explicitly. Let ωj = e2πij/N

for 0 ≤ j < N , and let

vj =
(
1, ωj, ω

2
j , . . . , ω

N−1
j

)T
. (3.7)

Then vj is an eigenvector for C(m,N) with eigenvalue

λj =
m−1∑
r=0

ωδ+r
j .

Although the λj are not necessarily distinct, the N eigenvectors vj are linearly

independent since

det(ωk
j )0≤j,k<N =

∏

j<k

(ωk − ωj) 6= 0,

so there are no further eigenvalues. Trivially λ0 = m. For j 6= 0, we have

λj =
ωδ

j (ω
m
j − 1)

ωj − 1
.

Writing ζj = eπij/N , so that ωj = ζ2
j , we then have

λj = ζ2δ+m−1
j

(
ζm
j − ζ−m

j

ζj − ζ−1
j

)
= (−1)(m−1)j sin(mjπ/N)

sin(jπ/N)
, (3.8)
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since 2δ + m− 1 = 0 (resp. N) if m is odd (resp. even). In particular,

det(C) =
N−1∏
j=0

λj = ±m

N−1∏
j=1

sin(mjπ/N)

sin(jπ/N)
= ±m, (3.9)

using the fact that the residues mj mod N are just the residues j mod N in some

order because gcd(m,N) = 1. It follows easily from (3.8) that, for j 6= 0, we have

λN−j = (−1)(N−1)(m−1)λj = λj,

where the second equality holds since N and m cannot both be even.

We also mention some variants of C(m,N). Firstly, cyclically permuting the rows

of C(m,N) gives circulant matrices C(h)(m,N) for which the vj are eigenvectors

with eigenvalues ωh
j λj. Secondly, we may permute the rows of C(m,N) to obtain

the anticirculant matrix C ′(m,N) with the same first row as C(m,N); for example

C ′(2, 5) =




0 0 1 1 0

0 1 1 0 0

1 1 0 0 0

1 0 0 0 1

0 0 0 1 1




; C ′(3, 5) =




1 1 0 0 1

1 0 0 1 1

0 0 1 1 1

0 1 1 1 0

1 1 1 0 0




.

Explicitly, the entries of C ′(m,N) are

C ′(m,N)ij =





1 if j ≡ −i + δ + r mod N with 0 ≤ r ≤ m− 1,

0 otherwise

for 0 ≤ i, j ≤ N − 1. The eigenvalues of C ′(m,N) are real since any anticirculant

matrix is symmetric. Using [25, Theorem 2], we can write down these eigenvalues

explicitly: they are m, λN/2 (for N even), and both values of ±√
λjλN−j = ±λj for

j 6= 0, N/2.

The maximum value of |λj| for 1 ≤ j ≤ N−1 is attained at j = 1. Although this

is essentially elementary, it is trickier to verify than it might appear, so we include

a proof.

Proposition 3.2.

max
1≤j≤N−1

∣∣∣∣
sin(mjπ/N)

sin(jπ/N)

∣∣∣∣ =
sin(mπ/N)

sin(π/N)
.

Proof. Since | sin(πk ± x)| = | sin x| for all k ∈ Z, we may assume that

1 ≤ m ≤ N/2, and moreover it suffices to take 1 ≤ j ≤ N/2. We consider the two

functions u(x) = sin mx/ sin x and v(x) = 1/ sin x on the interval (0, π). Now u(x)

has precisely m−1 zeros on this interval, at x = hπ/m for 1 ≤ h ≤ m−1. Since u(x)
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may be written as a polynomial of degree m− 1 in cos x, and cos x is monotonically

decreasing on this interval, it follows that u(x) has precisely m−2 stationary points,

one in each of the intervals (hπ/m, (h + 1)π/m) for 1 ≤ h ≤ m − 2. In particular,

as limx→0 u(x) = m, it follows that u(x) is positive and decreasing on (0, π/m),

so that u(π/N) > u(jπ/N) ≥ 0 if 2 ≤ j ≤ N/m. On the other hand, as v(x)

is positive and decreasing throughout (0, π/2), we have for N/m ≤ j ≤ N/2 that

|u(jπ/N)| ≤ v(jπ/N) ≤ v(π/m) < v(π/2m). But v(π/2m) = u(π/2m) ≤ u(π/N)

as m ≤ N/2. Hence |u(jπ/N)| < u(π/N) for 2 ≤ j ≤ N/2, as required.

We now seek to relate the eigenvalues of the matrices A(m,N)P (σ) to those

of C(m,N). After scaling by 1/m, these matrices become doubly stochastic. Our

next result gives some information on the behaviour of the eigenvalues of a column

stochastic matrix under permutation of its columns (or, more generally, under right

multiplication by an orthogonal, column stochastic matrix).

Recall that an N×N matrix is row (respectively, column) stochastic if its entries

are non-negative real numbers and the sum of each row (respectively, column) is 1.

It is doubly stochastic if it is both row and column stochastic. The product of two

row (respectively, column, doubly) stochastic matrices is again row (respectively,

column, doubly) stochastic. For A(m,N) as above, the probability transition ma-

trices m−1A(m,N) are doubly stochastic. Any permutation matrix P (σ) is doubly

stochastic and orthogonal.

We view our matrices as linear maps on the space CN of column vectors, endowed

with the usual complex inner product (x,y) =
∑N

j=1 xjyj for x = (x1, . . . , xN)T ,

y = (y1, . . . , yN)T , and we write ||x|| =
√

(x,x) for x ∈ CN . Any row stochastic

matrix has the obvious eigenvector e = (1, . . . , 1)T with eigenvalue 1. It is well-

known that any eigenvalue λ satisfies |λ| ≤ 1. If B is a column stochastic matrix

then e is not necessarily an eigenvector for B, but if (x, e) = 0 then (Bx, e) = 0, so

that B preserves the subspace V0 of vectors in CN perpendicular to e.

Lemma 3.2. Let B be an N × N column stochastic matrix. Then the eigenvalues

of BT B on V0 are real and non-negative. Let η be the largest of these, and let P be

an N ×N orthogonal, column stochastic matrix (e.g. a permutation matrix). Then

every eigenvalue λ of BP on V0 satisfies

|λ| ≤ √
η.

Moreover, if B is a circulant matrix then

√
η = max{ |λ| : λ is an eigenvalue of B on V0}.

Proof. Since BT B is a real symmetric matrix, its eigenvalues are real. Moreover,

for any x ∈ CN , we have (BT Bx,x) = (Bx, Bx) ≥ 0, so these eigenvalues are non-
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negative. We have

η = max{ (BT Bx,x) : x ∈ V0, ||x|| = 1} = max{ (Bx, Bx) : x ∈ V0, ||x|| = 1}.
(3.10)

Now let y ∈ V0 be an eigenvector of BP , corresponding to the eigenvalue λ, and

normalised so that ||y|| = 1. Then

|λ|2 = (λy, λy) = (BPy, BPy) = (Bz, Bz),

where z = Py. But z ∈ V0 since P is column stochastic, and ||z|| = 1 since P is

orthogonal, so that |λ|2 ≤ η as claimed.

Now suppose that B is also a circulant matrix. Let yj = N−1/2vj, where the

vj are defined in (3.7). Then the yj for 1 ≤ j ≤ N − 1 form an orthonormal basis

of eigenvectors for B on V0. Let λj be the eigenvalue for yj, and let k be an index

such that |λk| = max1≤j≤N−1 |λj|. For any x ∈ V0 with ||x|| = 1, we may write

x =
∑N−1

j=1 cjyj with
∑N−1

j=1 |cj|2 = 1. Then

(Bx, Bx) =
N−1∑
j=1

|cj|2|λj|2 ≤ |λk|2 = (Byk, Byk),

so the maximum in (3.10) is attained at x = yk, giving η = |λk|2.

Proof of Theorem 3.2(ii). For a given σ ∈ SN , we are interested in the eigen-

values of the matrix Φ(1) = m−1B(m,N)Q(σ), since these are the eigenvalues of

Φ(1) (where Φ(z) is the Fredholm matrix of σ ◦ f) and therefore the isolated eigen-

values in Spec(Lf |BV). By Lemma 3.1, it suffices to consider the eigenvalues of

m−1A(m,N)P (σ).

The matrix C(m,N) was obtained from A(m,N) by applying some permutation

ρ to the rows. Thus P (ρ−1)A(m,N) = C(m,N). For any σ ∈ SN , the matrix

m−1A(m,N)P (σ) = m−1P (ρ)C(m,N)P (σ) is conjugate to m−1C(m,N)P (σρ−1),

therefore, it suffices to consider the eigenvalues of the doubly stochastic matrices

m−1C(m,N)P (σ) for all σ ∈ SN . We exclude the eigenvalue 1 associated to the

trivial eigenvector e, so consider only the eigenvalues on its orthogonal complement

V0.

We apply Lemma 3.2 to the doubly stochastic circulant matrix B = m−1C(m,N),

so that η = m−1|λ1| by Proposition 3.2. This shows that, for any σ ∈ SN , each eigen-

value λ of m−1C(m,N)P (σ) satisfies |λ| ≤ m−1λ1. Thus, in the notation of Theorem

3.2, we have shown that τσ ≤ τmax. Moreover, τmax = m−1|λ1| = (−1)m−1m−1λ1.

Finally, we must show that each of the values (−1)m−1e2πij/Nτmax and (−1)mτmax

occurs as an eigenvalue of m−1A(m,N)P (σ) for some σ. But each of m−1C(j)(m,N)

(for 0 ≤ j ≤ N − 1) and m−1C ′(m,N) is conjugate to one of these matrices, since
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C(j)(m,N) and C ′(m,N) can be obtained by permuting the rows of A(m,N). In

particular, we have matrices whose eigenvalues include m−1ωj
1λ1 and ±m−1λ1, as

claimed.

We finish this section by noting a further consequence of our discussion of circu-

lant matrices.

Proposition 3.3. For any σ ∈ SN , the matrix A(m,N)P (σ) has eigenvalue m with

(algebraic) multiplicity 1. All its other eigenvalues are algebraic integers of norm

±1. Composition with σ preserves the mixing rate of f (that is, τσ = 1/m in the

notation of Section 3.1.2) if and only if these algebraic integers are roots of unity.

Proof. Clearly the characteristic polynomial of A(m,N)P (σ) has integer co-

efficients and has leading coefficient 1, i.e. its roots are algebraic integers. If λ is

any one of these eigenvalues, then its conjugates are also eigenvalues, and its norm

(i.e. the product of its conjugates) must be a rational integer. Now the product of the

eigenvalues is ± det(A(m,N)P (σ)) = ± det(C(m,N)) det(P (ρσ)) = ±m since any

permutation matrix has determinant ±1. We have the obvious eigenvalue m (with

eigenvector e), so m has multiplicity 1 as a root of the characteristic polynomial,

and all the other roots must have norm ±1.

Now if all the eigenvalues λ 6= m of A(m,N)P (σ) are roots of unity, we have

|λ| = 1. Thus no element of Spec(Lf |BV) has modulus between m−1 and 1, and σ◦f

has the same mixing rate as f . Conversely, suppose that σ ◦ f and f have the same

mixing rate. Then we must have |λ| ≤ 1 for all eigenvalues λ 6= m of A(m,N)P (σ).

But then all the conjugates λ′ of λ are again eigenvalues, and hence satisfy |λ′| ≤ 1.

In fact each |λ′| = 1, since the product of the λ′ is ±1. Now any algebraic inte-

ger all of whose conjugates have modulus 1 must be a root of unity (see e.g. [39,

IV, (4,5a)]). Hence all the eigenvalues λ 6= m of A(m,N)P (σ) are roots of unity.

3.4 Discussion: mixing-rate distributions

Let us make some further observations, many of which are based on numerical

computations, and the rigorous proofs are still open. For each σ ∈ SN , we define

two maps U : SN → R and V : SN → C as follows:

U : σ ∈ SN 7→ τσ := max{ |λ| : λ ∈ Spec(Lσ◦f |BV), |λ| 6= 1}, (3.11)

and

V : σ ∈ SN 7→ Λσ := {λ ∈ Spec(Lσ◦f |BV) and |λ| = τσ}. (3.12)

The dynamics of U and V determine the distribution of the mixing rates for {σ ◦
f}σ∈SN

. From the proof of Theorem 3.2, we have τσ equals to modulus of λ2(σ)
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the second largest eigenvalue of M(σ) := m−1A(m,N)P (σ) (Here, “second largest”

is in terms of the modulus, the largest eigenvalue always being 1, and a given

matrix may have more than one second largest eigenvalue since they may be distinct

eigenvalues with the same modulus.) In order to know more about the properties

on the dynamics of U and V beyond Theorem 3.2, we pose the following conjectures

from several different perspectives.

Convex hull problem on the geometric location

We would like to understand the geometric properties of the (finite) set
⋃

σ∈SN
Λσ

in the complex plane. The elements of this set are the isolated eigenvalues of Lσ◦f
which determine the mixing rates of the maps σ◦f for all permutations σ ∈ SN . For

small values of m and N with gcd(m,N) = 1, these sets are shown in Figure 3.1. In

particular, these eigenvalues are located between the inner circle with radius 1/m

and the outer circle with radius τmax. This is in agreement with Theorem 3.2. As a

special case, when m = N − 1 = 4 which follows sin(mπ/N) = sin(π/N), the two

circles coincide.

Figure 3.1: Distribution of mixing rates for the composition σ ◦f where f(x) := mx
mod 1 and σ ∈ SN with gcd(N,m) = 1. These eigenvalues are located between the
inner circle with radius 1/m and the outer circle with radius τmax. We leave the
graphs empty when gcd(m,N) > 1.
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The set DN of doubly stochastic matrices of order N has good convexity prop-

erties [111, Chapter I, §5]. By a well-known result of Birkhoff, DN is precisely the

convex hull of the permutation matrices of order N . Moreover, the eigenvalues of

matrices in DN lie in the convex hull of all roots of unity of order at most N .

Together with Figure 3.1, this suggests the following conjecture:

Conjecture 3.1. Suppose that gcd(m,N) = 1. Then
⋃

σ∈SN
Λσ is contained in the

convex hull of the points (−1)m−1e2πij/Nτmax for 0 ≤ j < N and (−1)mτmax. In

particular, these are the only points λ ∈ ⋃
σ∈SN

Λσ with |λ| = τmax.

We note that the convex hull in Conjecture 3.1 is a regular N -gon if N is even,

and an irregular (N + 1)-gon (obtained by adding one extra vertex to a regular

N -gon) if N is odd; c.f. Figure 3.1.

It might be worth mentioning that the case “m = 2” seems to be relatively easy

to begin with. Our heuristic reason is that there always exists a decomposition

M(σ) = 1
2
P1 + 1

2
P2 where P1, P2 are permutation matrices, and particularly this

decomposition is uniquely determined when m = 2. Moreover, whenever P1 and P2

commute, such M(σ) possesses a second largest eigenvalue λ2 with the maximum

modulus cos(π/N). Hence, we suspect that Conjecture 3.1 in the case m = 2 might

be related to the problem on controlling the second largest eigenvalue of the sum (or

convex combination) of two non-commutative permutation matrices. In addition,

we remark that the assumption on “gcd” is critical in Conjecture 3.1. Indeed,

Conjecture 3.1 usually fails when gcd(m,N) > 1; see Figure 3.2 as a counterexample.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 3.2: Distribution of mixing rates for the composition σ ◦ f where f(x) := 3x
mod 1 and σ ∈ S9. The red inner circle is of radius 1/3 and the out gray circle is of

radius sin π/3
3 sin π/9

.
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Distribution on τσ

Apart from the discussions on Λσ in the complex plane, the analysis of the mixing

rate τσ in the real line also appears interesting. For fixed sufficiently large N , we

treat the map V : σ → τσ as a random variable (with respect to the Haar measure

on the permutation group SN with an equal probability 1/N ! for each permutation)

and consider its probability distribution.

The cardinality of SN increases exponentially as N increases, therefore it would

be very difficult to numerically enumerate all possible permutations for large N .

Alternatively, we randomly (with equal probability) choose a proportion of permu-

tations σ from the group SN and investigate the distribution of the corresponding

mixing rates. For example, Figure 3.3 shows the cumulative and density functions

for fixed parameters m = 3, N = 50 from a sample size 106. Note that the value
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Figure 3.3: Left: Numerical accumulation function for fixed parameters N =
50,m = 3 from a sample size 106. Right: Density function for the corresponding
cumulative function in the left panel with a bin size h = 0.001.

for the density function at each bin (with bin size h = 0.001) is multiplied by 1/h

such that the curve is independent of bin size. In particularly, both cumulative and

density functions are seemingly regular with high smoothness.

Based on this statistical analysis in Figure 3.3, it is natural to investigate the

asymptotic behaviours on the average of mixing rate

lim
N→∞

1

N !

∑
σ∈SN

τσ (3.13)

which has a clear lower bound 1/m and upper bound 1.

From computational results for fixed m with randomly chosen σ, when increasing

N , the average mixing rates seem to converge (i.e., satisfy the law of large numbers);

see Figure 3.4 as an example. Thus, we ask:

Question 3.1. 1. Does the limit (3.13) exist? If not, are there any non-trivial
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Figure 3.4: The average mixing rate changes with parameter N for fixed m = 2
(sample size of 1000 is used here in randomly chosen σ).

upper or lower bounds for lim sup or lim inf?

2. Is

lim
N→∞

]
{

σ ∈ SN : 1/m < τσ < sin(mπ/N)
m sin(π/N)

}

N !
= 1?

3. Is

closure


 ⋃

N∈N,gcd(m,N)=1

⋃
σ∈SN

τσ


 = [1/m, 1]?

Best/worst-mixing permutations

Theorem 3.2 estimates the best/worse mixing rates, but which permutations possess

the best/worst are still unclear. As an example, Figure 3.5 and 3.6 enumerate all

the permutations for which the best/worst mixing rates are attained for the case of

“m = 2, N = 5” respectively. We notice that any σ ◦f has same topological entropy

log m. Therefore, the mixing rate seems an index which is a refinement of entropy.

Hence, we are asking:

Question 3.2. 1. What is the algebraic structure of the set of the best/worst-

mixing permutations?

2. Does the fact that σ1 ◦ f and σ2 ◦ f have the same mixing rate imply the

existence of a conjugacy of high smoothness?
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Figure 3.5: Graphs of σ◦f for which permutations have worst mixing rate are shown
in each plot. The parameters N = 5,m = 2.
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Figure 3.6: Graphs of σ ◦f for which permutations have best mixing rate are shown
in each plot. The parameters N = 5,m = 2.

70



Chapter 4

Dimension results of generalized

Moran sets

This chapter considers geometrical constructions of fractals where different contrac-

tions are applied at each level of the construction. We allow the basic sets of the

construction to have wild topological properties (such as fractal boundaries), and

we permit arbitrary placement of the basic sets within the construction. Following

[58], the limiting sets that arise from these geometrical constructions will be called

Moran sets [88]. We define precisely how these sets are constructed in Section 4.1,

and call these constructions general Moran set constructions. Dimension results

for Moran set constructions are mainly considered in [58], especially for construc-

tions generated by similarities. Certain one-dimensional, non-linear (cookie-cutter)

Moran set constructions are considered in [82]. In the latter case, dimension esti-

mates are computed via proving the existence of a Gibbs-like measure supported on

the Moran set.

A comprehensive paper by [97] produces techniques for computing fractal di-

mensions for quite general self-similar, non-linear constructions where the basic sets

have wild topologies. They show that if the geometric construction was bounded

in a suitable way then dimension estimates could be obtained. These bounds in-

volved upper estimates on the contraction rates of the construction, and bounds on

the geometry of the Moran coverings; see Section 4.1. In particular, they use the

thermodynamic formalism approach via solving the Bowen’s equation (as stated in

Section 1.3.4) to compute bounds on the fractal dimension.

The aim of this chapter is to provide a unified approach to study the dimension

properties of general Moran sets arising out of non-linear constructions, thus ex-

tending the approach in [97] to such constructions. We do this by taking successive

approximations of self-similar constructions which limit upon the general (non-self-

similar) Moran set construction. This allows us to obtain dimension estimates for

sets that are more general than those considered in [58, 82], for example in the for-

mer where the constructions are linear, and in the latter where the basic sets have
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controlled topology (e.g., the basic sets are intervals). In particular, the novelty of

our approach is that we weaken the classical conformal condition into the lower and

upper estimating vector conditions; see Section 4.1. For illustration, we show how

to recover the same estimates in these references when using the thermodynamic

formalism approach. We also consider situations where the non-linear contraction

rates have an infimum of zero. This is considered in [58] for similarities and we show

how the methods can be adapted to the nonlinear setting.

As a particular investigation in this chapter, we also consider Moran set con-

structions where the contraction rates at each step are generated by chaotic maps.

More precisely, we consider the contraction rates at each step of the construction to

be stochastic, where the stochasticity is generated by utilizing the ergodic proper-

ties of these maps. We consider various scenarios of applying stochasticity, namely

constructions that are either homogeneous or non-homogeneous. For such construc-

tions we consider conditions that allow the fractal dimensions to be computed, and

consider questions concerning typical fractal dimensions. We see that the recurrence

properties of the chaotic maps play a role in determining the typical values of the

dimensions. To our knowledge this investigation is new and brings forward ergodic

theory techniques to understand dimension results for stochastic Moran sets.

This chapter is organized as follows. In Section 4.1, we explain how to encode

the general Moran sets using symbolic constructions. To calculate explicit bounds

on the fractal dimensions, we give the main geometric assumptions on the basic

sets. In Section 4.2, the main theorems are presented, while in Section 4.3 the

main applications are presented, and these include dimension results for generalized

iterated function systems, and dimension results for stochastically generated Moran

sets. The formal proofs are presented in Section 4.4. The results presented in this

chapter come from my collaboration with Holland [56].

4.1 Geometric and symbolic constructions

We define the following symbolic space. For a sequence of positive integers {nk}k≥1

and any k ∈ N, let

Dk = {(i1, i2, · · · , ik); 1 ≤ ij ≤ nj, 1 ≤ j ≤ k} with D0 = ∅, (4.1)

and define

D =
∞⋃

k=0

Dk. (4.2)

The level set Dk contains all words of length k. The collection D is a countable

collection of level sets. The set

D∗ = {(i1, i2, · · · , ik, · · · ) : 1 ≤ ij ≤ nj, j ≥ 1}
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is the (uncountable) set of infinite strings.

Given words ω, ω′ ∈ D we define ω ∗ ω′ as the concatenation of the two words.

We remark that such concatenation is not always well defined. Additionally, for a

infinite string ω ∈ D∗, we denote ω|k := ω(k) = ω ∈ Dk as a truncated word of

length k.

Let us begin with several definitions as a preparation.

Definition 4.1. Given a map f : Rd → Rd, we define the class = such that if f ∈ =
then

(H1): There exists a compact forward invariant set A, such that f(A) ⊂ A;

(H2): For any compact set B ⊂ A, diam(fn(B)) → 0 as n →∞.

We remark that for any f ∈ =, then
⋂∞

n=1 fn(A) is a singleton. If f1, f2 ∈ =
share the same forward invariant set A, then both f2 ◦ f1 and f1 ◦ f2 ∈ =. We say

that a map f is contracting if there exists a 0 < c < 1 such that for all x, y ∈ Rd,

d(f(x), f(y)) ≤ c · d(x, y). If f is contracting then f ∈ =, but the converse need not

be true.

Definition 4.2. A family of compact sets are called basic sets Ω = {4ω ⊂ Rd, ω ∈
D}, if this family of sets satisfies: limk→∞ maxω∈Dk

diam(4ω) = 0.

Based on D and the class = of maps, we now consider the following generalized

Moran structure conditions (GMSC) for the basic sets Ω = {4ω, ω ∈ D}.

Definition 4.3. Given basic sets Ω = {4ω, ω ∈ D} and a family of maps {fj,i ∈
= : i ≤ nj, j ≥ 1}, they satisfy GMSC (with respect to D) if the following hold.

(A1) Suppose k ≥ 1, ω ∈ Dk−1 and ω ∗ j ∈ Dk (for 1 ≤ j ≤ nk). Then elements

of 4ω∗j are completely determined by elements of 4ω and the vector of maps

Ξk = (fk,1, fk,2, . . . , fk,nk
) ∈ =, i.e., 4ω∗j ⊆ 4ω and 4ω∗j = fk,j(4ω);

(A2) The strong separation condition holds: given any k and ω, ω′ ∈ Dk with ω 6= ω′

then

4ω ∩4ω′ = ∅.

We denote fω = f1,i1 ◦ · · · ◦ fk,ik for a word ω = (i1, · · · , ik) ∈ Dk. By taking the

composition of maps in condition (A1), it follows that fω(4) = 4ω.

For a given Ω, we define

F =
⋂

k∈N

⋃
ω∈Dk

4ω. (4.3)

The set F is a compact set, and by the strong separation condition (A2) is totally

disconnected. So far we have made no assumptions on the topology of the basic

sets {4ω, ω ∈ D}, other than these sets being compact. In particular they need
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not to be connected, and their boundaries could be fractal. It is sufficient for our

purposes to work with a weaker version of (A2), and we say that the weak separation

condition holds if

(A2’) For any ω, ω′ ∈ D with ω 6= ω′:

{4ω ∩4ω′} ∩ F = ∅.

Definition 4.4. Given F as in equation (4.3), we call F a generalized Moran set

(GMS) if F satisfies (A1), (A2’).

See Fig 4.1 for the geometrical interpretation.

Δ

Δ
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Δ
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Δ
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Δ
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21

Δ
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Figure 4.1: Schematic representation of the geometric construction of a general
Moran set F .

Given a GMS F ⊂ Rd, there is a canonical projection map X : D∗ → F which

assigns to each ω = (in)∞n=1 the point x ∈ F given by
⋂

k4ω(k) , where ω(k) = ω|k =

(i1, · · · , ik) ∈ Dk is an infinite string ω truncated to the first k places. Due to

the weak separation condition (A2′), this canonical projection map χ is a bijection

except for a countable set.

We can turn D∗ into a metric space by assigning the distance function d(ω, ω′)

to points ω, ω′ ∈ D∗ as follows:

n(ω, ω′) := min{i|ωj = ω′j for 0 < j < i but ωi 6= ω′i}, if ω 6= ω′,

and n(ω, ω) := ∞. For a given 0 < pi < n−1
i we set d(ω, ω′) =

∏n(ω,ω′)
i=1 pi. Then

(D∗, d) is a compact metric space. It is easy to see that D∗ is a generalization of

traditional symbolic space, since if nk = p is a constant, then D∗ = Σ+
p , where

Σ+
p = {1, . . . , p}N. However, if nk is not a constant, then the shift map σ on D∗

does not necessarily preserve D∗. Alternatively, we consider a sequence of symbolic

spaces that can be thought of as approximations to D∗. These symbol spaces are

generated from the sets Dk.
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Definition 4.5. Given D =
⋃

k Dk, the symbol space [Dk] is defined as the set of

infinite strings, with indices corresponding to elements of Dk. That is

[Dk] = {w = (ωi)
∞
i=1 = (ω1, ω2 . . . , ), ωi ∈ Dk}.

The associated shift map σk : [Dk] → [Dk] is defined by

σk(ω1, ω2 . . . , ) = (ω2 ω3, . . . , ), with (ωi)
∞
i=1 ∈ [Dk].

In addition, we denote [Dk]n := {w|n : w ∈ [Dk]} as the level set of length n in

[Dk]. Notice that [Dk] is isomorphic to Σ+
pk

with pk = card(Dk).

Conformal properties and upper/lower estimating vectors

To obtain explicit estimates on the Hausdorff dimension of F , some restrictions on

the basic sets {4ω} are required. In particular we require control on the diameter

of 4ω with respect to the level set Dk that ω belongs to. In particular we require

that their diameters shrink exponentially fast with k. We also require control of

the geometry of 4ω via a technical condition restricting the number of 4ω (of a

certain size-scale) that can intersect with a given ball B(x, r) ∈ Rd where x ∈ F .

For self similar constructions, control on the geometry is specified in [97] by use

of lower, and upper estimating vectors. We adapt these methods for the non-self

similar constructions. Let Ψ = {Ψ(k)} denote a countable collection of vectors Ψ
(k)

with

Ψ
(k)

= (Ψ(k)(ω))ω∈Dk
.

Here ω = (i1, . . . , ik) ∈ Dk. Given ω ∈ Dk, we assume that there is a sequence of

constants c
(1)
i1

, . . . c
(k)
ik

such that

Ψ(k)(ω) = c
(1)
i1

c
(2)
i2

. . . c
(k)
ik

=
k∏

j=1

c
(j)
ij

.

For notational simplicity we sometimes write Ψ
(k)
ω := Ψ(k)(ω).

Definition 4.6 (Basic vectors). The collection of vectors Ψ = {Ψ(k)}∞k=1 is called a

basic collection of vectors if for all k ≥ 1 and all ω = (i1, . . . , ik) ∈ Dk, the sequence

Ψ(k)(ω) satisfies

sup
k∈N,1≤j≤nk

c
(k)
j < 1. (4.4)

Definition 4.7 (UE vectors). A basic collection of vectors Ψ = {Ψ(k)}∞k=1 is called

an upper estimating (UE) vector if for any k and ω ∈ Dk:

diam(4ω) ≤ CΨ(k)
ω ,

75



Generalized Moran sets

and the constant C > 0 is independent of ω and k.

To get bounds on the Hausdorff dimension we require further control of the

geometry of each ∆ω. We introduce two definitions: the first is that of conformality,

while the second introduces the notion of lower-estimating vectors for a geometric

construction.

Definition 4.8 (Conformal vectors). Given a basic collection of vectors Ψ = {Ψ(k)}∞k=1,

we say that a symbolic construction {4ω} is conformal (w.r.t. Ψ) if ∃C > 0 such

that for each k ≥ 1, ω ∈ Dk, ∃x ∈ ∆ω:

B

(
x,

1

C
Ψ(k)

ω

)
⊂ 4ω ⊂ B

(
x,CΨ(k)

ω

)
. (4.5)

An alternative geometric constraint is considered in [97] and we formulate this

condition for the GMSC as follows. Given 0 < r < 1 fixed, let Ψ be a basic collection

of vectors. For any ω ∈ D∗, let n := n(ω) be the unique positive integer such that

Ψn
ω > r and Ψn+1

ω < r, where ω = ω|n. Fix this ω, and consider the cylinder set

Cω|n := {ω′ ∈ D∗, ω′|n = ω|n} ∈ D∗. We have the fact that if ω′ ∈ Cω|n and

n(ω′) ≥ n(ω) then Cω′|n(ω′) ⊆ Cω|n(ω)
.

Let C(ω) be the largest cylinder set containing ω which satisfies C(ω) := Cω′′|n
for some ω′′ ∈ C(ω) and Cω′|n ⊆ C(ω) for any ω′ ∈ C(ω). Therefore, the sets

C(ω) according to different infinite strings ω ∈ D∗ either coincide or are totally

disjoint. We collect these sets as Cj
r , j = 1, · · · , Nr and there sets form a cover of

D∗. Moreover, there always exist ω(j) such that C
(j)
r = Cω(j)|

n(ω(j))
. By projecting

{4(j)
r } := {χ(C

(j)
r )}, it also forms a cover of the GMS F . We call {4(j)

r } the Moran

cover.

Consider the open ball B(x, r) of the radius r centered at the point x ∈ F ,

and let N(x, r) denote the number of the Moran cover {4(j)
r } that have non-empty

intersection with B(x, r). We define the lower estimating vector below:

Definition 4.9 (LE vectors). If there exists a constant M such that the above

N(x, r) < M for all x ∈ F , then we say Ψ is a lower estimating (LE) vector.

Thermodynamic formalism

Consider a sequence of pressure functions {Pk}k and a sequence of potentials {Φk,s}k

defined as follows. Recall that Ψ = {Ψ(k)}k with Ψ
(k)

= {Ψ(k)
ω }, ω ∈ Dk. Consider

the symbolic space [Dk] together with the shift map σk : [Dk] → [Dk]. For any Φ ∈
Lip([Dk]) we can study the associated pressure function Pk(Φ) as stated in equation

(1.45) of Chapter 1. For w ∈ [Dk] we consider the specific function Φk,s(w) :=

s log Ψ(k)(w(1)), where w(1) is the first symbol of w in [Dk]. This function can be

extended to a function on Fk via Φk,s(x) = s log Ψ(k)(w(1)), where X(w) = x. Thus
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Pk : Lip(Fk) → R is given by

Pk(Φk,s) = lim
n→∞

1

n
log


 ∑

w(n)∈[Dk]n

inf
x∈∆

w(n)

exp
{
Sn(Φk,s(w

(n)))
}

 , (4.6)

where the sum is taken over all n-th words w(n) in [Dk]n. (Recall [Dk]n is the level

set of length k in [Dk]).

To study the fractal dimension of F , we consider the sequence sk, where sk is

the value of s which solves Pk(Φk,s) = 0. In particular we consider the (lim)-inf and

(lim)-sup of this sequence. We define:

s∗ := lim sup sk, and s∗ := lim inf sk. (4.7)

The main focus of this paper is to consider when s∗ is the upper-box dimension of

F , and when s∗ is the Hausdorff dimension of F . We need a further hypothesis on

the existence of a Gibbs-like measure on F .

(A3) Given β > 0, there exists a measure mΨ supported on F , and L > 0 such that

for all k ≥ 1, ω ∈ Dk,

L−1

∑
ω′∈Dk

(Ψ(k)(ω′))β
≤ mΨ(4ω)

(Ψ(k)(ω))β
≤ L∑

ω′∈Dk
(Ψ(k)(ω′))β

(4.8)

For the range of applications that we consider, we verify directly the hypothesis (A3).

For the similarity transformations considered in [58], mΨ is obtained by taking a

weak limit of a sequence measures {mk}. Each mk is defined on each ω ∈ D`, ` ≤ k

by

mk(4ω) =
∑

i`+1,...,ik

(c1,i1c2,i2 . . . ck,ik)
β

∏k
j=1

∑nk

i=1 cβ
j,i

, ω = (i1, . . . i`).

By direct calculation this reduces to m`(ω). For iterated function systems defined

by expanding maps, we can show (A3) holds by using bounded distortion estimates,

see Section 4.3.1.

4.2 Statement of main results

The main theorem is the following:

Theorem 4.1. Consider a GMSC admitting a GMS F . Suppose Ψ = {Ψ(k)} is

a (UE) and (LE) vector, and suppose that there exists a Gibbs-like measure mΨ

satisfying (A3). Assume further that

d := inf
k∈N,1≤j≤nk+1

c
(k+1)
j > 0. (4.9)
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Then

1. dimH F = dimHmΨ = s∗.

2. dimP F, dimBF ≤ s∗.

Furthermore if F also satisfies the conformality condition, as in Definition 4.8 then

dimP F = dimBF = s∗.

In general if

inf
k∈N,ω∈Dk

c
(k+1)
j = 0, (4.10)

then the conclusions of Theorem 4.1 will fail; see [37, 58] for the examples regarding

the failure of Theorem 4.1 under the condition 4.9. To consider more general situ-

ations where (4.10) holds we have to impose conditions on how fast the Ψ
(k)
ω decay.

For fixed k, we denote

Mk := max
ω∈Dk

Ψ(k)
ω , dk := min

1≤j≤nk+1

c
(k+1)
j . (4.11)

Theorem 4.2. Consider a GMSC admitting a GMS F . Suppose Ψ = {Ψ(k)} is

a (UE) and (LE) vector, and suppose that there exists a Gibbs-like measure mΨ

satisfying (A3). Assume further that

lim
k→∞

log dk

log Mk

= 0, (4.12)

then dimH F = dimH(mΨ) = s∗ and dimP F, dimBF ≤ s∗, where dk,Mk are defined

in (4.11). Furthermore if F also satisfies the conformality condition, then

dimP F = dimBF = s∗.

Remark 4.1. Under the assumption (4.9), the Conformality vector implies the (LE)

property; see the proof of Lemma 4.7. However, such a relationship might fail in

general.

4.3 Applications

We consider applications of the theorems to a range of examples. We first consider

iterated function systems, and then explore stochastic Moran set constructions.
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4.3.1 Iterated function systems

Connection with the bounded distortion

In this section we consider iterated function systems defined by a collection of ex-

panding maps.

Suppose that we are given basic sets Ω = {4w ∈ Rd : ω ∈ D} satisfying GMSC

with respect to D as stated in Definition 4.3. Moreover, we further suppose that

Tj,ij : 4ω(j+1) →4ω(j) ,∀ij = 1, · · · , nk satisfies the following three assumptions:

C1+α diffeomorphism: The derivative DTj,ij from the tangent bundle is an α−
Hölder continuous function, i.e., there exists a constant C := Cj,ij such that

||DTj,ij(x)−DTj,ij(y)|| ≤ C||x− y||α;

(distance) expanding: there exists a β := βj,ij > 1 such that ||Tj,ij(x)−Tj,ij(y)|| ≥
β||x− y||, ∀x, y ∈ 4ω(j+1) ;

full branch: Tj,ij(4ω(j+1)) = 4ω(j) .

We can therefore take Ξk = (fk,1, . . . , fk,nk
) to be the vector of contractions asso-

ciated to the inverse branches of (Tk,1, . . . , Tk,nk
) at k−th level. For ω = (i1, . . . , ik) ∈

Dk we have 4ω(k) = fω(k)(4) where fω(k) = f1,i1 ◦ · · · , ◦fk,ik . Using the theory de-

veloped in section 4.1, the following corollary holds:

Corollary 4.1. Consider a GMSC with {Ξk}∞k=1 a collection of vectors associated

to the inverse branches, and admitting a GMS F . We further assume that the C1+α

(distance)-expansivity of {Ξk}∞k=1 is uniformly bounded, ( i.e., the sequence {βj,ij}
is uniformly bounded away from 1, the sequence {det(Dfj,ij)} is uniformly bounded

away from zero, and the sequence of Hölder constants {Cj,ij} is uniformly bounded).

Then there exists a conformal vector Ψ satisfying the (A3) condition. Moreover,

dimH F = s∗, dimP F = dimBF = s∗,

where s∗ and s∗ are defined in equation (4.7).

Proof. We first verify the bounded distortion result : there exists D > 0, independent

of k such that for all x, y ∈ 4 :

1

D
≤ | det(Dfω(k)(x))|
| det(Dfω(k)(y))| ≤ D. (4.13)

The proof of the distortion result is based on the chain rule, for the same iterated
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function system at each level; see [35, 62, 106]. More precisely, we have:

|log | det Dfω(k)(x)| − log | det Dfω(k)(y)||
=

∑k
j=1

∣∣log | det Dfj,ij(fω(j)(x))| − log | det Dfj,ij(fω(j)(y))|
∣∣

≤ ∑k
j=1 C1

∣∣det Dj,ij(fω(j)(x))− det Dj,ij(fω(j)(y))
∣∣

≤ ∑k
j=1 C2||Dfj,ij(fω(j))(x)−Dfj,ij(fω(j))(y)||

≤ ∑k
j=1 C3||fω(j)(x)− fω(j)(y)||α

≤ C3

∑k
j=1 β−jα||x− y||α ≤ C3β−α

1−β−α ||x− y||α.

Due to the uniform boundness assumption, these constants Ci, i = 1, 2, 3 and β are

independent of the choice of k, which implies (4.13).

From this bounded distortion property (4.13), we can directly construct a col-

lection of vectors Ψ and verify the conformality and (A3). More precisely, for any

fixed x ∈ 4, let Ψ
(k)
ω = | det Dfω(k)(x)|,∀ω = ω(k) ∈ Dk. Then, for all y 6= x ∈ 4,

we have
1

D
≤ | det Dfω(k)(y)|

Ψ
(k)
ω

≤ D.

Therefore, the pressure function (4.6) is equal at two different initial points x 6= y,

which implies that Ψω(k) is well defined. In addition, due to the uniform boundedness

assumption again, the conformality and equation (4.9) are easy to be verified, while

the verification of (A3) is similar to [82, Prop 2.7]. Therefore, the results are directly

followed by Theorem 4.1. ¤
Corollary 4.1 extends the results of [82] to higher dimensions as well as to complex

conformal holomorphic expanding case in the Riemann sphere C (by letting Ψ
(k)
ω :=

|Arg((fω)′)|), and to scenarios where the basic sets have complicated topology (e.g.,

the basic sets themselves are fractal sets). A special case where Corollary 4.1 applies

is the sequence of affine contractions on compact intervals: Ξk = (ck,1, . . . , ck,nk
),

where ck,j is the derivative of the contraction fk,j along the j-th branch. We show

directly that this result is consistent with the linear theory considered in [58]. In

this case, we have the conformal vector Ψ = {Ψ(k)}, where Ψ
(k)

= (Ψ
(k)
ω )ω∈Dk

. When

ω = (i1, . . . , ik) ∈ Dk then Ψ
(k)
ω =

∏k
j=1 cj,nj

. From equation (4.6) we have

Pk(Φk,s) = lim
n→∞

1

n
log


 ∑

w(n)∈[Dk]n

inf
x∈∆

w(n)

exp
{
Sn(Φk,s(w

(n)))
}

 , (4.14)

where the sum is taken over all n-th words w(n). We take piecewise constant poten-

tial Φk,s(x) = sk log Ψ(k)(w(1)),∀x ∈ 4w(n) . This reduces to

Pk(Φk,s(x)) = lim
n→∞

1

n
log

∑

w(n)∈[Dk]n

inf
x∈4

w(n)

exp

(
n−1∑
j=0

sk log([σj
kw(x)](1))

)
, (4.15)
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and hence we obtain

Pk(Φk,s(x)) = lim
n→∞

1

n
log


 ∑

w(n)∈[Dk]n

exp

(
n−1∑
j=0

log Ψsk
j

)


= lim
n→∞

1

n
log


 ∑

w(n)∈[Dk]n

n−1∏
j=0

Ψsk
j




= log

( ∑
ω∈Dk

(Ψ(k)
ω )sk

)
,

where w(n) = (ω1, . . . , ωn) and the last step is from the binomial theorem. Thus

P (Φk,s(x)) = 0 is equivalent to
∑

ω∈Dk
(Ψ

(k)
ω )sk = 1, that is

∑k
i=1(Π

nk
j=1ci,j)

sk = 1

as in [58]. Moreover lim infk→∞ sk = s∗ = dimH(F ) and lim supk→∞ sk = s∗ =

dimP (F ) = dimB(F ).

¤

4.3.2 The homogeneous and stochastic Moran set construc-

tions

We begin with a definition.

Definition 4.10 (Homogeneous GMS). Consider a GMSC admitting a GMS F .

Suppose Ψ is a (UE),(LE) vector and satisfy the (A3) condition. We further assume

that the (UE) and (LE) vector Ψ has the property that Ψk
ω = Ψ

(k)
ω′ for all ω, ω′ ∈ Dk,

then we call F a homogeneous GMS.

The homogeneous construction is perhaps the simplest example of a GMSC.

A natural exploration is to consider ways of generating the GMS F via stochas-

tic sequences of contractions. For example, we consider the vector Ψ generated

stochastically via chaotic maps in the following sense: Let (T, M, µ) be a measure

preserving system, where T : M → M is a map preserving an ergodic measure µ.

Given a test function (observable) φ : M → [0, 1] and initial condition x ∈ M ,

we let Ψ
(k)
ω =

∏k
j=1 φ(T j(x)) for any ω ∈ Dk. We assume that nk = q is fixed,

and the conditions of Definition 4.3 apply. In this case the vector Ξk consists of q

components each with value φ(T k(x)). Thus the GMS F (and hence its dimension)

depends on the initial value x ∈ M . In this section we primarily investigate the

Hausdorff dimension of F , and it’s dependency on x. The results are obtained by

using methods in ergodic theory.

Theorem 4.3. Suppose that (T, M, µ) is an ergodic system, and suppose that φ :

M → [0, 1/q] is such that log φ ∈ L1(µ) with
∫

log φ dµ > 0. Suppose further that

F is the homogeneous GMS arising from a GMSC with a (UE) and (LE) vector
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Ψ
(k)
ω =

∏k
j=1 φ(T j(x)). Then for µ-a.e. x ∈ M

dimH(F ) = dimP (F ) = dimB(F ) =
− log q∫
log φdµ

.

Proof. We consider the first case where infx∈M φ(x) > 0. From the Main Theo-

rem 4.1, we have that

dimH(F ) = s∗,

where

s∗ = lim inf
k→∞


 log

(∏k
j=1 φ ◦ T j(x)

)

−k log q



−1

.

By the Birkhoff Ergodic Theorem we have for µ-a.e. x ∈ M :

lim
k→∞

1

k
log

(
k∏

j=1

φ ◦ T j(x)

)
= lim

k→∞
1

k

k∑
j=1

log φ ◦ T j(x) =

∫
log φdµ.

Now consider the case where infx∈M φ(x) = 0, which implies that inf
k∈N,1≤j≤nk+1

c
(k+1)
j =

0. Therefore, we need to show that equation (4.12) applies for µ-typical orbits. If

so, then Theorem 4.2 will establish the corresponding result.

Proceeding, and using the notation of equation (4.12) we have that dk = φ(T k(x))

and Mk =
∏k

i=0 φ(T i(x)). Hence,

log dk

log Mk

=
log φ(T k(x))∑k
i=0 log φ(T i(x))

=
k−1 log φ(T k(x))

k−1
∑k

i=0 log φ(T i(x))
. (4.16)

Again, by Birkhoff Ergodic Theorem, k−1
∑k

i=0 log φ(T i(x)) → ∫
log φ dµ 6= 0. We

show k−1 log φ(T k(x)) → 0, (again for µ-a.e. x ∈ M) by the following lemma:

Lemma 4.1. Suppose ak →∞ is monotone with the property that limk→∞ ak/ak+1 =

1. Suppose bk is a series such that 1
ak

∑k
j=1 bj converges to L 6= 0.

Then bk/
∑k

j=1 bk → 0.

Before proving Lemma 4.1 we show how the Theorem follows. In the notation

of equation (4.16), let an = n, and bn = log(φ(T n(x)). The ergodic theorem implies

that 1
ak

∑k
j=1 bj converges for µ-a.e. x ∈ M , and moreover limk→∞ ak/ak+1 = 1.

Hence the conditions of Lemma 4.1 are satisfied. It follows that log dk/ log Mk → 0

for µ-a.e. x ∈ M , and thus the conditions of Theorem 4.2 are satisfied.

Now to prove the lemma, let Sk := 1
ak

∑k
j=1 bk. We have the following relation:

Sk+1 − ak

ak+1

Sk =
bk+1

ak+1

.

If we take limits of both sides then we obtain limk→∞ bk/ak = 0 as required. ¤
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4.3.3 Stochastic Moran constructions using multiple gener-

ating maps

Consider a family of maps {(Ti,M, µi)}t
i=1 with Ti : M → M (M compact), and

each Ti preserves an ergodic measure µi ∈ Lp for some p > 1 (i.e., µ ¿ m and the

density is Lp integrable). Given x ∈ M t, we can generate a GMS F via a GMSC in

the following way. Take Hölder continuous functions φi : M → [0, 1], and suppose

that the basic vector Ψ
(k)
ω has the form:

Ψ(k)
ω =

k∏
j=1

φij(T
j
ij
(xij)) : ω = (i1, . . . , ik), x = (x1, . . . , xt). (4.17)

The following integral Is and in particular how it varies with the parameter s are

also of interest to us:

Is :=

∫

Mt

log

{
t∑

i=1

φi(xi)
s

}
dµ, where µ = ⊗t

i=1µi, (4.18)

We assume the following condition on the zeros of Is.

(A4) The integral Is has a unique zero root.

Based on these conditions, we have the following result.

Theorem 4.4. Suppose that {Ti,M, µi}t
i=1 form an ergodic system (i.e., each mea-

sure µi is ergodic w.r.t. Ti) and each φi : M → [0, 1] is positive Hölder continuous

with
∫ − log φi dµi < ∞. Suppose that the GMS F results from a GMSC with a (UE)

and (LE) vector Ψ generated via the vectors Ξk = (φ1(T
k
1 (x1)), . . . , φt(T

k
t (xt))) sat-

isfying condition (A3). In addition, suppose further that condition (A4) holds.

Then for µ-a.e. x ∈ M t,

dimH(F ) = dimP (F ) = dimB(F ) = s∗,

where s∗ is the solution of the functional equation:

∫

Mt

log

{
t∑

i=1

φi(xi)
s∗

}
dµ = 0, where µ = ⊗t

iµi (4.19)

Proof. The proof is analogous to that of Theorem 4.3. We first consider case

where infi infxi
φi(xi) > 0. Since the set F results from a GMSC, it is implicit that

the φi are contractions. In particular the contractions satisfy:

t∑
i=1

φi(T
j
i (xi)) < 1, (∀ j), and sup

i
sup
xi

φi(xi) < 1/t. (4.20)
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Moreover, ergodicity of the product system implies that equation (4.20) holds for

µ-a.e x ∈ M t. The vector of maps is given by Ξk = (φ1(T
k
1 (x1)), . . . , φt(T

k
t (xt)). It

suffices to compute the dimensions sk and calculate the limit lim inf sk. From the

notation of section 4.1, we have:

∑
ω∈Dk

(
k∏

j=1

φij(T
j
ij
(xij))

)sk

= 1. (4.21)

A simple application of the binomial theorem implies that this expression is equiv-

alent to:
k∏

j=1

(
t∑

i=1

{φi(T
j
i (xi)}sk

)
= 1, (4.22)

and so
k∑

j=1

log

(
t∑

i=1

{φi(T
j
i (xi)}sk

)
= 0. (4.23)

Now for fixed s, from the ergodic theorem, we have

lim
k→∞

1

k

k∑
j=1

log

(
t∑

i=1

{φi(T
j
i (xi)}s

)
=

∫

Mt

log

{
t∑

i=1

φi(xi)
s

}
dµ. (4.24)

Clearly, the value s∗ which is the solution of (4.19) gives the right hand side of

(4.24) as zero. We now justify that s∗ = lim inf sk by showing that for large k,

sk = s∗ + o(1). For finite (but large) k, we have

k∑
j=1

log

(
t∑

i=1

{φi(T
j
i (xi)}s

)
= k

(∫

Mt

log

{
t∑

i=1

φi(xi)
s

}
dµ + o(1)

)
. (4.25)

Based on the condition (A4) together with the continuity of each φi, it follows that:

∀ ε > 0, there exists a K such that ∀k ≥ K, we can choose sk with |s∗− sk| < δ and

sk satisfying (4.23). Hence s∗ = lim inf sk.

Suppose now there exists an i such that infxi
φi(xi) = 0, but

∫
φi dµi 6= 0. In this

case, it implies that inf
k∈N,1≤j≤nk+1

c
(k+1)
j = inf

k∈N,1≤j≤nk+1

φi ◦ T k
i (xi) = 0. Therefore, we

need to show that equation (4.12) applies for µ-typical orbits. If so, then Theorem

4.2 will establish the corresponding result. Proceeding, and using the notation of

equation (4.12) we have that

dk = min1≤i≤t{φi(T
k
i (xi))},

Mk = maxω

{
k∏

j=1

φij(T
j
ij
(xij))

}
, ω = (i1, . . . ik).

(4.26)
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To show that equation (4.12) applies for µ-a.e. x ∈ M t, if letting α := supi supxi
φi(xi),

we first notice that

Mk ≤ αk ≤ (1/t)k,

and so it directly implies that

log dk

log Mk

≤ max1≤i≤t{− log φi(T
k
i (xi))}

−k log α
. (4.27)

We have to show that for µ-a.e. x ∈ M t, the right hand term of equation (4.27)

goes to zero. We use a Borel-Cantelli argument as follows. For any fixed i, let

A
(i)
k := {xi ∈ M : φi(T

k
i (xi)) ≤ α

√
k}.

Due to the invariance of µi and the conditions on µi, φi ∈ Lp, we have:

µi(A
(i)
k ) = µi{xi ∈ M : φi(xi) ≤ α

√
k}

≤ Leb{xi ∈ M : φi(xi) ≤ α
√

k} 1−p
p ≤ αγ

√
k,

where γ is a constant independent of the choice of i. Therefore,
∑∞

k=1 µk(A
(i)
k ) < ∞,

by Borel-Cantelli arguments, µi(
⋂∞

n=1

⋃∞
k=n A

(i)
k ) = 0 for any i. Hence µ − a.e.x ∈

M t, we have max1≤i≤t{− log φi(T
k
i (xi)) ≤ −

√
k log α. So

(4.27) ≤ 1√
k
→ 0, as k → 0,

which implies the corresponding theorem.

¤

4.4 Proofs

Proof of Theorem 4.1

The proof of Theorem 4.1 is given in several steps. We first obtain an estimate on

how the measure mΨ scales on balls of radius r, as r → 0. A second step is to show

dimH(F ) = s∗ and the arguments used here require the existence of a (LE) and

(UE) vector.

Lemma 4.2. Suppose Ψ = {Ψ(k)} is a (LE) vector and satisfies (A3) condition.

Then for any x ∈ F , and any open ball B(x, r), (0 < r < 1) and any ε > 0, there

exists a Gibbs measure mΨ such that

mΨ(B(x, r)) ≤ Crs∗+ε. (4.28)
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The constant C > 0 is independent of r.

Proof. For ω ∈ Dk and for any β < s∗ := lim inf sk, by property (A3), we have

mΨ(4ω) ≤ L1(Ψ
(k)
ω )β. (4.29)

Consider x ∈ F and the ball B(x, r) with r ∈ (0, 1). Since Ψ is a (LE) vector, there

exists an M > 0 such that the number N(x, r) of 4(j) (in the Moran cover of F )

with 4(j) ∩B(x, r) 6= ∅ is bounded by M . Hence

mΨ(B(x, r)) ≤
N(x,r)∑

j=1

mΨ(4(j)) ≤
N(x,r)∑

j=1

L1(Ψ
(k)
ω )β (4.30)

where ω corresponds to those for which 4ω = 4(j), and 4(j) ∩ B(x, r) 6= ∅. Since

d ≤ c
(k+1)
j (ω) by (4.9) and N(x, r) ≤ M , therefore

mΨ(B(x, r)) ≤ L1M(Ψ(k)
ω )β ≤ L1M

dβ
(Ψ(k+1)

ω )β ≤ L1M

dβ
rβ. (4.31)

This proves equation (4.28).

¤

Lemma 4.3. Consider a GMSC admitting a GMS F . Suppose that condition (A3)

holds, Ψ = {Ψ(k)} is a (UE) and (LE) vector and

d = inf
k∈N,1≤j≤nk+1

c
(k+1)
j > 0. (4.32)

Then

dimH F = dimH(mΨ) = s∗.

Proof. We first show that dimH F ≥ s∗. Recall

dimH(mΨ) = inf{dimH(E) : with mΨ(E) = 1}.

Moreover, from the proof of Lemma 4.2, we have mΨ(B(x, r)) ≤ L1M
dβ rβ, where

β < s∗ is arbitrary. By the uniform mass distribution (namely Lemma 2.1 in Intro-

duction), it follows that s∗ ≤ dimH(mΨ) ≤ dimH F , since we can choose β arbitrarily

close to s∗.

We now show that dimH(F ) ≤ s∗. Choose any β > s∗ then for Hausdorff measure

Hβ we have

Hβ(F ) ≤ lim inf
k→∞

∑
ω∈Dk

diam(4ω)β ≤ lim inf
k→∞

∑
ω∈Dk

C(Ψ(k)
ω )β

≤ lim inf
k→∞

∑
ω∈Dk

C(Ψ(k)
ω )sk ≤ CL1

(
lim inf

k→∞

∑
ω∈Dk

mΨ(∆ω)

)
< ∞,

(4.33)
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where in the second line we take the infimum along the subsequence sk such that

sk < β (which holds infinitely often). Thus Hβ(F ) ≤ C and so dimH F ≤ β. Since

β > s∗ is arbitrary, it follows that dimH(F ) ≤ s∗. This completes the proof.

¤

Lemma 4.4. Consider a GMSC admitting a GMS F . Suppose that Ψ = {Ψ(k)} is

a (UE), (LE) vector and

d = inf
k∈N,1≤j≤nk+1

c
(k+1)
j > 0. (4.34)

Then

dimP F ≤ dimBF ≤ s∗.

Proof. We prove by contradiction. Suppose that dimB(F ) > s∗. Then by the

definition s∗ = lim supk→∞ sk, there exists a constant δ > 0 sufficiently small, such

that dimB(F )− 3δ > sk (eventually in k). By the definition of sk and the pressure

Pk : t 7→ Pk(t log φ(k)) is a decreasing analytic function for any k > 0, we have

Pk((dimB(F )− 3δ) log Φ(k)) < 0, (eventually in k). (4.35)

Denote dimBF = β, then by the definition of upper box dimension we have

lim sup
ε→0

log Nε(F )

− log ε
= β.

Therefore, we have the following scaling rules for estimating the number of balls:

∀ δ0 > 0, ∃ ε > 0 : Nε(F ) ≥ εδ0−β, (4.36)

Particularly choose δ0 = δ and take the corresponding ε-scale (ε = ε(δ)) Moran

covering {∆(j)
ω }, j = 1, · · · , N ε(F ) of F . Note that N ε(F ) ≥ Nε(F ). Since 0 < d ≤

sup
k∈N,1≤j≤nk+1

ck+1
j < 1, there exists A > 0 such that for j = 1, · · · , N ε0(F ) :

ε

A
≤ Ψ(n(ω))

ω ≤ ε. (4.37)

Hence there exist uniform constants C1 and C2 such that

C1 log(
1

ε
) ≤ n(xj) ≤ C2 log(

A

ε
).

In the Moran covering the n(ω) can take on at most C3 := C2 log(A
ε
)−C1 log(1

ε
) > 0

possible values.

By having N ε(F ) balls and C3 baskets, for N ε(F ) ≥ C3 there exists a basket

containing at least Nε

C3
balls. This implies that there exists a positive integer α :=
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α(δ) with C1 log(1
ε
) ≤ α ≤ C2 log(A

ε
) such that for a sufficient small ε,

]{ω such that n(ω) = α} ≥ N ε(F )

C3

≥ Nε(F )

C3

≥ εδ−β

C3

≥ ε2δ−β.

Recall that for any fixed number s, the pressure function φ(x) := s log Ψω1(w),

(where w := (ω1, ω2, . . .) ∈ [Dk] for any k > K) is only dependent on the first

coordinate ω1. Therefore,

(SnΦ)(x) =
n∑

j=1

Φ(σj
kx) = s log

n∏
j=1

Ψ(k)
ωj

,

and hence exp(SnΦ)(x) = (
∏n

j=1 Ψ
(k)
ωj )s. We now compute:

Pk(Φ(x)) = lim
n→∞

1

n
log

∑

w(n)∈[Dk]n

inf
x∈∆

w(n)

exp

(
n−1∑
j=0

s log([σj
kw(x)](1))

)
(4.38)

and

Pk(Φ(x)) = lim
n→∞

1

n
log


 ∑

w(n)∈[Dk]n

exp

(
n−1∑
j=0

log((Ψ(k)
ωj

)s)

)


= lim
n→∞

1

n
log


 ∑

w(n)∈[Dk]n

n−1∏
j=0

(Ψk
ωj

)s




= log

( ∑
ω∈Dk

(Ψ(k)
ω )s

)
,

where w(n) = (ω1, . . . , ωn) and ωi ∈ Dk.

Particular choosing k = α and s = dimB(F )−3δ = β−3δ, we can then estimate

the right hand side from below using the Moran cover. This gives:

Pα((β − 3δ)Ψ(α)
ω1

) ≥ log


 ∑

ω∈{∆(j)}
(Ψ(α)

ω )β−3δ




≥ log

(( ε

A

)β−3δ

ε2δ−β

)

= log(ε−δA3δ−β) ≥ 0.

(4.39)

The last positive inequality is based on the facts that the constant A is independent

of δ and ε−δ ≥ log(1/ε).

Repeating the above algorithm on a sequence {δ(k)}, we can then obtain count-

ably many equations as (4.39). This contradicts with (4.35), and implies the results.

¤
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Computation of lower bounds for box/packing dimensions

We now provide a lower bound for the box/packing dimensions when the construc-

tion is conformal.

Lemma 4.5. Suppose a GMS F satisfies the conformality condition (say the vector

Ψ is the corresponding conformal vector, as in Definition 4.8), then

dimB(F ) = s∗.

Proof. Based on Lemma 4.4, it suffices to prove the lower bound. For each β <

s∗, there exists a subsequence {sk} such that for each k, β < sk. Moreover, the

conformal condition implies that B(x,C−1Ψ
(k)
ω ) ⊆ 4ω, for each ω ∈ Dk. We recall

the equivalent definition of upper boxing dimension as (1.35) in Chapter 1. If let

W s(F ) := lim
r→0

sup{
∑

i

diam(Bi)
s : diam(Bi) ≤ r, B◦

i ∩B◦
j = ∅(i 6= j), Bi ∩ F 6= ∅},

then

dimB(F ) := sup{s : W s(F ) = ∞} = inf{s : W s(F ) = 0}.

Hence, we have:

W β(F ) ≥ lim sup
k→∞

∑
ω∈Dk

diam(B(x))β

≥ lim sup
k→∞

∑
ω∈Dk

C−1(Ψ(k)
ω )sk

≥ lim sup
k→∞

∑
ω∈Dk

C−1L−1
1 mΨ(4ω) > 0,

which implies that dimB(F ) > β. Since β is arbitrarily close to s∗, it follows that

dimB(F ) = s∗.

¤

Lemma 4.6. Suppose a GMS F satisfies the conformality condition, then dimP (F ) =

dimB(F ).

Proof. By Lemma 1.6, it suffices to show that for any open set V , dimB(F ∩ V ) ≤
dimB(F ) = s∗, provided F ∩ V 6= ∅. We do this as follows. Clearly dimB(F ∩ V ) ≤
dimB(F ). Moreover, for any open set V with F ∩V 6= ∅, there exists a ω̃ ∈ DN such

that 4ω̃ ⊂ V . Analogous to the proof in Lemma 4.5, take any β < s∗ then there
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exists a subsequence sk with β < sk, such that

W β(F ∩ V ) ≥ lim sup
k→∞

∑

ω∈Dk,4ω⊆4ω̃

diam(B(x,
1

C
Ψ(k)))β

≥ lim sup
k→∞

∑

ω∈Dk,4ω⊆4ω̃

C−1(Ψ(k))sk

≥ lim sup
k→∞

∑

ω∈Dk,4ω⊆4ω̃

C−1L−1
1 mΨ(4ω)

= C−1L−1
1 mΨ(4ω̃) > 0.

Hence we obtain s∗ = dimB(F ∩ V ) = dimB(F ), which completes the proof. ¤

Conformality implies (LE) property

The following lemma gives the relationship between conformality and (LE) property.

Lemma 4.7. If a vector Ψ is conformal, and

inf
k∈N,1≤j≤nk+1

c
(k+1)
j (ω) > 0,

then the vector Ψ satisfies (LE) property.

Proof. For any fixed 0 < r < 1, and any x ∈ F , consider the open ball B(x, r)

centered in x with radius of r, and let N(x, r) be the number of Moran covering

{4(j)} that have nonempty intersection with B(x, r). Hence

B(x, r)
⋃ (

∪N(x,r)
j=1 4(j)

)
⊆ B(x,R),

where

R = 2r + sup
j

diam(4(j)).

Using conformality condition and recalling from the definition of4(j), we can choose

elements 4ω(n) such that Ψ
(n)
ω ≥ r and Ψ

(n+1)
ω ≤ r. Therefore,

R ≤ 2r + sup
j

CΨ(k)
ωj
≤ 2r + d−1r,

and

diam(4(j)) ≥ C−1Ψ(k)
ωj
≥ C−1r.

Hence it follows that for each x ∈ F and 0 < r < 1

N(x, r) ≤ 2r + d−1r

C−1r
=

2 + d−1

C−1
< ∞.

Therefore the vector Ψ satisfies (LE) property.

¤
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Proof of Theorem 4.2

The proof of Theorem 4.2 is as follows. We claim first of all that dimH F ≤ s∗. The

proof of this claim follows step by step the proof of Lemma 4.3 via equation (4.33).

Hence it suffices to show only that dimH(F ) ≥ s∗.

Suppose β < s∗, then there exists a K ∈ N such that for all k ≥ K, sk > β.

Moreover for any ω ∈ D, (Ψ
(k)
ω )sk < (Ψ

(k)
ω )β.

Since log dk/ log Mk → 0, there exists an ε > 0 such that for all k ≥ K, M
ε/2
k <

dβ+ε
k and hence that M

ε/2
k /dβ+ε

k < 1.

Now take the Moran cover4(j) such that mk(4(j)) ≤ L1(Ψ
(k)
ω )sk < (Ψ

(k)
ω )β. Given

r > 0, the Moran cover 4(j)
ω has the property that (Ψ

(n(ω))
ω ) ≥ r and (Ψ

(n(ω)+1)
ω ) < r.

Since sk > β we choose ε sufficiently small so that sk > β + ε. Therefore, we obtain

the following series of estimates:

mΨ(B(x, r)) ≤
N(x,r)∑

j=1

mΨ(4(j)) ≤
N(x,r)∑

j=1

L1(Ψ
(k)
ω )β+ε

≤
N(x,r)∑

j=1

L1

dβ+ε
k(ω)

(Ψ(k+1)
ω )β+ε ≤

N(x,r)∑
j=1

L1M
ε/2

dβ+ε
k(ω)

(Ψ(k+1)
ω )β+ ε

2

≤ L1Mrβ+ ε
2 .

(4.40)

By the uniform mass distribution it follows that dimH(mΨ) ≥ s∗, since we can choose

β arbitrarily close to s∗ and ε arbitrarily close to 0. It follows that dimH(F ) ≥
dimH(mΨ) ≥ s∗ and hence we obtain dimH(F ) = s∗

We now turn to the box dimension. First consider the case where the vector

Ψ is upper-estimating, but the construction is not conformal. We can repeat the

proof of Lemma 4.4, but we note that the constant A appearing in equation (4.37)

is now dependent on ε. Taking again the Moran covering {∆j
ω}, j = 1, · · · , N ε(F )

of F at scale ε, we have Ψ
(n(ω)+1)
ω < r ≤ Ψ

(n(ω))
ω . Recalling that dk = min

1≤j≤nk+1

c
(k+1)
j ,

we obtain

ε > Ψ(n(ω)+1)
ω = Ψ(n(ω))

ω

(
Ψ

(n(ω)+1)
ω

Ψ
(n(ω))
ω

)
≥ dn(ω)+1Ψ

(n(ω))
ω ,

and hence Ψ
(n(ω))
ω ≤ εd−1

n(ω)+1. Since limk→∞
log dk

log Mk
= 0 it follows that for all η > 0,

there exists a K, such that ∀ k ≥ K, 1 > dk > Mη
k > 0, and therefore

Ψ(n(ω))
ω ≤ εM−η

k .

Hence by definition of Mk we obtain (for arbitrary η > 0): ε < Ψ
(n(ω))
ω ≤ ε

1
1+η .

Following step by step the proof of Lemma 4.4, we obtain dimB(F ) ≤ s∗.
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Calculation of dimB(F ) in the conformal case

We now prove that dimP F = dimBF = s∗ when the construction is conformal. First

of all note that for any η > s∗, there exists a K > 0 such that ∀k > K, sk < η.

Since limk→∞
log dk

log Mk
= 0 it follows that for all ε > 0, there exists a K such that

∀ k ≥ K, 1 > dk > M ε
k > 0. In particular, for any given η and ε, we can choose K

such that dη
k > M ε

k. At a scale r > 0, we take the Moran cover by using sets 4(j)
ω

with the property Ψ
(n(ω))
ω > r and Ψ

n(ω)+1
ω ≤ r. Since the construction is conformal

there exists a C > 0 such that

4(j)
ω ⊆ B(x,Cr),

where B(x, r) is the open ball of radius r with the center x. Hence we have the

following series of estimates for k sufficiently large:

mΨ(B(x,Cr)) ≥ mk(4(j)) ≥ L−1
1 (Ψ(k)

ω )s∗+ ε
2

≥ L−1
1 (Ψ(k)

ω )s∗+ ε
2

(
M

ε/2
k

ds∗+ε
k

)

≥ L−1
1

(Ψ
(k)
ω )s∗+ε

ds∗+ε
k

≥ L−1
1 (Ψ(k−1)

ω )s∗+ε/2 ≥ L5r
s∗+ε/2.

By the uniform mass distribution principle, it follows that dimP (F ) < s∗ + ε/2.

Since ε is arbitrary, combining with the fact that dimP F = dimB(F ), it follows

that dimB(F ) < s∗. The lower bound for the upper-box dimension follows from

Lemma 4.5.

¤
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Appendix A

Multidimensional bounded

variation functions

This appendix introduces the notions of multidimensional bounded variation, Sobolev

space, piecewise rotations and interval translation maps, which are particularly used

in Chapter 2.

A.1 Bounded variation

We introduce the usual notion of bounded variation in one dimension followed by

definitions of multidimensional bounded variation.

Let η ∈ L1(R) and [a, b] be an interval outside of which η(x) = 0. The total

variation of η is defined to be

V (η) := sup
r−1∑
i=0

|η(xi+1)− η(xi)|,

where “sup” is taken over all possible finite partitions of the interval [a, b] by points

x0 = a < x1 < · · · < xr = b. The essential total variation of η is defined as

V̄ (η) := infu V (η + u), where the “inf” is taken over all functions u that equal zero

almost everywhere on [a, b] [120].

Next, we proceed to describe a definition of multidimensional bounded variation.

Let Ω be an open subset of Rd and η ∈ L1(Ω) be a function with compact support.

We regard η(xi) as a function of the variable xi for the other variables fixed and

denote by V̄i(x
′
i) the essential total variation of the function η with respect to xi for

a fixed point x′i = {x1, x2, · · · , xi−1, xi+1, · · · , xd}.

Definition A.1. [120] Suppose Ω is an open subset of Rd. A function η ∈ L1(Ω)

with compact support is said to be of bounded variation if the integrals

∫
V̄i(x

′
i)dx′i < ∞, (i = 1, 2, · · · , n).
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We give a further definition of bounded variation below.

Definition A.2. [120, p158] Suppose Ω is an open subset of Rd and a function

η ∈ L1(Ω), then η is said to be of bounded variation if there exists a constant K

such that ∣∣∣∣
∫

Ω

∂φ

∂xi

ηdx

∣∣∣∣ ≤ K sup
x∈Ω

|φ(x)|, (i = 1, 2, · · · , d), (A.1)

for all φ ∈ C1
c (Ω,R).

Definition A.1 and Definition A.2 coincide for functions η ∈ L1(Ω) with com-

pact support [120]. Moreover, we show the equivalence between Definition A.2 and

Definition 2.2 in Section 2.1.1 via the following proposition.

Proposition A.1. Suppose Ω is an open subset of Rn and η ∈ L1(Ω). Then var(η) <

∞ (recall that var(·) is defined in Definition 2.2) if and only if the inequality (A.1)

holds for all φ ∈ C1
c (Ω,R).

Proof: “⇒”. Suppose that var(η) < ∞, then by Definition 2.2,

∣∣∣∣
∫

Ω

η(x) div
−→
φ (x)dx

∣∣∣∣ ≤ var(η)||−→φ ||∞, ∀−→φ ∈ C1
c (Ω,Rd), (A.2)

For any φ ∈ C1
c (Ω,R), let

−→
φi = (

i−1︷ ︸︸ ︷
0, · · ·, φ, · · · , 0), then the inequality (A.2) holds for−→

φ i. This implies that inequality (A.1) holds for all C1
c (Ω,Rd).

“⇐”. By the inequality (A.1) and Definition 2.2, it is clear that var(η) ≤ d ·K <

∞ where d is the dimension constant. ¤

A.2 Sobolev space W 1,2

Definition A.3. [64] Suppose Ω is an open set in Rd. The Sobolev space W 1,2(Ω)

is defined to be the set of all functions u ∈ L2(Ω) such that for every multi-index

α = (α1, · · · , αd) with αi ≥ 0 and |α| :=
∑d

j=1 αj ≤ 1, the weak partial derivative

Dαu belongs to L2(Ω), i.e.,

W 1,2(Ω) = {u ∈ L2(Ω) : Dαu ∈ L2(Ω),∀ |α| ≤ 1}.

We define a norm on W 1,2(Ω) by

||u||W 1,2 := (
∑

|α|≤1

∫

Ω

|Dαu|2dm)1/2.

The Sobolev space W 1,2(Ω) with norm || · ||W 1,2 is a Hilbert subspace of BV (Ω).

We state the following Banach-Saks theorem which is applied to the Sobolev space

W 1,2 in Lemma 2.5.
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Banach-Saks Theorem [64] Let {xn}n∈N be a sequence from a Hilbert space

H with ||xn||H ≤ K (independent of n), then there exists a subsequence {xnj
}j∈N

and an x ∈ H such that

1

k

k∑
j=1

xnj
→ x, as k →∞

in || · ||H .

A.3 Piecewise rotations

Definition A.4. [47] Let X be a compact subset of C. A map T : X → X is called

a piecewise rotation with a partition P := {ω0, · · · , ωr−1} if

T |ωj
x = ρjx + zj, x ∈ ωj

for some complex numbers zj and ρj such that |ρj| = 1 for all j = 0, 1, · · · , r − 1.

The atoms are assumed to be mutually disjoint convex polygons.

It is clear that piecewise rotations are PWIs in R2 with a topological partition

P and are homeomorphisms when restricting on each atom.

A.4 Interval translation maps and interval exchange

transformations

Definition A.5. Let I = [0, 1) be an interval and 0 = β0 < β1 < · · · < βr = 1 be a

finite partition of I. An interval map T : I → I is said to be an interval translation

map [18] if

T (x) = x + γi, βi−1 ≤ x < βi,

where each γi is a fixed real number. Particularly, if T maps I onto itself then T is

called an interval exchange transformation.
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Permutations preserving mixing

for mx mod 1

Our main goal in this appendix is the proof of Theorem 3.1. In §B.1, we prove state-

ment (i), and, in the setting of statement (ii), give a group theoretic interpretation

of those σ for which σ◦f is not mixing. The asymptotic analysis needed to complete

the proof of Theorem 3.1 is given in §B.2. In §B.3 we give explicit formulae for the

proportion of non-mixing permutations for small values of `.

The calculations are mainly combinatorial. It is to acknowledge that Nigel Byott

contributes to these results.

B.1 When is σ ◦ f non-mixing?

Recall that f(x) = mx mod 1 and σ ∈ SN , and that we partition the unit interval

into subintervals Ia = [a/N, (a + 1)/N) for a ∈ {0, 1, . . . , N − 1}. We identify the

indexing set {0, . . . , N − 1} with the the ring Z/NZ of integers modulo N , so that

arithmetic in this indexing set is to be interpreted as arithmetic modulo N .

To begin with, we allow arbitrary m, N ≥ 2. We set g = σ ◦ f .

Definition B.1. For any subset A ⊆ Z/NZ, we define

f̃(A) =
m−1⋃

d=0

(mA + d) ⊆ Z/NZ, g̃(A) = σ(f̃(A)).

Proposition B.1. For each A ⊆ Z/NZ, we have

f

(⋃
a∈A

Ia

)
=

⋃

b∈f̃(A)

Ib, g

(⋃
a∈A

Ia

)
=

⋃

b∈g̃(A)

Ib.
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Proof. This is immediate since for each j ∈ Z/NZ we have

f(Ij) =
m−1⋃

d=0

Imj+d, σ(Ij) = Iσ(j).

Proposition B.2. For each A ⊆ Z/NZ, we have

]A ≤ ]f̃(A) ≤ m]A.

Moreover, suppose that 0 < ]A < N . Then we have ]f̃(A) = ]A if and only if the

following two conditions hold:

(i) N = m` for some integer `;

(ii) A is a union of cosets of `Z/NZ (that is, j ∈ A ⇒ j+` ∈ A for all j ∈ Z/NZ).

Proof. If b ∈ f̃(A) then b ≡ ma + d (mod N) for at least one of the m]A pairs

(a, d) with a ∈ A and 0 ≤ d < m. Hence ]f̃(A) ≤ m]A. Now fix one pair (a0, d0).

If another pair (a, d) gives the same element b then

ma + d ≡ ma0 + d0 (mod N). (B.1)

Thus d ≡ d0 (mod s), where s = gcd(m,N). This gives m/s possibilities for d.

For each of these, (B.1) has s solutions a in Z/NZ, all congruent mod N/s (but in

general not all in A). So each b arises from at most m of the pairs (a, d), giving

]f̃(A) ≥ ]A. This proves the first assertion.

If ]f̃(A) = ]A, then each b must arise from exactly m pairs (a, d). Thus given

a0 ∈ A, we may take d = d0 = 0, and the s solutions a to (B.1) must all lie in A.

This shows that a0 + N/s ∈ A, so that A is stable under addition of N/s.

First suppose (i) holds. Then N/s = `, so that if ]f̃(A) = ]A then (ii) holds.

Conversely, if (i) and (ii) hold, then each b ∈ f̃(A) arises from m pairs (a + j`, d)

with 0 ≤ j < m, so that ]f̃(A) = ]A.

It remains to show that if (i) does not hold and ]f̃(A) = ]A > 0 then A = Z/NZ.

So let m = es with e > 1, and let a0 ∈ A. Since s < m, we may take d0 = s in (B.1).

But (B.1) must have s solutions for each of the possible values d ≡ d0 (mod s) with

0 ≤ d < m, so we can find a1 ∈ A with ma1 ≡ ma0+s (mod N). Then ea1 ≡ ea0+1

(mod N/s). Iterating, we can find aj ∈ A with eaj ≡ eaj−1+1 ≡ ea0+j (mod N/s)

for j ≥ 1. As gcd(e,N/s) = 1, we have ae ≡ a0 + 1 (mod N/s). Since we already

know that A is stable under addition of N/s, it follows that A is stable under addi-

tion of 1, so that A = Z/NZ.
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Corollary B.1. For any A ⊆ Z/NZ, we have

]g̃(A) ≥ ]A.

Moreover, if A is a proper subset of Z/NZ then equality can only occur if N = `m

for some integer `.

Proof. This is clear since ]g̃(A) = ]f̃(A).

Lemma B.1. g fails to be (topologically) mixing if and only if there is some proper

subset A of Z/NZ such that ]g̃r(A) = ]A for all r ≥ 0.

Proof. Let A be a subset with 0 < ]A < N and ]g̃r(A) = ]A for all r. As

there are only finitely many subsets of Z/NZ, we may choose s ≥ 0 and t ≥ 1 with

g̃s+t(A) = g̃s(A). Set B = g̃s(A) and take non-empty open sets U ⊂ Ij and V ⊂ Ik

where j ∈ B and k 6∈ B. Then for all n ≥ 0 we have gnt(U) ⊆ ⋃
b∈B Ib so that

gnt(U) ∩ V = ∅. Hence g is not mixing.

Conversely, suppose there is no proper subset A with ]g̃r(A) = ]A for all r.

To see that g is mixing, we show that for any non-empty open subset U of [0, 1)

we have gn(U) = [0, 1) for large enough n. Without loss of generality, U is an

interval of length δ > 0. Since m > 1, we can choose h large enough that gh(U)

contains the initial point j/N of some interval Ij. Then for some ε > 0, we have

[j/N, j/N + ε) ⊆ gh(U)∩ Ij. Choose k so that mkε > 1/N and let gk(j/N) = j′/N .

Then Ij′ ⊂ gk(Ij) ⊂ gh+k(U). Now let B = {j′} and take s ≥ 0, t ≥ 1 with

g̃s+t(B) = g̃s(B). The non-empty set A = g̃s(B) then satisfies the condition

g̃nt(A) = A for all t ≥ 0. Hence, by Corollary B.1, we have ]g̃r(A) = ]A for all

r ≥ 0. Thus our hypothesis forces A = Z/NZ, so that gq(Ij′) = [0, 1) for all q ≥ s.

It follows that gn(U) = [0, 1) for all n ≥ h + k + s, as required.

Proof of Theorem 3.1(i). Suppose that N is not a multiple of m, and let g = σ ◦ f

with σ ∈ SN . By Corollary B.1 there is no proper subset A with ]g̃(A) = ]A. Hence

by Lemma B.1, g is mixing.

We now suppose that N = m` for some integer ` ≥ 1.

Proposition B.3. There exists a permutation δ ∈ SN such that

f(Ij) ⊇ Iδ(j) for all j ∈ Z/NZ. (B.2)

For any such δ, and any A ⊆ Z/NZ, the following are equivalent:

(i) ]g̃(A) = ]A;

(ii) A is a union of cosets of the subgroup `Z/NZ of Z/NZ;
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(iii) σδ(A) = g̃(A).

Proof. To prove the first assertion, we exhibit a permutation δ with the required

property. For 0 ≤ i < N , write i = j + c` with 0 ≤ c < m and 0 ≤ j < `, and set

δ(i) = mj + c. It is routine to verify that δ ∈ SN , and, as

f(Ij) =
m−1⋃

d=0

Imj+d,

the condition (B.2) holds.

Now fix a choice of δ ∈ SN satisfying (B.2). Since ]g̃(A) = ]f̃(A), the equivalence

of (i) and (ii) follows from Proposition B.2. Since σδ ∈ SN , it is immediate that

(iii)⇒(i). It remains to show that (ii)⇒(iii).

Since f(Ij) = f(Ij+`) for each j, it follows from (B.2) that δ takes the m elements

j + c`, 0 ≤ c < m to the m elements mj + d, 0 ≤ d < m in some order. Thus, if (ii)

holds, δ takes each coset a + `Z/NZ contained in A to f̃({a}). Thus δ(A) = f̃(A),

and applying σ gives (iii).

We consider partitions Z/NZ into disjoint non-empty sets: Z/NZ = A1∪. . .∪At.

We call the set B = {A1, . . . , At} of subsets of Z/NZ a block decomposition of Z/NZ,

and refer to the Ai as blocks. We say that B is trivial if t = 1, and that B is `-stable

if, for any j ∈ Z/NZ and 1 ≤ r ≤ t, we have j ∈ Ar ⇒ j+` ∈ Ar. Thus B is `-stable

if and only if each Ar is a union of cosets of the subgroup `Z/NZ of Z/NZ. If B =

{A1, . . . , At} is a block decomposition and σ ∈ SN , then σB = {σ(A1), . . . , σ(At)}
is also a block decomposition, and we define the stabiliser GB of B as

GB = {σ ∈ SN : σ(B) = B}.

Then GB is a subgroup of SN .

Lemma B.2. Let f(x) = mx mod 1 and let N = m`. Let δ be as in Proposition

B.3. Then, for any σ ∈ SN , the composite g = σ ◦ f fails to be mixing if and only if

there is some non-trivial `-stable block decomposition B of Z/NZ such that σδ ∈ GB.

Proof. Let σδ ∈ GB for some non-trivial, `-stable block decomposition B, and

let A be a block of B. Then A is a proper subset of Z/NZ which is a union of cosets

of `Z/NZ. Thus g̃(A) = σδ(A) by Proposition B.3, and this set is also a block of B.

Inductively, we then have g̃r(A) = (σδ)r(A), and hence ]g̃r(A) = ](σδ)r(A) = ]A,

for all r ≥ 0. It then follows from Lemma B.1 that g is non-mixing.

Conversely, suppose that g is non-mixing. By Lemma B.1, there is a proper

subset A of Z/NZ such that ]g̃r(A) = ]A for all r ≥ 0. By Proposition B.3 and

induction, g̃r(A) = (σδ)r(A) for all r ≥ 0. Moreover, each (σδ)r(A) is a union of

cosets of `Z/NZ. Since σδ is a permutation, it follows that (σδ)s(Ac) is also a union
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of cosets for each s ≥ 0, where Ac is the complement of A. Let B̃ be set of all

intersections of the sets (σδ)r(A), (σδ)s(Ac) for r, s ≥ 0. Thus B̃ is a collection of

subsets of Z/NZ, each of which is a union of cosets of `Z/NZ. Let B be the col-

lection of minimal non-empty sets in B̃. Then B is an `-stable block decomposition

and σδ ∈ GB. Moreover, B is non-trivial since A is a union of blocks of B.

Remark B.1. A similar argument shows that f ◦ σ is non-mixing if and only if

δσ ∈ GB for some non-trivial `-stable block decomposition.

B.2 Asymptotic behaviour as ` →∞
We continue to assume N = m`. We shall investigate the proportion of permutations

which do not preserve mixing:

p(`,m) =
]{σ ∈ Sm` : σ ◦ f is not mixing }

(m`)!
. (B.3)

By Lemma B.2, this is the proportion of permutations such that σδ is in the stabiliser

of at least one non-trivial `-stable block decomposition.

The following Lemma will complete the proof of Theorem 3.1.

Lemma B.3. When N = m` with ` ≥ 6, we have

p(`,m) < 11

(
2e

`

)m−1

.

In particular, for each fixed m ≥ 2 we have p(`,m) → 0 as ` →∞.

From Lemma B.2 we have

p(`,m) ≤ 1

(m`)!

∑

B

]GB, (B.4)

where the sum is over all non-trivial `-stable block decompositions B. (This is not

an equality since the GB are not disjoint.) Given integers 1 ≤ r1 ≤ . . . ≤ rj with

r1 + · · ·+rj = `, we consider the contribution to (B.4) from all block decompositions

B with block sizes mr1, . . . , mrj. The number of such block decompositions can be

found as follows. Let us set

ni(r1, . . . , rj) = ]{h : rh = i}

and

d(r1, . . . , rj) =
∏̀
i=1

ni(r1, . . . , rj)!.
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Then the number of `-stable block decompositions B of {1, . . . , m`} with block sizes

mr1, . . . , mrj is
1

d(r1, . . . , rj)

(
`

r1, . . . , rj

)
,

where (
`

r1, . . . , rj

)
=

`!

r1! . . . rj!

is the multinomial coefficient. Moreover, any such B is preserved by a group of

permutations Smr1 × · · · × Smrj
permuting the elements within each block, but we

can also permute the blocks of any given size amongst themselves. Thus we have

]GB = d(r1, . . . , rj)

(
j∏

h=1

(mrh)!

)
.

The contribution to (B.4) from block decompositions with block sizes mr1, . . . , mrj

is therefore

1

(m`)!

[
d(r1, . . . , rj)

(
j∏

h=1

(mrh)!

)] [
1

d(r1, . . . , rj)

(
`

r1, . . . , rj

)]

which simplifies to (
`

r1, . . . , rj

)(
m`

mr1, . . . , mrj

)−1

.

Thus we may rewrite (B.4) as

p(`,m) ≤
∑̀
j=2

bj(`), (B.5)

where

bj(`) =
∑

1≤r1≤...≤rj

r1+...+rj=`

(
`

r1, . . . , rj

)(
m`

mr1, . . . , mrj

)−1

.

The definition of bj(`) makes sense for j = 1, giving b1(`) = 1.

Proposition B.4. For 2 ≤ j ≤ `, we have

bj(`) ≤
b`/jc∑
r=1

(
`

r

)(
m`

mr

)−1

bj−1(`− r).

Proof. Separating out r1 in the definition of bj(`), we may write

bj(`) ≤
b`/jc∑
r1=1

∑
1≤r2≤...≤rj

r2+···+rj=`−r1

(
`

r1, . . . , rj

)(
m`

mr1, . . . , mrj

)−1

.
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(Note that we have “≤” rather than “=” since the condition r2 ≥ r1 has been

weakened to r2 ≥ 1.) The result then follows on using the (easily verified) identity

(
`

r1, . . . , rj

)
=

(
`

r1

)(
`− r1

r2, . . . , rj

)
,

together with the corresponding identity where all the arguments are multiplied by

m.

Proposition B.5. Suppose that m ≥ 2 and ` ≥ 3. Then, for 1 ≤ j ≤ `, we have

bj ≤
(

2e

`

)(m−1)(j−1)

. (B.6)

Proof. We argue by induction on j. The result holds for j = 1 since b1(`) = 1.

Suppose that 2 ≤ j ≤ ` and that the result holds for j − 1. From Proposition B.4,

we have

bj(`) ≤
(

`

1

)(
m`

m

)−1

bj−1(`− 1) +

b`/jc∑
r=2

(
`

r

)(
m`

mr

)−1

bj−1(`− r). (B.7)

For the first term, we have the estimate

(
`

1

)(
m`

m

)−1

bj−1(`− 1) ≤ ` (m!)

(m`)(m`− 1) . . . (m`− ` + 1)

(
2e

`− 1

)(m−1)(j−2)

≤ (m− 1)!

mm−1(`− 1)m−1

(
2e

`
· `

`− 1

)(m−1)(j−2)

=
1

2

(
1

2
· `

`− 1
· 2

`

)m−1 (
2e

`
· `

`− 1

)(m−1)(j−2)

≤ 1

2mem−1

(
2e

`

)(m−1)(j−2) (
`

`− 1

)(m−1)(j−1)

.

But (
`

`− 1

)(m−1)(j−1)

≤
(

`

`− 1

)(m−1)(`−1)

< em−1

since (1+ 1
n
)n is an increasing function of n and (1+ 1

n
)n → e as n →∞. As m ≥ 2,

it follows that (
`

1

)(
m`

m

)−1

bj−1(`− 1) ≤ 1

4

(
2e

`

)(m−1)(j−1)

. (B.8)

We now consider each term in the sum in (B.7). For 2 ≤ r ≤ b`/jc, we have

(
`

r

)m

≤
(

m`

mr

)
.

(This is obvious combinatorially: some of the ways of choosing mr objects from m`
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are given by choosing r objects from the first `, then another r from the second `,

and so on.) Also, since 2 ≤ r ≤ `/2, we have

(
`

2

)
≤

(
`

r

)
.

Thus (
`

r

)(
m`

mr

)−1

≤
(

`

r

)1−m

≤
(

`

2

)1−m

=
2m−1

`m−1(`− 1)m−1
.

From the induction hypothesis, we have

bj−1(`− r) ≤
(

2e

`− r

)(m−1)(j−2)

≤
(

2e

`

)(m−1)(j−2) (
j

j − 1

)(m−1)(j−2)

,

and
(
j/(j − 1)

)j−2
<

(
j/(j − 1)

)j−1
< e. Thus

b`/jc∑
r=2

(
`

r

)(
m`

mr

)−1

bj−1(`− r) <
`

j

2m−1

`m−1(`− 1)m−1

(
2e

`

)(m−1)(j−2)

em−1

=
`

j(`− 1)m−1

(
2e

`

)(m−1)(j−1)

.

But as j ≥ 2, m ≥ 2 and ` ≥ 3, we have

`

j(`− 1)m−1
≤ `

2(`− 1)
≤ 3

4
.

Substituting the last estimate and (B.8) into (B.7), we therefore obtain

bj ≤
(

2e

`

)(m−1)(j−1)

,

which completes the induction.

Proof of Lemma B.3. Since we are assuming ` ≥ 6, we have 2e/` < 1. It then

follows from (B.5) and Proposition B.5 that

p(`,m) <
∞∑

j=2

(
2e

`

)(m−1)(j−1)

=

(
2e

`

)m−1
[
1−

(
2e

`

)m−1
]−1

.

As m ≥ 2 and 2e/` < 10
11

, this gives

p(`,m) <

[
1−

(
2e

`

)]−1 (
2e

`

)m−1

< 11

(
2e

`

)(m−1)

,
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as required.

B.3 The proportion of non-mixing permutations

In this section, we will use the Inclusion-Exclusion Principle (see e.g. [114, p. 21]) to

give explicit formulae for the proportion p(`,m) of non-mixing permutations when

N = m` with ` small.

The stabiliser of any non-trivial `-stable block decomposition contains the sub-

group H ∼= Sm × . . . × Sm of order (m!)` which permutes the m elements of each

coset amongst themselves. In order to refer to specific block decompositions, we

let C1, . . . , C` denote the cosets of `Z/NZ in Z/NZ (in some order). Giving an

`-stable block decomposition amounts to giving a partition of {C1, . . . , C`}, and

we denote the block decomposition by the corresponding partition of the set of in-

dices {1, . . . , `}. Thus {1, . . . , `−1}, {`} represents the `-stable block decomposition

consisting of the two blocks C1 ∪ . . . ∪ C`−1 of size (`− 1)m and C` of size m.

` = 1

The only `-stable block decomposition is the trivial one, so g = σ ◦ f is mixing for

all σ, and p(1,m) = 1.

` = 2

There is only one non-trivial `-stable block decomposition. This has two blocks,

each of size m. Its stabiliser contains H and also contains elements swapping the

two blocks, so has order 2]H. Thus

p(2,m) =
2]H

(2m)!
=

(
2m− 1

m

)−1

.

In particular, taking m = 2, we get p(2, 2) = 1/3. Thus, when the doubling map

f(x) = 2x mod 1 is composed with permutations σ of the 4 equal subintervals of

[0, 1), those σ ∈ S4 for which f ◦ σ is not mixing form a single coset of a subgroup

of index 3 in S4. (Any such subgroup is dihedral of order 8.)

` = 3

There are 4 non-trivial `-stable block decompositions:

(i) {1, 2}, {3}; (ii) {1, 3}, {2}; (iii) {2, 3}, {1}; (iv) {1}, {2}, {3}.
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The stabiliser of any one of the block decompositions (i), (ii), (iii) has order (2m)!m! =(
2m
m

)
]H since it contains any permutation of the 2m elements in the block consisting

of 2 cosets. The stabiliser of the block decomposition (iv) has order 6]H since we

may permute the 3 blocks amongst themselves in 3! = 6 ways.

We now consider the stabilisers of any of the
(
4
2

)
= 6 pairs of the block decom-

positions. First consider the 3 pairs consisting of any two of (i), (ii) or (iii). Any

permutation fixing such a pair must fix each coset, so the stabiliser of any of these

3 pairs is just H. A permutation stabilising (say) (i) and (iv) could also swap the

cosets C1 and C2, so the stabilisers of the other 3 pairs have orders 2]H. The sta-

biliser of any 3 (or all 4) block decompositions is again just H. Thus the precise

number of permutations in S3m fixing at least one of the block decompositions is

(
3

(
2m

m

)
+ 6− 3− 3× 2 +

(
4

3

)
− 1

)
]H = 3

(
2m

m

)
]H = 3(2m)!m!.

Hence

p(3,m) =
1

(3m)!
× 3(2m)!m! =

(
3m− 1

2m

)−1

.

In particular, p(3, 2) = 1/5.

` = 4

There are 14 non-trivial `-stable block decompositions, but we only need to consider

the 4 block decompositions with block sizes 3, 1 and the 3 block decompositions with

block sizes 2, 2, since any permutation stabilising a non-trivial block decomposition

must stabilise one of these. We can then apply to the Inclusion-Exclusion Principle

to the stabilisers of these 7 block decompositions, by considering all possible pairs,

and, for each pair, considering any ways of extending the pair to a larger subset of

the blocks with stabiliser larger than H. After some simplification, we obtain the

formula

p(4,m) =

[
4

(
3m

m,m, m

)
+ 6

(
2m

m

)2

− 12

(
2m

m

)]
(m!)4

(4m)!
.

In particular, we find

p(4, 2) =
1

5
, p(4, 3) =

37

1540
.

Note that, in contrast to the cases ` = 2 and ` = 3, p(4,m) is not in general the

reciprocal of an integer.
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[106] F. Przytycki and M. Urbański. Conformal fractals: ergodic theory methods.

Cambridge University Press, Cambridge, 2011.

[107] W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York-

Toronto, Ont.- London, 1966.

[108] D. Ruelle. The theormdynamics formalism for expanding maps. Comm. Math.

Phys., 125:239–262, 1989.

[109] D. Ruelle. Thermodynamic formalism. The mathematical structures of equi-

librium statistical mechanics (Second edition). Cambridge University Press,

Cambridge, 2004.

[110] B. Saussol. Absolutely continuous invariant measures for multidimensional

expanding maps. Isr. J. Math, 116:223–248, 2000.

[111] H. H. Schaefer. Banach lattices and positive operator. Springer-Verlag, New

York-Heidelberg, 1974.

[112] Y. G. Sinai. Gibbs measures in ergodic theory. (Russian). Uspehi Mat. Nauk,

27:21–64, 1972.

[113] Y. G. Sinai. Phase transitions: rigorous results. Pergamon Press, Oxford-

Elmsford, N.Y., 1982.

[114] A. Slomson. An introduction to combinatorics. Chapman and Hall. London,

1991.

[115] D. Thomine. A spectral gap for transfer operators of piecewise expanding

maps. Discrete Contin. Dyn. Syst., 30:917–944, 2011.

[116] M. Tsujii. Piecewise expanding maps on the plane with singular ergodic prop-

erties. Ergod. Theor. & Dyn. Syst., 20:1851–1857, 2000.

113



REFERENCES

[117] W. Veech. Gauss measures for transformations on the space of interval ex-

change maps. Ann. of Math., 115:201–242, 1982.

[118] M. Viana. Stochastic dynamics of deterministic systems. Braz. Math. Colloq.

21, IMPA, 1997. Downloaded from http://w3.impa.br/ viana/.

[119] M. Viana. Dynamics of interval exchange transformations and Teichmüller

flows (Lecture notes). 2008. Downloaded from http://w3.impa.br/ viana/.

[120] A. I. Vol’pert and S. I. Hudjaev. Analysis in classes of discontinuous func-

tions and equations of mathematical physics. Martinus Nijhoff Publishers,

Dordrecht, 1985.

[121] P. Walters. An introduction to ergodic theory. Springer-Verlag, New York-

Berlin, 1982.

[122] L. S. Young. Recurrence times and rates of mixing. Isr. J. Math., 110:153–188,

1999.

[123] Y. Zhang and C. Lin. Invariant measures with bounded variation densities for

piecewise area-preserving maps. Ergod. Theor. & Dyn. Syst., 2012.
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