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Abstract 

This thesis is made up of three parts: i) the development of a comprehensive computational 

model of the pulmonary (patho)physiology of healthy and diseased lungs, ii) the application of a 

novel optimisation-based approach to validate this computational model, and iii) the use of this 

model to optimise mechanical ventilator settings for patients with diseased lungs.   

The model described in this thesis is an extended implementation of the Nottingham 

Physiological Simulator (NPS) in MATLAB. An iterative multi-compartmental modelling 

approach is adopted, and modifications (based on physiological mechanisms) are proposed to 

characterise healthy as well as diseased states.  

In the second part of the thesis, an optimisation-based approach is employed to validate the 

robustness of this model. The model is subjected to simultaneous variations in the values of 

multiple physiologically relevant uncertain parameters with respect to a set of specified 

performance criteria, based on expected levels of variation in arterial blood gas values found in 

the patient population. Performance criteria are evaluated using computer simulations. Local 

and global optimisation algorithms are employed to search for the worst-case parameter 

combination that could cause the model outputs to deviate from their expected range of 

operation, i.e. violate the specified model performance criteria. The optimisation-based analysis 

is proposed as a useful complement to current statistical model validation techniques, which are 

reliant on matching data from in vitro and in vivo studies. 

The last section of the thesis considers the problem of optimising settings of mechanical 

ventilation in an Intensive Therapy Unit (ITU) for patients with diseased lungs. This is a 

challenging task for physicians who have to select appropriate mechanical ventilator settings to 

satisfy multiple, sometimes conflicting, objectives including i) maintaining adequate 

oxygenation, ii) maintaining adequate carbon dioxide clearance and iii) minimising the risks of 

ventilator associated lung injury (VALI). Currently, physicians are reliant on guidelines based 

on previous experience and recommendations from a very limited number of in vivo studies 

which, by their very nature, cannot form the basis of personalised, disease-specific treatment 

protocols. This thesis formulates the choice of ventilator settings as a constrained multi-
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objective optimisation problem, which is solved using a hybrid optimisation algorithm and a 

validated physiological simulation model, to optimise the settings of mechanical ventilation for 

a healthy lung and for several pulmonary disease cases. The optimal settings are shown to 

satisfy the conflicting clinical objectives, to improve the ventilation perfusion matching within 

the lung, and, crucially, to be disease-specific.  
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Abbreviations and Nomenclature 

BIR:  Bronchial Inlet Resistance, airway resistance of assigned to each alveolar 

compartment. 

C: content (concentration) [ml l
-1]

 e.g. CaO2: ml of O2 per litre of arterial blood. 

CO: cardiac output [ml min
-1

] 

CO2: Carbon dioxide  

FiO2:  Fraction of inspired air constituting of oxygen. 

FRC: Functional residual Capacity [ml]. 

FRCnominal: Nominal value of FRC used in the model = 3000ml. 

Hb: Haemoglobin content in blood [gm l
-1

] 

HPV: Hypoxic Pulmonary Vasoconstriction 

I:E : Inspiratory to Expiratory Ratio 

N2: Nitrogen 

NPS: Nottingham Physiology Simulator 

O2: Oxygen  

P: Partial pressure [kPa] e.g. PO2 – Partial pressure of oxygen, PalvO2: Partial pressure of 

oxygen in alveolar compartment, PvO2: Partial pressure of oxygen in venous 

compartment. 

PEEP: Positive End Expiratory Pressure [cmH2O] 
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PVR: Pulmonary Vascular Resistance, blood flow resistance assigned to each 

pulmonary capillary compartment. 

Q: Perfusion distribution of the lung [ml] 

RQ: Respiratory Quotient 

S: Saturation (0-100%) e.g. SO2 – arterial saturation of haemoglobin with oxygen. 

T: Temperature [°c] 

TIR: the combined resistance of all alveolar compartments 

TLC: Total Lung Capacity [ml]. 

TOP: Threshold Opening Pressure. Extra pressure within the collapsed alveolar 

compartment. 

V/Q: Ventilation Perfusion Ratio 

V: Ventilation distribution in the lung [ml] 

VALI: Ventilator Associated Lung Injury 

VentRate: Respiration rate set by the ventilator [breaths per minute, bpm] 

VO2: oxygen consumption [ml min
-1

] 

Vtidal: Tidal Volume [ml] 

α   : Resistance multiplier of size n, where n is the total number of diseased 

compartments in the model. α is used to create ventilation distribution and   is used to 

create perfusion distribution. 

pH: pH level in blood. 
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v: volume of alveolar compartment, [ml] 

t: time, most commonly used to represent the duration of a simulation. It can also 

describe the ‘time slice’, depicting the duration of real time of one model iteration.  

  

Special subscripts-  

i: inspired, e: expired, alv: alveolar, a: arterial, v: venous 
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Chapter 1: Introduction 

An explanation of the motivation for the research described in this thesis is provided in this 

chapter. Key concepts are introduced, pertaining to the modelling and optimisation of 

pulmonary (patho) physiology, which are discussed in more detail later in this thesis. Finally, 

the structure of the thesis, the focus of each chapter and the main contributions of the research 

are described.  

1.1 Motivation 

Mechanical ventilation of the lungs is a commonly-used, life-saving procedure. The majority of 

critically ill patients in Intensive Therapy Units (ITU) spend some time with their lungs 

ventilated by a mechanical ventilator. However, mechanical ventilation also exposes patients’ 

lungs to potentially damaging pressures and flows. Studies have shown that 2.9% of patients 

receiving mechanical ventilation suffer from Ventilator Associated Lung Injury (VALI) 

(Anzueto et al 2004), necessitating prolonged stays in the ITU, and potentially causing 

pneumonia, lifelong pulmonary scarring, and even multiple organ failure (Dreyfuss 1992, 

Gammon 1992).  

The main objectives of mechanical ventilation are to maximise gas exchange and minimise the 

risk of VALI (Slutsky 1993). The selection of appropriate settings of mechanical ventilators in 

an ITU is a significant challenge for the physician, due mainly to the heterogeneity of the 

pulmonary disease states, as well as the non-uniform distribution of ventilation in the lungs 

(Villar 2004, Gattinoni 2006). Currently, physicians rely on “arbitrarily fixed” guidelines 
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(DeProst 2011) based on their previous experience and recommendations from a limited number 

of in vivo studies (ARDS Network 2000).  

The mortality rate (30%-40%) of mechanically ventilated patients suffering from VALI still 

remains high under current guidelines (Mercat 2008).  Various studies (Keenan et al 2004, 

Morris 2002) have suggested that incorporation of patient specific treatment in the ITU could 

significantly reduce this high mortality rate and also improve patient care. However, the lack of 

available bedside data to clearly determine the state of patients, together with the complexity of 

the relevant internal physiology, which often has large variance, has hindered the incorporation 

of patient specific information into physician decisions (DeProst 2011).  

Computational modelling has increasingly been proposed as a useful and reliable tool with 

which physicians could be able to gain a deeper understanding of the underlying physiology and 

make more informed decisions for patients in the ITU (McCahon 2008, Kathirgamanathan 

2009). Even though modelling approaches can be restricted by the detail and complexity of the 

underlying physiology, computational modelling is not limited by patient compliance, ethical 

considerations and financial constraints, in contrast to the traditional in vivo clinical studies, 

(Hardman 2006). The use of modelling in this area of clinical medicine has thus become more 

common, with several successful research studies reported in the literature (see Weibel  1963, 

West 1969, Hinds 1984, Joyce 1996, Hahn 2003, Yem 2006 and references therein) that have 

had significant impact on the field of pulmonary physiology. 

However, physiological models intended for the use in clinical environments can often face 

harsh expectations from physicians; the models must cope with significant levels of uncertainty 

arising from assumed values of parameters (Harrell 1996, Chase 2011), and population and 

disease heterogeneity, and their validation must provide convincing evidence of their 

applicability and reliability in the clinical arena (Hardman 2008). Current validation of 
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physiological models is typically limited to comparison of the performance of the model against 

the associated empirical data (Hardman 1998, Moppett 2008, Wilson 2009, Chase 2010), and 

this can potentially leave the model vulnerable to variability in parameters which are found 

within the patient population but are not adequately represented by the available empirical data.  

By adapting and augmenting established systematic model validation approaches that are 

currently available in the area of systems and control engineering, additional levels of formalism 

and reliability can be brought to the problem of validating physiological models. The concept of 

‘robustness’ is widely used in engineering contexts to denote the requirement that certain 

desired characteristics are maintained by a system despite fluctuations in the behaviour of its 

component elements or its environment (internal/external parameters and disturbances) (Doyle 

2002). In systems and control engineering, many different analytical and computational 

approaches have been developed to assess the robust stability and performance of computer 

simulation models of safety-critical applications (Menon 2007, Martin 2008). In this thesis, we 

show how similar approaches can be utilised for validating computational models of pulmonary 

(patho)physiology – these validated models can then be further developed and employed in 

designing in silico experiments for exploring current practice for choosing the settings of 

mechanical ventilator for individual patients and disease states.  

1.2 Thesis organisation 

The thesis begins with a discussion of the necessary background in pulmonary 

(patho)physiology. Subsequently the development of a model of pulmonary (patho)physiology 

is presented. In the second part of the thesis, an optimisation approach is employed to validate 

the robustness of this model. Validated pulmonary physiology models are used to represent 

various diseased lung states in silico, and an optimisation-based methodology is used to 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

19 Introduction  

 

determine patient specific optimal mechanical ventilator settings for these in silico disease 

states. The thesis has five chapters, which are outlined below: 

Chapter 2 introduces relevant background on the relevant physiology for the model considered 

in this thesis. The structure of the lungs is discussed, explanations of the important 

physiological terms are provided, and the most important mathematical equations describing 

arterial blood gas calculations are also given. The proposed extended implementation of the 

Nottingham Physiological Simulator (NPS) (Hardman 1998), which consists of different 

modules including the respiratory system, the cardiovascular system, the renal system, the acid 

base mechanism and a mechanical ventilator, is described in detail. Modifications (based on 

physiological mechanisms) are proposed to characterise healthy as well as diseased states. 

These modifications address two distinct faults within the previous version of the model: 1) the 

inability of the model to accurately represent collapse within the lungs under disease states and 

2) the incomplete response of the model to positive end expiratory pressure (PEEP). These 

faults were identified during the model development process and the solutions which were 

developed to address them are described in detail.  

Chapter 3 begins with a discussion of current practices followed in physiological model 

validation and the need for improved techniques. Optimisation algorithms such as Sequential 

Quadratic Programming (SQP), Mesh Adaptive Direct Search (MADS), Genetic Algorithms 

(GA) and Differential Evolution (DE) are described.  The general underlying principles of 

optimisation-based model validation, and previous efforts to employ optimisation algorithms to 

similar problems, are also described. In the process of model validation, the pulmonary 

physiology model is subjected to simultaneous variations in the values of multiple 

physiologically relevant uncertain parameters with respect to a set of specified performance 
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criteria. These performance criteria are based on expected levels of variation in arterial blood 

gas values found in the patient population and they are evaluated using numerical simulations.  

Chapter 4 begins with a brief introduction to modern mechanical ventilators and the associated 

problem of VALI. Current ITU strategies for deciding on the values of key mechanical 

ventilator settings are presented.  The problem of choosing optimal mechanical ventilator 

settings for diseased lungs is formulated as a constrained multi-objective optimisation problem. 

Two multi-objective optimisation approaches are presented – a) an approach using an 

aggregated objective function with user defined weights (WAOF) and a hybrid optimisation 

algorithm and b) a Pareto dominance-based approach using a nondominated sorting genetic 

algorithm (NSGA-II). The NSGA-II result is used to illustrate the conflicting objectives of the 

optimisation problem considered here. The relative merits of the two approaches are compared 

using an example in silico disease case. A range of different pulmonary disorders are then 

created in silico by manipulating the ventilation and perfusion distribution within the validated 

computational model. Resistances to airflow and blood movement are introduced which 

simulate a wide spectrum of ventilation and perfusion abnormalities representative of 

pulmonary disease scenarios in the published literature. The results of applying the proposed 

optimisation-based approach for choosing ventilator settings for these different disease states 

are discussed. 

Finally in chapter 5, the main conclusions of the work in this thesis are presented and possible 

areas for future research are proposed. 

1.3 Main contributions of this study 

1. An improved version of one of the most complex and detailed pulmonary physiological 

models currently reported in the literature is implemented in MATLAB following an 

iterative multi-compartmental modelling approach.  
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2. To augment traditional model validation methods typically used in clinical settings, an 

advanced optimisation-based approach is adapted from the engineering literature and 

applied to validate the robustness of a pulmonary (patho)-physiological model. 

3. A new approach for representing pulmonary disease states in silico using a (patho)-

physiological model is presented. Significant modifications, based on a detailed 

consideration of the underlying physiological mechanisms, are incorporated into the 

model in order to allow it to accurately represent a number of different disease states. 

4. A novel optimisation-based strategy is proposed to determine the disease-specific 

optimal settings for the ventilator which satisfy all clinical objectives of mechanical 

ventilation, many of which are in conflict with each other. The optimal settings are 

shown to significantly improve the ventilation-perfusion matching within the diseased 

lung, and to be highly disease specific. 

 

The key publications resulting from this thesis are listed below: 

Das A, Menon PP, Bates DG, Hardman JG. Optimisation of mechanical ventilator settings: 

towards personalised management of disease states, submitted to IEEE Transactions on 

Biomedical Engineering, 2012. 

Das A, Gao Z, Menon PP, Hardman JG, Bates DG. A systems engineering approach to 

validation of a pulmonary physiology simulator for clinical applications. Journal of Royal 

Society Interface 2011; 8(54):44-55.  

Das A, Gao Z, Menon PP, Hardman JG, Bates DG. Optimisation of mechanical ventilator 

settings. In proceedings of the International Federation of Automatic Control (IFAC) World 

Congress. Milan, Italy. 2011. 
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Das A, Bates, DG, Hardman JG. An engineering approach to validation of a pulmonary 

physiology simulator. In  proceedings of the  International Congress on Computational 

Bioengineering (ICCB). Bertinoro (Forli), Italy. 2009. 
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Chapter 2: Modelling of pulmonary physiology 

This chapter presents a brief introduction to the principles of pulmonary physiology that pertain 

to the modelling work described in this thesis. The structure of the lungs is discussed, an 

explanation of the important terms is provided and the most important mathematical equations 

describing arterial blood gas calculations are also given. The development of the extended 

implementation of the Nottingham Physiological Simulator (NPS) (Hardman 1998), is described 

in detail.  Modifications (based on physiological mechanisms) are proposed to characterise 

healthy as well as diseased states.  

2.1 Pulmonary physiology – key concepts 

2.1.1 Lungs  

The lungs primarily have two functions – the movement of oxygen (O2) and carbon dioxide 

(CO2) to and from the alveoli (through convection) and the provision of a surface for gas 

exchange (through diffusion). The lungs consist of approximately 300 million alveoli, 

surrounded by a network of capillaries, providing a large surface area for the transfer of gases. 

These gases reach the alveoli though a complex tree like structure of airways, starting from the 

trachea, which divides into the bronchi. These further divide into bronchioles, terminal 

bronchioles, alveolar ducts and finally the alveoli. Gas flow to and from the alveoli depends on 

the  airway resistances and the pressure gradient (between the mouth and the lungs) created by 

the respiratory muscles, which causes the expansion and deflation of the lungs. The pulmonary 

artery brings deoxygenated blood to the lungs from the heart and divides into the pulmonary 
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capillaries. Here O2 is diffused to the blood and CO2 is diffused to the alveolar units. The 

pulmonary capillaries containing the oxygenated blood converge into the pulmonary vein. This 

blood is transported to the heart which pumps the oxygenated blood into systemic circulation.             

 

Figure 2.1: Lung structure 

2.1.2 Lung volumes and capacities 

The amount of air that the lung inhales, exhales or holds under different conditions can be 

described by specific lung volumes and capacities. Figure 2.2 introduces various lung volumes 

and capacities which are important clinically as their values can be affected by pathological 

processes. When compared to normal physiological ranges, they can help physicians in making 

diagnoses regarding the underlying pathological conditions. Their descriptions along with their 

approximate values (for a normal 70kg young male) are given below.   
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Figure 2.2: Lung volumes and capacities 

Tidal Volume (Vtidal): this is the volume of air that moves in and out of the lungs in a single 

breath. It normally has a value in the range 400ml – 500ml but it is also dependent on other 

variables such as response to disease or exercise. 

Residual Volume (RV): The volume remaining in the lung after a forced expiration. In general, 

the value of RV is found to be approximately equal to 1.5 litres. 

Inspiratory Reserve Volume (IRV): The maximum volume that can be inspired after Vtidal. In 

general, IRV is approximately equal to 3 litres.  

Expiratory Reserve Volume (ERV): The maximum volume that can be expired at the end of 

normal expiration. In general, ERV is approximately 1.5 litres.  

Functional Residual Capacity (FRC): The total volume of gas left in the lung at the end of 

normal expiration. In general, the value of FRC is approximately 3 litres.  
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Total Lung Capacity (TLC): The maximum volume that the lung can stretch to while limited by 

the chest wall and the force of the inspiratory muscles. TLC in general is approximately 6 litres. 

Vital Capacity (VC): The maximum volume that can be inhaled from Residual Volume. In 

general, the VC is approximately equal to 4.5 litres.  

Lung function is most commonly tested using a spirometer which measures the volume and 

flow of air entering and leaving the lung during a breath. The spirometer is thus used to 

determine the lung volumes of Vtidal, IRV, ERV and VC. Other tests of lung functionality such 

as the nitrogen washout technique (NWT) can be used to approximate FRC. In NWT, a patient 

breathes air with 100% oxygen while the concentration of nitrogen is monitored in expired air 

using a nitrogen analyzer. When the nitrogen is completely ‘washed out’ of the expired air, the 

amount of nitrogen at the beginning of the test can be approximated by multiplying total volume 

of expired air with percentage of nitrogen in the expired air. As the air in the lung at the 

beginning of the test consisted of 80% nitrogen, the total volume at the beginning of the test can 

be approximated. Using FRC, RV can simply be calculated as RV = FRC - ERV. For detailed 

information on the spirometer, NWT and other tests for lung volumes/capacities the reader is 

referred to (Cotes 2006).  

Estimates of lung volumes aid physicians in making pathological diagnoses. For example, 

restrictive diseases such as fibrosis reduce the compliance of the lung, which reduces these 

volumes as the lung struggles to expand under normal breathing patterns. Obstructive diseases 

such as chronic bronchitis and emphysema increase resistance to airflow. To overcome this 

resistance, high pressures are generated which can cause a decrease in the recoil of the lungs at 

expiration.  RV, FRC and therefore TLC tend to be higher than normal under such conditions.  
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2.1.3 O2 and CO2 movement across the alveolar membrane 

The exchange of gases between blood and ventilated air occurs by diffusion across the alveolar 

membrane. The O2 partial pressures are higher in the alveoli than the capillaries and CO2 partial 

pressure is higher in the capillaries, which creates a gradient for the diffusion of gases. The rate 

of diffusion depends on the surface area (large in the lungs due to the number of alveoli), the 

concentration gradients of gases (large between pulmonary capillary blood and alveolar air) and 

the individual properties of a gas. For example the rate of CO2 diffusion across the alveolar 

membrane is dependent on the partial pressure of CO2 molecules (lower than O2) and the 

solubility of CO2 in the plasma (CO2 is more soluble in liquid than O2).  

 

Figure 2.3: O2 dissociation curves adapted from (West 2004, pg 76). O2 = Oxygen, Hb = 

Haemoglobin. 

Blood carries O2 to the tissues in two forms: dissolved and combined with haemoglobin (Hb). 

As indicated by the dissociation curve in Figure 2.3, the dissolved O2 constitutes a relatively 

small portion of the total blood oxygen content. This occurs due to the reduced solubility of O2 

in blood relative to CO2. To satisfy the O2 requirements of the body, O2 is bound chemically to 

haemoglobin.  
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The plateau of the oxygen dissociation curve at high O2 partial pressure (PO2) allows the body to 

maintain oxygen saturation in the event of a sudden fall in alveolar PO2. At the peripheral 

tissues, PO2 is low, so oxygen is released quickly. The curve can shift to the right under the 

following conditions: 

1. Under the Bohr effect, wherein haemoglobin has less affinity to O2 as H
+ 

ions in the 

blood increase. For example, in the peripheral tissues the increase in CO2 as a result of 

metabolism increases the number of H
+ 

ions bound to haemoglobin and promotes the 

dissociation of O2 at the peripheral tissue.  

2. Under the Haldane effect, wherein haemoglobin has less affinity to CO2 as the 

concentration of O2 rises. For example, the increase in available O2 promotes 

dissociation of CO2 and uptake of oxygen from the blood. 

3. As temperature increases - this is usually not very significant except in the case of 

extreme temperature changes such as hypothermia. 

4. As the 2, 3-Disphosphoglycerate (2, 3 DPG – a regulatory organophosphate produced by 

red blood cells) concentration increases.  

CO2 is present in a higher quantity in blood than oxygen as it is more soluble and more 

chemically reactive. CO2 has a major regulatory contribution in controlling blood pH levels. In 

plasma, the dissolved CO2 reacts with water to form H
+
 and HCO3

- 
ion (bicarbonate) in the 

following reversible reaction.  

  33222 HCOHCOHOHCO
   [2.1] 

This equation represents the acid base equilibrium in the blood. If CO2 increases, H
+ 

ions in the 

blood increase, which reduces the pH (making it more acidic). If HCO3 increases, the available 

H
+
 ions in the blood decrease and the pH increases (more alkaline). The reaction helps to 
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maintain the pH balance in the blood. In the human body, the kidneys also regulate the acid base 

balance in blood by absorbing HCO3
-
 ions and producing H

+
 ions. CO2 also binds directly to 

proteins, known as carbamino compounds which contribute to CO2 transfer around the body. In 

blood, CO2 is dissolved in plasma (PCO2 about 8%), in the form of H2CO3 (about 80%) and as 

carbamino compounds (about 11%).  

2.1.4 The airways and the blood vessels 

 

Figure 2.4: Deadspace and shunt. 

The region of the lungs that does not participate in gas exchange is called the physiological 

deadspace. It consists of the series and the parallel deadspace. 

 The series (anatomical) deadspace (SD) consists of the conducting airways such as the 

trachea, bronchi and the bronchioles. 

 The parallel (alveolar) deadspace (PD) are alveoli which are well ventilated but poorly 

perfused by blood through the pulmonary capillaries.  
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The fraction of deoxygenated blood from the heart (cardiac output) that does not participate in 

gas exchange is called the physiological shunt. It is composed of the anatomical shunt and 

alveolar shunt.  

 The anatomical shunt (AS) is the shunting of blood directly from the pulmonary artery 

to the pulmonary vein without participating in gas exchange. 

 The alveolar shunt (AlvS) is the blood passing through pulmonary capillaries with 

poorly ventilated alveoli caused by obstructed or collapsed airways. 

2.1.5 Distribution of ventilation and perfusion 

An impairment of gas exchange functions in the lung can be indicated by poor oxygenation 

(arterial hypoxemia) and CO2 retention (hypercapnia) or both. Mechanisms mentioned in 

Section 2.1.4 dictate the movement of the partial pressure of O2 and CO2 across the alveolar 

capillary membrane. The movement of O2 from alveoli into the blood is determined by 

saturation of the haemoglobin (Figure 2.3). This is affected by the supply of O2 to the tissues 

and extraction of CO2 from the tissues as a result of metabolic processes. 

The distribution of gas exchange can provide significant information regarding the pathology of 

the lung. Figure 2.5 shows the typical ventilation perfusion distribution of a healthy lung. The 

healthy lung is relatively heterogeneous, i.e. the ventilation and perfusion distribution is 

generally uniform across the lung. This conforms closely to the data reported in (Wagner 1974), 

in which 95% of ventilation and perfusion in a healthy lung is confined to within the V/Q ratio 

of 0.3 and 2.1.  
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Figure 2.5: Ventilation (V) perfusion (Q) distribution of a healthy lung. The lines are drawn as a 

visualisation aide only. 

Ventilation (V) in the lungs is influenced by the variation in distribution of air across the lung. 

The perfusion (Q) is dependent on the cardiac output, the arterial-venous pressure gradient and 

arterial-alveolar pressure gradient. Efficient gas exchange occurs when ventilation is adequately 

matched to perfusion in the gas exchanging lung unit. This matching can be represented by the 

V/Q (ventilation/perfusion) distribution, where a V/Q ratio of 1 would indicate that the 

ventilation and perfusion is matched and the lung unit is normal. At one extreme of V/Q 

distribution, there is deadspace (Section 2.1.3) which is an area of the lung that is normally 

ventilated but not perfused with blood. At the other extreme of the V/Q distribution is the area 

of the lung with normal perfusion where the alveoli is blocked or collapsed and no ventilation 

occurs (Section 2.1.3). All three characteristics contribute to the V/Q distribution.   
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Many pathological anomalies can affect the airways and the blood vessels, creating an 

imbalance and resultant abnormal V/Q ratio. High V/Q contributes to a higher PO2 and increases 

the amount of wasted ventilation. However at high PO2, the O2 dissociation is robust to sudden 

decrease in PO2, as indicated by the plateau of the haemoglobin (Hb) saturation curve of the O2 

dissociation (Figure 2.3). Under low V/Q, the effect of shunt is evident as poorly ventilated 

areas create low PO2 and low Hb saturation which lead to reduced oxygen content and 

hypoxemia.  Therefore, decrease in PO2 is not followed by a proportional decrease in 

haemoglobin saturation.   

V/Q imbalance holds key information regarding the state of the lung, but it is hard to measure 

accurately as the relationship can be heavily influenced by time varying parameters of cardiac 

output and minute ventilation (amount of air in breaths per minute).  For a more detailed 

description of the relevant physiology, the reader is referred to (Cotes 2006) and (West 2004). 

2.2 Modelling and implementation of a pulmonary physiology 

simulator 

2.2.1 Modelling of pulmonary systems - background 

Since the early 20th century, many efforts (Henderson 1920, Van Slyke 1921) have been made 

to explain the underlying theoretical principles of the relationships between ventilation, blood 

flow and gas exchange in pulmonary physiology. The outcome of this research has been the 

derivation of mathematical equations which have become fundamental to the study of 

pulmonary physiology in recent years. The earliest analysis of these equations is reported in 

(Rahn 1949), which determines the alveolar gas concentrations using several analytical 

techniques. The detailed insight into the structure of the human lung as a geometric model of the 

airways consisting of 24 generations was originally proposed in (Weibel 1963). The reducing 
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ratio of radii of the airway as the generations progressed was another important outcome of this 

pioneering research which laid the foundation for several other follow-up studies as in  

(Peterman 1984, Wiggs 1992, Tsoukias 1998 , Yem et al 2003). 

To the best of the author’s knowledge, the first ever published dynamical representation of the 

respiratory regulation is by Grodins and colleagues in 1954 (Grodins 1954, 1967). In (Grodins 

1967) the proposed model characterized the relationship among lung, blood and tissue with 

differential equations, in which the time delays of the gas exchange system were accounted for. 

The model included the effect on O2-CO2 interaction by the chemoreceptors, chemical buffering 

etc, and has formed the basis of many other theoretical works (Saunders 1980, Ursino 2001, 

Stuhmiller 2005). However, the model developed here is extremely simplified, with only three 

compartments representing the lung, the brain and the tissues. The simplified lung is modelled 

as a compartment of constant volume, uniform content and no deadspace, ventilated by a 

continuous unidirectional stream of air. The model was utilised to understand the gas transport 

and acid-base buffering in the respiratory system.  

Research works by John B West (West 1969) and colleagues helped to develop deeper insight 

into pulmonary ventilation, perfusion and gas exchange. To achieve this, computational models 

of the lungs were used and the effects of varying ventilation perfusion inequality were analysed. 

West studied the effects of varying numbers of alveolar compartments (between 3-1000) and 

recommended that at least 100 alveolar compartments were needed for an optimal compromise 

between the computational complexity and accuracy of pulmonary models. Furthermore, the 

effect of variation of ventilation perfusion ratios on O2 and CO2 transfer into the blood was also 

investigated. However, individual compliances, inflow resistances and vascular resistances that 

are associated with alveolar compartments were not accounted for in these models. 
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Chiari (Chiari 1997) and colleagues presented a model of the respiratory system incorporating 

O2-CO2 transport and exchange. The model constitutes three compartments: the lung, the brain 

and the body.  The basic representation was an adoption of the model of Grodins (Grodins 

1967) with the added implementation of nonlinear O2-CO2 gas movement and a ventilation 

controller that adjusted alveolar ventilation and cardiac output. The gas flows are assumed to be 

continuous and unidirectional. The lungs as well as the body tissue were represented as single 

units and hence effects of variable ventilation, perfusion and metabolic rates were not 

considered. 

The number of distinct alveolar compartments considered and the motivation for choosing this 

number has varied hugely across the literature. Single/bi-compartmental models offer simplicity 

in calculations and allow for better understanding of some inadequately understood 

physiological behaviour. Swanson (Swanson 1983) used a bi-compartment model to analyse the 

alveolar gas exchange during exercise relative to a normal lung. Vidalmelo (Vidalmelo 1993, 

1998) used a bi-compartmental model to depict the alveolar-arterial gas transport through 

analytically describing the gas diffusion, alveolar-arterial pressure gradient, CO2 and O2 

dissociation curves and the behaviour due to physiological shunt and cardiac output. Hotchkiss 

(Hotchkiss 1994) investigated the effects on ventilation distribution and alveolar pressures of 

mechanical ventilation inputs such as frequency and duty cycle. Other examples of research 

studies using single and bi-compartmental alveolar models of the lung include Farmery (1996), 

Joyce (Joyce 1996), Liu (Liu 1998).  However, single and bi-compartmental models of the lung 

can be inadequate in representing the effect of inhomogeneties arising from the distribution of 

ventilation / perfusion, variations in time constants associated with respiratory frequency, tidal 

breathing, series/parallel resistances etc, especially in different pathological states. 
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Many models (e.g. (West 1969)) have thus incorporated multiple gas exchanging compartments 

while also attempting to capture other characteristics of the respiratory system in more detail. 

These models have been used for the analysis of distributions of gases, resistances, and 

compliances across the whole lung that are important, but generally ignored in the more 

simplistic models. Hinds (Hinds 1980, 1984) proposes one such model, accounting for 

ventilation perfusion distribution, and looking at variations of volume and pressure within the 

lung. Petrini (Petrini 1983) measured the effect of series deadspace created by the conducting 

airways and the role of this in effective ventilation. Hickling (Hickling 1998) looked at the 

combined effect of recruitment and derecruitment of 27000 alveoli in parallel that offered an 

insight into the pressure volume relationship of these alveolar units. 

Rutledge (Rutledge 1993, 1994) proposed two versions of a respiratory model within his 

proposed ventilator administrator strategies, VentSim and VentPlan. VentPlan is a simplified 

physiological model with uniform airway resistance, fixed compliance, no ventilation perfusion 

abnormalities apart from the anatomical shunt, and a simple input as the driving pressure of the 

lungs. VentSim is a relatively more thorough representation, but so far remains unvalidated 

relative to VentPlan. Rutledge’s simplistic model as used in VentPlan may compromise its 

applicability on patients with more complex pathophysiological abnormalities.  

Rees (2006) presented a model of O2 and CO2 transport in the lungs, blood and the tissues and 

applied it for the selection of optimal mechanical ventilator settings. The lungs consist of two 

compartments each with different ventilation perfusion ratios. The circulation of blood is 

represented by a mixed venous compartment and an arterial compartment, storing corresponding 

blood gas parameters. The pulmonary model used is extremely simplified and is unlikely to 

accurately represent pathophysiological conditions due to the relatively inadequate ventilation-

perfusion distribution considered.  
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Yem (Yem 2003) present a model of a comprehensive cardio respiratory system. This system 

includes compartments for cardiovascular circulation, brain, peripheral shunt, liver, kidneys, 

muscles and fat. The series deadspace incorporates a compartmental approximation to a lung 

model proposed by Weibel (Weibel, 1963). The ventilation perfusion distribution is limited to 

four alveolar compartments (one unperfused, three perfused).  The model has been applied in 

determining the sources of error in non invasive blood flow measurements (Yem 2003) and 

analysing ventilation perfusion abnormalities in diseased lungs (Yem 2006). 

In the literature, the respiratory system has often been depicted as a number of lumped gas 

exchanging units. Simplistic models, i.e. single or bi-compartmental compartmental 

representations, have proved to be useful in improving the understanding of pulmonary 

physiology. However, difficult problems such as understanding and treating lung injury under 

different pathological conditions require the incorporation of much more detailed models of 

pulmonary physiology. For this purpose, this thesis presents the development of a 

comprehensive physiological model, specifically an improved implementation of the 

Nottingham physiology simulator. 

The Nottingham physiology simulator (NPS) 

The NPS is a set of physiological models representing the pulmonary system, gas transport in 

the blood and gas exchange at the peripheral tissues. The main features of the simulator are 

shown in Figure 2.6.  

The models use mass-conserving algebraic equations of pulmonary dynamics and blood gas 

transport. Beginning with default initial settings, the equations are solved iteratively in a 

sequence, where each iteration represents a ‘time slice’ t of real physiological time (Hardman 

2001). Theoretically, the shorter the time slices are the more accurate the representation of the 
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physiological dynamics will be, but this advantage is offset by the corresponding increase in 

computation times. 

 

Figure 2.6: Diagrammatic representation of important features of the respiratory model in the 

NPS (adapted from Hardman et al 1998) 

The pulmonary model consists of the mechanical ventilation equipment, anatomical and 

alveolar deadspace, anatomical and alveolar shunts, ventilated alveolar compartments and 

corresponding perfused capillary compartments. To recap from Section 2.1.4, the series 

deadspace (SD) consists of the trachea, bronchi and the bronchioles where no gas exchange 

occurs. It is located between the mouth and the alveolar compartments. Inhaled gases pass 
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through the SD during inspiration and alveolar gases pass through the SD during expiration. In 

the model, an SD of volume 60ml is split into 50 stacked compartments of equal volumes (see 

Figure 2.6). No mixing between the compartments of SD is assumed.  

Any residual alveolar air in the SD at the end of expiration is re-inhaled as inspiration is 

initiated. This residual air is composed of gases exhaled from both perfused alveolar 

compartments (normal perfusion) and the parallel deadspace (PD) (alveolar compartments with 

limited perfusion). Therefore, the size of deadspace (SD and PD) can have a significant effect 

on the gas composition of the alveolar compartments. Compared to analytic techniques 

representing ‘single step’ tidal movement of gases through the SD (e.g. Stuhmiller 2005), the 

iterative modelling technique has the important advantage of producing realistic and gradual 

changes in gas compositions of the SD and the alveolar compartments and accounting for the 

residual gases from the previous breath.  

The inhaled air consists of five gases: oxygen, nitrogen, carbon dioxide, water vapour and a 5th 

gas used to model additives such as helium or other anaesthetic gases. During inspiration, the 

flow (fi) of air to or from an alveolar compartment i in a time slice t is determined by the 

following equation: 

   
 Pv  PA  

 Ru RA  
       [2.2] 

where Pv is the pressure supplied by the mechanical ventilator, PAi  is the pressure in the alveolar 

compartment   at t, Ru is the constant upper airway resistance and RAi is the bronchial inlet 

resistances of the alveolar compartment  . The total flow of air entering the SD at time t is 

calculated by 

        
   
          [2.3] 
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During inspiration, the fractions of gases (F
x
) in each compartment of the SD are updated based 

on the composition of   . The volume of gas   in alveolar compartment (vA
 ) is given by: 

vA
    

vA
     

vA
 

vA
                           

vA
      Fx                          

    [2.4] 

Each alveolar compartment can be assigned a bronchial inlet resistance and compliance. 

Compliance specifies the volume gradient with respect to pressure, and represents a measure of 

the ‘stiffness’ of the lung. Ageing and pulmonary disorders such as emphysema increase the 

compliance of the lung and reduce the elastic recoil of the lung. Other pulmonary disorders such 

as fibrosis and pneumonia decrease the compliance of the lung and make the lung ‘stiffer’.  

Following (Macklem 1967), a fixed resistance to the flow was introduced. The tension at the 

centre of the alveolus and at the alveolar capillary border is assumed to be equal. The 

respiratory system has an intrinsic response to low oxygen levels in blood which is to restrict 

the blood flow in the pulmonary blood vessels, known as Hypoxic Pulmonary Vasoconstriction 

(HPV). This is modelled as a simple function, resembling the stimulus response curve suggested 

by Marshall (Marshall 1994), and incorporated into the simulator to gradually constrict the 

blood vessels as a response to low alveolar oxygen tension. The atmospheric pressure is fixed at 

101.3kPa and the body temperature is fixed at 37.2°C.  

During each time slice t, equilibration between the alveolar compartment and the corresponding 

capillary compartment is achieved iteratively by moving small volumes of each gas between the 

compartments until the partial pressures of these gases differ by <1% across the alveolar-

capillary boundary. The process includes the nonlinear movement of O2 and CO2 across the 

alveolar capillary membrane during equilibration.  
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In blood, the total O2 content (CO2) is carried in two forms, as a solution and as oxyhaemoglobin 

(saturated haemoglobin in Figure 2.3): 

 O2  SO2      Hb   PO2  O2sol    [2.5]  

In this equation, SO2 is the haemoglobin saturation, Huf is the Hufner constant, Hb is the 

haemoglobin content and O2sol is the O2 solubility constant. The following pressure-saturation 

relation, as suggested by (Severinghaus 1979) to describe the O2 dissociation curve, is used in 

this model: 

  SO2      PO2
      PO2 

  
          

  

    [2.6] 

SO2 is the saturation of the haemoglobin in blood and PO2 is the partial pressure of oxygen in the 

blood. Eqn. 2.6 applies to a standard O2 dissociation curve such as that shown in Figure 2.3 (at 

pH=7.4 and temperature=37°C). As suggested by (Severinghaus 1966), PO2 has been 

determined with appropriate correction factors in base excess BE, temperature T and pH 

(7.5005168 = pressure conversion factor from kPa to mmHg): 

PO2        1 8   PO2     
      pH- .4        T-           B   [2.7] 

The CO2 content of the blood (CCO2) is deduced from the plasma CO2 content (CCO2plasma) by 

the following equation (Douglas 1988): 

   O2     O2plasma      
       Hb

              SO2         pH 
   [2.8] 

where SO2 is the O2 saturation, Hb is the haemoglobin concentration and pH is the blood pH 

level. The coefficients were determined by Douglas as a standardised solution to the McHardy 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

41 Modelling of pulmonary physiology  

 

version of Visser’s equation  (McHardy 1967) by iteratively finding the best fit values to a given 

set of clinical data.  

The value of   O2plasma in Eqn. 2.8 can be deduced by the Henderson-Hasselbach logarithmic 

equation for plasma CCO2 (Kelman 1966): 

  O2plasma         s  P O2plasma        pH – p       [2.9] 

where s is the plasma CO2 solubility coefficient and p   is the apparent pK (acid dissociation 

constant of the CO2 bicarbonate relationship). P O2plasma is the partial pressure of CO2 in plasma 

and ‘2.22 ’ refers to the conversion factor from  miliMoles per litre to ml/100ml. ( elman 

1966) gives the equations for s and p   as: 

 s = 0.0 0    0.005        T    0.00002       T    [2.10] 

p   =  .08   0.042   ( .4 - pH)       T                            pH        [2.11] 

For pH calculation, the Henderson Hasselbach and the Van Slyke equation (Siggard-Andersen 

1977) are combined. Below is the derivation of the relevant equation. The Henderson-

Hasselbach equation (governed by the mass action equation (acid dissociation)) states that 

(Cotes 2006, pg 70): 

 pH = p    log  
                         

                           
    [2.12] 

Substituting pK=6.1 (under normal conditions) and the denominator          P O2  (acid 

concentration being a function of CO2 solubility constant 0.225 and PCO2 (in kPa)) gives:  

pH =  .1       
H O 

        P O2
      [2.13] 
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For a given pH, base excess (BE), and haemoglobin content (Hb), HCO3 is calculated using the 

Van-Slyke equation as given by (Siggard-Andersen 1977): 

H O          Hb        pH         
B 

          Hb 
       [2.14] 

The capillary blood is mixed with arterial blood using Eqn. 2.15 which considers the anatomical 

shunt (    with the venous blood content of gas x ( v
x , the non-shunted blood content from the 

pulmonary capillaries ( cap
x ), arterial blood content (  

x  , the arterial volume (v   and the 

cardiac output (CO).  

  
x   

 O          v
x             cap

x      
x   v    O  

v 
    [2.15] 

The peripheral tissue model consists of a single tissue compartment, acting between the 

peripheral capillary and the active tissue (undergoing respiration to produce energy).  The 

consumed O2 (VO2) is removed and the produced CO2 (VCO2) is added to this tissue 

compartment. Similarly to alveolar equilibration, peripheral capillary gas partial pressures reach 

equilibrium with the tissue compartment partial pressures, with respect to the nonlinear 

movement of O2 and CO2.  Metabolic production of acids, other than carbonic acid via CO2 

production, is not modelled.  

A simple equation of renal compensation for acid base disturbance is incorporated. The base 

excess (BE) of blood under normal conditions is zero. BE increases by 0.1 per time slice if pH 

falls below 7.36 (to compensate for acidosis) and decreases by 0.1 per time slice if pH rises 

above 7.4 (under alkalosis). The cardiovascular model considered here simply sets the cardiac 

output (blood flow entering the pulmonary model) per time slice. 
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NPS has been applied previously in the study of various physiological phenomena and as a 

training simulator. A simulated patient is assumed to be under complete mechanical ventilation. 

Consequently, the effects of ventilatory autoregulation by the patient have not been incorporated 

into the models. Currently, it also does not take into consideration any metabolic, myogenic or 

neurogenic autoregulation of the physiological parameters. 

It should be noted that the NPS is effectively solving a set of ordinary differential equations 

numerically using an Euler method over a time step t. A large value of t can produce inaccurate 

results. The value of t is fixed at 5 ms for the all the results that were produced for this thesis, 

which is considerably shorter than earlier investigations where t of up to 200ms were regularly 

employed (Hardman 2000). The implementation of more stable numerical method can have 

significant advantages with respect to faster computational speeds and availability of tools for 

various computational analyses. However the thesis is focused towards analysing and 

implementing the current model. The processes implemented in the NPS have been described 

and validated successfully against clinical data in various research publications (Hardman 1998, 

Hardman 1999a, Hardman 1999b, Hardman 2000, Hardman 2003).  

The NPS has been implemented into the MATLAB environment (Matlab R2006a on a PC 

running Microsoft Windows XP version 2002). The new MATLAB implementation of the 

simulator has several advantages over the previous PASCAL  based implementation of the NPS: 

 The model is easily integrated with an extensive library of MATLAB toolboxes (such 

as the global optimisation toolbox, robust control toolbox) for computational analysis & 

design. This is useful for the work on model validation and the identification of optimal 

ventilator settings to be performed in the subsequent stages of this project. The easy 

availability of systems and control toolboxes provide an easy interface for the wider 

control community. 
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 The MATLAB simulator allows easy storage and access to all variables involved for the 

duration of the simulation, with available computer memory being the only constraint. 

This makes small variations in any selected variable straightforward to record and 

monitor for further analysis. 

 The explicit high-level MATLAB code is easy to amend and available to scrutiny, 

hence any modifications are easy to administer for the user, unlike the executable file 

only approach of NPS where access to the code is only available to the developer.  

 The results produced from running simulations are saved in a MAT format which 

makes it easier to display the data and to transfer to spreadsheet software such as 

MICROSOFT EXCEL. 

MATLAB is an interpreted language, i.e. an interpreter program executes the source code. This 

makes program execution slower compared to compiled languages where the source code is 

converted directly to machine code. However the current applications of the physiology 

simulator are not real time dependent, hence the present simulation times should be acceptable. 

Furthermore, by linking C files with MATLAB, individual sections of the code are optimised 

for rapid execution and bottlenecks in the code are reduced.  

Since the MATLAB simulator is not GUI (graphical user interface) based, it is not as easy to 

manually change values and settings during simulations and to consequently monitor the effects. 

However the current scope of the simulator is for theoretical and computational research and not 

for real time ITU training, and thus this is not expected to be a significant issue.   

Finally, it is important to point out that both simulators can work well alongside each other. For 

example, to match the models to a specific clinical scenario, the GUI based NPS can be used to 

determine the matching parameters such as airway resistances etc which would then make 
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simulation in MATLAB very simple. Conversely, if a user finds the NPS GUI restricting, the 

MATLAB simulator will allow for an easier access to any variable within the code. 

2.2.2 Simulation model initialisation 

Weight 70 Kg 

Inspired Gas Warmed and humidified 

Inspired Flow Pattern Constant flow 

Fraction of Inhaled O2, FiO2 0.196 

Tidal Volume 500 ml 

Respiratory Rate 12 bpm 

Inspiratory to expiratory ratio 1:2 

Number of alveolar 

compartments 
100 

Respiratory quotient 0.8 

Oxygen consumption 250 ml min
-1

 

Cardiac output 5 litres min
-1 

Table 2.1: Simulation model default configuration (unless otherwise stated) 

The lungs are modelled as a system comprising external equipment (e.g. a mechanical 

ventilator), anatomical and alveolar deadspace, and ventilated and perfused alveoli. In this 

study, 100 individual alveolar compartments have been incorporated into the model. The initial 

configuration of the model is given in Table 2.1. The inspired air consists of oxygen (19.6%), 

nitrogen (74%), carbon dioxide (0.1%). The balance is made up of water vapour (6.3%). Each 
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alveolar compartment can be attributed a specific bronchial inlet resistance to create a desired 

ventilation-perfusion distribution (see Section 2.1.6).  

2.2.3 Program Structure 

Figure 2.7 uses a sequence diagram to formally describe the structure of the code. A sequence 

diagram (Fowler 2003) shows the interaction between a group of objects. The vertical 

information in the diagram represents the sequence (order) of messages/calls as they occur 

while the horizontal information from left to right shows the objects and the messages that are 

sent between objects. Each object has a lifeline (a box with vertical dashed lines) and an 

activation bar, that shows whether the object is active or not. Thus the sequence diagram 

demonstrates the construction of functional modules in the simulator. The diagram further 

explains the flow of the information among the various functional modules of the software. The 

compartmentalisation of the model allows for easier validation and testing of individual 

components during implementation and the direct access to the structures such as the 

cardiovascular system (CVS) for future modifications. 
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Figure 2.7: Sequence diagram of the objects and their relationships in the MATLAB 

implementation of NPS. 
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2.3 Model development and utilisation 

The simulated lung in the model consists of 100 parallel alveolar compartments, each with three 

major parameters: volume of the alveolar compartment (v), pressure within the alveolar 

compartment (P) and bronchiolar inlet resistance (BIR). The flow of air to and from the alveolar 

compartment can be observed by the change in v and represents the ventilation (V) of the 

alveolar compartment. Each alveolar compartment has a corresponding pulmonary capillary 

compartment with a pulmonary vascular resistance (PVR). The flow of blood (Q) within the 

pulmonary compartment represents the perfusion of the pulmonary capillary compartment. The 

ventilation and perfusion (V/Q) distribution of the simulated lung can be modified by adjusting 

the BIR and PVR of the alveolar compartment.  

The mechanism for the movement of air from the mechanical ventilator, through the serial 

deadspace and to the alveolar compartments can be summarised as follows: 

1) The lung is at rest at the end of expiration. The volume v of each alveolar compartment at the 

end of expiration is given by the FRC (functional residual capacity) of the compartment. The 

FRC of a healthy alveolar compartment (FRCnominal) is set at a default value of 30ml. For a 

healthy lung, the pressure Plung of the alveolar compartment at FRC is zero. 

2) At the initiation of inspiration, mechanical ventilator settings of tidal volume and PEEP are 

converted to positive pressure PMV at the top of the airways, developing a pressure gradient 

between the mechanical ventilator and alveolar compartments. 

3) The pressure gradient causes a flow of air into the alveolar compartments. This is equivalent 

to a flow of current between two points in an electric circuit, where a potential difference exists 

across an ohmic resistance. Extending the standard electric circuit analogy, the flow of air 
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between the ventilator and the lung can be determined using the equivalent of “Ohm’s Law”:  

the difference in pressures (PMV – Plung) divided by the total resistance of the conducting 

airways. 

4) The flow contributes to the existing volume of the alveolar compartments,  

5) The instantaneous pressure in the alveolar compartment is calculated using the static 

piecewise linear volume-pressure relationship (Figure 2.8). The expansion of the lung above 

FRCnominal represents the compliance of the alveolar compartment. The maximum volume that 

the alveolar compartment can achieve is the total lung capacity (TLC). During inspiration, the 

pressure P of the alveolar compartment rises as v increases.  

 

Figure 2.8: The static volume-pressure relationship used in the model 

6) At the end of inspiration the ventilator pressure is reduced to zero as the ventilator output is 

removed. The lung exhales passively along the pressure gradient until the pressure in the lung 

equilibrates (returns to zero) at resting volume (FRC). 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

50 Modelling of pulmonary physiology  

 

2.3.1 Simulating a healthy lung 

For a healthy lung, the original model of 100 alveolar compartments (Hardman 2001) 

incorporated a fixed BIR (BIRnominal) of 0.001 kpa per ml per minute and fixed PVR (PVRnominal) 

of 16 ml per minute. The current model implementation randomly distributes BIR and PVR 

with a uniform distribution of U(0.75x, 2x) where x is BIRnominal and PVRnominal respectively. 

This enables the simulation of heterogeneous ventilation perfusion (V/Q) distribution in the 

simulated lung as proposed by (Wagner 1974) and given in Figure 2.9.  

 

Figure 2.9: V/Q distribution of a healthy lung 

Figure 2.10 depicts a five minute simulation of the change in volume of 100 alveolar 

compartments for a healthy simulated lung. The plot was produced using a tidal volume of 400 
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ml, ventilator rate (VentRate) of 12 breaths per minute and an inspiratory to expiratory ratio 

(I:E) of 1/3. These settings correspond to the typical breathing pattern of a healthy human. 

 

Figure 2.10: Change in volume (v) of healthy alveolar compartments. Each alveolar 

compartment has a unique BIR, resulting in the small variations in v shown in the projection. 

Vtidal = 400ml, VentRate = 12 bpm and I:E = 1/3. 

2.3.2 Simulating diseased lungs 

Abnormal V/Q distribution in the lung results from the obstruction of air flow and blood flow. 

Abnormal V/Q distribution has been shown to exist in pulmonary diseases such as chronic 

obstructive pulmonary disease (COPD) (Wagner 1977), asthma (Wagner 1978), pulmonary 

embolism (Elliott 1992), and acute respiratory distress syndrome (ARDS) (Pappert 1994).  



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

52 Modelling of pulmonary physiology  

 

Virtual diseased lungs can be simulated in the model by creating abnormal V/Q distributions. 

These distributions are configured by increasing the magnitudes of the BIR and PVR of the 

alveolar and capillary compartments. This method has previously been applied in 

(Kathirgamanathan 2009) to study responses of lungs in patients suffering from ARDS. In the 

Kathirgamanathan study, the lungs were divided into 3 regions (Al, Bm, Cn) where l, m and n are 

the number of alveolar compartments in each region such that l+m+n = 100. Each compartment 

of each region was initially configured with BIR = BIRnominal and PVR = PVRnominal. The BIR of 

the compartments of region A were then adjusted to the values of αx where x= BIRnominal and α 

is an integer vector of size l such that: 

α = [αmax... 1], αmax >= 1    [2.16] 

The most severe obstruction to ventilation in the  athirgamanathan study was created with αmax 

= 900. The PVR of the compartments of the region C were adjusted to the values of βy where 

y= PVRnominal and β is an integer vector of size n such that: 

β = [1... βmax], βmax >= 1    [2.17] 

The most severe obstruction to perfusion in the Kathirgamanathan study was created with βmax = 

16. The alveolar compartments in the remaining region B remained configured as BIR = 

BIRnominal and PVR = PVRnominal. This created a ventilation perfusion mismatch in the lung such 

that region A corresponds to alveolar shunt (low ventilation, high perfusion); region C 

corresponds to alveolar deadspace (high ventilation, low perfusion) with the region B 

corresponding to a healthy V/Q distribution within the lung. It should be noted that unlike the 

Kathirgamanathan study, we assign a randomly selected BIR and PVR to each alveolar and 

capillary compartment with a uniform distribution of U(0.75x, 2x) where x is BIRnominal and  

PVRnominal respectively.  



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

53 Modelling of pulmonary physiology  

 

2.3.3 In silico behaviour of diseased lungs 

The relationship between changes in the pressure distending the alveoli and the change in the 

lung volume dictates the inflation and deflation of a lung during a breath. Figure 2.11 depicts a 

typical pressure volume (PV) curve. An important feature of this curve is the difference between 

PV curves of inflation and deflation. This difference is known as hysteresis and is attributed to 

the opening of alveoli (recruitment) at different stages of inspiration and closing (derecruitment) 

during different stages of expiration.  The pressure that is needed to recruit derecruited regions 

is called the Threshold Opening Pressure (TOP).    

 

 

 

 

 

 

Figure 2.11:   The pressure volume curve of a lung. A transpulmonary pressure inflates the lung 

which could be created under the negative pressure of normal breathing or positive pressure 

applied by a mechanical ventilator. 

Patients suffering from severe respiratory disease and requiring mechanical ventilation, such as 

Acute Respiratory Distress Syndrome (ARDS), are prone to alveolar and airway collapse. Such 

collapse is common and found to be present in 90% of subjects undergoing mechanical 

ventilation (Lundquist 1995, Hedenstierna 2000] and is referred to as atelectasis. In such cases, 
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size of effective lung (the normally aerated region of the lung) is dramatically reduced, the 

volume of the total lung being considerably smaller at the same pressure (Gatinoni 2005). 

Therefore, TOP is found to be widely distributed along the PV curve where the values of TOP 

are uniquely determined by the patient physiology [Cheng et al.  1995]. 

Airways, when collapsed, obstruct the flow of air and thus impair ventilation to the alveoli 

resulting in inadequate pulmonary gas exchange. This creates alveolar shunt, resulting in arterial 

hypoxemia (low partial pressures of O2 in the blood). To address the risk of atelectasis, it is 

common during mechanical ventilation to maintain a positive pressure in the lungs at the end of 

exhalation to maintain ventilation into regions of the lung that are prone to collapse. This 

positive pressure at the end of exhalation is known as positive end expiratory pressure (PEEP).  

During simulation of a diseased lung in the model, alveolar compartments will have reduced 

ventilation because of extreme narrowing of the inlet (bronchial) airways. These correspond to 

alveolar compartments with high BIR with reduced ventilation and low alveolar volumes. To 

display the effective response of PEEP in the model, it is imperative therefore that the simulated 

diseased lungs include areas of reduced ventilation and low volumes. The major modifications 

implemented in the model are described below. The modifications are intended to align the 

simulated behaviour of the diseased lung with physiological reality by simulating the reduction 

in alveolar volumes and response to PEEP. The modifications were developed after detailed 

discussions with clinicians with the objective of closely matching the behaviour of the 

simulation model to in vivo observations. 

2.3.4 Simulating alveolar volumes 

Realistic in silico simulation of diseased lungs under pathological conditions such as ARDS 

requires 1) a reduction in ventilation to the alveolar compartments and 2) a reduction in volume 
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of the alveolar compartments (Pappert 1994, Hedenstierna 2000). In the model, reduction of 

ventilation can be configured by increasing the BIR of the individual alveolar compartments by 

a factor α. An example of a simulated diseased lung is given in Figure 2.12.  

 

Figure 2.12: The distribution of α for alveolar compartments in an example of a simulated 

diseased lung.  

Figure 2.13(upper) plots the change in volume of three selected compartments from the disease 

configuration given in Figure 2.12 – a compartment with high BIR (α = 900), a compartment 

with low BIR (α = 100) and a healthy lung (α=1). Figure 2.13 is plotted for a single breath, 

produced using identical ventilator settings to those employed in Figure 2.10. Relative to the 

healthy compartment; it is evident that the diseased compartments show a reduction in 

ventilation (equivalent to the reduction in change in volume ( ) of the compartment).  
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Figure 2.13: Pressure volume curves for individual alveolar compartments. (a) prior to 

modification and (b) post modification. The horizontal axis corresponds to the applied pressure 

to the compartment under the settings of Vtidal = 400ml, VentRate = 12 bpm and I:E = 1/3.  

The plots are given for alveolar compartments in one simulated lung (divided into 100 alveolar 

compartments) with different bronchial inlet resistances associated with – severe pulmonary 

obstruction (High BIR), mild pulmonary obstruction (Low BIR) and healthy lung. 

Alveoli are generally considered as spherical shaped units (Levitzky 2007).  The mechanism 

governing the change in size of alveolar compartments at small volumes can be attributed to 

Laplace’s law (Lachmann 1992, Hickling 1998). According to Laplace’s law the size of an 

alveolus is inversely proportional to the pressure inside the alveolar compartment. In addition 

(Lachmann 1992, Hickling 1998) suggest a threshold opening pressure (TOP) at low lung 

volumes, i.e. a minimum pressure that needs to be attained for collapsed alveoli (derecruitment) 

to open (recruitment). To incorporate the mechanism of Laplace’s law and TOP, we propose a 

pressure   that is added to the pressure calculation (Figure 2.8) where 

       TOP      
  
    
  

n

                 [2.18] 
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 TOP is typical threshold opening pressure of a diseased lung and is set to 20 cmH2O (Lachmann 

1992),   is the volume of the alveolar compartment i and TLC is the total lung capacity of the 

alveolar compartment i.  

Eqn. 2.18 creates a distribution of pressures based on the volumes of the compartment (v).  The 

pressure   would need to be overcome by the applied pressure during breathing so that the 

alveolar compartment can return to normal breathing. The parameters  (=3) and  (=4) can be 

used as further ‘tuning’ parameters that modify the volume-pressure relationship (Figure 2.14 

red line). These parameters effectively control the compliance of the alveolar compartment at 

low lung volumes. The change in alveolar compartment volumes as a result of this modification 

is plotted in Figure 2.13(right). It can be observed that the new equation causes a further 

reduction in alveolar volume in the diseased lung. 

 

Figure 2.14: The modified static volume-pressure relationship in the model 
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The parameters of FR nominal, TOP, TLC,   and  , are independent variables that can be 

selected by the user to manipulate the individual volume-pressure relationship of any number of 

alveolar compartments in the model.  

2.3.5 The effect of PEEP 

In diseased lungs, the pressure in the airways can fall below the critical pressure required to 

keep them open. Positive End Expiratory Pressure (PEEP) is a commonly used mechanical 

ventilator setting that prevents the airways from falling to these critical low pressures.  

In the model, the total inlet resistance (TIR) of an alveolar unit is determined by the following 

equation: 

     = α             [2.19] 

where α is the integer vector of size n number of alveolar compartments, from Eqn. 2.16. Each 

element of α corresponds to the increase in bronchial inlet resistance of an alveolar 

compartment and is used to create an abnormal ventilation distribution.     is a vector of 

multipliers based on the volume of the  alveolar compartment.     is determined by the 

equation: 

               
FR nominal

  
       [2.20] 

where   is the volume of the alveolar compartment i. Nominal resting volume (FR nominal) of 

each alveolar compartment is set to a value of 30ml, corresponding to the cumulative FRC of 3 

litres for a lung with 100 compartments.  
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Figure 2.15: The effect of high PEEP on the alveolar compartment volume in (upper) under 

Eqn. 2.20 and (lower) after the modification. The upper figure clearly shows the diseased 

compartments (High BIR and Low BIR) fail to open with high PEEP. The simulated data is 

recorded from initial time, t0, to t4 (30 mins). 

Figure 2.15 (upper) displays the effect of increasing PEEP from zero to 10 cmH2O over a 30 

minute period in the diseased lung. It can be observed that even though there is an increase in 

the volume of the alveolar compartment (v), diseased compartments remain poorly ventilated. 

This suggests that an increase in the volume of the compartment through high PEEP was not 

accompanied by an improvement in ventilation in lungs, contradicting clinical experience. 
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Further investigation reveals that under Eqn. 2.20, there is minimal change in total inlet 

resistance (TIR) (Figure 2.16 (upper)) with increasing PEEP.  

To model the improvement in ventilation observed under PEEP, a mechanism needs to be 

introduced which would improve ventilation proportional to the alveolar volume. We propose a 

parameter   , which represents an intermediate volume and is equal to ( 
4

 
  FR nominal). 

Between FRCnominal and    TIR passively decreases to be approximately equal to TIR of a 

healthy lung (        
  . Eqn. 2.20 is retained at alveolar volumes below FR nominal. The 

change is illustrated in Figure 2.16 (lower).  

    

 
 
 

 
           

FR nominal

 
           FR nominal       

   -   

    - FR nominal 
              FR nominal      

 

  
                                     

    [2.21] 

The effect can be summarised as follows: as the volume of the compartment increases above 

FR nominal, the bronchial inlet resistance of the compartment is reduced passively to the 

resistance found in a healthy lung, which improves the ventilation to the compartment. Figure 

2.15 (lower) displays the results of changing PEEP and in comparison to Figure 2.15 (upper); 

there is now clear improvement in ventilation with a higher PEEP.  
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Figure 2.15: The change in total inlet resistance (TIR) as volume (v) of the alveolar 

compartment increases. TIR=α.Rm .The upper figure shows change in TIR due to Eqn. 2.20 

while the lower figure displays the result of the modification (Eqn. 2.21).  

 

2.3.6 Clinical validation of the modified model 

The modified model was validated against clinical data previously used to validate the original 

model in (Mc ahon 200 ). Using the “dynamic validation” dataset of (Mc ahon 200 ), the 

modified model was matched to initial patient settings. The model was then subjected to the 

same change in inspired oxygen fraction, ventilatory rate and tidal volume as the patients 

(Appendix A). The error in predicting the change in arterial oxygen tension (      ) was used 

to compare the two models and the data. Table 2.2 summarises the patient and model response. 

The results show a strong correlation between the original model’s response and the modified 
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model’s response (correlation coefficient r = 0.98) and patient data against modified model’s 

response (r = 0.93). It should be noted that the proposed modifications on the response to PEEP 

would not be observable here as PEEP was fixed during the clinical trial.  

The small differences between the two model predictions could be due to the implementation of 

the collapsed regions in the lung in the modified model, and/or the difference in the duration of 

time post-intervention at which the model response is recorded. The modified model response is 

set to be recorded when mean PaO2 reaches equilibrium (i.e. variation in PaO2 is less than 

0.5kpa over one minute period) or at the end of 25 minutes of simulation time. The time taken 

before recording the post-intervention data for the patient or the original model has not been 

mentioned in the paper. This highlights a common problem with current model validation 

approaches based on comparing one set of model responses to another. In the next chapter, we 

explore more sophisticated computational approaches to the model validation problem. 

 

 

 

 

 

 

 

 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

63 Modelling of pulmonary physiology  

 

 

Patient 

Pre-

intervention 
Post -intervention 

Clinical data Model Predictions 

PaO2 

measured, 

[kPa] 

PaO2 

measured, 

[kPa] 

      , 

[kPa] 

Original Model Modified Model 

PaO2, 

[kPa] 

      , 

[kPa] 

PaO2, 

[kPa] 

      , 

[kPa] 

1 10.23 13.78 3.55 12.51 2.28 12.90 2.67 

2 19.38 10.97 8.41 11.44 7.94 11.04 8.34 

3 9.6 11.84 2.24 11.22 1.62 11.14 1.54 

4 22.23 16.92 5.31 15.62 6.61 15.52 6.71 

5 21.66 16.8 4.86 15.40 6.26 14.59 7.07 

6 12.6 23.15 10.55 24.15 11.55 22.62 10.02 

 Mean 5.82  6.04  6.06 

 Standard deviation 3.10  3.69  3.29 

Table 2.2: Comparison table of original model predictions and modified model predictions with 

clinical data. 
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Chapter 3: Validation of Pulmonary Physiology Models 

This chapter begins with a discussion of the current practices followed in physiological model 

validation and motivates the need for improved techniques. The optimisation algorithms which 

form the basis of the proposed validation approach, namely Sequential Quadratic Programming 

(SQP), Mesh Adaptive Direct Search (MADS), Genetic Algorithm (GA) and Differential 

Evolution (DE), are described in detail.  In the process of validation, the pulmonary physiology 

model is subjected to simultaneous variations in the values of multiple physiologically relevant 

uncertain parameters with respect to a set of specified performance criteria. These performance 

criteria are based on expected levels of variation in arterial blood gas values found in the patient 

population and are evaluated using numerical simulations.  

3.1 Current methods 

Mathematical modelling and computational simulation are becoming increasingly important 

tools in many fields of medicine where in vivo studies are expensive, difficult, or impractical 

(Hardman 2006).  

Many applications of modelling (Joyce 1996, Hotchkiss 1994, Farmery 2002) involve the 

investigation of specific scenarios involving relatively few equations, mostly based on basic, 

recognised physical laws and relationships. As such their validation is also simplistic, where 

model output is assessed in comparison to established knowledge and expert opinion. As the 

models increase in scale, by integrating multiple smaller models (e.g. a training simulator 

representing several organ systems), expert opinion alone cannot deem the model valid. In such 
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scenarios it is common to compare the model predictions to clinical data (Liu 1998, Hardman 

1998, Kwok 2003, Chiari 1997). Current physiological validation approaches can be divided 

broadly into the following categories: 

 Visual Inspection: At its most basic, model validation can simply be the demonstration 

of the ability of the model to represent standard physiological behaviour (Swanson 

1983, Joyce 1996, Farmery 2002). For example, (Farmery 2002) presents a validation of 

a model of oxyhaemoglobin desaturation, by simply plotting the effect of several 

relevant parameters and disease conditions on the desaturation curves.  

 Qualitative Analysis: Model outputs are plotted alongside the measured clinical data, 

where qualitative observations are made regarding the agreement between model 

predictions and the measured outputs (Liu 1998, Hahn 1993, Athansiades 2000). Simple 

observational assessment such as “the predictions are found to be in good agreement 

with the data” or “as can be seen, the model closely matches the empirical results” 

(Norman 2006) is common. 

 Quantitative analysis:  In this case, the model prediction is numerically compared to the 

measured clinical data. Statistical indices such as prediction error (e) and correlation 

coefficient ( ) are computed to describe the quality of the model prediction. A brief 

introduction to these indices is given below. The simplest comparison between a vector 

of measured values (  ) and a vector of predicted values (  ), both of size  , could be 

stated as the error (e) (Chiari 1997, Suki 1998): 

                 [3.1] 

Accurate model prediction would ideally seek to make the magnitudes of the vector   go to 

zero, i.e.        . The use of linear regression analysis has become common in assessing the 
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validity of the predictions of a model (Hotchkiss 1994, Neumann 2001). The first step in linear 

regression is to calculate the values of the vector  , also called the residuals, i.e. difference 

between the measured and the predicted data. By minimising the sum of the squares of the 

residuals, a line of best fit can be drawn representing a least squares fit.  

 

Figure 3.1: Indices of linear regression for three different examples.  

A measure of the goodness of the fit, also known as the correlation coefficient (or regression 

coefficient) is denoted with the symbol  . The value of   indicates the strength and direction of 

the relationship between    and   . It is common to give the coefficient of determination    

instead of   , which expresses the proportion of variance between    and   . The value of r
2
 is 

a fraction between 0 and 1. A lower value of r
2
 indicates that the data is further scattered away 

from the least square fit. An r
2
 value of 1 along with line of best fit with slope =1 and intercept 

=0, would indicate a perfect agreement between the predicted and measured data.  Figure 3.1 

gives three examples with values of r
2
, slope, and intercept. Another value to be considered 

along with the correlation coefficient r is the probability p where p describes the reliability of r, 

i.e. if p is very small, then the correlation r is said to be significant.   
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In (Bland 1989, 1999), Bland noted that a high correlation coefficient does not necessarily 

indicate a strong agreement between    and   . Perfect correlation could be along any line of 

best fit but perfect agreement has to be along the line of equality (     ). Factors such as 

bias, where there is a consistent difference between measured data and model predictions, could 

still show a strong correlation but ignore the bias.  This led to Bland proposing the Bland-

Altman plots (example in Figure 3.2), which plot the difference between    and    against their 

mean values (
xp xm

 
). This method has since become a common index of validation. (Hardman 

1998, Hardman 1998, Kwok 2003, Wilson 2009).  

 

Figure 3.2: Comparison of measured vs predicted data in outputs. Reproduced from (Hardman 

1998). 

Figure 3.2 shows an example of a Bland-Altman plot, presented in (Hardman 1998) showing the 

errors in predicting the magnitude of changes in PaO2. The solid line in the figure represents the 

ideal line of error (no error). The dotted lines represent bias and 95% limits of agreement of 

predicted and measured values for magnitude of change in PaO2. The bias represents the 

consistent difference found between xp and xm. The 95% limits of agreement are calculated 
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assuming a normal distribution with bias ± k × SD, where SD is the standard deviation of 

(     ). As the number of samples is low, the value of k is determined using the t-

distribution table giving k = 2.04.  

3.1.1 Disadvantages of current methods  

The previous section shows that the current methods of validation of models in many fields of 

medicine are heavily reliant on the expertise of the model designer and on comparisons against 

clinical or lab data. However, there are numerous unresolved concerns with the current methods, 

which we attempt to summarise below. 

When computational models of single patients have been validated against heterogeneous data 

sets using methods such as Band Altman plots, model validity has been generally accepted if the 

model responses lie within 95% of population observations. For any given section of the data 

which is outside the 95% limits of agreement (i.e. outliers), the plot gives little information 

regarding the nature of the error. The outliers could represent significant sub populations 

unrepresented by the model and ignoring these outliers can risk inaccurate future predictions 

from the model. 

Apart from the possible inaccuracies in observing the outputs of a model, errors can also exist in 

the values of internal variables. Non-measurable parameters in physiological simulators can be 

set at values derived as certain nominal conditions within some uncertainty bounds (Eldridge 

1996, Hardman 2001). For example, the simple representation of the cardiovascular system in 

the Nottingham Physiological Simulator (NPS) uses a fixed value of cardiac output and oxygen 

consumption during a simulation. However these values are known to vary significantly within 

a given patient population, even under normal conditions (Stead 1945, Hickam 1948). 

Variations in these parameters naturally exist in the human population and as such the 
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performance of the model can be dependent on these parameters. Small deviations between the 

assumed values of these parameters and the true values could potentially exaggerate errors 

between model predictions and measured data.  

As an example, consider Eqn. 3.2 used within the implementation of NPS (Hardman 1998) to 

describe the pressure (PO2)-saturation (SO2) relationship for the O2 dissociation curve (described 

earlier in Eqn. 2.2 and 2.3) 

  SO2      PO2
      PO2 

  
          

  

    [3.2] 

SO2 is the saturation of the haemoglobin in blood and PO2 is the partial pressure of oxygen in the 

blood. Eqn. 3.2 applies to a standard O2 dissociation curve in Figure 2.3 (at pH=7.4 and 

temperature=37°C). As suggested by (Severinghaus 1966), PO2 has been determined with 

appropriate correction factors in Base Excess (BE), temperature (T) and pH (7.5005168 = 

pressure conversion factor from kPa to mmHg): 

PO2        1 8   PO2     
      pH- .4        T-           B    [3.3] 

Multiple uncertainties in many interconnected sub-systems of a complex system could 

propagate through the system, the cumulative effect of which is difficult to predict. A level of 

uncertainty of only ±5% in each of the input parameters of Eqn. 3.2-3.3 could lead to a possible 

±14% variation in the resulting prediction of SO2. It should also be noted that the calculation of 

BE currently also relies upon determining the pH. Clearly, if Eqn. 3.2 was used as part of a 

more complex nonlinear simulation model involving many other such equations, each with its 

own set of uncertain parameters, the possible effects on overall model predictions could be 

highly significant. 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

70 Validation of Pulmonary Physiology Models  

 

In the case of unmeasured parameters, the simplest strategy involves manually uploading 

nominal values to these parameters (Hinds 1984, Hardman 1998, Eldridge 1996). Some studies 

use parameter estimation techniques to identify the values of the unknown parameters.  In other 

cases where model parameters are directly unavailable from the patient data, studies have used 

statistical techniques such as Bayesian estimation (Rutledge 1993), regression (Liu 1998) etc to 

match their model parameters to steady state patient conditions. However these methods are 

insufficient when representing dynamic models with time varying parameters.  

Without other more rigorous procedures for model validation and verification, the wider clinical 

exploitation of in silico simulation models will continue to be strongly limited, since doubts 

about model validity negatively affect the clinical applicability of any predictions arising from 

simulation studies. This contrasts sharply with current best-practice in the fields of systems and 

control engineering, where computer simulation models for safety-critical applications are 

routinely subjected to extensive programmes of verification and validation, using advanced 

analytical and computational approaches. Indeed, it could be argued that physiological 

simulators require special attention in this respect, since their internal parameters are often very 

poorly known or difficult to measure and may be subject to large variations across patient 

populations.  

The next section introduces optimisation based methods that have shown considerable success 

in assessing the robust stability and performance of computer simulation models of safety-

critical applications (Menon 2007, Martin 2008). The underlying principles of optimisation-

based model validation and structure of some common optimisation algorithms are discussed in 

detail. This should enable the reader to easily interpret the final section of the chapter where the 

pulmonary physiology model is subjected to simultaneous variations in the values of multiple 
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physiologically relevant uncertain parameters with respect to a set of specified performance 

criteria. 

3.2 Model validation using optimisation methods 

Recent research in the field of simulation-based analysis of flight control systems (Fielding 

2002, Menon 2006) and systems biology (Kim 2006, Kim 2010, Morohashi 2002) has 

highlighted the usefulness of the engineering concept of robustness for validating complex in 

silico simulation models. Robustness, in both engineered and natural systems, may be defined 

as the ability of the system to function correctly in the presence of both internal 

uncertainty/variability and/or external disturbances in its environment (Doyle 2002). This 

concept may be applied for the purposes of physiological model validation as follows.  

Consider a situation where the outputs of a model (or of several different models) show a good 

match to the available experimental data for a given set of model parameters. With respect to 

expected levels of uncertainty in the model parameters, the robustness of the responses of the 

model could be evaluated by using analytical or computational approaches If the model 

responses do not exhibit the same level of robustness as has been found for the real system in 

vivo, then this points to flaws in, or incompleteness of, the model. In addition, such analyses 

have the advantage of directly quantifying the cumulative effect of uncertainty in internal model 

parameters on the eventual predictions upon which new biological understanding or therapeutic 

strategies may be based.  

Robustness analysis is now a well-established research area in the field of systems and control 

engineering, and many approaches have been developed in recent years to quantify the 

robustness of complex nonlinear systems (Fielding 2002, Morohashi 2002, Menon 2006). For 

example, prior to flight tests, flight control engineers dedicate a significant amount of resources 
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to simulation-based analysis of the effect of uncertainty in an aircraft’s mass, inertia, centre of 

gravity positions etc on the performance of flight control system designed using a “nominal” 

model. This type of analysis is expensive but crucial to establishing the safety of the system, 

which has provided strong motivation for the development of novel techniques to conduct the 

analysis in the most reliable yet efficient way possible. Recent research in this area has proposed 

the use of global optimisation algorithms for a number of different applications of robustness 

analysis, such as aircraft stability (Menon 2006), robustness of cellular level biochemical 

models (Kim 2006), model validation of a jet engine (Martin 2008), and attitude control of 

satellites (Wang 2010).  

The first step in the optimisation-based model validation approach is to formulate the 

optimisation problem (OP). A general formulation of an OP is described as follows: 

    Maximise                       [3.4]

   subject to            

The objective function        , is a scalar function that we wish to maximise. The decision 

vector                 
      is a vector of independent variables              known as 

the decision variables.   is the set of all possible solutions of   such that       . The OP can 

be stated as finding a vector   from   that returns the maximum value of the objective 

function  . If       then the OP is referred to as an unconstrained maximisation problem. In 

a constrained optimisation problem, OP of Eqn. 3.4 is subject to the following constraints:  

   Subject to                                    [3.5]

                                        [3.6]

                         [3.7] 
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The decision vector   is restricted to be within a lower bound    and upper bound    which 

defines the decision space. The function       is called the constraint function. A solution   

that does not lie in the decision space or satisfy        is called an infeasible solution. 

Conversely if a solution   exists in the decision space and satisfies        then it is called a 

feasible solution.   is thus the set of feasible solutions.  

In model validation problems, the objective function      is chosen to find the worst-case 

combination of parameters    that would maximise the difference between model’s response 

and the nominal response. The objective space may contain multiple local optima but the true 

worst-case combination is given by the global optimal of the objective function     . The next 

step is the selection of an optimisation algorithm that can be used to drive the search in the 

decision space towards   .  

Many different classes of optimisation algorithms can be found in literature. Some of these 

algorithms use the gradient information of the objective function to decide the search direction, 

while others rely only on the objective function value. The search space can be convex or non-

convex which can decide if the optimisation algorithm would provide a local or a global 

solution, respectively. A local optimisation algorithm will find the global solution in a convex 

space but may only find a local solution in a non-convex search space. Most real world 

problems have a search space which is non-convex. Therefore, global search algorithms are 

required to reliably find global solutions. The performance of any given optimisation algorithm 

is dependent on the problem and no unique algorithm can guarantee convergence to the global 

solution with a reasonable amount of computational expense. Therefore, a number of different 

algorithms are applied and compared in this study, in order to discover the most promising 

methods for the problem of model validation of physiological systems, and to cross-validate the 

worst-case analysis results. All the algorithms considered in this section are subject to general 
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termination conditions on improvement in objective function value (TolFun) and change in 

decision vector   (TolX), which are explained in Appendix B. The algorithms terminate if 

TolFun<10
-6

 or TolX<10
-6

. The individual algorithms and any other specific termination 

conditions associated with them are described below.  

3.2.1 Sequential Quadratic Programming  

Sequential Quadratic Programming (SQP) is one of the most effective classes of local 

algorithms for addressing nonlinear constrained optimisation problems (Han 1976, Powell 

19 8). It can be considered as a generalisation of Newton’s method for unconstrained 

optimisation in that it decides the next step from the current point by minimising a sequence of 

quadratic programming sub-problems. The SQP algorithm requires first and second derivative 

information of the objective and the constraints function. With problems where the local 

gradient information of the objective function cannot be determined analytically, SQP algorithm 

defines a quasi-Newton matrix by making a quadratic approximation of the Lagrangian function 

and approximating the Hessian matrix. This enables the SQP algorithm to replace the objective 

function with the quadratic approximation and replace the constraints with linear 

approximations. The Hessian matrix is updated every iteration using the standard Broyden-

Fletcher-Goldfarb-Shanno (BFGS) formula. The present study uses the SQP implementation 

provided in the optimisation toolbox of MATLAB (Mathworks 2000). 

3.2.2 Mesh Adaptive Direct Search (MADS) 

MADS is a relatively new local optimisation algorithm (Audet 2006) that addresses the problem 

of minimising a non smooth function where derivate information of the objective function is 

unavailable.  It extends the Generalised Pattern Search (GPS) algorithm (Lewis 2000), by 

enabling the exploration of the search space in an infinite number of directions. MADS has been 
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shown to be very effective relative to GPS in reaching global optima (Audet 2006). The 

algorithm works by searching for the best point around a current point, within a mesh, based on 

the evaluation of the objective function. If the algorithm finds a point in the mesh that improves 

the value of the objective function (successful), then the new point becomes the current point 

and the mesh size increases. If the current point does not improve the objective function 

(unsuccessful) then the mesh size is reduced and the method is repeated. The description of the 

method as implemented in this study is presented below. 

MADS is an iterative algorithm that attempts to locate a minima of the function f(x) over its 

feasible region by evaluation 2n trial points (where n is the number of parameters being 

considered) at every iteration.  Each of these trial points lies on the current mesh, constructed 

from a vector Dk of 2n direction vectors, scaled by a mesh size parameter mk.  

 

Figure 3.3: MADS poll step example for number of parameters n=2. The third plot illustrates 

the process at k=2 if at k=1, f(xk)1 < f(xk) for all trial points x. 

1) Initial point xo is provided to the algorithm and the objective function value f(x0) is 

evaluated. At iteration k, the current mesh is defined by 
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         m     D    Sk
             [3.8] 

where Sk is the set of points where the objective function f has been evaluated by the 

start of iteration k. Defining the mesh as a union, all visited points lie on the mesh and 

new trial points can be selected around any of them using directions in D. 

2) Search: From the current best point, a search is conducted. If the search returns a better 

value of the objective function value, than this becomes the centre of the new mesh. The 

poll step is ignored and a new mesh is created. The current implementation conducts the 

SQP based local search, mentioned in the previous section.  

3) Poll:  If the search step fails to improve the current mesh, then a poll is run around the 

current best mesh point. The mesh points are evaluated.  Dk is a vector of size 2n and is 

selected randomly by the algorithm. If an improved mesh point is found then the poll is 

successful and mk is doubled for the next iteration (Figure 3.3). If the poll fails to 

improve the objective function value then the poll is unsuccessful and mk is halved. 

4) Termination: The algorithm is terminated if the function fails to improve by 10
-6

 

between iterations, if the mesh size becomes smaller than 10
-3

 or if the number of total 

function evaluations exceeds 600. 

3.2.3 Genetic Algorithms (GA) 

GA’s are general purpose stochastic search and optimisation procedures based on evolutionary 

principles (Goldberg 1989). Evolutionary algorithms aim to generate a population of fittest 

candidates by implementing evolutionary concepts such as selection, mutation, recombination 

etc. Due to their ease of application in problems with large and small parameter search spaces, 

GA’s have become a popular search and optimisation technique in many fields of science and 

engineering (Mitchell 1998, Menon 200 ). With their probabilistic and parallel nature, GA’s are 
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generally capable of converging to the global optimum even in highly non-convex parameter 

spaces – convergence can be slow, however, and global algorithms like GA’s typically require 

much longer computation times than local gradient-based methods (Fleming 2002). 

In GA’s, a randomly selected population of candidates (1
st
 generation) undergoes a repetitive 

process of reproduction, where selection is based on the value of the objective function (also 

called the fitness). Every generation, the best candidates from the previous generation (elitism) 

and candidates obtained through mutation and crossover, recombine to form a new population. 

The average fitness of the individuals in the population is expected to increase as strong 

individuals are protected and combined with one other and weak individuals are discarded.    

 The specific method implemented here is described in detail below. 

1) Encoding: A double vector encoding scheme (Mathworks 2005) is used to encode the 

real values of the parameters. Each parameter vector is called a chromosome and each 

parameter (element) in the vector is called a gene. 

2) Initialisation: The GA search starts from an initial random number of candidates for a 

population size n. The fitness of each chromosome is evaluated using the objective 

function. The population loses diversity over the search space if the population size is 

too low, which can reduce the quality of the final solution and increase the duration of 

algorithm computation (Goldberg 1989). For the work conducted in this thesis, the 

population size n is fixed at 30.  

3) Selection: The candidates in the current generation are selected as parents to form future 

generations based on the selection scheme and their fitness. The work done in this thesis 

utilises a roulette wheel selection scheme, where each segment of the notional roulette 

is assigned a chromosome, with the size of the segment proportional to the fitness of the 
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chromosome. This ensures that the stronger candidates have a higher probability to 

influence the next generation. 

4) Elitism: The GA implementation incorporates an elitist strategy which selects the two 

chromosomes with the best fitness from the population into the next generation. This 

ensures that the average fitness of the population will not degrade over the generations.  

5) Crossover: During crossover (Figure 3.4), a new individual is created by combining the 

genes from two parent chromosomes which are selected at random from the parent 

population. A simple single point crossover is employed where at a randomly selected 

length; the two chromosomes are split and merged with each other. The crossover 

fraction is set to 0.8, i.e. 80% of the new population is generated through crossover.  

 

 

 

Figure 3.4: The GA crossover operation example 

6) Mutation: Mutation introduces random variation in the chromosome of the mutation 

population (Figure 3.5). After the elitism and the crossover operators, the remaining 

members are populated using the mutation operator. 

 

Figure 3.5: The GA mutation operation example 

B1 B2 B3 B4 B5 B6 

Parent 

B1 B2 B3 X B5 B6 

Child 

A1 A2 A3 A4 A5 A6 

B1 B2 B3 B4 B5 B6 

Parent 1 

Parent 2 
A1 A2 A3 B4 B5 B6 

Child 
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The problems considered in this thesis have search spaces that are either constrained, 

bounded or both. Therefore, an adaptive mutation scheme (from Mathworks 2005) is 

utilised that randomly generates the direction and the size vectors of the mutation that 

would satisfy the constraints and the bounds. 

7) Termination: The maximum number of generations is set to 20. In addition, an adaptive 

criterion is used to terminate the algorithm if the improvement in the solution over 

successive generations is less that 10
-6

 (see appendix B). 

3.2.4 Differential Evolution (DE) 

The second evolutionary optimisation algorithm considered in this study is DE, introduced by 

Storn and Price in (Storn 1997). This method belongs to the same class of evolutionary 

techniques as GA’s, but unlike GA’s it does not require a selection operator or an encoding 

scheme. The DE method has recently been applied in several problems in different fields of 

engineering design with promising results (Vesterstrom 2004, Menon 2007), and was found to 

provide better performance when compared with other evolutionary algorithms in solving 

different numerical problems.   

DE generates new parameter vectors by adding the weighted difference between two vectors to 

a third vector, to form a mutated vector      
   . Then under crossover, a target vector is mixed 

with this mutated vector to form a trial vector. Finally during selection, if the trial vector 

improves the objective function value compared to the target vector, then it replaces the target 

vector in the next generation. The process is continued until any of the termination criteria is 

met (see below). The specific implementation of D  utilised here is the “D /rand/1/bin” (Storn 

1997). The steps are described are described in detail below. 
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1) Initialisation: The initial vector population  is  

  
                [3.9] 

where N is the population for each generation  . The initial vector population is chosen 

randomly, based on the assumption of a uniform probability distribution to cover the entire 

parameter space. Each   
  is an n-dimension vector equal to the number of parameters being 

considered in the objective function. The population size N is fixed at 30 in this implementation.  

 

Figure 3.6: Example of two dimensional objective function showing the contour lines and 

process for generation of the mutated vector     
    

2) Mutation: For each target vector   
 , a mutant vector is generated according to  

      
      

                      
      

     [3.10] 

Figure 3.6 illustrates a simple two dimensional example of the process. The difference 

vector D determines the search direction. The mutation scale factor   is a real valued 
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number in the range [0, 1], (fixed at 0.8 in this study) and determines the step size in that 

direction.  

3) Crossover: Using a crossover factor CF , the mutant vector     
    and a target vector x 

 a 

trial vector is formed where 

      
      

  
 

      
   

             
      F

         
    [3.11] 

In Eqn, 3.11,   is a random number generated between [0, 1] by the user. Here, CF is fixed 

at 0.8.  

4) Selection: To decide whether or not the trial vector       
    becomes a member of generation 

G+1, it is compared to the target vector   
 . If the trial vector improves the objective 

function value then it replaces the target vector in the next generation.  

5) Termination: The above steps will continue until the termination requirement is met. The 

same adaptive termination criterion mentioned in the previous section is utilised.  

Other variants and applications of DE can also be found in (Storn 1997, Price 2005).  

3.3 Validation of pulmonary physiology simulator for clinical 

applications 

3.3.1 Introduction 

In this section, a robustness analysis approach is used to compute worst-case deviations of 

arterial blood gas predictions from physiologically realistic values due to the effects of realistic 

levels of parametric uncertainty in a high fidelity simulation model of cardio-pulmonary gas 
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dynamics (Hardman 1998, Hardman 2001, McCahon 2008). The effect of simultaneous 

variations in multiple uncertain parameters can be analysed by formulating the problem as a 

multivariable constrained optimisation problem. A detailed comparison of the effectiveness and 

computational efficiency of a number of different global optimisation algorithms in solving this 

problem has been carried out, and results are compared with standard statistical approaches 

(Monte Carlo sampling).  

Unlike the traditional approach to model validation, the aim is not to validate a particular setting 

of the model against data from an individual patient, but to quantify its robustness (i.e. its ability 

to always produce realistic results for all expected levels of uncertainty in internal model 

parameters). The intent is to produce a simulator that has been validated across the expected 

range of variation that would be found in multiple patients, thus representing a much more 

stringent test of the underlying model assumptions than simply checking the ability of the model 

to match a single set of data (it is entirely possible that a model which included significant 

errors might still, on occasion, produce results which matched one particular set of data).    

3.3.2 Modelling of uncertain parameters 

There are a large number of uncertain parameters that could be considered in a complete 

analysis of a pulmonary system model which includes both static and time-varying parameters 

arising from uncertainty within and between individual subjects. To illustrate the proposed 

approach, a representative subset of these parameters has been chosen, representing the 

haemoglobin level (Hb), cardiac output (CO), oxygen consumption (VO2), respiratory quotient 

(RQ) and the core body temperature (T). These parameters are assigned a “nominal” value 

together with an allowable range of variation/uncertainty, as shown in Table 3.1. These values 

were chosen in consultation with medical specialists and are based on direct clinical experience 

of the levels of uncertainty that would be expected amongst the general patient population.   
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3.3.3 Formulation of the model validation problem  

The model validation problem considered in this study is the following: for the realistic levels of 

uncertainty on key model parameters defined in Table 3.1, guarantee that the model responses 

for PO2' (current arterial O2 pressure, kPa), PCO2' (current arterial CO2 pressure, kPa) and pH' 

(current plasma pH) always stay within physiologically reasonable ranges (i.e. verify that the 

model’s responses exhibit the same levels of robustness to this level of uncertainty as are 

observed in vivo). Valid ranges for PO2', PCO2' and pH' were defined based on clinical 

experience and are shown in Table 3.2. 

 

Uncertain Parameters 
Nominal value and 

uncertainty range 

[lower bound (  ), 

upper bound (  )] 

Haemoglobin content in blood, 

Hb [gm l
-1

] 
140 ± 15% [119,161] 

Cardiac output, CO [ml min
-1

]
 

5000 ± 10% [4500, 5500] 

Oxygen consumption, VO2 [ml 

min
-1

] 
250 ± 20% [200, 300] 

Respiratory quotient, RQ 0.8 ± 12% [0.704, 0.896] 

Temperature, T [ºc] 37.2 ± 0.5% [37.0, 37.4] 

Table 3.1: Nominal values, allowable uncertainty ranges and the resultant lower and 

upper bound for the selected uncertain parameters in the model. 
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Predicted Parameters 
[lower bound, 

upper bound] 

Current arterial O2 pressure,    
  [kPa] [9,15] 

Current arterial CO2 pressure,     
  [kPa]

 
[3.5,7.5] 

Current plasma,     [7.3,7.5] 

Table 3.2: Allowable upper and lower bounds for model predictions 

The model validation problem defined above can be formulated mathematically as an 

optimisation problem as follows: 

                                                 
  [3.12] 

                    

        
       

 

   
,          

         
 

    
,          

      

  
,   [3.13] 

In Eqn. 3.12,   is the vector of uncertain model parameters,   and   are vectors of lower and 

upper bounds, respectively, for the uncertain parameters (see Table 3.1) and      is the 

objective function which is maximised by the optimisation algorithm. In Eqn. 3.13,    ,      

and    refer to the nominal values of the model predictions (i.e. the values that are computed 

when all the uncertain parameters are set to their nominal values, over a given simulation time-

period). In the objective function,      refers to the magnitude of the largest component in the 

vector   of size   (i.e.             ), commonly known as the infinity norm. Thus, 

     measures the normalised absolute magnitude of the largest difference between the 

“nominal” model prediction and the current model prediction over the course of the simulation 

time window, normalised using the nominal output.   
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After a few preliminary tests, a simulation time-window of 10 minutes was chosen, in order to 

ensure that all model outputs had settled down to steady-state values before the objective 

function was evaluated. This is decided to be an adequate choice, but it cannot be guaranteed 

that all the model outputs have indeed settled down for all possible combinations of inputs. In 

this case we have chosen to normalise each of the three output variables to ensure that they have 

an equal weighting in the objective function, however, it is clearly possible to differentially 

weight the different variables in situations where deviations in one are considered more 

problematic or interesting than another. With the above formulation, the optimisation algorithm 

searches for the combination of uncertain parameters within the allowable ranges that drives the 

predictions of the simulator as far as possible from the nominal predicted values over the course 

of the simulation – a schematic diagram of the model validation framework is shown in Figure 

3.7. 

 

Figure 3.7: Optimisation-based model validation framework 

In order to ensure that the globally optimal solution to the above problem has been found, 

several different optimisation algorithms are employed. Once the optimal solution has been 

found, the corresponding “worst-case” model predictions are considered with respect to the 

allowable ranges specified in Table 3.2. If one or more anomalous responses are found, then 

these need to be checked to see whether the particular combination of model parameters which 
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produced that response is physiologically plausible, if it corresponds to a particular condition 

which would be likely to produce unexpected responses, etc. 

In this study, a gradient-based local optimisation algorithm, Sequential Quadratic Programming 

(SQP), a derivative free direct search method Mesh Adaptive Direct Search (MADS) and two 

evolutionary algorithms - Genetic Algorithms (GA) and Differential Evolution (DE) were used 

to solve the problem defined in Eqn. 3.12. For the purposes of comparison, a standard statistical 

method (Monte Carlo simulation (Fielding 2002, Vidyasagar 1998) was also implemented. All 

algorithms, along with the simulation model, were coded in the MATLAB® high-level 

modelling and computation environment (Mathworks 2002, Mathworks 2005). 

3.3.4 Results 

Figures 3.8-3.12 show the results of the application of the different optimisation algorithms to 

the problem defined in Eqn. 3.12. In each Figure, the graph on the left shows the improvement 

in objective function value as the algorithm proceeds (i.e. the rate of convergence to the optimal 

solution). Each algorithm has been run five times and the results of the best run are given. For 

SQP, each run is started at a randomly selected initial point in the search space. The bar graph 

on the right shows the uncertain parameter combination corresponding to the optimal solution 

found by the algorithm. Note that in the plot each uncertain parameter has been normalised 

between -1 and 1 (lower bound and upper bound respectively, see Table 3.2, with a value of 

zero corresponding to its nominal value. The bar graphs show the optimal values of each of the 

5 uncertain parameters in the order given in Table 3.1 (i.e. Hb, CO, VO2, RQ and Temperature).  
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     Figure 3.8: SQP result (a) SQP performance, (b) Optimal values of the uncertain 

parameters 

Figure 3.8 displays the progression and termination of the best run of a local search SQP 

algorithm. Local optimisation algorithms like SQP use gradient information to converge quickly 

to an optimal value in the uncertain parameter space. The surface generated by the objective 

function values over the multi-dimensional space defined by the uncertain parameters is likely 

to be non-convex, due to the highly nonlinear simulation model of the type considered here. As 

a result, local algorithms are likely to become trapped at local optima and will not be able to 

uncover the maximum possible deviation of the model responses from their nominal values. As 

will be shown below, this is exactly what happens in this case. Figure 3.8(b) gives the optimal 

parameter combination found by the algorithm. 
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              Figure 3.9: GA result (a) GA performance, (b) Optimal values of the uncertain 

parameters 

Global optimisation algorithms use randomisation, evolutionary principles and/or heuristic 

search strategies to escape from local solutions and are generally accepted to have a high 

probability of finding globally optimal solutions, although at the cost of significantly increased 

computational overheads. Figure 3.9 shows the results of the application of the global GA 

optimisation method to the same problem. The GA starts with an initial randomly chosen 

population of candidate solutions. Figure 3.9(b) gives the final optimal parameter combination 

found by the algorithm. Note that the global optimisation algorithm finds a completely different 

worst-case parameter combination to the optimal solution found by the SQP algorithm, with an 

improved maximum value of the objective function, although with a corresponding increase in 

the number of simulations required. 
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Figure 3.10: DE result a) DE performance, (b) Optimal values of the uncertain parameters 

Figure 3.10 shows the results of the application of a second evolutionary algorithm, DE. From 

Figure 3.10 (b), it can be seen that the DE algorithm converges to a similar worst-case 

parameter combination and optimal value of the objective function, although with a slower 

convergence to the global optimal in comparison to the GA.  

Figure 3.11 shows the result of the application of a direct search algorithm known as MADS. 

The mesh size tolerance for the algorithm was set to 10
-6

. Figure 3.11(b) gives the final optimal 

parameter combination computed by the algorithm. It can be observed that this algorithm, which 

is based on completely different search principles to evolutionary algorithms, has varied each of 

the uncertain parameters in the same direction as GA, but has taken each of the parameters to 

their boundaries in order to arrive at the global solution. This reveals one of the drawbacks of 

evolutionary algorithms, which due to their randomised nature and lack of gradient information, 

often arrive in the vicinity of the global solution but then have difficulty in converging precisely 

to it. In this case, the MADS algorithm proved to be significantly more efficient than the GA, 

requiring about a sixth as many simulations. Note, however, that results obtained via a local 
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algorithm like MADS would always need to be cross-validated against those obtained with a 

global algorithm, since its performance is completely dependent on a fortuitous choice of initial 

starting point. 

 

Figure 3.11: MADS result (a) MADS performance, (b) Optimal values of the uncertain 

parameters 

For the purposes of comparison, Figure 3.12 gives the results of a standard Monte Carlo 

simulation (MCS) campaign using 1500 simulations. Although this number of simulations is 

fifteen times the number required by the MADS algorithm, and provides strong statistical 

confidence that the true worst-case behaviour will be found (see Table 3.4), it is apparent from 

Figure 3.12 that only a local optimum for the problem has in fact been identified, with the 

corresponding values of the uncertain parameters being significantly different from their true 

worst-cases. 
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 Figure 3.12: Monte Carlo result a) Monte Carlo performance, (b) Optimal values of the 

uncertain parameters. Note- x denotes the best value found over 1500 function evaluations. 

Table 3.3 provides a comparison of the worst-case parameter combinations and objective 

function values found by the different methods considered in this study. The table also 

compares the computational efficiency of each approach in terms of the number of simulations 

required to converge to the optimal solution. Note the excellent performance of the MADS 

algorithm, which achieved the highest value of the cost function but required only slightly more 

simulations than the local SQP algorithm. 
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Optimisation 

Algorithm 

Optimal Parameters 

[Hb,  CO,  VO2, RQ,    T] 

Number of 

simulations 

Optimal value of 

the objective 

function 

SQP [134, 4500, 200, 0.704, 37.29] 75 0.2256 

GA [160, 5493, 300, 0.895, 37.08] 620 0.2561 

MADS [161, 5500, 300, 0.896, 37.02] 100 0.2565 

DE [161, 5500, 300, 0.896, 37.01] 600 0.2570 

MCS [153, 4749, 300, 0.884, 37.22] 1500 0.2285 

Table 3.3: Comparison of the results of the different optimisation algorithms 

 

Figure 3.13a-d shows the main result of our model validation study – for the worst-case 

deviations from the nominal model predictions due to parametric uncertainty in the model the 

responses of the model always stay within the physiologically realistic bounds defined in Table 

3.2. The shaded cubical region in Figure 3.13a represents the allowable ranges of each output as 

given in Table 3.2. It is clear that the worst-case model predictions never violate the boundaries 

of the region over the course of the simulation. Figure 3.13b-c displays the worst case result as 

given by each of the different optimisation algorithms. 
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Figure 3.13a: Nominal (blue) and worst-case (red) model predictions for normalised PO2, PCO2 

and pH. t0 – simulation starting time, t10 – simulation end time, box – allowable values 

 

 

Figure 3.13b: Nominal and worst-case model predictions for PO2 
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Figure 3.13c: Nominal and worst-case model predictions for PCO2 

 

Figure 3.13d: Nominal and worst-case model predictions for pH 

To obtain an understanding of the relative effects of the different uncertain parameters on the 

objective function, a sensitivity analysis was performed around the nominal point (Figure 

3.14(a)) as well as at the worst-case point (Figure 3.14(b)) in the uncertain parameter space. As 

shown in the figures, VO2 has the strongest affect on the objective function relative to the other 
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parameters. Reassuringly, this is to be expected from physiological considerations as, of all the 

parameters, VO2 will be the one which has the most direct effect on the quantity of oxygen and 

carbon dioxide in the blood. VO2 is the oxygen taken away from the blood (reduction in PO2), 

which would result in higher carbon dioxide production at the peripheral tissues (higher PCO2). 

Blood acid relationships suggest that this increase would also result in a significant decrease in 

the levels of pH in the blood. All these factors indicate that variations in this parameter would 

result in significant deviations from the nominal PO2, PCO2 and pH values, i.e. it will have a 

large influence on the value of the objective function.  

 

Figure 3.14: Sensitivity analyses at the (a) nominal case and (b) worst case 

3.3.5 Discussion  

Figure 3.15 shows the box plot of the distribution of optimal parameters as given by the 

algorithms over several executions. It is a useful comparison tool for the different algorithms. It 

clearly shows that a result produced by a single execution of the SQP strategy would be 

unreliable. An interesting result is the comparison between GA vs MADS where even though 
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MADS produced a better single worst case over several executions (Table 3.3), the GA 

consistently reached closer to the global optimum than MADS. 

 

Figure 3.15: Box plot showing the performance of different algorithms. The red line is the 

median value. The edges of the boxes are the 25
th
 and 75

th
 percentile while the whiskers extend 

to the most extreme data points. 

Monte  arlo simulation is generally considered the “gold standard” in many different areas of 

science and technology for estimating the effects of parameter variations on the outputs of 

complex dynamical systems. However, Monte Carlo simulation suffers from an exponential 

increase in computation times as the required confidence levels and accuracy for the statistical 

analysis are increased. As shown in Table 3.4, (taken from (Williams 2001)) to be within a 

probability range of 0.75 to 0.95 of estimating the worst-case behaviour of a system to within 

±20%, only 25 simulations are required. If, on the other hand we need to be within a probability 

range of 0.94 to 0.999 of estimating the worst-case behaviour of a system to within ±1%, then 

40,000 simulations are required.  
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Uncertainty 

probability 

range 

Number of Monte Carlo trials based on percent of 

estimation uncertainty 

20% 15% 10% 5% 1% 

0 → 0. 8  7 12 25 100 2500 

0. 50 → 0.954 25 45 100 400 10,000 

0.890 → 0.99  57 100 225 900 22,500 

0.940 → 0.999 100 178 400 1,600 40,000 

Table 3.4: Number of Monte Carlo trials required to achieve a desired estimation uncertainty 

with known probability, (Williams 2001) derived using the Chernoff bound (Vidyasagar 1998). 

Since this number of simulations is usually impractical for complex physiological simulation 

models of the type considered here, much lower confidence levels are often accepted in practice. 

As shown by the example presented in this chapter, Monte Carlo analysis can fail to find global 

solutions even when very large numbers of simulations are employed, thus seriously 

compromising the integrity of the overall model validation strategy. Interestingly, this issue has 

recently been widely recognised throughout the aerospace industry, which spends vast sums 

each year on Monte Carlo simulation campaigns to validate new safety-critical flights systems. 

This has led to a drive to investigate alternative validation strategies based on the use of global 

optimisation algorithms to intelligently search for worst-case behaviour, and promising results 

in this direction have appeared in the research literature (Fielding 2002, Menon 2006, Menon 

2009, Kim 2006).  

It should be noted that a principal motivation for the described attempts to ‘break’ the model is 

to uncover unexpected conditions or responses, which could need further investigation, and may 

(or may not) point to limitations or weaknesses in the formulation of the model. Expert analysis 
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of the model cannot be replaced by an automated computer program – rather an analysis method 

is proposed which can efficiently uncover anomalous model responses for further investigation 

by the user. Furthermore, a comparison of the nominal versus worst-case values of the model 

outputs allows the impact of uncertainty on model predictions to be quantified, thus providing 

valuable insight into the reliability and limitations of any new therapeutic strategies arising from 

the model predictions.  

Simulation models which are intended for direct application in healthcare research and clinical 

practice should face extremely stringent requirements; they must cope with high levels of 

uncertainty due to non-measurable parameters, population heterogeneity and disease 

heterogeneity and, simultaneously, their validation procedures must offer irrefutable proof of 

their applicability and reliability in the clinical arena.  

Clearly, such expectations have not to-date been met by the vast majority of simulators 

developed in academic studies. Modern techniques from systems and control engineering such 

as those considered here offer new hope that simulators can be developed which acceptably 

represent true levels of population and disease heterogeneity, and hence provide robust and 

reliable predictions upon which novel therapeutic strategies may be based. As demonstrated by 

the results presented in this chapter, the time is now ripe for such optimisation-based approaches 

to play an important role in transforming physiological simulators into powerful biomedical 

engineering tools for direct application in clinical practice.     
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Chapter 4: Optimising Mechanical Ventilator Settings 

This chapter considers the problem of optimising the settings of mechanical ventilation in an 

Intensive Therapy Unit (ITU) for patients with diseased lungs. The chapter begins with an 

introduction to the principles of mechanical ventilation and its application in the ITU. A review 

of current expert opinion on the incidence of Ventilator Associated Lung Injury (VALI) in 

mechanically ventilated patients is presented. The inherent trade-offs associated with satisfying 

the objectives of mechanical ventilation while minimising the risk of VALI in the modern 

Intensive Therapy Unit (ITU) are discussed. Current ITU approaches for determining 

mechanical ventilator settings are also reviewed.  

Motivated by the limitations of these approaches, the selection of optimal mechanical ventilator 

settings is formulated as a constrained multi-objective optimisation problem. A validated 

physiological simulation model is used to optimise the settings of mechanical ventilation for a 

healthy lung and for several pulmonary disease cases. The constrained multi-objective 

optimisation problem is solved using a weighted aggregated objective function (WAOF) 

approach and as well as via a non-dominated sorting genetic algorithm NSGA-II. The optimal 

solutions obtained by the WAOF approach are compared with the set of optimal solutions 

obtained by NSGA-II.  

The optimal settings computed for several simulated disease scenarios are shown to satisfy the 

conflicting clinical objectives, and improve the ventilation perfusion matching within the lung. 

Crucially, they are also shown to be highly disease-specific. The proposed combined modelling 

and optimisation approach offers physicians a tool with which to conduct in silico trials on 
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strictly-compliant virtual patients, in order to more easily assess and manage the trade-offs 

involved in determining appropriate patient- and disease-specific ventilator settings. 

4.1 Introduction 

4.1.1 Mechanical Ventilation 

Mechanical Ventilation (MV), in its numerous forms, is a frequently used procedure in the ITU, 

and is usually required when a patient’s natural respiration is inadequate on its own to maintain 

life. The majority of critically ill patients in Intensive Therapy Units (ITU) spend some time 

with their lungs ventilated with a mechanical ventilator.  It is estimated that MV is required by 

nearly 1.5 million patients in the United States every year (Hill 2001) and indications are that 

this figure is set to increase (Rubenfield 2005).  

The earliest ventilators worked by creating a negative pressure around the chest, allowing flow 

of air into the lungs, known as negative pressure ventilation (Woollam 1976). Modern 

mechanical ventilators use positive pressure ventilation, achieved by increasing the pressure in 

the patient’s airways and thus creating a pressure gradient for the air to flow into the lungs. 

Mechanical ventilation can be invasive (e.g. tracheal intubation) as well as non-invasive (bag 

valve / PAP ventilators) and the applications ranges from short term (ITU / Operating room) to 

long term (chronic lung illnesses). 

The purpose of the mechanical ventilator is to support a patient’s breathing. Breathing is a 

periodic activity which can be simplified into two stages: airflow into the lungs (inspiration) and 

airflow out of the lungs (expiration), which together constitute a breath. Mechanical ventilators 

are machines that create a flow of air into and out of the lungs to create a breath, working 

alongside or replacing the work done by the patients’ respiratory muscles.  
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The desired output provided by a positive pressure mechanical ventilator is simply the pressure 

that would be needed to create a pressure gradient between the ventilator and the lungs that will 

create the flow of air which will produce a change in the volume of the lung (Chatburn 2006). 

Mechanical ventilator outputs can be classified in the following ways:  

Ventilator decided control variables: The breath produced by the ventilator is controlled by the 

magnitude of four variables – pressure, volume, flow and time. Between flow, volume and 

pressure, the selection of one variable by the mechanical ventilator can determine the 

characteristics of the other two. For example, during pressure controlled ventilation, the 

pressure characteristics produced by the ventilator are predetermined, while the flow and 

volume characteristics are dependent on this pressure (along with compliance and resistance to 

the ventilator associated with the patient and ventilator equipment).  

Patient dependent variables: A breath that is based on the patient parameters can be classified 

into the following types:  

Trigger: The patient’s next inspiration is started (triggered) when a preset requirement is met 

on measured values of pressure, flow, volume or time. For example, if the patient airway 

pressure falls below a base value, the next inspiration is triggered. 

Cycle: A measured variable of the patient indicates the end of inspiration so that the expiration 

stage can be started. For example, under pressure cycle, a flow is delivered to the lung until 

preset pressure is reached, after which expiration begins. 

Limit: If a measured variable reaches a preset limit, then the current stage of breathing is held. 

The change of phase to expiration is dependent on the cycle settings mentioned above. For 
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example, if an upper limit is set on the pressure, then during inspiration, when the pressure in 

the lung reaches that pressure, the inspiration is held so that the pressure is not exceeded.  

Baseline: This is a variable that is controlled by the ventilator during expiration. For example, 

under pressure control, the pressure in the lung at the end of expiration is often controlled. If 

this pressure falls to atmospheric pressure, then the baseline pressure is zero. If the pressure in 

the lung is maintained above a certain value, this baseline pressure is known as positive end 

expiratory pressure (PEEP). 

Ventilation Modes: 

Types of Breath: A spontaneous breath is a breath which is determined completely by the 

patient. A mandatory breath is determined completely by the mechanical ventilator. During 

assisted breath, the ventilator plays a part in the breathing (e.g. Pressure Support Ventilation, 

Continuous Positive Airway Pressure). 

Breath sequences: In continuous mandatory ventilation (CMV), all breaths are mandatory and 

initiated by the ventilator. In continuous spontaneous ventilation (CSV), all breaths are 

spontaneous and initiated by the patient. In intermittent mandatory ventilation (IMV), 

spontaneous breaths are allowed between mandatory breaths. A variant of IMV, synchronised-

IMV (SIMV) allows for the mandatory breaths to be started by the patient. 

The model in this study simulates a “virtual” patient ventilated under heavy sedation with no 

effort from the patient. The patient’s breaths are determined fully by the mechanical ventilator, 

i.e. CMV. The breath provided by the mechanical ventilator is set to constant flow. 
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4.1.2 Ventilator Associated Lung Injury (VALI) 

The capacity of modern artificial mechanical ventilation to cause lung injury has been well-

known for several decades (Mead 1970). Ventilator Associated Lung Injury (VALI) refers to the 

injury suffered through the exposure of the patients’ lungs to potentially damaging positive 

pressures and high volumes, which can result in prolonged ITU care, pneumonia, lifelong lung 

scarring and even multiple organ failure (Dreyfuss 1992, Gammon 1992). More than 40,000 

patients undergo mechanical ventilation in the ITU each year in the UK (Nouraei 2009). Of 

these, approximately 2.9% suffer from VALI (Anzueto 2004), which in the UK alone represents 

several thousand cases.  

Under mechanical ventilation, patients can potentially be subjected to excessively high and 

possibly damaging ventilation contributions, such as high or highly-variable tidal volumes and 

pressures (ARDSnet 2000). This could have adverse effects on the operation of the respiratory 

system and consequently other major organs. Lungs can be exposed to: 

 High airway pressures during positive pressure ventilation resulting in barotrauma 

(Slutsky 1993). 

 Over-distension of alveoli can also be caused by excessive volumes of air entering the 

lung and causing volutrauma (Auten 2001). 

 Conversely, low lung volumes and certain ventilation settings expose the lungs to 

damage caused by repetitive opening and closing of the airways due to shear stresses, 

causing atelectrauma (Slutsky 1999). 

 Intubation used for mechanical ventilators has been shown to release mediators under 

different mechanisms such as stretching and shear stress. These can cause localised 
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injury and inflammation (Dreyfuss 2003).. The investigation of this process is presently 

beyond the scope of this project and hence will not been addressed further here.  

There have been numerous clinical trials conducted with the aim of developing guidelines for 

adjusting mechanical ventilation parameters for ITU patients to reduce the risk of VALI (Amato 

1998 Marcy 1993 Laffey 2000 ARDSnet 2000). These studies have focused on proposing 

ventilation parameters to reduce the exceptionally high mortality rates resulting from VALI. 

However, both the assessment of current practice in mechanical ventilation and the attempt to 

provide improved guidelines for physicians have met with several hurdles. The rates of 

administration of mechanical ventilation vary with geography, hospitals, resources and ITU 

conditions (Okamoto 2004). Furthermore, there remain differences and ambiguities in the 

definition of several conditions that lead to administration of mechanical ventilation (Villar 

1999). In some cases, even the statistical techniques used in data analysis have been shown not 

to meet satisfactory standards (Moss et al 2003). All of these issues can leave the outcomes of 

studies and clinical trials subject to such bias and unreliability that they have the potential to 

mislead (Concato, 1993).   

4.1.3 Current approaches to deciding mechanical ventilation settings 

In general, physicians in an ITU aim to maintain the patient’s ventilation parameters within 

regions of ‘respiratory comfort’ (Dojat 1992, Boudama 2005) based on generic guidelines 

depending on arterial O2-CO2 levels. They are aided in this task by advanced mechanical 

ventilator systems which provide decision support capabilities and strict command over patient 

breathing. Early mechanical ventilators were simple feedforward systems (Chatburn 2006) 

which provided a set volume and pressure of gas to the patient at a predesignated rate. As the 

machines have evolved the automatic feedback of the patient data in deciding mechanical 

ventilator settings has become common. At its simplest, these machines regulate the mechanical 
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ventilator outputs based on the previous outputs and state variables of the system. Modern 

ventilators with different ventilator support strategies such as Adaptive Support Ventilation 

(ASV) (Laubscher 1994), Proportional Assist Ventilation (PAV) (Younes 1992), etc utilise 

feedback control.  These strategies are outside the scope of this study, but for a review of the 

development of closed loop control in the field of mechanical ventilation, the reader is referred 

to (Tehrani 2008a, 2008b).  

It should be noted that most of the systems discussed in (Tehrani 2008a, 2008b) make decisions 

solely based on patient outputs and protocol based ranges of mechanical ventilator settings. For 

example, Tehrani (Tehrani 2008c) proposes FLEX, a tool designed to be used as both as an 

advisory open loop system under physician control and as a closed loop ventilator control 

system. Its rules (decision making) are adaptive and based on individual patients. However it 

does not utilise any direct models of gas transport or any relevant physiology but decides 

mechanical ventilator parameters based solely on a patient’s clinical parameters. As such the 

predicted mechanical ventilator settings provide little physiological insight regarding the 

underlying disease to the physician. It should also be noted that proposed rule based systems 

such as FLEX tend to adjust a single mechanical ventilator parameter based on current patient 

data, and then subsequently adjust other parameters. For example, in FLEX, inhaled oxygen 

fraction (FIO2) is decided by the arterial oxygen saturation. The positive end expiratory pressure 

(PEEP) is then decided based on this FIO2 and the inspiratory pressure is determined by the 

PEEP. The applicability of FLEX has to-date only been established in the context of 

management and weaning of ventilation. The rest of this section will focus on reviewing the 

state-of-the-art in prediction of mechanical ventilator settings using physiological modelling. 

In 1993, Rutledge (Rutledge 1993, 1994) proposed two versions of a respiratory model, 

VentSim and VentPlan, both designed (alongside a rule based network) to be used in an ITU as 
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a rapid predictive tool for ventilatory contribution. VentPlan is a simplified three compartment 

physiological model while VentSim is a relatively more comprehensive representation. The 

predictive algorithm employs a belief network (an algorithm mapping qualititative data into 

probability distributed quantitative values) which alongside a mathematical model presents 

several plans for ventilatory settings for a patient under a given situation. A plan-evaluator then 

ranks these plans with their predicted outcomes and the most satisfactory solution is displayed. 

Unlike VentPlan, the results of VentSim have not been reviewed against clinical data. In 

addition, the simplistic model used in VentPlan could compromise its applicability on patients 

with more complex and variable pathophysiological abnormalities. 

In 2006, Rees proposed a decision support system for optimising mechanical ventilation for 

patients in an ITU. The optimisation algorithm decides on a ventilation strategy in terms of 

possible results such as sufficient oxygen, minimising risk of acidosis and alkalosis and 

ventilator induced lung injury. The system claims the use of actual physiological models instead 

of relying on heuristic decision based support systems.  However the model used is extremely 

simplistic, and, for example, includes no detailed representation of ventilation-perfusion 

distribution. No testing of the system has been published so far on patient populations, and 

hence a valid clinical assessment of its efficacy does not yet exist. Recent work by this group is 

focussed on developing a more detailed model of the respiratory system for use in VALI 

assessment (Mogensen 2010). 

In general, previous approaches to deciding mechanical ventilation settings have been based on 

preset guidelines on patient parameters (McKinely 2001, Boudama 2005) with little 

consideration of individual patient physiology and no attempt to providing settings which 

optimise the tradeoffs involved in mechanical ventilation. Rule based methods provide little 

physiological insight into the reasons for their decisions and it is rare that multiple mechanical 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

107 Optimising Mechanical Ventilator Settings  

 

variables are adjusted simultaneously.  In this thesis, we propose an optimisation based 

methodology to determine optimal choices for multiple mechanical ventilator settings for 

specific disease scenarios.  

4.2 Problem introduction 

The development of a detailed quantitative understanding of the aetiology of VALI poses 

significant challenges. Previous modelling investigations and several current mechanical 

ventilators have used only very simplified models, and have not considered crucial factors such 

as the non-linearity of alveolar compliance and the closure of alveolar airways (Rutledge 1993, 

Rees 2006).  

The combination of high-fidelity, validated, pathophysiological simulation models and global 

optimisation methods offers a potentially powerful framework with which to address many of 

the challenges facing clinicians in the ITU, since they enable “virtual” experiments yielding 

quantitative results to be conducted on an infinitely compliant and strictly controlled in silico 

patient. These experiments may be used to enhance understanding of the causes and the 

pathophysiology of VALI. They can also be used to interrogate the effectiveness of “typical” 

ventilator parameter settings on different pathologies in different patients. The experiments can 

suggest novel, possibly counterintuitive MV settings for subsequent testing in clinical trials. A 

particular advantage of in silico approaches is that they can be used to investigate scenarios 

where conflicting processes are occurring and the tradeoffs involved in varying multiple 

parameters are not intuitively obvious. This is clearly the case for the problem considered here, 

which requires the management of tradeoffs between oxygenation and CO2 clearance objectives 

and VALI risk factors, via simultaneous adjustment of five ventilator parameters: tidal volume, 

ventilatory rate, ratio of inspiratory to expiratory time, positive end expiratory pressure and the 
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inspired fraction of oxygen. The aim is to optimise these ventilator settings to minimise the risk 

factors for VALI, while guaranteeing effective control of arterial oxygenation, carbon dioxide 

clearance and pH maintenance. 

In mathematical terms, this problem corresponds to a multivariable and multi-objective 

constrained optimisation problem. The dynamics of the ventilator-respiratory system are 

complex, and include significant nonlinear and non-smooth properties. Since the possible 

parameter space for ventilator settings is almost certain to be non-convex, local gradient-based 

optimisation algorithms are very unlikely to compute globally optimal results and we instead 

employ methods that have proven to be effective in solving non-convex problems with non-

differentiable functions, nonlinearities and stochastic properties, (Mitchell 1998, Audet 2007, 

Deb 2002). Although there have been some previous attempts to apply optimisation methods in 

the context of mechanical ventilation, (Gupta 1978, Rudowski 1991), this study is the first to:  

(a) employ a computer simulation model which has been comprehensively validated both from a 

clinical (Hardman 1998) and engineering point of view (Das 2010),  

(b) investigate the potential of global multi-objective optimisation algorithms, and  

(c) incorporate specific consideration of VALI risk factors and disease states. 

4.3 Multi-objective optimisation 

4.3.1 Introduction 

A general formulation of a multi-objective optimisation problem with   objectives can be 

described as follows:    
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   Minimise                                       [4.1]

   Subject to                                                 

                                           

                        

  is a vector of    decision variables:                
       and       is a scalar 

objective function such that           A solution   can only be selected between the lower 

and upper bounds    and   respectively. The set of solutions within these bounds is known as 

the decision space. The constraints that a solution   must satisfy are defined by the constraint 

function      . A solution   that does not lie in the decision space or satisfy       is called an 

infeasible solution. Conversely if a solution   exists in the decision space and satisfies 

       then it is called a feasible solution. The set   of all feasible solutions is called the 

feasible region (Figure 4.1). 

In multi-objective optimisation problems, the desired objectives can often be conflicting. In 

such cases, a set of solutions need to be computed that are non-inferior to the other solutions in 

the decision space. A non-inferior solution is a solution in which an improvement in one 

objective causes degradation in another objective. The set of non-inferior solutions is called the 

Pareto optimal set of solutions. Consider two candidate solution vectors             and 

             The Pareto concept may be explained using the dominance operator   as 

follows: The vector x dominates vector y (   ), if and only if,     

                        and    [4.2] 

                for at least one  .    [4.3] 
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When comparing two candidate solution vectors   and  , there are three possibilities:   

dominates        ,   is dominated by         or   and   are non-dominated.  

 

Figure 4.1: Objective space of a multi-objective optimisation problem 

A solution vector   is Pareto optimal if and only if there does not exist another solution   such 

that                   . The resulting solution vector   represents the globally optimal 

solution to the tradeoff problem defined by the conflicting objectives of      . A set of non-

dominated solutions   is called the non-dominated front. The set    of all Pareto optimal 

solutions is called the Pareto optimal set. The set    given by: 

                                       [4.4] 

is known as the Pareto optimal front.  

In most single objective optimisation problems, the goal is simply to find the globally optimal 

solution. The optimisation algorithm will accept a new solution if the objective function 

returned by the new solution is better than that of the previous solution. However, in multi-
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objective optimisation, there are two goals. The first goal is to reduce the distance between the 

non-dominated front and the Pareto optimal front. This can be achieved in several ways, for 

example by using aggregated weight selection (Roy 1971), switching the search between 

objectives (Vector Evaluated Genetic Algorithms in Schaffer 1985), ranking solutions according 

to fitness (Multiple Objective Genetic Algorithm (Fonseca 1993) etc. The second goal is to 

maintain a diverse set of solutions. This ensures that the non-dominated front has solutions that 

represent a wide range of trade-off solutions for each objective. The diversity of the two 

solutions in the objective space can be measured by the Euclidean distance between them in the 

objective space. This goal can be addressed using several methods such as fitness sharing 

(Srinivas 1994), crowding (Deb 2002) etc. 

4.3.2 Methods for multi-objective optimisation 

Methods for multi-objective optimisation methods can be classified broadly into two categories, 

the transformation of multiple objectives into a single objective function and the search for 

Pareto optimal solutions. From these categories, the thesis uses the two popular methods: 

a) Weighted aggregated objective function 

b) Non-dominated sorting genetic algorithm (NSGA –II) 

The methods are illustrated and compared by solving a multi-objective optimisation problem of 

determining the optimal mechanical ventilator settings for a disease case scenario. 

a) Weighted aggregated objective function 

A simple and intuitive way of addressing the multi-objective optimisation problem is to 

combine the multiple objectives into a single objective function. In the literature, this function is 
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often referred to as the aggregated objective function (AOF) (Roy 1971). There are several 

methods to design an AOF; one of the most popular is the weighted sum approach (Roy 1971, 

Messac 2000). In the weighted sum approach each objective is multiplied by a user-supplied 

weight. The composite objective function    is then formed by summing the weighted 

objectives. In this study, we used the weighted sum approach to obtain a single optimal solution 

based on the preferential selection of weights provided a priori by the user. We refer to this 

approach as the weighted aggregate objective function (WAOF).  The multi-objective 

optimisation problem of [4.1] is thus converted to a single objective optimisation problem as 

follows: 

 Minimise                     
 
                    

        [4.5] 

In this approach, the multi-objective problem can thus be solved using the single objective 

optimisation algorithms described in Section 3.2. The optimisation algorithms discussed in 

Section 3.2 can be broadly classified into two categories: global optimisation methods (GA and 

DE) and local optimisation methods (SQP and MADS). Global methods based on evolutionary 

principles are generally accepted as having a high probability of converging to the global or 

near global solution, if the method is executed for a long enough time with sufficient number of 

initial candidates. This advantage is offset by the rate of convergence of global methods which 

can be slow. Local methods have been shown to rapidly converge to local solutions but the 

quality (i.e. the proximity to the global solution) of those solutions entirely depends on the 

starting point chosen for the optimisation routine.  

To solve Problem [4.5], a hybrid local/global algorithm is employed (Krasnogor 2005), where 

the starting point of the local method (MADS) will be decided by initially running a global 

optimisation method (GA). Relative to the use of a global algorithm on its own, this should 
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provide faster convergence while still avoiding getting trapped in local optima (El-Mihoub 

200 ). The local search algorithm MADS is used to rapidly refine the “close to optimal” 

solution returned from the GA. The GA is set up with an initial population size of 30 and 

number of generations set to 20. MADS is set to terminate if the number of function evaluations 

exceeds 500 or the objective function fails to improve by 10
-3

 over successive iterations 

(TolFun<10
-3

, Appendix B). The maximum number of function evaluations using the hybrid 

algorithm is thus fixed at 1100.  

b) Non-dominated sorting genetic algorithm (NSGA–II) 

NSGA-II is an elitist multi-objective evolutionary algorithm (Deb 2002). It is based on the 

genetic algorithm (GA), utilising evolutionary operators such as crossover and mutation, 

described previously in Section 3.2 of this thesis. NSGA-II differs from GA in its selection 

operation. In GA and NSGA-II, the total population consists of the parent population          

from the previous generation and the offspring population             resulting from crossover 

and mutation. The selection operator in GA uses the fitness of the individual members of the 

population to determine the population for the next generation. However, the NSGA-II selection 

operator differs from GA by incorporating non-dominated sorting, a crowding distance 

calculation and a crowded tournament selection (described below). These three operators allow 

NSGA-II to a) efficiently guide the search towards the Pareto optimal set relative to other multi-

objective algorithms and b) maintain a diverse population which prevents premature 

convergence and achieves a well distributed non-dominated front (Deb 2002).  

Non-dominated sorting: Using the dominance property, each solution in the population is 

classified into fronts   which represent the tradeoff involved in the associated multi-objective 
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problem. The non-dominated solutions are assigned to front    while the remaining members of 

the population are classified into the subsequent fronts using the method described in Table 4.1. 

Step 1: For each solution   in the population  , two quantities are calculated. i) 

   – the number of solutions that dominate   and ii)    – a set of solutions that 

  dominates. Initially, for all    ,      and     . 

Step 2: For all      and    , if   dominates  , then           . Otherwise, 

   is calculated as        . 

Step 3: If     ,   is kept in the first non-dominated front by           , 

where    .  

Step 4: While     , initialise     where the next set of non-dominated 

solutions are stored. For each      and for each      , update         . 

If     ,          . 

Step 5: Set       and     . Return to step 4 and repeat until all solutions 

are classified.  

Table 4.1: Algorithm for non-dominated sorting 

Crowding distance assignment: As previously mentioned, one of the goals of multi-objective 

optimisation algorithm is to maintain a diverse set of solutions. For this purpose, NSGA-II 

calculates a crowding distance metric    for each individual    in a front  , which is calculated 

as shown in Table 4.2. 
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Step 1: Let the number of solutions in   be  . 

Step 2: Sort the solutions in   by ascending order of magnitude for each objective 

function    (        where   is the total number of objectives). For each 

solution   in  , assign     . 

Step 3: For each objective function  , the solutions at the boundaries are assigned a 

large distance value,          . For          , the distance    is 

measured as 

        
  
   

    
   

  
     

 
 

Step 4: The overall crowding distance value is calculated as the sum of individual 

distance values corresponding to each objective.  

Table 4.2: Crowding distance algorithm 

Crowded tournament selection operator: After non-dominated sorting and crowding distance 

assignment, a solution   is selected over a selection   if the following conditions are true: 

 1) Solution   has a better rank than solution  . The rank of a solution is decided by 

the front it belongs to, i.e. solutions in front     have a rank =    

 2) If the solutions have the same rank but the solution   has a better crowding 

distance d than solution  , i.e.      . 

Table 4.3: Crowding Tournament Selection 

 

The pseudo code for the NSGA-II search is described in Table 4.4 below: 
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1)  For      , generate a random initial population     , of population size N.  

2) The individuals in the population      are ranked and sorted by non-dominated 

sorting. 

3) An offspring population            is created of size N using crossover and 

mutation operators. 

4) Combine the parent and offspring population:                   . 

5) Sort population   into a set of non-dominated fronts    (         ). 

6) Generate a new population          and let    . 

7) Let   be the number of individuals in       . Until     

  Calculate crowding distance in   . 

  Combine the non-dominated individuals of    with the   

 current population and increment counter  . 

                      .         . 

8) Select           individuals with a large crowding distance in     and add 

to       . 

9) Generate an offspring population            of size N using crowded 

tournament selection, crossover and mutation operators. Increment the generation 

counter          . 

10) Repeat step 4-9 until termination criteria are satisfied. 

Table 4.4: NSGA algorithm pseudo code 
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Since its appearance in 2002 (Deb 2002), NSGA II has become a popular tool in addressing 

multi-objective optimisation problems, with the key reference paper currently reporting in 

excess of 6000 citations. In multi-objective problems in the field of medicine, multi-objective 

optimisation techniques such as NSGA-II have shown considerable improvement over 

traditional methods for problems such as cancer diagnosis and classification (Garcia-Nieto 

2009), image reconstruction (Dunn 2004), and radiation therapy (Milckovic 2001) etc. To the 

author’s knowledge, multi-objective optimisation algorithms have so far not been considered in 

the context of optimisation of mechanical ventilation.  

4.4 Problem description 

 4.4.1 Mechanical ventilator settings  

The mechanical ventilator settings considered in this study, assuming the patient to be under 

complete sedation, are: 

1. Positive end-expiratory pressure (PEEP, [cmH2O]):  The closure of airways and 

repeated opening (recruitment) and closing (de-recruitment) of alveoli, especially for 

alveoli with normal or high perfusion of pulmonary blood flow, can cause ventilation 

perfusion mismatching. The poor ventilation of blood flow can cause poor oxygenation 

of the blood, while increased dead space due to collapsed airways can result in 

hypercapnia, an abnormally high level of CO2 in the blood.  PEEP allows for re-

establishing normal ventilation to de-recruited alveolar regions (Lachmann 2002). PEEP 

is the positive pressure in the lungs at the end of exhalation. When provided by an 

external source such as a ventilator, this is often referred to as the extrinsic PEEP. PEEP 

settings in the ITU can vary between 5-24 cmH2O (ARDSnet 2004). Although the 
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benefits of PEEP in preventing collapse in the lung are apparent, PEEP can also cause 

hyperinflation resulting in possible volutrauma (Vieira 1999). 

2. Fraction of Inspired Oxygen (FIO2): FIO2 refers to the fraction of oxygen constituting 

the inhaled volume of gas as provided by the mechanical ventilator. In normal air, FIO2 

is approximately equal to 0.21. High values of FIO2 improve oxygen levels in the blood. 

However a high FIO2 can result in rapid absorption of oxygen into the blood, potentially 

reducing alveolar volume below critical collapsing volume and causing collapse in the 

alveolar regions. Studies (ARDSnet 2000, Villar 2007) have suggested that increased 

FIO2 should be accompanied by an increase in PEEP to prevent collapse.  

3. Tidal volume (Vtidal, [ml]): This is the volume of air travelling in and out of the 

patient’s lungs during every breath. It is typically set between 10 and 15 ml/kg of body 

weight (Holets 2006). Vtidal and FIO2 are the main settings considered by the physician 

in increasing oxygenation in diseased lungs. However, Vtidal settings of even 10ml/kg 

have shown to cause over-inflation of lungs (Dreyfuss 1998) while lower volumes can 

cause atelectasis (Muscedere 1994). 

4. Ventilation rate (VentRate, [breaths/min]):  VentRate is the number of breaths per 

minute (also referred to as the frequency of breaths) as decided by the mechanical 

ventilator. Under normal breathing, this value is approximately 12.5 breaths per minute. 

Critically ill patients in the ITU are commonly provided breaths with VentRate value 

between 14 and 30 breaths/min (Holets 2006). 

5. Inhale to Exhale (I:E) ratio:  The I:E ratio decides the duration of breath that is spent 

inhaling relative to exhaling. Normal I:E ratio is approximately equal to 1:2, i.e. in a 

breath lasting six seconds, the duration of inspiration is two seconds while expiration 

lasts for four seconds.  Long inspiration times can favour recruitment of collapsed lung 

units, and potentially increase oxygenation of the lung units and the pulmonary blood 
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flow. But as with PEEP, increased inspiration time can lead to hyperinflation. Common 

ITU settings for I:E ratio can vary between 1:1 and 1:3 (ARDSnet 2004). Inverse Ratio 

Ventilation (IRV), where inspiration is longer than expiration has been shown to 

improve gas exchange in some cases. (Cole 1984). 

Other settings such as minute ventilation, mean expiratory flow, continuous positive airway 

pressure (CPAP) etc; provide other options for a physician while setting a mechanical ventilator. 

However their description and use is outside the scope of this thesis. The reader is referred to 

Principals and Practices of Mechanical Ventilation (Tobin 2006), for a comprehensive 

discussion on current mechanical ventilation equipment, strategies and settings. 

4.4.2 In silico setup 

The simulation model considered in this study is an extended MATLAB® implementation of 

several physiological models originally developed within the Nottingham Physiology Simulator 

(NPS). The model is designed to represent a dynamic in-vivo cardio-pulmonary state using a 

mass-conserving set of equations based on well-established physiological principles. Some 

significant parameters indicating the configuration of the model are given in Table 4.5. 

The model has already been described in detail in Chapter 2 of this thesis. The model has been 

comprehensively validated using both standard clinical approaches and formal Systems 

Engineering methods. In (Hardman 1998, McCahon 2008) the model was validated against 

patient data using statistical methods, while in Chapter 3 of this thesis, the robustness of the 

model responses to parametric uncertainty was demonstrated using analysis techniques from the 

field of control engineering.  
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Configuration Value 

Weight [kg] 70 

Inspired gas Warmed and humidified air 

Inspired flow pattern Constant flow 

Number of alveolar compartments 100 

Respiratory quotient 0.8 

Oxygen consumption [ml min
-1

] 250 

Cardiac output [liters min
-1

] 5
 

Table 4.5: Significant parameters describing model configuration. 

In this study, the five key ventilator settings described above are considered as variable 

parameters that may be adjusted to optimise the trade-off between effective gas exchange and 

minimising the risk of VALI. Maximum allowable ranges of variation for the values of these 

parameters have been defined based on clinical experience and published guidelines (ARDSnet 

2000); Vtidal is allowed to vary within a range from 280 - 840 ml, corresponding to 4 ml/kg - 

12 ml/kg for a body weight of 70 kg. VentRate is bounded within the range 10 - 20 breaths/min, 

I:E is limited to the interval 0.25 - 0.8 (i.e. a ratio between 1:3 and 4:1), PEEP is constrained 

within 0 - 10 cmH2O and FIO2 is within 0.21 - 1. All of these parameters are also assigned 

“typical” nominal values, which are used to derive their respective ventilation perfusion (V/Q) 

distributions (see Figure 4.2).  A summary of these values is provided in Table 4.6.  
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Parameter 

    

Lower Bound 

        

Upper Bound 

     
Nominal 

Vtidal [ml] 280 840 400 

VentRate [bpm] 10 20 12.5 

I:E 0.25 0.8 0.33 

PEEP [cmH2O] 0 10 0 

FIO2 0.21 1 0.21 

Table 4.6: Mechanical ventilator parameters, their bounds and their nominal values.  See text 

below for explanation. 

Physiological 

parameters 
Acceptable values Desired 

Palv [kPa] < 5 0 

PaO2 [kPa] > 8 10 

PaCO2 [kPa] > 4,< 8 5 

Table 4.7: Selected physiological indicators, their acceptable ranges and desired values. Palv 

refers to peak pressure in kilopascals (kPa) above atmospheric pressure. 

Maximum and/or minimum allowable values are also defined for several key physiological 

indicators which are returned as outputs by the model (Table 4.7). To monitor effective arterial 

oxygenation, the partial pressure of oxygen, PaO2, needs to be considered. In order to maintain 

effective arterial oxygenation, PaO2 is constrained to be higher than 8 kpa. Arterial partial 

pressure of carbon dioxide, PaCO2 is another key indicator of alveolar ventilation which also 

indirectly reflects acid-base balance. PaCO2 is constrained to be between 4 kpa and 10 kpa. The 
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peak alveolar pressure, (Palv, kpa above atmospheric pressure) is the maximum pressure inside 

an alveolar compartment, and thus is a risk indicator for barotrauma. It is limited to an upper 

bound of 5 kPa. The values of all these parameters are recorded after a physiological time 

simulation of 20 minutes. At the end of the 20 minute period, mean values of PaO2 and PaCO2 are 

computed over the previous 2 minutes (representing the final 10% of data). Palv is calculated as 

the average of the peak pressure in the most highly-pressurised 20% of the 100 alveolar 

compartments over the final 2 minutes of the simulation. Ventilation perfusion plots are drawn 

with total ventilation and perfusion recorded across the 100 alveolar units at the end of a 

simulation.  

4.5 Modelling healthy and diseased lung states 

Prior to investigating the problem of obtaining optimal mechanical ventilator settings, 

appropriate disease states need to be simulated in silico by configuring the model as follows. 

The primary goal of the respiratory system is the transfer of gases into and from the blood 

across the alveolar membrane. To satisfy this requirement optimally, the amount of gas 

(ventilation, V) and blood (perfusion, Q) taking part in the gas exchange needs to be matched. 

In many pulmonary disorders, alveolar mismatching can be the most influential mechanism for 

abnormal arterial blood gases. 

Figure 4.2 shows the V/Q plot produced by the model when configured to represent a healthy 

lung (Wagner 1974). Each data point shows a specific amount of ventilation or perfusion at a 

respective V/Q ratio. Lines are drawn as a visual aide only. Total flows can be calculated by 

adding the individual data points. As shown, the healthy lung V/Q distribution is unimodal, 

approximately symmetric, and clustered fairly tightly around a V/Q ratio of 1. To simulate a 

disease state, the model is configured by altering the inlet resistances of the alveolar 
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compartments and the vascular resistances of the pulmonary capillary compartments, in order to 

create a ventilation perfusion mismatch. An example of a resulting disease configuration is 

given in Figure 4.2. 

 

Figure 4.2: Ventilation Perfusion distribution (V/Q) of the simulated healthy lung (left) and an 

example of a diseased lung (right) 

4.6 Multi-objective optimisation of mechanical ventilation 

A schematic representation of the proposed in silico optimisation framework is shown in Figure 

4.3. The simulator represents the combined mechanical ventilator and physiological model 

described in Chapter 2. The input to the model is vector   = (Vtidal,VentRate, I:E, PEEP, 

FIO2)
T
. The output from the model,       , is the patient data consisting of partial pressure 

of oxygen in blood (    [kpa]), partial pressure of carbon dioxide in blood (      , [kpa]) and 

the alveolar pressure (     , [kpa]). The data is collected over a 20 minute simulation period. 
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Figure 4.3: Schematic diagram of the optimisation framework. 

The optimisation algorithm uses the objective function   to determine the next input vector    

from the feasible space defined by the bounds and the constraints. The optimisation problem can 

be formulated mathematically as follows:  

                                 [4.6]  

 subject to the following constraints (taken from Table 4.3):   

                                     [4.7] 

                    [4.8] 

                       [4.9] 

                [4.10] 

In this formulation,   represents the objective function for the optimisation problem,      

represents the simulation model, and   is a vector containing the values of the optimisation 

parameters (the ventilator settings from Table 4.6). The optimisation algorithm searches for a 
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solution  , in the decision space defined in Table 4.6 by (  ) and upper (  ) bounds, which 

minimise   . Furthermore, the feasible space is also defined by the constraints [4.7-4.9]. 

4.6.1 Weighted Aggregate Objective Function approach 

To capture the trade-offs inherent in the problem, the objective function    is defined as: 

                     [4.11] 

where         
    

  
      [4.12] 

and         
          

  
  

          

  
          [4.13] 

Thus large values of     will be produced by combinations of ventilator settings which cause 

high peak alveolar pressures (and hence increase the risk of VALI) while large values of 

    reflect settings that provide poor gas exchange. The parameters       and    are used to 

approximately normalise the different output parameters and are determined by the maximum 

difference between acceptable values and desired values given in Table 4.7. Therefore using 

Table 4.3, we set     ,      and     . The WAOF approach is reflected by the use of 

weights    and    whose default values are set equal to one but whose values can be adjusted 

by the user to explore the effects of prioritising different criteria on the computed ventilator 

settings.  For example, increasing    relative to    causes the optimisation algorithm to search 

for solutions that minimise    more than     . If the patient is exhibiting lower than required 

oxygenation, the physician thus has the option to tailor the optimisation towards improving 

oxygenation at the cost of generating a higher value of Palv.  

Since the values of the optimisation parameters vary significantly in magnitude (e.g. Vtidal is 

several hundred times larger than IE), they must also be normalised to avoid numerical 
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problems with the chosen optimisation routines. All five parameters are thus allowed to vary 

within their bounds (see Table 4.6), normalised between -1 and 1. 

The WAOF approach allows the user to search for different optimal ventilator settings by 

adjusting the weights    and    in Eqn. 4.10 and re-running the optimisation algorithm. For 

example, Table 4.7 shows the effect on the optimal settings for the disease case in Figure 4.2 of 

making    equal to 10 while leaving    at its nominal value of 1. This has the effect of making 

the value of Palv the dominant term in the objective function, so that the optimisation algorithm 

tries to find settings that reduce its value by a larger amount. As shown in Table 4.8, the effect 

of this is to reduce Palv from 2.989 to 2.28 kpa, at the cost of a small increase in PaCO2 and a small 

decrease in PaO2 (although both these parameters still remain within their allowable ranges). 

 
Optimal input settings Outputs 

Weight    
Vtidal 

[ml] 

VentRate 

[bpm] 
I:E 

PEEP 

[cmH2O] 
FIO2 

Palv 

[kpa] 

PaCO2 

[kpa] 
PaO2 [kpa] 

     359 15.07 0.35 4.5 0.32 2.989 4.8958 10.1109 

      375 13.75 0.29 3.6 0.25 2.28 6.3608 8.602 

Table 4.8: Comparison of results for disease case in Figure 4.1 with different objective function 

weights using the WAOF approach       . 

4.6.2 Comparison of the WAOF approach to NSGA-II  

To further investigate the trade-offs involved in this problem, the multi-objective NSGA-II 

algorithm is executed using a population size of 30, for 100 generations and the objective 

functions    and     of [4.12-4.13]. The set of 30 solutions returned by the algorithm, together 

with the optimal solutions of the WAOF approach given in Table 4.8, are shown in Figure 4.4. 
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It is evident that the previous solutions lie on the appropriate sections of the non-dominated 

front computed by the NSGA-II approach. 

There is a significant general disadvantage of the WAOF method compared to NSGA-II that is 

clearly illustrated by Figure 4.4. The WAOF approach relies on the user to supply weights 

whereas the NSGA-II can compute uniformly distributed solutions in the objective space 

without any extra effort on the part of the user. NSGA-II also offers several solutions with 

varying trade-off between objectives and clearly illustrates the trade-off needed to achieve the 

conflicting objectives. Relative to NSGA-II, it is also difficult to obtain optimal solutions in a 

desired region of the objective space using WAOF approach. For example in Figure 4.4, the 

point A represents the optimal solution derived using weights        . With both the 

weights equal, the point could have been expected to lie nearer the origin than was actually the 

case in Figure 4.4. This is an unavoidable result of the normalisation of different objective 

functions in the WAOF approach.  

However the WAOF approach also has its advantages. The concept is intuitive, easy to apply 

and flexible such that any single objective optimisation algorithm can be utilised. If the 

optimisation algorithm is tailored to the optimisation problem, for example through the use of a 

hybrid local/global method, the WAOF obtained optimal result can be a better solution than 

solutions generated from NSGA-II for a lower overall computational overhead. For example, 

the solution ‘A’ in Figure 4.4 is a non-dominated solution computed after 1100 function 

evaluations compared to the set of solutions computed by NSGA-II after 3000 function 

evaluations. The WAOF approach, with its weights that can be ‘tuned’ to a user’s requirement, 

provides greater control over the optimisation search than NSGA-II. In an environment where 

the physician’s final decision on the ventilator settings is crucial, the WAOF approach allows 

the physician to choose and adjust the weights associated with different objectives pertinent to 
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the specific scenario. In subsequent sections, the search for the global optimal solution is 

conducted using the WAOF approach. 

 

Figure 4.4: Set of optimal solutions generated by NSGA-II compared to the results of the 

WAOF approach (Table 4.8).  Point ‘A’ is the solution with weights          and point 

‘B’ is the solution with weights      and        
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4.7 Computing optimised ventilator settings  

 

Figure 4.5: Ventilation Perfusion curves of different simulated pulmonary diseases describing 

variation in distribution of gas exchange across the lung.  

Values for shunt refer to total calculated shunt fraction. The respective physiological parameters 

for the disease cases under nominal ventilator settings are also shown. 

To simulate a disease state, the model is configured by altering the inlet resistances of the 

alveolar compartments and the vascular resistances of the pulmonary capillary compartments, in 

order to create a ventilation perfusion mismatch. The resulting V/Q mismatch for three different 

disease states, of progressively increasing severity, is shown in Figure 4.5. 

Figure 4.5 also provides the values of the physiological parameters produced under these 

disease cases when the MV parameters remain at their nominal values.  It is clearly evident that 

as the severity of the disease increases, the arterial oxygen partial pressure falls and arterial 
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carbon dioxide rises. Indeed, the value of PaO2 in all three cases is lower than its minimum 

allowable value. 

 

Optimal settings Outputs 

Vtidal 

[ml] 

VentRate 

[bpm] 

I:E 

PEEP 

[cmH2O] 

FIO2 

Palv 

[kpa] 

PaCO2 

[kpa] 

PaO2 

[kpa] 

Nominal 400 12.50 0.33 0 0.21 0.799 5.440 13.029 

Optimised 281 11.6 0.34 0 0.21 0.537 6.152 9.989 

Table 4.9: Nominal and optimal settings and the resulting physiological parameters for the 

healthy lung model 

A comparison of the results obtained with the nominal and optimised ventilator parameters for 

the healthy lung model is shown in Table 4.9. Compared with the nominal settings, the 

optimisation algorithm has sought to find a combination of ventilator parameters that pushes 

down the value of Palv, at the cost of slightly increasing PaCO2 and reducing PaO2 (while still 

keeping these parameters within their specified bounds). It has achieved this principally by 

reducing Vtidal, as would be expected from normal clinical practice. Of course, “re-balanced” 

settings which give a higher priority to gas exchange could easily be computed by adjusting the 

weights   and    in the objective function [4.11] for the optimisation algorithm. 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

131 Optimising Mechanical Ventilator Settings  

 

 

Figure 4.6: Change in optimal MV settings for Disease Cases A, B and C relative to the optimal 

settings for a healthy lung. 

Figure 4.6 shows the different optimal parameter settings computed for each of the three disease 

cases shown in Figure 4.5. For the purposes of comparison, each plot title gives the optimal 

value found for that parameter for the healthy lung, and the bar graphs are drawn relative to this 

value. Table 4.10 summarises the values of the optimal settings for each individual disease case 

with their corresponding physiological parameters. When compared with the results of applying 

the nominal settings for each disease state (shown in Figure 4.5), it is clear that the optimised 

settings provide a marked improvement in the values of the physiological parameters. In 

particular, note that the value of PaO2 has now increased to lie within its allowable range for all 
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three cases. This improvement in oxygenation has been achieved at the cost of an increase in the 

value of Palv, but even for the most severe case Palv still remains lower than its maximum limit. 

 
Optimal settings Outputs 

 

Vtidal 

[ml] 

VentRate 

[bpm] 
I:E 

PEEP 

[cmH2O] 
FIO2 

Palv 

[kpa] 

PaCO2 

[kpa] 

PaO2 

[kpa] 

Disease A 366 12.50 0.41 2.1 0.24 2.1286 5.0608 9.9999 

Disease B 359 15.07 0.35 4.5 0.32 2.9890 4.8958 10.1109 

Disease C 366 15.49 0.7 9.8 0.35 4.8874 5.4419 8.4193 

Table 4.10: Optimal settings and the resulting physiological parameters for three disease cases 

Poor oxygenation of the blood and resultant hypoxia can be fatal to patients in an ITU. Carbon 

dioxide (CO2) clearance from the blood is also essential as excessive CO2 in the blood can lead 

to acid base imbalance, risking serious damage to the major organ systems. Traditionally, MV 

operators have focused on ensuring that oxygenation requirements are adequately met and 

carbon dioxide clearance is maintained. In recent years, however, the increasing incidence of 

VALI, which has been attributed to the occurrence of high pressures and volumes in the alveoli, 

has led MV operators be more cautious and to consider other physiological factors which 

previously tended to be ignored. The objective of minimising the risk of VALI can often be in 

direct conflict with the traditional aim of ensuring good gas exchange, and optimal settings that 

satisfy both sets of criteria can be difficult to predict. 

The investigation of systematic approaches for choosing ventilator settings in order to maintain 

desired blood-gas partial pressures while minimising the risk factors associated with VALI has 

been the subject of intense interest in the medical community in recent years.  However, there 

are many factors hampering traditional approaches to research in this area, including (a) the 
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difficulty or impossibility of measuring key patient variables reflecting the effects of mechanical 

ventilation in vivo, (b) the inhomogeneity of physiological responses over time and over the 

patient population, (c) the number of different ventilator parameters which may be adjusted by 

the clinician, (d) the lack of clarity over which physiological parameters represent the most 

important risk factors for VALI, and (e) the ethical constraints on research on patients who are 

unable to give their own consent. VALI itself has been difficult to diagnose, with limited real 

time data available, and thus it represents a serious risk to patient welfare. MV input settings 

also tend to be highly correlated, which can make their effect on internal patient dynamics 

unpredictable. As a result, limited progress has been made, with ventilator parameters still 

typically being set using heuristic approaches which are heavily influenced by the clinician’s 

ability and experience, and large local, national and international variations existing in treatment 

protocols.  

In this study three different lung conditions were simulated, representing disease states of 

increasing severity, which could be realistically found in patients in an ICU. The disease states 

were obtained by altering the ventilation and perfusion to gas exchanging units, and changing 

the amount of blood flow not involved in gas exchange (shunt). Higher bronchiolar resistance 

would decrease the flow of air to these sections of the lung and cause an increase in ventilation 

to the other parts of the lung. Increased vascular resistance would transfer the blood flow to 

other capillary compartments. Increased shunt would reduce the amount of blood in pulmonary 

capillaries. These would result in ventilation perfusion (V/Q) mismatch shown through V/Q 

plots. Many pulmonary disorders have been shown to exhibit unique V/Q behaviour - a small 

but representative sample of possible V/Q distributions have been considered in this chapter.  

Interestingly, the optimal settings computed here not only optimise the particular parameters 

contained in the objective function, but also act to more generally improve the gas exchange 

within the lung. Figure 4.7 compares the V/Q distribution under nominal settings with the V/Q 
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distributions under optimal settings for the three disease cases. The improvement is evident in 

all cases, where the optimal setting causes the gas exchange to shift towards a V/Q ratio of 1. 

Under nominal settings, there are a large number of perfused alveoli where little gas exchange 

occurs due to under-ventilated or collapsed airways. From Figure 4.6 and Table 4.10, it is 

evident that the higher values of ventilator rate, I:E ratio and PEEP act to improve the 

ventilation to these areas of the lung where there is poor gas flow, which in turn improves the 

V/Q mismatch and help achieves better gas exchange.  

The results of this study highlight the significant differences which can exist between settings 

that optimally satisfy the conflicting objectives of mechanical ventilation, even for relatively 

minor differences in lung compositions (see the optimal settings for disease case A relative to 

those for the healthy lung). The ability to target MV therapy to particular diseases, and to 

particular severity of diseases, represents significant progress towards the goal of personalised 

ventilator management for critically ill patients in the modern ITU, where it could help to avoid 

lung injury, exacerbation of underlying disorders and allow faster weaning from MV.  
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Figure 4.7: Comparison of ventilation perfusion under nominal and optimal settings for each 

disease state. (a) displays the VQ distribution under nominal settings and (b) displays the VQ 

distribution under optimal settings. 
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Chapter 5: Conclusions and Future Work 

5.1 Conclusions 

This thesis has described the extended implementation and development of a comprehensive 

computational model of pulmonary (patho)physiology. A detailed description is presented of the 

mathematical and physiological concepts that are incorporated in the model. The model has 

been reviewed in comparison with a cross-section of other models found in literature. The 

model has been newly implemented in the MALTAB environment which provides access to 

numerous computational toolboxes for further model analysis and novel applications. The thesis 

also proposes modifications (based on physiological mechanisms) to adequately characterise 

healthy as well as diseased lung behaviour. These modifications address two distinct faults 

within the previous model: 1) the inability of the model to accurately represent collapse within 

the lungs under disease states and 2) the incomplete response of the model to positive end 

expiratory pressure (PEEP). These faults are illustrated, and solutions identified through 

consultations with clinical practitioners are proposed. 

Current model validation strategy in clinical simulators is based on the statistical evaluation of 

the model responses in comparison to data obtained from in vivo investigations. Typically, if 

model responses are found to lie within the 95% of the population observations, then the model 

is considered validated. Uncertainty within heterogeneous datasets parameters and un-modelled 

dynamics can significantly hinder the applicability of the model to accurately generate 
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predictions across patient populations. Further rigorous procedures for model validation and 

verification are needed to enable the wider clinical exploitation of in silico simulation models.  

This thesis proposes an optimisation-based approach for the validation of an in silico model of 

pulmonary physiology. The explicit modelling of uncertainty/variability in the internal 

parameters of the model is combined with advanced global optimisation methods to demonstrate 

that the model predictions never deviate from physiologically plausible values for realistic 

levels of parametric uncertainty. The approach to uncertainty modelling is adapted from current 

best-practice in the field of systems and control Engineering, and a range of advanced 

optimisation methods are employed to check the robustness of the model, including Sequential 

Quadratic Programming, Mesh Adaptive Direct Search, Differential Evolution and Genetic 

Algorithms. An overview of these methods and a comparison of their reliability and 

computational efficiency in comparison to statistical approaches such as Monte Carlo 

simulation are provided.  

Unlike traditional validation of physiological simulators, the aim of this approach is to formally 

quantify the model’s robustness (i.e. its ability to always produce realistic results for all 

expected levels of uncertainty in internal model parameters). Through this approach, the 

simulator that has been validated across the expected range of variation that would be found in 

multiple patients, which represents a much more stringent test of the underlying model 

assumptions than simple tests on the ability of the model to match a single set of data. If no 

anomalous model responses exist for all levels of uncertainty in the model parameters, then the 

model can be expected to be robust to uncertainty in those parameters. If one of more 

anomalous responses are found, then these need to be checked to see whether the particular 

combination of model parameters which produced that response is physiologically plausible, if 

it corresponds to a particular condition which would be likely to produce unexpected responses, 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

138 Conclusions and Future Work  

 

etc. Expert analysis and experience cannot be replaced by an automated computer program – 

rather a computational analysis method is proposed which can efficiently uncover anomalous 

model responses for further investigation by the clinical user. The results of the study indicate 

that NPS provides robust predictions of arterial gas pressures for all realistic ranges of given 

model parameters, and also demonstrate the general applicability of the proposed approach to 

model validation for physiological simulation. 

The thesis also addresses the problem of selection of appropriate mechanical ventilator settings 

to attain adequate oxygenation and carbon dioxide clearance while minimising the risk of 

ventilator-associated lung injury. The problem is a significant challenge for physicians, who 

currently rely on experience and guidelines based on recommendations from a limited number 

of in vivo studies whose data are typically more applicable to fictitious “average” members of 

populations than to individual patients. The thesis uses validated computational models of 

pulmonary pathophysiology to design in silico experiments to determine optimal combinations 

of mechanical ventilator settings for individual patient and disease states. The set of optimal 

solutions from the multi-objective algorithm NSGA-II clearly illustrate the conflicting 

objectives that need to be achieved. 

Different types of pulmonary disease states were simulated by manipulating gas exchange 

parameters in a validated computational model to give appropriate ventilation perfusion 

distributions. Using advanced global optimisation algorithms, optimal ventilator parameters 

were computed for each case. The results revealed significant differences in optimal settings 

both between healthy and diseased states, and between different disease states.  

The proposed approach offers clinicians a tool with which to conduct in silico trials on strictly-

compliant virtual patients, in order to more easily assess and manage the trade-offs involved in 

determining appropriate patient- and disease-specific ventilator settings. The optimal settings 
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are shown to satisfy the conflicting clinical objectives, to improve the ventilation perfusion 

matching within the lung, and, crucially, to be disease-specific.  

5.2 Future work 

Evaluation of predicted optimal mechanical ventilator settings using patient data. 

Results in Chapter 4 clearly identify the benefits of the proposed optimisation based strategy in 

deducing optimal mechanical ventilation strategy for specific disease case scenarios in silico. 

The strategy could be evaluated further by establishing the validity of model responses to 

optimal ventilation predictions in a clinical setting. Specific patient data with known ventilation 

perfusion distribution could be collected and matched to a virtual patient in silico.  Under 

careful observation and assessing real time patient data, optimal ventilator settings would be 

applied to the patient. With the optimisation parameters bounded within the suggested 

guidelines of mechanical ventilation protocols, the risk to the patient should be minimal. If 

successful, the optimisation based mechanical ventilation strategy has the potential to 

significantly improve current critical care in the ITU. 

Validation and application of population based models using ensemble forecasting 

The use of population-based models to inform and guide clinical practice requires the ability to 

make reliable predictions of the effect of changing model inputs, initial conditions or parameters 

on the behaviour of a population of heterogeneous patients, represented by a set (ensemble) of 

models. This is a directly analogous problem to that which exists in the field of climate science, 

where researchers are required to make robust predictions about the future climatic conditions 

based on ensembles of models which are subject to significant levels of uncertainty. Recent 

years have seen the development of extremely powerful ensemble forecasting techniques 



Modelling and optimisation of mechanical ventilation for critically ill patients 

 

 

140 Conclusions and Future Work  

 

allowing for more reliable predictions of mean and extreme behaviour (Joliffe 2003). 

Techniques such as reliability diagrams, probabilistic ROC scores etc) can help quantify the 

effects of uncertainty arising from a) unknown model parameters and b) variation of individuals 

within a population.  

The validated physiological model from this thesis can be applied to conduct a formal 

examination of novel strategies for mechanical ventilation. The strategies to be developed will 

be required to explicitly consider uncertainty and variability across patient populations, thus 

motivating the use of statistical prediction techniques from ensemble forecasting. 

 Investigation of tissue perfusion using cardiopulmonary modelling 

Poor tissue perfusion is most often caused by low cardiac output or occasionally by pathological 

vasodilation; these states are typically referred to as “shock states” (e.g. cardiogenic shock, 

septic shock). These shock states form a large part of organ level pathology of critical illness. 

Acute failure of organ perfusion is treated currently using drugs and fluids affecting multiple 

organ systems, with widespread and often unhelpful side effects. In clinical practice there is 

significant interaction between cardiac function, pulmonary function and the behaviour of the 

systemic vasculature, such that treatments intended to improve function in one part of the 

system may have detrimental effects on others. Clinicians therefore inevitably have to adopt 

compromised approaches based on theory and experience. The within-organ, real-time perfusion 

and intracellular oxygenation cannot be quantified using present measurement techniques which 

limits the potential of clinical or animal-model research, and may only provide surrogate 

outcomes with limited direct relevance to human pathology. In human studies, the techniques 

used and outcomes measured have varied considerably, making comparisons difficult (Conway 

2002, Wakeling 2005). All the above have seriously hampered the development of protocols 
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that allow optimal clinical management of shock states. There is increasing interest in protocol-

guided management of at-risk patients but the pathology is still poorly understood.  

The model of the respiratory system developed in the thesis, when integrated with high-fidelity 

models of cardiac, vascular and peripheral tissue system, will provide a powerful platform for 

the investigation of poor tissue perfusion in pathological states. To ensure the applicability of 

the model to real medical scenarios, the model will be subjected to an extensive programme of 

verification and validation, using techniques such as the optimisation-based model validation 

approach presented in this thesis. The integrated model will provide a powerful and cost 

effective means of investigating clinically applicable therapeutic strategies for managing shock 

states. Specific issues that need to be explored include: 

1. Gas exchange in tissues: 

a. The effect of low cardiac output on oxygen in variable cell-depth tissue. 

b. The effect of flow impairment in pathological states such as septic shock. 

c. The effect on cellular oxygenation due to impaired pulmonary gas exchange 

during shock states. 

2. Ventilatory manipulation in shock states: 

a. The effect of ventilator manipulation on tissue oxygenation. 

b. The effect of ventilation strategies such as permissive hypercapnia on cellular 

oxygenation and pH levels during low flow conditions. 

3. Contents of blood: 

a. The effect of haemoglobin concentration on tissue oxygenation during shock 

states. 

b. The effect of blood viscosity on tissue oxygenation during shock states. 

4. Cardiac performance: 
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a. The effect of pharmacologically–enhanced myocardial contractility affect tissue 

oxygenation 

b. The effect of infused intravenous fluid filling (crystalloid vs colloid) on tissue 

oxygenation. 
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Appendix 

A – Pre and post-intervention ventilator settings to validate modified 

model 

 

Pre - Intervention Post- intervention 

Inspired oxygen 

fraction 

Tidal Volume, 

[ml] 

Ventilatory 

rate 

Inspired oxygen 

fraction 

Tidal Volume, 

[ml] 

Ventilatory 

rate 

0.45 780 15 0.6 780 15 

0.6 430 13 0.4 430 13 

0.7 600 15 0.85 600 15 

0.5 625 8 0.4 625 8 

0.6 450 17 0.5 450 17 

0.5 683 12 0.75 729 14 
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B – Termination conditions for optimisation algorithms - TolFun and 

TolX 

 

Algorithm terminates if last step is smaller than TolX or the improvement in function is less 

than TolFun. Specifically: 

The algorithm terminates if           Tol  where    is the current decision vector. 

The algorithm terminates if                  TolFun. 
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