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Abstract

The first part of this thesis deals with the study of mesoscopic fluctuations of

the Coulomb drag resistance in double-layer GaAs/AlGaAs heterostructures, both in

weak magnetic fields and strong magnetic fields. In the second part, measurements

are made in a monolayer graphene structure, specifically of the quantum lifetime,

and the mesoscopic resistance fluctuations at quantising magnetic fields.

In weak fields, we perform the first measurements of the fluctuations of the drag

as a function of changing concentration and magnetic field. The amplitude of the

fluctuations was seen to exceed the size of the average drag at low temperatures,

resulting in random but reproducible changes in the sign of the drag with varying

concentration and magnetic field. The variance and correlation magnetic field were

studied as a function of temperature. Comparison was made to existing theories

for drag fluctuations in the diffusive regime of the drag (where the electron mean

free path is much smaller than the separation between layers). We observe a large

enhancement of the magnitude of the fluctuations of four orders of magnitude com-

pared to the theoretical expectation, as well as a different temperature dependence.

Our results prompted further theoretical studies, extending the understanding of

drag fluctuations into the ballistic regime, where the local properties of the layers

become important. We compare our results to this theory and find good agreement.

We extend these measurements to the regime of strong magnetic fields where

transport involves composite-fermion quasiparticles. We study the temperature de-

pendence of the amplitude and correlation magnetic field of the fluctuations, and

analyse our results using existing theoretical models for drag fluctuations in the

diffusive regime of drag.

Much controversy exists over the dominant scattering mechanisms in graphene.

We use measurements of the concentration and temperature dependence of the quan-

tum lifetime and transport time in graphene to identify the dominant electron scat-

tering mechanisms. We then perform measurements of resistance fluctuations in

the integer quantum Hall effect regime of magnetic fields, and show our results to

be well described by existing models developed for conventional 2D systems. Using

these models we make estimates for the properties of the disorder in graphene.
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Symbols and Abbreviations

Symbols and Abbreviations Used

ACF : autocorrelation function

CF : composite fermion

D : diffusion coefficient

DOS : density of states

e-e : electron-electron

ETh : Thoules energy

g : dimensionless conductance, σ/(e2/h)

̺(E) : The density of states

gs : The spin degeneracy, taking values of 1 or 2

gv : The valley degeneracy, taking values of 1 or 2

l : elastic mean free path

L : distance between voltage probes; equivalently, the sample size

LL : Landau level

Lϕ : coherence length

LT : thermal length

µ : mobility

n : carrier concentration

ν : Landau-level filling factor

PSD : power spectral density

ρD : drag resistivity

SdH : Shubnikov-de Haas

T : temperature

τ : momentum relaxation time.

τq : quantum lifetime.

τϕ : coherence time

UCF : universal conductance fluctuations

ωc : cyclotron frequency

W : sample width
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