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Abstract

This work considers the effect of symmetries on analysing bifurcations in dynamical

systems. We consider an example of a laser with strong optical feedback which is

modelled using coupled non-linear differential equations. A stationary point can be

found in space, which can then be continued in parameter space using software such

as AUTO. This software will then detect and continue bifurcations which indicate

change in dynamics as parameters are varied. Due to symmetries in the equations,

using AUTO may require the system of equations to be reduced in order to study

periodic orbits of the original system as (relative) equilibria of the reduced system.

Reasons for this are explored as well as considering how the equations can be changed

or reduced to remove the symmetry. Invariant and Equivariant theory provide the

tools for reducing the system of equations to the orbit space, allowing further analysis

of the lasers dynamics.
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Chapter 1

Introduction

In this chapter I introduce and discuss motivations and methods for modelling lasers.

This will include an introduction to the history and reasons behind the methods used

in the modelling of lasers. This will allow the reader to understand the particular

methods chosen in modelling a laser with strong optical feedback later in the thesis.

Later, I will consider again the influence that previous work has had in determining

the process and direction of my research.

In addition to this I will introduce the subject of symmetries in systems of

differential equations. I will discuss how symmetries in systems, though often prized

for their beauty, can cause difficulties in analysis. I will consider linear symmetries

and how these affect bifurcations in systems of ODEs.

We will see that group theory provides us with the means to describe symmetries

and link these to solutions of our equations. This introduction will define the tools

needed to do this and will give some examples of groups to be used.

14
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1.1 Introduction to the Modelling of Lasers

A laser is a device for producing coherent light, which has many applications, par-

ticularly in communications and data storage, such as reading DVDs. A simple laser

consists of an optical cavity containing a special material known as a gain medium,

through which the light passes back and forth between mirrors. The gain medium

can be composed of a variety of materials in any state, generally chosen for proper-

ties that allow lasing to occur at various frequencies. For lasing to occur some initial

energy must be applied to the medium, a process known as pumping. Pump energy

can be optical or electrical, but is used to excite electrons into higher energy states

which collectively form what is called population inversion. Once the energy applied

to the medium by the pump reaches a certain threshold i.e. when a critical density

of excited electrons, or population inversion threshold is reached, then an initial

stimulus of light can be applied to start coherent light emission. As this stimulated

light passes back and forth within the laser cavity, it stimulates further emissions,

provided the pump energy input remains above the threshold. Usually the coupling

mirror will be partially transparent to allow the stimulated light to be directed out

of the gain medium and into a coupled cavity (often a fibre optic cable).

Spontaneous and stimulated emission was considered by Einstein in 1917 [7] in

a paper which predicted that photons could stimulate identical coherent photons

by interacting with electrons in excited atoms. This was done by using probability

coefficients for absorption, spontaneous emission, and stimulated emission of electro-

magnetic radiation to re-derive Plank’s law of radiation. The existence of stimulated
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emission was then confirmed by Rudolf W. Ladenburg in 1928 [33] and observation

of lasing was made in 1960 by Maiman [25]. Exploration of chaos produced in lasers

was first reported in a loss modulated CO2 laser [1] and in a multimode He-Ne

laser [37] at the end of the twentieth century and through the development of semi-

conductor lasers in the paper by Lang and Kobayashi [24]. Further information on

the history of the laser can be found in The Laser Guide Book by Hecht [14] and in

[13].

More recent challenges in modelling lasers have involved lasers coupled to addi-

tional lasers or with feedback from an external mirror, so that the light re-enters

the gain medium out of phase as in the Lang and Kobayashi paper and noteably

[28] and [34]. Such laser systems produce highly complex behaviour and are mod-

elled by systems of coupled non-linear differential equations as seen in [20] and [38].

These systems of equations cannot be solved exactly, but the dynamics can be de-

scribed, and continuation software such as AUTO [6] can be used to track stationary

or periodic points in parameter space, detecting and mapping any changes to the

dynamics.

During experimental operations, regions of stability may be stumbled upon pos-

sibly without realising which operating parameters may have had the right effect,

although since this is not intuitive, results are often difficult to reproduce. In addi-

tion to this, in some cases it is necessary to find regions of instability, for instance

in secure communications [35]. This would require, though, that the decoding laser

is operating in identical circumstances so that the hidden signal can be removed
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cleanly.

It is therefore necessary to understand stability and types of instability. Ideally

this should be done by analytical methods, though unfortunately this is only possible

in the most simple cases. In more complicated set ups we often need to use numerical

methods such as simulation or path-following (continuation) software [6].

In order to map the stability in parameter space we may need to use numerical

models to find and illustrate the transitions between these regions. To do this

we need to find a suitable mathematical model to analyse. Then, starting from a

steady state solution we can use continuation software (such as AUTO) to ’follow’

this steady state as parameters are varied. This software will detect changes in the

solution’s stability known as bifurcations by examining the changing eigenvalues

of the Jacobian of the system of equations [23], indicating the point at which a

boundary is reached where the stability of the laser may change. Similarly to the

method by which the steady state was followed, bifurcation points can then be

followed to produce a map of the stable and unstable regions of operation on varying

two parameters for the laser with a description of the changes that will take place

as boundaries are crossed.

Often mathematical models of lasers will naturally be symmetric [21]. This might

be from symmetries in the set up or from symmetries within each laser caused by

the invariance under the phase shift of the complex-valued electric field. Symmetries

can cause problems for software continuation of bifurcations for a number of reasons.

• Eigenvalues of symmetric bifurcations may be multiple, but path following
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programmes such as AUTO expect a single real eigenvalue or a complex pair

of eigenvalues to pass through zero at a bifurcation.

• Symmetric systems with continuous group symmetries may have “relative equi-

libria” that are periodic orbits or even tori in the original system.

• Nonlinear terms mean that bifurcations may not be generic - multiple solutions

may branch out or emerge at a bifurcation.

For the rest of this chapter we review standard methods for understanding and

analysing dynamics of ODEs with symmetries before discussing the orbit space

reduction. This is a way of removing the symmetries by identifying all points that

are symmetrically related.

Orbit space reduction techniques were introduced by Chossat [3] and Lauterbach

[4] as a tool for analysing equivariant dynamical systems, here we consider numerical

uses of orbit space reduction.

1.2 Symmetries of ODEs

Symmetric patterns in nature or in experimental work are important to note as often

patterns can change suddenly with a given parameter variation around that same

symmetry. The patterns have symmetries which may still be dominant in systems

of equations which might be used to model them. In real life the system is unlikely

to have perfect symmetry, but will be present in its idealization. In addition to this,

it could be said that the bifurcation is associated with the change of symmetry that
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is observed.

From this perspective it is clear that symmetry in systems can produce beautiful

patterns and [9], in fact, without some initial symmetry to be changed, the bifurca-

tion points indicated by the fascinating sudden changes of symmetry may not occur

for us to then study. However, once a set of equations are applied to a problem they

inherit the system’s idealised symmetry and this may then cause difficulties in its

analysis, as discussed in the example of a laser with strong optical feedback later in

this thesis.

Linear symmetries Bifurcations are associated with changes to a pattern in the

system, or to look at it another way, a point where the symmetry changes.

We consider symmetry groups that are groups of linear transformations that

act orthogonally [11]. Since bifurcation theory applies locally then we should be

primarily concerned with operators which act in linear spaces.

For dynamical systems defined by ODEs, the symmetries impose restrictions on

both the form of the solutions and the way bifurcations may take place. One can

identify two subthemes:

1. Geometric: Transformation groups, fixed point subspaces and singularities.

2. Algebraic: Group representation theory and also equivariant singularity the-

ory.

In fact in [11] for the orbit space reduction we discuss, both themes are inter-twined.
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A symmetry is a transformation of a space, S, that preserves some given struc-

ture. Let Γ be the set of these transformations which can be described as a group,

and assume S is the real vector space R
n. The symmetries or transformations we

consider are linear mappings γ : R
n → R

n. Here the given structure that we are

preserving during these transformations will be the set of solutions of an ODE, for

example, for a bifurcation problem.

For example, consider the bifurcation problem

ẋ = f(x, λ)

where equilibria are given by

f(x, λ) = 0 (1.1)

where f : R
n ×R → R

n is a smooth (C∞) mapping, λ being the bifurcation param-

eter. The presence of symmetries Γ means that for all γ ∈ Γ

f(γx, λ) = γf(x, λ)

so that every γ ∈ Γ commutes with f . It follows that x is a solution to (1.1) if and

only if γx is, so the solution set to (1.1) is preserved by the symmetries γ ∈ Γ.

1.3 Group theory and dynamics

Group theory provides us with the means to describe symmetry in a system of ODEs

and to make rigorous statements about how the symmetries relate to solutions and

their stabilities. Let us quickly define the basics:
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Wallace [36] gives the following definitions surrounding sets: set A collection or

assembly of objects is called a set. Each object is said to be an element of the set.

Let A be a set. If A consists of a finite number of elements, say a1, a2, ..., aN (where

the notation presumes the elements are distinct) then we write

A = {a1, a2, ..., aN}

and A is said to be a finite set of cardinality N , written N = |A|. If A does not

have a finite number of elements A is called an infinite set. The set consisting of no

elements is called the empty set or the null set.

Subset A set A is said to be a subset of a set B if every element of A is also an

element of B. We write

A ⊆ B

to indicate that A is a subset of B and so on.

Mappings Let A and B be sets. Let there be a rule or prescription, denoted by

f , by which to each element a of A there is assigned a unique element, denoted by

f(b), of B. Then the rule is said to be a mapping or map or function from A to B.

We write

a→ f(a) (a ∈ A)

and to indicate that f is a mapping on sets, we use both of the following notations:

f : A→ B and A
f︷︸︸︷→ B

A is called the domain of f and B is called the codomain of f .
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Wallace [36] also gives the following definitions: Group Let G be a non-empty

set on which there is defined a binary operation so that the outcome of the operation

between a and b (a, b ∈ G) is denoted by ab. ThenG is called a group if the following

axioms hold.

1. For all a, b ∈ G, ab ∈ G (closure)

2. For all a, b, c ∈ G, (ab)c = a(bc) (associativity)

3. There exists e ∈ G such that for all a ∈ G, ea = a (existence of identity).

4. For each a ∈ G there exists an element denoted by a−1 such that a−1a = e

(existence of inverse).

Finite group A group G is said to be finite if the set G is a finite set, otherwise

the group is said to be infinite. If G is finite the order of G, written |G| (which is

the number of elements in G) is finite and G has finite order. An infinite group is

said to have infinite order.

Subgroup Let H be a non-empty subset of the group G which is also a group

under the multiplication in G. Then H is called a subgroup of G. Subgroup

Criterion A non-empty subset H of the group G is a subgroup of G if and only if

for all a, b ∈ H, ab ∈ H and a−1 ∈ H.

Conjugate Let H be a subgroup of the group G. Any subgroup of the form

x−1Hx for some x ∈ G is called a conjugate of H. A subgroup H which coincides

with all its conjugates is said to be normal in G. Thus H is normal in G if and

only if x−1Hx = H for all x ∈ G or equivalently, xH = Hx for all x ∈ G.
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Homomorphism We are here concerned with mappings which preserve alge-

braic structure. Such mappings are called ’homomorphisms’ (Greek: homo - same,

morph - form). More precisely we have the following definition which we make for

semigroups. Let S and T be semigroups and let f : S → T be a mapping such that

f(xy) = f(x)f(y)

for all x, y ∈ S. Then f is said to be a homomorphism from S into T .

Kernel Let G and H be groups and let f : G→ H be a homomorphism. Then

the sub-group K = {x ∈ G|f(x) = eH} is a normal subgroup of G which is called

the kernel of f written Ker f .

Wallace also gives the following definitions for Rings: By a polynomial in x

over R we understand an expression a(x) of the form

a(x) = a0 + a1x+ ...+ amx
m

where the so-called coefficients a0, a1, ..., am are real numbers, and x is sometimes

called an ‘indeterminate’. If all of the coefficients are 0 the polynomial is said to

be the zero polynomial, denoted by 0. If a(x) is not the zero polynomial and if

am 6= 0 then a(x) is said to have degree m, briefly deg(a(x)) = m.

Axioms and Rings Let R be a non-empty set in which there are defined two

binary operations called addition and multiplication. For a, b ∈ R the outcome

of the addition of a and b, called the sum of a and b, is denoted by a + b (‘a plus

b’) and the outcome of the multiplication of a by b, called the product of a by b, is

denoted by the simple juxtaposition ab (‘a times b’). Then R is called a ring if the

following axioms hold:
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1. Axioms of addition

• For all a, b ∈ R, a+ b ∈ R (closure)

• For all a, b, c ∈ R, (a+ b) + c = a+ (b+ c) (associativity).

• There exists a distinguished element denoted by 0 such that for all a ∈

R, a+ 0 = 0 + a = a (0 is ’zero’)

• For any a ∈ R there exists an element denoted by −a ∈ R such that

a+ (−a) = (−a) + a = 0 (the inverse of addition).

• For all a, b ∈ R, a+ b = b+ a (commutativity).

2. Axioms of Multiplication

• For all a, b ∈ R, ab ∈ R (closure)

• For all a, b, c ∈ R, (ab)c = a(bc) (associativity)

3. Axioms of Distributivity

• For all a, b, c ∈ R, a(b+ c) = ab+ ac (distributivity)

• For all a, b, c ∈ R, (a+ b)c = ac+ bc (distributivity).

Subring Let S be a non-empty subset of the ring R which is also a ring under

the addition and multiplication in R. Then S is called a subring of R.

As discussed in [16, p201] a module, M , is defined as follows: Let R be any

ring; a nonempty set M is said to be a module over R if M is an abelian group

under an operation + such that for every r ∈ R and m ∈M there exists an element

rm in M subject to
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• r(a+ b) = ra+ rb;

• r(sa) = (rs)a;

• (r + s)a = ra+ sa

for all a, b ∈M and r, s ∈ R.

Examples of groups In particular, Lie groups will prove to be useful during

the discussions of symmetries in dynamical systems, as a well developed theory of

continuous symmetry as they form smooth differentiable manifolds.

Lie group [11, p25]. Let GL(n) denote the group of all invertible linear trans-

formations of the vector space R
n into itself, or equivalently the group of nonsingular

n × n matrices over R. A Lie group is a closed subgroup Γ of GL(n) for some n.

These are often also known as linear Lie groups. For example, the real invertible

matrices form a group under multiplication, denoted by GL2(R):

GL2(R) =

{
A =



a b

c d


 : detA 6= 0

}

The space of all n×n matrices may be identified with R
n2

, which contains GL(n)

as an open subset. If Γ is a closed subgroup then it is a closed subset of GL(n) as

well as a subgroup of GL(n). A Lie subgroup of Γ is just a closed subgroup in the

same sense.

The following groups are all isomorphic to Lie groups. This is not an exhaustive

list, but introduces examples that are used commonly in describing the symmetries

in dynamical systems. See [4] for more details.
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The orthogonal group O(n): The group of n×nmatrices, A, satisfying AAt = In.

The special orthogonal group SO(n): all A ∈ O(n) such that det(A) = 1. This

is also known as the n-dimensional rotation group. For example SO(2) is made up

of planar rotations

Rθ =




cos θ − sin θ

sin θ cos θ




and can be identified with S1, the circle group.

The cyclic group Zn consists of 2 × 2 matrices generated by R.

The dihedral group Dn of order 2n, generated by Zn with an element of order

2 that does not commute with Zn. This is the symmetry of a regular n-gon in the

plane.

In addition to these, all finite groups are isomorphic to Lie groups.

More generally, we will consider compact groups of Lie type, as in Golubitsky,

Stewart and Schaeffer [11, p25]. They split the discussion of Lie groups into three

parts:

1. Basic definitions and examples.

2. Representation theory.

3. Existence of an invariant integral - so we can use averaging arguments which

allow for identification of any representation of a compact Lie group with a

group of orthogonal transformations.

Note that a Lie group can be seen as a manifold (for example, we can think of

S1 as a circle) with a group property - we can combine two points on the manifold
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to give a third such that the group axioms are satisfied. All the examples of groups

above are Lie groups and have well-defined dimension which is the dimension of this

manifold.



Chapter 2

Differential equations with

symmetries

In this chapter I consider the analysis of differential equations with symmetries. I

will start by considering how symmetries (as described in the previous chapter) may

affect bifurcation problems. I will then consider particular cases where symmetry is

a problem for analysis of a system of equations; considering how symmetries can be

removed. Following this I will introduce invariants and equivariants and discuss how

these can be used to remove symmetries by reducing a system to its orbit space.

Suppose a system has symmetry Γ ⊆ O(n) and phase space R
n. This means we

assume that for x ∈ R
n the ODEs

ẋ = f(x) (2.1)

must satisfy

f(γx) = γf(x)

28
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for all γ ∈ Γ and all x ∈ R
n. We say the ODE f(x) has symmetries Γ. We verify

that the symmetries of our systems of equations can be described in the language

of groups. If γ and δ are symmetries of the system then we need to show that γ−1

and γδ are also symmetries. To see this, we set y = γx then f(y) = γf(γ−1y) and

multiply by γ−1 and then secondly f(γδx) = γf(δx) = γδf(x). Hence, the set of

symmetries, Γ, of our system of equations forms a group.

We use this language to describe the type of dynamics that might occur.

Symmetries of arbitrary points x0 ∈ R
n form a subgroup of Γ called the isotropy

subgroup of x0, defined by

Σx0
= {γ ∈ Γ : γx0 = x0}.

Solutions to symmetric systems typically come in symmetric families; more precisely,

if we have x0 ∈ R
n then the group orbit through x0 is defined by

Γx0 = {γx0 : γ ∈ Γ}.

One can show from (2.1) that if x0 is a steady solution, then every point in the

group orbit will also be a steady solution. We say Y ⊂ R
n is invariant under Γ if

ΓY = Y . As a special case, Y is fixed under Γ if γy = y for all γ ∈ Γ and y ∈ Y .

Note that every subset that is fixed under Γ is also invariant under Γ (not vice versa

though).

For any subgroup G ⊂ Γ we define the fixed point subspace associated to G as

Fix(G) = {y ∈ R
n : γy = y for all γ ∈ G}.
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As discussed previously, one of the problems with having symmetries in the

system is the high multiplicity of eigenvalues. Techniques have been developed [11] to

simplify analysis of symmetric bifurcation problems, using methods that exploit the

symmetries. These techniques include restriction to fixed point subspaces, invariant

theory and equivariant theory.

Consider some H, an isotropy subgroup, and note H ⊆ N(H) where

N(H) = {g ∈ G : gH = Hg}

(ie H is within the normaliser of H, N(H)). Suppose for some h ∈ G that

hFix(H) = Fix(H)

⇔ {hx ∈ V : Hx = x} = {x ∈ V : Hx = x}

⇔ {y ∈ V : Hh−1y = h−1y} = {x ∈ V : Hx = x}

⇔ {y ∈ V : hHh−1y = y} = {x ∈ V : Hx = x}

⇔ hHh−1 = H

⇔ hH = Hh

⇔ h ∈ N(H)

So h fixes Fix(H) if and only if h ∈ N(H).

For example, if we consider the dihedral group acting on C ∼= R
2

D3 = 〈{z → z, z → e2πi/3z}〉 = 〈{κ, ρ}〉 = {e, ρ, ρ2, κ, ρκ, ρ2κ}
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Figure 2.1: The reflections, κ, and rotations, ρ that generate the dihedral group D3

acting on the plane C.

(where κ2 = ρ3 = e). One can verify that the isotropy subgroups are

Gz0
= {e, κ}

G0 = D3

Gz = {e}

Gz1
= {e, ρ2κ}

Gz2
= {e, ρκ}

Where z is a general point in C, z0 is a point on the real axis, z1 = e
2πi

3 z0 and z2 =

e
4πi

3 z0. Note that Gz0
, Gz1

, and Gz2
are conjugate to Z2. D3 is trivial (N(D3) = D3)

as is Gz (N(e) = e) and N(Gz0
) = Gz0

.

Every orbit x(t) for a system with symmetry Γ is a dynamically invariant subset

of X on which each γ ∈ Γ acts by either leaving the orbit invariant, or by mapping

it to a different orbit. A relative equilibrium is an equilibrium in the orbit space,
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while in phase space it is an invariant group orbit. For a finite group the relative

equilibrium must consist of a finite set of equilibrium, but for an infinite group there

may be non-trivial (e.g. periodic) motion on the relative equilibrium in phase space

[22]. This is discussed in more detail in [4, Chapter 7].

2.1 Symmetries for bifurcation problems

Consider a bifurcation problem

ẋ = f(x, λ)

with parameter, λ, with a symmetry group Γ of f for all values of λ. We assume

f(0, λ) = 0 and f is singular at λ = 0 meaning there is a bifurcation at (0, 0) [11].

A question is for which of the isotropy subgroups, Σ, could there be branches

bifurcating from the steady states which have Σ as their group of symmetries.

A basic result is in [11, p11] The fundamental observation about one-dimensional

fixed-point subspaces is the equivariant branching lemma, which asserts that gener-

ically, for each Σ satisfying

dim Fix(Σ) = 1,

there exists a unique branch of nontrivial steady-state solutions to g = 0 lying in

Fix(Σ) × R. “Algebraically this shows the existence of sub-groups with D fixed-

point subspace.” This is also an example of how symmetry makes it difficult to do

bifurcation analysis as you get eigenvalues of high multiplicity. [11] says, however,

that “these same symmetries help simplify the search for solutions”.



CHAPTER 2. DIFFERENTIAL EQUATIONS WITH SYMMETRIES 33

An example application Golubitsky, Stewart and Schaeffer [11] give the exam-

ple of a hosepipe suspended vertically, where water flows through the pipe at some

rate λ. For larger values of λ the pipe will start to oscillate with either standing or

rotating waves. The hose is circular and they assume a circularly symmetric model

so the ODE has all rotations and reflections about the origin in the horizontal plane

as its symmetries - the group of symmetries is O(2). This means the symmetries of

periodic solutions from Hopf bifurcation are isotropy subgroups inside O(2) × S1:

• The standing waves have Z2 reflective symmetry inside O(2) and also a spa-

tiotemporal reflection inside O(2) × S1.

• The rotating waves have S̃O(2) = (θ, θ) : θ ∈ S1. Here S1 is identified with

the rotations in O(2).

In this example there is an analogy between steady-state and Hopf bifurcation, where

they replace Γ by Γ × S1.

2.2 Reduction of symmetries and the orbit space

According to [11] the study of bifurcation problems with symmetry is complicated

because symmetry often forces eigenvalues of high multiplicity. Even after Liapunov-

Schmidt reduction, it is necessary to study bifurcation problems with several state

variables. Techniques exist to simplify the analysis of symmetric bifurcation prob-

lems, and these exploit the very symmetries that cause the initial complication!

The three techniques Golubitsky, Stewart and Schaeffer [11] describe are:
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1. Restriction to fixed-point subspaces.

2. Invariant theory.

3. Equivariant singularity theory.

It is natural to try and simplify the problem by removing the symmetries and going

to an “orbit space”. This means we write the original system in terms of what

happens to all symmetric images of a single point rather than just a single point.

The idea of orbit space reduction is to investigate the system of differential equa-

tions modulo the group action. The system of differential equations is transformed

to another system on a space with a complicated structure. The stratification of

this set is found from the structure of orbit types of the group action, where the

orbit types correspond to sets of points that have a given isotropy. The orbit space

reduction is performed with the help of a Hilbert basis, described in section 2.3, of

the ring of invariants.

We define the orbit space for the action of Γ on V = R
n to be

V/Γ = {Γx : x ∈ R
n}

where we “glue together” points that are on the same group orbit, i.e. we treat Γx

as a point in the new space for each x. Note that Γx is a compact manifold, with

dimension

dim Γx = dim Γ − dim Σx.

Unfortunately, for a typical compact group Γ acting on R
n, the orbit space is not

typically a manifold- it may have singularities and edges of varying dimension and
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be quite hard to visualise geometrically.

Following work of Chossat [3], it is possible to introduce new variables that are

combinations of the old ones, in order to re-write the system equations in a finite

dimensional representation of the orbit space of the original system. The question

will be how to do this in the most efficient way - to avoid wasting time re-doing your

equations with different combinations of variables only to find that the symmetries

remain.

2.3 Invariants and Equivariants: Generators and

Bases

Let us define the set of invariant polynomial functions

P(Γ) = {f : R
n → R polynomial : f(γx) = f(x) ∀ γ ∈ Γ, x ∈ R

n}

As noted by [11], P is a ring called the ring of invariants. Namely, if f, g ∈ P(Γ)

then f(x)g(x) and f(x) + g(x) are in P(Γ). That is, we can multiply and add (but

not divide) polynomial invariants to obtain new polynomial invariants.

We also define the module of equivariant polynomials over the ring of invariant

polynomials:

P̃(Γ) = {f : R
n → R

n polynomial : f(γx) = γf(x)∀γ ∈ Γ, x ∈ R
n}.

As discussed in [11], this is a module over the ring of invariants because (a) one can

add equivariants to get a new equivariant and (b) equivariants can be multiplied by

invariants to give an equivariant.



CHAPTER 2. DIFFERENTIAL EQUATIONS WITH SYMMETRIES 36

We will observe that there is a finite subset, P , of invariant polynomials {u1, ..., uℓ}

such that every invariant polynomial can be written as a polynomial function of this

{u1, ..., uℓ}. We call this set a Hilbert basis for the ring. The set of all invariant

polynomials is a ring (sums and products of Γ-invariant polynomials are again Γ-

invariant).

This following fundamental result (see [11]) shows that for compact group ac-

tions, the space of invariant functions is finitely generated and, helpfully, that a

Hilbert basis will always exist.

Theorem 1 (Theorem 4.2 - Hilbert-Weyl Theorem). Suppose that Γ is a compact

Lie group acting on R
n. Then there is a finite Hilbert basis for the ring P(Γ).

Using a Hilbert basis will remove the symmetries from the system of ODEs.

However, since there is no unique Hilbert basis there will be many ways this can

be done. For our purpose though, we will require that the number of ODEs in the

system should be kept as low as possible for ease of numerical computation and for

other reasons discussed later. Since the number of ODEs in the system is dictated

by the size of the Hilbert basis, we therefore wish to find a way to quickly find a

(since it is not necessarily unique) minimal Hilbert basis or the size of the minimal

basis.

We say there is a relation between elements in a Hilbert basis if there is a non-

trivial polynomial of the basis elements that is satisfied identically.

The ring P(Γ) is defined to be a polynomial ring if there is a Hilbert basis with no

relations in it. We will later see example 2.2 which has a Hilbert basis with a relation
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so the ring P is not a polynomial ring. Golubitsky, Stewart and Schaeffer (p47 and

p72) [11] give a test to check if a Hilbert basis makes a polynomial ring. This could

also be used to check that there are no relations if this is not immediately obvious.

When you have a polynomial ring obtained from the Hilbert basis {u1, ..., uℓ} then

every invariant polynomial f has uniquely the form f(x) = h(u1(x), ..., uℓ(x)).

We will see that the ring of invariants we are interested in will always be finitely

generated and therefore have a Hilbert basis. Unfortunately, Hilbert bases are not

necessarily unique, may be of large size even for relatively simple groups, and more-

over, there may be relations between basis elements. To avoid adding more than

the necessary dimensions to our calculations we need to ensure that the basis of

variables we choose is a minimal Hilbert basis.

Suppose we have a Hilbert basis {u1, · · · , uℓ} for P(Γ), the set of Γ-invariant

polynomials. We will use this Hilbert basis to represent the system in the orbit

space [3].

Simple examples: The ring of real polynomials of a single variable x is finitely

generated by {x}. The ring of even polynomials of a single variable x is finitely

generated by {x2}. The module of odd polynomials if a single variable is generated

by {x} over the ring of even polynomials (note that this simply means that any odd

polynomial can be written as xf(x) where f is even.

Note that one does not need to consider invariants from R
n → R

d for any d > 1:
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for example, f : R
n → R

2 is invariant




f1(γ(x))

f2(γ(x))


 =




f1(x)

f2(x)




if and only if f1 and f2 are in P(Γ).

Computing a Hilbert basis is often cumbersome but elementary, we restrict to

the set of monomials of a given order and determine which (combinations) of these

are invariant for all generators of the group.

Smooth maps As we are concerned not just with polynomial vector fields, it is

useful to generalise the results above to smooth maps. We define

E(Γ) = {f : R
n → R smooth : f(γx) = f(x) ∀ γ ∈ Γ, x ∈ R

n}

and E ⊂ P and similarly Ẽ the set of smooth equivariants. The following results from

[11] indicate that the results for polynomials generalise easily to smooth functions

(more precisely, for germs of smooth functions - See Appendix A). Let Es be the

ring of smooth (C∞) germs of functions R
s → R.

Theorem 2 (Theorem 4.3 - Schwarz (1975) ). Let Γ be a compact Lie group acting

on R
n. Let {u1, ..., uℓ} be a Hilbert basis for the Γ-invariant polynomials P(Γ) and

let f ∈ E(Γ). Then there exists a smooth germ h ∈ Es such that

f(x) = h(u1(x), ..., uℓ(x)).
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To summarise, it is clear that any function of the form f(x) = h(u1(x), ..., uℓ(x))

where u1 : R
n → R, h : R

ℓ → R is invariant- what the Theorem tells us is that in

fact all invariant functions can be written in this way.

The module of smooth equivariants is also finitely generated as stated in the

following result:

Theorem 3 (Theorem 5.3 Poenaru (1976) ). Let Γ be a compact Lie group and let

g1, ..., gr generate the module P̃(Γ) of Γ-equivariant polynomials over the ring P(Γ).

Then g1, ..., gr generate the module Ẽ(Γ) over the ring E(Γ).

2.4 Using invariants for orbit space reduction

One can use invariants to reduce a system to a representation of the orbit space

embedded in R
ℓ, where s is the dimension of a Hilbert basis for the invariant P(Γ)

by simply considering the map

Π(x) := (u1(x), ..., uℓ(x)). (2.2)

Suppose that there are k independent polynomial relations between the elements in

the Hilbert basis:

{r1(u1, · · · , uℓ), · · · , rk(u1, · · · , uℓ)}

where ri = 0 and the orbit space will be a space of dimension ℓ− k.

Let us write

O = Π(Rn) ⊂ R
ℓ
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to denote the orbit space and assume that the group acts nontrivially. As discussed in

Chossat [3], this is a semi-algebraic set and so can be written as a union of manifolds

of different dimensions associated with the images of the fixed point subspaces - these

manifold are called strata of the orbit space.

The trivial stratum of O is the image of the set of points with trivial symmetry.

If we write

L = {x ∈ R
n : Σx = I}

then the trivial stratum can be written

Õ = Π(L).

Note that Õ is a manifold, and that

O = clos(Õ)

is the closure of the trivial stratum.

Example: SO(2) acting on R
3. Take a Hilbert basis for invariants to be {Π1,Π2} =

{x2 + y2, z}. The (x, y)-plane becomes the Π2 axis (the non-trivial stratum) and the

trivial stratum is all positive Π2.

This is a simple example of a stratified manifold, more generally there may be

relations between the invariants. So later we consider a different basis (Π1,Π2,Π3) =

(x2+y2, z, (x2+y2)2) which is a Hilbert basis, but not minimal as there is the relation

Π2
1 = Π3.
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Figure 2.2: SO(2) acting on R
3. The left image represents the dynamics in the

original system with a point (x, y, z) on the periodic orbit. On the right, we have

the reduced system with its strata.

Figure 2.3: D3 acting on R
2. The image shows the reduced system and its strata:

the point (0, 0), the curved boundaries, and the shaded region in between.
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Example: D3 on R
2. Consider

D3 = 〈{z → e2iπ/3z, z → z}〉.

A Hilbert basis for invariants is given by

u = |z|2, v = z3 + z3

This is an application of the calculation found in [11, p53]. So we can first claim

every D3-equivariant germ g ∈ Ẽ(D3) has the form

g(z) = p(u, v)z + q(u, v)z2.

We start with D3-equivariant polynomial g of the form

g(z) =
∑

bjkz
jzk

with bjk real.

It is worth noting that the Hilbert map is not unique as the Hilbert basis used

is itself not unique. The example where D3 acts on R
2 from [3] shows this. Finding

the orders of the generators for either a ring or a module could be the next step.

See [3, p169] for information including Molien’s Theorem. This would not give the

best basis to use, but it would give the size of the smallest basis possible and would

give a check to determine whether the basis used is minimal.

Generally the invariance of the group is responsible for the degeneracies in the

equations. The number of bifurcating equilibria may not be clear or points on the

group orbit may not be equilibria - on a relative equilibria the vector field is tangent
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to the group orbit rather than disappearing, which means the dynamics may be

periodic.

If the manifold is smooth and finite dimensional, and if the group is compact

and acting smoothly on the Manifold then the orbit space can be represented as

a stratified manifold in a vector space. For examples of Orbit space reduction in

dynamical systems, see [3, p194].

Note that this example, where D3 acts on R
2 has three strata (see Figure 2.3).

Now note that the dimension of the orbit space of Γ acting on V is defined as

the dimension of the principal stratum, i.e. the stratum with the highest dimension.

dim(V/Γ) = dim(V ) − dim(Γx)

= dim(V ) − dim(Γ) + dim Σx

If there are relations between elements of the Hilbert basis that are equalities then

the dimension is lower than the dimension of the space R
ℓ where the orbit space is

realised. If there are inequalities rather than equalities these dimensions may be the

same as the following example illustrates.

Example: SO(2): a Hilbert basis with relation. Consider the example where

SO(2) acts by rotations in the (x, y)-plane for (x, y, z) ∈ R
3. Let (Π1,Π2,Π3) =

(x2 + y2, z, (x2 + y2)2) be a Hilbert basis for the invariants, then there is a relation

Π3 = Π2
1

because by design Π3 was specified as such. This example is similar to the laser

system in the sense that the invariants are not independent, but in this case it is
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Figure 2.4: SO(2): a Hilbert basis with relation: The surface Π3 = Π2
1, Π1 > 0 is

the orbit space for this action of SO(2).

not a minimal basis.



Chapter 3

Eigenvalues for orbit space

reduced systems

In this chapter I will review the work of Koenig and Chossat [3, 19] which relate

to reduction of a system to the orbit space using invariants, in particular relating

eigenvalues of linearised systems in these cases. I will discuss how eigenvalues of

the reduced system can be related to the eigenvalues of the original system. In

this way we can interpret the bifurcations in the reduced system as bifurcations in

the original system. Following this I will consider a method for choosing a basis of

invariants required for the orbit space reduction. I will give an example showing

how different bases of invariants can give different eigenvalues. Finally I will discuss

some differences between finding eigenvalues on the trivial and nontrivial strata.

45
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3.1 Review of main results from Koenig and Chos-

sat

In [3] the paper starts with an example which shows how to build the orbit space

explicitly and then reduce the dynamics to it. The main results of [3] relate the

eigenvalues of the linearised flow to that on the orbit space. The following sections

of [3] give a general method for general compact group actions and list some basic

properties of the dynamics in the reduced system.

Recall that Γx is the orbit of a point x ∈ V = R
n under the action of Γ.

Invariant polynomials and representation of the orbit space Starting with

P(Γ) as the ring of Γ-invariant polynomials in V = R
n, recall that invariance means

for any p ∈ P(Γ), p(g−1x) = p(x) for all (g, x) ∈ Γ×V . The Hilbert and Weyl result

says that P(Γ) has a Hilbert basis, i.e. there is a family of invariant polynomials

{Π1, ...,Πl} such that for any p ∈ P(Γ) a polynomial p̂ of l variables exists such that

p(x) = p̂(Π1(x), ...,Πl(x)).

This basis can be chosen to be minimal (have smallest number of elements for

any Hilbert basis) and to consist of homogeneous polynomials, but the basis is in

general not unique. In addition, its elements may not be algebraically independent

but may satisfy a number of relations as previously discussed.
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Projecting equivariant vector fields: computation and properties Sup-

pose that

ẋ = X(x) (3.1)

is a given Γ-equivariant vector field. Let Π1, ...,Πl be a Hilbert basis for the ring

of Γ-invariant polynomials, where we note that Ik = Πk(x) are invariants. We can

express the vector field on the orbit space in terms of the invariants

Π̇i(x) = dΠi(x)ẋ = dΠi(x)X(x) =: X̂i(x)

for i = 1, · · · , l, where dΠi denotes the Jacobian of the map Πi.

Note that X̂i(x) is a Γ-invariant smooth function of x and so by Schwarz’s the-

orem it can be expressed as function of the Πjs; there exists a smooth function

X̃i : R
ℓ → R such that

X̂i(x) = X̃i(Π1(x), · · · ,Πl(x))

for i = 1, ..., l and all x ∈ R
n. Let X̃ = (X̃1, ..., X̃l) - this defines a smooth map to

R
ℓ and hence there is a projection of 3.1 onto a smooth vector field

Π̇ = X̃(Π) (3.2)

that represents the vector field on the orbit space O extended to R
ℓ.

Unfortunately, although the vector field on the orbit space is uniquely specified,

if there are any relations satisfied by the Hilbert basis elements then the orbit space

vector field (3.2) is not uniquely defined on R
ℓ. For example, suppose that there is

a polynomial relation that satisfies p(Π1, · · · ,Πl) = 0 on the orbit space; then

Π̇ = X̃(Π) + p(Π)Z̃(Π)
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will give the same dynamics on the orbit space for any non-trivial vector field Z̃ on

R
ℓ. We will see an example of this in Section 3.3.

A key result is the following theorem which is also in Koenig’s work [19]:

Theorem 4. [3, Theorem 3.7] Let X(x) = Lsx + Lnx + R(x) be a Γ-equivariant

vector field in V , where Ls is the semisimple linear part of X. Similarly let X̃(Π) =

L̃sΠ+L̃nΠ+R̃(Π) be the projected vector field on the orbit space. Note that X(0) = 0

implies X̃(0) = 0. Then there exists a choice of generators Π1, ...,Πl such that:

(i) L̃s is the projection of Ls and is semisimple;

(ii) L̃nΠ + R̃(Π) is the projection of Lnx+R(x);

(iii) The eigenvalues of L̃s are linear combinations with positive integer coefficients

of the eigenvalues of Ls.

Note that any linear map A can be decomposed into

A = As + An

where As is semi-simple (i.e. it can be diagonalized), An is nilpotent (i.e. (An)k = 0

for some finite k) and AsAn = AnAs [17] and any eigenvalue of A must be an

eigenvalue of As

In consequence this raises several questions:

• How are the eigenvalues from the original system combined to form the new

eigenvalues for a given choice of invariants and how do we choose these in the

best way?
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• In the case that there are algebraic constraints, there may be ‘fake’ eigenvalues

corresponding to perturbations in directions transverse to O. Is it possible to

control these eigenvalues?

• Do these additional ‘fake’ eigenvalues produce ‘false bifurcations’ (see example

in Section 3.4) in the reduced system (i.e. bifurcations that do not exist in our

original system or model)?

Clearly it will be useful to find a way of either

• Preventing eigenvalues from being combined in such a way as to produce false

bifurcations.

• Analysing the regions of parameter space in which these combinations are

likely to occur. Once these regions are known we must check results using

the original system of equations if that particular region has no restrictions on

using it.

Possible methods to minimise the impact of false bifurcations include deliberately

choosing a non-minimal Hilbert basis which would confine regions where false bifur-

cations may take place to a less bothersome region of parameter space.
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3.2 Relating eigenvalues of orbit space to eigen-

values of the original system

Suppose that a Γ-equivariant system

ẋ = f(x)

is reduced to the orbit space ẏ = g(y) and x(t) = Ψt(x0) in R
n goes to y(t) = Φt(y0)

in R
s, where Ψt(x0) is the solution of ẋ = f(x) with x(0) = x0 and Φt(y0) is the

solution of ẏ = g(y) with y(0) = y0. We assume as before that y = Π(x) is the orbit

space reduction. Then for all t > 0,

Π ◦ Ψt(x(0)) = Φt ◦ Π(x(0)) (3.3)

In the special case that Π−1 exists then

x(t) = Π−1(Φt(Π(x(0)))

which implies, writing d = ∂
∂xi

, that

dx

dt
= dΠ−1(Φt ◦ Π(x(0)))

dΦt

dt
(Π(x0)

︸ ︷︷ ︸
g(Π(x(t))

)

dx

dt

∣∣∣∣
t

= f(x) = dΠ−1(Π(x))g(Π(x)) (3.4)

and so

f(x) = dΠ−1(Π(x))g(Π(x)).

More generally Π−1 does not exist for all x, but we will still have

dΠ(x)f(x) = g(Π(x)). (3.5)
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Theorem 5. Suppose x0 is a relative equilibrium of ẋ = f(x). Then y0 = Π(x0) is

an equilibrium of ẏ = g(y).

Proof. If ẋ = f(x) has a relative equilibrium at x = x0 that means that Γx0 is

invariant under Ψt. From (3.3) and the fact that y0 = Π(x) is the same for any

x ∈ Γx0, this means that Φt(y0) = y0 for all t. Hence g(y) = 0.

The fact that g(Π(x)) is Γ-invariant implies, using (3.5), that

g(Π(x0)) = 0 = dΠ(x0)f(x0)

and hence

f(x0) ∈ ker(dΠ(x0))

We can differentiate (3.5) again to give

d(dΠ)(x)f(x) + dΠ(x)df(x) = dg(Π(x)dΠ(x) (3.6)

and use this in the next result.

Theorem 6. Suppose v0 is an eigenvector of df(x0) with eigenvalue λ0 and x0 is

an equilibrium. If w0 = dΠ(x0)v0 6= 0, then λ0 is an eigenvalue of dg(Π(x0)) with

eigenvector w0.



CHAPTER 3. EIGENVALUES FOR ORBIT SPACE REDUCED SYSTEMS 52

Proof. Suppose ẋ = f(x) has an equilibrium at x = x0 and so f(x0) = 0. Then

from 3.6

dΠ(x0)df(x0) = dg(Π(x0))dΠ(x0) (3.7)

Suppose df(x0) has eigenvector v0 and eigenvalue λ0 which means that df(x0)v0 =

λ0v0. So (3.2) becomes

dΠ(x0)λ0v0 = dg(Π(x0))dΠ(x0)v0

λ0 dΠ(x0)v0︸ ︷︷ ︸
w0

= dg(Π(x0)) dΠ(x0)v0︸ ︷︷ ︸
w0

However, note that it is possible that w0 is zero even if v0 is non-zero - in which case

this equation tells us nothing about eigenvalues of dg. If however

dΠ(x0)v0 = w0 6= 0

then we can show that w0 is an eigenvector of dg(Π(x0)) with eigenvalue λ0. This

is because

d(dΠ)(x0)f(x0)v0 + dΠ(x0)df(x0)v0 = dg(Π(x0))dΠ(x0)v0

⇒ d(dΠ)(x0)f(x0)v0︸ ︷︷ ︸
zero as f(x0) = 0

+λ0 (dΠ(x0)v0)︸ ︷︷ ︸
w0

= dg(Π(x0)) dΠ(x0)v0︸ ︷︷ ︸
w0

λ0w0 = dg(Π(x0))w0.

Note however that (a) some eigenvectors v0 may be in ker(dΠ(x0)) and (b) other

eigenvalues w0 may not be in the image of dΠ(x0). These are the eigenvalues that

change under orbit space reduction. This result is proved in the case where x0 is
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an equilibrium, but it may be possible to extend to the case where x0 is a relative

equilibrium.

3.3 Example of how different invariants can give

different eigenvalues

Consider Z2 acting by x 7→ −x and the Z2-symmetric ODE

ẋ = f(x)

for x ∈ R. The symmetry here simply implies that f(x) is an odd function. For this

symmetry, the invariants are generated by S = {I = x2} meaning a representation

of the orbit space is

Π1(x) = x2

where one can see that

O = {y : y ≥ 0}.

To show that the eigenvalues of the orbit space system may be augmented by

additional ‘fake’ eigenvalues, we consider

ẋ = xf(x2)

with x → −x (with additional invariants). If we choose the invariants Π1 = x2

and Π2 = x4 as the basis, then there is a relation Π2
1 = Π2 and the trivial stratum

corresponds to

{(Π1,Π2) : Π1 > 0 and Π2 = Π2
1}



CHAPTER 3. EIGENVALUES FOR ORBIT SPACE REDUCED SYSTEMS 54

. The system of equations can be written in many ways. clearly one way is

Π̇1 = 2x2f(x2) = 2Π1f(Π1)

Π̇2 = 4x4f(x2) = 4Π2f(Π1)

Suppose then we look at a specific example where f(x2) = 1− x2. Then for any

α we can write the equations as

Π̇1 = 2Π1 − Π2
1

Π̇2 = 4Π2 − 4Π1Π2 + α(Π2
1 − Π2)

Hence, the Jacobian is

J =




2 − 2Π1 0

−4Π2 + 2αΠ1 4 − 4Π1 − α


 (3.8)

and for example, when Π1 = 1,Π2 = 1 this becomes

J =




0 0

−4 + 2α −α




which has an arbitrary eigenvalue −α that clearly depends on the choice of equation

in the orbit space.

3.4 Eigenvalues on nontrivial strata

The following example shows a ‘fake’ eigenvalue can appear in the dynamics on the

orbit space.
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Consider the linear vector field X defined by the system

ẋ = ax+ by

ẏ = cy.

It is equivariant by the action of Z2 defined by (x, y) 7→ (−x,−y). We have seen

that the orbit space can be defined as the image of the map

(x, y) 7→ (Π1 = x2,Π2 = y2,Π3 = xy)

A straightforward calculation shows that the projected X̃ yields the system in R
3

Π̇1 = 2aΠ1 + 2bΠ3

Π̇2 = 2cΠ2

Π̇3 = bΠ2 + (a+ c)Π3.

If a = −c 6= 0, 0 is a hyperbolic equilibrium of X, while X̃ has a zero eigenvalue

at the origin in R
3. This extra eigenvalue is a ‘fake’ eigenvalue for the dynamics on

the orbit space. In general, these extra ‘fake’ eigenvalues may pass through zero at

a false bifurcation - in this case the eigenvalue is forced to remain zero.



Chapter 4

Orbit space reduction for SO(2)

symmetry

In this chapter I will give an example of how invariants may be used to reduce a

system with symmetry to the orbit space. In doing so the symmetries in the system

are removed making numerical analysis possible. I will then show in a practical

application of the ideas in Chapter 3 how the eigenvalues of the Jacobian of the

reduced system can be related back to the original system in order to complete a

bifurcation analysis.

In this example I consider SO(2) acting on (x, y)T ∈ R
2 in the normal way, by



x

y


 →




cos(θ) − sin(θ)

sin(θ) cos(θ)






x

y




For convenience from here on we write the invariants as generators of I1, · · · , Iu.

The invariants are generated by I = r2 = x2 +y2. The general equivariant vector

56
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field in coordinates z = x+ iy, according to [11] is ż = (f(|z|2) + ig(|z|2))z


ẋ

ẏ


 = f(I)



x

y


 + g(I)




y

−x




=



f(r2) g(r2)

−g(r2) f(r2)






x

y




Which can be written as a reduced system in the orbit space as an equation for the

invariant:

I = x2 + y2 = r2

İ = 2xẋ+ 2yẏ (4.1)

= 2xf(I)x+ 2yf(I)y

= 2If(I)

For a relative equilibrium İ = 0 meaning from (4.2) I = 0 or f(I) = 0. These

correspond to the 2 strata; I = 0 corresponds to points with isotropy SO(2), I > 0

corresponds to points with trivial isotropy. We now discuss how the Jacobian JI for

the reduced system can be related to the Jacobian Jx for the original system. The

first Jacobian is

JI = 2f(I) + 2If ′(I) (4.2)

Note that in the original coordinates the Jacobian at (0, 0) is

Jx =



f(0) g(0)

−g(0) f(0)
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with eigenvalues f(0) ± ig(0). Away from (0, 0) the relative equilibrium is not an

equilibrium unless we go into a rotating frame. We do this by finding a σ ∈ R such

that the relative equilibrium (x0, y0) satisfies



ẋ0

ẏ0


 =




0 σ

−σ 0






x0

y0




This implies that 


f(I0) g(I0) − σ

−g(I0) + σ f(I0)






x0

y0


 = 0

We now choose σ = g(I0) and note f(I0) = 0 on the equilibrium. In the rotating

frame:

ẋ = xf(I) + y(g(I) − g(I0))

ẏ = −x(g(I) − g(I0)) + yf(I)

So

Jx =




f(r2) + 2x2f ′(r2) + 2xyg′(r2) g(r2) − g(r2
0) + 2xyf ′(r2) + 2y2g′(r2)

−(g(r2) − g(r2
0)) − 2x2g′(r2) + 2xyf ′(r2) −2xyg′(r2) + 2y2f ′(r2) + f(r2)




(4.3)

We evaluate this on the equilibrium: r = r0, x = x0, etc. Now choose a typical

point on the relative equilibrium such that y0 = 0:

Jx =



f(r2

0) 0

0 f(r2
0)


 + 2x2

0



f ′(r2

0) 0

−g′(r2
0) 0


 (4.4)

We now compare the eigenvalues of the two Jacobians for the original system of

equations in the rotating frame, (4.4), and the reduced system, (4.2). Considering
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(4.2) we have two cases for a relative equilibrium; Either I0 = 0 in which case

JI = 2f(0)

Jx =



f(0) 0

0 f(0)




where the eigenvalues in the reduced system are double the eigenvalues from the

original system.

Or, alternatively, f(I0) = 0 in which case

JI = 2I0f
′(I0)

Jx = 2I0



f ′(I0) 0

−g′(I0) 0




where the eigenvalues remain the same; one eigenvalue is 0 because of the rotating

frame.

4.1 Reduction of equations for SO(2) acting on R
2

We now consider more non-trivial actions of SO(2) that will be relevant for our laser

system; although the computations here are not complete they indicate some of the

complexity of the problem. let us consider SO(2) acting on C
2 by

(E1, E2) → (eiφE1, e
iφE2). (4.5)
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For convenience we will sometimes write E1 = x1 + iy1 E2 = x2 + iy2 in the section

below. A Hilbert basis for the invariants P(SO(2)) is given by

I1 = |E1|2 = x2
1 + y2

1

I2 = |E2|2 = x2
2 + y2

2

I3 = Re(E1E
∗

2) = x1x2 + y1y2

I4 = Im(E1E
∗

2) = y1x2 − x1y2

(4.6)

while a basis for the Equivariants is given by

U1 =




x1

y1

0

0




, U2 =




0

0

x2

y2




, U3 =




y1

−x1

0

0




, U4 =




0

0

y2

−x2




. (4.7)

U5 =




x2

y2

0

0




, U6 =




0

0

x1

y1




, U7 =




y2

−x2

0

0




, U8 =




0

0

y1

−x1




. (4.8)

Note that by Poenaru’s theorem there must be smooth functions fk of the invariants

such that 


ẋ1

ẏ1

ẋ2

ẏ2




=
8∑

k=1

fk(I1, I2, I3, I4)Uk. (4.9)

We derive the equivalent to the general equation (4.9) in the orbit space given
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by

Π(E1, E2) = (I1, I2, I3, I4).

with the relation I1I2 = I2
3 + I2

4 .

Writing the equation in component form we have

ẋ1 = x1f1 + y1f3 + x2f5 + y2f7 (4.10)

ẏ1 = y1f1 − x1f3 + y2f5 − x2f7 (4.11)

ẋ2 = x2f2 + y2f4 + x1f6 + y1f8 (4.12)

ẏ2 = y2f2 − x2f4 + y1f6 − x1f8 (4.13)

and so

İ1 = 2x1ẋ1 + 2y1ẏ1 (4.14)

= 2(x2
1 + y2

1)f1 + 2(x1x2 + y1y2)f5 + 2(x1y2 − x2y1)f7 (4.15)

and so

İ1 = 2f1I1 + 2f5I3 − 2f7I4 (4.16)

similarly,

İ2 = 2f2I2 + 2f6I3 + 2f8I4 (4.17)

İ3 = x1ẋ2 + x2ẋ1 + y1ẏ2 + y2ẏ1

= (x1x2 + y1y2)f1 + (x1x2 + y1y2)f2 + (x2y1 − x1y2)f3

+(x1y2 − x2y1)f4 + (x2
2 + y2

2)f5 + (x2
1 + y2

1)f6
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so we have

İ3 = f1I3 + f2I3 + f3I4 − f4I4 + f5I2 + f6I1 (4.18)

and finally

İ4 = y1ẋ2 + x2ẏ1 − x1ẏ2 − y2ẋ1

= (−x1y2 + x2y1)f1 + (x2y1 − x1y2)f2 + (−y1y2 − x1x2)f3

+(y1y2 + x1x2)f4 + (−y2
2 − x2

2)f7 + (y2
1 + x2

1)f8

and so

İ4 = f1I4 + f2I4 − f3I3 + f4I3 − f7I2 + f8I1 (4.19)

Our set of equations for the reduced system is therefore:

İ1 = 2f1I1 + 2f5I3 − 2f7I4

İ2 = 2f2I2 + 2f6I3 + 2f8I4 (4.20)

İ3 = f1I3 + f2I3 + f3I4 − f4I4 + f5I2 + f6I1

İ4 = f1I4 + f2I4 − f3I3 + f4I3 − f7I2 + f8I1

For a relative equilibrium to occur the left hand sides of (4.20) need to be zero.

There are two cases corresponding to the two strata of the orbit space:

• I1 = I2 = I3 = I4 = 0

• f3 = f4 with all other functions of invariants equal to zero.

In order to describe how the original system (4.13) is related to the reduced

system (4.20) we need to compare the eigenvalues of their Jacobians. JI is the
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Jacobian matrix for system (4.20), Jx is the Jacobian matrix for system (4.13). JH

is the matrix containing all partial derivatives of the functions of invariants.

First consider JI :

JI =




2f1 0 2f5 −2f7

0 2f2 2f6 2f8

f6 f5 f1 + f2 f3 − f4

f8 −f7 f4 − f3 f1 + f2




+ JH (4.21)

Where JH are the additional terms that involve gradients of the fi.

For relative equilibrium I1 = I2 = I3 = I4 = 0 we also have the Jacobian for

equations 4.13

Jx =




f1 f3 f5 f7

−f3 f1 −f7 f5

f6 f8 f2 f4

−f8 f6 −f4 f2




(4.22)

Now we need to compare the eigenvalues of JI and Jx for each of the two cases

of equilibrium, in order to find the relationship between the functions of invariants

and the eigenvalues of the original system.

For the first case Jx remains the same and JI becomes:

JI =




2f1 0 2f5 −2f7

0 2f2 2f6 2f8

f6 f5 f1 + f2 f3 − f4

f8 −f7 f4 − f3 f1 + f2




(4.23)
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For the second case JI = JH and Jx becomes

Jx =




0 f3 0 0

−f3 0 0 0

0 0 0 f3

0 0 −f3 0




(4.24)

We have not been able to find explicitly results that relate the eigenvalues of

these Jacobians in general.



Chapter 5

Modelling an external-cavity laser

In this chapter I will introduce an example of a laser system where there is strong

optical feedback. As I will show, the system of equations governing the laser’s oper-

ation respects certain symmetries. As a result, an orbit space reduction that draws

on the previous chapters of this thesis is required in order to carry out bifurcation

analysis and determine the laser’s stable and unstable operating regions. I will focus

on codimension-one bifurcations of equilibria and periodic orbits, and will also look

in more detail at certain codimension-two bifurcations.

5.1 Introduction

Although lasers have been studied for half a century, it is only recently that coupled

systems of lasers have been considered in real-life applications for their diverse dy-

namics and sometimes chaotic behaviour [27, 12, 15, 8, 10]. This unstable behaviour

may be of benefit in certain new applications such as secure communications but

65
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generally it is to be avoided because it reduces predictability of the system’s dynam-

ics. Semiconductor lasers, in particular, are very sensitive to external influences and

a lot of work has been done to understand their stability properties. For example,

semiconductor laser systems with optical injection can demonstrate highly non-linear

behaviour as shown in [42] via an understanding of their non-linear dynamics.

Research on modelling and analysing these systems varies and different types of

models may restrict what methods you can then use to analyse bifurcations. Simpler

models may be less rigorous, but are easier to analyse. These models assume that the

spatio-temporal electric field can be seperated into space and time dependent parts

giving equations for the modal amplitudes from the wave equation and the profile

of the modes from the Helmholtz equation. In earlier models the modes in each

resonator are considered seperately and some forcing is added to the electric field

equation to represent the effect of the external resonators. Non-linear behaviour in

coupled lasers are considered by Wieczorek and Chow in [39, 40] where they use the

composite cavity mode approach to analyse their systems. This gives equations for

the electric field associated with the composite structure rather than each individual

laser.

In this paper we use a composite-cavity-mode approach to modelling nonlinear

behaviour of a laser coupled to a passive optical resonator. We vary the trans-

missivity T of the mirror separating the laser from the passive resonator (and other

parameters) to examine how the lasing behaviour changes with the coupling between

the cavities. For the remainder of this section we derive the dynamical equations
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(5.21) that determine the behaviour of the modes, and give an idea of their dynam-

ical complexity. Subsequent sections perform a bifurcation analysis of the system

with the assistance of the path-following programme AUTO.

5.1.1 Composite cavity mode model

An optical fibre incorporating a grating attached to the laser may substantially affect

the stability of the laser. Considering the simplest case of a grating as a mirror that

reflects most light back into the laser, we have strong optical feedback. The setup

we consider in this paper is shown schematically in Figure 5.1.

Linewidth enhancementα

External Mirror External MirrorTransmission T

Passive resonator
Laser − active resonator

−L 0 L+dL

Figure 5.1: A laser strongly coupled to an external cavity: the shaded region is an

active lasing material, the right is a passive resonant cavity. The two regions are

strongly coupled by a partial mirror with transmissivity T .

The real valued electric field within such a coupled-laser system, E(z, t), is de-

scribed by the electromagnetic wave equation

∂2

∂z2
E(z, t) − n2(z)

c2
∂2

∂t2
E(z, t) − µ0σ(z)

∂

∂t
E(z, t) = µ0

∂2

∂t2
P(z, t), (5.1)

where we assumed plane wave conditions as in [39] and z is along the field prop-

agation direction. The left-hand side of this partial differential equation describes

electric field propagation and losses within the coupled-laser structure whose physi-
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cal structure is specified by the space-dependent refractive index n(z) and boundary

conditions. Here, µ0 is the permeability of vacuum, ǫ0 is the permittivity of vac-

uum, c = 1/
√
µ0ǫ0 is the speed of light, and the conductivity of the material, σ(z),

represents losses. The inhomogeneous term on the right-hand side involves the

active-medium polarisation, P(z, t), and represents the source of the propagating

electric field. To calculate polarisation and population inversion within each laser,

Eqn. (5.1) has to be combined with a suitable quantum-mechanical description of the

active medium. The resulting PDE model is known as the Maxwell-Bloch equations.

In semiclassical laser theory [29], the inhomogeneous wave equation (5.1) is solved

by expanding the electric field

E(z, t) =
1

2

∑

j

uj(z)aj(t) + ūj(z)āj(t) , (5.2)

and the active-medium polarisation

P(z, t) =
1

2

∑

j

uj(z)bj(t) + ūj(z)b̄j(t) , (5.3)

where the bar denotes complex conjugation. The passive composite-cavity modes,

uj(z), are the solutions to the homogeneous wave equation and the time-dependent,

complex-valued coefficients of the field expansion, aj(t), are the corresponding elec-

tric field amplitudes. We will first calculate the composite-cavity modes and then

briefly sketch the derivation of ordinary differential equations for the slowly-varying

part of the complex-valued coefficients, aj(t).

Assuming a passive cavity (P(z) = 0) without losses (σ(z) = 0) we get the
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homogeneous wave equation

∂2

∂z2
E(z, t) = µ0 ǫ0 ǫb(z)

∂2

∂t2
E(z, t). (5.4)

where ǫb(z) is the dielectric constant, which is the square of the refractive index.

Following Spencer and Lamb [32], we define for the coupled-cavity structure in

Fig. 5.1 the refractive index squared as:

n2(z) = Θ(−LA, 0)(z)n2
A + Θ(0, LB)(z)n2

B +
η

k
δ(z), (5.5)

where the rectangular function

Θ(x1, x2)(z) = 1 for x1 < z < x2,

Θ(x1, x2)(z) = 0 for x1 > z > x2, (5.6)

δ(z) is the Dirac delta function, and k = Ω/c is the wave vector in vacuum. The

coupling mirror at z = 0 with transmission coefficient T is modeled as a dielectric

“bump” with a coupling coefficient η given by

η = (nA + nB)

√
1 − T

T
. (5.7)

The electric field with complex amplitude E0 and associated with a passive

composite-cavity eigenmode, u(z),

E(z, t) = E0 u(z) exp(−iΩt) + Ē0 ū(z) exp(iΩt), (5.8)

is substituted into Eq. (5.4) to yield:

d2

dz2
u(z) = −µ0 ǫ0 ǫb(z) Ω2 u(z). (5.9)
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As shown in Refs. [32, 5], each eigenfunction satisfies the boundary conditions

d

dz
u(0+) − d

dz
u(0−) = −k η u(0), (5.10)

u(0+) = u(0−), (5.11)

u(−LA) = u(LB) = 0. (5.12)

where 0+ and 0− denote positions infinitesimally before and after the coupling mir-

ror, and z = −LA, LB are the end mirror positions. The nth mode solution of

equation (5.9) satisfying the boundary conditions (5.10)–(5.12) can be written as a

piecewise function

un(z) = An sin [knnA(z + LA)] for − LA ≤ z ≤ 0 (5.13)

un(z) = Bn sin [knnB(z − LB)] for 0 ≤ z ≤ LB.

The eigenmodes obey the orthogonality relation

∫ LB

−LA

dz n2(z)un(z)um(z) = N δnm (5.14)

with the normalization constant

N = n2L,

where n = nA and L = LA and this is assumed throughout. From the orthogonality

relation we get

A2
n n2

A LA

(
1

2
− sin(2knnALA)

4knnALA

)√
T + B2

n n2
B LB

(
1

2
− sin(2knnBLB)

4knnBLB

)√
T + (5.15)

A2
n

(nA + nB)

kn
sin2(knnALA)

√
1 − T = N

√
T
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which needs to be solved simultaneously with the boundary conditions (5.10) and

(5.11):

√
T [Bn nB cos(knnBLB) − An nA cos(knnALA)] = (5.16)

−
√

1 − T An (nA + nB) sin(knnALA),

and

An sin(knnALA) = −Bn sin(knnBLB), (5.17)

to obtain the frequencies, Ωn = knc, and amplitudes, An and Bn, of the composite-

cavity modes. We introduce the relative optical-length difference

dL⋆

λ
= n

LB − LA

λ
, (5.18)

where λ = 1µm is approximately the wavelength of the free-running (no external

cavity) laser. It turns out that the coupled-cavity system in Fig. 5.1 can be modelled

with just two composite-cavity modes, namely u1(z) and u2(z).

In calculating the complex-valued coefficients, aj(t), it is common to separate in

aj(t) a term oscillating at a fast optical frequency, ν:

aj(t) = Ej(t) e
−iνt, (5.19)

and study the slowly-varying, complex-valued field amplitude Ej(t). Inserting the

modal expansion (5.2) into (5.1), using (5.19), calculating polarisation P(z, t) using

quantum mechanics, neglecting small terms in line with the semiclassical laser the-

ory [29], and adiabatically eliminating polarisation (class-B lasers) [39] leads to a
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set of ordinary differential equations for the complex-valued amplitudes, E1(t) and

E2(t), associated with the two composite-cavity modes considered [40]:

Ė1 = −γC11E1 − iΩ1E1 (5.20)

+C11γ
[
CA

11(F − iαβN)E1 + CA
21(F − iαG)E2

]

Ė2 = −γC22E2 − iΩ2E2

+C22γ
[
CA

22(F − iαβN)E2 + CA
21(F − iαG)E1

]

with

F = (1 + βN) and G = β(1 +N).

Here, the fixed normalised parameters γ and β can be expressed in terms of real

laser parameters

γ =
γE

2γN

, β = 1 +
2cΓξNts

nγE

given in Table 5.1. The parameter α is called the linewidth enhancement factor

and quantifies the magnitude of coupling between the amplitude and phase of the

complex-valued field Ej(t). Equations (5.21) depend implicitly on the bifurcation

parameters T and dL⋆ through the normalised composite-mode frequencies Ω1 and

Ω2, and the modal integrals [39]

Cnm =
1

L

∫ LB

−LA

dz un(z)um(z) = CA
nm + CB

nm, (5.21)

where

CA
nm =

1

2L
AnAm

(
sin[(kn − km)nALA]

(kn − km)nA

− sin[(kn + km)nALA]

(kn + km)nA

)
, (5.22)
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CB
nm =

1

2L
BnBm

(
sin[(kn − km)nBLB]

(kn − km)nB

− sin[(kn + km)nBLB]

(kn + km)nB

)
. (5.23)

Note that CA
nm are not constants, they depend on the modes which themselves

depend on dL∗ and T . Therefore the transcendental equation (5.16) needs to be re-

calculated at each point for each of the two modes as AUTO varies the parameters.

Finally, we give the equation for the real-valued population inversion inside the

laser, N , derived in Ref. [40]:

Ṅ = Λ − (1 +N) − F
2∑

k,n=1

CA
knEkE

∗

n, (5.24)

where Λ is the normalised pump rate.

Computations using the original system (5.21) and (5.24) were done by trans-

forming the system to a rotating frame. We change coordinates to

X = |E1| (5.25)

Y + iZ = E2e
−i arg(E1)

Then equation (5.21) and (5.24) become

Ẋ = −γC11X + γC11[C
A
11(1 + βN)X + CA

12((1 + βN)Y + αβ(1 +N)Z)] (5.26)

Ẏ = −γC22Y − (ω1 − ω2)Z + γC22C
A
22((1 + βN)Y + αβNZ)

+γC22C
A
12(1 + βN)X − γC11[C

A
11αβN + CA

12(αβ(1 +N)Y − (1 + βN)Z)/X]Z

Ż = −γC22Z − (ω2 − ω1)Y + γC22C
A
22((1 + βN)Z − αβNY )

−γC22C
A
12αβ(1 +N)X + γC11[C

A
11αβN + Z(αβ(1 +N)Y − (1 + βN)Z)/X]Y

Ṅ = Λ − (1 +N) − (1 + βN)[CA
11X

2 + 2CA
12XY + CA

22(Y
2 + Z2]



CHAPTER 5. MODELLING AN EXTERNAL-CAVITY LASER 74

Note that this system has one fewer dimension (it is independent of the arg(E1)),

but it has the disadvantage - it has a singularity at E1 = 0 (Note the terms 1/X

in (5.26)). In the next section we will use symmetries more explicitly to perform

a reduction that is valid even when E1 = 0. Figure 5.2 displays some numerically

approximated bifurcation diagrams using equations (5.26) as detailed in Appendix

D.

5.2 Symmetries in the system

The system of equations, (5.21) describing the evolution of the laser is problematic

if we try and follow branches of solutions. This is due to the presence of the S1-

symmetry: the equations are equivariant under

(E1, E2, N) → (eiφE1, e
iφE2, N)

for any φ ∈ [0, 2π). This means that nontrivial equilibria are no longer generic;

the simplest nontrivial solutions are periodic orbits. It introduces an additional

“drift” frequency to all solutions and will make quasiperiodic behaviour typical and

allows the change of coordinates (5.25). To remove this problem we will consider

transformations that “reduce” the symmetry; the problem then becomes one that

certain symmetry reductions may have singularities; for instance if we reduce the

electric field so that E1 is real and positive by choosing and appropriate φ, this will

have a degeneracy when E1 = 0.

To overcome this, we consider a coordinate change to a set of group invariant
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coordinates:

I1 = |E1|2, I2 = |E2|2, I3 = Re(E1E
∗

2), I4 = Im(E1E
∗

2), I5 = N

for which (5.21) and (5.24) can be written as

İ1 = −2C11γI1 + 2C11γ{CA
11FI1 + CA

21[FI3 − αGI4]},

İ2 = −2C22γI2 + 2C22γ{CA
22FI2 + CA

21[FI3 + αGI4]},

İ3 = −(C11 + C22)γI3 − Ω21I4 + C11γC
A
11(FI3 + αGI4)

+C22γC
A
22(FI3 − αβNI4) + CA

21γF (C11I2 + C22I1),

İ4 = −(C11 + C22)γI4 + Ω21I3 + C11γC
A
11(FI4 − αβNI3)

+C22γC
A
22(FI4 + αβNI3) + CA

21αG(C22γI1 − C11γI2),

İ5 = Λ − (I5 + 1) − F (CA
11I1 + CA

22I2 + 2CA
21I3),

(5.27)

where we introduce the frequency detuning

Ω21 = Ω2 − Ω1.

5.3 Relating the dynamics in each system of equa-

tions

Here we consider how the dynamics in the symmetry reduced system (5.27), in the

rotating frame (5.26), and in the original system (5.21) and (5.24) are related. An

equilibrium in the reduced system corresponds to a degenerate equilibrium in the

rotating frame which in the original system is a relative equilibrium, or periodic

orbit. Periodic orbits in the reduced system are also periodic orbits in the rotating
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frame (though these are degenerate) and are relative periodic orbits that are tori

in the original system. Further details can be found in [3, p17] and bifurcations of

relative equilibria are discussed in [22].
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Figure 5.2: We scan T between 0 (uncoupled cavities) and 1 (fully coupled) and plot

the values of maxima of the electric fields of one of the modes |E1|2 on a timeseries.

Of the panels (a) and (b) show dL∗/λ = 10−10 and α = 0 and 1 respectively and (c)

and (d) for dL∗/λ = −0.03 and α = 0 and 1 respectively again. Observe subcritical

and supercritical bifurcations, and transitions from equilibria (steady lasing) to pe-

riodic and chaotic behaviour. Observe also that the details (and indeed the presence

of any instabilities) depend strongly on the values of dL∗ and α.
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Figure 5.3: The dynamics plotted of |E2
1 | for the parameters as in Figure 5.2(a)

and decreasing values of T = 0.46, T = 0.445 and T = 0.44. Observe the chaotic

sequence of peaks for the top two panels is replaced with a transient in the last.

The middle panel is bistable with the continuation of the equilibrium shown in the

lower panel. Note the presence of intermittent bursts away from a saddle periodic

orbit. In the lower panel we infer the existence of a boundary crisis where the stable

manifold of this saddle periodic orbit acts as a basin boundary. This saddle periodic

orbit can be matched to the periodic oscillations before decay.
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γE 4 × 1011 s−1 Photon decay rate

γN 2 × 109 s−1 Population decay rate

γM 0 s−1 Mirror losses

nA 3.4 Refractive index in the laser cavity for N = Nth

nB 3.4 Refractive index in the passive resonator

Nts 2 × 1024 m−3 Population density at transparency

Γ 0.1 Confinement factor

ξ 5 × 10−20 m2 Differential gain coefficient

c 3 × 108 ms−1 Speed of light

L 280 × 10−6 m Length of laser

Λ 6 Normalised pump rate

T varies Transmissivity factor

dL∗ varies Optical-length difference

α varies Linewidth enhancement factor

Table 5.1: Parameters and their typical values used in simulations.



Chapter 6

Numerical bifurcation analysis of

the laser model

We use the path following package AUTO to investigate the stability of solutions of

(5.21) with (5.24) and in particular to better understand the transitions observed

in Figure 5.2. Note that even apparently simple bifurcations (on varying T and

dL∗) cannot be computed by hand because the parameters in the equations are

only determined once one has solved the transendental equation (5.16). For further

information on these and other bifurcations we recommend Kuznetzov [23]. In this

chapter we discus the path-following results for the codimension one bifurcations

after which, in chapter 7, we discuss some of the codimension two bifurcations in

this system. The results are summarised in Figures 6.5 and 6.6.

Initially the system of equations in the rotating frame (5.26) are used in AUTO

rather than the reduced system of equations (see Appendix B). AUTO is also used

80
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to solve the trancendental equation and calculate the modal integrals at each point

in parameter space, though initial starting values for these need to be calculated in

Mathematica [26].

Problems arise due to the symmetries in this system; AUTO is unable to suc-

cessfully continue path-following bifurcations of periodic orbits whenever X is zero.

The system of equations for the rotating frame are used to produce diagrams of

bifurcations of stationary points only. These indicate the existence of Bogdanov-

Takens and Saddle-node Hopf points (which should have associated bifurcations of

periodic orbits). These diagrams also prove useful in verifying the validity of these

bifurcations of stationary points in the reduced system later.

The existence of Bogdanov-Takens and Saddle-node Hopf points indicates the

existence of further bifurcations of periodic orbits and for example homoclinic or-

bits. The use of the reduced system of equations (5.27) will allow a more complete

bifurcation diagram to be produced (see Appendix C). Unfortunately this could

mean that any new bifurcations detected are potentially false bifurcations. Careful

checking is needed of the eigenvalues in the output files from AUTO to compare

with the eigenvalues from the original system at the same point in parameter space

whenever a new bifurcation is detected. If the original eigenvalues are combined in

such a way as to produce zero eigenvalues in the reduced system then the bifurcation

is false. Results can then be verified using DsTool [2] (see Appendix E) which will

plot the dynamics of the system for given points in parameter space and can be used

to build a clearer picture of the dynamics in each region around bifurcations.
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6.1 Steady Bifurcations

A variety of types of bifurcations appear on varying the parameters T , dL∗ for fixed

α; these include Hopf bifurcations and folds (codimension one), Bodganov Takens,

Bautin and Saddle Node Hopf (codimension two).

The value of α reflects the material and design properties of a laser and quantifies

how the refractive index changes with the population inversion at a given frequency.

α would typically lie between 1 and 10 for semiconductor lasers [42], which is why

the high sensitivity on α in this system is of interest. More recently semiconductor

lasers with α = 0 have been designed, as in [30] and [31].

For α = 0 corresponding to Figure 5.2(a), Figure 6.1 shows that there are two

Hopf curves shown in in red, a fold in blue and two Bogdanov Takens points where

one of the hopf curves terminates on opposite sides of the fold.

For α = 0.1, Figure 6.2 shows already a significant change in the diagram for only

a small increase in α. The curves Hopf and Saddle-node curves move downwards

while the upper BT point slides along the fold towards the upper cusp point. This

suggests that the bifurcation details are sensitive to changes in α.

For α = 1, Figure 6.3 shows that the upper loop on the subcritical hopf has

disappeared as the BT point rounds the cusp. As the fold approaches the larger

hopf structure a SNH point develops and divides leaving a section of supercritical

fold between the points. This explains why figure(5.2b,d) are so different from

Figure 5.2(a,c). At α = 2, Figure 6.4 shows that the upper SNH point rounds the

neighbouring cusp of the fold.
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BT

BT
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∗

λ

T

BT

H

S

Figure 6.1: Bifurcation diagram for α = 0: steady solutions. Axes are T , and dL∗/λ.

In passing through one of the bifurcation lines in parameter space the dynamics in

phase space will bifurcate. In this diagram we show just the bifurcations of steady

solutions. Sub and supercritical Hopf bifurcations, H, are shown in thin and thick

red lines respectively. Saddle-node bifurcations, S, are shown in blue. Inset is a

zoom showing in more detail how the sub-critical Hopf bifurcation meets the saddle

node at a Bogdanov Takens, BT, point. Near a Bogdanov Takens point we expect

to see a homoclinic bifurcation.
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Figure 6.2: Bifurcation diagram for α = 0.1: steady solutions. In contrast to

Figure 6.1 the structure is dragged down for larger T, but the bifurcation diagram

is otherwise very similar. Note that the BT point in this region is approaching the

cusp of the fold.
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Figure 6.3: Bifurcation diagram for α = 1: steady solutions. The upper BT point

has passed through the cusp of the fold compared with Figures 6.1 and 6.2, and the

upper loop of the Hopf bifurcation has disappeared. We also see that the Saddle-

node and super-critical Hopf bifurcations meet at Saddle-node Hopf points, SNH.

The S and H curves first meet at approximately α = 0.45.
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Figure 6.4: Bifurcation diagram for α = 2: steady solutions. Compared to Fig-

ure 6.3, the features are accentuated and the left most SNH point has passed through

the upper cusp of the fold bifurcation.
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6.2 Periodic Orbits

In addition to the steady bifurcations discussed, a range of bifurcations of periodic

orbits should observed in the system and these are found by removing the symmetries

in the system of equations. The existence of Saddle-node Hopf and Bogdanov-

Takens points as well as the dynamics displayed earlier in Figure (5.2a) for α = 0

and Figure (5.2d) for α = 1 indicates that there should also be many bifurcations

of periodic orbits. In particular, at codimension one we will see Saddle-nodes of a

limit cycle (SL), period doubling (PD), torus (T) and homoclinic bifurcations (h) in

addition to Hopf bifurcations (H).

We now revisit the bifurcation diagrams computed already to add in the bifur-

cations of periodic orbits. Figure 6.5 shows a more complete bifurcation diagram

for α = 0 on including the periodic solution bifurcations. Figure 6.6 illustrates how

this changes for α = 1; observe the presence of Saddle-node Homoclinic, Torus and

Period doubling bifurcations in what is becoming a very complicated bifurcation

structure.

In region 1 on Figure 6.5 there is a simple stable steady solution, at 2 there

are two additional steady solutions, at 3 there is in addition a periodic orbit, while

at 4 there is one steady solution and one periodic orbit. Remember that steady

solutions in the reduced system correspond to a relative equilibrium in the rotating

frame and a periodic orbit in the original system. Periodic orbits in the reduced

system correspond to a relative periodic orbit in the rotating frame and a torus in

the original system. Codimension-2 points will be discussed in Chapter 7.
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6.3 Conclusions

In this chapter a composite cavity model was used to analyse the behaviour of a

single-mode semiconductor laser coupled to an external cavity with strong optical

feedback. Although only two electromagnetic modes are used, they need to be re-

calculated at each point in parameter space. Initial diagrams showing bifurcations

of stationary solutions show a high sensitivity to changes in the linewidth enhance-

ment factor, and a range of bifurcations and transitions were found by a mixture

of two parameter path following and simulation. We discuss in particular a novel

non-central Saddle-node Homoclinic bifurcation.

The bifurcation analysis in two parameters throws up several bifurcations that

are not generic for one parameter but are for two. In particular we discuss the

appearence of Bodganov Takens, Bautin and cusp singularities. A novel feature we

have seen in this analysis is a degenerate Saddle-node Hopf interaction at codimen-

sion two that has not been previously documented. We focus on this in Chapter 7.
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Figure 6.5: Bifurcation diagram for the reduced equations at α = 0: steady and

periodic solutions. Hopf, H, and Saddle-node, S, lines are as in Figure 6.1. Also

shown is period doubling, PD, and homoclinic bifurcation, h, drawn in black which

joins the two BT points, and also saddle node of limit cycles drawn in brown. Note

that the (mostly) sub-critical Hopf bifurcation becomes super-critical in the regions

between the Bautin points, B, where the SL’s meet the H curve. Note all meet at

a codimension 2 interaction, Z. Typical dynamics at point 1-4 are described in the

text.
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Figure 6.6: Bifurcation diagram for α = 1: steady and periodic solutions. Homo-

clinic bifurcations, h, joining with the two saddle node Hopf points can be seen in

black. Note the presence of torus bifurcations (T) from SH to PD at a codimension

two interaction. Note the presence of torus bifurcations, T, from SH to PD lines at

a codimension two interaction.
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Figure 6.7: Here we have a repeat of Figure 5.2(a) which shows the maximum value

of I1 for varying T for α = 0 and fixed dL∗. Note that the vertical lines indicate

bifurcation points matching exactly to bifurcations shown in Figure 6.5.

Figure 6.8: Here we have a repeat of Figure 5.2(d) which shows the maximum value

of I1 for varying T for α = 1 and fixed dL∗. Note that the vertical lines indicate

bifurcation points matching exactly to bifurcations shown in Figure 6.6 and indicated

by the horizontal line in panel (c).



Chapter 7

Codimension 2 bifurcations in the

laser problem

There are several codimension-2 bifurcations which arise when analysing the laser

problem on varying T , dL∗ and α, as seen in Figures 6.1 to 6.6. For all values of α

there are two Bogdanov-Takens points, and as α increases a pair of saddle node Hopf

bifurcation points are born, initially starting out as a single point where a saddle

node and Hopf curve become tangent in parameter space. In addition to this there

are two Bautin points, seen in the second inset in Figure 6.5, and a point which

for now is labelled Z in the first inset in Figure 6.5 which will be explored in more

depth during this chapter.

The Bogdanov-Takens and Saddle-node Hopf points are observable in the original

system, before it is reduced to the orbit space. However, it is not possible to continue

bifurcations of periodic orbits involved in these points due to the symmetry in the
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original system. In the reduced system it is possible to fully continue bifurcations

of periodic orbits and determine the nature of these codimension-2 points.

7.1 Bogdanov-Takens

These points are also known as a double-zero bifurcation as at this point in parameter

space an equilibrium has linearization with with two zero eigenvalues. There are two

types of Bogdanov-Takens points (as there are two types of Hopf curves), depending

on whether the periodic orbit involved in the interaction is stable or unstable.

In this bifurcation a Hopf curve terminates on a Saddle-node, producing a ho-

moclinic orbit. The derivation of the normal form can be found in [23, p316], and

gives the result in [23, p322, Theorem 8.4] summarised by

ẏ1 = y2 (7.1)

ẏ2 = β1 + β2y1 + y2
1 + sy1y2 (7.2)

where s = ±1 and O(||y||3) terms are discarded.

The dynamics of the system exactly on the Bogdanov-Takens point are the same,

regardless of s as shown in Figure 7.1, but the value of s determines the dynamics

surrounding the point. An illustration of these dynamics for s = −1 can be found

on p324 of [23], however for the laser system we have the case where s = +1 which

can be seen in Figure 7.2.

The nature of the Bogdanov-Takens point may be determined by observation

of the eigenvalues of the system in the AUTO output files to determine the nature
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Figure 7.1: The dynamics of a system at a Bogdanov-Takens point. β1 = β2 = 0 in

(7.2)

Figure 7.2: Unfolding of the Bogdanov-Takens bifurcation 7.2 with s = +1.
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Figure 7.3: Bogdanov-Takens bifurcation with s = +1 in the two parameter space

T and dL∗/λ for the laser system α = 0. This is a detail of Figure (6.5)

of the Hopf bifurcation involved. A supercritical Hopf bifurcation would indicate

s = −1, and a subcritical Hopf would indicate s = +1 for the Bogdanov-Takens

point. Alternatively the use of a program such as DsTool to plot the dynamics

would allow observation of the dynamics in the four surrounding regions. This

method, though slower to determine the type of point in this case, will prove useful

later in the chapter. Figure 7.3 shows the regions on the bifurcation diagram which

correspond to each of the regions in Figure 7.2.

The interaction between the Hopf curve and the Bogdanov-Takens and Bautin

points can be seen in Figure 7.4. More detail is shown to also indicate the nature of

the Hopf curve as well as the change from sub to supercritical Hopf at the Bautin

points which will now be discussed.
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Figure 7.4: A region of the lasers parameter space, for Figure(6.5) with α = 0,

showing three types of codimension-2 points; Bogdanov-Takens (BT), Bautin (B),

and a non-central Saddle-node Homoclinic point with additional non-centrality (Z).

Also indicated here is the nature of the Hopf curve; the supercritical region is shown

in bold red, while the subcritical part of the curve is in fine red.



CHAPTER 7. CODIMENSION 2 BIFURCATIONS IN THE LASER 97

7.2 Bautin Bifurcation points

These codimension-2 points are also known as generalised Hopf bifurcations and,

as indicated in Figure 7.4, seperate subcritical and supercritical branches of a Hopf

bifurcation curve. These points are indicated by a pair of purely imaginary eigen-

values and zero value for the first Lyapunov coefficient [23, p309] and the normal

form in polar coordinates is

ṙ = r(β1 + β2r
2 + sr4 (7.3)

ψ̇ = 1 (7.4)

At this point in parameter space a Saddle-node of limit cycles terminates on a Hopf

curve, seperating sub from supercritical. This would imply that in a surrounding

region of the Bautin point there is a pair of limit cycles with differing stability

which either anihilate one another in a saddle node of limit cycles bifurcation, or

one merges with a stationary point in a Hopf bifurcation.

Similarly to the Bogdanov-Takens point there are two types of Bautin point.

The case for s = −1 is illustrated in Kuznetsov [23, p314] in which case the two

limit cycles lie between the Saddle-node of limit cycles (SL) and the subcritical part

of the Hopf curve, with a stable stationary point between the SL curve and the

supercritial Hopf curve. The s = +1 case is shown in Figure 7.5 in which case the

pair of periodic orbits involved in the bifurcation lie between the SL curve and the

supercritical part of the Hopf curve, with an unstable stationary point between the

SL and the subcritical Hopf curve.
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Figure 7.5: Unfolding of the Bautin bifurcation, normal form 7.4, for the case s = 1.

In the case of the laser, continuation software, AUTO, can be used to follow the

periodic orbits in parameter space. By observing the eigenvalues in the AUTO out-

put files it is possible to continue the unstable periodic orbit born on the subcritical

part of the Hopf curve (or the stable periodic orbit born on the supercritical Hopf

curve) until it either merges with a saddle to form a homoclinic orbit, or bifurcates

at a saddle node of limit cycles by merging with another periodic orbit. Figure 7.6

shows the regions in which the periodic orbits exist.

Taking a closer look at the regions surrounding the Bautin points in Figure 7.6

it is possible to see that in all these cases the Bautin points are type s = −1, as

shown in [23, p314].
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Figure 7.6: The regions in which the unstable periodic orbits exist are shown in

green, while the regions in which the stable periodic orbit exists is shown in blue.

There is a narrow region between the Bogdanov-Takens, Z, and the right hand

Bautin point, in which there are two unstable periodic orbits and a stable periodic

orbit simultaneously.



CHAPTER 7. CODIMENSION 2 BIFURCATIONS IN THE LASER 100

7.3 Saddle-Node Hopf Bifurcation points

This codimension-2 point can be found for larger values of α in the laser system,

for example in Figures 6.3 and 6.6 for α = 1, and 6.4 for α = 2. As well as Saddle-

node Hopf, these bifurcation points are also referred to as Fold-Hopf, zero Hopf, or

Gavrilov-Guckenheimer points.

This bifurcation occurs when a Saddle-node and Hopf curve meet tangentially

in parameter space, when there is a zero eigenvalue and a pair of purely imaginary

eigenvalues. As, for certain cases, Torus bifurcations may eminate from these points

Saddle-node Hopf points often imply a local cause of chaos. We do not give the

normal form and unfolding here, but note that it has been studied in [23, p332]. On

analysing the Saddle-node Hopf points shown in Figure 7.7 the dynamics indicate

that these are classified with s = −1, θ > 0 as shown in Figure 7.8[23, p343].

7.4 Non-central SN Homoclinic with additional

non-centrality

When considering bifucations of stationary and periodic solutions we encounter an

unusual point shown in Figure 7.9. A similar point can be found in the paper by S.

Wieczorek [41], although this new point appears to have an additional non-central

direction.

For α = 0 there is a complicated interaction between several bifurcations in the

region of T = 0.92, 0.93, Homoclinic bifurcations joining with the two saddle node
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Figure 7.7: Unfolding of the Saddle-node Hopf Bifurcation as shown in [23, p343].

Hopf points can be seen in black. dL∗/λ is in the region of (±0.015, 0.02). Here we

see the homoclinic bifurcation pass through the point where a saddle node of limit

cycles crosses a Saddle-node bifurcation. Figure 7.9 is a zoom of one of these two

points and also shows the stationary points and periodic orbits that exist in each

region around the point. If you were to balance on this point in parameter space

you would find a saddle with double homoclinic connection shown on the right of

Figure 7.9, though neither connection would be in the central direction. A tiny

perturbation would move the dynamics into one of the surrounding regions of the

bifurcation diagram.

On a side note, when crossing from regions 1 or 6 in Figure 7.11 through the

saddle node a very fast change happens to one of the developing point’s eigenvalues
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Figure 7.8: Fold Hopf bifurcations in the laser system for α = 1 (a region from

Figure 6.3).
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Figure 7.9: Bifurcation diagram for α = 0. Central figure shows a zoom of a special

point we refer to as a Non-central SNHopf.

turning another direction complex rapidly. This is not a bifurcation, but is also

shown in the figure, as you see the saddle gain a spiralling direction. The other

point however, retains its real eigenvalue.

In Figure 7.10 we see the phase portraits of the two homoclinic orbits as they

approach the Non-central SNH. There is the possibility that this could be two points

very close together. This behaviour is also shown in [18] and the question remains

why these two points should be so close. If we compare the phase portraits in the

regions around the bifurcation in both the 2D case from [18] and the 3D case as
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seen in Figure 7.9 which we are particulary interested in we see that the necessity

for an additional saddle is removed in this new 3D case.

7.5 Checking the validity of bifurcations

The existance of false bifurcations has been a real possibility during this work.

Several methods could be utilised to combat this issue including:

• Plotting the dynamics of the original system using DsTool [2] for specific points

in T−dL∗ parameter space. Note that the modes for this need to be calculated

in Mathematica [26].

• Comparison of eigenvalues in the old and new systems to check how these have

been combined at detected bifurcation points.

• Plotting I1I2 − (I2
3 + I2

4 ): this should be zero unless the bifurcation detected

is a false one.

For example, Figure 7.12 shows how plots produced in DsTool (in the rotating

system; see Appendix E) can illustrate the dynamics at chosen points in parameter

space. This figure indicates that there are further Period Doubling bifurcations.

Eigenvalues in the rotating and reduced systems can also be compared for fixed

parameter values. The output file d.filename contains the parameter values and

eigenvalues for each step in the continuation. Next we will see part of this file for

α = 0, dL∗/λ = 3.4×10−10, T = 0.45. Firstly the eigenvalues in the rotating system:

---------------------------------------------------------------------------------------
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Figure 7.10: Plots of the homoclinic orbit as it approaches Z from h1 (blue) and

from h2 (red).
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Figure 7.11: This diagram illustrates the dynamics in each region surrounding the

Non-central Saddle-Node Homoclinic point, Z.
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Figure 7.12: The central panel shows the bifurcation diagram as in Figure 6.5 for

α = 0. Points 1-4 correspond to T = 0.5, 0.6, 0.601, 0.7 for dL∗/λ = 0. This shows

there are further Period Doubling bifurcations.
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BR PT IT

1 8689 0 4.500335E-01 -1.123322E+00 7.713036E+02

1.564424E+00 7.039063E-01 -1.406917E+00 7.767913E-02

1 8689 1 4.500335E-01 -1.123322E+00 7.713036E+02

1.564424E+00 7.039063E-01 -1.406917E+00 7.767913E-02

==> Location of special point : Iteration 0 Stepsize = -3.53279E-02

BR PT IT

1 8689 0 4.500000E-01 -1.123322E+00 7.712683E+02

1.564425E+00 7.039743E-01 -1.406884E+00 7.767118E-02

1 8689 1 4.500000E-01 -1.123322E+00 7.712683E+02

1.564425E+00 7.039743E-01 -1.406884E+00 7.767118E-02

==> Location of special point : Convergence. Stepsize = -4.75295E-07

1 8689 Fold Function 9.47228E-04

1 8689 BP Function 1.20347E+12

1 8689 Hopf Function -3.82053E-01

1 8689 Eigenvalues: Stable: 6

1 8689 Eigenvalue 1 -3.820529E-01 -7.807684E+01

1 8689 Eigenvalue 2 -3.820529E-01 7.807684E+01

1 8689 Eigenvalue 3 -6.473619E+00 0.000000E+00

1 8689 Eigenvalue 4 -6.473619E+00 0.000000E+00

1 8689 Eigenvalue 5 -5.798747E+01 0.000000E+00

1 8689 Eigenvalue 6 -7.694989E+01 0.000000E+00
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BR PT TY LAB PAR(0) L2-NORM U(1) U(2)

1 -8689 UZ 2 4.500000E-01 7.712723E+02 -1.123322E+00 7.712683E+02

U(3) U(4) U(5) U(6)

1.564425E+00 7.039743E-01 -1.406884E+00 7.767118E-02

---------------------------------------------------------------------------------------

and then for the reduced system for the same parameter values:

---------------------------------------------------------------------------------------

BR PT IT

1 8689 0 4.500320E-01 -1.123322E+00 7.713021E+02

2.447423E+00 2.474899E+00 1.101213E+00 2.201012E+00

1 8689 1 4.500320E-01 -1.123322E+00 7.713021E+02

2.447423E+00 2.474899E+00 1.101213E+00 2.201012E+00

==> Location of special point : Iteration 0 Stepsize = -3.37788E-02

BR PT IT

1 8689 0 4.500000E-01 -1.123322E+00 7.712683E+02

2.447427E+00 2.474902E+00 1.101315E+00 2.200965E+00

1 8689 1 4.500000E-01 -1.123322E+00 7.712683E+02

2.447427E+00 2.474902E+00 1.101315E+00 2.200965E+00

==> Location of special point : Convergence. Stepsize = -4.75451E-07

1 8689 Fold Function 9.47225E-04
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1 8689 BP Function -1.39539E+14

1 8689 Hopf Function -3.82053E-01

1 8689 Eigenvalues: Stable: 7

1 8689 Eigenvalue 1 -3.820529E-01 -7.807684E+01

1 8689 Eigenvalue 2 -3.820529E-01 7.807684E+01

1 8689 Eigenvalue 3 -6.473619E+00 0.000000E+00

1 8689 Eigenvalue 4 -6.473619E+00 0.000000E+00

1 8689 Eigenvalue 5 -5.798747E+01 0.000000E+00

1 8689 Eigenvalue 6 -7.694989E+01 0.000000E+00

1 8689 Eigenvalue 7 -1.159464E+02 0.000000E+00

BR PT TY LAB PAR(0) L2-NORM U(1) U(2)

1 -8689 UZ 2 4.500000E-01 7.712809E+02 -1.123322E+00 7.712683E+02

U(3) U(4) U(5) U(6)

2.447427E+00 2.474902E+00 1.101315E+00 2.200965E+00

---------------------------------------------------------------------------------------

Note that we can define user points (UZ) at particular points in parameter

space to compare the eigenvalues in the two systems. Some eigenvalues remain the

same (in this case all but one), but others in the reduced system are a complicated

combination of the eigenvalues in the rotating system.

During the analysis the false bifurcation shown in Figure 7.13 was detected and

verified to be false. This aparent additional fold bifurcation can be shown to be false

using the third of the methods available to us. Figure 7.14 shows how I1I2−(I2
3 +I2

4 )
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varies as the false bifurcation is continued. In comparison Figure 7.15 shows that

I1I2 − (I2
3 + I2

4 ) remains zero as part of the Hopf bifurcation is continued.
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Figure 7.13: Here the additional Saddle-node bifurcation produced by the reduced

system in the second panel does not correspond to a bifurcation in the original

system.
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Figure 7.14: In continuing the additional Saddle-Node bifurcation shown in the

second panel in Figure 7.13 we see that I1I2 − (I2
3 + I2

4 ) is non-zero and so this is

indeed a false bifurcation.

Figure 7.15: In contrast to Figure 7.14 this figure shows how I1I2−(I2
3 +I2

4 ) remains

zero as the Hopf bifurcation is continued. This is indeed a correct bifurcation and

is verified by DsTool and Matlab.



Chapter 8

Bifurcation to Lasing

In this chapter, I consider a particular type of Pitchfork bifurcation, that occurs

in systems with symmetries as found in the example of a laser with strong optical

feedback (as discussed in Chapters 5-7). The particular solution we consider is the

bifurcation to lasing in the system. Note that (5.21) and (5.24) has a solution where

E1 = E2 = 0 and N = Λ−1 with symmetry SO(2). The eigenvalue corresponding to

perturbations in the N direction is −1 from (5.24). We compute here the eigenvalues

in the remaining directions to locate any bifurcations. Note that this cannot be

easily done analytically as the couplings Cij depend in a highly non-trivial way on

the parameters T and dL∗/λ. I will describe the region in parameter space for this

laser in which a pitchfork bifurcation might occur. I show that although part of the

bifurcation diagram in the previous chapter may look like a pitchfork bifurcation, it

is merely close by. I discuss how the pitchfork bifurcation is calculated in a special

case where α = dL∗ = 0 and at what pump current this would occur in the laser.
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Note that for α = 0, dL = 0 we have C11 = C22 = 1 and CA
11 = CA

22 = 1
2

(see

Figures 8.1, 8.4). This then implies γ = γ1 = γ2 = γE

γN

. Note Ω21 = Ω and CA
12 = CA

21.

The equations then become

0 = −2γI1 + 2γ

(
1

2
FI1 + CFI3

)
(8.1)

0 = −2γI2 + 2γ

(
1

2
FI2 + CFI3

)
(8.2)

0 = −2γI3 − ΩI4 + γFI3 + CγF (I1 + I2) (8.3)

0 = −2γI4 + ΩI3 + γFI4 (8.4)

0 = Λ − (I5 + 1) − F

2
(I1 + I2 + 4CI3) (8.5)

and as before F = 1+βI5. The aim is to solve these to find an equation in I5. From

the first two equations (8.1) and (8.2) we have

I1 =
2CF

2 − F
I3

and

I2 =
2CF

2 − F
I3 = I1 = I

where we now let I1 = I2 = I.

From the fourth equation (8.4) we obtain

I4 =
Ω

2γCF
I (8.6)
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Then from the third (8.3) we obtain

0 = (−γ2(F − 2)2 − Ω2 + 4γ2C2F 2)I (8.7)

When equation (8.6) and equation (8.7) are equated and I is substituted it is

clear that either

I = 0 (8.8)

is a solution or

−γ2(F − 2)2 − Ω2 + 4γ2C2F 2 = 0 (8.9)

The final equation (8.5) with relevant substitutions made will give the value for I

once I5 has been found using the previous equation. This then gives the values of

In at the pitchfork bifurcation.

Note that (8.9) is quadratic in I5 giving a transcritical bifurcation to lasing.

However, as only the case I ≥ 0 is relevant this corresponds to a pitchfork bifurcation

in the original variables.
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Figure 8.1: With α = dL = 0, AUTO is used to output the value of CA
21 as T is

increased from 0 to 1. At these values of α and dL∗/lambda, CA
21 is not constant.

Figure 8.2: With α = dL = 0, AUTO is used to output the value of CA
11 as T is

increased from 0 to 1. At these values of α and dL∗/λ, CA
11 is fixed at 0.5 allowing

us to simplify the equations further.
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Figure 8.3: With α = dL = 0, AUTO is used to output the value of CA
22 as T is

increased from 0 to 1. At these values of α and dL∗/λ CA
22 is fixed at 0.5 allowing

us to simplify the equations further.

Figure 8.4: With α = dL = 0, AUTO is used to output the value of Ω as T is

increased from 0 to 1. At these values of α and dL∗/λ Ω is not constant and so it

must remain in the calculation.



Chapter 9

Conclusions

In Chapter 1 we considered the importance of lasers in modern technology and the

need to understand their dynamics. A brief history of how lasers, in particular

semiconductor lasers, came about. With the invention of the semiconductor laser

exploration of the complicated non-linear behaviour they often exhibited started.

The noteable work by Lang and Kobayashi and others [24] [28] [34] in the early 1980’s

were some of these first explorations. More recently challenges have arisen to model

lasers with feedback (from an external mirror) or coupled with many other lasers

which are common in optical communication techniques [20]. We also discussed the

necessity to understand the stable and unstable behaviour of these laser systems.

It has been a focus of this research project to model a laser with strong optical

feedback; that is, one with an external mirror set part way down an optical fibre

originally thought by the manufacturers to stablise the lasers operations. We have

seen in later chapters that this is not the case and in fact makes the laser highly
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sensitive to small parameter changes.

We went on to discuss the symmetric nature of many laser systems [21] and

the difficulties that arise from using path-following software such as AUTO [6] to

analyse the stability. In section 1.2 we discussed how bifurcations were often related

to changes in symmetry and we considered types of linear symmetry which might

apply to local bifurcations. In order to discuss the dynamics in more detail we used

group theory to describe the symmetry in systems of ODEs. This required a short

introduction to the topic which can be found in section 1.3.

In Chapter 2 differential equations with symmetries were considered further and

we also considered in section 2.1 symmetries for bifurcation problems, in particular

an example of a Hopf bifurcation. We discussed the problems with studying bi-

furcation problems with symmetry due to potentially having eigenvalues with high

multiplicity. In order to solve this problem we considered the work of Chossat [3]

and the idea that new variables (which are functions of the original variables) could

be used to re-write the system of equations as a representation of the orbit space.

We continued with this line of thought and considered how we might do this in the

most efficient way in order to remove the symmetries in the system.

In section 2.3 we introduced the idea of invariants and equivariants and defined

a Hilbert basis. A Hilbert basis can be used in order to remove the symmetries in

the system, still reducing it to the orbit space. We saw that a Hilbert basis was

not necessarily unique and relations between elements could exist. They can also

be of any size and so in order to reduce the dimension of the new system a minimal
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Hilbert basis should be found.

In section 2.4 we considered several examples of the use of invariants to reduce

systems to the orbit space. This included an example which used a Hilbert basis

with relation which was later relevant to the laser system discussed in later chapters.

The next challenge was to consider how eigenvalues of the Jacobians of the

original and reduced systems of equations might be related. Chapter 3 included a

review of the work of Koenig and Chossat [3], [19] in order to relate bifurcations

found in the reduced system to those in the original system. The choice of basis used

to create the reduced system will affect the eigenvalues and how they are related to

the original eigenvalues. In section 3.2 we discussed previous work by Chossat and

Koenig on the topic and then considered how the eigenvalues of the reduced system

can be related back to the original system in order to interpret results. A previously

derived theorem from Chossat [3] was used to explain how the eigenvalues in the

systems related to one another. This meant the possibility of detecting bifurcations

in the reduced system which were false (i.e. not in the original system).

In Chapter 4 we gave examples of how eigenvalues in the reduced system were

combinations of those in the original system. The way in which they are combined is

vitally important as it may lead to false zero eigenvalues in the reduced system which

would cause path-following software to detect a bifurcation, though this would be

false. In section 4.1 we considered an example similar to the laser system introduced

in Chapter 5. We saw that the problem was highly complex and although it was not

possible to complete the computation it indicated some of the issues for the later
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chapter.

The main contribution of the thesis came in Chapters 5-8. We first introduced

the problem of the laser with strong optical feedback. The composite cavity mode

approach [39],[40] was used to create a model for the system. Equations (5.21) and

(5.24) formed the original system of equations. An initial basis was chosen so that

the system was considered in the rotating frame allowing the use of continuation

software. This formed equations (5.26) which were initially used with path-following

software to detect bifurcations in the system, though this system still contained sym-

metries. Figure 5.2 indicated the dynamics to be expected once path-following was

performed fully. In section 5.2 we considered how the symmetries could be removed

by choosing a set of invariants to transform the system into the equations (5.27).

Section 5.3 then discussed how the stationary points and periodic orbits in each of

the three systems were related to one another, allowing results to be interpreted for

the original model of the system.

The transcendental equation (dependent on T and dL∗) was solved for two modes

and this was set up as an additional pair of equations in the continuation software

so that it was solved at each point in parameter space. In future it would be usuful

to explore the effect of more than two modes.

Bifurcation analysis was first done on equations (5.26) in Section 6.1. This

created a series of Bifurcation diagrams for different values of α which showed Hopf

and Saddle-node bifurcations. These also indicated Bogdanov Takens and Saddle-

node Hopf points. It was not possible to maintain continuation of bifurcations of
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periodic orbits in the rotating system of equations as X became zero. Therefore the

reduced system, equations (5.27), were used to produce the bifurcation diagrams

which included bifurcations of periodic orbits. This produced bifurcation diagrams

consistent with the approximations made using Matlab and also indicated additional

codimension 2 points; Bautin points and an unusual point which we describe as a

Non-central Saddle-node Homoclinic point.

The high sensitivity on α was very noticeable. It is possible that the linewidth

enhancement factor is affected by the number of inverted atoms. In future it would

be interesting to build a dependence of α on N to see if this has an effect on the

stability regions of the model. Another topic for further investigation would be when

the other parameters (e.g. Λ) are varied.

In Chapter 7 we considered Bogdanov-Takens, Bautin, and Saddle-node Hopf

points. We considered the normal forms of these and classified the points found

in the laser system. We also considered the Non-central Saddle-node Hopf points.

The dynamics in each region was determined by careful analysis of the eigenvalues

and how these altered in crossing into each new region in parameter space around

the point. AUTO was used to continue the two homoclinic connections towards the

point and DsTool was used to verify the remaining changes in the dynamics. A false

bifurcation was found in Figures 7.13 and 7.14 and described.

Finally, in Chapter 8 we discuss a particular case (the bifurcation to lasing)

where we can progress further with an analytical bifurcation analysis. However, in

this case we need to use AUTO to calculate the dependence of various parameters
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on T . It remains to be seen wheter these results can be extended to realistic laser

problems, but we have discussed some important steps along the way.
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Appendix A

Germs of smooth functions

It is usual to express the decomposition theorems in terms of germs of smooth

functions; see for example [11]. Germs are a “local” concept of functions useful for

bifurcation problems. To define a germ we first define

C∞(Rp,Rq) = {f : R
p → R

q : f (k) is continuous for all x ∈ R and k = 0, 1, 2, ...}

and consider an equivalence relation on C∞ by f ∼ g at 0 if there is an ε > 0 such

that

f(x) = g(x)

for all |x| < ε. Clearly, if f ∼ g and g ∼ h then f ∼ h and f ∼ g ⇒ g ∼ f meaning

that ∼ is an equivalence relation.

The equivalence classes of C∞ for ∼ are called germs of functions at 0. Note that

germs of functions have well-define derivative even though they are not necessarily

define at any point other than 0; this is because all functions which equivalent in a

neighbourhood of 0 must have the same Taylor series there.
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Appendix B

AUTO code for simulating

equations (5.26)

#include "auto_f2c.h"

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

/* excav: The External Cavity Laser

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

int func (integer ndim, const doublereal *u, const integer *icp,

const doublereal *par, integer ijac,

doublereal *f, doublereal *dfdu, doublereal *dfdp) {
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/* Evaluates the algebraic equations or ODE right hand side */

/* Input arguments : */

/* ndim : Dimension of the ODE system */

/* u : State variables */

/* icp : Array indicating the free parameter(s) */

/* par : Equation parameters */

/* Values to be returned : */

/* f : ODE right hand side values */

/* Normally unused Jacobian arguments : IJAC, DFDU, DFDP (see manual) */

// Variables

doublereal dk1 = u[0], dk2 = u[1], E1 = u[2], ReE2 = u[3], ImE2 = u[4],

N = u[5];

// Continuation parameters

doublereal T = par[0], doL = par[1], Lambda = par[2], alpha = par[3];

// Fixed parameters

doublereal gammaE = 4*pow(10,11), gammaN = 2*pow(10,9), Gamma = 0.1,

gammaM = 0.0, nA = 3.4, nB = 3.4, Nts = 2*pow(10,24), xi = 5*pow(10,-20),

c = 3*pow(10,8), beta = 1+((2*c*Gamma*xi*Nts)/(nB*gammaE));

// Coupling and composite mode parameters

doublereal LA = 0.000280;

doublereal LoA = nA*LA, ko = 6283185.307179587;

doublereal k1 = dk1+ko, k2 = dk2+ko;
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// Re-scale doL

doublereal scale = 1.0*pow(10,-10);

// A1, A2, B1, B2

double A1 = sqrt((nB*LoA)/((nB*LoA*(0.5-sin(2*dk1*LoA)/(4*k1*LoA)))+(nB*

(LoA+doL*scale)*((sin(dk1*LoA)*sin(dk1*LoA))/(sin(dk1*LoA+ko*doL*scale+dk1*

doL*scale)*sin(dk1*LoA+ko*doL*scale+dk1*doL*scale)))*(0.5-(sin(2*(dk1*LoA+

ko*doL*scale+dk1*doL*scale))/(4*k1*(LoA+doL*scale)))))+((nB+nB)*sqrt((1-T)

/T)*sin(dk1*LoA)*sin(dk1*LoA)/k1)));

double A2 = sqrt((nB*LoA)/((nB*LoA*(0.5-sin(2*dk2*LoA)/(4*k2*LoA)))+(nB*

(LoA+doL*scale)*((sin(dk2*LoA)*sin(dk2*LoA))/(sin(dk2*LoA+ko*doL*scale+dk2

*doL*scale)*sin(dk2*LoA+ko*doL*scale+dk2*doL*scale)))*(0.5-(sin(2*(dk2*LoA

+ko*doL*scale+dk2*doL*scale))/(4*k2*(LoA+doL*scale)))))+((nB+nB)*sqrt((1-T

)/T)*sin(dk2*LoA)*sin(dk2*LoA)/k2)));

double B1 = -A1*sin(dk1*LoA)/sin(dk1*LoA+ko*doL*scale+dk1*doL*scale);

double B2 = -A2*sin(dk2*LoA)/sin(dk2*LoA+ko*doL*scale+dk2*doL*scale);

// C’s

doublereal CA11 = (A1*A1/2)*(1-(sin(2*dk1*LoA)/(2*k1*LoA)));

doublereal CA12 = (A1*A2/(2*LoA))*(sin((dk2-dk1)*LoA)/(k2-k1)-sin((dk2+

dk1)*LoA)/(k2+k1));

doublereal CA22 = (A2*A2/2)*(1-sin(2*dk2*LoA)/(2*k2*LoA));

doublereal CB11 = ((B1*B1*(LoA+doL*scale))/(2*LoA))*(1-sin(2*(dk1*LoA+ko

*doL*scale+dk1*doL*scale))/(2*k1*(LoA+doL*scale)));
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doublereal CB12 = (B1*B2/(2*LA))*((sin((LoA+doL*scale)*(dk1-dk2))/(nB*(

k1-k2)))-(sin((LoA+doL*scale)*(dk1+dk2)+2*ko*doL*scale)/((k1+k2)*nB)));

doublereal CB22 = (B2*B2*(LoA+doL*scale)/(2*LoA))*(1-sin(2*(dk2*LoA+ko*

doL*scale+dk2*doL*scale))/(2*k2*(LoA+doL*scale)));

doublereal C11 = CA11+CB11;

doublereal C12 = CA12+CB12;

doublereal C22 = CA22+CB22;

doublereal U1Sq0 = A1*A1*sin(dk1*LoA)*sin(dk1*LoA);

doublereal U2Sq0 = A2*A2*sin(dk2*LoA)*sin(dk2*LoA);

// Rescaled parameters

// gamma1, gamma2, Gamma1, Gamma2

doublereal gamma1 = gammaE*C11/(2*gammaN);

doublereal gamma2 = gammaE*C22/(2*gammaN);

doublereal Gamma1 = gamma1+(U1Sq0*gammaM/gammaN);

doublereal Gamma2 = gamma2+(U2Sq0*gammaM/gammaN);

doublereal Omega1 = (k1*c/gammaN), Omega2 = (k2*c/gammaN);

// f[0] and f[1] find k1 and k2, then f[2]->f[5] are E1dot, ReE2dot,

ImE2dot, Ndot. Note that the equations for f[0] and f[1] are multiplied

by 1000. This does not affect AUTO as it will path follow where f[0]=f[1]=0,

but means that the eigenvalues never approach zero - must avoid this extra

way of detecting false bifurcations!

f[0] = -1000*(nB*sin(dk1*LoA)*cos(ko*doL*scale+dk1*(LoA+doL*scale))+nA*
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sin(ko*doL*scale+dk1*(LoA+doL*scale))*cos(dk1*LoA)-(nA+nB)*sqrt((1-T)/T)*

sin(dk1*LoA)*sin(ko*doL*scale+dk1*(LoA+doL*scale)));

f[1] = 1000*(nB*sin(dk2*LoA)*cos(ko*doL*scale+dk2*(LoA+doL*scale))+nA*

sin(ko*doL*scale+dk2*(LoA+doL*scale))*cos(dk2*LoA)-(nA+nB)*sqrt((1-T)/T)*

sin(dk2*LoA)*sin(ko*doL*scale+dk2*(LoA+doL*scale)));

f[2] = -Gamma1*E1+gamma1*(CA11*(1+beta*N)*E1+CA12*((1+beta*N)*ReE2+alpha*

beta*(1+N)*ImE2));

f[3] = -Gamma2*ReE2-(Omega1-Omega2)*ImE2+gamma2*CA22*((1+beta*N)*ReE2+

alpha*beta*N*ImE2)+gamma2*CA12*(1+beta*N)*E1-gamma1*(CA11*alpha*beta*N+

CA12*(alpha*beta*(1+N)*ReE2-(1+beta*N)*ImE2)/E1)*ImE2;

f[4] = -Gamma2*ImE2-(Omega2-Omega1)*ReE2+gamma2*CA22*((1+beta*N)*ImE2-

alpha*beta*N*ReE2)-gamma2*CA12*alpha*beta*(1+N)*E1+gamma1*(CA11*alpha*

beta*N+CA12*(alpha*beta*(1+N)*ReE2-(1+beta*N)*ImE2)/E1)*ReE2;

f[5] = Lambda-(1+N)-(1+beta*N)*(CA11*(E1*E1)+2*CA12*E1*ReE2+CA22*(ReE2*

ReE2+ImE2*ImE2));

return 0;

}

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

int stpnt (integer ndim, doublereal t,

doublereal *u, doublereal *par) {

/* Input arguments : */
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/* ndim : Dimension of the ODE system */

/* Values to be returned : */

/* u : A starting solution vector */

/* par : The corresponding equation-parameter values */

/* Initialize the equation parameters */

par[0] = (doublereal)0.1; /* T */

par[1] = (doublereal)3.4; /* doL/scale */

par[2] = (doublereal)6.0; /* Lambda */

par[3] = (doublereal)0.0; /* alpha */

/* Initialize the solution (dk1, dk2, E1, ReE2, ImE2, N) These starting

values are found using DsTool.*/

u[0] = (doublereal) -1.1255924910482362;

u[1] = (doublereal) 336.85480959977735;

u[2] = (doublereal) 1.573137426127045;

u[3] = (doublereal) 1.3900452821889273;

u[4] = (doublereal) -0.76112748279911779;

u[5] = (doublereal) 0.013697706910560149;

return 0;

}



Appendix C

AUTO code for the simulating

equations (5.27)

#include "auto_f2c.h"

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

/* excav: The External Cavity Laser

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

int func (integer ndim, const doublereal *u, const integer *icp,

const doublereal *par, integer ijac,

doublereal *f, doublereal *dfdu, doublereal *dfdp) {
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/* Evaluates the algebraic equations or ODE right hand side */

/* Input arguments : */

/* ndim : Dimension of the ODE system */

/* u : State variables */

/* icp : Array indicating the free parameter(s) */

/* par : Equation parameters */

/* Values to be returned : */

/* f : ODE right hand side values */

/* Normally unused Jacobian arguments : IJAC, DFDU, DFDP (see manual) */

// Variables

doublereal dk1 = u[0], dk2 = u[1], X = u[2], Y = u[3], ReZ = u[4],

ImZ = u[5], N = u[6];

// Continuation parameters

doublereal T = par[0], doL = par[1], Lambda = par[2], alpha = par[3];

// Fixed parameters

doublereal gammaE = 4*pow(10,11), gammaN = 2*pow(10,9), Gamma = 0.1,

gammaM = 0.0, nA = 3.4, nB = 3.4, Nts = 2*pow(10,24), xi = 5*pow(10,-20),

c = 3*pow(10,8), beta = 1+((2*c*Gamma*xi*Nts)/(nB*gammaE));

// Coupling and composite mode parameters

doublereal LA = 0.000280;

doublereal LoA = nA*LA, ko = 6283185.307179587;

doublereal k1 = dk1+ko, k2 = dk2+ko;
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// Re-scale doL

doublereal scale = 1.0*pow(10,-10);

// A1, A2, B1, B2

double A1 = sqrt((nB*LoA)/((nB*LoA*(0.5-sin(2*dk1*LoA)/(4*k1*LoA)))+(nB

*(LoA+doL*scale)*((sin(dk1*LoA)*sin(dk1*LoA))/(sin(dk1*LoA+ko*doL*scale+

dk1*doL*scale)*sin(dk1*LoA+ko*doL*scale+dk1*doL*scale)))*(0.5-(sin(2*(dk1

*LoA+ko*doL*scale+dk1*doL*scale))/(4*k1*(LoA+doL*scale)))))+((nB+nB)*

sqrt((1-T)/T)*sin(dk1*LoA)*sin(dk1*LoA)/k1)));

double A2 = sqrt((nB*LoA)/((nB*LoA*(0.5-sin(2*dk2*LoA)/(4*k2*LoA)))+(nB*

(LoA+doL*scale)*((sin(dk2*LoA)*sin(dk2*LoA))/(sin(dk2*LoA+ko*doL*scale+dk2*

doL*scale)*sin(dk2*LoA+ko*doL*scale+dk2*doL*scale)))*(0.5-(sin(2*(dk2*LoA

+ko*doL*scale+dk2*doL*scale))/(4*k2*(LoA+doL*scale)))))+((nB+nB)*sqrt((1-

T)/T)*sin(dk2*LoA)*sin(dk2*LoA)/k2)));

double B1 = -A1*sin(dk1*LoA)/sin(dk1*LoA+ko*doL*scale+dk1*doL*scale);

double B2 = -A2*sin(dk2*LoA)/sin(dk2*LoA+ko*doL*scale+dk2*doL*scale);

doublereal CA11 = (A1*A1/2)*(1-(sin(2*dk1*LoA)/(2*k1*LoA)));

doublereal CA12 = (A1*A2/(2*LoA))*(sin((dk2-dk1)*LoA)/(k2-k1)-sin((dk2+

dk1)*LoA)/(k2+k1));

doublereal CA22 = (A2*A2/2)*(1-sin(2*dk2*LoA)/(2*k2*LoA));

doublereal CA21 = CA12;

doublereal CB11 = ((B1*B1*(LoA+doL*scale))/(2*LoA))*(1-sin(2*(dk1*LoA+

ko*doL*scale+dk1*doL*scale))/(2*k1*(LoA+doL*scale)));
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doublereal CB12 = (B1*B2/(2*LA))*((sin((LoA+doL*scale)*(dk1-dk2))/(nB*

(k1-k2)))-(sin((LoA+doL*scale)*(dk1+dk2)+2*ko*doL*scale)/((k1+k2)*nB)));

doublereal CB22 = (B2*B2*(LoA+doL*scale)/(2*LoA))*(1-sin(2*(dk2*LoA+ko*

doL*scale+dk2*doL*scale))/(2*k2*(LoA+doL*scale)));

doublereal C11 = CA11+CB11;

doublereal C12 = CA12+CB12;

doublereal C22 = CA22+CB22;

doublereal U1Sq0 = A1*A1*sin(dk1*LoA)*sin(dk1*LoA);

doublereal U2Sq0 = A2*A2*sin(dk2*LoA)*sin(dk2*LoA);

// Rescaled parameters

// gamma1, gamma2, Gamma1, Gamma2

doublereal gamma1 = gammaE*C11/(2*gammaN);

doublereal gamma2 = gammaE*C22/(2*gammaN);

doublereal Gamma1 = gamma1+(U1Sq0*gammaM/gammaN);

doublereal Gamma2 = gamma2+(U2Sq0*gammaM/gammaN);

doublereal Omega1 = (k1*c/gammaN), Omega2 = (k2*c/gammaN);

doublereal Omega = Omega2 - Omega1;

doublereal Fs = 1+beta*5;

doublereal Cs = sqrt((Omega*Omega -4*(gamma1*gamma1)*(Fs-1)*(Fs-1))*(2-

Fs)/(2*(Fs*Fs)*gamma1*(Fs-1)));

// f[0] and f[1] are from the previous thing to find k1 and k2, then

f[2]->f[5] are E1dot, ReE2dot, ImE2dot, Ndot. Note that the equations
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for f[0] and f[1] are multiplied by 1000. This does not affect AUTO as

it will path follow where f[0]=f[1]=0, but means that the eigenvalues

never approach zero - must avoid this extra way of detecting false

bifurcations! Note that in the write up X, Y, ReZ, ImZ, N appear as I1,

I2, I3, I4, I5.

f[0] = -1000*(nB*sin(dk1*LoA)*cos(ko*doL*scale+dk1*(LoA+doL*scale))+nA

*sin(ko*doL*scale+dk1*(LoA+doL*scale))*cos(dk1*LoA)-(nA+nB)*sqrt((1-T)/

T)*sin(dk1*LoA)*sin(ko*doL*scale+dk1*(LoA+doL*scale)));

f[1] = 1000*(nB*sin(dk2*LoA)*cos(ko*doL*scale+dk2*(LoA+doL*scale))+nA

*sin(ko*doL*scale+dk2*(LoA+doL*scale))*cos(dk2*LoA)-(nA+nB)*sqrt((1-T)/

T)*sin(dk2*LoA)*sin(ko*doL*scale+dk2*(LoA+doL*scale)));

f[2] = -2*Gamma1*X+2*gamma1*(CA11*(1+beta*N)*X+CA12*((1+beta*N)*ReZ-

alpha*beta*(1+N)*ImZ));

f[3] = -2*Gamma2*Y+2*gamma2*(CA22*(1+beta*N)*Y+CA12*((1+beta*N)*ReZ+

alpha*beta*(1+N)*ImZ));

f[4] = -ImZ*(Omega2-Omega1)-ReZ*(Gamma1+Gamma2)+gamma1*CA11*(alpha*

beta*(N)*ImZ+(1+beta*N)*ReZ)+gamma2*CA22*(-alpha*beta*(N)*ImZ+(1+beta*

N)*ReZ)+CA21*(1+beta*N)*(gamma1*Y+gamma2*X);

f[5] = ReZ*(Omega2-Omega1)-ImZ*(Gamma1+Gamma2)+gamma1*CA11*((1+beta*N)

*ImZ-alpha*beta*(N)*ReZ)+gamma2*CA22*((1+beta*N)*ImZ+alpha*beta*(N)*ReZ)

+CA21*alpha*beta*(1+N)*(gamma2*X-gamma1*Y);

f[6] = Lambda-(1+N)-(1+beta*N)*(CA11*X+2*CA12*ReZ+CA22*Y);
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return 0;

}

/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

int stpnt (integer ndim, doublereal t,

doublereal *u, doublereal *par) {

/* Input arguments : */

/* ndim : Dimension of the ODE system */

/* Values to be returned : */

/* u : A starting solution vector */

/* par : The corresponding equation-parameter values */

/* Initialize the equation parameters */

par[0] = (doublereal)0.1; /* T */

par[1] = (doublereal)3.4; /* doL/scale */

par[2] = (doublereal)6.0; /* Lambda */

par[3] = (doublereal)0.0; /* alpha */

/* Initialize the solution (dk1, dk2, X, Y, ReZ, ImZ, N)*/

u[0] = (doublereal) -1.1255924910482362;

u[1] = (doublereal) 336.85480959977735;

u[2] = (doublereal) 2.4747613614816237;

u[3] = (doublereal) 2.511540931607816;

u[4] = (doublereal) 2.1867322574227313;
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u[5] = (doublereal) 1.197358129245161;

u[6] = (doublereal) 0.013697706910560149;

return 0;

}



Appendix D

Matlab code for simulating

bifurcations diagrams

This produces Figure [d]5.2 for example. In order to use this we need input from a

file, data4.dat, that is produced by an AUTO run. For example, to create data4.dat

a run in AUTO with α = 1, dL∗/λ = −0.03, is made from T = 0 to T = 1. The step

length between each value of T can be chosen to increase or decrease the resolution

of the final image to be made using Matlab. The values of T and the values of the

variables at that point are output in outputs.txt (which is later saved as data4.dat)

so that Matlab has the values of the variables for each value of T in order to simulate

the dynamics at each point. data4.dat is available in the supplementary information.

Firstly lasrat4.m:

function ydot=lasrat4(t, y)

144
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global G1 G2 a b CA11 CA12 CA22 CA21 Lambda O1 O2

ydot=[-2*G1*y(1)+2*G1*(CA11*(1+b*y(5))*y(1)+CA12*((1+b*y(5))*y(3)

-a*b*(1+y(5))*y(4)));...

-2*G2*y(2)+2*G2*(CA22*(1+b*y(5))*y(2)+CA12*((1+b*y(5))*y(3)

+a*b*(1+y(5))*y(4)));...

-y(4)*(O2-O1)-y(3)*(G1+G2)+G1*CA11*(a*b*(y(5))*y(4)+(1+b*y(5))

*y(3))+G2*CA22*(-a*b*(y(5))*y(4)+(1+b*y(5))*y(3))+CA21*(1+b*y(5))*

(G1*y(2)+G2*y(1));...

y(3)*(O2-O1)-y(4)*(G1+G2)+G1*CA11*((1+b*y(5))*y(4)-a*b*(y(5))*y(3))

+G2*CA22*((1+b*y(5))*y(4)+a*b*(y(5))*y(3))+CA21*a*b*(1+y(5))*(G2*y(1)

-G1*y(2));...

Lambda-(1+y(5))-(1+b*y(5))*(CA11*y(1)+2*CA12*y(3)+CA22*y(2))];

Secondly lasratrun4.m:

clear;

global G1 G2 a b CA11 CA12 CA22 CA21 CB11 CB12 CB22 Lambda O1 O2

load data4.dat;

S=data4;

tempout=[0 0];

figure(1);

clf;

save outputs.txt -ascii tempout
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y0=S(1,4:8);

for j=1:size(S,1);

T=S(j,1);

yy=S(j,2:3);

a=1;

doL=-1020;

Lambda=6;

gE=400000000000;

gN=2000000000;

G=0.1;

nA=3.4;

nB=3.4;

Nts=2000000000000000000000000;

xi=0.00000000000000000005;

c=300000000;

b=1+((2*c*G*xi*Nts)/(nB*gE));

LA=0.000280;

LoA=nA*0.000280;

ko=6283185.307179587;

scale=0.0000000001;

#Check:

-(nB*sin(yy(1)*LoA)*cos(ko*doL*scale+yy(1)*(LoA+doL*scale))+nA*sin
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(ko*doL*scale+yy(1)*(LoA+doL*scale))*cos(yy(1)*LoA)-(nA+nB)*sqrt((1-T)

/T)*sin(yy(1)*LoA)*sin(ko*doL*scale+yy(1)*(LoA+doL*scale)))

(nB*sin(yy(2)*LoA)*cos(ko*doL*scale+yy(2)*(LoA+doL*scale))+nA*sin(

ko*doL*scale+yy(2)*(LoA+doL*scale))*cos(yy(2)*LoA)-(nA+nB)*sqrt((1-T)/

T)*sin(yy(2)*LoA)*sin(ko*doL*scale+yy(2)*(LoA+doL*scale)))

k1=yy(1)+ko;

k2=yy(2)+ko;

A1 = sqrt((nB*LoA)/((nB*LoA*(0.5-sin(2*yy(1)*LoA)/(4*k1*LoA)))

+(nB*(LoA+doL*scale)*((sin(yy(1)*LoA)*sin(yy(1)*LoA))/(sin(yy(1)*LoA+ko

*doL*scale+yy(1)*doL*scale)*sin(yy(1)*LoA+ko*doL*scale+yy(1)*doL*scale

)))*(0.5-(sin(2*(yy(1)*LoA+ko*doL*scale+yy(1)*doL*scale))/(4*k1*(LoA+

doL*scale)))))+((nB+nB)*sqrt((1-T)/T)*sin(yy(1)*LoA)*sin(yy(1)*LoA)/

k1)));

A2 = sqrt((nB*LoA)/((nB*LoA*(0.5-sin(2*yy(2)*LoA)/(4*k2*LoA)))+

(nB*(LoA+doL*scale)*((sin(yy(2)*LoA)*sin(yy(2)*LoA))/(sin(yy(2)*LoA

+ko*doL*scale+yy(2)*doL*scale)*sin(yy(2)*LoA+ko*doL*scale+yy(2)*doL

*scale)))*(0.5-(sin(2*(yy(2)*LoA+ko*doL*scale+yy(2)*doL*scale))/(4*

k2*(LoA+doL*scale)))))+((nB+nB)*sqrt((1-T)/T)*sin(yy(2)*LoA)*sin(yy

(2)*LoA)/k2)));

B1 = -A1*sin(yy(1)*LoA)/sin(yy(1)*LoA+ko*doL*scale+yy(1)*doL*scale);

B2 = -A2*sin(yy(2)*LoA)/sin(yy(2)*LoA+ko*doL*scale+yy(2)*doL*scale);

CA11 = (A1*A1/2)*(1-(sin(2*yy(1)*LoA)/(2*k1*LoA)));
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CA12 = (A1*A2/(2*LoA))*(sin((yy(2)-yy(1))*LoA)/(k2-k1)-sin((yy(2)+yy(1))

*LoA)/(k2+k1));

CA22 = (A2*A2/2)*(1-sin(2*yy(2)*LoA)/(2*k2*LoA));

CA21 = CA12;

CB11 = ((B1*B1*(LoA+doL*scale))/(2*LoA))*(1-sin(2*(yy(1)*LoA+ko*doL*scale

+yy(1)*doL*scale))/(2*k1*(LoA+doL*scale)));

CB12 = (B1*B2/(2*LA))*((sin((LoA+doL*scale)*(yy(1)-yy(2)))/(nB*(k1-k2)))

-(sin((LoA+doL*scale)*(yy(1)+yy(2))+2*ko*doL*scale)/((k1+k2)*nB)));

CB22 = (B2*B2*(LoA+doL*scale)/(2*LoA))*(1-sin(2*(yy(2)*LoA+ko*doL*scale

+yy(2)*doL*scale))/(2*k2*(LoA+doL*scale)));

C11=CA11+CB11;

C22=CA22+CB22;

G1=gE*C11/(2*gN);

G2=gE*C22/(2*gN);

O1=k1*c/gN;

O2=k2*c/gN;

%% transient

tspan=[0 6];

options = odeset(’Stats’,’on’,’AbsTol’,1e-12,’RelTol’,1e-12);

[t,y]=ode45(@lasrat4,tspan,y0,options);

%% generate the final plot

tspan=[6 8];
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y1=y(size(y,1),:);

options = odeset(’Stats’,’on’,’AbsTol’,1e-12,’RelTol’,1e-12);

[t,y]=ode45(@lasrat4,tspan,y1,options);

M=length(t);

for k=1

x=1:M; w=y(:,k);

for i=2:M-1;

ai=i+1; bi=i-1;

if w(i)>w(bi) & w(i)>w(ai)

% disp([’x= ’,num2str(x(i)),’ w = ’,num2str(w(i)),’

’,num2str(w(bi)),’ ’,num2str(w(ai))]);

p(i)=i;

m(i)=w(i);

tempout=[T,w(i)’];

save outputs.txt -ascii -append tempout

end

end

%figure(1);

% hold on

% plot(T,m,’.’);

end

end
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Appendix E

DsTool: Code to Simulate

Equations (5.26)

/* ------------------------------------------------------------------------

proc used to define the vector field

------------------------------------------------------------------------ */

int excav(f,x,p)

double f[],x[],p[];

{

// variables

double E1, ReE2, ImE2, N;

E1 = x[0]; ReE2 = x[1]; ImE2 = x[2]; N = x[3];

// specified parameters

double gammaE, gammaN, Gamma, Lambda, gammaM, alpha;

151
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//dk1, dk2;

gammaE = p[0]; gammaN = p[1]; Gamma = p[2]; Lambda = p[3]; gammaM = p[4];

alpha = p[5];

//dk1 = p[6]; dk2 = p[7];

double ko = 6283185.307179587;

// k1 = ko+dk1, k2 = ko+dk2;

// laser medium parameters

double nb = 3.4, Nts = 2*pow(10,24), xi = 5*pow(10,-20) , c = 3*pow(10,8);

// coupling and composite mode parameters

double L = 280*pow(10,-6), T = 0.1, doL = 3.4*pow(10,-10);

double Normconst = nb*nb*L, LoA = nb*L, LoB = nb*L+doL;

//Find roots (Newton method)

//NB g=df/dx

const double accuracy = 1.0e-14;

double dknew1 = -200.0; // starting value

double dkold1 = 0.0;

double f1,g1;

do

{

dkold1 = dknew1;

f1 = nb*sin(dkold1*LoA)*cos(ko*(doL)+dkold1*(LoA+doL))+nb*sin(ko*

(doL)+dkold1*(LoA+doL))*cos(dkold1*LoA)-(nb+nb)*sqrt((1-T)/T)*sin(dkold1
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*LoA)*sin(ko*(doL)+dkold1*(LoA+doL));

g1 = (doL+LoA)*nb*cos(dkold1*LoA)*cos(-doL*ko-dkold1*(doL+LoA))+

LoA*nb*cos(dkold1*LoA)*cos(-doL*ko-dkold1*(doL+LoA))+

(-doL-LoA)*(nb+nb)*sqrt((1-T)/T)*cos(-doL*ko-dkold1*(doL+LoA))*sin(dkold1

*LoA)+LoA*(nb+nb)*sqrt((1-T)/T)*cos(dkold1*LoA)*sin(-doL*ko-dkold1*(doL+

LoA))+LoA*nb*sin(dkold1*LoA)*sin(-doL*ko-dkold1*(doL+LoA))+

(doL+LoA)*nb*sin(dkold1*LoA)*sin(-doL*ko-dkold1*(doL+LoA));

dknew1 = dkold1-(f1/g1);

}

while ( fabs(dknew1-dkold1) > accuracy);

double dknew2 = 400.0; // starting value

double dkold2 = 0.0;

double f2,g2;

do

{

dkold2 = dknew2;

f2 = nb*sin(dkold2*LoA)*cos(ko*(doL)+dkold2*(LoA+doL))+nb*sin(ko*

(doL)+dkold2*(LoA+doL))*cos(dkold2*LoA)-(nb+nb)*sqrt((1-T)/T)*sin(dkold2

*LoA)*sin(ko*(doL)+dkold2*(LoA+doL));

g2 = (doL+LoA)*nb*cos(dkold2*LoA)*cos(-doL*ko-dkold2*(doL+LoA))+

LoA*nb*cos(dkold2*LoA)*cos(-doL*ko-dkold2*(doL+LoA))+



APPENDIX E. DSTOOL: CODE TO SIMULATE EQUATIONS (5.26) 154

(-doL-LoA)*(nb+nb)*sqrt((1-T)/T)*cos(-doL*ko-dkold2*(doL+LoA))*sin(dkold2

*LoA)+LoA*(nb+nb)*sqrt((1-T)/T)*cos(dkold2*LoA)*sin(-doL*ko-dkold2*(doL+

LoA))+LoA*nb*sin(dkold2*LoA)*sin(-doL*ko-dkold2*(doL+LoA))+

(doL+LoA)*nb*sin(dkold2*LoA)*sin(-doL*ko-dkold2*(doL+LoA));

dknew2 = dkold2-(f2/g2);

}

while ( fabs(dknew2-dkold2) > accuracy);

double dk1 = dknew1;

double dk2 = dknew2;

double k1 = dk1 + ko, k2 = dk2 + ko;

//printf("%f %f \n", dk1, dk2);

double A1 = sqrt((nb*LoA)/((nb*LoA*(0.5-sin(2*dk1*LoA)/(4*k1*LoA)))+

(nb*(LoA+doL)*((sin(dk1*LoA)*sin(dk1*LoA))/(sin(dk1*LoA+ko*doL+

dk1*doL)*sin(dk1*LoA+ko*doL+dk1*doL)))*(0.5-(sin(2*(dk1*LoA+ko*doL+

dk1*doL))/(4*k1*(LoA+doL)))))+((nb+nb)*sqrt((1-T)/T)*sin(dk1*LoA)*sin(dk1

*LoA)/k1)));

double A2 = sqrt((nb*LoA)/((nb*LoA*(0.5-sin(2*dk2*LoA)/(4*k2*LoA)))+(nb

*(LoA+doL)*((sin(dk2*LoA)*sin(dk2*LoA))/(sin(dk2*LoA+ko*doL+dk2*doL)*sin(



APPENDIX E. DSTOOL: CODE TO SIMULATE EQUATIONS (5.26) 155

dk2*LoA+ko*doL+dk2*doL)))*(0.5-(sin(2*(dk2*LoA+ko*doL+dk2*doL))/(4*k2*(

LoA+doL)))))+((nb+nb)*sqrt((1-T)/T)*sin(dk2*LoA)*sin(dk2*LoA)/k2)));

double B1 = -A1*sin(dk1*LoA)/sin(dk1*LoA+ko*doL+dk1*doL);

double B2 = -A2*sin(dk2*LoA)/sin(dk2*LoA+ko*doL+dk2*doL);

//printf("%f %f %f %f \n", A1, A2, B1, B2 );

double CA11 = (A1*A1/2)*(1-(sin(2*dk1*LoA)/(2*k1*LoA)));

double CA12 = (A1*A2/(2*LoA))*(sin((dk2-dk1)*LoA)/(k2-k1)-

sin((dk2+dk1)*LoA)/(k2+k1));

double CA22 = (A2*A2/2)*(1-sin(2*dk2*LoA)/(2*k2*LoA));

double CB11 = ((B1*B1*(LoA+doL))/(2*LoA))*(1-sin(2*(dk1*LoA+ko*doL+

dk1*doL))/(2*k1*(LoA+doL)));

double CB12 = (B1*B2/(2*L))*((sin((LoA+doL)*(dk1-dk2))/(nb*(k1-k2)))-

(sin((LoA+doL)*(dk1+dk2)+2*ko*doL)/((k1+k2)*nb)));

double CB22 = (B2*B2*(LoA+doL)/(2*LoA))*(1-sin(2*(dk2*LoA+ko*doL+

dk2*doL))/(2*k2*(LoA+doL)));
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double CA21 = CA12;

double CB21 = CB12;

double C11 = CA11+CB11;

double C12 = CA12+CB12;

double C21 = C12;

double C22 = CA22+CB22;

double U1Sq0 = A1*A1*sin(dk1*LoA)*sin(dk1*LoA);

double U2Sq0 = A2*A2*sin(dk2*LoA)*sin(dk2*LoA);

//printf("%f %f %f \n", CA12, CB12, C12);

// rescalled parameters

double beta = 1+((2*c*Gamma*xi*Nts)/(nb*gammaE)), gamma1 =

gammaE*C11/(2*gammaN), gamma2 = gammaE*C22/(2*gammaN);

double Gamma1 = gamma1+(U1Sq0*gammaM/gammaN), Gamma2 =

gamma2+(U2Sq0*gammaM/gammaN), F = 1+beta*N, G = beta*(1+N);

double

Omega1 = (k1*c/gammaN),
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Omega2 = (k2*c/gammaN);

f[0] = -Gamma1*E1+gamma1*CA11*F*E1+gamma1*CA21*F*ReE2+

gamma1*CA21*alpha*G*ImE2;

f[1] = -Gamma2*ReE2-ImE2*(Omega1-Omega2)+gamma2*CA22*(ReE2*F+

ImE2*alpha*beta*N)-ImE2*gamma1*CA11*alpha*beta*N+

((gamma1*CA21*ImE2*(F*ImE2-alpha*G*ReE2))/E1)+gamma2*CA12*F*E1;

f[2] = -Gamma2*ImE2+ReE2*(Omega1-Omega2)-gamma2*CA12*alpha*G*E1+

gamma1*CA11*alpha*beta*N*ReE2+gamma2*CA22*(F*ImE2-alpha*beta*N*ReE2)+

((gamma1*CA21*ReE2*(alpha*G*ReE2-F*ImE2))/E1);

f[3] = Lambda-(1+N)-F*(CA11*(E1*E1)+2*CA12*E1*ReE2+

CA22*(ReE2*ReE2+ImE2*ImE2));

//printf("%f %f %f %f \n", f[0],f[1],f[2],f[3]);

//printf("%f %f %f %f \n", E1, ReE2, ImE2, N);

return(0);

}
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/* ------------------------------------------------------------------------

proc to define the default data for the dynamical system

Note: You may change the entries for each variable but

DO NOT change the list of items. If a variable is

unused, NULL or zero the entry, as appropriate.

------------------------------------------------------------------------ */

int excav_init()

{

/* define the dynamical system in this segment

------------------------------------------------------------------------------

int n_varb=4;

/* dim of the phase spase */

static char *variable_names[]={"E1","ReE2","ImE2","N"};

/* list of phase varb names */

static double variables[]={1.0,0.0,1.0,0.0};

/* initial conditions for the variables */

static double variable_min[]={0.0,-3.0,-3.0,-0.3};

/* default varb min for display */

static double variable_max[]={3.0,3.0,3.0,0.3};

/* default varb max for display */

static char *indep_varb_name="time";

/* name of indep variable */
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double indep_varb_min=0.;

/* default indep varb min r display */

double indep_varb_max=100.;

/* default indep varb max r display */

int n_param=6;

/* dim of the parameter space */

static char *parameter_names[]={"gammaE","gammaN","Gamma","Lambda",

"gammaM","alpha"}; /* list of param names */

static double parameters[]={400000000000.0,2000000000.0,0.1,2.0,0.0,0.0};

/* initial parameter values */

static double parameter_min[]={0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0};

/* default param min for display */

static double parameter_max[]={1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0};

/* default param max for display */

int n_funct=1;

/* number of user-defined functions */

static char *funct_names[]={"E2"};

/* list of param names */

static double funct_min[]={-1};

/* default varb max for display */
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static double funct_max[]={1};

/* default varb max for display */

int manifold_type = EUCLIDEAN;

/* EUCLIDEAN or PERIODIC (periodic variables) */

static int periodic_varb[] = {FALSE,FALSE,FALSE,FALSE};

/* if PERIODIC, which variables are periodic */

static double period_start[] = {0.,0.,0.,-PI};

/* if PERIODIC, beginning of fundamental domain */

static double period_end[] = {0., 0.,0., PI};

/* if PERIODIC, end of fundamental domain */

int mapping_toggle=FALSE;

/* is this a map? */

int inverse_toggle=FALSE;

/* if so, is inverse FALSE, APPROX_INV, or EXPLICIT_INV?*/

/* In this section, input NULL or the name of the function which contains... */

int (*def_name)()=excav;

/* the eqns of motion */

int (*jac_name)()=NULL;

/* the jacobian (deriv w.r.t. space) */
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int (*aux_func_name)()=excav_func;

/* the auxiliary functions */

int (*inv_name)()=NULL;

/* the inverse or approx inverse */

int (*dfdt_name)()=NULL;

/* the deriv w.r.t time */

int (*dfdparam_name)()=NULL;

/* the derivs w.r.t. parameters */

c_filename = __FILE__; /* display this file for help with this system */

/* ------------------ end of dynamical system definition ------------------ */

#include <ds_define.c>

}


