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Abstract 

The main aim of this project was to examine the effects of introducing hierarchy into 

honeycombs and determining the variables that preside over the global response of the 

structure. Specifically to understand how the in and out-of-plane elastic and non-linear 

plastic properties of honeycombs were affected by hierarchy. Analytical analysis of 

hierarchical honeycombs has been used to explain and predict the response of finite 

element simulations validated by experimental investigations.  

The early stage of the investigation focused on finding if the elastic modulus could be 

maintained or improved on an equal density basis due to the introduction of hierarchy. It 

is clear that honeycombs are sensitive to hierarchical sub-structures, particularly the 

fraction of mass shared between the super-and sub-structures. Introduction of an 

additional level of hierarchy without reducing performance is difficult, but was possible 

by functional grading. Another original result was that it was determined when the sub-

structure could be assumed to be a continuum of the super-structure. Meaning the 

material properties from a single unit sub-cell could be used as the constituent material 

properties of the super-structure, as in previous work by (Lakes 1993) and (Carpinteri et 

al 2009) for example.  

Work investigating the in-plane, non-linear plastic response of hierarchical honeycombs 

showed that the introduction of hierarchy into honeycombs can have the effect of 

delaying the onset of elastic buckling, which is a common failure mechanism for low 

relative density structures. As such it was possible to achieve a marked increase in the 

recoverable energy absorbed by hierarchical honeycombs prior to elastic buckling or 

plastic yield. The potential benefits are less apparent in higher relative density 

structures due to the onset of plasticity becoming the first mode of failure. The out-of-

plane properties also investigated showed no increase in the elastic properties due to the 

introduction of hierarchy, but showed a marked increase in the out-of-plane elastic 

buckling stress of 60% when compared to a conventional hexagonal honeycomb of the 

same relative density. 
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