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AAbbssttrraacctt  

 

 

 
The research presented in this thesis addresses different aspects of dynamic portfolio 

construction and portfolio risk measurement. It brings the research on dynamic portfolio 

optimization, replicating portfolio construction, dynamic portfolio risk measurement 

and volatility forecast together. The overall aim of this research is threefold. First, it is 

aimed to examine the portfolio construction and risk measurement performance of a 

broad set of volatility forecast and portfolio optimization model. Second, in an effort to 

improve their forecast accuracy and portfolio construction performance, it is aimed to 

propose new models or new formulations to the available models. Third, in order to 

enhance the replication performance of hedge fund returns, it is aimed to introduce a 

replication approach that has the potential to be used in numerous applications, in 

investment management. 

 

In order to achieve these aims, Chapter 2 addresses risk measurement in dynamic 

portfolio construction. In this chapter, further evidence on the use of multivariate 

conditional volatility models in hedge fund risk measurement and portfolio allocation is 

provided by using monthly returns of hedge fund strategy indices for the period 1990 to 

2009. Building on Giamouridis and Vrontos (2007), a broad set of multivariate GARCH 

models, as well as, the simpler exponentially weighted moving average (EWMA) 

estimator of RiskMetrics (1996) are considered. It is found that, while multivariate 

GARCH models provide some improvements in portfolio performance over static 

models, they are generally dominated by the EWMA model. In particular, in addition to 

providing a better risk-adjusted performance, the EWMA model leads to dynamic 

allocation strategies that have a substantially lower turnover and could therefore be 

expected to involve lower transaction costs. Moreover, it is shown that these results are 

robust across the low - volatility and high-volatility sub-periods. 

 

Chapter 3 addresses optimization in dynamic portfolio construction. In this chapter, the 

advantages of introducing alternative optimization frameworks over the mean-variance 

framework in constructing hedge fund portfolios for a fund of funds. Using monthly 
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return data of hedge fund strategy indices for the period 1990 to 2011, the standard 

mean-variance approach is compared with approaches based on CVaR, CDaR and 

Omega, for both conservative and aggressive hedge fund investors. In order to estimate 

portfolio CVaR, CDaR and Omega, a semi-parametric approach is proposed, in which 

first the marginal density of each hedge fund index is modelled using extreme value 

theory and the joint density of hedge fund index returns is constructed using a copula-

based approach. Then hedge fund returns from this joint density are simulated in order 

to compute CVaR, CDaR and Omega. The semi-parametric approach is compared with 

the standard, non-parametric approach, in which the quantiles of the marginal density of 

portfolio returns are estimated empirically and used to compute CVaR, CDaR and 

Omega. Two main findings are reported. The first is that CVaR-, CDaR- and Omega-

based optimization offers a significant improvement in terms of risk-adjusted portfolio 

performance over mean-variance optimization. The second is that, for all three risk 

measures, semi-parametric estimation of the optimal portfolio offers a very significant 

improvement over non-parametric estimation. The results are robust to as the choice of 

target return and the estimation period. 

 

Chapter 4 searches for improvements in portfolio risk measurement by addressing 

volatility forecast. In this chapter, two new univariate Markov regime switching models 

based on intraday range are introduced. A regime switching conditional volatility model 

is combined with a robust measure of volatility based on intraday range, in a framework 

for volatility forecasting. This chapter proposes a one-factor and a two-factor model that 

combine useful properties of range, regime switching, nonlinear filtration, and GARCH 

frameworks. Any incremental improvement in the performance of volatility forecasting 

is searched for by employing regime switching in a conditional volatility setting with 

enhanced information content on true volatility. Weekly S&P500 index data for 1982-

2010 is used. Models are evaluated by using a number of volatility proxies, which 

approximate true integrated volatility. Forecast performance of the proposed models is 

compared to renowned return-based and range-based models, namely EWMA of 

Riskmetrics, hybrid EWMA of Harris and Yilmaz (2009), GARCH of Bollerslev 

(1988), CARR of Chou (2005), FIGARCH of Baillie et al. (1996) and MRSGARCH of 

Klaassen (2002). It is found that the proposed models produce more accurate out of 

sample forecasts, contain more information about true volatility and exhibit similar or 

better performance when used for value at risk comparison. 
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Chapter 5 searches for improvements in risk measurement for a better dynamic portfolio 

construction. This chapter proposes multivariate versions of one and two factor 

MRSACR models introduced in the fourth chapter. In these models, useful properties of 

regime switching models, nonlinear filtration and range-based estimator are combined 

with a multivariate setting, based on static and dynamic correlation estimates. In 

comparing the out-of-sample forecast performance of these models, eminent return and 

range-based volatility models are employed as benchmark models. A hedge fund 

portfolio construction is conducted in order to investigate the out-of-sample portfolio 

performance of the proposed models. Also, the out-of-sample performance of each 

model is tested by using a number of statistical tests. In particular, a broad range of 

statistical tests and loss functions are utilized in evaluating the forecast performance of 

the variance covariance matrix of each portfolio. It is found that, in terms statistical test 

results, proposed models offer significant improvements in forecasting true volatility 

process, and, in terms of risk and return criteria employed, proposed models perform 

better than benchmark models. Proposed models construct hedge fund portfolios with 

higher risk-adjusted returns, lower tail risks, offer superior risk-return tradeoffs and 

better active management ratios. However, in most cases these improvements come at 

the expense of higher portfolio turnover and rebalancing expenses. 

 

Chapter 6 addresses the dynamic portfolio construction for a better hedge fund return 

replication and proposes a new approach. In this chapter, a method for hedge fund 

replication is proposed that uses a factor-based model supplemented with a series of risk 

and return constraints that implicitly target all the moments of the hedge fund return 

distribution. The approach is used to replicate the monthly returns of ten broad hedge 

fund strategy indices, using long-only positions in ten equity, bond, foreign exchange, 

and commodity indices, all of which can be traded using liquid, investible instruments 

such as futures, options and exchange traded funds. In out-of-sample tests, proposed 

approach provides an improvement over the pure factor-based model, offering a closer 

match to both the return performance and risk characteristics of the hedge fund strategy 

indices. 
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CChhaapptteerr  11    

IInnttrroodduuccttiioonn  

 

 

The research presented in this thesis addresses different aspects of dynamic portfolio 

construction and portfolio risk measurement. It brings together dynamic portfolio 

optimization, replicating portfolio construction, dynamic portfolio risk measurement 

and volatility forecast for portfolio construction. 

 

In particular, Chapter 2 and Chapter 3 address dynamic risk measurement and 

optimization in portfolio construction. Chapter 2 takes a step forward from the existing 

literature, and provides further evidence on the use of multivariate conditional volatility 

models in constructing dynamic hedge fund portfolios. Chapter 3 takes where Chapter 2 

has left off, and addresses dynamic portfolio optimization in hedge fund portfolio 

construction by investigating the advantages of introducing alternative optimization 

frameworks over the mean-variance framework. This chapter proposes a new approach 

to eminent alternative optimization frameworks and provides evidence of the 

improvements that can be achieved in the performance of these frameworks. 

 

Chapter 4 and Chapter 5 search for improvements in dynamic portfolio risk 

measurement through more accurate volatility forecast. In particular, Chapter 4 

proposes two new univariate Markov regime switching models based on the intraday 

range in order to improve the accuracy of volatility forecasts for a better risk 

measurement. Chapter 5 complements Chapter 4 by introducing a multivariate version 

of the proposed univariate models. Chapter 5 provides evidence on possible 

improvements from the use of the proposed volatility models for dynamic risk 

measurement in portfolio construction. Chapter 6 takes a step forward from the 

available literature on hedge fund return replication, and proposes a new approach to 

constructing replicating portfolios that has several potential uses in portfolio 

management.  
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1.1. Aims, Objectives and Contributions 
 

The overall aim of the research presented in this thesis is threefold. First, it aims to 

investigate dynamic portfolio construction performance of eminent risk measurement 

and optimization frameworks. Second, it aims to propose new models and new 

approaches to these models and frameworks in an effort to improve their performance 

of constructing dynamic portfolios. Finally, it aims to propose a (hedge fund) return 

replication approach that has the potential to be used in various applications, in 

investment management. The thesis is organized to best achieve the objectives and to 

address the different aspect of dynamic hedge fund portfolio construction and portfolio 

risk measurement.   

 

The second chapter aims to examine the performance of multivariate volatility models 

in constructing dynamic hedge fund portfolios. At the same time, another aim is to 

provide further evidence on the use of multivariate conditional volatility models in 

dynamic measurement of hedge fund portfolio risk. The analysis in this chapter is built 

on the analysis of Giamouridis and Vrontos (2007) and considers a broader set of 

volatility models, including a number of additional multivariate GARCH models and 

the much simpler exponentially weighted moving average (EWMA) estimator of 

RiskMetrics (1996). In doing so, this chapter makes contribution to the empirical 

literature on portfolio risk measurement in dynamic hedge fund portfolio construction, 

by providing further evidence on the advantages of dynamic models over static models, 

and by establishing that the use of simple models over more sophisticated models 

produces better portfolio performance.  

 

The third chapter aims to examine dynamic portfolio construction performance of 

alternative optimization frameworks, which are proposed against the mean-variance 

framework. Approaches based on CVaR, CDaR and Omega, are considered. At the 

same time, another aim of this chapter is to propose new formulations to these 

frameworks in order to improve their performance, and to make them better capture 

statistical and time series properties of the data. As there is an obvious literature gap in 

the use of alternative optimization frameworks in dynamic portfolio construction, this 

chapter also aims to show the potential uses of the alternative frameworks for investors 

with different risk tolerance.  
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This chapter contributes to the empirical literature on dynamic hedge fund portfolio 

optimization at three points. First, to the best knowledge of the author, this is the first 

study that implements EVT, copula and Monte Carlo simulation into alternative 

optimization frameworks and proposes a semi-parametric extension of the original 

frameworks for hedge fund portfolio construction. Second, although there are studies 

that compare CVaR to CDaR (Krokhmal et al., 2003), and Omega to CVaR (Hentati et 

al., 2010), this is the first study that compares CVaR, CDaR and Omega models 

together with a number of benchmark models including static and dynamic mean-

variance model. Finally, this study contributes to the literature by considering different 

formulations of optimization frameworks based on an investor’s risk tolerance. 

 

The fourth chapter and fifth chapter complement each other. Following the renewed 

interest in using the intraday range, due to its attractive features as a variance measure, 

and the success of regime switching models in capturing abrupt changes in asset prices, 

the aim of the fourth chapter is to introduce an univariate volatility forecast framework 

that combines regime switching models with range-based variance estimator, hence, 

improves the accuracy of volatility forecasts, and fills the gap in the literature on range-

based regime switching volatility modelling. In doing so, this chapter contributes to the 

empirical literature on conditional volatility models at two points. First, to the best 

knowledge of the author, this is the first study in applying range data to the regime 

switching models in a univariate context. Second, it is the first study that applies 

component structure to range data in a regime switching framework, and proposes one 

and two-component range-based regime switching models. 

 

The fifth chapter mainly aims to extend the univariate models proposed in the fourth 

chapter into their multivariate equivalents. In doing so, this chapter contributes to the 

empirical literature on conditional volatility forecast and portfolio risk measurement in 

dynamic hedge fund portfolio construction. First, this chapter, for the best knowledge of 

the author, is the first study in applying range data to regime switching models in a 

multivariate context. Second, it is the first study which applies range-based models in 

hedge fund strategy indices through extracting high/low/open/close index values from 

daily strategy indices and comparing portfolio construction performance of range-based 

models to return based models. 

 

The sixth chapter aims to provide a new approach to hedge fund return replication. In 
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doing so, this chapter contributes to the literature on hedge fund return replication by 

introducing a composite approach that combines the factor and distribution-matching 

methodologies, and by empirically showing that the proposed approach represents an 

improvement over the out-of-sample performance of the factor and payoff distribution 

approaches reported by Jaeger and Wagner (2005) and Amenc et al. (2010). 

     

1.2. Background and Motivation 
 

Hedge funds have attracted much interest not only for their ability to generate relatively 

high average returns, but also for the large losses that they can incur, a risk that is 

exemplified by the rise and fall of Long Term Capital Management in the late 1990s. In 

spite of such risk, the hedge fund industry witnessed rapid growth in the 2000s, with 

assets under management reaching $1.93 trillion by early 2008. During the recent credit 

crisis, there was a significant reduction both in the number of hedge funds and assets 

under management, which resulted from a combination of trading losses and asset 

withdrawals by investors. However, by April 2011, it was estimated that hedge fund 

assets had recovered to their pre-crisis level (see Strasberg and Eder, 2011). 

 

A critical factor contributing to the recent growth has been the availability of funds of 

hedge funds, which enable investors to access hedge fund alpha with lower risk, albeit 

at the expense of an additional layer of fees. Another contributing factor to the growth 

in the hedge fund industry was the launch in the early 2000s of investable hedge fund 

indices. These have generated further interest from small- and medium-sized investors, 

who would otherwise be precluded from investing in the hedge fund market. Central to 

both of these developments is the role of portfolio optimization in order to construct 

portfolios of individual hedge funds or hedge fund indices. 

 

Another critical factor is the availability of the investment products, commonly known 

as ‘clones’, which replicate hedge fund returns and deliver the returns of hedge funds at 

lower cost and without the risks of direct hedge fund investments by employing 

statistical models or algorithmic trading strategies. 

 

However, the optimal portfolio allocation across individual hedge funds and the 

replication of hedge fund returns is complicated by the fact that, owing to the strategies 

that hedge fund managers typically adopt, hedge fund returns are far from normally 
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distributed, and they usually exhibit highly significant negative skewness and excess 

kurtosis (see, for example, Amin and Kat, 2001; Lo, 2001; Brooks and Kat, 2002; Fung 

and Hsieh, 1997a, 2001; Agarwal and Naik, 2004, Hudson et al., 2006; Wegener et al., 

2010). These statistical properties of hedge fund returns defy the use of standard 

portfolio risk measurement and optimization methods, as well as, hedge fund replication 

approaches that ignore these properties. In the presence of these statistical properties, 

therefore, improving the risk measurement and optimization performance of hedge fund 

portfolios, and the replication performance of the clone portfolios creates a significant 

challenge for investors and the investment management companies who provide 

products to meet demand for these products.  

 

1.2.1. Dynamic Portfolio Risk Measurement and Portfolio Optimization  

 

In the literature, while non-normality of hedge fund returns is by now well-established, 

much less attention has been paid to the dynamic properties of hedge fund risk. In 

particular, the literature on hedge fund portfolio optimization has typically assumed a 

constant covariance structure of hedge fund returns, which leads to inaccuracies in the 

measurement of hedge fund risk and the optimization of hedge fund portfolios, 

particularly over shorter horizons, where time-variation in the covariance matrix of 

returns is most pronounced. Giamouridis and Vrontos (2007) is the first who show that 

the use of multivariate conditional volatility models improves the optimization of hedge 

fund portfolios and provides a more accurate tool for tail-risk measurement. They 

employ two static models (the sample covariance matrix and an implicit factor model) 

and three dynamic models (two implicit factor GARCH model and a regime switching 

dynamic correlations model). They compare the out-of-sample performance of 

optimised monthly and quarterly rebalanced portfolios of the Hedge Fund Research 

(HFR) indices for the period January 2002 to August 2005. They find that, in the mean-

variance framework, the use of dynamic models generates portfolios of hedge fund 

indices with lower out-of-sample risk and higher realized returns. 

 

As Giamouridis and Vrontos (2007) build their analysis on a few multivariate volatility 

models, and out-of-sample data belong to a relatively favourable period for hedge fund 

industry, the robustness of their results needs to be evaluated by considering a much 

broader set of the conditional covariance models and a longer out-of-sample evaluation 

period. The second chapter addresses these needs, and provides further evidence on the 
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performance of a broader set of the conditional covariance models in constructing 

dynamic fund of hedge funds portfolios for a favourable, as well as, an unfavourable 

out-of-sample test period for the hedge fund industry. 

 

While the use of multivariate conditional volatility models in the context of dynamic 

hedge fund risk measurement and portfolio allocation by employing mean-variance 

optimization framework is addressed by Giamouridis and Vrontos (2007) and the 

second chapter of this thesis, portfolio construction with optimization frameworks 

alternative to the mean-variance framework remains mostly untouched. Giamouridis 

and Vrontos (2007) compare mean-variance and mean-CVaR minimum risk portfolios 

with a return target constructed using HFR hedge fund strategy indices. Krokhmal et al. 

(2003) compare CVaR and CDaR approaches for a minimum risk portfolio of 

individual hedge funds, while Hentati et al. (2010) compare CVaR and Omega 

measures for portfolios including hedge funds for minimum risk portfolios. These 

alternative approaches rely on non-parametric estimation, in which the moments and 

quantiles of the density function of portfolio returns are estimated empirically, and these 

are used to compute the various risk measures used in the optimization process. The 

non-parametric approach, while straightforward to implement, relies on a large data 

sample to generate sufficiently accurate estimates of the various measures. Moreover, it 

does not readily lend itself to incorporating the well established dynamic characteristics 

of hedge fund returns, such as autocorrelation and volatility clustering. Therefore, 

optimization side of the dynamic hedge fund portfolio construction is called for further 

study. The third chapter of this thesis addresses the shortcomings of the non-parametric 

approach, proposes a semi-parametric approach to hedge fund portfolio optimization 

and extends the analysis for investors with different risk tolerances.    

 

1.2.2. Portfolio Risk Measurement and Volatility Forecast 

 

In recent years, there is a renewed interest in using the range as a variance measure. 

This is due to the attractiveness of the range-based volatility measures as an efficient, 

approximately normal and a robust measure to microstructure noise. The intraday range 

is defined as the difference between the highest and lowest log asset prices over the 

trading day. A significant practical advantage of the intraday range is that in contrast to 

intraday data, the range data for individual assets and indices are widely available over 

long historical spans. 
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Along with this renewed interest in the intraday range, financial markets also witness 

increased volatility and frequent changes in volatility states. This encourages using 

models which are able to capture the changes in volatility states. Regime switching 

models are well-known models that are able to capture the abrupt changes in asset 

prices due to financial crisis, government policy, business cycles or other economic 

fundamentals. 

 

Considering the attractive features of the range as a volatility measure and established 

success of regime switching models in capturing shifts in volatility states, a new 

volatility model that combines the intraday range with regime switching, has the 

potential to improve volatility forecast in the presence of shifts in volatility regimes. 

The fourth chapter addresses this need and proposes two univariate models which 

combine useful properties of range, regime switching, nonlinear filtration and GARCH 

frameworks. 

 

Although, at present, there is a renewed interest in range, most of the studies on the 

range are mainly in a univariate setting. Nonetheless, financial applications of volatility 

models require a multivariate framework, which includes not only time varying 

conditional variances but also conditional covariance of asset returns. However, the 

statistical property of range limits its use in estimating asset covariance, henceforth the 

multivariate volatility modelling using the range. Therefore, there are only a few studies 

on the application of the range in a multivariate setting (see Brandt and Diebold, 2006; 

Harris and Yilmaz, 2009; Chou et al., 2009 and Bannouh et al., 2009). To make the 

univariate models proposed in the fourth chapter useful for financial applications, 

including portfolio risk measurement in portfolio construction, developing their 

multivariate versions is called for. This need is addressed in the fifth chapter by 

introducing multivariate versions of the univariate models proposed in the fourth 

chapter.  

 

1.2.3. Hedge Fund Return Replication 

 

In parallel with the rapid growth in the hedge fund industry, there has been increased 

demand from investors for products that deliver the returns of hedge funds at lower cost, 

and without the risks, which are typically associated with hedge fund investment, such 
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as illiquidity, lack of transparency and management specific risks. Investment banks and 

asset management firms have introduced investment products, commonly known as 

‘clones’, in an effort to meet this growing demand. The clones seek to replicate hedge 

fund returns by employing statistical models or algorithmic trading strategies. Since 

replication of all hedge fund returns is not viable, the purpose of the replication is to 

capture a significant part of the systematic component with lower fees and better 

liquidity. 

 

There are three broad approaches to hedge fund replication: the factor approach, the 

distribution-matching approach and the rule-based approach. Factor approaches are 

often able to generate a satisfactory fit to hedge fund returns in-sample, depending on 

the choice of factors and the time period, but are often found to have poor out-of-sample 

performance. The distribution-matching approach provides relatively better out-of-

sample performance than factor approaches. However, it is considered more relevant to 

fund design than to return performance replication. The rule-based approach is often 

combined with factor-based replication, and it is proprietary in nature. 

 

Distinctive statistical properties of hedge fund returns as a by-product of extremely 

complicated hedge fund strategies, and poor performance or incompatibility of the 

current approaches makes the replication of hedge fund returns more challenging. The 

need for a new approach that should consider systematic factors as well as the statistical 

properties of hedge fund returns, is addressed in the sixth chapter of this thesis.  

 

1.3. Data 
 

Along the thesis, depending on the requirements of the models employed in each 

chapter, different frequencies of the hedge fund return data is used. In the empirical 

analysis of the Chapters 2, Chapter 3 and Chapter 6, monthly return data of hedge fund 

strategy indices from Hedge Fund Research (HFR) database are used. However, in 

Chapter 5 weekly range and return data estimated from the daily strategy returns 

collected from the HFR database are used. In Chapter 2 and 5, to be comparable to 

Giamouridis and Vrontos (2007), eight hedge fund strategy indices, however, in 

Chapter 3 and 6, by including two additional strategy indices, a broader set of hedge 

fund strategies (ten strategy indices) are utilized. On the other hand, in Chapter 4, as the 

aim is to propose a new univariate volatility model, S&P500 stock index 



25 
 

open/close/high/low prices are used. In this chapter, in an unreported work robustness 

of the proposed models is tested by using three foreign exchange data (i.e. USD, GBP 

and EUR) and another stock index (i.e. FTSE100) data. As the analysis provided in each 

chapter conducted at different times, an approach of using available dataset at the time 

of the analysis is adopted. 

 

The empirical analyses conducted by using the hedge fund return data are performed by 

considering the certain limitations of the length and the quality of the available data. 

History of the hedge fund index datasets date back only very recently. Available index 

data at monthly frequency dates back to 1990’s, while daily return data dates back only 

2003. Therefore, it should be noted that the existing time series have a small number of 

observations and cover only the most recent past. Another crucial issue regarding the 

hedge fund data is the availability of certain bias in the series. Since hedge fund 

managers are not required to disclose information on the performance of their funds, 

currently available indices are constructed from individual databases collected on a 

voluntary basis, therefore their reliability is limited. All hedge fund indices mainly 

suffer from survivorship, selection and instant history biases (see Fung and Hsieh, 

2001) and their performances are significantly different from each other. These biases 

often lead to available data to show evidence of the imprecise performance of hedge 

funds. These biases are common and unavoidable. For that reason, in this study other 

avoidable limitations are focused on and they are overcome by using the data provided 

by the databases that have received broad recognition in the sector and are commonly 

believed as precisely representing the characteristics of the sector. 

 

1.4. Methodology 
 

The methodology applied to the research presented in this thesis is carefully designed in 

each chapter to achieve the aims of the chapter and the overall aims of the thesis best.  

 

1.4.1. Dynamic Portfolio Risk Measurement and Portfolio Optimization 

 

The methodology applied to the research on dynamic portfolio risk measurement and 

portfolio construction is necessarily a hedge fund investment study1. In the investment 

                                                 
1 In the investment study conducted in this thesis, hedging demands which are caused by the time-varying 
investment opportunity set are ignored. Therefore, this thesis does not consider a pure intertemporal asset 
allocation framework as described by Merton (1973). 
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study, portfolio construction and portfolio risk measurement of the models are evaluated 

by using a broad range of portfolio return, risk, risk-adjusted return and portfolio 

turnover criteria. 

 

In the second chapter, the results of Giamouridis and Vrontos (2007) are extended to 

provide further evidence on the usefulness of multivariate conditional volatility models 

in hedge fund portfolio optimization. For this chapter, the methodology of Giamouridis 

and Vrontos (2007) is followed. In particular, monthly index return data from the HFR 

database for a longer period 1990 to 2009 of the eight investment strategies are used. 

Fund of funds portfolios are constructed by using the mean-variance optimization 

framework. Volatility forecasts are made by a broader set of volatility models, including 

a number of additional multivariate GARCH models and the much simpler 

exponentially weighted moving average (EWMA) estimator of RiskMetrics (1996). The 

models are applied to two sub-periods; one representing a bull market (2002 to 2005) 

and one representing a bear market (2006 to 2009), to test the robustness of the results. 

The bull market period corresponds to the entire out-of-sample period considered by 

Giamouridis and Vrontos (2007). Out-of-sample portfolio performance is evaluated by 

using the portfolio return, risk, risk-adjusted return and turnover criteria. 

 

In the third chapter, alternative dynamic optimization frameworks for constructing 

portfolios of hedge funds are evaluated, and a semi-parametric approach to hedge fund 

portfolio optimization that addresses the shortcomings of the non-parametric approach 

(i.e. original CVaR, CDaR and Omega approaches), is proposed. In the semi-parametric 

approach, first the returns of each portfolio constituent are standardized in order to filter 

out the predictable dynamics related to autocorrelation and volatility clustering. Then 

the marginal density of each standardized return series is modelled by using a 

combination of extreme value theory (for the tails of the density) and a piecewise 

polynomial (for the centre of the density), and the joint density of hedge fund index 

returns is constructed by using a copula-based approach. Then hedge fund returns from 

this joint density are simulated in order to compute the relevant moments and quantiles 

required for portfolio optimization. 

 

In the empirical analysis of the third chapter, monthly return data of ten hedge fund 

strategy index from the HFR database for the period 1990 to 2011 is used. Semi-

parametric and non-parametric approaches are employed to obtain the CVaR-, CDaR- 
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and Omega-based optimal portfolios. The performance of the different estimation 

approaches for conservative (minimum risk), as well as, aggressive (maximum return) 

investors is compared. For the aggressive investment strategy, three different 

formulations of the optimization problem are considered, each representing a different 

portfolio on the efficient frontier: minimization of risk subject to a target return, 

maximisation of return subject to a target risk, and maximization of return per unit of 

risk. The semi-parametrically and non-parametrically estimated CVaR, CDaR, and 

Omega models are also compared with a number of commonly used benchmarks, 

including an equally weighted portfolio, a constant volatility mean-variance model, a 

time-varying volatility mean-variance model, and a benchmark fund of hedge funds 

index. The out-of-sample portfolio performance of each model is evaluated with the 

help of a number of portfolio return, risk, risk-adjusted return and turnover criteria. 

Moreover, sensitivity to the risk limits and the robustness of the results to the choice of 

target return and estimation period is also tested. 

 

1.4.2. Portfolio Risk Measurement and Volatility Forecast  

 

The methodology applied to the research on better volatility forecast models is an 

evaluation of the in-sample goodness-of-fit and out-of-sample forecast performance of 

the proposed models in comparison to the benchmark models. In these analyses, the in-

sample fit and out-of-sample forecast performance of the models are evaluated by using 

a comprehensive set of criteria based on statistical loss functions, statistical tests and 

risk management functions. 

 

In Chapter 4, two univariate models which combine useful properties of range, regime 

switching, nonlinear filtration and GARCH frameworks are proposed. In this chapter, 

any improvement in the performance of volatility forecast is searched by employing 

regime switching in a conditional volatility setting with enhanced information content 

on true volatility. In this chapter, one and two component variants of a range-based 

regime switching model are proposed. These models nest regime switching conditional 

volatility models and eminent range-based models in a framework, which allows one to 

combine the desired properties of these two distinct models into the same framework. 

 

In this chapter, the in-sample fit and out-of-sample forecast performance of the 

proposed univariate models are compared with return based and range-based 
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counterparts. In particular, comparisons of the proposed models are made with the 

following return-based models; EWMA model of Riskmetrics, GARCH model of 

Bollerslev (1988), fractionally integrated GARCH (FIGARCH) model of Baillie et al. 

(1996), Markov Regime Switching GARCH (MRSGARCH) model of Klaassen (2002), 

and following range-based models; hybrid EWMA (HybEWMA) model of Harris and 

Yilmaz (2009) and CARR model of Chou (2005). 

 

In the analysis, daily open, close, high and low prices of S&P500 index are used. The 

weekly data which covers the period of 03 January 1982 - 26 March 2010 (1460 

observations) is estimated from daily return and range data. The full sample is divided 

into an initialization (i.e. in-sample estimation) period (1000 weeks) and out-of-sample 

forecast period (461 weeks). In comparing the forecast performance of the models, the 

four robust volatility proxy of the weekly integrated variance are used: the sum of 

squared daily returns, the sum of daily price range, the weekly squared return, and the 

weekly scaled range. In-sample fit and out-of-sample forecast performance of the 

models are evaluated by using a broad set of statistical and risk management loss 

functions. In particular, in statistical analysis mean error metrics, directional predictive 

ability tests, regressions of forecast evaluation, pair-wise and joint tests for model 

comparison are used. In analysing forecasts from a risk management perspective, 

coverage tests and risk management loss functions are utilized. The robustness of the 

results to different estimation and test periods, and to a different (daily) frequency is 

also checked.  

 

In the fifth chapter, univariate volatility models proposed in the fourth chapter are 

extended to their multivariate setting. In particular, multivariate framework is based on 

a three step process. In the first step, conditional variances are estimated from the 

univariate models. In the second step, correlations are estimated from the constant 

conditional correlation (CCC) procedure of Bollerslev (1990) and dynamic conditional 

correlation (DCC) model of Engle (2002a). In the third step, conditional variances and 

conditional correlations are combined to estimate variance covariance matrix of 

portfolio assets. Four volatility forecast horizons (1, 4, 13 and 26 weeks) are considered. 

 

The proposed multivariate models are compared to their return-based (EWMA, 

GARCH and MRSGARCH models), and range-based counterparts (HybEWMA and 

CARR models). In the analysis, daily index and return data of eight hedge fund strategy 
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index obtained from HFR for the period 31 March 2003-29 January 2010 is used. From 

daily index values of each strategy, a weekly open/close/high/low index data set is 

constructed, and using the weekly open/close/high/low values, weekly range and returns 

are estimated. The daily return data is also used to construct a volatility proxy for 

weekly variance. Weekly range data set for hedge fund strategies is composed of 357 

observations. The full sample is divided into an initialization period (150 observations) 

and an out-of-sample test period (207 observations). 

 

Portfolios based on 1-, 4-, 13- and 26-week volatility forecasts of the models are 

constructed, and the performance of the portfolios is evaluated over the out-of-sample 

test period. In constructing portfolios of hedge fund strategies from the forecast 

covariance matrix, mean-variance optimization framework is used. A number of 

statistical tests and an investment study are used to evaluate the out-of-sample 

performance of the models. In statistical analysis, the forecasting performance of each 

model for each element of the variance covariance matrix of each portfolio is evaluated. 

In particular, mean error metrics, directional predictive ability tests, forecast evaluation 

regressions, and pair-wise and joint tests are used. In investment exercise, similar to 

second and third chapters, portfolio performance of each portfolio is evaluated by using 

a number of portfolio risk, return, risk-adjusted return and turnover metrics. 

 

1.4.3. Hedge Fund Return Replication 

 

The methodology, aimed for an approach to better replication of hedge fund returns, is 

designed to utilize the useful properties of factor and distribution matching approaches 

in an optimization framework. In so doing, this chapter proposes a composite approach 

that combines the factor and distribution-matching methodologies. In particular, a linear 

factor model is specified for hedge fund returns to capture their time series properties, 

but also a range of constraints is imposed to ensure that the replicating portfolio 

matches various risk measures of the hedge fund, including Conditional Value at Risk, 

Conditional Drawdown at Risk and the partial moments of returns. These risk measures 

are nonlinear functions of the higher moments of returns, and so this approach can be 

thought of as incorporating the distribution-matching approach. Also, a return constraint 

is imposed to ensure that the clone portfolio delivers the same absolute performance as 

that of the hedge fund. 
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The proposed approach is used to replicate the monthly returns of ten hedge fund 

strategy indices by using long-only positions in ten equity, interest rate, exchange rate 

and commodity indices, all of which can be traded using liquid, investible instruments 

such as futures, options and exchange traded funds. In the analysis, monthly data on ten 

hedge fund strategy indices obtained from HFR are used. The full sample, which covers 

the period June 1994 to January 2011 (200 observations), is divided into an initial 

estimation period, June 1994 to September 2002 (100 observations), and an out-of-

sample evaluation period, October 2002 to January 2011 (100 observations). 

 

The out-of-sample performance of the replicating portfolios is tested with different 

constraints over the out-of-sample test period. Portfolio performance is reported for a 

number of different specifications of the model. The out-of-sample performance of the 

replicating portfolios is evaluated using a number of statistical and economic measures. 

In particular, firstly, the regression result of realized hedge fund portfolio returns on the 

realized replicating portfolio returns, secondly, first four moments of the hedge fund 

portfolio and the replicating portfolio, and finally, Sharpe Ratio, maximum drawdown, 

and annualized CVaR and CDaR statistics for both the hedge fund portfolio and the 

replicating portfolio. 
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CChhaapptteerr  22    

DDyynnaammiicc  HHeeddggee  FFuunndd  PPoorrttffoolliioo  

CCoonnssttrruuccttiioonn::  AA  CCoommppaarriissoonn  ooff  AAlltteerrnnaattiivvee  

VVoollaattiilliittyy  FFoorreeccaasstt  AApppprrooaacchheess  

 
 
 

2.1. Introduction  
 

Hedge funds have attracted much interest not only for their ability to generate relatively 

high average returns, but also for the large losses that they can incur, a risk that is 

exemplified by the rise and fall of Long Term Capital Management in the late 1990s. In 

spite of such risk, the hedge fund industry witnessed rapid growth in the 2000s, with 

assets under management reaching $1.93 trillion by early 2008 and from as few as 300 

funds in 1990 to about 9,000 funds today. During the recent credit crisis, there was a 

significant reduction both in the number of hedge funds and in assets under 

management, which resulted from a combination of trading losses and asset 

withdrawals by investors. However, by April 2011, it was estimated that hedge fund 

assets had recovered to their pre-crisis level (see Strasberg and Eder, 2011, and Stowell, 

2010). Hedge fund managers are exempt from much of the regulation faced by other 

investment managers, and typically employ dynamic trading strategies with frequent 

rebalancing, and often make extensive use of derivatives, short positions and leverage.  

 

An important contributing factor to this recent growth has been the availability of funds 

of hedge funds, which enable investors to access hedge fund alpha with lower risk, 

albeit at the expense of an additional layer of fees. Primarily aimed at institutional 

investors and high net worth individuals, hedge funds have recently become more 

widely accessible through the emergence of ‘funds of funds,’ which hold portfolios of 

hedge fund investments that are sold to a wider investor base. These funds provide a 

broad exposure to the hedge fund sector and diversify the risks associated with an 

investment in individual funds. Since their inception, these funds have become 

extremely popular. Indeed, by 2008, there were over two thousand funds of hedge funds 
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listed in the Hedge Fund Research (HFR) database. Another contributing factor to the 

growth in the hedge fund industry was the launch in the early 2000s of investable hedge 

fund indices. These have generated further interest from small- and medium-sized 

investors, who would otherwise be precluded from investing in the hedge fund market. 

Central to both of these developments is the role of portfolio risk measurement and 

portfolio optimization in order to construct portfolios of individual hedge funds or 

hedge fund indices. While portfolio risk measurement is addressed in this chapter, 

portfolio optimization is addressed and a new measurement approach is proposed in 

Chapter 3. 

 
In parallel with this rapid growth in the hedge fund industry, there has been increased 

demand from investors for products that deliver the returns of hedge funds at lower cost, 

and without the risks that are typically associated with hedge fund investment, such as 

illiquidity, lack of transparency and management specific risks. To meet this demand, 

investment banks and asset management firms have developed investment products, 

commonly known as ‘clones’, that seek to replicate hedge fund returns by employing 

statistical models or algorithmic trading strategies. Hedge fund return replication is 

addressed in detail and a new approach is proposed in Chapter 6. 

 

Hedge fund returns are far from normally distributed, usually exhibiting very significant 

negative skewness and excess kurtosis (see, for example, Amin and Kat, 2001; Lo, 

2001; Brooks and Kat, 2002; Fung and Hsieh, 1997a, 2001; Agarwal and Naik, 2001, 

Hudson et al., 2006; Wegener et al., 2010). While the non-normality of hedge fund 

returns is by now well-established, much less attention has been paid to the dynamic 

properties of hedge fund risk. In particular, the literature on hedge fund portfolio 

optimization has typically assumed a constant covariance structure of hedge fund 

returns. The assumption of a time-invariant variance-covariance matrix of hedge fund 

returns potentially leads to inaccuracies in the measurement of hedge fund risk and the 

optimization of hedge fund portfolios, particularly over shorter horizons where time-

variation in the covariance matrix of returns is most pronounced. Indeed, Giamouridis 

and Vrontos (2007) show that the use of multivariate conditional volatility models 

improves the optimization of hedge fund portfolios, and provides a more accurate tool 

for tail-risk measurement. They employ two static models (the sample covariance 

matrix and an implicit factor model) and three dynamic models (two implicit factor 

GARCH models and a regime switching dynamic correlations model), and compare the 
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out-of-sample performance of optimised monthly and quarterly rebalanced portfolios of 

the HFR indices for the period January 2002 to August 2005. In the mean-variance 

framework, the use of dynamic models generates portfolios of hedge fund indices with 

lower out-of-sample risk and higher realized returns. Using a mean-CVaR framework, 

which implicitly accommodates the non-normality of hedge fund returns, they show that 

dynamic optimization models are also more successful in reducing left tail risk. 

 

In this chapter, the results of Giamouridis and Vrontos (2007) are extended to provide 

further evidence on the usefulness of multivariate conditional volatility models in hedge 

fund portfolio optimization using monthly index return data from the Hedge Fund 

Research (HFR) database for the period 1990 to 2009. In particular, a broader set of 

volatility models, including a number of additional multivariate GARCH models and 

the much simpler exponentially weighted moving average (EWMA) estimator of 

RiskMetrics (1996) are considered. It is found that while multivariate GARCH models 

provide some improvement in portfolio performance over static models, they are 

generally dominated by the EWMA model. In particular, in addition to providing better 

risk-adjusted performance, the EWMA model leads to dynamic allocation strategies that 

have a substantially lower turnover and could therefore be expected to involve lower 

transaction costs. To test the robustness of the results, the models are applied to two 

sub-periods, one representing a bull market (2002 to 2005) and one representing a bear 

market (2006 to 2009). The EWMA model appears to work well in both favourable and 

unfavourable market conditions.  

 

The outline of the chapter is as follows. In the following section, the data used in the 

empirical analysis, the multivariate volatility models and the evaluation methodology 

are described. Section 3 reports the empirical results. Section 4 provides a summary and 

some concluding remarks. 
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2.2. Data and Methodology 
 

2.2.1 Data 

 

In the analysis monthly data on hedge fund index returns obtained from Hedge Fund 

Research (HFR2) is used. In line with Amenc and Martellini (2002), McFall and Lamm 

(2003), Agarwal and Naik (2004), Morton et al. (2006) and Giamouridis and Vrontos 

(2007), the indices are classified into the following investment strategies: convertible 

arbitrage (CA), distressed securities (DS), event driven (ED), equity hedge (EH), equity 

market neutral (EMN), mergers arbitrage (MA), macro (MAC) and relative value (RV). 

The data for the period January 1990 to September 2009 (237 observations) is used. 

This period covers a number of crises (e.g. the Mexican crisis, the Asian financial crisis, 

the default of the Russian government on its debt, the collapse of Long Term Capital 

Management, the collapse of the dotcom bubble and the most recent credit crisis). The 

initial estimation period covers the period January 1990 to December 2001 (144 

observations). The out-of-sample forecast period is divided into two sub-periods: 

January 2002 to August 2005, representing relatively favourable market conditions (44 

observations) and September 2005 to September 2009, representing more extreme 

market conditions (49 observations). Summary statistics for the hedge fund return series 

are reported in Table 2.1. 

 

[Table 2.1] 

 

Panel A reports various statistics for the different hedge fund investment strategies for 

the full sample of 237 observations. The characteristics of hedge fund returns are very 

heterogeneous. Some strategies (such as equity hedge and event driven) have relatively 

higher average returns and volatility. These are often thought of as return enhancers, 

used to substitute some fraction of the equity holdings in an investor’s portfolio (see 

Amenc and Martellini, 2002). Other strategies (such as relative value arbitrage and 

equity market neutral) have a lower average return and volatility, and can be regarded as 

a substitute for some fraction of the fixed income or cash holdings in an investor’s 

portfolio. All strategies except macro display negative skewness, and all are leptokurtic, 

particularly relative value arbitrage, convertible arbitrage and mergers arbitrage. The 

null hypothesis of normality is strongly rejected in all cases. Panel B reports the basic 
                                                 
2 HFR construct investible indices (HFRX) as counterparts to these indices (HFRI). Details can be found 
on the HFR website: www.hfr.com. 
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time series properties of hedge fund returns. In particular, it reports the first five 

autocorrelation coefficients, the Ljung-Box portmanteau test for serial correlation up to 

10 lags, the ARCH test of Engle (1982) and the DCC test of Engle and Sheppard 

(2001). All the hedge fund indices display highly significant positive autocorrelations 

and the ARCH test suggests that there is evidence of significant volatility clustering for 

all strategies except macro and mergers arbitrage. The DCC test, which tests the null 

hypothesis of constant correlation is tested against the alternative of dynamic 

conditional correlation, suggests that the data exhibit time-varying conditional 

correlations and hence motivates the use of dynamic conditional covariance models. 

Panel C reports the pair-wise correlations computed for the single strategies. Hedge 

fund returns exhibit correlations from 0.23 (between macro and convertible arbitrage) to 

0.84 (between event driven and distressed securities). Generally, correlations between 

the different strategies are relatively moderate, which is a desirable property in the 

construction of funds of hedge funds.   

 

2.2.2. Methodology 

 

The first and second moments of m hedge fund returns, conditional on the information 

set Ω, are defined as follows 

 

ttr εµ +=         (2.1a) 

  

ε t | Ω t −1 ~ D(0,H t )                      (2.1b) 

 

where 
tr  is the mx1 vector of hedge fund returns in period t with elements tir , , 

mi ,...,1= , µ   is the mx1 vector of mean returns with elements µi
, mi ,...,1=  and H t

 is 

the mxm covariance matrix with diagonal elements σ i,t
2  and off-diagonal elements σij,t , 

mji ,,1, K= . D(.) is any location-scale family distribution. An investor in the m hedge 

funds who wishes to minimise the variance of portfolio returns in each period t subject 

to a minimum return constraint and short selling constraints is considered. The portfolio 

optimization problem can therefore be written as 

 

( )x
x

pΦmin          (2.2) 
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subject to 0≥x , 11' =x , ( )
0, rrE tp ≥       (2.3) 

 

where tpr ,  is the return of the hedge fund portfolio on day t, ( )xpΦ  is the risk measure 

where ( ) ( ) ( ) 2/1
xHxxx ′==Φ σp  is the conditional portfolio standard deviation, x  is the 

mx1 vector of portfolio weights, ],,[ 1
′= mxx Kx , ( )

tprE ,  is the portfolio expected return 

and 0r  is the target portfolio return. In modelling the covariance matrix of hedge fund 

returns tH , two static models and six dynamic models are employed. Each of these 

models is described below.     

 

2.2.2.1. Sample Covariance Model 

 

The simplest static model of the variance-covariance matrix of hedge fund returns is the 

sample covariance matrix of historical returns, given by 

 

∑
=−

=
τ

τ 1

 )'-)(-(
1

1

t

tt

SC rrrrH        (2.4) 

 

where ∑ =
=

τ
τ

1
)/1(

t trr  is the mx1 vector of sample mean returns and τ is the estimation 

sample size. The sample covariance model is perhaps the most commonly used 

estimator of the return covariance matrix (Amenc and Martellini, 2002). 

 

2.2.2.2. Implicit Factor Model 

 

The implicit factor model utilised by Fung and Hsieh (1997a), Amenc and Martellini 

(2002), Alexander and Dimitriu (2004) and Giamouridis and Vrontos (2007), assumes 

that returns are generated by a multifactor model. Under the implicit factor model, the 

covariance matrix of hedge fund returns is given by 

  

VH IFIF += Λ ′ΛΣ         (2.5) 

 

where Λ is the mxK matrix of factor loadings, Σ IF is the KxK diagonal factor covariance 

matrix, V  is a diagonal matrix with elements on the main diagonal σε i

2 = var ui,t( ), and 

ui,t  is the idiosyncratic return with respect to the K factors. 
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2.2.2.3. Regime Switching Dynamic Correlation (RSDC) Model 

 

Following Giamouridis and Vrontos (2007), the RSDC model of Pelletier (2006) is 

employed. The model is estimated using the two-step procedure described by Engle 

(2002). In the first step, a univariate volatility model for each hedge fund index is 

estimated, and in the second step, the parameters of the correlation matrix, conditional 

on the volatility estimates are estimated. It is assumed that there are two regimes and the 

GARCH (1,1) specification in modelling the conditional variances is employed. Under 

the RSDC model, the variance-covariance matrix of hedge fund returns is given as 

 

Ht
RSDC = DtPtDt         (2.6) 

 

where ( )21

,

21

,11 ... −−= tmmtt hhdiagD  is the mxm diagonal matrix of the inverse standard 

deviations of hedge fund returns and Pt  is the mxm regime switching correlation matrix. 

The RSDC model stands somewhere between the Constant Conditional Correlation 

(CCC) model of Bollerslev (1990), in which conditional correlations are time-invariant, 

and the Dynamic Conditional Correlation (DCC) model of Engle (2002), in which 

conditional correlations are time-varying. Further details of the RSDC model can be 

found in Pelletier (2006). 

 

2.2.2.4. Orthogonal GARCH Model 

 

The Orthogonal GARCH model of Alexander (2001) is a generalization of the factor 

GARCH model introduced by Engle et al. (1990). For n factors the Orthogonal GARCH 

model is defined as 

 

tntt fuV Λ== 2/1ε         (2.7) 

 

where ),...,( 22

1 mssdiagV = is a diagonal matrix comprising the variance of itε , 

( )2/12/1

1 ... nnn lldiagP=Λ   is the (mxn) matrix of factor loadings, nP  is the matrix of 

mutually orthogonal eigenvectors and 0...1 >≥≥ nll  are the n largest eigenvalues of 

the empirical correlation matrix of tu . As tf  is defined as the random process with 



38 
 

( ) 01 =− tt fE and ( ) ( )22

1 ,...,var
1 ntt ffttt diagf σσ=Σ=− , the conditional variance-covariance 

matrix can be defined as 

 

Ht

ORTH = V 1 2VtV
1 2          (2.8) 

 

where ntntV Λ′ΣΛ= . Further details of Orthogonal GARCH model can be found in 

Alexander (2001) and Bauwens et al. (2006).  

 

2.2.2.5. Dynamic Conditional Correlation (DCC) Model 

  

The DCC model of Engle and Sheppard (2001) and Engle (2002) is defined as 

 

ttt

DCC

t DPDH =         (2.9) 

 

where ( )21

,

21

,11 ... −−= tmmtt hhdiagD  is the mxm diagonal matrix of the inverse standard 

deviations of returns and Pt  is the mxm dynamic correlation matrix. There are also other 

versions of the DCC model proposed by Tse and Tsui (2002) and Christodoulakis and 

Satchell (2002).  

 

2.2.2.6. Flexible Multivariate GARCH Model 

 

The Flexible Multivariate GARCH model proposed by Ledoit et al. (2003) estimates the 

conditional covariance matrices within the framework of the diagonal vech GARCH 

model. The diagonal vech model is given by 

 

( ) ( )tt

VEC

t

VEC

t BvechHAvechCH εε ′++= −1                  (2.10)  

 

where C is an m(m+1)/2 x 1 vector and A and B are m(m+1)/2 x m(m+1)/2 matrices. The 

diagonal vech model has a number of well-documented shortcomings. Firstly, the 

number of parameters grows at the rate 2m , so for anything more than just a few assets, 

parameter estimation is infeasible. Secondly, the conditional covariance matrix is not 

guaranteed to be positive semi-definite. However, Ledoit et al. (2003) propose a two-

step estimation method that ensures positive semi-definiteness. In the first step, a 

bivariate diagonal vech model is estimated for each pair of assets and the estimated 
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parameters are stacked into matrices Ĉ , ˆ A  and ˆ B . In the second step, ˆ C , ˆ A  and ˆ B  are 

transformed in such a way that ensures that the resulting covariance matrix, Ht
FLEX, is 

positive semi-definite.  

 

2.2.2.7. BEKK Model 

 

The BEKK model of Engle and Kroner (1995) generalises the univariate GARCH 

model to the multivariate case. The BEKK (1, 1, m) specification is given by 

  

  ∑∑
=

−−
=

− ′′+′+′=
m

i

tt

m

i

t

BEKK

t BBAHACCH
1

11

1

1 εε              (2.11) 

 

where A, B and C are mxm parameter matrices and C is lower triangular. This model is 

also equivalent to a Factor GARCH(1, 1, m) model under certain conditions (see 

Bauwens et al., 2006). 

 

2.2.2.8. Exponentially Weighted Moving Average (EWMA) Model 

 

The EWMA model, popularised by its use in the estimation of Value at Risk by JP 

Morgan in their RiskMetrics software, is a special case of the diagonal vech GARCH 

(1,1) model. Under the EWMA model, the variance-covariance matrix of returns is 

given by 

  

Ht

EWMA = λRt−1 ′ R t−1 + 1− λ( )Ht−1              (2.12) 

 

where λ  is a decay factor, commonly set to a value of 0.94 for daily data. The mean 

return is assumed to be zero, as is common in practice. 

 

Initially each of the six conditional volatility models is estimated using observations 

τ,,1 K=t  to generate one month-ahead out-of-sample forecast of the conditional 

covariance matrix for the month 1+=τt . Where appropriate, starting parameter values 

for this initial estimation were chosen on the basis of a grid-search procedure to 

maximize the likelihood function. The estimation sample is then rolled forward one 

month, and the models re-estimated and used to generate out-of-sample forecasts for 

month 2+= τt . The last iteration uses the sample 1,,1 −−−= TTt Kτ  to generate 
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forecast covariance matrix for the month Tt = . At each iteration, the starting parameter 

values for each model were set to the values estimated in the previous iteration. The 

models were estimated by Quasi Maximum Likelihood function with a Gaussian 

conditional distribution, using the BHHH algorithm. Expected returns are estimated 

using the corresponding sample mean over the estimation sample.  

 

2.2.3 Evaluation 

 

Each month, the forecast conditional covariance matrix is used to estimate the weights 

of two optimal portfolios. The first is a ‘conservative’ portfolio, which does not have a 

target expected return, i.e. the minimum-variance portfolio. The second is an 

‘aggressive’ portfolio with an annualised target expected return of either 15.5 percent or 

13.5 percent, depending on the period analysed. In all cases, in order to force 

diversification, the maximum weight in any one index is constrained to be 70 percent. 

Results for a holding period of one month are reported. The results are qualitatively 

similar using longer holding periods of three and six months. Following Agarwal and 

Naik (2004) and Giamouridis and Vrontos (2007), for each portfolio and each holding 

period, a number of evaluation criteria, which are defined below are estimated. 

 

(1) Return  

 

11, ++ = tttp RxR                  (2.13) 

 

(2) Standard deviation 

 

ttttp xHx 11, ++ ′=σ                  (2.14) 

 

(3) Conditional Sharpe ratio 

 

1,

1,

1,

+

+
+ =

tP

tP

tP

R
CSR

σ
                 (2.15) 
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(4) Portfolio Turnover 

 

tktk

m
k

T
tp xxPT ,1,1

1 −∑∑= +=
−

=τ                (2.16) 

 

This measures the fraction of the portfolio that must be liquidated and reinvested each 

month. 

 

(5) Conditional value at risk 

 

{ }ζζ ττα
α −−∑+= ∑ = +

−
=−−+

m

k tktk

T
tTtp rxCVaR

1 1,,

11
1

1
1, ,0max             (2.17) 

 

where α  is the CVaR confidence level and ζ  is portfolio VaR. CVaR is estimated at 

the 90 percent, 95 percent and 99 percent confidence levels.  

 

2.3. Empirical Results 
 

The out-of-sample forecast performance of constant and dynamic conditional 

covariance models is tested in an investment exercise for the out-of-sample period 

January 2002 to September 2009. The out-of-sample test period is divided into two sub-

periods. The first, which is from January 2002 to August 2005, is the same out-of-

sample period analyzed in Giamouridis and Vrontos (2007), and is a relatively 

favourable period for hedge funds. The second, from September 2005 to September 

2009, includes the recent financial crisis, and is hence a relatively volatile period for 

hedge funds. Empirical evidence for a conservative (i.e. minimum variance) portfolio 

and an aggressive (i.e. target return) portfolio is provided. In the first period, to be 

comparable to Giamouridis and Vrontos (2007), a target return for the aggressive 

portfolio of 15.5 percent is assumed. For the second period, when hedge fund returns 

were generally lower, a target return of 13.5 percent is assumed. By considering these 

two periods, the out-of-sample performance of the various conditional covariance 

models are being able to be assessed under both normal and extreme market conditions. 

For each of the eight models, both the mean and median values of the realized return, 

portfolio standard deviation, conditional Sharpe ratio, portfolio turnover and CVaR tail-

risk measure are reported. The statistical significance of pair-wise differences in these 
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measures between the eight models was tested using a t-test (for differences in mean 

values) and the Wilcoxon test (for differences in median values).  

 

2.3.1. Period 1: Normal Market Conditions 

 

Table 2.2 reports the mean and median values of the risk-return metrics for the 

estimated portfolios for Period 1. Realized returns are uniformly higher for the 

aggressive portfolio than for the conservative portfolio, but portfolio standard deviation 

is also uniformly higher. The Sharpe ratios are similar for the two portfolios. The static 

models (SC and IF) perform poorly in terms of risk-adjusted return for both portfolios, 

characterised by notably lower returns for the conservative portfolio and notably higher 

risk for the aggressive portfolio. As expected, however, they have the lowest turnover of 

almost all of the models, reflecting their static nature. The RSDC model offers a 

substantial improvement over the static models for both portfolios, offering higher 

returns for the conservative portfolio and lower risk for the aggressive portfolio, but has 

much higher turnover. In terms of risk-adjusted performance, the RSDC model 

generates a Sharpe ratio of 0.74 for the conservative portfolio and 0.75 for the 

aggressive portfolio, compared with 0.49 and 0.51, respectively for the SC model and 

0.49 and 0.50, respectively, for the IF model. The superior performance of the RSDC 

model relative to the static model is statistically significant. These findings are 

consistent with Giamouridis and Vrontos (2007) who report the results for the same 

portfolios optimised with the SC, IF and RSDC models over the same period. 

 

Of the remaining GARCH models, the DCC and FLEX models provide performance 

that is very similar to that of the RSDC model. In contrast, however, the ORTH and 

BEKK models perform notably worse, both generating significantly lower returns for 

the conservative portfolio and significantly higher risk for the aggressive portfolio. The 

best performing GARCH model in risk-adjusted return terms is the FLEX model for the 

conservative portfolio (with a Sharpe ratio of 0.78) and the RSDC model for the 

aggressive portfolio (with a Sharpe ratio of 0.75). However, for the conservative 

portfolio, the much simpler EWMA model generates the highest Sharpe ratio of 0.87. 

This improvement in risk-adjusted performance comes primarily from a reduction in 

risk. For the aggressive portfolio, the EWMA model offers a risk-adjusted performance, 

which is very similar to that of the RSDC, DCC and FLEX models. A notable feature of 

the EWMA model, however, is that it generates very low turnover for both the 
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conservative and aggressive portfolios, and indeed, has similar turnover to that of the 

static models. The EWMA model could be expected, therefore, to generate lower 

transaction costs relative to the GARCH models that are considered here. The CVaR 

estimates re-enforce the conclusions about risk reached above. In particular, the EWMA 

model generates a conservative portfolio that is substantially less risky than any of the 

GARCH models, or indeed the two static models. For the aggressive portfolio, there is 

little difference in the CVaR among the best performing GARCH models. 

 

2.3.2. Period 2: Extreme Market Conditions 

 

Table 2.3 reports the mean and median values of the risk-return metrics for the 

estimated portfolios for Period 2. Realized returns are generally higher for the 

aggressive portfolio than for the conservative portfolio, although there are some 

exceptions (most notably the RSDC model), and portfolio standard deviation is 

significantly higher. Owing to the higher volatility of this period, risk-adjusted returns, 

as measured by the Sharpe ratio, are uniformly higher for the conservative portfolio than 

for the aggressive portfolio. In contrast with Period 1, the performance of the static 

models (SC and IF) in Period 2 is similar to that of the dynamic models in terms of 

realised return and standard deviation. In terms of risk-adjusted returns, the static 

models have lower mean Sharpe ratios, but the median values are similar to those of the 

other models, suggesting perhaps that the mean values in this case are driven by 

outliers. Similar to Period 1, the static models have much lower turnover owing to their 

relatively unresponsive nature. Among the dynamic models, the RSDC and EWMA 

models provide the best risk-adjusted return performance for the conservative portfolio 

and the RSDC, EWMA and DCC models provide the best performance for the 

aggressive portfolio.  

 

Comparing the results for Period 1 and Period 2, it is seen that the deterioration in 

performance is greater for the aggressive portfolio than for the static portfolio, which is 

to be expected given the unfavourable conditions prevailing in Period 2. In particular, 

the standard deviation of returns is generally higher in Period 2 for the aggressive 

portfolio, while the level of returns is substantially lower. For the conservative portfolio, 

the standard deviation of returns is also generally higher in Period 2 than in Period 1, 

but the median level of returns is in many cases higher. The EWMA model is again 

notable for having the lowest turnover of the dynamic models, and for the aggressive 
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portfolio, it is similar to that of the two static models. In terms of tail risk, the 

aggressive portfolios have significantly higher CVaR than the conservative portfolios, 

but there is not a systematic difference between the dynamic models and the static 

models. Of the dynamic models, the EWMA model and the FLEX model offer the 

lowest tail risk at all three CVaR levels for both the conservative and aggressive 

portfolios. A number of the dynamic models have substantially higher tail risk than the 

static models. This is especially true of the RSDC and ORTH and DCC models. 

 

2.4. Conclusion 
 

In this chapter, analysis are built on the analysis of Giamouridis and Vrontos (2007) and 

further evidence is provided on the performance of dynamic conditional covariance 

models for the optimization of funds of hedge funds. It is done so by considering a 

much broader set of conditional covariance models, and a longer out-of-sample 

evaluation period. In particular, not only additional GARCH models, but also the much 

simpler RiskMetrics EWMA model is considered. Moreover, evaluation periods of 

favourable and unfavourable conditions for the hedge fund industry are separately 

considered. In the first out-of-sample period, which is a relatively favourable period, the 

findings of Giamouridis and Vrontos (2007) are confirmed and it is shown that GARCH 

models are able to provide a substantial improvement in terms of risk-return trade-off 

over the static models, for the optimization of both conservative and aggressive 

portfolios. However, in most cases these improvements come at the expense of higher 

portfolio turnover and rebalancing expenses. In contrast, the EWMA model, which is 

the most parsimonious of the dynamic models, offers a superior risk-return trade-off 

and, moreover, does so with rebalancing costs those are no higher than those of the 

static models. In the second out-of-sample period, which is characterised by much 

greater volatility and generally unfavourable conditions for the hedge fund industry, 

dynamic models again tend to outperform static models, providing a superior risk-return 

trade-off, although the differences are less marked than during the favourable conditions 

of the first out-of-sample period. The best performing models in terms of risk-adjusted 

returns are the RSDC, EWMA and DCC models, but of these, the EWMA model is 

again notable for generating portfolios that have substantially lower turnover and less 

tail risk. The findings of the chapter therefore confirm the advantages of dynamic 

models over static models, but favour the use of simple models over more sophisticated 

models. This last result stands in contrast with other studies that question the 
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effectiveness of the RiskMetrics framework in the univariate context (see, for example, 

McMillan and Kambouroudis, 2009).  
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Table 2.1 

Summary Statistics and Time Series Properties of Hedge Fund Return Series 

Panel A reports summary statistics for the monthly hedge fund return series over the period of January 
1990 to September 2009. The statistics are estimated from monthly return series.  The estimated kurtosis 
is excess kurtosis over the kurtosis of the Gaussian distribution. Panel B reports the autocorrelation, 
autoregressive conditional heteroskedasticity (ARCH) and dynamic conditional correlation (DCC) test 
results for the whole period. *,** and *** denote significance at 10, 5 and 1 percent levels, respectively. 
The Ljung-Box-Q test for autocorrelation of order up to 10 asymptotically distributed as a central Chi-
square with 10 d.o.f. Under the null hypothesis, with 5 percent critical value is 18.307. ARCH(4) is 
Engle's LM test for autoregressive conditional heteroskedasticity, which is asymptotically distributed as a 
central Chi-square with 4 d.o.f. Under the null hypothesis with 5 percent critical value is 9.488. p-values 
are reported in parenthesis. DCC test statistics is the Chi-square with 13 d.o.f. The p-value (i.e. 
probability of a constant correlation) is in the bracket. Panel C reports correlations between hedge fund 
strategies over the period of January 1990 to September 2009. 
 
 

 
 

Panel A: Summary Statistics

Mean Median SD Skew Kurt. Min. Max. Jarque-Bera

Equity hedge 1.15 1.31 2.68 -0.24 4.91 -9.46 10.88 38.23 [0.00]

Macro 1.13 0.83 2.25 0.44 3.81 -6.40 7.88 14.03 [0.00]

Relative value arbitrage 0.85 0.91 1.31 -2.23 16.97 -8.03 5.72 2122.21 [0.00]

Event driven 1.00 1.29 2.02 -1.36 7.20 -8.90 5.13 246.92 [0.00]

Convertible arbitrage 0.74 1.00 1.97 -3.24 32.50 -16.01 9.74 9006.08 [0.00]

Distressed securities 1.02 1.12 1.94 -1.01 7.89 -8.50 7.06 276.58 [0.00]

Equity market neutral 0.63 0.58 0.94 -0.17 4.19 -2.87 3.59 15.16 [0.00]

Mergers arbitrage 0.76 0.96 1.23 -2.21 11.68 -6.46 3.12 936.70 [0.00]

Panel B: Basic Time Series Properties

ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) LB-Q(10) ARCH(4) DCC test

59.48 [0.00]

Equity hedge 0.26*** 0.16*** 0.09*** 0.05*** -0.05***   29.53*** 22.90***

Macro 0.16** -0.00** 0.01 0.11* 0.17***   22.03** 6.78

Relative value arbitrage 0.46*** 0.27*** 0.12*** 0.11*** 0.03***   74.43*** 44.74***

Event driven 0.39*** 0.17*** 0.10*** 0.06*** 0.03***   48.13*** 15.07***

Convertible arbitrage 0.61*** 0.32*** 0.16*** 0.12*** -0.03*** 134.58*** 55.29***

Distressed securities 0.57*** 0.28*** 0.15*** 0.14*** 0.02*** 108.66*** 46.28***

Equity market neutral 0.16*** 0.18*** 0.20*** 0.19*** 0.08***   72.98*** 16.81***

Mergers arbitrage 0.23*** 0.08*** 0.11*** 0.00*** 0.07***   26.92*** 0.57

Panel C: Correlation Structure of Individual Hedge Fund Strategies

[ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6] [ 7] [ 8 ]

Equity hedge 1.00

Macro 0.56 1.00

Relative value arbitrage 0.66 0.33 1.00

Event driven 0.82 0.51 0.74 1.00

Convertible arbitrage 0.56 0.23 0.78 0.63 1.00

Distressed securities 0.68 0.42 0.77 0.84 0.63 1.00

Equity market neutral 0.44 0.31 0.36 0.34 0.25 0.33 1.00

Mergers arbitrage 0.58 0.32 0.54 0.75 0.46 0.56 0.30 1.00
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Table 2.2 

Out-of-Sample Evaluation Criteria of Monthly Rebalancing Portfolios (Period 1) 

The table reports evaluation criteria for the out-of-sample monthly rebalancing conservative and 
aggressive portfolios of HFR indices in the period January 2002 to August 2005. Evaluation criteria 
include mean and median values of realized return (Return), portfolio standard deviation (Risk), 
Conditional Sharpe ratio (CSR), portfolio turnover (Turnover) and Conditional value at risk (CVaR) at 
the 90 (CVaR90), 95 (CVaR95) and 99 (CVaR99) percent confidence levels. Medians are reported in the 
brackets. 
 
 

 

Return Risk CSR Turnover CVaR90 CVaR95 CVaR99

SC 0.35 [0.40] 0.71 [0.71] 0.49 [0.56] 0.99 [  0.63] 0.37 [0.36] 0.59 [0.58] 1.02 [1.00]

IF 0.33 [0.37] 0.67 [0.66] 0.49 [0.56] 0.62 [  0.20] 0.32 [0.30] 0.52 [0.50] 0.92 [0.90]

RSDC 0.52 [0.59] 0.85 [0.75] 0.74 [0.84] 43.75 [36.86] 0.40 [0.21] 0.66 [0.44] 1.17 [0.90]

ORTH 0.35 [0.37] 0.76 [0.71] 0.49 [0.52] 7.85 [  5.95] 0.46 [0.38] 0.69 [0.59] 1.15 [1.02]

DCC 0.53 [0.60] 0.88 [0.79] 0.73 [0.82] 43.37 [42.39] 0.45 [0.27] 0.72 [0.51] 1.25 [0.99]

FLEX 0.46 [0.53] 0.61 [0.59] 0.78 [0.82] 50.69 [46.54] 0.14 [0.10] 0.33 [0.28] 0.69 [0.64]

BEKK 0.39 [0.37] 0.70 [0.69] 0.57 [0.57] 20.56 [18.41] 0.35 [0.31] 0.57 [0.52] 0.99 [0.93]

EWMA 0.45 [0.44] 0.53 [0.51] 0.87 [0.87] 6.24 [  3.41] 0.03 [0.02] 0.17 [0.17] 0.49 [0.48]

SC 0.76 [0.87] 1.49 [1.50] 0.51 [0.58] 4.86 [  4.35] 1.40 [1.42] 1.86 [1.89] 2.75 [2.75]

IF 0.73 [0.83] 1.44 [1.46] 0.50 [0.60] 7.06 [  4.91] 1.32 [1.35] 1.77 [1.79] 2.63 [2.63]

RSDC 0.61 [0.67] 1.01 [0.90] 0.75 [0.87] 34.80 [22.53] 0.57 [0.38] 0.88 [0.65] 1.49 [1.49]

ORTH 0.74 [0.79] 1.47 [1.38] 0.55 [0.62] 22.27 [18.40] 1.37 [1.21] 1.82 [1.63] 2.70 [2.70]

DCC 0.61 [0.67] 1.04 [0.93] 0.73 [0.84] 36.77 [22.68] 0.62 [0.43] 0.95 [0.72] 1.57 [1.57]

FLEX 0.70 [0.80] 1.01 [0.98] 0.73 [0.78] 31.73 [23.97] 0.57 [0.50] 0.89 [0.81] 1.50 [1.50]

BEKK 0.76 [0.89] 1.35 [1.35] 0.57 [0.69] 17.21 [13.85] 1.15 [1.15] 1.57 [1.57] 2.38 [2.38]

EWMA 0.76 [0.87] 1.04 [1.03] 0.74 [0.81] 6.43 [  4.11] 0.62 [0.61] 0.94 [0.92] 1.57 [1.57]

Panel A: Conservative Portfolio

Panel B: Aggressive Portfolio with Target Return 15.5% p.a.
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Table 2.3 

Out-of-Sample Evaluation Criteria of Monthly Rebalancing Portfolios (Period 2) 

The table reports evaluation criteria for the out-of-sample monthly rebalancing conservative and 
aggressive portfolios of HFR indices in the period September 2005 to September 2009. Evaluation criteria 
include mean and median values of realized return (Return), portfolio standard deviation (Risk), 
Conditional Sharpe ratio (CSR), portfolio turnover (Turnover) and Conditional value at risk (CVaR) at 
the 90 (CVaR90), 95 (CVaR95) and 99 (CVaR99) percent confidence levels. Medians are reported in the 
brackets. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Return Risk CSR Turnover CVaR90 CVaR95 CVaR99

SC 0.20 [0.54] 0.74 [0.71] 0.32 [0.74] 0.99 [  0.63] 0.54 [0.46] 0.77 [0.68] 1.22 [1.10]

IF 0.16 [0.55] 0.72 [0.69] 0.28 [0.74] 0.62 [  0.20] 0.53 [0.45] 0.77 [0.68] 1.20 [1.08]

RSDC 0.21 [0.49] 1.10 [0.97] 0.69 [0.81] 43.75 [36.86] 0.97 [0.75] 1.32 [1.05] 1.99 [1.64]

ORTH 0.34 [0.62] 0.97 [0.75] 0.58 [0.70] 7.85 [  5.95] 0.95 [0.59] 1.25 [0.83] 1.84 [1.29]

DCC 0.18 [0.51] 1.22 [1.04] 0.64 [0.62] 43.37 [42.39] 1.12 [0.84] 1.50 [1.20] 2.24 [1.83]

FLEX 0.29 [0.44] 0.73 [0.69] 0.46 [0.69] 50.69 [46.54] 0.48 [0.43] 0.71 [0.66] 1.16 [1.09]

BEKK 0.33 [0.52] 0.78 [0.74] 0.53 [0.70] 20.56 [18.41] 0.58 [0.56] 0.82 [0.80] 1.29 [1.26]

EWMA 0.31 [0.53] 0.68 [0.59] 0.69 [0.80] 6.24 [  3.41] 0.43 [0.31] 0.65 [0.51] 1.08 [0.89]

SC 0.23 [0.53] 1.30 [1.18] 0.26 [0.45] 5.29 [  4.59] 1.30 [1.03] 1.72 [1.40] 2.53 [2.53]

IF 0.20 [0.50] 1.26 [1.13] 0.25 [0.43] 6.40 [  4.65] 1.22 [0.95] 1.62 [1.31] 2.41 [2.41]

RSDC 0.11 [0.51] 1.32 [1.03] 0.64 [0.65] 30.94 [18.64] 1.33 [0.77] 1.76 [1.09] 2.58 [2.58]

ORTH 0.31 [0.50] 1.82 [1.31] 0.38 [0.25] 18.81 [14.47] 2.23 [1.48] 2.80 [1.92] 3.93 [3.93]

DCC 0.14 [0.54] 1.42 [1.10] 0.63 [0.59] 33.33 [19.09] 1.46 [0.85] 1.91 [1.22] 2.79 [2.79]

FLEX 0.27 [0.43] 0.96 [0.87] 0.45 [0.47] 31.44 [25.32] 0.72 [0.54] 1.04 [0.82] 1.65 [1.65]

BEKK 0.36 [0.55] 1.31 [1.14] 0.42 [0.41] 17.75 [14.49] 1.30 [1.04] 1.71 [1.40] 2.53 [2.53]

EWMA 0.35 [0.45] 0.98 [0.80] 0.61 [0.57] 6.85 [  4.00] 0.80 [0.43] 1.12 [0.70] 1.76 [1.76]

Panel A: Conservative Portfolio

Panel B: Aggressive Portfolio with Target Return 13.5% p.a.
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CChhaapptteerr  33    

DDyynnaammiicc  HHeeddggee  FFuunndd  PPoorrttffoolliioo  

CCoonnssttrruuccttiioonn::  AA  SSeemmii--PPaarraammeettrriicc  AApppprrooaacchh  

ttoo  OOppttiimmiizzaattiioonn    

 
 
 

 

3.1. Introduction 
 

A number of studies have examined portfolio optimization in a hedge fund context. 

However, the optimal portfolio allocation across individual hedge funds is complicated 

by the fact that owing to the strategies that hedge fund managers typically adopt, hedge 

fund returns are far from normally distributed, usually exhibit very significant negative 

skewness and excess kurtosis (see related literature in Section 2.1). Portfolio 

optimization in the presence of such non-normality in hedge fund returns generally 

leads to very different portfolio allocations than those implied by mean-variance 

analysis (see, for example, McFall Lamm, 2003; Fung and Hsieh, 1997b; Cvitanic et al., 

2003; Terhaar et al., 2003; Popova et al,. 2003; Glaffig, 2006; Wong et al., 2008). 

Motivated by the well established volatility clustering in hedge fund returns, 

Giamouridis and Vrontos (2007) address the issue of hedge fund portfolio optimization 

in a dynamic context. They show that the use of multivariate conditional volatility 

models improves portfolio performance, and provides a more accurate tool for tail-risk 

measurement. Harris and Mazibas (2010) provide further evidence on the use of 

multivariate conditional volatility models in the context of dynamic hedge fund risk 

measurement and portfolio allocation, and show that simple volatility models, such as 

the RiskMetrics EWMA model of JP Morgan, provide the biggest improvements in 

performance. The non-normality in hedge fund returns has prompted the use of 

alternative measures of risk in the optimization framework. Agarwal and Naik (2004) 

and Giamouridis and Vrontos (2007) compare mean-variance and mean-CVaR 

portfolios constructed using HFR hedge fund strategy indices. Krokhmal et al. (2003) 

compare CVaR and CDaR approaches for minimum risk portfolios of individual hedge 

funds, while Hentati et al. (2010) compare CVaR and Omega measures for portfolios 
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including hedge funds for minimum risk portfolios. These alternative approaches rely 

on non-parametric estimation, in which the moments and quantiles of the density 

function of portfolio returns are estimated empirically, and these are used to compute 

the various risk measures used in the optimization process. The non-parametric 

approach, while straightforward to implement, relies on a large data sample to generate 

sufficiently accurate estimates of the various measures. Moreover, it does not readily 

lend itself to incorporating the well established dynamic characteristics of hedge fund 

returns, such as autocorrelation and volatility clustering.  

 

In this chapter, a semi-parametric approach to hedge fund portfolio optimization that 

addresses the shortcomings of the non-parametric approach is proposed. In the semi-

parametric approach, first the returns of each portfolio constituent are standardized in 

order to filter out the predictable dynamics related to autocorrelation and volatility 

clustering. Then the marginal density of each standardized return series is modelled 

using a combination of extreme value theory (for the tails of the density) and a 

piecewise polynomial (for the centre of the density), and the joint density of hedge fund 

index returns is constructed by using a copula-based approach. Then hedge fund returns 

from this joint density are simulated in order to compute the relevant moments and 

quantiles required for portfolio optimization. Using monthly index return data from the 

HFR database for the period 1990 to 2011, the semi-parametric and non-parametric 

approaches are used to obtain the CVaR-, CDaR- and Omega-based optimal portfolios. 

The performance of the different estimation approaches for conservative (minimum 

risk) as well as aggressive (maximum return) investors are compared. For the aggressive 

investment strategy, three different formulations of the optimization problem are 

considered, each representing a different portfolio on the efficient frontier: minimization 

of risk subject to a target return, maximisation of return subject to a target risk, and 

maximization of return per unit of risk. The semi-parametrically and non-parametrically 

estimated CVaR, CDaR and Omega models are also compared with a number of 

commonly used benchmarks, including an equally weighted portfolio, a constant 

volatility mean-variance model, a time-varying volatility mean-variance model, and a 

benchmark fund of hedge funds index. Two main findings are reported. The first is that 

CVaR-, CDaR- and Omega-based optimization offers a significant improvement in 

terms of risk-adjusted portfolio performance over mean-variance optimization. The 

second is that, for all three risk measures, semi-parametric estimation of the optimal 

portfolio offers a very significant improvement over non-parametric estimation. The 
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results are robust to as the choice of target return and the estimation period.     

 

The outline of the chapter is as follows. Section 2 describes the optimization 

framework, the estimation methods and the evaluation criteria. Section 3 describes the 

data used in the empirical analysis. Section 4 reports the empirical results. Section 5 

provides a summary and some concluding remarks. 

 

3.2. Methodology 
 

In this section, first the generic optimization problem is set out for two types of 

investor: conservative and aggressive, and the different measures of risk that are used to 

construct the objective function of the optimization problem are defined. Then the semi-

parametric and non-parametric approaches to estimating the optimal portfolio are 

described. Finally the evaluation criteria that are used to compare the different 

approaches are defined. 

 

3.2.1. Optimization Framework 

 

Consider an investor who allocates her wealth among m individual hedge funds or 

hedge fund indices, with portfolio weight vector, ],,[ 1
′= mxx Kx . For a conservative 

investor, the portfolio optimization problem is given by 

 

)(min x
x

pΦ                   (3.1) 

subject to x ≥ 0 , 1' =m1x       

 

where Φp (x)
 
is the portfolio risk function to be minimized (i.e. standard deviation, 

CVaR, CDaR or lower partial moment) and 1m
 is an m-vector of ones. The budget 

constraint and non-negativity constraints yield an unleveraged long-only portfolio. For 

an aggressive investor, three separate formulations of the portfolio optimization 

problem are considered. The first minimizes portfolio risk subject to a target expected 

portfolio return, r0 : 

 

)(min x
x

pΦ                    (3.2) 

subject to 0≥x , 1' =1x , 0, )( rrE tp ≥      
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where ],,[ ,,1
′= tmtt rr Kr  is the m-vector of hedge fund returns at time t and ttpr rx′=,  is 

the portfolio return at time t. The second formulation of the portfolio optimization 

problem for an aggressive investor maximizes portfolio return subject to a portfolio risk 

constraint: 

 

)(max ,tprE
x          

subject to Cp ω≤Φ )(x , 0≥x , 1' =1x                 (3.3) 

 

where ω  is the risk limit and C is the invested capital, which is set arbitrarily to 1. The 

third formulation of the portfolio optimization problem for an aggressive investor 

maximizes portfolio expected excess return per unit of portfolio risk:  

 

)(

)(
max

,

xx
p

ftp rrE

Φ

−
        

subject to 0≥x , 1' =1x                   (3.4) 

 

where fr  is risk-free rate of return. This formulation is a generalization of the tangency 

portfolio in expected return-risk space for the different risk measures.    

 

3.2.2. Optimization Models  

 

In this section, the different risk measures, pΦ , that are used in the optimization 

problems described above, are defined. 

 

3.2.2.1. Mean-Variance Optimization Model 

 

As a benchmark, the standard mean-variance model is used, in which the risk measure is 

portfolio standard deviation, given by 

 

[ ] 2/1
)( xHxx ′=σ                                 (3.5) 

 

where H is the mxm covariance matrix of hedge fund index returns. Two versions of the 
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mean-variance model are considered. In the static mean-variance model, H is estimated 

using the sample covariance matrix. In the dynamic mean-variance model, H is 

estimated using the multivariate RiskMetrics EWMA model of JP Morgan (1996). For 

the mean-variance optimization model, Φ(x) = σ(x) is set in the generic optimization 

problems (3.1)-(3.4). 

 

3.2.2.2. Mean-CVaR Optimization Model 

 

Conditional Value at Risk (CVaR) is a tail-risk measure derived from the Value at Risk 

(VaR) estimator, and is defined as the conditional expectation of losses exceeding VaR 

at specified confidence level and time horizon. CVaR can be defined as 

 

( ) [ ]ζζ
α

ζζα <−−
−

+= tptp rrECVaR ,, |
1

1
,x     (3.6) 

 

where ζ  is portfolio VaR measured at the α-confidence level, [ ]ζζ ≤−= tprPF ,),(x  is 

the cumulative distribution function, which is continuous and non-decreasing with 

respect to α , and ( ){ }αζζζα ≥= ,|min)( xx F . In equation (6), by minimizing CVaR, 

VaR is also minimized. Rockafeller & Uryasev (2002) show that CVaR satisfies all 

statistical axioms of a coherent measure of risk defined by Artzner et al. (1999) and is a 

convex function of portfolio positions (see also Rockafeller & Uryasev, 2000). For 

portfolio implementations of CVaR measure, see, for example, Krokhmal et al. (2002a, 

2002b). For the mean-CVaR optimization model, ( )ζα ,)( xCVaRx P=Φ  is set in the 

generic optimization problems (3.1)-(3.4).  

 

3.2.2.3. Mean-CDaR Optimization Model 

 

Drawdown, also known as the underwater portfolio level, is defined as the drop in 

portfolio value from a previous highest level. The drawdown measure helps investors to 

construct portfolios that may enable them not to lose more than a fixed percentage of 

the maximum value of their wealth achieved up to that point in time. Chekhlov et al. 

(2000) propose Conditional Drawdown at Risk (CDaR), which combines the drawdown 

concept with CVaR approach. Similar to CVaR, CDaR is defined as the expectation of 

drawdowns that exceed a certain threshold )(xαζ
 
defined at an α -confidence level. 

However, unlike CVaR, CDaR accounts not only for the amount of losses over some 
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period, but also for the sequence of those losses. For portfolio implementation of CDaR, 

see, Checkhlov et al. (2005). 

 

Let the uncompounded cumulative portfolio value at time t be w x, t( ). The drawdown 

function at time t is given by  

 

( )[ ] ( )twjwtf
tj

,,max),(
0

xxx −=
≤≤

      (3.7) 

 

then CDaR−α  is formulated as 

 

( ) [ ]ζζ
α

ζζα >−
−

+= ),(|),(
1

1
, tftfECDaR xxx    (3.8) 

 

The drawdown function satisfies Artzner's nonnegativity, positive homogeneity, 

translation invariance and subadditivity axioms (see Chekhlov et al., 2005). Unlike 

CVaR, which is estimated for a one-month time horizon, CDaR is estimated for a one-

year time horizon. For the mean-CDaR optimization model, ( )ζα ,)( xx CDaR=Φ  is set 

in the generic optimization problems (3.1)-(3.4).  

 

3.2.2.4. Omega Optimization Model 

 

Omega is a performance measure that was first introduced by Keating & Shadwick 

(2002a, 2002b) to overcome the shortcomings of classical measures such as the Sharpe 

ratio. In particular, Omega separately considers gains and losses without reference to a 

specific distribution for asset returns. For its implementation in portfolio construction 

see, for example, Avouyi-Dovi et al. (2004), Passow (2005),  Gilli et al. (2006), 

Mausser et al. (2006) and Kane et al. (2009). Omega is defined for any portfolio return 

level as the probability weighted ratio of gains to losses relative to a threshold return 

defined by the investor, br . 

 

In its simplest form, the Omega function can be expressed by the help of partitioning 

the portfolio return distribution into the upper partial moment of returns (gains) and the 

lower partial moment of returns (losses). Omega is then defined as  
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[ ]
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,,

,,

|

|
,x

              (3.9) 

 

where upper partial moments function is the conditional expectation of portfolio returns 

that exceed the threshold (nominator), and the lower partial moments function is the 

conditional expectation of returns below the threshold (denominator). For the Omega-

based optimization model, three specifications based on (3.9) are considered. For the 

conservative investment strategy, (3.1), and the first formulation of the aggressive 

investment strategy, (3.2), the lower partial moment of returns is employed as the 

measure of risk and so [ ]btptpb rrrEr ≤−=Φ ,, |)(x
 
is set, where the threshold return level, 

br  is set to the risk-free rate of return. For the second formulation of the aggressive 

portfolio, (3.3), the upper partial moment, [ ] bbtptp rrrrEg −≥= ,, | , is maximized with 

subject to a constraint on the lower partial moment, l = rb − E rp,t | rp,t ≤ rb
 . For the third 

formulation of the aggressive investment strategy, the Omega ratio as defined in (3.9) is 

maximized.  

 

3.2.3. Estimation Method 

 

Hedge fund returns typically exhibit substantial non-normality, with significant negative 

skewness and excess kurtosis, and also often display significant autocorrelation. 

Portfolio optimization in the presence of these statistical properties generally leads to 

very different portfolio allocations than those implied by mean-variance analysis. This 

has prompted the use of alternative risk and performance measures, such as CVaR, 

CDaR and Omega. These approaches have invariably been implemented using a non-

parametric approach, in which the unobserved moments and quantiles of the distribution 

of portfolio returns are estimated by their empirical counterparts. The non-parametric 

approach, while straightforward to implement, relies on a large data sample to generate 

sufficiently accurate estimates of the various measures. Moreover, it does not lend itself 

to incorporating the well established dynamic characteristics of hedge fund returns, such 

as autocorrelation and volatility clustering. In this chapter, a semi-parametric approach 

to optimization in the CVaR, CDaR and Omega frameworks is proposed that addresses 

these shortcomings of the non-parametric approach.  

 

First, the returns for each hedge fund index is filtered with using an AR(1)-
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EGARCH(1,1) model in order to generate an i.i.d. standardized return series. The 

autocorrelation functions (ACFs) of standardized returns are compared to the ACFs of 

the raw returns to make sure the standardized returns are approximately i.i.d.  Second, 

Extreme Value Theory is applied to the standardized returns, by employing the Peaks-

over-Threshold approach.3 To do so, the upper and lower tails and the centre of the 

standardized return distribution are isolated, and a Generalized Pareto Distribution is 

fitted to the tails of the cumulative distribution (CDF) function of the standardized 

returns, and a piecewise polynomial to the centre of the distribution. The resulting 

piecewise distribution allows interpolation within the interior of the CDF and 

extrapolation in each tail. The ability to extrapolate the tails of the CDF allows one to 

estimate quantiles that lie outside the range of historical observations, and is hence 

highly suited to estimating tail-related risk measures. Third, a copula function is used to 

model the dependency structure of individual hedge fund return indices. The most 

commonly used copulae are the Gaussian copula for linear correlation, the Archimedean 

copula and t-copula for tail-dependence, and the Gumbel copula for extreme 

distributions (see, for example, Bouye et al. 2000). Since the AR(1)-EGARCH(1,1) 

filtered returns are i.i.d., the t-copula is most suitable for modelling the dependency in 

returns. Both a constant correlation matrix and a dynamic correlation matrix that is 

obtained from the DCC-GARCH model of Engle and Sheppard (2001) and Engle 

(2002) are used in fitting the copula function. Fourth, the resulting multivariate return 

distribution is used to simulate portfolio returns4. Using the parameters of the fitted t-

copula, dependent hedge fund index returns are jointly simulated by first simulating the 

corresponding dependent standardized returns. To do so, first dependent uniform 

variates are simulated, then are extrapolated into the GPD tails and interpolated into the 

smoothed interior. The uniform variates are transformed to the standardized residuals 

using the inversion of the semi-parametric marginal CDF of each index. Then using 

these simulated standardized returns as the i.i.d. input process, the autocorrelation and 

                                                 
3 In Extreme Value Theory, there are two approaches to modelling extreme values: Block-Maxima and 
Peaks-over-Threshold. In the Block-Maxima approach, the largest observations are collected from large 
samples of identically distributed observations, and the Generalized Extreme Value Distribution is fitted 
to the maxima of each block. In the Peaks-over-Threshold approach, a Generalized Pareto Distribution is 
fitted to all large observations that exceed a high threshold (i.e. the large losses in the tails of the loss 
distribution). Empirically, the Peaks-Over-Threshold approach appears to yield a more accurate 
description of the tails of the distribution for financial returns (see, for example, Embrecht et al., 1997; 
Reiss & Thomas, 1997).   
4 The alternative optimization frameworks employed here are very sensitive to the availability of enough 
observation at the tails of the return distribution. However, most of the time, realized (observed) tail 
observations are not enough to fully describe the tails of the distribution due to the unavailability of the 
probable but unrealized (unobserved) returns. Therefore, the purpose of the simulation, employed here, is 
to generate data enough to describe the theoretical return distribution to make sure that the returns that are 
probable but unobserved are considered within the portfolio construction process. 
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heteroskedasticity is reintroduced that is estimated using the AR(1)-EGARCH(1,1) 

model in the first step. Finally, the simulated returns of each index are used to construct 

the CVaR-, CDaR- and Omega-optimized portfolios5. Optimization results using the 

non-parametric, empirically-based approach are also reported.  

 

Initially each optimization model is estimated using observations τ,,1 K=t  to generate 

one month-ahead out-of-sample forecast portfolio weights for the month 1+=τt . The 

estimation sample is then rolled forward one month, and the forecast portfolio weights 

for month 2+= τt

 

are generated. The last iteration uses the sample 

1,,1 −−−= TTt Kτ  to generate forecast portfolio weights for the month Tt = . 

Expected returns are estimated using the corresponding sample mean over the 

estimation sample. The optimization models are estimated using the Matlab fmincon 

function. 

 

3.2.4. Evaluation 

 

Each portfolio is rebalanced at each month and the realized portfolio return is calculated 

at the rebalancing date. The performance of each portfolio is evaluated over the out-of-

sample period Tt ,,1 K+= τ  using the following metrics: 

 

(1) Average Realized Portfolio Return 
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                (3.10) 

 

(2) Standard Deviation of Realized Portfolio Returns  
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(3) Maximum Drawdown 

 

                                                 
5 It should be noted that the simulated returns are used in “constructing” the CVaR-, CDaR- and Omega-
optimal portfolios. However, in evaluating the out-of-sample forecast performance of these semi-
parametric models, as it is done for all benchmark models, realized (observed) returns are used.   
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where tw  is the uncompounded cumulative portfolio value at date  Tt ,...,1+=τ , and at 

τ=t  initial portfolio value is set equal to 1. 

 

(4) CVaR 

 

{ }ζζ ττα
α −−∑+= ∑ = +

−
=−−+

m

k tktk

T
tTtp rxCVaR

1 1,,

11
1

1
1, ,0max                     (3.13) 

 

where α  is the CVaR confidence level and ζ is portfolio VaR.   

 

(5) CDaR 
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where ζ is the threshold drawdown level and 
α

1, +tpCDaR  is portfolio CDaR defined at 

the −α confidence level for the out-of-sample evaluation period. 

 

(6) Sharpe Ratio 
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(7) Omega Ratio 
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where 1, +tbr  is the realized benchmark return at t+1. 
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(8) Information Ratio 
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(9) Portfolio Turnover 
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3.3. Data 
 

In the analysis, monthly data on ten HFR indices are used. In addition to the hedge fund 

strategy indices used in Chapter 2 (see 2.2.1), the short selling (SS) and emerging 

markets (EM) indices are also considered. The fund of funds (FOF) strategy index is 

used as a benchmark. The sample is for the period January 1990 to January 2011 (253 

observations). This period includes a number of crises (e.g. Mexican crisis, Asian 

financial crisis, the Russian government default, the collapse of Long Term Capital 

Management, the collapse of the dotcom bubble and the most recent credit crisis). The 

initial estimation period is January 1990 to June 2002 (150 observations). The out-of-

sample forecast period is July 2002 to January 2011 (103 observations). As the length of 

the data is different from the data used in Chapter 2, the data analysis is performed for 

the new data set. Findings are in line with the findings presented in Chapter 2 and 

Chapter 6. Summary statistics for the hedge fund return series are reported in Table 3.1. 

 

[Table 3.1] 

   

Panel A reports various descriptive statistics for the different hedge fund strategies for 

the full sample of 253 observations. Unsurprisingly, hedge fund strategies exhibit quite 

diverse statistical characteristics. All strategies reveal positive mean return. Some 

strategies display relatively higher volatility (such as equity hedge, emerging markets 

and short bias), while some strategies have quite low volatility (such as equity market 

neutral, merger arbitrage, relative value). However, all strategies exhibit negative 

skewness (except short selling and macro), and all strategies are leptokurtic. The null 

hypothesis of normality is strongly rejected for all strategies. Panel B reports the basic 

time series properties of the strategy returns. In particular, it reports the first five 
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autocorrelation coefficients, the Ljung-Box portmanteau test for serial correlation up to 

10 lags and the ARCH test of Engle (1982). All hedge fund strategies, except short 

selling, exhibit highly significant autocorrelations. The ARCH test suggests that there is 

evidence of volatility clustering in all strategy returns except event driven, emerging 

markets and mergers arbitrage. Panel C reports pair-wise correlations between single 

hedge fund strategy returns. Correlations are as low as 0.21 (between emerging market 

and equity market neutral strategy) and as high as 0.85 (between event driven and 

distressed securities strategy). The short selling strategy is negatively correlated with all 

other strategies. Overall, pair-wise correlations are relatively moderate, a property that 

is clearly desirable in the construction of funds of hedge funds. 

 

3.4. Empirical Results 
 

In this section, the out-of-sample performance of the different optimization approaches 

is reported. In particular, the non-parametric CVaR, CDaR and Omega models are 

compared with the static and dynamic semi-parametric CVaR, CDaR and Omega 

approaches described in the previous section. The results for four benchmark portfolios 

are also reported: the static and dynamic mean-variance models, the naïve (i.e. equally 

weighted) portfolio, and the HFR fund of hedge funds index. The performance of these 

ten portfolios is reported for the conservative investment mandate and the three 

formulations of the aggressive investment mandate. For the first formulation of the 

aggressive strategy (which minimizes risk subject to a target return), the target return is 

set equal to 14 percent. For the second formulation of the aggressive investment 

strategy (which maximizes return subject to a risk limit), risk limits of ω=0.02 

(monthly) for the CVaR portfolio, ω=0.10 (annual) for the CDaR portfolio, and 

ω=0.0005 for the Omega portfolio, are used. For each portfolio, end of period value 

(assuming an initial unit investment), annualized average return, standard deviation, 

maximum drawdown, CVaR, CDaR, Sharpe ratio, Omega, information ratio, and 

portfolio turnover are reported. A risk-free rate of 2.03 percent is used, which is the 

average long term US Government bond rate for the sample period. This rate is also 

used as the return threshold in the calculation of Omega for the optimization. In order to 

evaluate the sensitivity of the results to the various parameters, a range of alternative 

return targets, risk constraints and estimation sample sizes are considered.  

 

3.4.1. Conservative Investment Strategy  
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Table 3.2 reports the results for the conservative investment strategy. Of the four 

benchmark portfolios, the naïve portfolio generates the highest return, but also has 

relatively high risk in terms of volatility, MDD, CVaR and CDaR. The dynamic MV 

portfolio has a slightly higher Sharpe ratio, but the Omega ratio is substantially higher 

for the naïve portfolio. The HFR index generates similar returns to the two MV 

portfolios, but it is much more volatile, and as a result, has a much lower Sharpe ratio. 

The non-parametric models generally underperform the four benchmarks, with none 

generating a return higher than that of the naïve portfolio, and only the non-parametric 

CVaR portfolio has comparable return performance. The Omega model, while 

generating the lowest returns of the three non-parametric portfolios (and lower than all 

four benchmark portfolios) has lower standard deviation, and very much lower MDD, 

CVaR and CDaR. However, it still underperforms in terms of risk-adjusted 

performance, with lower Sharpe and Omega ratios. A striking feature of the three non-

parametric models is that they have substantially lower turnover than the static and 

dynamic MV benchmark portfolios, and so on balance would be preferred by investors. 

However, overall, the naïve portfolio appears to offer the best investment strategy. The 

static semi-parametric CVaR, CDaR and Omega models all offer returns that are higher 

than their non-parametric counterparts, and in all cases, higher also than the four 

benchmark portfolios. They are also less risky than the non-parametric models, and 

have higher Sharpe ratios and, for two of the three models, higher Omega ratios also. 

However, the static semi-parametric models have substantially higher turnover than 

both the non-parametric models and the two benchmark MV models, and so the 

superior performance of the semi-parametric models would have to be weighed against 

the transaction costs that they incur. Figure 3.1, which exhibits the course of portfolio 

values of different conservative portfolios during the out-of-sample period, also 

confirms the findings above. The performance of the semi-parametric models, 

especially during and after the credit crisis, is remarkable. Panel A of Table 3.6a reports 

the average portfolio weights of the different conservative portfolios. It is notable that 

the Omega-based portfolios exhibit a very different composition from the other 

portfolios, with a much higher allocation to risk-reducing strategies (e.g. equity market 

neutral, short bias, arbitrage strategies including merger, convertible and relative value 

arbitrage) and much lower allocation to return-enhancing strategies (e.g. event driven, 

distressed securities, equity hedge, emerging markets and macro).  

 

[Table 3.2, Figure 3.1] 
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3.4.2. Aggressive Investment Strategy 

 

Table 3.3 reports the results for the first formulation of the aggressive investment 

strategy, which minimizes portfolio risk subject to a target return. As expected, 

imposing a relatively high target return leads to portfolios that generate higher returns 

relative to the conservative investment strategy, but which are also significantly more 

risky in terms of standard deviation, MDD, CVaR and CDaR. For the benchmark MV 

portfolios and the non-parametric portfolios, the increase in risk outweighs the increase 

in return, and consequently imposing a target return reduces the Sharpe ratio. However, 

the effect on the Omega ratio is less clear, with a decrease for the two MV portfolios 

and the CVaR portfolio, but an increase for the CDaR and Omega portfolios. The semi-

parametric CDaR portfolio performs worse in the presence of a target return, with lower 

return, higher risk and a much lower Sharpe ratio, but the semi-parametric CVaR and 

Omega portfolios generate similar performance relative to the conservative investment 

strategy, in both their static and dynamic variants. The semi-parametric models clearly 

dominate the non-parametric models for this formulation of the aggressive investment 

strategy. In particular, no non-parametric model is able to match the performance of any 

of the semi-parametric models, static or dynamic. The imposition of a target return 

substantially increases portfolio turnover, especially for the semi-parametric models. 

These findings are also clearly confirmed by Figure 3.2, which exhibits the course of 

portfolio values. Semi-parametric CVaR and Omega models clearly dominate all 

models in terms of portfolio values, while semi-parametric CDaR models display 

similar performance to benchmark and non-parametric models.  

 

[Table 3.3, Figure 3.2] 

 

Table 3.4 reports the results for the second formulation of the aggressive investment 

strategy, which maximizes portfolio return subject to a maximum risk constraint. For all 

portfolios, the returns are higher than in the minimum risk formulation of the aggressive 

investment strategy (Figure 3.3), although the resulting portfolio risk is similar in the 

two cases. In terms of risk-adjusted performance, there is some improvement in both the 

Sharpe ratio and the Omega ratio. Transaction costs are generally lower than in the 

previous case. Of the four benchmark portfolios, the static and dynamic MV portfolios 

offer the highest return, although also higher risk. Of the non-parametric models, only 
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the Omega model is able to match the performance of the MV benchmark portfolios, 

although it displays a static portfolio allocation. As in the previous case, both the static 

and dynamic semi-parametric models offer a substantial improvement in performance 

over their non-parametric counterparts, both in absolute return terms and in terms of 

risk-adjusted performance. These findings are also confirmed by Figure 3.3, which 

exhibits the course of portfolio values. Semi-parametric models clearly dominate 

benchmark and non-parametric models. Exceptional performance of semi-parametric 

models, especially during and after the credit crisis, is noteworthy. 

 

[Table 3.4, Figure 3.3] 

 

Table 3.5 reports the results for the third formulation of the aggressive investment 

strategy, which maximizes the return per unit of risk. For the benchmark MV portfolios 

and the non-parametric models, the results are very similar to the conservative 

investment strategy, with slightly lower returns and slightly lower risk, and very similar 

Sharpe and Omega ratios. However, for the semi-parametric models, while returns are 

significantly higher, risk is lower, and so there is a significant improvement in risk-

adjusted performance relative to the conservative case. Nevertheless, both the static and 

dynamic semi-parametric models comfortably outperform their non-parametric 

counterparts. Figure 3.4, which displays the course of portfolio values of the models, 

confirms these findings. Semi-parametric CVaR model clearly dominates all models in 

terms of portfolio values, while other semi-parametric models comfortably outperform 

non-parametric and benchmark models. 

 

[Table 3.5, Figure 3.4] 

 

Panel B of Table 3.6a, and Panel C and D of Table 3.6b report the average portfolio 

weights of the different aggressive portfolios. Semi-parametric models exhibit 

remarkably different portfolio composition than benchmark and non-parametric models 

for all formulations of the aggressive investment strategy. In particular, CVaR- and 

Omega-based portfolios make significantly higher allocations to risk-reducing strategies 

and much lower allocations to return-enhancing strategies. Although, semi-parametric 

CDaR-based portfolios display similar composition to their non-parametric counterpart 

for the first formulation, they make similar allocations to CVaR- and Omega-based 

portfolios in the second and third formulation. The portfolio compositions reveal that 
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the superior performance of the semi-parametric models is due to their well-balanced 

portfolio allocations between risk-reducing and return-enhancing strategies.       

 

[Table 3.6] 

 

3.4.3. Sensitivity Analysis  

 

The sensitivity of the model portfolios to the risk limits, return targets and estimation 

samples are examined in order to test the robustness of the main results provided in the 

previous section. 

 

First, the sensitivity of the CVaR, CDaR, Omega and MV portfolios to the risk limits is 

examined in the second formulation of the aggressive investment strategy. Table 3.7 

and Figure 3.5 report the results for CVaR models, while Table 3.8 and Figure 3.6 for 

CDaR models. For the CVaR and CDaR models, increasing the risk limit enhances 

portfolio returns as well as risk. In terms of risk-adjusted returns, increasing the risk 

limit increases the Sharpe ratio, information ratio and Omega ratio up to a certain level. 

Beyond this, portfolio risk increases faster than return, and so the risk-adjusted 

performance declines. The semi-parametric CVaR and CDaR models significantly 

outperform the non-parametric CVaR and CDaR models at every level of the risk limit. 

At lower risk limits, the non-parametric models yield portfolios with lower risk and 

return. Increasing the risk limit significantly enhances the return performance of the 

semi-parametric models, while portfolio risk remains lower than for the non-parametric 

models, resulting in a significant improvement in risk-adjusted return performance. 

 

Table 3.9 and Figure 3.7 report the results for Omega models. In contrast with the 

CVaR and CDaR models, for Omega models increasing the risk limit, which implies 

higher risk tolerance, results in an allocation with more portfolio weights given to 

instruments with higher downside potential. In portfolios constructed by non-parametric 

Omega model, the portfolio allocation is insensitive to risk limit up to a very high level 

of the lower partial moment limit. However, semi-parametric Omega models are quite 

sensitive to risk limits. Semi-parametric models yield higher return, lower risk, hence 

better risk-adjusted return performance at low levels of the risk limit. Increasing the risk 

limit worsens the return performance while portfolio risk is consistently lower than the 

non-parametric model. Specifically, the dynamic model is more sensitive to risk limits 
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than the static model. Both models significantly outperform the non-parametric model 

especially at low levels of risk limits. For the MV models, portfolio performance is 

insensitive to changes in risk limits up to a certain level. After this level, while static 

model is still insensitive to changes in risk limit, return performance of the dynamic 

model improves faster than increases in portfolio risks, hence displays better risk-

adjusted return performance than static model at every level of risk limit. 

 

Second, the sensitivity analysis is extended in an unreported work by incorporating five 

additional return targets; 13, 15, 16, 17 and 18 percent. These results are available from 

the author upon request. Use of lower/higher additional return targets in the first 

formulation of the aggressive investment strategy does not significantly alter the main 

findings. At lower return targets such as 13 percent MV-based models and non-

parametric CDaR, CVaR and Omega models exhibit poorer return, risk and risk-

adjusted return performance than naïve portfolio. Among the proposed semi-parametric 

models, CDaR model exhibits slightly better performance than its non-parametric 

counterpart. However, semi-parametric CVaR and Omega models significantly 

outperform the naïve portfolio at return, risk and risk-adjusted return grounds. These 

models also make quite balanced allocations between risk-reducing and return-

enhancing strategies (allocate half of the portfolio to risk-reducing strategies), while 

other models allocate only a small fraction of the portfolio to risk-reducing strategies 

(e.g. on average 15, 3 and 1 percent for the 13, 15 and 16 percent target returns). At 

higher return targets while other models construct the portfolio with all return-

enhancing strategies, semi-parametric CVaR and Omega models still allocate a 

significant portion of the portfolio to risk-reducing strategies to keep portfolio risks 

under control (e.g. on average 40, 34 and 30 percent for the 15, 16 and 17 percent target 

returns). This noteworthy difference in portfolio allocation is also reflected in portfolio 

performance. Semi-parametric CVaR and Omega models exhibit significantly higher 

portfolio return, lower portfolio risk and notably higher risk-adjusted return statistics. 

Opposite to other models, increasing the return target further improves their portfolio 

performance as they generate higher portfolio returns with similar or slightly higher 

portfolio risk, hence higher risk-adjusted return statistics. 

 

Third, two shorter (i.e. 100 and 125 months) and one longer (i.e. 175 months) additional 

estimation periods are incorporated in an unreported work. These results are available 

from the author upon request. Use of longer/shorter estimation sample lengths does not 
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change the main findings. In particular, for conservative and aggressive portfolios 

(except second formulation), using a shorter sample length increases the portfolio return 

and risk; hence slightly increase risk-adjusted return performance ratios. However, in 

maximum return formulation of the aggressive mandate longer estimation sample 

enhance return performance at the expense of higher risks, consequently display slight 

improvement in the risk-adjusted return performance ratios. 

 

In summary, it is examined if certain parameter preferences, such as risk tolerance 

limits, target return, size of the estimation period, have any effects on the main findings 

of the previous section. It has been found that the main results, presented in the previous 

section, remain unchanged. 

 

3.5. Conclusion 
 

The non-parametric approach to CVaR-, CDaR- and Omega-based optimization, while 

straightforward to implement, relies on a large data sample to generate sufficiently 

accurate estimates of the various measures. Moreover, it does not readily lend itself to 

incorporating the well-established dynamic characteristics of hedge fund returns, such 

as autocorrelation and volatility clustering. In this chapter, a semi-parametric approach 

to hedge fund portfolio optimization that addresses the shortcomings of the non-

parametric approach is proposed. The performance of the different estimation 

approaches for conservative (minimum risk), as well as, aggressive (maximum return) 

investors is compared. For the aggressive investment strategy, three different 

formulations of the optimization problem are considered, each representing a different 

portfolio on the efficient frontier: minimization of risk subject to a target return, 

maximization of return subject to a target risk, and maximization of return per unit of 

risk. The semi-parametrically and non-parametrically estimated CVaR, CDaR and 

Omega models are also compared with a number of commonly used benchmarks, 

including an equally weighted portfolio, a constant volatility mean-variance model, a 

time-varying volatility mean-variance model, and a benchmark fund of hedge funds 

index. 

 

In this chapter, the potential advantages of employing alternative optimization 

frameworks to the mean-variance framework are investigated. First, portfolio 

construction performance of non-parametrically estimated CVaR, CDaR and Omega 
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models are compared with the benchmark models and the benchmark index. Second, 

possible areas of improvement in the performance of the alternative optimization 

models are searched for. In the literature, in an effort to improve the performance of the 

CDaR model, Checklov et al. (2005) propose a ‘multi-scenario’ CDaR by using non-

parametric bootstrapping in re-sampling historical observations. However, they 

demonstrate that, on average, their proposed solution is 20 to 30 percent worse than 

those predicted by historical returns, in terms of risk-adjusted returns. In this chapter, a 

different route is followed, and a semi-parametric estimation for CVaR, CDaR and 

Omega models is proposed. In the semi-parametric approach, first the returns of each 

portfolio constituent are standardized in order to filter out the predictable dynamics 

related to autocorrelation and volatility clustering. Second, the marginal density of each 

standardized return series is modelled using a combination of extreme value theory (for 

the tails of the density) and piecewise polynomial (for the centre of the density), and the 

joint density of hedge fund index returns is constructed by using a copula-based 

approach. Finally, hedge fund returns from this joint density are simulated in order to 

compute the relevant moments and quantiles required for portfolio optimization. 

 

The analyses presented in this chapter report two main findings. The first finding is that 

CVaR-, CDaR- and Omega-based optimization offers a significant improvement in 

terms of risk-adjusted portfolio performance over the mean-variance optimization. The 

second finding is that for all three risk measures, semi-parametric estimation of the 

optimal portfolio offers a very significant improvement over non-parametric estimation. 

In particular, the optimal portfolios, estimated by using the proposed semi-parametric 

approach, display significantly higher portfolio return, lower risk, higher risk-adjusted 

return, better upside potential and higher active management ratios, at the expense of 

higher portfolio turnovers. Another remarkable finding is the demonstrated success of 

the semi-parametrically estimated models in predicting the market upturn and 

downturns. These models exhibit superior performance during the rising markets as 

well as during to, and recovery from the crisis. It is also examined if certain parameter 

preferences, such as risk tolerance limits, target return, size of the estimation period, 

have any effects on the main findings of the previous section. It has been found that the 

main results are robust to as the choice of target return and the estimation period.    
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Table 3.1 

Summary Statistics and Time Series Properties of Hedge Fund Indices 

Panel A reports summary statistics in percentages for the hedge fund strategy index series over the period 
of May 1998 to January 2011 (153 months). Panel B reports the autoregressive conditional 
heteroskedasticity (ARCH) and autocorrelation test results for the full period. The Ljung–Box-Q test for 
autocorrelation of order up to 10 asymptotically distributed as a central Chi-square with 10 d.o.f. Under 
the null hypothesis, with 5 percent critical value is 18.307. ARCH(4) is Engle's LM test for autoregressive 
conditional heteroskedasticity, which is asymptotically distributed as a central Chi-square with 4 d.o.f. 
Under the null hypothesis with 5 percent critical value is 9.488. p-values are also reported in the adjacent 
columns. Panel C reports HFR single strategy hedge fund index correlations. 
 
 

 

Index Mean Median Std. Dev. Min. Max. Skew Kurtosis JB Stats pval

Convertible Arbitrage 0.77 1.01 1.94 -16.01 9.74 -3.21 29.58 9657.61 0.00

Distressed Securities 1.02 1.13 1.90 -8.50 7.06 -1.03 5.00 308.06 0.00

Event Driven 1.00 1.29 1.99 -8.90 5.13 -1.36 4.25 268.98 0.00

Equity Hedge 1.13 1.30 2.65 -9.46 10.88 -0.24 1.87 39.36 0.00

Emerging Markets 1.19 1.59 4.17 -21.02 14.80 -0.89 3.73 180.22 0.00

Equity Market Neutral 0.60 0.58 0.92 -2.87 3.59 -0.13 1.17 15.09 0.01

Mergers Arbitrage 0.74 0.92 1.20 -6.46 3.12 -2.20 8.87 1032.68 0.00

Macro 1.09 0.81 2.22 -6.40 7.88 0.46 0.84 16.24 0.00

Relative Value 0.86 0.93 1.28 -8.03 5.72 -2.24 14.12 2311.63 0.00

Short Bias 0.17 -0.20 5.58 -21.21 22.84 0.18 1.93 40.78 0.00

Index ARCH pval LB-Q pval ACF(1) ACF(2) ACF(3) ACF(4) ACF(5)

Convertible Arbitrage 50.96 0.00 132.11 0.00 0.59 0.29 0.17 0.12 -0.02

Distressed Securities 36.49 0.00 110.14 0.00 0.55 0.27 0.16 0.14 0.02

Event Driven 6.75 0.15 47.40 0.00 0.38 0.15 0.11 0.06 0.02

Equity Hedge 23.33 0.00 27.72 0.00 0.25 0.15 0.09 0.04 -0.05

Emerging Markets 4.08 0.40 42.63 0.00 0.34 0.15 0.08 0.05 0.01

Equity Market Neutral 19.54 0.00 83.31 0.00 0.16 0.19 0.21 0.19 0.09

Mergers Arbitrage 3.29 0.51 28.33 0.00 0.22 0.08 0.11 0.00 0.07

Macro 13.90 0.01 23.07 0.01 0.16 0.00 0.01 0.11 0.17

Relative Value 31.52 0.00 74.87 0.00 0.44 0.25 0.13 0.11 0.02

Short Bias 54.35 0.00 9.63 0.47 0.10 -0.06 0.01 -0.09 -0.09

Index CA DS ED EH EM EMN MA MAC RV

Convertible Arbitrage 1.00

Distressed Securities 0.64 1.00

Event Driven 0.64 0.85 1.00

Equity Hedge 0.57 0.68 0.83 1.00

Emerging Markets 0.51 0.68 0.74 0.72 1.00

Equity Market Neutral 0.26 0.33 0.35 0.45 0.21 1.00

Mergers Arbitrage 0.46 0.56 0.75 0.58 0.51 0.31 1.00

Macro 0.23 0.42 0.51 0.57 0.57 0.32 0.33 1.00

Relative Value 0.79 0.77 0.74 0.66 0.59 0.36 0.54 0.33 1.00

Short Bias -0.31 -0.48 -0.62 -0.75 -0.58 -0.11 -0.41 -0.36 -0.39

Panel A: Summary Statistics

Panel B: Basic Time Series Properties

Panel C: Correlations between single hedge fund strategy indices
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Table 3.2 

Risk, Return and Turnover Performance Measures of Conservative Portfolio  

The table reports evaluation criteria for the out-of-sample monthly rebalancing conservative portfolio in 
the period July 2002 to January 2011 (103 months). Benchmark models are the HFR Fund of Fund Index, 
naive (equally-weighted) portfolio, static and dynamic mean-variance (MV) models. Evaluation criteria 
include end of period portfolio value (EPV), annualized average return (AR), annualized standard 
deviation (SD), maximum drawdown (MDD), annualized conditional value at risk (CVaR) and 
conditional drawdown at risk (CDaR), Sharp Ratio (SR), Omega Ratio (OMG), Information Ratio (IR) 
and Portfolio Turnover (PT). CVaR and CDaR are estimated at 99 percent confidence level. AR, SD, 
MDD, CVaR and CDaR are in percentages.    
 
 

 
 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

HFR index 1.444     4.45      5.62      25.11    22.63     1.62     0.124   1.473   0.000 0.00

Naive 1.736     6.54      4.52      17.29    19.31     4.49     0.289   2.397   0.338  0.00

MV (static) 1.468     4.54      3.31      12.91    14.74     3.42     0.218   1.024   0.009  28.20

MV (dynamic) 1.515     4.88      2.69      5.43      11.85     1.49     0.306   1.083   0.028  24.03

CVaR 1.698     6.27      4.22      15.88    17.65     4.15     0.290   1.994   0.266  1.04

CDaR 1.430     4.25      3.93      15.76    17.77     4.12     0.163   0.938   0.024-  1.78

Omega 1.424     4.16      2.58      7.82      12.07     2.13     0.239   0.941   0.023-  7.01

CVaR 1.826     7.08      2.99      5.00      8.09       1.37     0.488   1.716   0.173  40.93

CDaR 2.019     8.30      4.08      8.31      15.15     2.25     0.444   4.521   0.382  19.18

Omega 1.926     7.72      3.37      5.10      7.57       1.40     0.487   1.898   0.202  58.87

CVaR 2.023     8.32      4.13      8.92      15.02     2.41     0.440   5.118   0.409  17.90

CDaR 1.842     7.22      3.98      9.72      10.60     2.62     0.376   2.031   0.249  63.99

Omega 1.941     7.83      4.03      7.34      14.76     2.00     0.416   2.146   0.255  57.89

Benchmark models

Non-parametric models

Semi-parametric models (static)

Semi-parametric models (dynamic)
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Table 3.3 

Risk, Return and Turnover Performance Measures of Minimum Risk Aggressive 

Portfolio (Formulation 1) 

The table reports evaluation criteria for the out-of-sample monthly rebalancing aggressive portfolio with 
minimum risk formulation with an annual nominal target return 14 percent in the period July 2002 to 
January 2011 (103 months). Benchmark models are the HFR Fund of Fund Index, naive (equally-
weighted) portfolio, static and dynamic mean-variance (MV) models. Evaluation criteria include end of 
period portfolio value (EPV), annualized average return (AR), annualized standard deviation (SD), 
maximum drawdown (MDD), annualized conditional value at risk (CVaR) and conditional drawdown at 
risk (CDaR), Sharp Ratio (SR), Omega Ratio (OMG), Information Ratio (IR) and Portfolio Turnover 
(PT). CVaR and CDaR are estimated at 99 percent confidence level. AR, SD, MDD, CVaR and CDaR are 
in percentages. 

 
 

 
 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

HFR index 1.444     4.45      5.62      25.11    22.63     1.62     0.124   1.473   0.000 0.00

Naive 1.736     6.54      4.52      17.29    19.31     4.49     0.289   2.397   0.338 0.00

MV (static) 1.688     6.51      8.79      41.68    41.26     9.64     0.147   1.630   0.149 15.97

MV (dynamic) 1.685     6.48      8.79      41.68    41.26     9.64     0.146   1.601   0.146 16.33

CVaR 1.796     7.25      9.00      41.48    41.26     9.60     0.168   1.851   0.200 12.93

CDaR 1.715     6.70      8.91      41.54    41.26     9.61     0.151   1.679   0.162 13.27

Omega 1.643     6.18      8.63      41.50    41.26     9.60     0.139   1.520   0.130 15.25

CVaR 2.475     10.76    5.54      8.82      12.45     2.37     0.455   3.790   0.331 112.10

CDaR 1.811     7.35      8.97      41.48    41.26     9.60     0.171   1.901   0.207 18.53

Omega 2.550     11.10    5.41      8.93      12.44     2.40     0.484   4.309   0.362 112.65

CVaR 2.489     10.83    5.64      8.81      12.45     2.37     0.450   3.936   0.335 114.55

CDaR 1.809     7.34      8.98      41.49    41.26     9.60     0.171   1.887   0.206 16.93

Omega 2.529     11.02    5.63      9.18      12.45     2.47     0.461   4.052   0.344 112.32

Benchmark models

Non-parametric models

Semi-parametric models (static)

Semi-parametric models (dynamic)
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Table 3.4 

Risk, Return and Turnover Performance Measures of Maximum Return 

Aggressive Portfolio (Formulation 2) 

The table reports evaluation criteria for the out-of-sample monthly rebalancing aggressive portfolio with 
maximum return formulation with a risk constraint in the period July 2002 to January 2011 (103 months). 
Benchmark models are the HFR Fund of Fund Index, naive (equally-weighted) portfolio, static and 
dynamic mean-variance (MV) models. Evaluation criteria include end of period portfolio value (EPV), 
annualized average return (AR), annualized standard deviation (SD), maximum drawdown (MDD), 
annualized conditional value at risk (CVaR) and conditional drawdown at risk (CDaR), Sharp Ratio (SR), 
Omega Ratio (OMG), Information Ratio (IR) and Portfolio Turnover (PT). CVaR and CDaR are 
estimated at 99 percent confidence level. AR, SD, MDD, CVaR and CDaR are in percentages. 

 
 

 
 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

HFR index 1.444     4.45      5.62      25.11    22.63     1.62     0.124   1.473   0.000 0.00

Naive 1.736     6.54      4.52      17.29    19.31     4.49     0.289   2.397   0.338 0.00

MV (static) 1.819     7.43      9.30      41.57    41.18     9.62     0.168   1.768   0.197 13.63

MV (dynamic) 2.184     9.61      9.67      40.54    41.17     9.42     0.226   2.352   0.323 9.98

CVaR 1.675     6.13      4.54      14.05    16.44     3.71     0.261   1.888   0.224  18.88

CDaR 1.818     7.42      9.33      41.63    41.26     9.63     0.167   1.757   0.195  14.00

Omega 2.275     10.14    10.22    43.56    41.26     9.98     0.229   2.222   0.302  0.00

CVaR 3.363     14.40    6.28      6.14      8.33       1.68     0.569   9.055   0.563  99.95

CDaR 3.375     14.53    7.57      15.89    17.28     4.15     0.477   6.836   0.608  97.35

Omega 2.903     12.91    9.32      32.48    30.48     7.84     0.337   3.925   0.499  57.00

CVaR 3.187     13.74    5.83      5.60      8.37       1.54     0.580   13.850 0.698  98.42

CDaR 3.505     14.98    7.53      10.18    12.46     2.74     0.496   6.467   0.609  98.90

Omega 2.990     13.14    8.00      12.41    13.98     3.30     0.401   3.320   0.420  80.00

Benchmark models

Non-parametric models

Semi-parametric models (static)

Semi-parametric models (dynamic)
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Table 3.5 

Risk, Return and Turnover Performance Measures of Maximum Excess Return 

over Minimum Risk Aggressive Portfolio (Formulation 3) 

The table reports evaluation criteria for the out-of-sample monthly rebalancing aggressive portfolio with 
maximum excess return over minimum risk formulation in the period July 2002 to January 2011 (103 
months). Benchmark models are the HFR Fund of Fund Index, naive (equally-weighted) portfolio, static 
and dynamic mean-variance (MV) models. Evaluation criteria include end of period portfolio value 
(EPV), annualized average return (AR), annualized standard deviation (SD), maximum drawdown 
(MDD), annualized conditional value at risk (CVaR) and conditional drawdown at risk (CDaR), Sharp 
Ratio (SR), Omega Ratio (OMG), Information Ratio (IR) and Portfolio Turnover (PT). CVaR and CDaR 
are estimated at 99 percent confidence level. AR, SD, MDD, CVaR and CDaR are in percentages.       
 
 

 
 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

HFR index 1.444     4.45      5.62      25.11    22.63     1.62     0.124   1.473   0.000 0.00

Naive 1.736     6.54      4.52      17.29    19.31     4.49     0.289   2.397   0.338 0.00

MV (static) 1.452     4.40      2.96      9.43      14.02     2.54     0.231   0.988   -0.005 10.28

MV (dynamic) 1.490     4.68      2.17      2.72      5.98       0.76     0.352   1.041   0.014 21.59

CVaR 1.426     4.17      2.69      4.87      7.92       1.34     0.230   0.946   0.019-  15.01

CDaR 1.462     4.47      2.78      6.22      9.13       1.70     0.254   1.006   0.002  11.26

Omega 1.464     4.49      3.06      9.95      14.16     2.68     0.232   1.012   0.005  10.21

CVaR 2.027     8.32      3.40      4.26      5.45       1.17     0.534   2.135   0.230  70.00

CDaR 2.060     8.52      3.93      5.91      10.78     1.61     0.477   2.641   0.276  62.60

Omega 2.115     8.82      3.56      4.52      5.70       1.24     0.551   2.462   0.264  74.42

CVaR 2.332     9.98      4.01      5.16      6.93       1.41     0.573   3.440   0.352  66.43

CDaR 2.067     8.59      4.55      12.50    12.59     3.32     0.417   3.197   0.408  70.84

Omega 2.461     10.63    4.45      5.57      7.15       1.52     0.559   4.063   0.368  80.92

Semi-parametric models (static)

Semi-parametric models (dynamic)

Benchmark models

Non-parametric models
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Table 3.6a 

Portfolio Composition with 1-Month Rebalancing Portfolios 

Panel A and Panel B report average portfolio weights of the ten single strategy hedge fund indices for 
conservative portfolio and aggressive portfolio with minimum risk formulation with an annual nominal 
target return 14 percent in the out-of-sample period July 2002 to January 2011. Maximum position for 
each asset is limited to 50 percent of the portfolio to force diversification. CVaR and CDaR portfolios are 
calculated at 95 percent confidence level. 
 
 

 
 

 CA DS ED EH EM EMN MA MAC RV SB

Benchmark models

MV (static) 12.00 6.82 5.82 7.57 3.20 20.11 13.57 7.23 12.14 11.54

MV (dynamic) 8.19 7.01 6.27 6.27 3.60 16.57 13.43 7.36 12.22 19.08

Non-parametric models

CVaR 9.89      9.73      9.71      9.80     9.03     10.31   10.12   10.02   10.03  11.37   

CDaR 11.87    5.51      6.81      8.65     2.03     17.50   15.92   15.49   9.65    6.57     

Omega 8.05 2.93 0.00 8.66 0.01 26.62 21.95 3.11 18.45 10.23

Semi-parametric models (static)

CVaR 9.00 10.11 4.50 8.28 2.80 23.81 8.85 7.50 10.82 14.33

CDaR 9.97 10.70 8.03 10.30 5.89 14.36 11.50 12.28 11.76 5.21

Omega 8.34 10.48 1.47 7.08 1.45 31.80 6.83 6.25 15.64 10.67

Semi-parametric models (dynamic)

CVaR 9.94 9.28 2.25 2.68 0.79 38.76 5.22 11.44 18.70 0.95

CDaR 9.94 10.70 8.97 10.03 5.89 14.77 11.01 12.81 11.86 4.03

Omega 9.36 10.25 1.26 0.64 0.00 38.81 5.80 7.68 26.20 0.00

Benchmark models

MV (static) 0.58 5.02 18.66 46.46 17.37 0.15 0.37 5.92 1.67 3.81

MV (dynamic) 0.96 5.54 12.66 46.14 17.86 0.27 0.30 8.78 4.80 2.70

Non-parametric models

CVaR 1.86 3.43 14.78 41.48 24.36 1.41 1.77 7.89 2.08 0.92

CDaR 2.34 3.07 15.81 42.63 19.50 1.76 2.14 9.79 2.40 0.57

Omega 0.09 5.67 16.73 48.23 15.78 0.05 0.00 6.66 2.61 4.18

Semi-parametric models (static)

CVaR 11.97 17.30 6.85 15.38 7.89 5.50 6.23 12.81 6.17 9.89

CDaR 1.95 4.17 13.56 42.54 23.05 1.79 1.78 7.53 3.07 0.56

Omega 12.14 17.34 6.57 14.26 8.11 6.04 6.49 12.41 6.83 9.82

Semi-parametric models (dynamic)

CVaR 11.30 19.46 6.73 10.71 6.04 9.34 5.56 12.73 13.17 4.97

CDaR 2.06 4.18 14.37 42.29 22.61 1.76 1.81 7.71 2.69 0.52

Omega 11.12 19.43 6.61 9.26 6.30 8.72 6.67 12.12 15.43 4.34

Panel A: Conservative Portfolio

Panel B: Minimum Risk Aggressive Portfolio (Formulation 1)  
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Table 3.6b 

Portfolio Composition with 1-Month Rebalancing Portfolios (cont’d) 

Panel C and Panel D report average portfolio weights of the ten single strategy hedge fund indices for 
maximum return aggressive portfolio with a risk limit portfolio (Formulation 2) and maximum excess 
return over minimum risk aggressive portfolio (Formulation 3) in the out-of-sample period July 2002 to 
January 2011. Maximum position for each asset is limited to 50 percent of the portfolio to force 
diversification. CVaR and CDaR portfolios are calculated at 95 percent confidence level.   

 

 

 

 

 

 CA DS ED EH EM EMN MA MAC RV SB

Benchmark models

MV (static) 0.03 0.13 12.19 49.29 25.71 0.02 0.03 12.55 0.04 0.01

MV (dynamic) 0.02 0.09 1.74 48.83 42.42 0.01 0.02 6.83 0.02 0.01

Non-parametric models

CVaR 4.75 10.75 10.22 24.72 4.39 4.99 6.39 18.44 5.99 9.37

CDaR 0.00 0.01 12.15 49.50 25.72 0.00 0.00 12.61 0.00 0.00

Omega 0.00 0.00 0.00 50.00 50.00 0.00 0.00 0.00 0.00 0.00

Semi-parametric models (static)

CVaR 12.53 21.49 4.04 15.43 17.98 2.70 4.15 14.06 3.65 3.98

CDaR 7.35 14.16 18.02 23.86 23.87 0.99 0.09 7.91 2.99 0.76

Omega 4.37 6.31 19.42 21.36 42.72 0.00 0.00 5.34 0.49 0.00

Semi-parametric models (dynamic)

CVaR 12.23 23.34 4.74 13.40 13.32 7.10 4.09 15.25 5.85 0.67

CDaR 7.38 15.15 16.62 16.12 28.26 1.26 0.26 11.10 1.56 2.30

Omega 4.85 3.40 16.50 12.62 41.75 0.00 0.00 8.25 0.00 12.62

Benchmark models

MV (static) 11.71 6.56 0.43 12.23 0.08 12.82 18.42 7.67 19.68 10.39

MV (dynamic) 3.30 8.39 2.21 5.98 0.06 16.69 20.51 5.72 23.02 14.13

Non-parametric models

CVaR 14.07 0.00 0.32 23.96 0.00 16.74 17.15 10.64 1.39 15.23

CDaR 9.71 0.80 0.93 1.33 0.47 39.17 25.17 15.15 3.29 1.39

Omega 6.45 4.04 0.00 17.51 0.00 11.50 17.22 6.91 23.93 12.44

Semi-parametric models (static)

CVaR 9.22 11.64 1.42 8.37 1.57 28.30 5.93 9.60 12.85 11.00

CDaR 12.17 9.96 1.66 8.37 0.25 34.42 7.25 8.62 13.96 1.52

Omega 9.61 11.62 2.47 10.45 1.56 24.18 6.73 8.59 13.26 11.53

Semi-parametric models (dynamic)

CVaR 11.14 15.86 1.73 2.23 0.02 33.21 3.52 14.17 17.31 0.32

CDaR 13.64 14.97 2.49 8.97 0.30 28.88 5.16 9.74 12.05 0.33

Omega 12.10 14.89 2.54 3.23 0.89 24.25 6.04 10.10 25.44 0.52

Panel C: Maximum Return Aggressive Portfolio (Formulation 2)

Panel D: Maximum Excess Return over Minimum Risk Aggressive Portfolio (Formulation 3) 
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Table 3.7 

Risk Sensitivities of Maximum Return Aggressive Portfolios to CVaR Risk Limits 

Table reports sensitivities of maximum return (formulation 2 for an aggressive investor) portfolios to 
CVaR risk limits, for the out-of-sample monthly rebalancing in the period July 2002 to January 2011 (103 
months). Evaluation criteria include end of period portfolio value (EPV), annualized average return (AR), 
annualized standard deviation (SD), maximum drawdown (MDD), annualized conditional value at risk 
(CVaR) and conditional drawdown at risk (CDaR), Sharp Ratio (SR), Omega Ratio (OMG), Information 
Ratio (IR) and Portfolio Turnover (PT). CVaR and CDaR are estimated at 99 percent confidence level. 
AR, SD, MDD, CVaR and CDaR are in percentages.   

 
 

 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

CVaR-0.005 1.320     3.26     2.18      4.72       8.43       1.30    0.163    0.803    0.079-   10.87    

CVaR-0.01 1.523     4.95     2.81      5.75       10.29     1.58    0.299    1.124    0.038   13.25    

CVaR-0.02 1.675     6.13     4.54      14.05     16.44     3.71    0.261    1.888    0.224   18.88    

CVaR-0.05 1.815     7.27     7.77      34.24     32.29     8.20    0.195    2.187    0.278   28.36    

CVaR-0.10 1.812     7.38     9.30      41.62     41.19     9.63    0.166    1.753    0.194   16.16    

CVaR-0.20 1.815     7.40     9.30      41.59     41.19     9.62    0.167    1.762    0.196   13.53    

CVaR-0.005 2.302     9.84     4.27      5.11       7.64       1.40    0.528    3.456    0.352   85.78    

CVaR-0.01 2.761     12.01   4.99      5.55       8.34       1.52    0.577    7.223    0.503   100.12  

CVaR-0.02 3.363     14.40   6.28      6.14       8.33       1.68    0.569    9.055    0.563   99.95    

CVaR-0.05 3.547     15.14   7.77      10.60     12.46     2.83    0.487    5.340    0.487   98.43    

CVaR-0.10 3.542     15.12   7.78      10.66     12.46     2.84    0.486    5.305    0.486   99.69    

CVaR-0.20 3.541     15.12   7.78      10.69     12.46     2.85    0.486    5.296    0.485   99.69    

CVaR-0.005 1.966     7.98     3.99      6.54       10.52     1.79    0.430    2.185    0.252   61.75    

CVaR-0.01 2.374     10.22   4.67      6.52       10.53     1.79    0.507    4.897    0.441   82.54    

CVaR-0.02 3.187     13.74   5.83      5.60       8.37       1.54    0.580    13.850  0.698   98.42    

CVaR-0.05 3.570     15.21   7.70      10.83     12.45     2.89    0.494    5.515    0.499   98.06    

CVaR-0.10 3.511     15.02   7.79      10.99     12.46     2.93    0.481    5.067    0.478   100.15  

CVaR-0.20 3.513     15.02   7.79      10.96     12.45     2.92    0.481    5.094    0.478   99.93    

Non-parametric models

Semi-parametric models (static)

Semi-parametric models (dynamic)
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 Table 3.8 
Risk Sensitivities of Maximum Return Aggressive Portfolios to CDaR Risk Limits 

Table reports sensitivities of maximum return (formulation 2 for an aggressive investor) portfolios to 
CDaR risk limits for the out-of-sample monthly rebalancing in the period July 2002 to January 2011 (103 
months). Evaluation criteria include end of period portfolio value (EPV), annualized average return (AR), 
annualized standard deviation (SD), maximum drawdown (MDD), annualized conditional value at risk 
(CVaR) and conditional drawdown at risk (CDaR), Sharp Ratio (SR), Omega Ratio (OMG), Information 
Ratio (IR) and Portfolio Turnover (PT). CVaR and CDaR are estimated at 99 percent confidence level. 
AR, SD, MDD, CVaR and CDaR are in percentages. 
 
 

 
 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

CDaR-0.01 1.504     4.83     3.47      9.79       12.41     2.64    0.232    1.132    0.039   5.91      

CDaR-0.05 1.683     6.40     8.02      36.95     35.46     8.73    0.157    1.652    0.179   15.33    

CDaR-0.10 1.818     7.42     9.33      41.63     41.26     9.63    0.167    1.757    0.195   14.00    

CDaR-0.20 1.818     7.42     9.33      41.63     41.26     9.63    0.167    1.757    0.195   13.99    

CDaR-0.30 1.818     7.42     9.33      41.63     41.26     9.63    0.167    1.757    0.195   13.98    

CDaR-0.50 1.818     7.42     9.33      41.63     41.26     9.63    0.167    1.757    0.195   14.00    

CDaR-0.01 2.282     9.74     4.25      5.57       8.98       1.52    0.523    5.004    0.374   66.37    

CDaR-0.05 3.506     14.98   7.49      15.62     17.28     4.08    0.499    8.171    0.545   96.55    

CDaR-0.10 3.375     14.53   7.57      15.89     17.28     4.15    0.477    6.836    0.608   97.35    

CDaR-0.20 3.557     15.16   7.70      15.61     17.28     4.07    0.492    7.201    0.530   95.98    

CDaR-0.30 3.484     14.93   7.78      15.60     17.28     4.07    0.479    6.492    0.512   96.95    

CDaR-0.50 3.484     14.92   7.78      15.60     17.28     4.07    0.479    6.490    0.512   96.98    

CDaR-0.01 2.040     8.42     4.21      7.83       12.43     2.13    0.438    3.047    0.325   64.23    

CDaR-0.05 3.535     15.06   7.24      11.03     12.45     2.94    0.520    8.844    0.622   98.27    

CDaR-0.10 3.505     14.98   7.53      10.18     12.46     2.74    0.496    6.467    0.609   98.90    

CDaR-0.20 3.785     15.89   7.65      9.96       12.46     2.67    0.523    6.942    0.548   94.99    

CDaR-0.30 3.785     15.89   7.65      9.96       12.46     2.67    0.523    6.942    0.548   94.99    

CDaR-0.50 3.784     15.89   7.65      9.96       12.46     2.67    0.523    6.941    0.548   95.00    

Non-parametric models

Semi-parametric models (static)

Semi-parametric models (dynamic)
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Table 3.9 

Risk Sensitivities of Maximum Return Aggressive Portfolios to LPM Risk Limits 

Table reports sensitivities of maximum return (formulation 2 for an aggressive investor) portfolios to 
lower partial moment (LPM) limit for Omega portfolios, in the out-of-sample test period July 2002 to 
January 2011 (103 months). Evaluation criteria include end of period portfolio value (EPV), annualized 
average return (AR), annualized standard deviation (SD), maximum drawdown (MDD), annualized 
conditional value at risk (CVaR) and conditional drawdown at risk (CDaR), Sharp Ratio (SR), Omega 
Ratio (OMG), Information Ratio (IR) and Portfolio Turnover (PT). CVaR and CDaR are estimated at 99 
percent confidence level. AR, SD, MDD, CVaR and CDaR are in percentages.  
 
 

 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

OMG-0.0005 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

OMG-0.001 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

OMG-0.005 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

OMG-0.01 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

OMG-0.02 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

OMG-0.05 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

OMG-0.1 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

OMG-0.2 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.07

OMG-0.0005 2.903     12.91   9.32      32.48     30.48     7.84    0.337    2.701    0.401   57.00

OMG-0.001 2.902     12.91   9.32      32.48     30.48     7.84    0.337    2.701    0.401   57.00

OMG-0.005 2.602     11.61   9.12      32.75     30.48     7.90    0.303    2.527    0.368   55.17

OMG-0.01 2.236     9.82     9.06      35.81     30.54     8.51    0.248    2.237    0.313   38.92

OMG-0.02 2.150     9.42     9.60      39.37     38.31     9.20    0.222    2.097    0.283   41.00

OMG-0.05 2.050     8.97     10.57    46.29     52.53     10.47  0.189    1.967    0.245   40.25

OMG-0.1 1.996     8.60     10.12    42.65     52.37     9.82    0.188    1.965    0.245   43.00

OMG-0.2 1.904     8.09     10.47    46.12     52.53     10.45  0.167    1.867    0.223   46.00

OMG-0.0005 2.990     13.14   8.00      12.41     13.98     3.30    0.401    3.219    0.475   80.00

OMG-0.001 2.787     12.32   8.09      14.42     13.98     3.79    0.367    2.956    0.440   81.00

OMG-0.005 2.389     10.48   7.74      15.82     28.16     4.14    0.315    2.797    0.391   72.87

OMG-0.01 1.621     5.83     6.25      15.10     28.09     3.96    0.176    2.159    0.268   49.69

OMG-0.02 1.140     1.64     4.80      14.88     11.91     3.91    0.024-    1.267    0.096   46.79

OMG-0.05 0.954     0.29-     7.12      32.70     51.39     7.89    0.094-    0.958    0.013-   47.48

OMG-0.1 0.885     1.15-     7.09      36.93     52.12     8.73    0.130-    0.852    0.049-   51.00

OMG-0.2 0.910     0.82-     7.17      33.41     52.12     8.03    0.115-    0.893    0.035-   49.00

Non-parametric models

Semi-parametric models (dynamic)

Semi-parametric models (static)
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Table 3.10 

Risk Sensitivities of Maximum Return Aggressive Portfolios to Standard Deviation 

Risk Limits 

Table reports sensitivities of maximum return (formulation 2 for an aggressive investor) portfolios to 
standard deviation (SD) limits for mean-variance portfolios in the out-of-sample test period July 2002 to 
January 2011 (103 months). Evaluation criteria include end of period portfolio value (EPV), annualized 
average return (AR), annualized standard deviation (SD), maximum drawdown (MDD), annualized 
conditional value at risk (CVaR) and conditional drawdown at risk (CDaR), Sharp Ratio (SR), Omega 
Ratio (OMG), Information Ratio (IR) and Portfolio Turnover (PT). CVaR and CDaR are estimated at 99 
percent confidence level. AR, SD, MDD, CVaR and CDaR are in percentages.  
 
 

 
 
 

 EPV AR SD MDD CVaR CDaR SR OMG IR PT

MV-0.005 1.818     7.42     9.30      41.57     41.17     9.62    0.167    1.852    0.230   13.76

MV-0.01 1.818     7.42     9.31      41.60     41.18     9.62    0.167    1.851    0.230   13.74

MV-0.015 1.818     7.42     9.31      41.61     41.26     9.62    0.167    1.851    0.230   13.93

MV-0.02 1.819     7.43     9.30      41.57     41.18     9.62    0.168    1.852    0.231   13.63

MV-0.03 2.189     9.66     9.91      42.78     41.17     9.84    0.222    2.050    0.282   4.42

MV-0.05 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

MV-0.1 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

MV-0.15 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

MV-0.2 2.275     10.14   10.22    43.56     41.26     9.98    0.229    2.071    0.287   0.00

MV-0.005 1.816     7.41     9.30      41.63     41.25     9.63    0.167    1.850    0.230   13.94

MV-0.01 1.817     7.42     9.30      41.59     41.25     9.62    0.167    1.851    0.230   13.91

MV-0.015 1.924     8.09     9.35      41.63     41.25     9.63    0.187    1.934    0.250   14.57

MV-0.02 2.184     9.61     9.67      40.54     41.17     9.42    0.226    2.098    0.287   9.98

MV-0.03 2.254     10.01   9.99      41.19     41.18     9.54    0.231    2.085    0.290   6.13

MV-0.05 2.450     11.07   10.70    43.97     52.43     10.06  0.244    2.217    0.299   5.51

MV-0.1 2.572     11.65   10.82    43.57     52.43     9.99    0.257    2.288    0.311   2.00

MV-0.15 2.599     11.77   10.78    42.55     52.43     9.80    0.261    2.318    0.315   4.00

MV-0.2 2.599     11.77   10.78    42.55     52.43     9.80    0.261    2.318    0.315   4.00

MV (static)

MV (dynamic)
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Figure 3.1: Portfolio Values of Conservative Portfolios. This figure displays portfolio value of conservative portfolios constructed by the models during the out-of-
sample period July 2002 to January 2011 (103 months). NP stands for non-parametric, while SP stands for semi-parametric estimation method. 
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Figure 3.2: Portfolio Values of Minimum Risk (Formulation 1) Aggressive Portfolios. This figure displays portfolio value of minimum risk aggressive portfolios 
constructed by the models during the out-of-sample period July 2002 to January 2011 (103 months). Return target is annually 14 percent. NP stands for non-
parametric, while SP stands for semi-parametric estimation method. 
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Figure 3.3: Portfolio Values of Maximum Return (Formulation 2) Aggressive Portfolios. This figure displays portfolio value of maximum return aggressive 
portfolios constructed by the models during the out-of-sample period July 2002 to January 2011 (103 months). NP stands for non-parametric, while SP stands for semi-
parametric estimation method.  
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Figure 3.4: Portfolio Values of Return Over Risk (Formulation 3) Aggressive Portfolios. This figure displays portfolio value of return over risk aggressive 
portfolios constructed by the models during the out-of-sample period July 2002 to January 2011 (103 months). Return target is annually 14 percent. NP stands for non-
parametric, while SP stands for semi-parametric estimation method.  
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Figure 3.5: Sensitivity of CVaR Models to CVaR Risk Limits. This figure displays portfolio value of 
second formulation of aggressive portfolios constructed by CVaR models during the out-of-sample period 
July 2002 to January 2011 (103 months).   
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Figure 3.6: Sensitivity of CDaR Models to CDaR Risk Limits. This figure displays portfolio value of 
second formulation of aggressive portfolios constructed by CDaR models during the out-of-sample period 
July 2002 to January 2011 (103 months).   
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Figure 3.7: Sensitivity of Omega Models to LPM Limits. This figure displays portfolio value of second 
formulation of aggressive portfolios constructed by Omega models during the out-of-sample period July 
2002 to January 2011 (103 months).   
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CChhaapptteerr  44    

RRaannggee--BBaasseedd  RReeggiimmee  SSwwiittcchhiinngg  MMooddeellss  

 
 
 
 

4.1. Introduction 
 

In recent years, there is a renewed interest in using the range as a variance measure. 

This is due to the attractiveness of the range-based volatility measures as an efficient, 

approximately normal and a robust measure to microstructure noise. Recent years also 

witnessed increased volatility and frequent changes in volatility states in financial 

markets. This encourages using models that are able to capture the changes in volatility 

states. 

 

The aim of this chapter is to provide a volatility forecasting framework that combines 

regime switching models with data on daily range. The daily range is defined as the 

difference between the highest and lowest log asset prices over the trading day. A 

significant practical advantage of the intraday range is that, in contrast to with intraday 

data, the range data for individual assets and indices are widely available over long 

historical spans. Regime switching models capture the abrupt changes in asset prices 

due to financial crisis, government policy, business cycles or other economic 

fundamentals. Volatility prediction models should consider the stylized facts, financial 

time series exhibit, while forecasting the volatility in different volatility states (e.g. high, 

low). 

 

Appearance of Markov switching models in econometrics starts with works of Hamilton 

(1988 and 1989). Markov switching models are popular both in financial and economic 

time series analysis. For the purpose of this study, the focus is on the financial 

applications of these models. In investigating regime switches in interest rates, Sola and 

Driffill (1994), Gray (1996), Ang and Bekaert (2002), Bansal et al. (2004) and Audrino 

(2006); in modelling stock returns, Turner et al. (1989), Pagan and Schwert (1990), 

Hamilton and Susmel (1994), Dueker (1997), Ryden et al. (1998), Susmel (2000), Billio 
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and Pelizzon (2000), Maheu and McCurdy (2000), Perez-Quiros and Timmerman 

(2001) and Bhar and Hamori (2004); in foreign exchange rates, Engel and Hamilton 

(1990), Engel (1994), Vigfusson (1997), Bollen et al. (2000), Dewachter (2001), 

Klaassen (2002), Brunetti et al. (2003) and Beine et al. (2003) are prominent works 

among others. 

 

Range is known as a viable measure of variability for a long time. Feller (1951) is the 

first to derive the distribution of the range of a driftless Brownian motion. Use of the 

range in finance dates back to Mandelbrot (1971) who employs the range in testing the 

long term dependence in asset prices. In search for a better variance estimator, under the 

assumption of a lognormal diffusion, Parkinson (1980) finds a variance estimator by 

using the high and low prices only. Extreme value theories imply that range is an 

efficient estimator of the local volatility due to Parkinson (1980). In this respect, he 

demonstrates the superiority of range as a volatility estimator as compared to 

conventional methods. Garman and Klass (1980) extend Parkinson's estimator to 

incorporate open/close/high/low prices. They introduce a minimum variance unbiased 

quadratic variance estimator for a driftless Brownian motion. Beckers (1983) extends 

Parkinson's analysis by incorporating time-varying drift. Ball and Torous (1984) derive 

a maximum likelihood equivalent of the estimator of Garman and Klass (1980). Rogers 

and Satchell (1991) also extend Parkinson's analysis, and find a better variance 

estimator using the high, low and closing prices. Kunitomo (1992) considers nonzero 

drift and derives a variance estimator based on the extremes of a constructed Brownian 

bridge motion. Recently, Yang and Zhang (2000) propose a new volatility estimator 

based on multiple periods of high, low, open and close prices, and demonstrate that the 

improvement of accuracy over the classical close-to-close estimator is dramatic. 

Andersen and Bollerslev (1998) report the favourable explanatory power of the range, 

and state that the daily range has approximately the same information content as 

sampling intraday returns for every four hours. 

 

In search for a solution to high non-Gaussian measurement error in standard volatility 

processes, Alizadeh et al. (2002) incorporate the range into the equilibrium asset pricing 

models in a stochastic volatility framework. They demonstrate that range-based 

volatility proxies are not only highly efficient, but also approximately Gaussian, and 

robust to microstructure noise. Following the findings of Alizadeh et al. (2002) on the 

log range, Brandt and Jones (2006) combine EGARCH model with data on the intraday 
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range, in an attempt to explain the dynamics of the conditional return volatility, and 

compare the range-based EGARCH model with return-based benchmark models. As a 

concurrent work, Chou (2005) proposes a conditional autoregressive range (CARR) 

model, which describes the dynamics of the conditional mean of the range and uses the 

level of the range. 

 

There is an obvious literature gap between a regime switching volatility modelling and 

range. The aim of this chapter is to fill this gap. In this chapter, a regime switching 

conditional volatility model is combined with a robust measure of volatility based on 

the intraday range in one-factor and two-factor frameworks for volatility forecasting. 

This chapter proposes two univariate models that combine useful properties of range, 

regime switching, nonlinear filtration and GARCH frameworks. It is searched for any 

incremental improvement in the performance of volatility forecasting by employing 

regime switching in a conditional volatility setting with enhanced information content 

on true volatility. To the best knowledge of the author, this chapter contributes to the 

literature as the first study, which implements range-based data in volatility forecast 

with regime switching models. The proposed one and two component models nest 

regime switching conditional volatility models and eminent range-based models in a 

framework, which allows one to combine the desired properties of these two distinct 

models into the same framework. 

 

The in-sample fit and the out-of-sample forecast performance of the proposed models 

are compared with eminent return-based and range-based counterparts. In particular, 

following return-based models are considered; exponentially weighted moving average 

(EWMA) model of Riskmetrics, generalized autoregressive conditional 

heteroskedasticity (GARCH) model of Bollerslev (1988), fractionally integrated 

autoregressive conditionally heteroskedastic (FIGARCH) model of Baillie et al. (1996), 

and Markov Regime Switching GARCH (MRSGARCH) model of Klaassen (2002). 

Proposed models are also compared with the well-known range-based counterparts; 

hybrid EWMA (HybEWMA) model of Harris and Yilmaz (2009), and CARR model of 

Chou (2005). In evaluating forecast comparison of the models, four different robust 

volatility proxy of weekly integrated variance are employed; the sum of squared daily 

returns, the sum of daily price range, the squared weekly return, and the scaled weekly 

range. In-sample goodness of fit and out-of-sample forecast performance of the models 

are evaluated by using a number of statistical and risk management loss functions. In 
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particular, in statistical analysis mean error metrics, directional predictive ability tests, 

forecast evaluation regressions, pair-wise and joint tests are used for model comparison. 

In analysing forecasts from a risk management perspective, coverage tests and risk 

management loss functions are utilized. It is shown that the proposed models produce 

more accurate out of sample forecasts, contain more information about true volatility 

and exhibit similar or better performance when used for value at risk comparison. In 

particular, two-component model performs better than all other models.   

 

The contribution of this chapter is twofold. First, to the best knowledge of the author, 

this is the first study in applying range data to regime switching models in a univariate 

context. Second, it is the first study which applies component structure to range data in 

a regime switching framework and proposes one and two-component range-based 

regime switching models.  

 

In the second section, a comprehensive theoretical background of the range as a 

volatility proxy and regime switching GARCH models is provided, then proposed 

range-based models are introduced. In the third section, data and methodology are 

described. In the fourth section, empirical findings of in-sample and out of sample 

forecast comparisons are provided. Section 5 concludes. 

 

4.2. Theoretical Background 
 

4.2.1. Range as a Volatility Proxy 

 

In this section, theoretical background of the range-based estimator is introduced. 

Before considering the range-based estimator, basic aspects of univariate volatility 

estimation should be given. First, consider a univariate stochastic volatility diffusion for 

the log of an asset price tP , its drift µ , and instantaneous volatility tσ  is given by 

 

( ) ( )
tPttttt dWPPdP υσυµ ,, +=  

( ) ( )
t

dWPPd ttttt υυβυαυ ,, +=
     (4.1)

 

 

where 
tPW and 

t
Wυ are Wiener processes with correlation ( )dtPdWdW ttP tt

υθυ ,= . In line 

with Alizadeh et al. (2002), the streamlined version of the diffusion is defined as 

 



 90 

   
tPt

t

t dWdt
P

dP
σµ +=  

( )
t

dWdtd tt υβσσασ +−= lnlnln
     (4.2)

 

 

where log volatility tσln  of returns tt PdP is the latent state variable and evolves as a 

mean-reverting Ornstein-Uhlenbeck process. This process is discretised to approximate 

the continuous time model. Suppose that prices are observed at discrete intervals, 

Tt ,...,1= . Here the volatility is assumed to be constant at the interval between t and 

t+1, and is stochastic from one interval to another. The security price process is 

assumed to follow a Brownian motion and discretised log volatility approximately has a 

conditional Gaussian distribution 

 

tPt

t

t dWdt
P

dP
σµ +=

 

( )[ ]2

1 ,lnlnln~ln|ln βσσρσσσ −++ ttt N
    (4.3)

 

 

In volatility modelling, primarily, absolute and squared returns are used as volatility 

proxies. Given the continuously compounded return, 
tttt PPr lnln 1,1 −= ++ , over the 

interval t and t+1, traditional log volatility proxy is defined as (Alizadeh et al., 2002). 

 

( ) ∗∗
+++ −+=−= ttttttt PPPPPf 11,1 lnlnlnln γσγγ     (4.4) 

 

For absolute returns, 1=γ , and squared returns 2=γ . Since second part of the above 

equality requires that the log price process is a Martingale, it is homogeneous in 

volatility. This assumption is helpful from a statistical viewpoint. The log price can be 

defined as a Martingale process without a drift:  

 

sss dWdP σ=
        (4.5)

 

 

where sσ is stochastic but assumed continuous and constant within each period. The 

discrete time process of integrated volatility  th   is defined as 
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1−−= ttt QQh         (4.6) 

 

where tQ  denotes quadratic variation of log price . As Brandt and Jones (2006) point 

out, assuming zero drift causes only a very small bias, to the extent that 

the true drift differs slightly from 0. This reduces the mean squared error relative to 

a noisy drift estimator. It is well-established that the conditional distribution of 

log absolute and squared returns is different from a Gaussian distribution. As empirical 

findings of Jacquier et al. (1994), Andersen and Sorensen (1996), Kim et al. (1998) and 

Alizadeh et al. (2002) confirm that the quasi-maximum likelihood estimation with these 

traditional volatility proxies is highly inefficient and often severely biased in finite 

samples. In search for a better volatility proxy, the range provides a significant 

potential. Alizadeh et al. (2002) define log-range as the log volatility proxy which is the 

natural logarithm of the difference between highest and lowest log prices of a security; 

 

[ ] [ ]





 −=

−∈−∈
s

tts
s

tts
t PPR

,1,1
minmaxln        (4.7) 

 

and is, to a very good approximation, distributed by a Gaussian distribution with mean 

of  thln43. +  and variance of  229. . Thus, the log-range is a noisy linear proxy of log 

volatility 
thln  (see Brandt and Jones, 2006). Alizadeh et al. (2002) also relate the range 

data to return data. They show that the log absolute return has a mean of  thln64.0 +−   

and a variance of 211.1 , and is far from Gaussian. 

 

The main advantage of the range over integrated variance estimator that based on close-

to-close prices is its extensive information content; the range contains information about 

all intraday movements of the price. In estimating the variance of returns, Parkinson 

(1980) proposes an estimator based on only high and low prices, while Garman and 

Klass (1980) propose an estimator based on high, low, opening and closing prices with 

certain assumptions on Brownian motion parameters (i.e. volatility and drift). The 

estimators, proposed by Rogers and Satchell (1991), Kunitomo (1992) and Yang and 

Zhang (2000), are mainly based on earlier estimators of Parkinson (1980) and Garman 

and Klass (1980). In this study, as the range estimator, due to Harris and Yilmaz (2009), 

an unbiased estimate of the variance of the daily close-to-close return, which uses a 

combination of the intraday range and the open-to-close return, is employed; 
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t
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t
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tt ppppS −−+−=       (4.8) 

 

where O

tp , C

tp 1− , H

tp , L

tp   are the opening6, closing, high and low prices, subsequently, 

and )2log4/(1  is the scaling factor and the second moment of range of a Brownian 

Motion.  

 

Since Parkinson (1980) and as formalized by Andersen and Bollerslev (1998), the range 

is known as a much more efficient volatility proxy. Furthermore, Alizadeh et al. (2002) 

establish that the distribution of the log-range conditional on volatility is approximately 

Gaussian, which makes it highly effective volatility proxy. Basic properties of the range 

are its efficiency, normality and robustness to market microstructure noise. Alizadeh et 

al. (2002) state that, as a volatility proxy, log-range is superior to log-absolute and log-

squared returns for two reasons: First, the variance of the measurement error are 

significantly smaller, thus range is more efficient. Second, it is remarkably well 

approximated as Gaussian. These findings make range an attractive volatility proxy for 

models that use Gaussian quasi-maximum likelihood estimations. In comparison to 

realized volatility, range is a less efficient volatility proxy under ideal conditions, but it 

proves superior to the realized volatility in biases caused by market microstructure 

noise. 

 

Although range has many desirable properties, it suffers from discretisation bias. One 

source of this bias is the likely difference between the highest (lowest) asset price, 

observed at discrete points in time, and the true maximum (minimum) of the underlying 

diffusion process. This makes the observed range being a downward-biased estimate of 

the true range, thus, in turn, a noisy proxy of volatility. A second likely source of the 

bias is the infrequent trading of the component assets that may lead to a further 

downward bias of the range. Another source of bias might arise from conditional non-

normality in returns (see Brandt and Jones, 2006). 

 

4.2.2. Regime Switching Volatility Models 

 

There have been some attempts to utilize the favourable properties of regime switching 

                                                 
6 It should be noted that the opening prices are subject to the staleness problem identified by Stoll and 
Whalay (1990).  



 93 

models, in capturing the effects of sudden dramatic economic and political events on the 

volatility, inherent in financial time series. Combining conditional variance models with 

regime switching models has the potential to explain latent switches between regimes, 

in addition to utilizing the potential of ARCH family models in explaining variation in 

financial time series. 

 

First attempts of the use of regime switching in ARCH/GARCH models are the models 

proposed by Cai (1994) and Hamilton and Susmel (1994). Cai (1994) combines the 

Markov-switching model of Hamilton (1988) with the ARCH model of Engle (1982). 

He explicitly models the dynamics of the asymptotic variance in the switching regime 

ARCH as following a first-order Markov process. His model aims to maintain the 

volatility clustering property of the ARCH model and, in addition, capture the discrete 

shift in the intercept of the conditional variance that may cause spurious apparent 

persistence in the variance process. In a concurrent work, Hamilton and Susmel (1994) 

proposed another parameterization of the switching-regime ARCH (SWARCH) model. 

Hamilton and Susmel (1994) also extend their SWARCH model to SWARCH-L model 

with including an asymmetry part, which models leverage effects. 

 

Although GARCH models are known better in describing volatility than higher order 

ARCH specifications, Cai (1994) and Hamilton and Susmel (1994) restricted their 

models to contain only ARCH parts, because of the inherent path dependence in 

GARCH models, and the difficulty in translating the GARCH model into a switching 

regime setting. Let the GARCH (1,1) model be given as 

 

( )

11

2

110

1,0

−− ++=

∼=

ttt

iid

tttt

hh

Nuhu

βεαα

ε
       (4.9)

  

When the regime switching is introduced in the conditional variance equation in (4.9), it 

turns into 

 

( ) )(

1

)(2

1

)()( i

t

i

t

iii

t hh −− ++= βεαγ                     (4.10) 

 

GARCH parameters are path dependent, and they depend on the entire history of tε  and 

the regime indicator ,ts  Ni ,..,1= . Recursive estimation of the equation (4.10) requires 
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the entire history of tε  and { }.,...,,,,...,,. 11021 ssss ttttt −−− εεε  Therefore, evaluation of the 

likelihood function for a sample of length T  requires the integration over all TN   

possible (unobserved) regime paths, rendering estimation of Equation (4.10) infeasible 

in practice (see Haas et al., 2004). In order to avoid this problem, Gray (1996), Klaassen 

(2002) and Haas et al. (2004) proposed different formulations to generalize the ARCH 

specification into a GARCH setting. 

 

4.2.3. A One Component Markov Regime Switching Autoregressive Conditional 

Range Model (MRSACR) 

 

In this section, a range-based estimator of the conditional variance that captures the 

switches in volatility regimes is proposed. The estimator is mainly based on the 

multiplicative error models (MEM) of Engle and Russell (1998) and Engle and Gallo 

(2006), and the CARR model of Chou (2005) in specifying the conditional variance 

equation, and the MRSGARCH model of Klaassen (2002) in switching the conditional 

variance parameters. 

 

After the rise of high-frequency data (HFD) in 1990's, a new class of models has been 

proposed by Engle and Russell (1998) for the analysis of data, which arrives at irregular 

intervals. The model, called autoregressive conditional duration (ACD) model that 

belongs to the MEM models of Engel (2002), focuses on the expected duration between 

events, and treats arrival times as random variables, which follow a point process. As 

suggested in Engle and Gallo (2006), the ACD model has the potential to be utilized in 

modelling daily high-low range, along with daily absolute returns and realized 

volatility. In the same way, Chou (2005) proposes CARR model, which is remarkably 

similar to ACD model. CARR model is proposed for the high-low range of asset prices 

within fixed time intervals. 

 

Consider that tP is the logarithmic asset price, 1−−= ttt PPr  is the logarithmic return,  

{ } { }ttt PPR minmax −=  is the observed range, and the estimator given in equation (4.5) 

is an unbiased range-based estimator of variance. The regime switching autoregressive 

conditional range (MRSACR) model can be defined as 

 

),1(|     where 1

)(

tttt

i

tt DvvS ξλ ∼Ω= −     (4.8a) 
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where tS  is the scaled range estimator7 given in equation (4.5), tv  is a sequence of i.i.d. 

nonnegative random variable, and follows a positive support distribution (e.g. 

Exponential, Weibull, generalized error distribution). When the distribution of tv  is 

exponential, the model is called an MRSACRE ( qpN ,, ) model. Similarly, when it is 

Weibull or GED, the resulting model is called an MRSACRW ( qpN ,, ) or MRSACRG (

qpN ,, ) model, subsequently. )( i

tλ  is the conditional variance of the range, the 

coefficients ( ))()()( ,, iii βαω  in the equation (4.8b) are all positive, and take different 

values in each state, i,, where 2,1=i . Parameters βαω ,,  characterize the inherent 

uncertainty in range, and short term and long term effects (persistence) of shocks on the 

range in each state. In computing the expectation in equation (4.8b), due to path 

dependence and the resulting difficulty in estimating the state-dependent conditional 

variance estimator, ,)( i

tλ  the estimation procedure of Klaassen (2002) is adapted as 
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where probabilities,  
tjip ,

~  , are calculated as 
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where .2,1, =ji  The ex-ante transition probabilities of being in the first regime at  t  

given the information at  1−t  is estimated as 
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where ( )⋅f  is the likelihood function of the conditional distributions (i.e. Exponential). 

Here, it is assumed that the latent regime indicator, ts , is parameterized as a first-order 

                                                 
7
 Following Engle & Russel (1998), the proposed models are estimated by taking square root of 2

tS  
in 

(4.5). For the proof, see Engle & Russel (1998, pp.1135). 
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Markov process by following Hamilton (1988, 1989 and 1990). 

 

The multi-step-ahead volatility forecasts are estimated as a weighted average of the 

multi-step-ahead volatility forecasts in each regime 
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where the weights are the predicted probabilities, and )(

,

i

TT κ
λ

+

)

are the κ -step ahead 

volatility forecasts in each regime that can be recursively calculated as 
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The model can also be extended to accommodate information carried out by log returns 

of prices, explicitly, if the estimator in equation (4.5) does not include return 

information. In doing so, return variable can enter into the conditional mean equation as 

an independent variable, in line with Engle and Gallo (2006).  

 

4.2.3. A Two Component Markov Regime Switching Autoregressive Conditional 

Range Model (CMRSACR) 

 

In this section, a range-based estimator of conditional volatility that captures both long 

run and short run dynamics is proposed. Following the authors who show that volatility 

can be estimated with a factor structure, it is assumed that the volatility process, which 

is represented by the square root of the intraday range, tS  here, is composed of two 

components; a long run trend component and a short run cyclical component (see Engle 

and Lee, 1999; Alizadeh et al., 2002, Brand and Jones, 2006, Harris et al., 2010).  

 

( ) ttttt qSqS εθ +−+= −− 11       (4.14) 

 

where tq  is trend component, 11 −− − tt qS  is the deviation of volatility from its long term 

trend, tε
 
is a random error term with zero mean and constant variance. Engle and Lee 

(1999), Alizadeh et al. (2002), and Brand and Jones (2006) identify the dynamics of tq  

as a GARCH-type model for return series or log-range series. However, Harris et al. 
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(2010) leave the precise dynamics unspecified, and utilize the filter of Hodrick and 

Prescott (1997) to decompose the long term trend component from the intraday range. 

In particular, in the first step, Harris et al. (2010) apply HP filter separately to intraday 

high and low prices, and then estimate long term trend of volatility, tq , from these 

smoothed high and low prices, in a way similar to (4.15), and finally take the square 

root of scaled range. In the second step, they estimate an autoregressive model for the 

cyclical component. By using the estimated autoregressive parameter as a weight for the 

trend component and the intraday range, they make h-step-ahead forecasts for volatility.   

 

The model given in (4.14) is estimated in two stages: in the first stage, similar to Harris 

et al. (2010), the precise dynamics of long term trend component is left unspecified. 

However, the long term nonlinear trend component is separated directly from the 

intraday range data by using the HP filter recursively. The smoothing parameter of the 

HP filter is set to 250,000 (i.e.
2100 nf×=λ , where assuming 50 trading weeks in a 

year, nf =50). With this, it is implicitly assumed that the long term component relates to 

the business cycle.  

 

In the second step, a MRSGARCH model for the cyclical component is estimated. As 

the HP filter is used to obtain a smoothed nonlinear representation of the intraday range, 

it is more sensitive to long term shocks on the range. Therefore, observing more 

sensitivity to short term shocks in the cyclical component would be expected. To 

include these sensitivities in to volatility forecasts, a MRSGARCH model is 

implemented with zero mean in its variance equation, and regime switching parameters:  
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where ( )tt qS −  is the cyclical component of volatility, tu  is i.i.d, zero mean, constant 

variance and approximately normally distributed. To estimate the expectation in 

(4.15b), formulas in (4.9), (4.10) and (4.11) are used.  

 

In forecasting volatility with two component Markov regime switching range model, 

following Harris et al. (2010), it is assumed that the long run trend follows a random 
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walk process over the forecast horizon. The θ  parameter in (4.15) is used to forecast the 

cyclical component, and is defined as the sum of the persistence parameters in (4.15b). 

The persistence parameters are estimated using regime switching probabilities (4.10) as 

weights.  

  

Therefore, h-step-ahead volatility for the two component Markov regime switching 

range model can be estimated using 

 

( ) ( )t

h

t

h

ht SqS ˆˆˆ1ˆ θθ +−=+       (4.16) 

 

where, as ∞→h , volatility represented by using intraday range approaches its long 

term trend level, tht qS →+
ˆ . 

 

4.3. Data and Methodology 
 

4.3.1. Data 

 

In the analysis, daily open, close, high and low prices of S&P500 index are used. The 

weekly data, which covers the period of 03 January 1982 - 26 March 2010 (1473 

observations), is estimated from daily return and range data. The full sample is divided 

into an initialization (i.e. in-sample estimation) period, 8 January 1982 – 2 March 2001 

(1000 weeks) and an out-of-sample forecast period, 9 March 2001 – 26 March 2010 

(473 weeks). Models are estimated by using an initialization period of 1000 

observations. Then models are tested out-of-sample for the remaining 473 weeks. An 

analysis with a shorter estimation period (i.e. 500 observations) and a longer out of 

sample test period (i.e. 973 observations) is also made. Models are also tested by using 

daily data for a shorter time span in order to check the robustness of the results. To save 

space, only the results of weekly analysis, for an estimation sample length of 1000 

observations, are provided here. 

 

[Table 4.1] 

 

Summary statistics and the time series properties of the weekly range and return data are 

reported in Table 4.1. Panel A reports that S&P500 returns exhibit negative skewness, 

excess kurtosis and non-normality. Panel B reports the basic time series properties of 
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the return series. In particular, it reports the first five autocorrelation coefficients, the 

Ljung-Box portmanteau test for serial correlation up to 10 lags and the ARCH test of 

Engle (1982). S&P500 returns display significant positive autocorrelations, and the 

ARCH test suggests that there is evidence of significant volatility clustering. 

 

4.3.2. Methodology 

 

In-sample fit and out-of-sample forecast performance of one and two component 

MRSACR models are compared with well-known return and range-based volatility 

models. In particular, the EWMA model of Riskmetrics with 0.94 decay factor, the 

GARCH model of Bollerslev (1986), the FIGARCH model of Baillie et al. (1996), and 

the Klaassen (2002)'s version of the MRSGARCH model are employed as return-based 

benchmarks. Similarly, the Hybrid EWMA model of Harris and Yilmaz (2009) and the 

CARR model of Chou (2005) are employed as range-based benchmarks. The models 

are estimated by assuming different error distributions. In particular, return-based 

models are estimated with Gaussian, Student's t and GED errors and range-based 

models with Exponential, Weibull and GED errors. To make comparisons on equal 

grounds and to save space, only the results for exponential/Gaussian error models are 

provided. The results of different error specifications are qualitatively similar. Potential 

improvements in model performances are investigated by extending the information 

content of the data with using daily high, low, open and close prices, and by introducing 

regime switches governed by a first degree Markov process. 

 

Four measures of the ex-post volatility are used: 

 

(1) Weekly return squared (RV1): 

 

( )2
1 rrRV tt −=       (4.17) 

 

(2) Weekly scaled range (RV2): 
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(3) Sum of squared daily returns (RV3): 
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(4) Sum of daily price range (RV4): 

 

( )∑ =
−=

K

k

L

kt

H

ktt ppRV
1

2

,,
2log4

1
4     (4.20) 

 

First proxy is the weekly return squared that is, although inefficient estimator of the true 

volatility, commonly used in the literature. Second proxy of the integrated volatility is 

the weekly scaled range that is the weekly range adjusted for opening and closing 

prices. Third and fourth volatility proxies are inspired from intraday return and intraday 

range volatility estimators, which are known as highly efficient estimators of integrated 

variance. 

 

First, each of the eight conditional volatility models is estimated by using observations 

τ,,1 K=t  to make h-week ( 13,4,2,1=h ) ahead out-of-sample forecast of the 

conditional covariance matrix for the week ht += τ . The estimation sample is then 

rolled forward one week, and the models re-estimated and h-week out-of-sample 

forecasts are made for the week ht ++= 1τ . The last iteration uses the sample 

hThTt −−−= ,,Kτ  to generate forecast covariance matrix for the week Tt = . This 

yields a series of 461 out-of-sample forecasts for each model. Then, in-sample and out-

of-sample forecast performance of the models are evaluated by using a variety of 

evaluation criteria.  

 

Mainly two groups of evaluation criteria are used; statistical performance measures and 

risk management loss functions. First, in order to assess the statistical performance of 

the volatility forecasts, following evaluation measures are computed. 

 

(1) Root mean square error (RMSE): 
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(2) Mean absolute error (MAE): 
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(3) Heteroskedasticity adjusted Mean Square Error (HMSE): 
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(4) Q-likelihood loss function (QLIKE): 
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(5) Success Ratio (SR): 
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(6) Directional accuracy (DA): 
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(7) Mincer-Zarnowitz regression: 

 

hthttht ubVFaRV +++ ++= ,
     (4.27) 

 

(8) Encompassing regression: 
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The error statistics, RMSE, MAE, HMSE, R2LOG and QLIKE, measure the forecast 

accuracy of each model in relation to the measured volatility estimates (i.e. volatility 

proxies). RMSE and MAE are commonly used error metrics. HMSE is 

heteroskedasticity adjusted MSE proposed by Bollerslev and Ghysels (1996). QLIKE is 
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a loss function for a Gaussian likelihood proposed by Bollerslev et al. (1994). SR and 

DA are directional predictive ability tests proposed by Peseran and Timmerman (1992). 

In equation (4.25), ( )( )PPPPSRI ˆ11ˆ −−+= , P is the proportion of time that 

,0>++ jhtRV  and P̂ is the proportion of positive demeaned volatility forecasts. Mincer-

Zarnowitz regression measures forecast bias and efficiency of each model from 

measured volatilities. In particular, the efficiency of each model is tested by employing 

a joint test of :0H  1,0 == ba . If the model is efficient, the null hypothesis should not 

be able to be rejected. The R-square coefficient of the Mincer-Zarnowitz regression 

indicates the explanatory power of each model's forecast, without considering any bias 

or efficiency. Newey and West (1987) procedures are employed in computing 

heteroskedasticity-autocorrelation-consistent standard errors for the regressions. Finally, 

an encompassing regression is run to test whether the forecast of one model includes 

any incremental information over the forecasts of the other models. In particular, the 

null hypothesis of  0:0 =kbH   can be separately tested for each model  .,...,1 Nk =   

 

Second, model forecasts are compared pair-wise by using Modified Diebold-Mariano 

(MDM) test of Harvey et al. (1997), and jointly by using Reality Check (RC) test of 

White (2000) and Superior Predictive Ability (SPA) test of Hansen (2005). In RC and 

SPA test, the null hypothesis that all models are no better than a particular model (i.e. 

benchmark model) is tested. 

 

The second method of evaluating the forecasting performance of the individual 

conditional volatility models is to assess whether the models are adequate for risk 

management purposes. These tests use value-at-risk (VaR) based loss functions. In 

selecting the adequacy of the models for risk management purposes, primarily two 

groups of tests are used. The first group consists of the coverage tests; Time Until First 

Failure (TUFF) and proportion of failure (PF) tests of Brooks and Persand (2003). The 

TUFF test is based on the number of observations before the occurrence of the first 

exception, and test the hypothesis of 00 : αα =H  by using a LR test. TUFF is known 

as having low power of rejecting inadequate models. The PF is based upon the 

percentage of times that the calculated VaR is insufficient to cover the actual losses. 

The PF test is conducted as unconditional and conditional coverage tests. In PF test, a 

model is assessed if it’s out-of-sample percentage of failure is close to the significance 

level (i.e. 01.0=α  or 05.0=α ). The PF is also tested for the null of an independently 
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distributed failure process by the coverage test proposed by Christoffersen (1998). This 

test combines the unconditional coverage test with an independence test. For the models 

which pass these tests, following Sarma et al. (2003), a second group of tests, the 

regulator loss function (RLF), ( ) { },
21

k
tt VaRr

k

ttt IVaRrl
<

−= and the firm loss function 

(FLF),  { }k
tt VaRr

k

t IVaR
>

−δ , of the surviving models are estimated. Finally, a sign test on 

the loss differentials between pairs of models for RLF and FLF estimates is conducted. 

It tests the null of a zero-median loss differential against the alternative of a negative 

median, with a studentized version of the sign test of Diebold and Mariano (1995). 

Rejection of the null implies that the first model is significantly better than the second 

model. 

 

4.4. Empirical Findings 
 

4.4.1. In-Sample Fit 

 

In this section, goodness of fit of MRSACR and CMRSACR models is compared with 

the return-based models (EWMA, GARCH, FIGARCH and MRSGARCH) and the 

range-based models (HybEWMA and CARR). The in-sample parameter estimates of 

the eight models are presented in the Table 4.2. The standard errors are asymptotic 

standard errors. Following a common assumption in practice, the mean return is 

assumed to be zero for return-based models. As regime switching models have more 

parameters than single regime models, they are expected to fit data in sample better than 

more parsimonious single regime models. The parameters of the conditional variance 

and range estimates are all statistically significant. 

 

[Table 4.2] 

 

While long term persistence in the first regime, and constant and long term persistence 

in the second regime explain most of the volatility in the return-based MRSGARCH 

model, short and long term persistence explain it together in MRSACR model. On the 

overall, the persistence of shocks on the volatility is lower in range-based models than 

return-based models. The Akaike and Schwarz information criteria (AIC and BIC), 

which rank the models in terms of trade-off between precision and complexity, show 

that the CMRSACR model fits the data better than all others. Moreover, log likelihood 

estimates also show that the CMRSACR model fits the data better than all other models. 
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To conclude, the CMRSACR model shows better in-sample fit to the data. 

 

4.4.2. Out-of-Sample Forecast Evaluation 

 

The out-of-sample forecast performance of the selected models is evaluated by using 

statistical performance measures and risk management loss functions. Models are 

evaluated for the period 27 April 2001-26 March 2010 (461 observations). Forecasts for 

1-, 2-, 4- and 13-week horizons are examined and the results are provided here. In 

addition to these results, the forecasting performance of the models is compared by 

employing different specifications of the error distributions (i.e. Student's t and GED for 

return-based models, Weibull and GED for the MRSACR model), and by adapting 

different forecast steps (1-, 4-, 8-, 13-week). The results are not qualitatively different 

from the results provided here. These additional results are available upon request. 

 

The estimated out-of-sample evaluation criteria are provided in Table 4.3a and 4.3b. the 

MRSACR and CMRSACR model perform better than other single and two regime 

models. In particular, the CMRSACR model has the lowest forecast error statistics in all 

forecasts steps and for all volatility proxies, except the fourth step. In the fourth step, the 

MRSACR and MRSGARCH models perform better than all other models, and the 

CMRSACR follows them. The one factor MRSACR model also performs better than 

other competing models most of the time. All models exhibit quite high directional 

accuracy in their forecast: high SR and highly significant DA statistics. In particular, the 

CMRSACR model has the highest SR statistics for the first three forecast steps. At 

higher forecasts steps, it still performs better than all models except the MRSGARCH 

model. From the above results, the two factor CMRSACR model produces the lowest 

error predictions, predicts the direction of the volatility more accurate than return-based 

models at 1-, 2- and 4-week horizons, and still performs better at longer forecast 

horizons. The single factor MRSACR model also provides some improvement in terms 

of forecast accuracy over competing models. 

 

[Table 4.3a and 4.3b] 

 

In evaluating the significance of the pair-wise differences in prediction accuracy of the 

models, Modified Diebold-Mariano (MDM) test is employed. The null hypothesis that 

the mean square error of the proposed models is the same as that of each of the 
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benchmark models is tested. Table 4.4 reports the pair-wise comparison of the eight 

models, as the MRSACR and CMRSACR models are being the benchmarks. The 

negative sign of the MDM statistics reveals that the loss of the proposed (MRSACR or 

CMRSACR) models is lower than the one implied by the benchmark models given the 

loss differential of (MSEproposed –MSEbenchmark ). MSE of one factor MRSACR model is 

slightly higher than the GARCH, FIGARCH and CMRSACR models at first three 

forecast steps. However, at the fourth forecast step, MSE of the MRSACR model is 

lower than all other models. MSE of the two-factor MRSACR (CMRSACR) model is 

lower than all other models at each forecast step except the fourth step. In general, 

forecasts of the MRSACR and CMRSACR models exhibit lower MSE than other 

models; however, the differences, most of the time, are not statistically significant. 

Overall, the CMRSACR model offers an increase in forecast accuracy at lower forecast 

horizons, and the MRSACR model offers increase at higher forecast horizons relative to 

other models. However, most of the time the differences are not statistically significant.   

 

[Table 4.4] 

 

In evaluating the significance of the joint prediction accuracy, Superior Predictive 

Ability (SPA) and Reality Check (RC) tests are used. The null hypothesis that the mean 

square error of all models is no better than a particular (benchmark) model is tested. 

Table 4.5 reports the p-values of joint prediction accuracy tests results. For the RV1 

volatility proxy, the null is rejected for all models at the first forecast horizon, except 

the CMRSACR model. However, for other volatility proxies and forecast horizons, the 

null cannot be rejected for all models. Therefore, for the RV1 proxy at the first forecast 

horizon, the CMRSACR model generates forecasts with the lowest mean square errors, 

and outperforms all other models. However, for other volatility proxies and forecast 

steps, the tests do not give a clear comparison of forecast accuracy. 

 

[Table 4.5] 

 

In evaluating the significance of the forecast accuracy of each model relative to realized 

volatility, Mincer-Zarnowitz (MZ) regressions are estimated. Table 4.6 reports the 

estimated parameters, p-value of the hypothesis test, and the R-square statistic. Across 

all volatility proxies and at each forecast horizon, the CMRSACR model has the highest 

R-square statistics, which indicates information content about the true value of the 
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realized volatility. The null hypothesis of efficiency is rejected for all models with some 

exceptions. In particular, null cannot be rejected for the EWMA and HybEWMA for 

RV3 at first three forecast horizons; for return-based models for RV3 at forecast horizon 

3, the FIGARCH, MRSGARCH and MRSACR at fourth forecast step for all proxies 

except RV1. In Mincer-Zarnowitz regression, the value of slope coefficients indicates 

the efficiency of the models. The estimated coefficients of the MRSACR and 

CMRSACR models are close to unity most of the time. The coefficient of the 

CMRSACR model is close to one at lower forecast horizons, and provides efficient 

forecasts; however, it gets lower than unity at higher forecast horizons, and provides 

dispersed forecasts. The coefficient of the MRSACR model is slightly higher than or 

close to unity at lower forecast horizons, and gets closer to unity as the forecast horizon 

increases. In general, the CMRSACR model exhibits more efficient forecasts than all 

other models. 

 

[Table 4.6] 

 

In evaluating the forecast accuracy of the models together, encompassing regressions 

are estimated. Table 4.7 reports the estimation results of the encompassing regressions. 

In a number of cases, the CMRSACR model clearly encompasses all other models. In 

particular, the slope coefficient of the MRSACR and CMRSACR model is closer to 

unity than other models, and the CMRSACR model clearly encompasses all models for 

each volatility proxy at first three forecast steps (i.e. 1-, 2- and 4-week), while the 

MRSACR model encompasses at first and second forecast horizons for RV1. However, 

the GARCH and MRSGARCH models encompass all models at the fourth forecast 

horizon. Another way of evaluating Mincer-Zarnowitz and encompassing regression is 

to compare the R-square estimates of encompassing models, reported in Table 4.6, with 

the R-square estimates of the encompassing regression. At first three forecast horizon, 

the inclusion of all other return and range-based models only slightly increases the R-

square of the encompassing regression. That means other models contain limited 

information over the CMRSACR model, and barely improve the performance of the 

CMRSACR model. In general, the CMRSACR model can explain more of the true 

integrated volatility, and it provides more accurate forecasts. 

 

[Table 4.7] 
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The out-of-sample forecast performance of the models is also evaluated from a risk 

management perspective. Table 4.8 reports the results. The choice of the model in 

calculating the VaR is crucial. The model should not set too high or too low VaR. The 

VaR calculated too low could indicate that the bank does not have sufficient capital 

allocated to cover future losses. Equally, too high VaR could mean tying up too much 

capital and having higher opportunity costs. The risk management loss functions TUFF 

and PF, the LR tests of unconditional PF (LRuc), conditional PF (LRcc) and 

independence PF (LRind) examine the adequacy of the coverage of each model. The 

loss functions, RLF and FLF, incorporate the risk manager's preference into the model 

evaluation process. The loss functions are presented for 95 and 99 percent VaR levels 

(VaR95 and VaR99). The theoretical TUFF value at 5 and 1 percent are 20 and 100 

weeks, respectively. TUFF estimates should be higher than these values. At the first 

forecast horizon, the CMRSACR model exhibits the lowest number of exceptions both 

at 95 and 99 percent VaR levels. The first failures of all models have happened before 

theoretical values for 1 week forecast horizons, except the CMRSACR and ECARR at 

95 percent VaR level, and the CMRSACR, CARR and FIGARCH models at 99 percent 

VaR level. At higher forecast horizons, first exceptions occur later. Failure rates (PF) of 

the CMRSACR model are significantly lower than all other models at the first forecast 

horizon. As the duration of the forecast horizon is extended, PF of the CMRSACR 

increases, while PF of the MRSACR decreases. 

 

[Table 4.8] 

 

The hypothesis of having a correct unconditional coverage is rejected for most of the 

models at 95 percent VaR level. However, it cannot be rejected for some models at 99 

percent VaR level. In particular, the hypothesis of having a true unconditional VaR 

coverage is rejected for all models at multistep ahead forecasts for 95 percent VaR 

estimates. However, it cannot be rejected for return and range-based EWMA and regime 

switching models at the first forecast step. At the 99 percent VaR level, conditional 

coverage is not rejected for return-based models for all forecast steps except the fourth 

step. At the second forecast step, all models pass the test except the CARR model. At 

the 95 percent VaR level, independence tests for all models are not rejected for all 

models at first and fourth forecast steps, except the GARCH at the first step and the 

FIGARCH model at the fourth step. In other steps, test cannot be rejected only for the 

CMRSACR and CARR models. Only the CMRSACR and CARR models pass the 
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independence test for all steps at 95 percent VaR level. The hypothesis of having a 

correct conditional coverage is not rejected for return and range-based EWMA and 

regime switching models, for the first and fourth forecast horizons, at 95 percent VaR 

level. Opposite to unconditional test, at 99 percent VaR level, conditional coverage and 

independence tests are not rejected for range-based models for all forecast steps with 

some exceptions at the first forecast horizon. At the fourth forecast step, all models pass 

the test except the FIGARCH model. It is concluded that, at 95 percent VaR level the 

EWMA, HybEWMA, MRSGARCH and MRSACR models, and at 99 percent VaR 

level the HybEWMA, CARR, MRSACR and CMRSACR models pass the coverage 

tests. 

 

The CMRSACR model passes only the independence test at 95 percent VaR level, 

while it passes all independence and conditional coverage tests at the 99 percent VaR 

level. However, the MRSACR model passes the conditional coverage tests for first and 

fourth forecast horizons at 95 percent VaR level, and all independence and conditional 

coverage tests at multistep ahead forecast horizons at 99 percent VaR level. Therefore, 

both proposed models have similar to or better coverage of VaR failure process than 

other models, and so far can be considered adequate for risk management purposes. 

 

[Table 4.9] 

 

Finally, model performances are compared with the help of the firm and regulatory loss 

functions (FLF and RLF). The estimated value of these functions at 95 and 99 percent 

VaR levels are provided in Table 4.9. A one-sided sign test to evaluate the null 

hypothesis that there is no difference between the models is also conducted for the 

models, which already passed the coverage tests. In terms of RLF estimates, the null is 

rejected in all cases. Hence, there is no significant difference between VaR estimates of 

the models from the regulatory perspective. In terms of FLF estimates, at 95 percent 

VaR level, the MRSACR model is significantly better than the EWMA and 

MRSGARCH models, but there is no significant difference between the MRSACR and 

HybEWMA models for the first three forecast horizons. At the 99 percent VaR level, 

the CMRSACR model performs better than the HybEWMA, CARR and MRSACR 

models for all forecast horizons.    
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4.5. Conclusion 
 

In this chapter, two new Markov regime switching models based on intraday range are 

introduced. The one and two factor MRSACR models, proposed in this chapter, utilize 

enhanced information content, and estimate integrated volatility by using more 

information (daily open, close, high and low prices) than return-based counterparts, 

which utilize only close-close prices. The one factor MRSACR model shares many 

useful properties with Markov regime switching GARCH (MRSGARCH) models with 

enhanced information content. In addition to the MRSACR, the CMRSACR model 

utilize two volatility components (long term trend and short term cyclicality) and bring 

the useful properties of Markov regime switching models and component models with 

enhanced information content of intraday range. 

 

It has been searched for if there is any incremental improvement with using these two 

models in volatility forecast. In-sample fit and out-of-sample forecast performance of 

the MRSACR and CMRSACR models are compared to return-based benchmark 

models: the single regime EWMA and GARCH, long memory FIGARCH, switching 

regime MRSGARCH, and range-based benchmark models: single regime hybEWMA 

and CARR. In evaluating the out-of-sample forecast performance of the models, model 

forecasts are compared with four volatility proxies; the sum of squared daily returns, the 

sum of daily range, the weekly squared returns, and the weekly scaled range. The out-

of-sample performance of the models is tested in many grounds by using statistical (i.e. 

statistical loss functions, pair-wise and joint accuracy tests, Mincer-Zarnowitz 

regressions, encompassing regressions) and risk management performance measures 

(i.e. value at risk based loss functions, coverage and independence tests, firm and 

regulatory loss functions). 

 

It has been shown that the proposed one and two-component models fit the data better 

than all other models. In particular, the CMRSACR model displays better fit than all 

other models. As the purpose of volatility estimation is to be able to forecast volatility, 

the performance of the MRSACR and CMRSACR models are tested in comparison to 

renowned return-based and range-based volatility models in an out-of-sample setting. In 

particular, the out-of-sample forecast performance is evaluated by using a number of 

statistical and risk management loss functions, at different forecast horizons and for 

different volatility proxies. It has been found that the MRSACR models, in general, and 
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the CMRSACR model, in particular, generate more accurate volatility forecasts, contain 

more information about the true integrated volatility, and display similar or better 

performance than all competing models when used for risk management purposes. 

 

The models offer a promising further research area. Application of the MRSACR 

models to different frequencies of range (e.g. daily, hourly, minutes or tick-by-tick data) 

might increase the accuracy of the volatility predictions. Moreover, application to 

different asset prices (fixed income, foreign currency, derivatives) or economic time 

series might improve forecast performance. Although, not having a multivariate 

analogue limits its usefulness, multivariate range models still offer a fruitful area for 

further research.  
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Table 4.1 

Summary Statistics and Time Series Properties of S&P500 Return Series 

Panel A reports summary statistics for the S&P 500 weekly return series over the period of 03/01/1982-
19/02/2010. Panel B reports the autocorrelation, autoregressive conditional heteroskedasticity (ARCH) 
and the Ljung-Box-Q test for autocorrelation of order up to 10 asymptotically distributed as a central Chi-
square with 10 d.o.f. under the null hypothesis with 5 percent critical value 18.307. ARCH (4) is Engle's 
LM test for autoregressive conditional heteroskedasticity, which is asymptotically distributed as a central 
Chi-square with four d.o.f. under the null hypothesis with 5 percent critical value 9.488. p-values are 
reported in parenthesis. 

 
 

 
 
 
 

Mean (%)      Std. Dev. (%)  Skewness  Kurtosis  Maximum (%) Minimum (%) Jarque-Bera

0.15 2.34 -0.82 9.67 10.40 -20.08 2857.4 [0.00]

ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) LB-Q(10) ARCH (4)

-0.051 0.066 -0.058 -0.005 0.003 27.04 146.94

Panel A: Summary Statistics

Panel B: Basic Time Series Properties 
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Table 4.2 

In-Sample Evaluation  

Panel A reports in-sample parameter estimates of the models at each regime. Scripts indicate the regime. 
The parameters of the single regime models are exhibited at regime 1. Zero mean is assumed for the mean 
equation of the models. Asymptotic standard errors are provided in the row below each parameter. Panel 
B presents in-sample evaluation metrics: number of parameters (NP), persistence of shocks to the 
volatility (PERS), Akaike Information Criterion (AIC) and Schwarz Information Criterion (BIC) and 
negative log likelihood (LL) of the estimated models. 
 

 

 
 

 

Panel A: Parameter Estimates Panel B: Evaluation Metrics

Model ω(1) ω(2) α(1) α(2) d β(1) β(2) p q NP PERS AIC BIC LL

EWMA 0.00 0.06 0.94 2 1 4.23 4.25 -2113

s.e 0.00 0.03 0.03

HYBEWMA 0.00 0.06 0.94 2 1 4.23 4.25 -2113

s.e 0.00 0.02 0.02

GARCH 0.17 0.11 0.85 3 0.96 4.23 4.25 -2110

s.e 0.04 0.04 0.04

ECARR 0.26 0.26 0.65 3 0.91 3.90 3.92 -1944

s.e 0.09 0.00 0.04

FIGARCH 0.30 0.27 0.46 0.60 4 0.87 4.22 4.24 -2105

s.e 0.13 0.08 0.10 0.12

MRSGARCH 0.02 1.13 0.00 0.17 0.97 0.66 0.98 0.98 8 0.97 4.22 4.27 -2099

s.e 0.01 0.06 0.00 0.24 0.01 0.01 0.01 0.01

MRSACR 1.18 0.13 0.47 0.16 0.36 0.80 0.99 0.99 8 0.95 4.11 4.16 -2044

s.e 0.03 0.01 0.03 0.03 0.02 0.01 0.01 0.00

CMRSACR 0.60 0.03 0.37 0.97 0.94 0.99 8 1.00 2.33 2.38 -1157

s.e 0.02 0.01 0.01 0.03 0.03 0.01
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Table 4.3a 

Out-of-Sample Estimation for Forecast Horizon 1 and 2  

The table reports statistical loss functions Root mean square error (RMSE), Mean absolute error (MAE), 
Heteroskedasticity adjusted Mean Square Error (HMSE), Q-likelihood loss function (QLIKE) and 
directional accuracy test statistics of Success Ratio (SR) and Directional Accuracy (DA) tests are 
calculated for the out-of-sample period with respect to each of four volatility proxy (RV) and first two 
forecast horizons (1 and 4 weeks). 

 

 

  

Model RMSE MAE HMSE QLIKE SR DA RMSE MAE HMSE QLIKE SR DA

EWMA 1.84 1.34 0.42 1.55 0.69 7.78 3.06 2.13 0.28 2.26 0.70 8.22

HYBEWMA 1.86 1.34 0.45 1.56 0.66 6.80 3.03 2.10 0.28 2.26 0.69 7.84

GARCH 1.62 1.20 0.35 1.52 0.72 8.51 2.72 1.93 0.26 2.25 0.75 9.93

ECARR 2.50 1.96 0.41 1.69 0.66 5.33 4.40 3.52 0.32 2.39 0.68 6.45

FIGARCH 1.99 1.58 0.37 1.62 0.70 7.37 3.36 2.60 0.29 2.32 0.71 7.82

MRSGARCH 1.82 1.29 0.50 1.55 0.65 6.77 2.97 2.03 0.33 2.26 0.69 8.67

MRSACR 1.78 1.27 0.46 1.55 0.67 5.99 2.81 1.94 0.27 2.25 0.69 7.01

CMRSACR 1.31 0.92 0.26 1.42 0.80 11.98 2.27 1.50 0.23 2.19 0.79 11.48

EWMA 1.21 0.82 0.16 1.69 0.77 11.29 2.29 1.55 0.14 2.39 0.78 12.06

HYBEWMA 1.19 0.79 0.15 1.68 0.78 11.85 2.22 1.46 0.13 2.38 0.79 12.64

GARCH 0.93 0.66 0.13 1.67 0.80 12.42 1.81 1.25 0.12 2.38 0.83 13.32

ECARR 1.73 1.42 0.21 1.77 0.78 11.15 3.29 2.76 0.19 2.47 0.80 12.14

FIGARCH 1.30 1.07 0.17 1.73 0.78 11.47 2.37 1.88 0.16 2.42 0.79 11.59

MRSGARCH 1.14 0.73 0.17 1.68 0.77 12.15 2.17 1.33 0.16 2.39 0.79 13.03

MRSACR 0.99 0.65 0.14 1.67 0.78 11.33 1.84 1.16 0.11 2.37 0.80 11.99

CMRSACR 0.01 0.00 0.00 1.60 1.00 21.47 1.09 0.72 0.07 2.35 0.88 15.87

EWMA 1.33 0.85 0.20 1.80 0.74 10.04 2.44 1.54 0.17 2.50 0.78 11.75

HYBEWMA 1.29 0.82 0.19 1.79 0.77 11.43 2.34 1.46 0.15 2.49 0.79 12.32

GARCH 1.13 0.75 0.19 1.79 0.76 10.39 2.05 1.34 0.16 2.49 0.80 12.24

ECARR 1.47 1.19 0.17 1.84 0.79 11.52 2.72 2.25 0.15 2.54 0.83 13.50

FIGARCH 1.27 0.97 0.17 1.82 0.76 10.26 2.28 1.70 0.17 2.52 0.78 11.11

MRSGARCH 1.32 0.82 0.23 1.80 0.76 11.80 2.50 1.46 0.19 2.50 0.80 13.46

MRSACR 1.11 0.73 0.17 1.78 0.78 11.33 2.00 1.24 0.13 2.48 0.82 13.32

CMRSACR 0.89 0.57 0.12 1.75 0.85 14.69 1.66 1.12 0.18 2.49 0.85 14.58

EWMA 1.04 0.71 0.11 1.67 0.80 12.69 2.04 1.39 0.11 2.37 0.80 12.67

HYBEWMA 1.00 0.67 0.10 1.67 0.81 13.46 1.94 1.30 0.10 2.37 0.80 13.07

GARCH 0.78 0.56 0.10 1.66 0.82 13.17 1.56 1.09 0.10 2.37 0.83 13.49

ECARR 1.63 1.39 0.19 1.76 0.85 14.53 3.17 2.73 0.18 2.46 0.86 14.97

FIGARCH 1.22 1.02 0.15 1.72 0.80 12.41 2.21 1.82 0.14 2.41 0.81 12.78

MRSGARCH 0.90 0.58 0.11 1.67 0.80 13.61 1.81 1.14 0.11 2.37 0.81 13.90

MRSACR 0.74 0.50 0.08 1.65 0.85 14.50 1.47 0.95 0.07 2.35 0.84 13.99

CMRSACR 0.58 0.38 0.05 1.63 0.87 15.62 1.33 0.89 0.09 2.35 0.85 14.43

Forecast Step 1 (1 week) Forecast Step 2 (4 weeks)

Volatility Proxy RV1

Volatility Proxy RV2

Volatility Proxy RV3

Volatility Proxy RV4
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Table 4.3b 

Out-of-Sample Estimation for Forecast Horizon 3 and 4  

The table reports statistical loss functions Root mean square error (RMSE), Mean absolute error (MAE), 
Heteroskedasticity adjusted Mean Square Error (HMSE), Q-likelihood loss function (QLIKE) and 
directional accuracy test statistics of Success Ratio (SR) and Directional Accuracy (DA) tests are 
calculated for the out-of-sample period with respect to each of four volatility proxy (RV) and for the third 
and fourth forecast horizons (8 and 13 weeks). 
 
 

 

 

 

Model RMSE MAE HMSE QLIKE SR DA RMSE MAE HMSE QLIKE SR DA

EWMA 5.32 3.76 0.22 2.97 0.76 10.89 15.25 10.89 0.17 4.17 0.80 12.68

HYBEWMA 5.14 3.63 0.20 2.96 0.75 10.75 14.52 10.57 0.14 4.16 0.80 12.77

GARCH 4.77 3.42 0.23 2.96 0.78 11.15 13.81 10.09 0.20 4.17 0.78 11.07

ECARR 7.96 6.64 0.28 3.09 0.73 8.90 21.67 19.57 0.25 4.28 0.81 12.60

FIGARCH 5.55 4.20 0.31 3.01 0.74 9.33 14.69 10.62 0.68 4.24 0.70 8.11

MRSGARCH 4.93 3.41 0.23 2.96 0.75 11.54 12.00 8.75 0.15 4.15 0.84 15.06

MRSACR 4.68 3.31 0.19 2.95 0.75 10.13 12.39 9.32 0.16 4.16 0.80 12.87

CMRSACR 4.19 2.88 0.17 2.92 0.80 12.28 15.40 9.50 0.19 4.15 0.80 12.36

EWMA 4.55 3.05 0.16 3.10 0.79 12.08 15.14 9.86 0.19 4.30 0.78 11.70

HYBEWMA 4.34 2.86 0.13 3.09 0.78 12.14 14.41 9.58 0.15 4.29 0.78 11.80

GARCH 3.81 2.48 0.16 3.09 0.82 13.16 13.80 8.91 0.23 4.30 0.77 10.78

ECARR 6.35 5.45 0.19 3.17 0.82 12.77 19.16 16.87 0.20 4.37 0.79 11.70

FIGARCH 4.52 3.35 0.24 3.12 0.76 10.52 16.26 10.63 0.96 4.40 0.69 7.69

MRSGARCH 4.28 2.59 0.16 3.09 0.79 13.15 12.99 8.16 0.17 4.29 0.82 14.17

MRSACR 3.68 2.32 0.12 3.08 0.79 12.11 12.81 8.46 0.17 4.29 0.76 11.13

CMRSACR 3.06 1.94 0.12 3.07 0.85 14.50 14.73 9.03 0.24 4.31 0.80 12.30

EWMA 4.87 2.96 0.19 3.20 0.77 11.18 16.19 9.30 0.25 4.41 0.75 10.32

HYBEWMA 4.63 2.77 0.15 3.19 0.77 11.63 15.41 8.89 0.20 4.40 0.75 10.45

GARCH 4.28 2.62 0.20 3.20 0.79 11.47 15.53 8.85 0.31 4.41 0.74 9.00

ECARR 5.46 4.50 0.15 3.24 0.82 13.12 17.98 14.66 0.18 4.45 0.78 10.96

FIGARCH 4.83 3.28 0.31 3.23 0.75 10.24 19.82 11.99 1.42 4.55 0.68 7.26

MRSGARCH 5.10 2.81 0.22 3.20 0.79 13.37 16.21 8.85 0.24 4.40 0.79 12.93

MRSACR 4.21 2.48 0.14 3.19 0.80 12.42 15.35 8.94 0.24 4.41 0.73 9.60

CMRSACR 3.58 2.35 0.20 3.20 0.83 13.40 15.74 9.73 0.35 4.44 0.78 11.22

EWMA 4.18 2.81 0.13 3.08 0.78 11.88 14.49 9.34 0.16 4.28 0.78 11.53

HYBEWMA 3.93 2.63 0.10 3.07 0.78 12.14 13.71 9.03 0.13 4.27 0.78 11.67

GARCH 3.43 2.26 0.13 3.07 0.81 12.55 13.06 8.51 0.20 4.28 0.77 10.34

ECARR 6.21 5.41 0.18 3.16 0.83 13.59 18.93 16.87 0.20 4.35 0.80 11.90

FIGARCH 4.19 3.15 0.21 3.11 0.77 11.12 15.29 9.88 0.85 4.37 0.71 8.23

MRSGARCH 3.79 2.34 0.13 3.07 0.80 13.74 12.11 7.59 0.14 4.27 0.81 14.26

MRSACR 3.18 2.08 0.09 3.06 0.81 12.91 11.90 7.91 0.15 4.27 0.75 10.82

CMRSACR 3.10 1.96 0.12 3.06 0.83 13.48 14.39 8.76 0.21 4.29 0.80 12.17

Forecast Step 3 (8 weeks) Forecast Step 4 (13 weeks)

Volatility Proxy RV1

Volatility Proxy RV2

Volatility Proxy RV3

Volatility Proxy RV4
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Table 4.4 

Modified Diebold-Mariano (MDM) Statistics 

The table reports the Modified Diebold-Mariano statistics for the mean squared errors to test the null 
hypothesis that there is no difference between the MRSACR (CMRSACR) model and each of the other 
seven models. Results are reported for each of four volatility proxy at each of four forecast step. *,** and 
*** denote the MDM statistics for which null hypothesis of equal predictive accuracy at 10, 5 and 1 
percent levels, respectively, can be rejected. The negative sign of the MDM statistics reveals that the loss 
of the proposed (MRSACR or CMRSACR) models is lower than the one implied by the benchmark 
models given the loss differential of (MSEproposed –MSEbenchmark). 
 

 

 
 
 
 
 
 
 
 
 
 
 

MRSACR Volatility Proxy CMRSACR Volatility Proxy

Models RV1 RV2 RV3 RV4 Models RV1 RV2 RV3 RV4

EWMA 0.53 0.06 -1.26 -2.01** EWMA -1.31 -1.46 -1.42 -1.8*

HYBEWMA 0.12 0.09 -1.19 -1.73* HYBEWMA -1.31 -1.42 -1.36 -1.6

GARCH 1.15 0.31 -0.78 0.62 GARCH -1.24 -1.45 -1.28 0.27

ECARR -1.69* 0.07 -1.31 -1.80* ECARR -1.65* -1.88* -1.65* -1.79*

FIGARCH 0.79 0.72 0.71 -1.02 FIGARCH -1.52 -2.17** -0.02 -1.44

MRSGARCH -0.93 0.16 -1.33 -1.39 MRSGARCH -1.3 -1.39 -1.48 -1.28

CMRSACR 1.21 1.32 1.48 0.75 MRSACR -1.21 -1.32 -1.48 -0.75

EWMA 0.04 -2.23** -1.35 -2.61*** EWMA -1.71* -1.56 -1.32 -1.89*

HYBEWMA -0.24 -1.90* -1.25 -2.19** HYBEWMA -1.66* -1.48 -1.25 -1.57

GARCH 1.11 0.95 0.57 0.71 GARCH -1.71* -1.57 -1.19 1.03

ECARR -1.65* -1.76* -0.97 -1.82* ECARR -1.91* -1.94** -2.05** -1.82*

FIGARCH 0.57 0.34 0.83 -0.42 FIGARCH -2.15** -2.33** -1.19 -0.3

MRSGARCH -1.68* -1.37 -1.36 -1.44 MRSGARCH -1.59 -1.38 -1.34 -1.12

CMRSACR 1.47 1.3 1.13 -0.48 MRSACR -1.47 -1.3 -1.13 0.48

EWMA -0.39 -2.39** -1.3 -2.82*** EWMA -1.47 -1.79* -1.41 0.21

HYBEWMA -0.08 -2.06** -1.12 -2.47*** HYBEWMA -1.42 -1.65* -1.31 0.39

GARCH 0.93 0.74 0.88 0.52 GARCH -0.63 -0.33 -1.28 0.98

ECARR -1.58 -1.65* -0.41 -1.82* ECARR -1.98** -1.92* -1.76* -1.62

FIGARCH 0.4 0.03 -0.06 -0.51 FIGARCH -1.1 -0.98 -1.46 0.72

MRSGARCH -1.57 -1.29 -1.32 -1.36 MRSGARCH -1.57 -1.35 -1.4 0.32

CMRSACR 1.37 1.03 1.39 -1.16 MRSACR -1.37 -1.03 -1.39 1.16

EWMA -0.99 -1.96** -0.51 -2.16** EWMA 1.03 0.91 0.63 0.97

HYBEWMA -0.42 -1.69* 0.3 -1.92* HYBEWMA 1.12 1.01 0.92 1.05

GARCH -0.36 -0.61 0.9 -1.36 GARCH 1.14 1.14 0.89 1.19

ECARR -1.39 -1.46 0.16 -1.73* ECARR 0.55 0.48 0.82 0.55

FIGARCH -1.73* -1.61 -2.03** -1.61 FIGARCH 0.98 1.03 -0.4 1.15

MRSGARCH -0.92 -0.9 -1.19 -0.94 MRSGARCH 1.23 1.31 -0.11 1.33

CMRSACR -1.22 -1.27 -0.83 -1.3 MRSACR 1.22 1.27 0.83 1.3

Forecast step 3 (8-weeks) Forecast step 3 (8-weeks)

Forecast step 4 (13-weeks) Forecast step 4 (13-weeks)

Forecast step 1 (1-week) Forecast step 1 (1-week)

Forecast step 2 (4-weeks) Forecast step 2 (4-weeks)
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Table 4.5a 

p-values for Superior Predictive Ability (SPA) and Reality Check (RC) Tests 

The table shows the p-values of the consistent (SPA (o, l) and lower bound (SPA (o, l)) Hansen's (2005) 
Superior Predictive Ability (SPA) test and the p-values of White's (2000) Reality Check test (RC) for the 
mean squared errors of the 1 and 4 weeks forecast horizons for all four measured volatilities. The rows of 
each model show the comparison of the benchmark versus all the other models. The null hypothesis that 
none of the models are better than the benchmark model is tested. The number of bootstrap replications 
for calculating the p-values is 2000. Windows size is 3. 

 
 

 
 
 
 
 
 
 
 

RV1 RV2 RV3 RV4 RV1 RV2 RV3 RV4

SPA(o,l) 0 0 0 0 0 0 0 0

EWMA SPA(o,c) 0 0.78 0.72 0.75 0.67 0.77 0.69 0.79

RC 0 0.79 0.73 0.76 0.71 0.8 0.69 0.79

SPA(o,l) 0 0 0 0 0 0 0 0

HYBEWMA SPA(o,c) 0 0.8 0.67 0.83 0.55 0.74 0.63 0.79

RC 0 0.82 0.68 0.83 0.6 0.78 0.63 0.79

SPA(o,l) 0 0 0 0 0 0 0 0

GARCH SPA(o,c) 0 0.76 0.73 0.76 0.7 0.76 0.68 0.79

RC 0.16 0.77 0.74 0.76 0.71 0.78 0.68 0.79

SPA(o,l) 0 0 0 0 0 0 0 0

ECARR SPA(o,c) 0 0.69 0.75 0.9 0.57 0.74 0.72 0.78

RC 0 0.7 0.75 0.91 0.59 0.76 0.72 0.78

SPA(o,l) 0 0 0 0 0 0 0 0

FIGARCH SPA(o,c) 0 0.81 0.7 0.85 0.6 0.75 0.78 0.89

RC 0 0.81 0.7 0.85 0.62 0.81 0.78 0.89

SPA(o,l) 0.01 0 0 0 0 0 0 0

MRSGARCH SPA(o,c) 0.01 0.76 0.62 0.79 0.58 0.67 0.76 0.79

RC 0.01 0.76 0.63 0.79 0.6 0.74 0.76 0.79

SPA(o,l) 0.02 0 0 0 0 0 0 0

MRSACR SPA(o,c) 0.02 0.75 0.7 0.76 0.66 0.79 0.72 0.76

RC 0.02 0.78 0.71 0.76 0.69 0.81 0.72 0.76

SPA(o,l) 0.54 0 0 0 0 0 0 0

CMRSACR SPA(o,c) 1 0.78 0.73 0.76 0.59 0.77 0.68 0.79

RC 1 0.81 0.73 0.76 0.65 0.79 0.68 0.79

Forecast step 2 (4-weeks)Forecast step 1 (1-week)
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Table 4.5b 

p-values for Superior Predictive Ability (SPA) and Reality Check (RC) Tests 

The table shows the p-values of the consistent (SPA (o, l) and lower bound (SPA (o, l)) Hansen's (2005) 
Superior Predictive Ability (SPA) test and the p-values of White's (2000) Reality Check test (RC) for the 
mean squared errors of the 8 and 13 weeks forecast horizons for all four measured volatilities. The rows 
of each model show the comparison of the benchmark versus all the other models. The null hypothesis 
that none of the models is better than the benchmark model is tested. The number of bootstrap 
replications for calculating the p-values is 2000. Windows size is 3. 
 

 

 

RV1 RV2 RV3 RV4 RV1 RV2 RV3 RV4

SPA(o,l) 0 0 0 0 0 0 0 0

EWMA SPA(o,c) 0.65 0.8 0.75 0.79 0.65 0.79 0.73 0.81

RC 0.65 0.8 0.75 0.79 0.66 0.79 0.73 0.81

SPA(o,l) 0 0 0 0 0 0 0 0

HYBEWMA SPA(o,c) 0.59 0.83 0.68 0.73 0.66 0.77 0.67 0.78

RC 0.59 0.83 0.68 0.73 0.69 0.77 0.67 0.78

SPA(o,l) 0 0 0 0 0 0 0 0

GARCH SPA(o,c) 0.67 0.74 0.73 0.78 0.64 0.76 0.64 0.8

RC 0.67 0.74 0.73 0.78 0.64 0.76 0.64 0.8

SPA(o,l) 0 0 0 0 0 0 0 0

ECARR SPA(o,c) 0.68 0.79 0.57 0.82 0.72 0.82 0.62 0.77

RC 0.68 0.79 0.57 0.82 0.74 0.82 0.62 0.77

SPA(o,l) 0 0 0 0 0 0 0 0

FIGARCH SPA(o,c) 0.69 0.79 0.71 0.79 0.66 0.75 0.72 0.8

RC 0.69 0.79 0.71 0.79 0.7 0.75 0.72 0.8

SPA(o,l) 0 0 0 0 0 0 0 0

MRSGARCH SPA(o,c) 0.72 0.77 0.7 0.79 0.69 0.72 0.75 0.83

RC 0.72 0.77 0.7 0.79 0.69 0.72 0.75 0.83

SPA(o,l) 0 0 0 0 0 0 0 0

MRSACR SPA(o,c) 0.68 0.79 0.67 0.8 0.6 0.66 0.68 0.82

RC 0.68 0.79 0.67 0.8 0.62 0.66 0.68 0.82

SPA(o,l) 0 0 0 0 0 0 0 0

CMRSACR SPA(o,c) 0.65 0.81 0.63 0.76 0.67 0.75 0.77 0.79

RC 0.65 0.81 0.63 0.76 0.68 0.75 0.77 0.79

Forecast step 3 (8-weeks) Forecast step 4 (13-weeks)



 118 

Table 4.6a 

Mincer-Zarnowitz Regression Results for Forecast Horizon 1 and 2 

The table reports the results of the Mincer-Zarnowitz regression and hypothesis test for the efficiency of 
the parameters for each of four volatility proxies at first (1-week) and second (4-week) forecast horizons. 
The dependent variable in the regression is volatility proxies (RV), and the independent variable is 
volatility forecast of each model. In estimating heteroskedasticity-autocorrelation-consistent standard 
errors for the regressions, Newey and West (1987) estimation procedure is used. Alpha is constant 
parameter; se is standard error of parameter estimation; beta is slope parameter; Stats is Chi-square 
statistics; pval is p-value of Chi-square statistics, and R2 is R-square of the regression that shows the 
explanatory power of each model's forecasts. 
 
 

 
 
 
 

Model alpha se beta se Stats pval R2 alpha se beta se Stats pval R2

EWMA -0.21 0.31 0.85 0.16 69.2 0.00 0.264 0.05 0.51 0.76 0.14 47.0 0.00 0.308

HYBEWMA -0.07 0.28 0.80 0.14 49.3 0.00 0.238 0.09 0.49 0.76 0.13 40.0 0.00 0.311

GARCH -0.77 0.28 1.12 0.14 136.2 0.00 0.426 -0.67 0.43 0.93 0.11 75.6 0.00 0.426

ECARR -0.06 0.15 0.56 0.06 528.1 0.00 0.251 -0.14 0.38 0.57 0.07 486.3 0.00 0.342

FIGARCH -0.67 0.27 0.84 0.11 387.3 0.00 0.365 -0.60 0.44 0.76 0.09 172.1 0.00 0.368

MRSGARCH -0.47 0.25 1.05 0.14 42.2 0.00 0.222 -0.55 0.55 0.97 0.15 25.5 0.00 0.253

MRSACR -0.16 0.15 0.89 0.07 35.1 0.00 0.271 -0.24 0.31 0.88 0.08 31.8 0.00 0.355

CMRSACR -0.27 0.09 0.98 0.05 49.7 0.00 0.604 0.22 0.15 0.81 0.04 40.0 0.00 0.601

EWMA -0.02 0.32 0.90 0.17 12.0 0.00 0.467 0.22 0.58 0.85 0.15 7.8 0.02 0.471

HYBEWMA -0.02 0.30 0.91 0.16 10.1 0.01 0.482 0.18 0.54 0.86 0.15 6.8 0.03 0.497

GARCH -0.49 0.24 1.13 0.12 25.4 0.00 0.687 -0.60 0.45 1.05 0.11 13.8 0.00 0.657

ECARR -0.21 0.14 0.69 0.05 827.4 0.00 0.605 -0.42 0.32 0.69 0.06 540.0 0.00 0.632

FIGARCH -0.48 0.26 0.88 0.10 175.2 0.00 0.635 -0.65 0.50 0.88 0.10 71.4 0.00 0.595

MRSGARCH -0.66 0.33 1.27 0.17 10.3 0.01 0.516 -1.12 0.63 1.23 0.17 7.3 0.03 0.501

MRSACR -0.27 0.11 1.08 0.06 12.5 0.00 0.625 -0.46 0.26 1.06 0.07 7.0 0.03 0.634

CMRSACR -0.01 0.00 1.00 0.00 13.1 0.00 1.000 0.49 0.07 0.89 0.02 53.1 0.00 0.883

EWMA -0.12 0.34 1.05 0.18 0.2 0.92 0.484 -0.05 0.66 1.02 0.17 0.0 1.00 0.509

HYBEWMA -0.16 0.33 1.08 0.17 0.2 0.89 0.517 -0.15 0.63 1.05 0.17 0.1 0.94 0.549

GARCH -0.55 0.19 1.27 0.10 8.0 0.02 0.657 -0.91 0.43 1.23 0.11 4.6 0.10 0.680

ECARR -0.47 0.13 0.85 0.05 516.7 0.00 0.685 -0.99 0.28 0.86 0.06 368.0 0.00 0.726

FIGARCH -0.58 0.25 1.00 0.10 56.8 0.00 0.622 -0.98 0.58 1.04 0.12 20.5 0.00 0.621

MRSGARCH -0.99 0.38 1.54 0.20 7.1 0.03 0.573 -1.82 0.77 1.51 0.21 6.1 0.05 0.570

MRSACR -0.52 0.11 1.31 0.06 27.4 0.00 0.692 -1.01 0.24 1.30 0.07 20.6 0.00 0.720

CMRSACR 0.22 0.09 1.03 0.05 53.3 0.00 0.792 0.67 0.15 0.98 0.04 59.0 0.00 0.800

EWMA 0.04 0.27 0.85 0.14 16.9 0.00 0.533 0.24 0.51 0.82 0.14 12.8 0.00 0.530

HYBEWMA 0.02 0.26 0.88 0.14 16.7 0.00 0.566 0.18 0.48 0.85 0.13 12.6 0.00 0.567

GARCH -0.31 0.17 1.03 0.09 27.5 0.00 0.726 -0.45 0.33 1.00 0.09 19.0 0.00 0.709

ECARR -0.21 0.11 0.68 0.04 1292.5 0.00 0.736 -0.45 0.23 0.69 0.04 840.4 0.00 0.735

FIGARCH -0.34 0.20 0.82 0.08 202.1 0.00 0.693 -0.54 0.42 0.84 0.09 89.3 0.00 0.654

MRSGARCH -0.66 0.29 1.25 0.15 18.9 0.00 0.631 -1.20 0.57 1.23 0.16 15.1 0.00 0.596

MRSACR -0.25 0.09 1.05 0.05 21.0 0.00 0.742 -0.47 0.20 1.04 0.05 14.1 0.00 0.730

CMRSACR 0.32 0.05 0.84 0.03 35.8 0.00 0.872 0.83 0.11 0.79 0.03 60.6 0.00 0.829

Volatility Proxy RV2 Volatility Proxy RV2

Volatility Proxy RV3 Volatility Proxy RV3

Forecast step 2 (4-weeks)Forecast step 1 (1-week)

Volatility Proxy RV1 Volatility Proxy RV1

Volatility Proxy RV4 Volatility Proxy RV4
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Table 4.6b 

Mincer-Zarnowitz regression results for forecast horizon 3 and 4 

The table reports the results of the Mincer-Zarnowitz regression and hypothesis test for the efficiency of 
the parameters for each of four volatility proxies at third (8-week) and fourth (13-week) forecast horizons. 
The dependent variable in the regression is volatility proxies (RV), and the independent variable is 
volatility forecast of each model. In estimating heteroskedasticity-autocorrelation-consistent standard 
errors for the regressions, Newey and West (1987) estimation procedure is used. Alpha is constant 
parameter; se is standard error of parameter estimation; beta is slope parameter; Stats is Chi-square 
statistics; pval is p-value of Chi-square statistics, and R2 is R-square of the regression that shows the 
explanatory power of each model's forecasts. 
 
 

 
 

Model alpha se beta se Stats pval R2 alpha se beta se Stats pval R2

EWMA 0.85 0.89 0.68 0.12 31.4 0.00 0.351 7.02 2.15 0.55 0.07 52.1 0.00 0.379

HYBEWMA 0.68 0.86 0.70 0.12 31.5 0.00 0.382 6.22 1.71 0.58 0.06 49.1 0.00 0.429

GARCH -0.15 0.85 0.81 0.11 35.0 0.00 0.429 4.54 2.49 0.65 0.07 54.8 0.00 0.369

ECARR -0.24 0.94 0.57 0.08 371.3 0.00 0.406 -2.35 3.09 0.63 0.08 197.7 0.00 0.389

FIGARCH 0.10 1.00 0.72 0.11 46.2 0.00 0.332 13.00 5.49 0.44 0.20 9.5 0.01 0.081

MRSGARCH -0.83 1.18 0.94 0.16 18.7 0.00 0.290 -4.21 2.96 1.01 0.13 18.7 0.00 0.366

MRSACR -0.18 0.80 0.84 0.10 23.9 0.00 0.403 0.34 2.25 0.82 0.08 14.8 0.00 0.380

CMRSACR 1.45 0.31 0.69 0.05 45.5 0.00 0.614 10.67 1.25 0.48 0.04 167.3 0.00 0.478

EWMA 1.15 1.00 0.77 0.13 5.1 0.08 0.440 9.30 2.55 0.60 0.08 22.7 0.00 0.344

HYBEWMA 0.94 0.95 0.80 0.13 4.4 0.11 0.480 8.38 2.12 0.64 0.08 22.0 0.00 0.391

GARCH -0.29 0.84 0.95 0.10 4.8 0.09 0.574 5.76 2.79 0.73 0.07 17.5 0.00 0.360

ECARR -0.86 0.85 0.70 0.08 297.2 0.00 0.602 -3.02 3.52 0.74 0.09 86.9 0.00 0.405

FIGARCH -0.19 1.17 0.86 0.12 13.0 0.00 0.466 13.77 6.80 0.56 0.24 4.2 0.12 0.100

MRSGARCH -1.83 1.28 1.19 0.18 4.1 0.13 0.450 -5.25 3.48 1.19 0.16 3.0 0.22 0.382

MRSACR -0.74 0.70 1.04 0.09 3.3 0.20 0.591 0.20 2.61 0.96 0.09 0.4 0.81 0.394

CMRSACR 1.84 0.23 0.79 0.03 64.9 0.00 0.769 12.27 1.38 0.56 0.04 128.6 0.00 0.495

EWMA 0.61 1.20 0.94 0.16 0.4 0.82 0.475 8.39 3.02 0.74 0.10 8.0 0.02 0.367

HYBEWMA 0.31 1.13 0.99 0.15 0.4 0.81 0.524 7.26 2.46 0.79 0.09 8.7 0.01 0.417

GARCH -1.02 0.91 1.15 0.11 1.7 0.43 0.606 4.02 3.29 0.91 0.09 1.5 0.47 0.384

ECARR -1.97 0.83 0.87 0.08 181.7 0.00 0.665 -7.25 4.11 0.93 0.11 37.5 0.00 0.441

FIGARCH -0.86 1.53 1.04 0.16 1.2 0.55 0.488 14.26 8.49 0.69 0.30 7.0 0.03 0.103

MRSGARCH -3.10 1.59 1.46 0.22 4.6 0.10 0.491 -8.83 4.41 1.44 0.20 5.0 0.08 0.392

MRSACR -1.79 0.70 1.28 0.10 8.6 0.01 0.648 -2.89 3.04 1.19 0.11 3.7 0.16 0.420

CMRSACR 1.87 0.33 0.91 0.05 52.0 0.00 0.750 12.58 1.57 0.68 0.05 70.5 0.00 0.502

EWMA 1.09 0.91 0.76 0.12 8.4 0.02 0.490 8.69 2.37 0.60 0.08 25.1 0.00 0.377

HYBEWMA 0.86 0.85 0.79 0.12 8.0 0.02 0.538 7.78 1.95 0.64 0.07 24.3 0.00 0.429

GARCH -0.21 0.66 0.92 0.08 8.2 0.02 0.622 5.22 2.59 0.73 0.07 20.7 0.00 0.393

ECARR -0.90 0.64 0.70 0.06 431.5 0.00 0.672 -3.84 3.34 0.75 0.08 112.3 0.00 0.450

FIGARCH -0.19 1.09 0.84 0.11 18.8 0.00 0.513 12.48 6.60 0.59 0.24 3.6 0.16 0.121

MRSGARCH -1.95 1.15 1.18 0.16 8.7 0.01 0.511 -5.60 3.39 1.18 0.16 5.2 0.08 0.413

MRSACR -0.75 0.53 1.02 0.07 6.9 0.03 0.655 -0.46 2.44 0.96 0.09 1.2 0.56 0.433

CMRSACR 2.14 0.24 0.73 0.03 81.2 0.00 0.765 12.13 1.27 0.55 0.04 143.6 0.00 0.513

Forecast step 3 (8-weeks) Forecast step 4 (13-weeks)

Volatility Proxy RV1 Volatility Proxy RV1

Volatility Proxy RV2 Volatility Proxy RV2

Volatility Proxy RV3 Volatility Proxy RV3

Volatility Proxy RV4 Volatility Proxy RV4
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Table 4.7 

Encompassing Regression Results 

The table reports the results of the encompassing regression. The dependent variable in the regression is volatility proxies (RV) and independent variables are volatility 
forecasts of all models. In estimating heteroskedasticity-autocorrelation-consistent standard errors for the regressions, Newey and West (1987) estimation procedure is 
used. Alpha is constant parameter; se is standard error of parameter estimation; beta is slope parameter, and R2 is R-square of the regression that shows the explanatory 
power of each regression. Beta coefficients (from beta1 to beta8) represents the regression coefficients of the following model forecasts subsequently; EWMA, 
HYBEWMA, GARCH, ECARR, FIGARCH, MRSGARCH, MRSACR, CMRSACR. 
 
 

 
 

Proxy alpha se0 beta1 se1 beta2 se2 beta3 se3 beta4 se4 beta5 se5 beta6 se6 beta7 se7 beta8 se8 R2

RV1 0.34 0.22 1.23 0.75 -1.00 0.67 3.05 0.60 -1.20 0.38 -1.42 0.45 -1.01 0.28 1.12 0.55 0.85 0.10 0.74

RV2 0.00 0.00 0.00 0.01 -0.01 0.01 0.01 0.01 -0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 1.01 0.00 1.00

RV3 -0.35 0.15 0.02 0.36 0.17 0.26 -0.06 0.29 0.36 0.13 -0.54 0.29 0.32 0.24 0.19 0.25 0.80 0.06 0.85

RV4 -0.18 0.09 -0.30 0.20 0.29 0.15 -0.29 0.18 0.32 0.09 0.02 0.18 0.31 0.15 -0.13 0.13 0.66 0.05 0.92

RV1 1.36 0.51 0.77 0.68 -0.24 0.53 0.76 0.39 -0.42 0.34 -0.59 0.28 -1.07 0.32 0.88 0.34 0.73 0.08 0.64

RV2 0.25 0.13 0.12 0.24 0.04 0.20 -0.19 0.16 0.29 0.10 -0.11 0.13 -0.09 0.10 -0.06 0.13 0.82 0.06 0.90

RV3 -0.34 0.23 -0.05 0.27 0.27 0.25 -0.19 0.21 0.50 0.13 -0.41 0.20 0.04 0.16 0.13 0.18 0.72 0.08 0.88

RV4 -0.13 0.14 -0.17 0.21 0.26 0.19 -0.20 0.15 0.41 0.09 -0.14 0.14 0.15 0.10 -0.09 0.13 0.59 0.07 0.89

RV1 2.96 0.92 0.12 0.45 0.48 0.38 -0.22 0.39 0.12 0.28 -0.31 0.23 -0.61 0.26 0.21 0.29 0.68 0.12 0.66

RV2 1.02 0.53 -0.10 0.32 0.36 0.28 -0.46 0.26 0.46 0.18 -0.22 0.18 -0.02 0.14 -0.07 0.20 0.72 0.11 0.82

RV3 0.27 0.49 -0.26 0.33 0.60 0.30 -0.48 0.27 0.60 0.19 -0.38 0.21 -0.04 0.13 0.07 0.22 0.73 0.12 0.84

RV4 0.49 0.39 -0.30 0.27 0.53 0.24 -0.41 0.22 0.52 0.15 -0.19 0.16 0.08 0.09 -0.14 0.18 0.59 0.10 0.84

RV1 9.06 3.24 -1.11 0.54 1.32 0.51 -0.04 0.31 0.01 0.21 -0.58 0.23 0.42 0.28 0.09 0.27 0.37 0.10 0.65

RV2 3.16 3.42 -1.13 0.65 1.10 0.59 -0.28 0.36 0.25 0.22 -0.54 0.28 0.85 0.34 0.02 0.29 0.49 0.12 0.64

RV3 1.47 3.98 -1.26 0.75 1.33 0.66 -0.39 0.43 0.44 0.25 -0.69 0.34 0.84 0.41 0.01 0.32 0.55 0.15 0.66

RV4 1.60 3.12 -1.04 0.60 1.07 0.54 -0.34 0.35 0.37 0.20 -0.47 0.26 0.76 0.31 -0.07 0.25 0.45 0.12 0.67

Forecast step 1 (1-week)

Forecast step 2 (4-weeks)

Forecast step 3 (8-weeks)

Forecast step 4 (13-weeks)
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Table 4.8a 

Value-at-Risk Evaluation Results (95 percent) 

The table reports number of exceptions (NE), Time Until First Failure (TUFF), Proportion of Failure 
(PF(%)), the likelihood ratio (LR) test of unconditional coverage (LRuc), conditional coverage (LRcc) 
and independence (LRind), and average regulator (RLF) and firm (FLF) function for the 95 percent VaR 
failure processes in 1-, 4-, 8- and 13-step ahead volatility forecasts.  * indicates significance at the 5 
percent level. 
 
 

 
 
 

Models NE TUFF PF LRuc LRind LRcc RLF FLF

EWMA 23 1 4.99 0 0.6 0.6 0.43 0.48

HYBEWMA 24 1 5.21 0 0.4 0.5 0.53 0.58

GARCH 18 1 3.91 1.3 4.8* 6.0* 0.17 0.23

ECARR 8 157 1.74 13.7* 0.3 14.0* 0.27 0.32

FIGARCH 9 1 1.95 11.6* 2 13.6* 0.21 0.27

MRSGARCH 28 1 6.07 1.1 0.9 2 0.03 0.16

MRSACR 31 1 6.73 2.6 0.4 3 1.33 1.35

CMRSACR 4 59 0.87 24.9* 0.1 25.0* 0.35 0.41

EWMA 9 25 1.96 11.6* 6.9* 18.4* 0.81 0.93

HYBEWMA 9 25 1.96 11.6* 6.9* 18.4* 0.76 0.88

GARCH 9 0 1.96 11.6* 7.4* 18.9* 0.71 0.82

ECARR 1 395 0.22 38.8* 0 38.8* 0.75 0.87

FIGARCH 5 27 1.09 21.5* 4.3* 25.8* 0.73 0.84

MRSGARCH 12 1 2.61 6.7* 9.5* 16.2* 0.17 0.34

MRSACR 9 25 1.96 11.6* 6.9* 18.4* 1.44 1.52

CMRSACR 8 0 1.74 13.6* 2.7 16.3* 0.59 0.70

EWMA 4 25 0.87 24.7* 14.6* 39.3* 1.12 1.36

HYBEWMA 4 25 0.87 24.7* 14.6* 39.3* 0.57 0.81

GARCH 5 25 1.09 21.3* 12.3* 33.6* 1.25 1.48

ECARR 1 393 0.22 38.6* 0 38.6* 1.28 1.51

FIGARCH 5 25 1.09 21.3* 22.7* 44.0* 1.26 1.49

MRSGARCH 5 25 1.09 21.3* 12.3* 33.6* 0.02 0.35

MRSACR 4 25 0.87 24.7* 14.6* 39.3* 2.13 2.29

CMRSACR 3 311 0.66 28.5* 0 28.5* 0.82 1.01

EWMA 0 449 0.00 46.1* 0 0 0.00 0.78

HYBEWMA 0 449 0.00 46.1* 0 0 0.00 0.77

GARCH 1 390 0.22 37.7* 0 37.7* 0.00 0.76

ECARR 0 449 0.00 46.1* 0 0 0.00 0.75

FIGARCH 11 384 2.45 7.5* 82.4* 89.9* 0.00 0.75

MRSGARCH 0 449 0.00 46.1* 0 0 0.00 1.04

MRSACR 0 449 0.00 46.1* 0 0 0.40 0.85

CMRSACR 1 390 0.22 37.7* 0 37.7* 0.40 0.85

Forecast step 2 (4-weeks)

Forecast step 3 (8-weeks)

Forecast step 4 (13-weeks)

Forecast step 1 (1-week)
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Table 4.8b 

Value-at-Risk Evaluation Results (99 percent) 

The table reports number of exceptions (NE), Time Until First Failure (TUFF), Proportion of Failure 
(PF(%)), the likelihood ratio (LR) test of unconditional coverage (LRuc), conditional coverage (LRcc) 
and independence (LRind), and average regulator (RLF) and firm (FLF) function for the 99 percent VaR 
failure processes in 1-, 4-, 8- and 13-step ahead volatility forecasts.  * indicates significance at the 5 
percent level. 
 
 

 
 
 

Models NE TUFF PF LRuc LRind LRcc RLF FLF

EWMA 8 1 1.74 2.1 7.9* 10.0* 0.13 0.21

HYBEWMA 10 1 2.17 4.8* 6.0* 10.8* 0.21 0.29

GARCH 3 28 0.65 0.6 0 0.7 0.01 0.09

ECARR 2 312 0.43 1.9 0 1.9 0.03 0.11

FIGARCH 1 395 0.22 4.2* 0 4.2 0.01 0.09

MRSGARCH 8 1 1.74 2.1 7.9* 10.0* 0.01 0.20

MRSACR 10 1 2.17 4.8* 1.6 6.4* 0.83 0.87

CMRSACR 0 461 0.00 9.3* 0 0 0.10 0.19

EWMA 3 70 0.65 0.6 6.6* 7.3* 0.38 0.55

HYBEWMA 2 70 0.44 1.9 0 1.9 0.37 0.54

GARCH 3 27 0.65 0.6 6.6* 7.3* 0.29 0.45

ECARR 1 395 0.22 4.2* 0 4.2 0.32 0.49

FIGARCH 2 394 0.44 1.9 8.7* 10.6* 0.31 0.47

MRSGARCH 3 70 0.65 0.6 6.6* 7.3* 0.00 0.24

MRSACR 2 70 0.44 1.9 0 1.9 0.76 0.88

CMRSACR 3 311 0.65 0.6 0 0.7 0.24 0.40

EWMA 2 393 0.44 1.9 8.7* 10.6* 0.34 0.68

HYBEWMA 1 393 0.22 4.1* 0 4.1 0.02 0.36

GARCH 2 393 0.44 1.9 8.7* 10.6* 0.52 0.85

ECARR 0 458 0.00 9.2* 0 0 0.52 0.85

FIGARCH 3 393 0.66 0.6 18.1* 18.7* 0.52 0.85

MRSGARCH 3 393 0.66 0.6 18.1* 18.7* 0.00 0.48

MRSACR 1 393 0.22 4.1* 0 4.1 0.88 1.10

CMRSACR 1 355 0.22 4.1* 0 4.1 0.15 0.43

EWMA 0 449 0.00 9.0* 0 0 0.00 1.11

HYBEWMA 0 449 0.00 9.0* 0 0 0.00 1.09

GARCH 0 449 0.00 9.0* 0 0 0.00 1.07

ECARR 0 449 0.00 9.0* 0 0 0.00 1.06

FIGARCH 7 386 1.56 1.2 38.2* 39.4* 0.00 1.06

MRSGARCH 0 449 0.00 9.0* 0 0 0.00 1.47

MRSACR 0 449 0.00 9.0* 0 0 0.00 0.64

CMRSACR 0 449 0.00 9.0* 0 0 0.00 0.64

Forecast step 4 (13-weeks)

Forecast step 3 (8-weeks)

Forecast step 2 (4-weeks)

Forecast step 1 (1-week)
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Table 4.9 

Sign Tests of RLF and FLF 

The table reports the sign test on loss differentials between pairs of models for each forecast horizon. It 
tests the null of a zero-median loss differential against the alternative of a negative median, with a 
studentized version of the sign test of Diebold and Mariano (1995). * indicates significance at 5 percent 
level. Rejection of the null implies that first model is significantly better than second model. 
 
 

 

RLF FLF RLF FLF

Pairs of Models VaR95 VaR95 Pairs of Models VaR99 VaR99

MRSACR vs EWMA -19.3* -4.1* CMRSACR vs HYBEWMA -21.5* -9.1*

EWMA vs MRSACR -20.6* 4.1 HYBEWMA vs CMRSACR -20.5* 9.1

MRSACR vs HYBEWMA -19.4* 0.7 CMRSACR vs ECARR -21.5* -18.5*

HYBEWMA vs MRSACR -20.4* -0.7 ECARR vs CMRSACR -21.3* 18.5

MRSACR vs MRSGARCH -19.8* -3.0* CMRSACR vs MRSACR -21.5* -8.1*

MRSGARCH vs MRSACR -20.2* 3 MRSACR vs CMRSACR -20.5* 8.1

EWMA vs MRSGARCH -20.7* 3.3 HYBEWMA vs MRSACR -21.0* 0

MRSGARCH vs EWMA -19.4* -3.3* MRSACR vs HYBEWMA -20.8* 0

MRSACR vs EWMA -21.1* -4.3* CMRSACR vs HYBEWMA -21.3* -8.5*

EWMA vs MRSACR -20.9* 4.3 HYBEWMA vs CMRSACR -21.3* 8.5

MRSACR vs HYBEWMA -21.2* 0.3 CMRSACR vs ECARR -21.2* -18.2*

HYBEWMA vs MRSACR -20.8* -0.3 ECARR vs CMRSACR -21.4* 18.2

MRSACR vs MRSGARCH -21.1* -3.3* CMRSACR vs MRSACR -21.3* -6.9*

MRSGARCH vs MRSACR -20.6* 3.3 MRSACR vs CMRSACR -21.3* 6.9

EWMA vs MRSGARCH -21.1* 2.6 HYBEWMA vs MRSACR -21.3* -0.5

MRSGARCH vs EWMA -20.6* -2.6* MRSACR vs HYBEWMA -21.4* 0.5

MRSACR vs EWMA -21.3* -2.1* CMRSACR vs HYBEWMA -21.3* -8.4*

EWMA vs MRSACR -21.1* 2.1 HYBEWMA vs CMRSACR -21.3* 8.4

MRSACR vs HYBEWMA -21.2* 1.4 CMRSACR vs ECARR -21.3* -18.1*

HYBEWMA vs MRSACR -21.2* -1.4 ECARR vs CMRSACR -21.4* 18.1

MRSACR vs MRSGARCH -21.3* -2.5* CMRSACR vs MRSACR -21.3* -7.3*

MRSGARCH vs MRSACR -21.0* 2.5 MRSACR vs CMRSACR -21.3* 7.3

EWMA vs MRSGARCH -21.2* 1.7 HYBEWMA vs MRSACR -21.4* -1.5

MRSGARCH vs EWMA -21.1* -1.7* MRSACR vs HYBEWMA -21.3* 1.5

MRSACR vs EWMA -21.2* -0.1 CMRSACR vs HYBEWMA -21.2* -8.3*

EWMA vs MRSACR -21.2* 0.1 HYBEWMA vs CMRSACR -21.2* 8.3

MRSACR vs HYBEWMA -21.2* 0.9 CMRSACR vs ECARR -21.2* -16.9*

HYBEWMA vs MRSACR -21.2* -0.9 ECARR vs CMRSACR -21.2* 16.9

MRSACR vs MRSGARCH -21.2* 0.1 CMRSACR vs MRSACR -21.2* -6.8*

MRSGARCH vs MRSACR -21.2* -0.1 MRSACR vs CMRSACR -21.2* 6.8

EWMA vs MRSGARCH -21.2* 0.7 HYBEWMA vs MRSACR -21.2* -0.9

MRSGARCH vs EWMA -21.2* -0.7 MRSACR vs HYBEWMA -21.2* 0.9

Forecast step 1 (1-week)

Forecast step 2 (4-weeks)

Forecast step 3 (8-weeks)

Forecast step 4 (13-weeks)
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CChhaapptteerr  55  

HHeeddggee  FFuunndd  PPoorrttffoolliioo  CCoonnssttrruuccttiioonn::  RRaannggee--

BBaasseedd  MMuullttiivvaarriiaattee  RReeggiimmee  SSwwiittcchhiinngg  

MMooddeellss    

 
 
 
 

5.1. Introduction 
 

The variance covariance matrix is an essential ingredient in many applications in 

finance, including portfolio construction, hedging decision, risk management and 

derivative pricing. There are well-established methods to estimate the variance 

covariance matrix. In the literature, rolling window estimator (e.g. MA100), 

exponentially weighted moving average (EWMA) estimator and GARCH family 

estimators are typically used estimators. These estimators use log-return data estimated 

using close-close prices. They are remarkably inefficient though unbiased estimators of 

integrated volatility, as they use only one point in time information (e.g. Closing price) 

for each day. 

 

This inefficiency can be overcome by using an estimator, which contains all the 

information of the asset price between measurement points. There are essentially two 

approaches for solving the problem; first, to estimate realized volatility by using 

intraday data, and second, to use intraday range. Although realized volatility estimate is 

favoured in this respect (for example, see, Andersen et al., 2004), unavailability of 

intraday data for many financial assets is the main limitation of this approach. It also 

suffers robustness from the market microstructure noise as time interval between 

measurements approaches to zero. In this respect, many financial assets have range data 

(defined as the difference between intraday high and low log prices) available for long 

historical spans, thus, using intraday range in measuring integrated volatility provides 

practical advantages over realized volatility. The practical advantages are also supported 

by the attractiveness of the range-based volatility measures as they are an efficient, 

approximately normal and a robust measure to microstructure noise (see Alizadeh et al., 
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2002). Andersen and Bollerslev (1998) and Brandt and Diebold (2006) report the 

favourable explanatory power of the range by showing that the range has approximately 

the same information content as sampling intraday returns every 3 to 6 hours. 

 

Although known as a viable volatility measure for a long time, these advantages of the 

range provide a renewed interest only recently. Earlier works on range date back to 

Feller (1951) and Mandelbrot (1971). Recently, in search for a better variance estimator, 

Beckers (1983), Ball and Tourus (1984), Rogers and Satchell (1991), Kunitomo (1992) 

and Yang and Zhang (2000) propose extensions to the estimators of Parkinson (1980) 

and Garman and Klass (1980). In estimating conditional volatility, Brandt and Jones 

(2006) extend the EGARCH model of Nelson (1991) by using range instead of absolute 

returns. In a concurrent work, Chou (2005) proposes a conditional autoregressive range 

(CARR) model that is a special case of the conditional duration model of Engle and 

Russel (1998). All these studies are mainly in a univariate setting. Nonetheless, 

financial applications of volatility models require a multivariate framework, which 

includes not only time varying conditional variances, but also conditional covariance of 

asset returns. However, the statistical property of range limits its use in estimating asset 

covariance, hence, the multivariate volatility modelling using the range. 

 

There are only a few studies on the application of the intraday range in a multivariate 

setting. Brandt and Diebold (2006) propose a range-based covariance estimator, which 

is based on no-arbitrage approach in a triangular relationship, and is limited only for the 

foreign currency market. Harris and Yilmaz (2009) propose a hybrid multivariate 

EWMA estimator for the variance-covariance matrix of returns which employs a range-

based EWMA specification to estimate the conditional variances and a standard return-

based EWMA specification to estimate the correlation between the returns. In another 

study, Chou et al. (2009) propose a range-based dynamic conditional correlation (DCC) 

model that combines the return-based DCC model for estimating correlations with the 

CARR model for conditional variances. Recently, Christensen and Podolskij (2007) and 

Martens and van Dijk (2007) propose realized range as a more efficient volatility 

estimator than the realized variance. Following the idea of realized range, Bannouh et 

al. (2009) propose co-range as an estimator of the daily covariance between asset 

returns based on the regularly spaced intraday high-low price ranges. Since realized 

range and realized variance both require intraday data, they are not useful for financial 

assets that do not have readily available intraday data. 



 126 

 

On the other hand, use of regime switching models in capturing the effects of sudden 

substantial economic and political events on the volatility, inherent in economic time 

series, is mostly established. However, there is substantial potential in utilizing these 

models in financial applications. There are some applications of regime switching 

models in modelling financial time series. In investigating regime switches in interest 

rates; Sola and Driffill (1994), Gray (1996), Ang and Bekaert (2002), Bansal et al. 

(2004) and Audrino (2006), in stock returns; Turner et al. (1989), Pagan and Schwert 

(1990), Hamilton and Susmel (1994), Dueker (1997), Ryden et al. (1998), Susmel 

(2000), Billio and Pelizzon (2000), Maheu and McCurdy (2000), Perez-Quiros and 

Timmerman (2001) and Bhar and Hamori (2004), in foreign exchange rates; Engel and 

Hamilton (1990), Engel (1994), Vigfusson (1997), Bollen et al. (2000), Dewachter 

(2001), Klaassen (2002), Brunetti et al. (2003) and Beine et al. (2003) are prominent 

works among others. Combining conditional variance models with regime switching 

models has the potential to explain latent switches between regimes, and, in addition, to 

utilize useful properties of ARCH family models in modelling financial time series. The 

first attempts made by Cai (1994) and Hamilton and Susmel (1994) are considered first-

order Markov switching for an ARCH specification of the conditional variance. Later, 

Gray (1996), Klaassen (2002) and Haas et al. (2004) extended the ARCH specification 

into the regime switching GARCH specification. 

 

In this chapter, useful properties of regime switching models and nonlinear filtration are 

combined with range-based estimator in a multivariate framework in order to enhance 

the variance covariance estimation of asset returns. In so doing, one and two component 

Markov regime switching autoregressive conditional range models, introduced in 

Chapter 4, are employed in the estimation of conditional variances. In the estimation of 

the correlations, the constant conditional correlation (CCC) procedure of Bollerslev 

(1990) and the dynamic conditional correlation (DCC) model of Engle (2002a) are 

employed. The out-of-sample forecast performance of these models is compared with 

the following return and range-based benchmark models. The utilized benchmark 

return-based models are exponentially weighted moving average (EWMA) model of 

Riskmetrics, generalized autoregressive conditional heteroskedasticity (GARCH) model 

of Bollerslev (1988), and Markov Regime Switching GARCH (MRSGARCH) model of 

Klaassen (2002). The benchmark range-based models are hybrid EWMA (HybEWMA) 

model of Harris and Yilmaz (2009), and CARR model of Chou (2005) and Chou et al. 
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(2009). The out-of-sample forecast performance of the proposed models is evaluated in 

a hedge fund investment exercise. In the investment exercise, a fund of funds portfolio 

that is composed of individual hedge fund strategies is constructed for each model. 

Portfolios are constructed based on 1-, 4-, 13- and 26-week volatility forecasts, and 

performance of the portfolios are evaluated during the out-of-sample test period. The 

portfolios are constructed for each model, and their out-of-sample performances are 

tested by using a number of portfolio risk and return evaluation metrics. In particular, 

realized return, conditional Sharpe ratio, omega ratio, Sortino ratio, information ratio, 

maximum drawdown, return on Maximum drawdown, portfolio turnover ratio and 

conditional value at risk at 95 and 99 percent confidence levels are used. The out-of-

sample forecast performance of each model is also tested in forecasting each element of 

the variance covariance matrix of each portfolio with the help of a number of statistical 

loss functions. In particular, mean error metrics, directional predictive ability tests, 

forecast evaluation regressions, and pair-wise and joint tests are used. 

 

The out-of-sample analysis period covers the recent credit crisis and recovery after the 

crisis. During this period, hedge fund industry experienced high historical losses, and a 

number of funds are ceased to exist. This development motivates the use of a model, 

which is able to model high short term volatility and stable long term trend in volatility 

separately, as well as, able to capture the changes in the regimes. In the investment 

exercise, the performances of the models are tested in a period that is stylized as the 

high volatility and frequent changes in underlying volatility process for the hedge fund 

industry. 

 

The contribution of this chapter is twofold. First, to the best knowledge of the author, 

this is the first study in applying range data to regime switching models in a multivariate 

context. Second, it is the first study that applies range-based models in hedge fund 

strategy indices through extracting high/low/open/close index values from daily strategy 

indices, and compares the portfolio construction performance of the range-based models 

with the return-based models. 

 

The outline of the chapter is as follows. In the following section, analytical framework 

for volatility forecast is provided, and the proposed models are introduced. Section 3 

describes the data and methodology used in the empirical analysis. Section 4 presents 

the empirical results. Section 5 provides a summary and some concluding remarks. 
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5.2. Theoretical Background 
 

5.2.1. Range as a volatility proxy 

 

Assume a 1mx  vector of logarithmic prices, tp , that follows a multivariate continuous 

time volatility diffusion given by 

 

)()()()( tdWtdtttdp Ω+= µ  

 

where )(tµ  is the N-dimensional stationary instantaneous drift, )(tH  is the mxm   

dimensional strictly stationary diffusion matrix with the elements 
tjk ,σ , and )(tW  is a 

standard m-dimensional Brownian motion process with ( ) 0,cov , =tjkitdW σ  for all 

.,, kji  The stochastic process of the logarithmic return vector, defined as 1−−= ttt ppr , 

is given by 

 

tttt Hzr += µ           (5.1) 

 

where tz  is a 1mx  vector of standard normally distributed and serially uncorrelated 

random variables, and tΩ  is an unobservable integrated variance-covariance matrix, 

approximated by its unbiased estimator realized volatility, given by 
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Under ideal conditions (e.g. frictionless and arbitrage-free market), realized volatility,

q

tH , provides consistent and approximately unbiased true volatility estimates, and it 

converges, uniformly in probability, to tH  as 0→q . There is a trade-off between 

increased efficiency and consistency: Although realized volatility is an unbiased 

estimator of the integrated volatility, due to the effects of market microstructure 

frictions at lower measurement intervals (e.g. 1, 5, 10 minutes), it no longer satisfies the 

consistency properties (see Andersen et al., 2004). In addition to this setback, although 

intraday data are increasingly available for many securities, it may not be available for 

the securities of interest. Therefore, it is desirable to focus on volatility estimators that 
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utilize the data readily available for a long time span, and are robust to microstructure 

noise. The intraday range rises as an excellent alternative. The log-range is defined as 

the natural logarithm of the difference between highest and lowest log prices of a 

security: 
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The main advantage of the intraday range over the integrated variance estimator, which 

is based on close-to-close prices, is its comprehensive information content; range 

contains information about all intraday movements of the price. In estimating the 

variance of returns, Parkinson (1980) proposes an estimator based on only high and low 

prices, while Garman and Klass (1980) propose an estimator based on high, low, 

opening and closing prices with certain assumptions on Brownian motion parameters 

(i.e. volatility and drift). The estimators proposed by Rogers and Satchell (1991), 

Kunitomo (1992), and Yang and Zhang (2000) are mainly based on earlier estimators of 

Parkinson (1980) and Garman and Klass (1980). An unbiased estimate of the variance 

of the daily close-to-close return, due to Harris and Yilmaz (2009), is employed that 

uses a combination of the intraday range and the open-to-close return: 
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where O

tip , , C

tip 1, − , H

tip , , L

tip ,  are the opening, closing, high and low prices, subsequently. 

Parkinson (1980) shows that if the prices follow a Brownian motion process with a 

constant variance, log-range is five times more efficient than the squared daily close-to-

close return. Likewise, Andersen and Bollerslev (1998) and Brandt and Diebold (2006) 

report that the efficiency of the daily range is between that of the realized range 

estimated using 3 and 6 hour returns. Alizadeh et al. (2002) and Brandt and Jones 

(2006) establish that the distribution of the log-range conditional on volatility is 

approximately Gaussian, and the log-range is robust to certain market microstructure 

effects (e.g. bid-ask bounce, asynchronous trading). These properties make the intraday 

range an attractive volatility proxy for models that employ Gaussian quasi-maximum 

likelihood (QMLE) estimations. 

 



 130 

Although range has many desirable properties, it suffers from a discretisation bias. One 

source of this bias is the likely difference between the highest (lowest) stock price 

observed at discrete points in time and the true maximum (minimum) of the underlying 

diffusion process. This makes the observed range being a downward-biased estimate of 

the true range, thus, in turn, a noisy proxy of volatility. A second source of the bias is 

likely infrequent trading of the component instruments that may lead to an additional 

downward bias of the range. Another source of bias might arise from conditional non-

normality in returns (see Brandt and Jones, 2006). 

 

5.2.2. Multivariate Markov Regime Switching Autoregressive Range Model 

 

Suppose that tP is m-variate logarithmic asset price, 1−−= ttt PPr  is a 1mx  vector of 

returns in the period t  with elements 
tkr ,
, mk ,...,1= , { } { }ttt PPR minmax −=  is 

observed range in the period t  with elements 
tk ,ℜ , mk ,...,1= , and Ω  is the information 

set. The return series can be zero mean or a filtered process. The range series follow a 

zero mean and nonnegative stochastic process. 

 

( )ttttt HDr ,0|     where 1 ∼Ω+= −εεµ     (5.5a) 

),1(| re       whe 1 tttttt DvvS ξλ ∼Ω= −     (5.5b) 

 

where µ  is the 1mx  vector of mean returns with elements kµ , mk ,...,1= , tH  is the 

mxm  covariance matrix with diagonal elements, 2

,tkσ  and off-diagonal elements, 2

,tklσ ,  

mlk ,...,1, = , )(⋅D  is any location-scale family distribution, tλ  is the conditional 

expectation of the range as a function of all information available up to time 1−t   [i.e.  

( )1

2 | −Ω= ttt SEλ  ], tv  is a sequence of ... dii  nonnegative random variables with unit 

mean and time varying variance-covariance matrix, and tv
 
follows a positive support 

distribution (e.g. Exponential). 

 

The time varying covariance matrix  tH   can be decomposed into 

 

tttt DDH Γ≡          (5.6) 
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where tD  is a time-varying diagonal matrix composed of the standard deviations, ,, tkh  

mk ,...,1=  and the tΓ  is a correlation matrix. Depending on the specification of the 

correlation model, correlation matrix can be constant ( Γ ) or time-varying ( tΓ ). The 

conditional covariance is specified as the product of a diagonal matrix of conditional 

variances, produced by individual range-based models, and the conditional correlation 

matrix, estimated by using the return data. Henceforth, the estimation procedure is 

based on the estimate of the elements of this decomposition at each step. Proposed 

models are estimated in two steps: estimating the standard deviations and estimating the 

correlation matrix. 

 

5.2.2.1. Estimating conditional standard deviations 

 

In the first step, univariate models are estimated by employing the Markov regime 

switching autoregressive range models (MRSACR) introduced in Chapter 4. First, the 

one-factor MRSACR model is estimated to get the conditional standard deviation, tD  

estimates: 
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where )(

,

i

tkλ  is the conditional variance of the range for the series mk ,...,1= , the 

coefficients  ( ))()()( ,, i

i

i

i

i

i βαω  in the conditional mean equation are all positive, and take 

different values in each state, i , where 2,1=i . Parameters βαω ,,  characterize the 

inherent uncertainty in range, and short term and long term effects (persistence) of 

shocks on the range in each state. In the equation (5.8), following Klaassen (2002), the 

computation of the expectation is adapted as 
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where the probabilities, 
tjip ,

~  are calculated as 
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where .2,1, =ji  The ex-ante transition probabilities of being in the first regime at t   

given the information at  1−t   is estimated as 
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where ( )⋅f  is the likelihood function of the conditional distributions (i.e. Exponential). 

At this point, the latent regime indicator is assumed to be parameterized as a first-order 

Markov process by following Hamilton (1988, 1989 and 1990). 

 

Multi-step-ahead volatility forecasts are computed as a weighted average of the multi-

step-ahead volatility forecasts in each regime: 
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where the weights are the predicted probabilities, and )(

,

i

TT κ
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)

 are the κ -step ahead 

volatility forecasts in each regime that can be recursively calculated as 
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The second model is the two-component MRSACR model (CMRSACR) introduced in 

the fourth chapter. In the CMRSACR model, volatility process is represented by the 

square root of intraday range, tS , and is composed of two components; a long run trend 

and a short run cyclical component:  

 

( ) tktktktktk qSqS ,1,1,,, εθ +−+= −−      (5.14) 

 

where tq  is the trend component, ( 11 −− − tt qS ) is the deviation of volatility from its long 

term trend, and tε
 
is a random error term with zero mean and constant variance. The 
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model is estimated in two steps: In the first step, the long term trend component is 

extracted from the intraday range by using Hodrick and Prescott (1997) filter (HP) 

recursively. As the weekly data set is used, the smoothing parameter of the HP filter is 

set to 250,000 (i.e.
2100 nf×=λ , where assuming 50 trading weeks in a year, frequency 

is nf=50). In the second step, a MRSGARCH model with zero mean in its variance 

equation and regime switching parameters is estimated.  
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where ( )tt qS −  is the cyclical component of volatility, tu  is i.i.d., a zero mean, constant 

variance, and approximately normally distributed. To estimate the expectation in 

(5.15b), formulas in (5.9), (5.10) and (5.11) are used.  

 

In forecasting volatility, it is assumed that the long run trend component follows a 

random walk process, and range approaches to its long term trend with a factor of θ  

parameter in (5.14). θ  parameter is the sum of the persistence parameters in (5.15b), 

and estimated using the regime switching probabilities in (5.10) as weights. In the 

CMRSACR model, h-step-ahead volatility forecast is, therefore, estimated as 
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5.2.2.2. Estimating conditional correlations 

 

In the second step, the correlations in (5.6) are estimated. The correlation matrix is 

estimated by using the close-to-close return series. In estimating the correlations two 

procedures are adapted; the constant conditional correlation (CCC) model of Bollerslev 

(1990), and the dynamic conditional correlation (DCC) model of Engle (2002a). The 

time-varying correlation structure is: 

 

{ } { } 2/12/1 −−=Γ tttt QdiagQQdiag      (5.17) 

 

where tΓ  is time-varying positive-definite conditional correlation matrix, and tQ  is a 
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matrix of dynamic conditional covariances that is estimated by 

 

( ) 111 −
′
−− ++−−′= tttt QBZZABACQ ooo ιι     (5.18) 

 

where C  is the unconditional correlation matrix, o  is the Hadamard product (i.e. 

element-wise multiplication), ι  is a vector of ones, A  and B  are diagonal parameter 

matrices, and tZ  is a matrix of standardized residuals given by, 
ttt rDZ 1−= . Multi-step 

ahead correlations for the conditional correlation matrix are computed as 
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by utilizing 
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′
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In (5.20), when A and B are set to equal to zero, the model is turned into the constant 

correlation model (CCC). 

 

5.3. Data and Methodology 

 

5.3.1. Data 

 

In the analysis, daily index and return data obtained from HFR of the same strategies 

utilized in Chapter 2 for the period 31 March 2003-29 January 2010 is used. By using 

daily index values of each strategy, a weekly open/close/high/low index data set is 

constructed. Using this data set weekly range (in equation 4) and return from weekly 

open/close/high/low values are estimated. The daily return data is also used to construct 

a volatility proxy for weekly variance. Weekly range data set for hedge fund strategies 

is composed of 357 observations. The full sample is divided into an initialization period 

4 April 2003-3 March 2006 (150 observations) and an out-of-sample test period 10 

February 2006-29 January 2010 (207 observations). 

 

In the initial portfolio optimization, it was found that none of the models make 

allocations to event driven, equity hedge and macro strategies. Therefore, these 
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strategies were taken out of the analysis and remaining five strategies are used in the 

empirical study. Summary statistics for the hedge fund return series are reported in 

Table 5.1. 

 

[Table 5.1] 

 

Panel A reports various statistics for the different hedge fund investment strategies for 

the full sample of 357 observations. The characteristics of hedge fund returns are 

particularly heterogeneous. Some strategies (such as equity hedge and event driven) 

have relatively higher average returns and volatility than other strategies. These 

strategies are often considered as return enhancers, used to substitute some fraction of 

the equity holdings in an investor’s portfolio (see Amenc and Martellini, 2002). Other 

strategies (such as relative value arbitrage and equity market neutral) have a lower 

average return and volatility, therefore, can be thought of a substitute for some fraction 

of the fixed income or cash holdings in an investor’s portfolio. The effect of credit crisis 

can also be seen on the returns of hedge fund strategies. Experiencing the high losses 

has changed statistical properties of return data. As general characteristics, all strategies 

display negative skewness, and all are leptokurtic, particularly convertible arbitrage, 

mergers arbitrage and relative value arbitrage. The null hypothesis of normality is 

strongly rejected in all cases. Panel B reports the basic time series properties of hedge 

fund returns. In particular, it reports the first five autocorrelation coefficients, the Ljung-

Box portmanteau test for serial correlation up to 10 lags, the ARCH test of Engle 

(1982), and the DCC test of Engle and Sheppard (2001). All the hedge fund indices 

display significantly positive autocorrelations at some lags except macro strategy, and 

the ARCH test suggests that there is evidence of significant volatility clustering for all 

strategies. The DCC test, which tests the null hypothesis of constant correlation is tested 

against the alternative of dynamic conditional correlation, suggests that the data 

demonstrates time-varying conditional correlations, and hence motivates the use of 

dynamic conditional covariance models. 

 

5.3.2. Methodology 

 

In order to compare the statistical and portfolio construction performance of the 

proposed multivariate CMRSACR and MRSACR models, three return-based models 

(EWMA, GARCH and MRSGARCH) and two range-based models (HybEWMA and 
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CARR) are employed as benchmark models. 

 

Multivariate versions of all models, including MRSACR models, are estimated by using 

a three-step approach. In the first step, univariate models are estimated for each hedge 

fund strategy, and volatility forecasts are made for 1-, 4-, 13- and 26-week horizons. In 

the second step, correlations are estimated by employing the CCC and DCC models as 

described in equations (5.17, 5.18, 5.19 and 5.20). In the third step, estimated 

conditional variances and correlations are brought together to form the variance 

covariance matrix described in equation (5.6). 

 

Initially each conditional volatility model is estimated using observations τ,,1 K=t  to 

make h-week ( 13,4,2,1=h ) ahead out-of-sample forecast of the conditional covariance 

matrix for the week ht += τ . The estimation sample is then rolled forward one week, 

and the models re-estimated and h-week out-of-sample forecasts are made for the week 

ht ++= 1τ . The last iteration uses the sample hThTt −−−= ,,Kτ  to generate 

forecast covariance matrix for the week Tt = . This yields a series of 208 one-step-

ahead forecasts for each model. Then, in-sample and out-of-sample forecast 

performance of the models are evaluated by using a variety of evaluation criteria.  

 

5.3.2.1. Forecast Evaluation 

 

The forecast performance of each model is evaluated by using two approaches: 

statistical measures and economic measures. In the first approach, the statistical forecast 

performance of each model is assessed by comparing each element of the forecast 

variance-covariance (VCV) matrix, 
tij ,σ̂ , with those of the benchmark VCV matrix, 

tjti rr ,,
. Three measures of ex-post volatility (i.e. volatility proxy) are utilized as a 

benchmark VCV matrix, which are estimated from daily and weekly return, and weekly 

range data.  Analyses are made by comparing the forecast VCV matrices with the 

benchmark ex-post VCV matrices for 1-, 4-, 13- and 26-week forecast horizons. 

However, for the sake of brevity, the results of statistical tests for the first forecast 

horizon, and the analyses made by using the volatility proxy calculated from weekly 

returns are reported. Unreported results are available upon request from the author.   

 

Following statistical evaluation metrics are estimated: 
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(1) Root mean square error (RMSE) 
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(2) Mean absolute error (MAE) 

 

tijtjti

T
t rr

T
MAE ,,,1 ˆ

1
σ−∑= =       (5.22) 

 

(3) Mincer-Zarnowitz regression 
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(4) Encompassing regression 
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The RMSE and MAE error statistics measure the forecast accuracy. The Mincer-

Zarnowitz regression measures the bias and efficiency of the forecasts from each model. 

In particular, a hypothesis for each element of the VCV matrix of each model is tested. 

If the model is (weakly) efficient then the null hypothesis, ,0:2 =ijH α 1=ijβ , should 

not be able to be rejected. The R-square coefficient of each regression exhibits the 

explanatory power of the model's forecasts, without considering any bias or 

inefficiency. Finally, with an encompassing regression it is tested whether the forecasts 

of one model have any incremental information over the forecasts of the other models. 

In particular, the null hypotheses, 0: ,0 =ijkH β  for 4,..,1=k , is tested for each model 

individually. 

 

The second approach to out-of-sample evaluation is using economic measures. In this 

approach, an investment exercise is conducted. In the investment exercise, a portfolio of 

hedge fund strategies is constructed by each model; volatility is forecast for 1-, 4-, 13- 

and 26- week horizons; each portfolio is rebalanced at the end of each horizon; finally, 
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risk and return performance of the model portfolio are evaluated by using the criteria 

provided below. 

 

Minimum variance portfolios of hedge fund strategies are constructed in 1-, 4-, 13- and 

26-week maturities for each model. An investor in m hedge funds who wishes to 

minimize the variance of the portfolio returns on each day t, and is subject to a 

minimum return (target return) and a short selling constraint is considered. The portfolio 

optimization problem can, therefore, be written as 

 

( )x
x

pΦmin         (5.25) 

 

subject to 0≥x , 11' =x , ( )
0, rrE tp ≥      (5.26) 

 

where tpr ,  is the return of the hedge fund portfolio on day t, ( )xpΦ  is the risk measure 

where ( ) ( ) ( ) 2/1
xHxxx ′==Φ σp  is the conditional portfolio standard deviation, x  is the 

mx1 vector of portfolio weights, ],,[ 1
′= mxx Kx , ( )

tprE ,  is the portfolio expected return 

and 0r  is the target portfolio return. In modelling the covariance matrix of hedge fund 

returns, tH , three return-based model and four range-based model, including the 

MRSACR and CMRSACR models, are employed. 

 

Risk and return performance of each portfolio is evaluated by using the following 

criteria: 

 

(1) Average Realized Portfolio Return  
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(2) Conditional Sharpe ratio 
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(3) Omega  
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where fr  is the threshold return level set as the average long term US Government bond 

return of 4 percent over the analysis period. 

 

(4) Sortino Ratio
8
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(5) Maximum Drawdown 

 

( ) 



 −=

≤≤≤≤
tj

TjTt
P wwMDD

ττ
maxmax                                 (5.31) 

where tw  is the uncompounded cumulative portfolio value at date  Tt ,...,1+=τ , and at 

τ=t  initial portfolio value is set equal to 1. 

 

(6) Return on Maximum Drawdown 
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(7) Information Ratio 
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8 Sortino and Omega ratio are also defined as the special case of Kappa function 

n
bnbpbnp rLPMrrr )()(, −=Κ  introduced by Kaplan and Knowles (2004), where br  is the 

minimum acceptable or threshold return level and LPM is the lower partial moments with respect to 
threshold return level. When n = 1, Kappa function is equivalent to Omega ratio of Shadwick and Keating 
(2002), and when n = 2, it is equivalent to the Sortino ratio of Sortino and Messina (1997).  
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where 
Bp rr −  is the active return of the portfolio over the benchmark return, Br , and 

( )bp rr −σ  is the active risk of the portfolio. As the benchmark, HFR Equal Weighted 

Strategies Index is used. 

 

(8) Portfolio turnover 
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(9) Conditional value at risk 
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where α  is the CVaR confidence level and ζ  is portfolio VaR.  CVaR is estimated at 

95 percent and 99 percent confidence levels. 

 

5.4. Results 
 

5.4.1. Statistical Test Results 

 
 
Table 5.2 reports the forecast error statistics (i.e. RMSE and MAE) and directional 

forecast accuracy test results for each element of the VCV matrix. Elements of VCV 

matrix are displayed in the rows, and error statistics of each model in the columns. The 

GARCH model yields the lowest RMSE for five elements, and the CMRSACR model 

for the four elements of VCV matrix. The CMRSACR model also yields second and 

third lowest RMSE for the four elements. The CMRSACR model exhibits the lowest 

MAE for ten across fifteen elements of VCV matrix. the MRSACR and CMRSACR 

models yields second lowest MAE for eight and five elements of VCV matrix, 

respectively. The CMRSACR model achieves the highest success rates for eleven 

elements of VCV. The CMRSACR model also displays the highest and significant 

directional accuracy test statistics for thirteen elements of VCV matrix. Therefore, in 

terms of out of sample test statistics the CMRSACR model displays the highest forecast 

accuracy of all models across fifteen elements of the VCV matrix. 
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[Table 5.2] 

 

In establishing the significance of the differences, in terms of accuracy between the 

seven models, modified Diebold-Mariano statistics of Harvey et al. (1997) is estimated. 

Table 5.3 reports the estimated statistics. The null hypothesis that the mean square error 

of the MRSACR (CMRSACR) model is the same as that of each of the other six models 

is tested. The CMRSACR model displays statistically significant reduction in MSE 

relative to the standard EWMA model for fourteen elements, the HybEWMA model for 

eleven elements, the standard GARCH model for two elements, the ECARR model for 

seven elements, the MRSGARCH model for eleven elements, and the MRSACR model 

for five elements of the VCV. On the other hand, the MRSACR model yields 

statistically significant reduction in MSE relative to the standard EWMA for six 

elements, the HybEWMA model for three elements, the GARCH model for one 

element, the ECARR model for two elements, the MRSGARCH model for six elements, 

and the CMRSACR model for five elements of the VCV. Overall, the CMRSACR and 

MRSACR models offer large and statistically significant increases in forecast accuracy 

relative to all models. 

 

[Table 5.3] 

 

In assessing the significance of forecast accuracy of each model relative to realized 

volatility (i.e. ex-post volatility proxy), Mincer-Zarnowitz (MZ) regressions are 

estimated. Table 5.4 reports estimated intercept and slope coefficients, standard errors 

for each coefficient, R-square of the regression, test statistics and p-value of hypothesis 

test for the efficiency of the parameters for each element of the VCV matrix. In the 

table, each panel reports the MZ regression results for each of seven models. The 

CMRSACR model displays the highest R-square statistics for eleven across all elements 

of VCV matrix. The R-square statistics shows that the CMRSACR model contains more 

information about the true VCV matrix than any of all models. The null hypothesis of 

efficiency of the parameters is rejected at the conventional significance level for twelve 

elements of the VCV matrix for the CMRSACR, ECARR and GARCH models. Slope 

coefficients show that return-based models generate too dispersed forecasts while range-

based models tend to produce too compressed forecasts, except CARR model. Overall, 

the CMRSACR model contains more information about the true volatility, and 

hypothesis test results yield that its parameters are more efficient. 
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[Table 5.4] 

 

In assessing the forecast accuracy of the models together, encompassing regressions are 

estimated. Table 5.5 reports the estimation results. For eight out of fifteen cases, the 

CMRSACR model clearly encompasses all other models. The MRSACR model also 

encompasses all other models in four cases. Coefficients of the MRSACR and 

CMRSACR models are closer to one, and inclusion of other models into the regression 

does not significantly increase the R-square of the regression. 

 

[Table 5.5] 

 

In summary, statistical tests results conclude that the MRSACR models, in general, and 

the CMRSACR model, in particular, offer significant improvements in forecast 

accuracy of the true volatility of hedge fund return series. 

 

5.4.2. Portfolio Construction Study 

 
The out-of-sample forecast performance of the proposed models is tested in comparison 

to benchmark return and range-based models in an investment exercise. The portfolio 

construction study is conducted for the out-of-sample period 31 March 2003 to 29 

January 2010 for five HFR hedge fund indices. The out-of-sample evaluation period 

covers favourable as well as unfavourable market conditions. The evaluation period 

includes the recent credit crisis and recovery after the crisis. In the recent crisis, hedge 

fund industry experienced high historical losses, and a number of funds ceased to exist. 

This motivates the use of models that can capture high short term volatility, along with 

the long term volatility trend and changes in the volatility regimes. In the investment 

exercise, the performance of the proposed models is tested in a period that is stylized as 

a high volatility and frequent changes in the underlying volatility process for the hedge 

fund industry. 

 

The models are estimated by using two different multivariate specifications (i.e. CCC 

and DCC). The estimated portfolio evaluation metrics are provided in the Table 5.6 and 

5.7. Realized return represents the average return/loss a portfolio has been experienced 

during the out-of-sample period. Regime switching models generate the highest average 

returns. In particular, the MRSACR model earns the highest return from the portfolios 
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of 1-week horizon. However, the CMRSACR model provides the only positive average 

returns for the multi-step forecast horizons. 

 

[Table 5.6 and Table 5.7] 

 

Conditional Sharpe ratio (CSR) is a version of the original Sharpe ratio (also known as a 

reward to variability ratio), which is defined as the ratio of portfolio realized return to 

the total portfolio risk at each portfolio rebalancing date. The CSR is a measure of 

portfolio return per unit of portfolio risk defined as the standard deviation. In terms of 

CSR, range-based models perform better than return-based models, and the CMRSACR 

model generates the highest return per unit of risk undertaken. 

 

Omega is a relative performance measure that assesses the return generation capacity in 

relation to loss generation capacity where risk is represented by the lower partial 

moments in equation (5.29b). Omega measure partitions returns into loss and gain 

above and below a given minimum acceptable (threshold) return level, and shows the 

probability of having a portfolio return by the probability of having a loss. The 

threshold return level is defined as the risk-free rate of return of 4 percent (annual). 

Omega ratio utilizes all moments of the distribution, while Sharpe ratio uses only two 

moments (i.e. mean and standard deviation), in estimating the risk adjusted return ratio. 

Omega criterion favours the regime switching models, which provide the highest 

Omega ratios. In particular, the MRSACR model displays the highest Omega ratio at all 

forecast horizons, and the MRSGARCH and CMRSACR models follow it. 

 

Sortino ratio is a relative measure of excess return to risk where the risk is defined as 

the lower partial moments, and estimated by using only the returns below the minimum 

acceptable (threshold) return level in (5.30). Similar to Omega ratio, the threshold return 

level is set to be 4 percent annually. Sortino ratio is negative for all models, due to 

massive losses experienced by the hedge fund industry during the recent crisis. Sortino 

ratio favours the use of the MRSACR model in the hedge fund portfolio construction 

study. In particular, the MRSACR model provides the highest Sortino ratio at all 

forecast horizons.  

 

Maximum Drawdown (MDD) is a measure of downside variation, which shows the 

largest drop in the value of the portfolio from its maximum on a given time interval. 



 144 

The time interval is set to be the entire out-of-sample test period. During the out-of-

sample analysis period, regime switching models experience the lowest maximum 

drawdown. This might be due to the ability of these models to successfully detect the 

switches between different volatility regimes. In particular, the MRSGARCH and 

CMRSACR models display lower drawdowns than all models. 

 

Return on Maximum Drawdown (RoMDD) can be interpreted as the average portfolio 

return per unit of risk undertaken to earn that return, where risk is represented by MDD. 

Regime switching models provide higher RoMDD than all other models. In particular, 

the CMRSACR and MRSGARCH are the only models that have positive RoMDD at all 

forecast horizons. MRSACR models follow these models. 

 

Information ratio is (IR) a performance measure for active portfolio management. IR 

shows the ratio of active return per unit of active risk undertaken. Active return is 

defined as the return difference of portfolio and a benchmark index. The HFR Equal 

Weighted Strategies Index is chosen as the benchmark portfolio, which represents a 

naïve (i.e. equally weighted) portfolio allocation with using hedge fund strategies. 

During the analysis period, regime switching models perform well and provide the 

highest information ratios. In particular, the CMRSACR model generates the highest 

active return per unit of active risk taken. 

 

Portfolio turnover (PT) can be interpreted as the fraction of the portfolio that must be 

liquidated and reinvested at each rebalancing date. Capturing switches in volatility 

dynamics, and adjusting the portfolio accordingly come at a cost of changing the 

composition of the portfolio significantly at each rebalancing date. Regime switching 

models require more portfolio turnover than single regime models. In particular, as 

expected the CMRSACR model requires the highest portfolio turnover than all other 

models. The MRSGARCH and GARCH model follow. Interestingly, even performs 

well in terms of risk and return metrics, the MRSACR model requires less turnover than 

all these models. 

 

CVaR is known as a coherent downside risk measure that measures the average loss a 

portfolio can experience above the portfolio VaR, for a given period of time, and at a 

certain significance level (5 and 1 percent in this analysis). Portfolio CVaR provides a 

clear picture of probability and severity of the loss. Range-based models improve CVaR 
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estimates with their enhanced information content about the true volatility. In particular, 

the CMRSACR model provides significantly lower risk of mean loss above VaR at both 

5 and 1 percent significance levels. Other range-based models, the MRSACR, 

HybEWMA and ECARR models follow.  

 

Table 5.8 provides average weights of hedge fund portfolios constructed with different 

models. Panel A reports the portfolio weights of the models with CCC multivariate 

specification, while Panel B reports the weights of the models with DCC specification. 

The reported results are similar to each other; therefore, it can be concluded that using 

either of correlation specification does not alter the portfolio construction. Note that, in 

a preliminary portfolio analysis, it has been found that none of the models allocates 

weights to event driven, equity hedge and macro strategies. This finding is also in line 

with the results of Amenc and Martellini (2002) and Giamouridis and Vrontos (2007). 

The CMRSACR model makes allocations to the strategies, which exhibit high kurtosis 

(such as relative value arbitrage and merger arbitrage), more than other models in order 

to enhance returns, while it gives the lowest weights to the low risk strategies, such as 

equity market neutral strategy.  

 

5.5. Conclusion 
 

This chapter proposes multivariate versions of one and two factor MRSACR models, 

introduced in the fourth chapter.  These models combine useful properties of regime 

switching models, nonlinear filtration and range-based estimation in two different 

multivariate frameworks, to enhance the variance covariance estimation of asset returns. 

Out-of-sample volatility forecast and portfolio construction performance of these 

models are compared with eminent return-based and range-based volatility models. In 

particular, a portfolio composed of hedge fund strategies for each model is constructed 

based on 1-, 4-, 13- and 26-week volatility forecasts, then the performance of the 

portfolios are evaluated over the out-of-sample period, by using a number of portfolio 

risk-return performance measures. The out-of-sample performance of each model in 

forecasting each element of the variance covariance matrix is also tested by using a 

number of statistical tests. In particular, forecast error functions, directional predictive 

ability tests, forecast evaluation regressions, and pair-wise and joint tests are utilized. 

 

Statistical tests results conclude that MRSACR models, in general, and the CMRSACR 

model, in particular, offer significant improvements in forecast accuracy of the true 
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volatility process of hedge fund return series. The investment study concludes that, in 

terms of risk and return criteria employed, proposed models perform better than 

benchmark models. The main purpose of a portfolio manager is either maximizing 

return at the determined level of risk tolerance or minimizing risk at the required level 

of return. Proposed models construct fund of hedge fund portfolios with higher risk-

adjusted returns and lower tail risks, also offer superior risk-return tradeoffs and better 

active management ratios than benchmark return and range-based models. In particular, 

RR, CSR, IR and CVaR criteria favour the use of the CMRSACR model, while Omega 

and Sortino ratios favour the MRSACR model over all other models. For MDD and 

RoMDD criteria, the CMRSACR model is the second best model after the 

MRSGARCH model. However, in most cases these improvements come at the expense 

of higher portfolio turnover and rebalancing expenses. In particular, the CMRSACR 

model requires the highest portfolio turnover, while the MRSACR model requires a 

portfolio turnover similar to single regime models. 

 

Multivariate range models offer a fruitful further research area. Developing the 

multivariate equivalents of univariate range models offers a promising further research 

area. Application of the MRSACR models to different frequencies of range (e.g. daily, 

hourly, minutes or tick-by-tick data) in a multivariate framework might increase the 

efficiency of portfolio construction. Moreover, application to different asset prices 

(fixed income, foreign currency, derivatives) or economic time series might also 

improve forecast performance.  
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Table 5.1 

Summary Statistics and Time Series Properties of Hedge Fund Return Series 

Panel A reports summary statistics for the constructed hedge fund return series over the period of 31 
March 2003 to 29 January 2010. Panel B reports the autoregressive conditional heteroskedasticity 
(ARCH) and autocorrelation and dynamic conditional correlation (DCC) test results for the whole period. 
The Ljung–Box-Q test for autocorrelation of order up to 10 asymptotically distributed as a central Chi-
square with 10 d.o.f. under the null hypothesis, with 5 percent critical value is 18.307. ARCH (4) is 
Engle's LM test for autoregressive conditional heteroskedasticity, which is asymptotically distributed as a 
central Chi-square with 4 d.o.f. under the null hypothesis with 5 percent critical value is 9.488. p-values 
are reported in parenthesis. DCC test statistics is the Chi-square with 13 d.o.f. The p-value (i.e. the 
probability of a constant correlation) is in the bracket. 
 
 

 
 
 
 

HF Strategy Mean Variance Std. Dev. Min. Max. Skew Kurtosis JB Stats

Convertible arbitrage -0.13 2.46 1.57 -17.80 2.52 -6.42 56.6 50040.7 [0.00]

Distressed securities -0.01 0.51 0.72 -5.27 1.74 -2.74 14.5 3571.3 [0.00]

Event driven 0.09 0.69 0.83 -5.72 2.63 -2.09 10.5 1897.6 [0.00]

Equity hedge 0.03 1.18 1.09 -7.11 2.86 -1.49 6.4 747.8 [0.00]

Equity market neutral -0.01 0.40 0.63 -4.97 2.37 -1.19 11.7 2133.4 [0.00]

Mergers arbitrage 0.10 0.55 0.74 -6.78 7.25 -0.20 46.7 32450.7 [0.00]

Macro 0.06 1.49 1.22 -7.37 3.34 -1.82 8.6 1298.4 [0.00]

Relative value arbitrage 0.03 0.89 0.94 -9.79 3.02 -4.17 36.4 20718.4 [0.00]

HF Strategy ARCH LB-Q ACF(1) ACF(2) ACF(3) ACF(4) ACF(5) DCC test

48.09 [0.00]

Convertible arbitrage 117.0 [0.00] 445.8  [0.00] 0.70 0.50 0.40 0.33 0.29

Distressed securities 46.6 [0.00] 351.9 [0.00] 0.31 0.35 0.42 0.38 0.27

Event driven 107.8 [0.00] 51.2 [0.00] 0.24 0.13 0.12 0.08 0.06

Equity hedge 45.8 [0.00] 24.5 [0.01] 0.11 0.09 0.08 0.10 0.08

Equity market neutral 38.2 [0.00] 22.4 [0.01] -0.07 -0.10 -0.07 0.00 0.12

Mergers arbitrage 130.0 [0.00] 42.3 [0.00] -0.29 0.13 -0.01 -0.01 -0.09

Macro 40.2 [0.00] 14.8 [0.14] 0.08 0.09 0.05 0.02 -0.07

Relative value arbitrage 42.6 [0.00] 237.4 [0.00] 0.32 0.32 0.41 0.17 0.24

Panel A: Summary Statistics

Panel B: Basic Time Series Properties
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Table 5.2a 

Out-of-Sample Forecast Statistics 

Panel A reports statistical loss functions RMSE and MAE calculated for the out-of-sample period with respect to each element of variance-covariance matrix. Elements 
of VCV matrix are in the rows and loss functions of each model are in the columns. Numbers next to loss functions and directional accuracy tests (e.g. RMSE1, 
MAE1) show the number of models (i.e. 1: Standard EWMA, 2: Hybrid EWMA, 3: Standard GARCH, 4: Exponential CARR, 5: MRSGARCH, 6: MRSACR, 7: Two 
component CMRSACR. 
 
 

 
 

Item RMSE1 RMSE2 RMSE3 RMSE4 RMSE5 RMSE6 RMSE7 MAE1 MAE2 MAE3 MAE4 MAE5 MAE6 MAE7

VAR1 22.97 24.47 10.87 136.39 18.33 22.97 20.05 5.62 4.06 2.00 27.33 3.54 3.57 3.13

VAR2 2.65 2.61 7.53 2.51 2.40 2.64 1.95 0.94 0.67 1.50 0.76 0.91 0.71 0.52

VAR3 2.41 1.92 11.43 3.17 1.51 1.75 1.25 0.86 0.57 2.21 1.00 0.65 0.53 0.42

VAR4 3.99 4.72 12.66 3.97 3.95 4.76 4.48 1.21 0.86 2.27 1.27 0.90 0.81 0.69

VAR5 5.76 6.85 7.40 24.03 10.52 6.92 6.13 1.62 1.30 1.67 4.41 4.28 1.22 1.07

COV21 3.93 4.42 2.13 2.79 4.26 4.56 4.21 1.18 0.95 0.67 0.95 0.93 0.93 0.87

COV31 1.87 1.71 2.16 2.28 1.72 1.68 1.70 0.57 0.54 0.61 0.62 0.54 0.54 0.54

COV41 9.27 9.84 8.26 11.60 10.21 9.89 9.41 1.65 1.40 1.16 2.04 1.44 1.36 1.30

COV51 12.40 12.87 8.28 23.27 12.38 12.94 12.00 2.45 2.04 1.42 4.96 2.05 2.01 1.86

COV32 0.88 0.70 2.86 0.86 0.68 0.69 0.67 0.40 0.32 0.65 0.37 0.33 0.32 0.31

COV42 1.42 1.66 2.97 1.51 1.75 1.74 1.64 0.55 0.42 0.65 0.47 0.45 0.41 0.38

COV52 1.92 2.38 2.72 1.68 2.31 2.52 2.29 0.75 0.67 0.74 0.59 0.70 0.67 0.62

COV43 1.07 1.08 4.75 1.52 1.01 1.08 1.02 0.48 0.37 0.98 0.53 0.40 0.35 0.32

COV53 1.60 1.33 5.48 3.50 1.28 1.32 1.26 0.70 0.51 1.24 0.97 0.57 0.50 0.48

COV54 4.02 4.66 3.41 4.38 4.39 4.74 4.41 1.02 0.79 0.95 1.20 0.73 0.76 0.69

Panel A: Forecast error statistics
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Table 5.2b 

Out-of-Sample Forecast Statistics (cont’d) 

Panel B reports directional accuracy test statistics (SR and DA) calculated for the out-of-sample period with respect to each element of the variance - covariance 
matrix. Elements of VCV matrix are in the rows and loss functions of each model are in the columns. Numbers next to loss functions and directional accuracy tests 
(e.g. SR1, DA1) show the number of models (i.e. 1: Standard EWMA, 2: Hybrid EWMA, 3: Standard GARCH, 4: Exponential CARR, 5: MRSGARCH, 6: MRSACR, 
7: Two component CMRSACR. 
 
 

 

Item SR1 SR2 SR3 SR4 SR5 SR6 SR7 DA1 DA2 DA3 DA4 DA5 DA6 DA7

VAR1 0.80 0.80 0.97 0.93 0.92 0.94 0.97 4.55 5.03 11.41 8.23 6.86 8.01 11.63

VAR2 0.81 0.79 0.84 0.80 0.85 0.76 0.93 6.77 6.47 3.63 5.64 7.60 4.61 10.74

VAR3 0.66 0.61 0.77 0.72 0.78 0.64 0.86 2.72 1.84 1.40 0.88 3.73 3.09 8.61

VAR4 0.79 0.75 0.90 0.86 0.76 0.90 0.93 4.46 5.08 4.93 4.35 4.79 7.40 9.59

VAR5 0.79 0.78 0.92 0.89 0.67 0.86 0.96 5.10 5.42 9.03 7.66 0.24 6.72 12.37

COV21 0.78 0.78 0.92 0.86 0.82 0.77 0.89 4.70 5.55 7.26 5.31 6.25 4.93 7.01

COV31 0.36 0.38 0.31 0.31 0.37 0.42 0.34 -0.94 -1.31 -1.54 -0.99 -1.31 -0.81 -1.91

COV41 0.77 0.78 0.92 0.88 0.84 0.88 0.93 2.79 3.75 7.32 5.29 3.31 5.05 7.65

COV51 0.77 0.77 0.95 0.92 0.90 0.89 0.96 4.37 5.20 9.67 8.24 6.96 6.75 11.30

COV32 0.65 0.66 0.68 0.67 0.64 0.59 0.69 2.03 2.26 1.04 2.16 2.00 1.01 3.44

COV42 0.58 0.58 0.70 0.65 0.55 0.56 0.70 -1.24 -1.32 0.43 -0.35 -2.42 -1.07 1.87

COV52 0.76 0.76 0.87 0.83 0.72 0.77 0.89 4.38 4.62 5.83 4.63 2.55 4.82 8.30

COV43 0.62 0.60 0.77 0.74 0.71 0.69 0.76 0.50 0.96 2.34 1.34 1.93 1.83 4.06

COV53 0.69 0.62 0.77 0.77 0.72 0.71 0.84 3.89 3.04 3.20 3.47 4.35 4.19 7.91

COV54 0.79 0.78 0.89 0.86 0.83 0.85 0.88 3.94 3.41 5.25 4.73 4.85 5.56 6.43

Panel B: Directional Forecast Accuracy Tests
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Table 5.3 

Modified Diebold-Mariano Statistics for Mean Squared Errors 

The table reports the Modified Diebold-Mariano statistics and p-values of each statistics for the mean squared errors to test the null hypothesis that there is no 
difference between the MRSACR model and each of the other seven models (Panel A), and CMRSACR model and each of the other seven models (Panel B). Results 
are reported for each element of the variance covariance (VCV) matrix. Elements of VCV matrix are in the columns and each model is in the rows. 
 

 

VCV element VAR1 VAR2 VAR3 VAR4 VAR5 COV21 COV31 COV41 COV51 COV32 COV42 COV52 COV43 COV53 COV54

EWMA -1.93 -0.83 -1.82 -1.1 -0.12 -0.11 -2.08 -1.32 -0.24 -2.5 -1.33 -0.02 -3.79 -3.13 -0.69

pval 0.05 0.41 0.07 0.3 0.90 0.49 0.04 0.16 0.74 0.0 0.04 0.33 0.00 0.00 0.36

HybEWMA -1.22 0.99 -1.32 -0.9 -0.27 0.83 2.34 -0.51 0.42 -1.5 0.69 0.91 -1.29 -1.55 -0.27

pval 0.22 0.32 0.19 0.4 0.79 0.33 0.02 0.55 0.63 0.1 0.30 0.33 0.05 0.00 0.61

GARCH 1.26 -1.38 -1.26 -2.0 0.46 1.25 -1.41 1.16 1.23 -1.4 -1.74 1.08 -1.49 -1.42 0.25

pval 0.21 0.17 0.21 0.0 0.65 0.21 0.15 0.24 0.22 0.2 0.08 0.23 0.14 0.15 0.68

ECARR -1.66 0.28 -1.60 -1.2 -1.61 0.43 -1.24 -1.43 -1.61 -1.6 1.93 0.76 -2.15 -1.77 -0.94

pval 0.10 0.78 0.11 0.2 0.11 0.51 0.21 0.14 0.11 0.1 0.01 0.38 0.03 0.08 0.32

MRSGARCH 0.87 -0.27 -0.68 0.1 -3.03 0.96 2.40 1.23 1.29 2.7 -2.79 0.62 -3.33 -4.25 0.42

pval 0.39 0.78 0.50 0.9 0.00 0.30 0.01 0.22 0.19 0.0 0.01 0.22 0.00 0.00 0.45

CMRSACR 1.43 1.92 2.28 1.9 1.54 1.33 1.97 1.13 1.22 5.2 1.30 1.43 2.06 2.21 1.46

pval 0.15 0.06 0.02 0.1 0.13 0.18 0.04 0.26 0.22 0.0 0.17 0.15 0.03 0.03 0.14

EWMA -2.68 -2.90 -2.40 -2.2 -1.94 -1.68 -2.14 -3.12 -2.43 -3.0 -2.55 -1.93 -4.42 -4.00 -2.09

pval 0.01 0.00 0.02 0.0 0.05 0.06 0.03 0.00 0.02 0.0 0.01 0.02 0.00 0.00 0.03

HybEWMA -1.35 -2.00 -1.88 -2.6 -1.97 -1.97 3.15 -1.37 -1.31 -3.7 -4.66 -2.62 -1.81 -1.88 -2.45

pval 0.18 0.05 0.06 0.0 0.05 0.03 0.00 0.16 0.19 0.0 0.00 0.01 0.04 0.03 0.01

GARCH 1.09 -1.61 -1.36 -2.1 -1.34 1.17 -1.33 1.25 1.32 -1.5 -1.81 -1.96 -1.59 -1.53 -0.62

pval 0.28 0.11 0.18 0.0 0.18 0.22 0.18 0.21 0.19 0.1 0.07 0.04 0.11 0.12 0.36

ECARR -1.67 -2.24 -1.97 -1.9 -1.67 -0.52 -1.18 -1.42 -1.60 -2.2 -2.31 -0.54 -2.52 -1.97 -1.67

pval 0.10 0.03 0.05 0.1 0.10 0.25 0.23 0.15 0.11 0.0 0.02 0.02 0.01 0.05 0.10

MRSGARCH -0.37 -3.00 -3.22 -1.1 -3.56 -1.60 -2.44 -1.31 -1.20 -3.7 -2.88 -3.85 -5.41 -9.37 -5.53

pval 0.71 0.00 0.00 0.3 0.00 0.02 0.01 0.19 0.23 0.0 0.00 0.00 0.00 0.00 0.00

MRSACR -1.43 -1.92 -2.28 -1.9 -1.54 -1.33 -1.97 -1.13 -1.22 -5.2 -1.30 -1.43 -2.06 -2.21 -1.46

pval 0.15 0.06 0.02 0.1 0.13 0.18 0.04 0.26 0.22 0.0 0.17 0.15 0.03 0.03 0.14

Panel A: Benchmark Model is MRSACR

Panel B: Benchmark Model is CMRSACR
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Table 5.4 

Mincer-Zarnowitz Regression Results 

The table reports the results of the Mincer-Zarnowitz regression and hypothesis test for the efficiency of the parameters for each element of the variance covariance 
(VCV) matrix. Elements of VCV matrix are in the rows and each model is in the columns. The dependent variable in the regression is the values of the volatility proxy 
for that element of VCV matrix, and the independent variable is the volatility forecast of each model. In estimating heteroskedasticity-autocorrelation-consistent 
standard errors for the regressions, Newey and West (1987) estimation procedure is used. 

 

VCV Intcpt se slope se Stats pval R2 Intcpt se slope se Stats pval R2 Intcpt se slope se Stats pval R2 Intcpt se slope se Stats pval R2

VAR1 -1.03 0.87 1.28 0.75 2.1 0.35 0.16 -1.22 0.94 5.34 3.11 2.0 0.36 0.15 -0.62 0.34 1.47 0.12 18.0 0.00 0.90 -0.06 0.54 0.14 0.02 1727.5 0.00 0.71

VAR2 0.20 0.14 0.55 0.08 35.2 0.00 0.14 0.06 0.09 2.43 0.37 15.7 0.00 0.15 0.59 0.20 0.11 0.02 2707.1 0.00 0.10 0.33 0.15 0.70 0.23 5.1 0.08 0.18

VAR3 0.56 0.17 0.05 0.07 215.9 0.00 0.00 0.48 0.18 0.40 0.35 7.9 0.02 0.01 0.59 0.17 0.00 0.01 27080.1 0.00 0.00 0.58 0.17 0.02 0.03 1078.4 0.00 0.00

VAR4 -0.83 0.45 1.63 0.61 4.5 0.11 0.42 -1.44 0.72 7.69 2.96 5.2 0.08 0.45 0.17 0.12 0.25 0.02 1081.0 0.00 0.66 -0.15 0.20 0.60 0.14 13.2 0.00 0.71

VAR5 -1.24 0.87 1.72 0.76 2.9 0.24 0.42 -1.61 1.14 7.30 3.58 3.8 0.15 0.37 0.22 0.14 0.49 0.04 138.7 0.00 0.84 0.33 0.13 0.21 0.03 940.8 0.00 0.77

COV21 -0.76 0.46 1.93 0.98 3.8 0.15 0.34 -0.74 0.42 6.83 3.32 3.3 0.19 0.30 0.02 0.10 1.16 0.07 6.0 0.05 0.80 -0.24 0.12 0.78 0.14 9.0 0.01 0.70

COV31 0.10 0.11 -1.05 1.00 7.1 0.03 0.08 0.15 0.13 -4.69 3.89 2.2 0.33 0.08 -0.08 0.10 -0.06 0.22 25.3 0.00 0.00 -0.07 0.10 -0.14 0.19 39.4 0.00 0.01

COV41 -1.73 1.23 3.43 2.24 2.0 0.36 0.25 -0.86 0.76 8.97 7.25 1.3 0.53 0.07 -0.47 0.34 1.33 0.41 2.2 0.33 0.33 -0.09 0.20 0.30 0.25 45.1 0.00 0.08

COV51 -0.77 0.67 1.92 1.18 1.7 0.44 0.12 -1.12 0.90 7.88 4.81 2.1 0.35 0.14 -0.28 0.23 1.55 0.25 5.4 0.07 0.68 -0.10 0.22 0.31 0.07 95.1 0.00 0.53

COV32 0.09 0.05 -0.01 0.14 55.0 0.00 0.00 0.09 0.05 0.01 0.63 4.4 0.11 0.00 0.10 0.04 -0.01 0.03 943.1 0.00 0.00 0.11 0.05 -0.17 0.29 16.6 0.00 0.01

COV42 -0.43 0.21 1.42 0.66 6.6 0.04 0.40 -0.44 0.22 5.95 2.98 3.9 0.15 0.29 -0.14 0.08 0.34 0.03 559.4 0.00 0.64 -0.15 0.08 0.85 0.47 5.4 0.07 0.26

COV52 -0.55 0.26 1.64 0.56 5.5 0.06 0.51 -0.58 0.29 6.20 2.44 4.7 0.10 0.41 0.06 0.08 0.48 0.02 473.0 0.00 0.70 -0.05 0.09 0.75 0.16 4.7 0.10 0.64

COV43 -0.04 0.10 0.62 0.20 5.5 0.06 0.15 -0.05 0.10 1.89 0.87 1.1 0.59 0.07 0.11 0.09 0.06 0.02 2967.8 0.00 0.06 0.07 0.09 0.26 0.10 54.7 0.00 0.12

COV53 0.15 0.11 0.12 0.16 33.2 0.00 0.01 0.11 0.13 0.70 0.81 0.9 0.63 0.01 0.18 0.10 0.03 0.02 2524.6 0.00 0.01 0.18 0.10 0.04 0.04 523.1 0.00 0.01

COV54 -1.04 0.65 2.24 1.15 3.3 0.20 0.44 -1.34 0.83 9.74 5.16 2.9 0.24 0.41 -0.17 0.14 0.61 0.05 75.7 0.00 0.91 -0.22 0.16 0.54 0.12 18.7 0.00 0.72

VCV Intcpt se slope se Stats pval R2 Intcpt se slope se Stats pval R2 Intcpt se slope se Stats pval R2

VAR1 0.77 0.89 1.00 0.23 0.8 0.68 0.46 0.92 0.92 3.03 0.80 6.6 0.04 0.30 -0.75 0.27 4.76 0.13 852.0 0.00 0.98

VAR2 0.02 0.16 0.74 0.19 2.3 0.31 0.25 0.14 0.21 2.02 0.66 4.0 0.14 0.10 -0.03 0.03 3.11 0.24 94.4 0.00 0.95

VAR3 0.07 0.12 0.77 0.24 1.2 0.56 0.40 -0.67 0.31 6.27 1.85 13.2 0.00 0.63 0.01 0.04 2.41 0.03 2424.3 0.00 0.91

VAR4 -0.62 0.15 2.12 0.42 18.6 0.00 0.51 -0.54 0.29 5.54 2.07 5.2 0.08 0.29 -0.21 0.09 4.20 0.84 14.7 0.00 0.48

VAR5 0.82 0.29 0.15 0.13 60.7 0.00 0.03 0.24 0.29 3.18 0.97 5.7 0.06 0.15 -0.64 0.33 5.26 1.07 24.9 0.00 0.81

COV21 -0.18 0.18 2.76 0.59 12.6 0.00 0.24 -0.35 0.15 10.34 3.94 7.9 0.02 0.14 -0.37 0.09 10.00 0.28 1047.5 0.00 0.92

COV31 0.11 0.10 -3.74 2.22 4.6 0.10 0.07 0.03 0.10 -9.18 8.40 1.5 0.46 0.03 0.10 0.08 -7.93 7.24 1.6 0.45 0.09

COV41 0.88 0.58 -1.48 1.09 6.0 0.05 0.04 0.25 0.30 3.01 5.74 1.8 0.41 0.01 -0.68 0.45 10.06 1.23 55.1 0.00 0.52

COV51 0.83 0.70 1.02 0.61 1.6 0.45 0.10 0.73 0.75 4.41 2.48 3.8 0.15 0.06 -0.85 0.38 9.96 0.76 143.9 0.00 0.86

COV32 0.00 0.05 0.79 0.58 0.6 0.75 0.04 -0.03 0.04 3.10 1.23 3.0 0.23 0.04 -0.10 0.04 7.08 1.78 12.8 0.00 0.29

COV42 0.02 0.05 0.36 0.94 0.5 0.79 0.00 0.09 0.14 -0.57 4.99 0.7 0.69 0.00 -0.20 0.09 5.59 2.58 4.8 0.09 0.34

COV52 -0.26 0.10 1.64 0.36 10.4 0.01 0.20 -0.05 0.10 4.84 2.77 1.9 0.38 0.06 -0.35 0.11 7.36 0.89 52.8 0.00 0.78

COV43 -0.15 0.05 1.63 0.38 8.8 0.01 0.20 -0.19 0.05 5.14 1.03 24.0 0.00 0.20 -0.11 0.05 4.37 0.65 27.9 0.00 0.43

COV53 -0.12 0.14 1.11 0.68 4.0 0.14 0.09 -0.19 0.17 5.35 3.31 1.8 0.40 0.12 -0.20 0.12 5.28 2.28 3.5 0.17 0.35

COV54 -0.13 0.18 1.58 0.36 3.4 0.19 0.20 -0.57 0.28 8.93 3.90 4.2 0.12 0.24 -0.51 0.18 8.05 1.24 32.6 0.00 0.77

Panel A: Standard EWMA Panel B: Hybrid EWMA Panel C: Standard GARCH Panel D: Exponential CARR

Panel E: MRSGARCH Panel F: MRSACR Panel G: CMRSACR
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Table 5.5 

Encompassing Regression Results 

The table reports the results of the encompassing regression for each element of the variance covariance (VCV) matrix. Elements of VCV matrix are in the rows and 
each model is in the columns. The dependent variable in the regression is the values of the volatility proxy for that element of the VCV matrix, and the independent 
variables are volatility forecasts of all models for that element of VCV matrix. In estimating heteroskedasticity-autocorrelation-consistent standard errors for the 
regressions, Newey and West (1987) estimation procedure is used. 
 
 

 
 
 
 

intrcpt se0 slope1 se1 slope2 se2 slope3 se3 slope4 se4 slope5 se5 slope6 se6 slope7 se7 R2

VAR1 -0.01 -0.26 1.08 1.78 0.0 -0.16 -1.68 1.14 0.23 1.06 4.6 0.27 0.01 0.02 0.20 0.62 1.00           

VAR2 0.00 -0.13 0.14 0.01 0.1 0.02 -0.20 3.05 0.05 0.36 1.8 0.02 0.08 0.06 0.30 0.20 0.96           

VAR3 -0.12 -1.23 3.54 0.11 -0.2 0.09 -0.19 2.33 0.05 0.83 2.3 0.10 0.27 0.06 0.30 0.07 0.93           

VAR4 -0.84 -3.79 13.64 0.23 0.1 1.20 -1.49 1.05 0.37 1.37 6.0 0.06 0.19 0.48 0.85 1.30 0.88           

VAR5 0.16 -0.81 3.39 0.33 0.0 -0.04 -2.08 2.93 0.40 1.52 6.3 0.04 0.04 0.03 0.51 0.43 0.95           

COV21 0.12 4.89 -18.67 0.17 0.0 0.88 -4.75 8.43 0.04 0.72 3.2 0.10 0.04 0.33 1.00 0.64 0.97           

COV31 -0.04 -7.30 18.33 4.56 -3.0 2.56 38.98 -31.76 0.09 3.64 12.6 1.07 0.86 4.87 13.28 11.55 0.52           

COV41 0.44 6.93 -34.02 1.60 -0.4 -0.93 -6.44 8.61 0.12 0.65 3.7 0.67 0.21 0.66 1.78 2.89 0.98           

COV51 0.36 1.93 -7.66 2.02 -0.1 -2.06 -0.19 5.18 0.13 0.74 2.8 0.25 0.08 0.48 1.06 1.88 0.99           

COV32 -0.09 0.29 3.27 0.22 -3.0 0.07 -1.52 10.43 0.04 0.54 4.3 0.05 0.87 0.71 2.52 0.91 0.57           

COV42 0.34 1.83 -5.19 0.37 -0.5 0.23 -14.12 1.05 0.10 0.66 3.4 0.10 0.14 1.75 8.34 1.49 0.86           

COV52 0.12 3.33 -13.07 0.11 0.0 0.13 -2.70 5.12 0.06 0.83 2.1 0.07 0.15 0.45 2.77 1.56 0.87           

COV43 0.10 2.87 -8.72 -0.03 -0.2 1.26 -5.77 5.34 0.05 0.65 2.5 0.04 0.23 0.84 4.03 1.12 0.72           

COV53 0.03 -1.63 0.49 0.24 -0.1 0.09 3.01 5.52 0.07 1.39 3.8 0.25 0.33 0.25 2.88 2.58 0.45           

COV54 0.10 -1.56 5.17 0.72 -0.1 0.11 -3.53 2.28 0.22 0.95 4.4 0.19 0.29 0.45 1.16 0.95 0.95           
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Table 5.6 

Portfolio Performance Measures for Multivariate Models with CCC Specification 

The table reports the portfolio risk-return performance measures for multivariate models with Constant 
Conditional Correlation (CCC) correlation specification. RR is the average realized return for the out of 
sample analysis period, CSR is the mean of conditional Sharpe ratios for the analysis period, OMG is 
Omega ratio, SORR is Sortino ratio, MDD is the maximum drawdown for the period, RoMDD is the 
return on maximum drawdown ratio, IR is the information ratio, PT is the portfolio turnover, CVaR is the 
portfolio conditional value at risk at 95 and 99 percent confidence levels. 
 
 

 
 
 

Model RR CSR OMEGA SORR MDD RoMDD IR PT CVaR95 CVaR99

EWMA -0.071 0.130 0.396 -0.240 295.2 -0.02 0.049 6.96 0.932 1.219

HybEWMA -0.061 0.146 0.413 -0.242 98.1 -0.06 0.066 6.23 0.534 0.704

GARCH -0.045 0.170 0.485 -0.195 166.5 -0.03 0.081 25.37 1.029 1.331

ECARR -0.076 0.433 0.399 -0.302 336.6 -0.02 0.050 13.32 0.713 0.929

MRSGARCH 0.015 0.143 0.609 -0.187 17.8 0.08 0.226 34.09 0.723 0.943

MRSACR 0.019 0.261 0.647 -0.155 119.5 0.02 0.214 18.70 0.429 0.565

CMRSACR 0.013 0.434 0.509 -0.223 18.2 0.07 0.237 82.55 0.291 0.385

EWMA -0.071 0.065 0.396 -0.240 295.2 -0.02 0.049 6.96 1.757 2.333

HybEWMA -0.061 0.073 0.413 -0.242 98.1 -0.06 0.066 6.23 0.969 1.309

GARCH -0.051 0.072 0.476 -0.211 179.9 -0.03 0.082 18.25 2.010 2.595

ECARR -0.073 0.198 0.406 -0.294 340.2 -0.02 0.049 10.09 1.186 1.565

MRSGARCH -0.005 0.060 0.568 -0.211 -30.9 0.02 0.206 24.46 1.708 2.213

MRSACR -0.003 0.079 0.612 -0.183 134.5 0.00 0.196 13.78 1.061 1.377

CMRSACR 0.013 0.215 0.510 -0.223 16.4 0.08 0.238 82.06 0.526 0.714

EWMA -0.071 0.036 0.396 -0.240 295.2 -0.02 0.049 6.96 2.858 3.896

HybEWMA -0.061 0.041 0.413 -0.242 98.1 -0.06 0.066 6.23 1.455 2.069

GARCH -0.071 0.025 0.445 -0.234 208.6 -0.03 0.080 12.62 3.455 4.435

ECARR -0.075 0.095 0.406 -0.290 348.6 -0.02 0.048 7.98 1.738 2.342

MRSGARCH -0.019 0.033 0.546 -0.221 -23.1 0.08 0.195 21.10 3.593 4.640

MRSACR -0.021 0.029 0.573 -0.199 104.2 -0.02 0.183 11.01 2.304 2.956

CMRSACR 0.013 0.117 0.513 -0.223 14.7 0.09 0.238 81.55 0.774 1.115

EWMA -0.071 0.026 0.396 -0.240 295.2 -0.02 0.049 6.96 3.624 5.091

HybEWMA -0.061 0.029 0.413 -0.242 98.1 -0.06 0.066 6.23 1.663 2.533

GARCH -0.082 0.010 0.425 -0.246 217.2 -0.04 0.079 9.50 4.707 6.015

ECARR -0.078 0.061 0.403 -0.290 351.1 -0.02 0.048 6.40 2.140 2.953

MRSGARCH -0.026 0.024 0.536 -0.227 -24.3 0.11 0.188 19.99 5.510 7.112

MRSACR -0.038 0.015 0.545 -0.199 95.1 -0.04 0.166 9.55 3.795 4.815

CMRSACR 0.013 0.083 0.516 -0.222 14.2 0.09 0.238 81.36 0.842 1.325

Forecast step 1 (1-week)

Forecast step 2 (4-weeks)

Forecast step 3 (13-weeks)

Forecast step 4 (26-weeks)
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Table 5.7 

Portfolio Performance Measures for Multivariate Models with DCC Specification 

The table reports the portfolio risk-return performance measures for multivariate models with Dynamic 
Conditional Correlation (DCC) correlation specification. RR is the average realized return for the out of 
sample analysis period, CSR is the mean of conditional Sharpe ratios for the analysis period, OMG is 
Omega ratio, SORR is Sortino ratio, MDD is the maximum drawdown for the period, RoMDD is the 
return on maximum drawdown ratio, IR is the information ratio, PT is the portfolio turnover, CVaR is the 
portfolio conditional value at risk at 95 and 99 percent confidence levels. 
 
 

 
 
 

Models RR CSR OMEGA SORR MDD RoMDD IR PT CVaR95 CVaR99

EWMA -0.073 0.128 0.394 -0.239 306.6 -0.02 0.048 7.55 0.931 1.219

HybEWMA -0.061 0.146 0.413 -0.242 98.1 -0.06 0.066 6.23 0.534 0.704

GARCH -0.045 0.170 0.485 -0.195 166.5 -0.03 0.081 25.37 1.029 1.331

ECARR -0.076 0.433 0.399 -0.302 336.6 -0.02 0.050 13.32 0.713 0.929

MRSGARCH 0.015 0.143 0.609 -0.187 17.8 0.08 0.226 34.09 0.723 0.943

MRSACR 0.019 0.261 0.647 -0.155 119.5 0.02 0.214 18.70 0.429 0.565

CMRSACR 0.013 0.434 0.509 -0.223 18.2 0.07 0.237 82.55 0.291 0.385

EWMA -0.073 0.064 0.394 -0.239 306.6 -0.02 0.048 7.55 1.757 2.332

HybEWMA -0.061 0.073 0.413 -0.242 98.1 -0.06 0.066 6.23 0.969 1.309

GARCH -0.051 0.072 0.476 -0.211 179.9 -0.03 0.082 18.25 2.010 2.595

ECARR -0.073 0.198 0.406 -0.294 340.2 -0.02 0.049 10.09 1.186 1.565

MRSGARCH -0.005 0.060 0.568 -0.211 -30.9 0.02 0.206 24.46 1.708 2.213

MRSACR -0.003 0.079 0.612 -0.183 134.5 0.00 0.196 13.78 1.061 1.377

CMRSACR 0.013 0.215 0.510 -0.223 16.4 0.08 0.238 82.06 0.526 0.714

EWMA -0.073 0.035 0.394 -0.239 306.6 -0.02 0.048 7.55 2.858 3.894

HybEWMA -0.061 0.041 0.413 -0.242 98.1 -0.06 0.066 6.23 1.455 2.069

GARCH -0.071 0.025 0.445 -0.234 208.6 -0.03 0.080 12.62 3.455 4.435

ECARR -0.075 0.095 0.406 -0.290 348.6 -0.02 0.048 7.98 1.738 2.342

MRSGARCH -0.019 0.033 0.546 -0.221 -23.1 0.08 0.195 21.10 3.593 4.640

MRSACR -0.021 0.029 0.573 -0.199 104.2 -0.02 0.183 11.01 2.304 2.956

CMRSACR 0.013 0.117 0.513 -0.223 14.7 0.09 0.238 81.55 0.774 1.115

EWMA -0.073 0.025 0.394 -0.239 306.6 -0.02 0.048 7.55 3.624 5.090

HybEWMA -0.061 0.029 0.413 -0.242 98.1 -0.06 0.066 6.23 1.663 2.533

GARCH -0.082 0.010 0.425 -0.246 217.2 -0.04 0.079 9.50 4.707 6.015

ECARR -0.078 0.061 0.403 -0.290 351.1 -0.02 0.048 6.40 2.140 2.953

MRSGARCH -0.026 0.024 0.536 -0.227 -24.3 0.11 0.188 19.99 5.510 7.112

MRSACR -0.038 0.015 0.545 -0.199 95.1 -0.04 0.166 9.55 3.795 4.815

CMRSACR 0.013 0.083 0.516 -0.222 14.2 0.09 0.238 81.36 0.842 1.325

Forecast step 1 (1-week)

Forecast step 2 (4-weeks)

Forecast step 3 (13-weeks)

Forecast step 4 (26-weeks)
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Table 5.8 

Portfolio Weights for Multivariate Models 

The table exhibits the mean weights of portfolios constructed by each multivariate model with Constant 
Conditional Correlation (CCC) correlation specification (Panel A) and Dynamic Conditional Correlation 
(DCC) correlation specification (Panel B). Portfolios are composed of hedge fund strategies: convertible 
arbitrage (CA), distressed securities (DS), equity market neutral (EMN), merger arbitrage (MAR) and 
relative value arbitrage (RVA). Portfolio weights are in percentages. 
 
 

 
 
 

 

 

  

Model CA DS EMN MAR RVA CA DS EMN MAR RVA

EWMA 16.0    27.0   23.0     25.0    10.0     16.0     27.0    23.0     25.0     10.0     

HybEWMA 16.0    28.0   23.0     23.0    10.0     16.0     28.0    23.0     23.0     10.0     

GARCH 22.0    27.0   23.0     18.0    10.0     22.0     29.0    23.0     15.0     11.0     

ECARR 12.0    30.0   25.0     15.0    17.0     12.0     31.0    24.0     15.0     18.0     

MRSGARCH 20.0    26.0   24.0     23.0    7.0       25.0     29.0    27.0     11.0     9.0       

MRSACR 16.0    24.0   23.0     26.0    11.0     21.0     26.0    28.0     10.0     16.0     

CMRSACR 16.0    26.0   18.0     26.0    14.0     16.0     26.0    17.0     26.0     14.0     

EWMA 16.0    27.0   23.0     25.0    10.0     16.0     27.0    23.0     25.0     10.0     

HybEWMA 16.0    28.0   23.0     23.0    10.0     16.0     28.0    23.0     23.0     10.0     

GARCH 22.0    31.0   23.0     12.0    11.0     22.0     33.0    22.0     11.0     11.0     

ECARR 11.0    32.0   23.0     14.0    19.0     11.0     33.0    23.0     13.0     20.0     

MRSGARCH 27.0    32.0   27.0     8.0      6.0       27.0     34.0    26.0     8.0       5.0       

MRSACR 22.0    28.0   24.0     8.0      17.0     23.0     32.0    19.0     9.0       17.0     

CMRSACR 16.0    27.0   17.0     26.0    14.0     16.0     27.0    16.0     26.0     14.0     

Model CA DS EMN MAR RVA CA DS EMN MAR RVA

EWMA 16.0    27.0   23.0     25.0    10.0     16.0     27.0    23.0     25.0     10.0     

HybEWMA 16.0    28.0   23.0     23.0    10.0     16.0     28.0    23.0     23.0     10.0     

GARCH 22.0    27.0   23.0     18.0    10.0     22.0     29.0    23.0     15.0     11.0     

ECARR 12.0    30.0   25.0     15.0    17.0     12.0     31.0    24.0     15.0     18.0     

MRSGARCH 20.0    26.0   24.0     23.0    7.0       25.0     29.0    27.0     11.0     9.0       

MRSACR 16.0    24.0   23.0     26.0    11.0     21.0     26.0    28.0     10.0     16.0     

CMRSACR 16.0    26.0   18.0     26.0    14.0     16.0     26.0    17.0     26.0     14.0     

EWMA 16.0    27.0   23.0     25.0    10.0     16.0     27.0    23.0     25.0     10.0     

HybEWMA 16.0    28.0   23.0     23.0    10.0     16.0     28.0    23.0     23.0     10.0     

GARCH 22.0    31.0   23.0     12.0    11.0     22.0     33.0    22.0     11.0     11.0     

ECARR 11.0    32.0   23.0     14.0    19.0     11.0     33.0    23.0     13.0     20.0     

MRSGARCH 27.0    32.0   27.0     8.0      6.0       27.0     34.0    26.0     8.0       5.0       

MRSACR 22.0    28.0   24.0     8.0      17.0     23.0     32.0    19.0     9.0       17.0     

CMRSACR 16.0    27.0   17.0     26.0    14.0     16.0     27.0    16.0     26.0     14.0     

Panel B: Portfolio Weights for DCC Specification

Forecast step 1 (1-week) Forecast step 2 (4-weeks)

Forecast step 3 (13-weeks) Forecast step 4 (26-weeks)

Forecast step 1 (1-week) Forecast step 2 (4-weeks)

Forecast step 3 (13-weeks) Forecast step 4 (26-weeks)

Panel A: Portfolio Weights for CCC Specification
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CChhaapptteerr  66  

FFaaccttoorr--BBaasseedd  HHeeddggee  FFuunndd  RReepplliiccaattiioonn  wwiitthh  

RRiisskk  CCoonnssttrraaiinnttss  

 
 
 
 

6.1. Introduction 
 

The dynamics of hedge fund returns are relatively complex owing to the non-traditional 

investment strategies and tools that are commonly used by hedge fund managers, such 

as leverage, short selling, derivatives and dynamic trading. This results in a nonlinear 

relationship between hedge fund returns and the returns of the major asset classes. 

Moreover, it is well established that hedge fund returns are not normally distributed, 

with most strategies exhibiting high levels of negative skewness and excess kurtosis, 

and displaying positive autocorrelation as a result of holding illiquid assets (see for 

related literature in Section 2.1). It is therefore considerably more challenging to 

replicate hedge fund returns than it is to replicate, for example, mutual fund returns. 

Attempts to model hedge fund returns have searched for assets, styles or trading rules 

that can mimic the strategies that hedge fund managers employ (see, for example, Fung 

and Hsieh, 2001, Hasanhodzic and Lo, 2007, among others). Although most hedge fund 

managers claim that they achieve superior risk-adjusted performance, and are hence 

able to justify the high fees that they commonly charge, some studies estimate that up to 

60-80 percent of  hedge fund returns can be captured by systematic risk factors (see 

Jaeger and Wager, 2005; Fung and Hsieh, 2006 and 2007). The purpose of replication, 

therefore, is not to achieve exactly the same level of return performance, but to capture 

a significant part of it with lower fees and better liquidity.  

 

There are three broad approaches to hedge fund replication: the factor approach, the 

distribution-matching approach and the rule-based approach. The factor approach 

projects hedge fund returns on to a set of investible factors, and uses linear regression 

(Jaeger and Wagner, 2005; Hasanhodzic and Lo, 2007) or nonlinear optimization 

(Amenc et al., 2010) to minimise the tracking error between the hedge fund return and 
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the weighted average return of the factors. Factor approaches are often able to generate 

a good fit to hedge fund returns in-sample, depending on the choice of factors and the 

time period considered, but are often found to have poor out-of-sample performance. In 

particular, it is commonly found that the replicating portfolio has lower average return 

and higher standard deviation (and hence higher risk) than the hedge fund portfolio that 

it is designed to track. This is potentially due to the dynamic nature of the investment 

strategies that hedge funds typically employ, which cannot be captured by the 

essentially backward looking factor approach. For a detailed summary of research in 

this area, see Fung and Hsieh (2004), Mitchell and Pulvino (2001), Tancar and Viebig 

(2008), Amenc et al. (2008), Takahashi and Yamamoto (2008), among others. The 

distribution-matching approach seeks to replicate the unconditional distribution of the 

payoffs of the hedge fund using an equivalent investment in the replicating assets (see 

Kat and Palaro, 2005, 2006; Papageorgiou et al. 2008; Takahashi and Yamamoto, 

2010). In contrast with the factor approach, the distribution-matching approach is 

relatively robust out-of-sample in the sense that the higher moments (such as variance, 

skewness and kurtosis) of the replicating portfolio are similar to those of the hedge fund 

portfolio. However, as noted by Amenc et al. (2008), by focussing on the higher 

moments of hedge fund returns, rather than their time-series properties, there is nothing 

to guarantee the out-of-sample performance of the replicating portfolio since the first 

moment of returns is ignored. Indeed, the time-series correlation between the replicating 

portfolio and the hedge fund portfolio is often found to be extremely low. As such, the 

distribution-matching approach is more relevant to fund design than to performance 

replication (see, for example, Wallerstein et al., 2010, Amenc et al., 2008). The rule-

based approach seeks to mimic well-known hedge fund strategies by implementing 

relatively simple trading algorithms that invest in liquid assets in such a way that 

generates a similar risk-return profile to the hedge fund being replicated. These 

algorithms are mainly proprietary in nature, and therefore there is little academic 

research concerning their performance. Mitchell and Pulvino (2001) and Duarte et al. 

(2007) investigate the risk-return characteristics of merger and fixed income arbitrage 

strategies and search for trading rules to mimic these strategies. In practice, the rule-

based approach is often combined with factor-based replication.   

 

In this chapter, a composite approach that combines the factor and distribution-

matching methodologies is investigated. In particular, a linear factor model for hedge 

fund returns is specified to capture their time series properties, but a range of constraints 
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are imposed to ensure that the replicating portfolio matches various risk measures of the 

hedge fund, including Conditional Value at Risk, Conditional Drawdown at Risk and 

the partial moments of returns. These risk measures are non-linear functions of the 

higher moments of returns, and so the proposed approach can be thought of as 

incorporating the distribution-matching approach.  A return constraint is also imposed 

to ensure that the clone portfolio delivers the same absolute performance as that of the 

hedge fund. This approach is used to replicate the monthly returns of ten hedge fund 

strategy indices using long-only positions in ten equity, interest rate, exchange rate and 

commodity indices, all of which can be traded using liquid, investible instruments such 

as futures, options and exchange traded funds. Using out-of-sample evaluation, it is 

shown that the proposed composite approach yields replicating portfolios that better 

mimic both the risk-adjusted performance and distributional characteristics of the hedge 

fund indices that they are designed to track. On balance, proposed approach appears to 

represent an improvement over the out-of-sample performance of the factor and payoff 

distribution approaches reported by Jaeger and Wagner (2005) and Amenc et al. (2010). 

 

The outline of the remainder of this chapter is as follows. In the following section, the 

characteristics of the data are described and the replication methodology is outlined. In 

Section 3, the results of out-of-sample tests are reported. Section 4 concludes. 

   

6.2. Data and Methodology 
 

6.2.1. Data 

 

In the analysis, monthly data on ten hedge fund strategy indices obtained from HFR is 

used. In addition to the hedge fund strategy indices utilized in Chapter 2 (see 2.2.1), the 

emerging markets (EM) and fund of funds (FOF) indices are also considered. The full 

sample covers the period June 1994 to January 2011 (200 observations). The initial 

estimation period is June 1994 to September 2002 (100 observations), and the out-of-

sample evaluation period is October 2002 to January 2011 (100 observations). Since the 

length of the dataset is different from the data used in Chapter 2 and Chapter 3, the data 

analysis is performed for the new data set. Findings are in line with the findings 

presented in Chapter 2 and Chapter 3. Summary statistics for the hedge fund return 

series over the full sample of 200 observations are reported in Table 6.1. 

 

[Table 6.1] 
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Panel A of Table 6.1 reports various descriptive statistics for the monthly hedge fund 

strategy returns. Some strategies (such as emerging markets) exhibit relatively higher 

volatility than others (such as equity market neutral and mergers arbitrage). The returns 

for all ten hedge fund strategies are leptokurtic, and with the exception of the macro 

strategy, they all exhibit negative skewness. The null hypothesis of normality is strongly 

rejected in all cases. Panel B reports the first five autocorrelation coefficients of hedge 

fund strategy returns, the Ljung-Box portmanteau test for serial correlation up to 10 lags 

and the ARCH test of Engle (1982). With the exception of the macro strategy, all ten 

hedge fund strategies exhibit highly significant autocorrelations. The ARCH test 

suggests that there is evidence of volatility clustering in six of the ten strategies. The 

significant autocorrelation in hedge fund returns is largely due to the artificial 

smoothing of monthly returns that arises from time lags in the valuation of the securities 

held by the hedge fund, especially in less liquid strategies such as distressed securities. 

To correct for this autocorrelation, the method of Geltner (1991), originally proposed 

for smoothing appraisal-based returns of commercial real estate assets is used.  

 

In order to replicate the performance of the hedge fund strategy indices, ten equity, 

bond, commodity and foreign exchange indices, which are taken from Datastream are 

used. These indices are listed in Table 6.2. Although not directly investible, they can be 

traded via a range of low cost, highly liquid instruments, such as futures, options and 

exchange traded funds. 

 

[Table 6.2] 

 

These indices are selected from a broad list of indices in five steps: Initially, 32 

instruments are selected. These instruments are well known indices (they are highly 

traded by using the liquid instruments such as futures and ETFs) and they belong to the 

asset classes used in the replicating portfolio construction. Second, at each portfolio 

rebalancing date, a regression is run by using all 32 instruments in order to find out 

which instruments have statistically significant beta coefficients in explaining the 

replicated hedge fund strategies. The instruments which have statistically significant 

beta parameters are noted. This analysis is repeated for the whole out-of-sample test 

period. Third, each optimization model is run by considering all 32 instruments at each 

rebalancing date. This process is repeated for the whole out-of-sample test period. The 
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instruments that all models give significant (>3%) average portfolio weights for the 

entire out-of-sample period are noted. Fourth, the factors employed by other authors are 

noted. Fifth, the size of the hedge fund industry investments in terms of strategies and 

markets are analyzed. For example, nearly in total 40 percent of hedge fund strategies 

are equity-based and operate in mainly medium-size, small-size and micro-size stock 

markets. Also about 15-20 percent invests in emerging market securities. The 

instruments which are related to these markets and strategies are noted. Finally, among 

the instruments noted in the earlier steps, 10 instruments which are believed to best 

replicate all considered hedge fund strategies are selected.   

 

6.2.2. Methodology 

 

The starting point is the factor-based approach to replicating hedge fund returns, but this 

is supplemented with a number of constraints on the return and risk of the replicating 

portfolio, and hence indirectly on its distributional characteristics. Specifically, the 

objective function is given by: 
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hfp LPMLPM =                      (6.8) 

 

where thfr ,  is the return of the hedge fund index at time t,  ix , mi ,...,1= , is the weight of 

instrument i in the replicating portfolio, i

m

i titp xrr ∑ =
=

1 ,,  is the return of the replicating 

portfolio at time t. The budget constraint (6.2) represents full investment without 

leverage, while the positivity constraint (6.3) ensures long-only portfolio positions. The 

constraint (6.4) matches the mean return of the replicating portfolio with the mean 

return of the hedge fund index, which addresses the return component of the risk-

adjusted performance of the replicating portfolio. While the CVaR (6.5) and the CDaR 

constraints match the tail risks, the Upper Partial Moments (UPM) and Lower Partial 

Moments (LPM) constraints in (6.7) and (6.8) implicitly match all moments of the 

return distributions by separately considering the right and left hand side of the 

distribution. The constraints from (6.5) to (6.8) concern the risk of the replicating 

portfolio, and are described in detail in the following sub-sections. 

 

6.2.2.1. CVaR Constraint 

 

Conditional Value at Risk (CVaR) is a risk measure derived from Value at Risk (VaR) 

and can be defined as the expected value of losses exceeding VaR over a specified time 

horizon at a specified confidence level (see Rockafeller and Uryasev, 2002). Let ζ
 
be 

VaR with confidence level α. CVaR for the replicating portfolio is defined as  
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and for the replicated hedge fund strategy index as 
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where ζ  is estimated from the returns of the hedge fund strategy and )(, xCVaR p α is a 

convex function of portfolio positions with respect to α. The constraint in (5) therefore 

aims to match the CVaR of the replicating portfolio in (9) with that of the individual 

hedge fund strategy in (10). 
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6.2.2.2. CDaR Constraint  

 

Drawdown, also known as the underwater portfolio level, is a commonly used 

performance indicator in portfolio management, and is defined as the reduction in 

portfolio value from a previous maximum. The drawdown concept helps investors 

construct portfolios in a way that avoids losses that exceed a fixed percentage of the 

maximum value of their wealth achieved up to that point in time. Chekhlov et al. (2000) 

propose the Conditional Drawdown at Risk (CDaR) measure that combines the 

drawdown concept with the CVaR approach. Analogous to CVaR, CDaR can be 

defined as the expectation of drawdowns that exceed a certain threshold drawdown 

level, ζ , which is defined at an α-confidence level similar to the way VaR is defined in 

the specification of CVaR. However, unlike CVaR, CDaR is a risk measure that 

accounts not only for the aggregate of losses over some period, but also for the 

sequence of those losses. For portfolio implementation of CDaR, see, for example, 

Chekhlov et al. (2005).  

 

Let ζ
 
be threshold drawdown level estimated at confidence level α. CDaR for the 

replicating portfolio is defined as  
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and for the hedge fund strategy index as 
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where ζ  is estimated from the drawdowns of the hedge fund strategy and )(, xCDaR p α

is convex function of portfolio positions with respect to α. The constraint in (6.6) 

therefore aims to match the CDaR of the replicating portfolio in (6.11) with that of the 

individual hedge fund strategy in (6.12). 

 

6.2.2.3. Partial Moments Constraint  

 

The constraints on the partial moments in (6.7) and (6.8) are motivated by the Omega 

performance measure first introduced by Keating and Shadwick (2002). Omega is a 
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generalised measure of risk-adjusted return that implicitly utilises all moments of the 

distribution of portfolio returns, rather than focussing merely on the mean and the 

variance, and is defined as the upper partial moment of returns with respect to some 

threshold, divided by the lower partial moment of returns. Here the components of 

Omega – the upper and lower partial moments – are considered separately. In particular, 

upper and lower partial moments for the return 
pr  are defined as the probability 

weighted ratio of portfolio gains and losses relative to a threshold return defined by the 

investor: 
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where ( ).F  is the cumulative probability distribution function of the portfolio returns, 

( ) [ ]yrPyF p ≤= . Given the threshold return level br , the UPM and LPM functions of 

the replicating portfolio are defined in (6.7) and (6.8) as  
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and the UPM and LPM functions of the replicated hedge fund strategy in (6.7) and (6.8) 

as follows 

 

[ ] bbhfhfhf rrrrEUPM −≥= |                    (6.17) 

 

[ ]bhfhfbhf rrrErLPM ≤−= |                   (6.18) 

 

where 
hfr  is the returns of individual hedge fund strategy. 

 

6.2.3. Estimation and Evaluation 
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The out-of-sample performance of the replicating portfolios is tested with different 

constraints over the period October 2002 to January 2011. Portfolio performance is 

reported for a number of different specifications of the model. FM is the pure factor 

model, which imposes only the full investment constraint. RC is the pure factor model 

supplemented with the long only and average return constraints. CVaRC, CDaRC and 

PMC each have one additional constraint (on CVaR, CDaR or the upper and lower 

partial moments, respectively). ALLC imposes all of the constraints simultaneously. 

Initially the model is estimated by using the first 100 months, June 1994 to September 

2002, to generate out-of-sample forecasts of the replicating portfolio weights for 

October 2002. The estimation sample is then rolled forward one month to forecast the 

portfolio weights for November 2002, and so on until the end of the sample is reached. 

The estimation window length is kept constant at 100 months. The model is estimated 

using the Matlab fmincon optimization function. In estimating CVaR and CDaR 

constraints 95 percent confidence level is used.  

 

The out-of-sample performance of the replicating portfolios is evaluated using a number 

of statistical and economic measures. Firstly, a regression of realized hedge fund 

portfolio returns on the realized replicating portfolio returns over the out-of-sample 

period is estimated. For brevity, only the adjusted R-squared statistic and beta 

coefficient of this regression are provided. Secondly, the mean, standard deviation and 

skewness and kurtosis coefficients of the return distribution for both the hedge fund 

portfolio and the replicating portfolio are reported. Thirdly, the Sharpe Ratio, maximum 

drawdown, and annualized CVaR and CDaR statistics for both the hedge fund portfolio 

and the replicating portfolio are reported. In computing the Sharpe ratio, an annualised 

risk free rate of 2.03 percent, representing the average yield on US Treasury securities at 

a constant 3-month maturity over the out-of-sample period is used. 

 

6.3. Empirical Results 
 

The regression results are reported in columns 1-3 of Table 6.3a and 6.3b. Generally, 

the estimated beta coefficient is significantly greater than zero, and the adjusted R-

squared values are relatively high. The factor-based model generates a beta value closer 

to one than all other models. For some strategies (such as emerging markets), the FM 

model is able to explain up to 85 percent of the variance in hedge fund returns. 

However, the highest R-squared statistic is generated by the PMC model in six out of 
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ten cases, but by the FM model in only three cases. The CVaRC model generates the 

second highest adjusted R-squared statistic in seven out of ten strategies. In terms of 

statistical performance, therefore, the replicating portfolios in many cases display a 

significant improvement over the out-of-sample performance of the factor-based model. 

However, for some strategies, such as equity market neutral, the relatively low level of 

the systematic component is detrimental to the performance of the replicating portfolios.   

 

[Table 6.3a and 6.3b] 

 

The annualised mean and standard deviation of returns and the skewness and kurtosis 

coefficients are reported in columns 4-7 of Table 6.3a and 6.3b. In general, the 

composite model replicates the statistical properties of hedge fund returns in terms of 

their first four moments reasonably well. Composite models tend to offer slightly higher 

average returns relative to the hedge fund strategies, but also slightly higher standard 

deviation. In contrast, the benchmark FM model tends to offer a lower average returns 

than the hedge fund strategies, and lower standard deviation. Both the benchmark FM 

model and the composite models approximately match the skewness and kurtosis of 

hedge fund returns. The risk-adjusted performance of the models is given by the Sharpe 

ratio, reported in column 8 of Table 6.3a and 6.3b. The composite models, ALLC, 

CVaRC and CDaRC, offer the best replication of risk-adjusted performance. The FM 

model underperforms the hedge fund strategies in seven out of ten cases, and in two 

cases actually yields a negative Sharpe ratio. In contrast, the CDaRC model outperforms 

the hedge fund strategies in seven out of ten cases, and where it underperforms, the 

differences are relatively small. The success of the composite model over the pure 

factor-based model can be attributed to the different objective functions of the two 

models: the composite model implicitly considers all the moments of the return 

distribution through the return and risk constraints, while the factor-based model 

considers only the second moment. The risk characteristics of the replicating portfolios 

and hedge fund strategies are reported in columns 9-11 of Table 6.3a and 6.3b. In terms 

of CVaR and CDaR, the replication performance of the composite models is similar to 

the factor-based model, except for the PMC model.  

 

Increasing the number of risk constraints reduces the out-of-sample explanatory power 

of the replicating portfolios, with the R-squared dropping significantly. However, this 

fall in explanatory power is not matched by a reduction in portfolio performance. 
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Indeed, the ALLC model generates higher returns, better risk-adjusted return and better 

replication of the higher moments than the factor-based model, and with similar (or 

better) risk, as measured by CVaR and CDaR. Among the composite models, although 

the PMC and CVaRC models explain more of the hedge fund return variance (i.e. they 

have a higher R-squared), the ALLC model produces the best overall replication 

performance. In particular, compared with the other composite models, the ALLC 

model provides a better match for the first four moments of hedge fund returns, better 

risk-adjusted return, better CVaR replication and similar CDaR replication.  

 

The course of net asset values of the replicating portfolios and the hedge fund strategies 

over the out-of-sample test period is displayed in Figure 6.1. In general, the composite 

model portfolios provide a reasonable fit to the time series of hedge fund returns. For 

example, the ALLC model slightly underperforms EM and DS strategies and closely 

follows and outperforms other strategies. The PMC model generates the highest 

portfolio values and significantly outperforms all hedge fund strategies except EM and 

EH. On the other hand, the factor-based model closely follows the EM and FOF 

strategies but clearly underperforms other hedge fund strategies.  

 

[Figure 6.1] 

 

6.4. Conclusion 
 

In principle, the ability to replicate hedge fund performance represents an attractive 

opportunity for investors to benefit from the high returns that hedge fund strategies are 

potentially able to offer, while avoiding the risks that such strategies involve. In 

practice, however, the effectiveness of existing hedge fund replication methods appears 

to be limited. Factor-based approaches work well in-sample, but are typically unable to 

maintain this performance out-of-sample. In contrast, payoff distribution matching 

approaches successfully replicate the unconditional distribution of hedge fund returns 

out-of-sample, but ignore the first moment of returns and hence are not able to deliver 

the absolute return performance associated with hedge fund strategies. In this chapter, 

an approach to hedge fund replication that combines the factor-based methodology with 

a series of risk and performance constraints is investigated. this approach is used to 

replicate the monthly returns of ten hedge fund strategy indices using long-only 

positions in a broad set of equity, interest rate, exchange rate and commodity indices, all 
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of which can be traded using liquid, investible instruments such as futures, options and 

exchange traded funds. In out-of-sample tests, it is shown that the proposed composite 

approach yields replicating portfolios that are potentially able to mimic both the risk-

adjusted performance and distributional characteristics of the hedge fund indices that 

they are designed to track. On balance, the proposed approach appears to represent an 

improvement over the out-of-sample performance of the factor and payoff distribution 

approaches reported by Jaeger and Wagner (2005) and Amenc et al. (2010).  
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Table 6.1 

Summary Statistics and Time Series Properties of Hedge Fund Series 

Panel A reports summary statistics in percentages for the replicated monthly Hedge Fund Research 
(HFRI) strategy indices over the period of June 1994 to January 2011. Panel B reports the autoregressive 
conditional heteroskedasticity (ARCH) and autocorrelation test results for the full period. The Ljung–
Box-Q test for autocorrelation of order up to 10 asymptotically distributed as a central Chi-square with 10 
d.o.f. Under the null hypothesis, with 5 percent critical value is 18.307. ARCH(4) is Engle's LM test for 
autoregressive conditional heteroskedasticity, which is asymptotically distributed as a central Chi-square 
with 4 d.o.f. Under the null hypothesis with 5 percent critical value is 9.488. p-values are also reported in 
the adjacent columns. 
 
 

 

Index Mean Median SD Min. Max. Skew E.Kurt. JB Stats pval

Convertible arbitrage 0.75 0.99 2.11 -16.01 9.74 -3.07 26.05 5971.0 0.00

Distressed securities 0.84 1.09 1.82 -8.50 5.55 -1.66 6.31 423.3 0.00

Event driven 0.92 1.27 2.00 -8.90 5.13 -1.39 4.58 238.6 0.00

Equity hedge 0.97 1.15 2.72 -9.46 10.88 -0.23 2.12 39.0 0.00

Emerging markets 0.91 1.51 4.14 -21.02 14.80 -1.00 4.29 187.0 0.00

Equity market neutral 0.51 0.51 0.92 -2.87 3.59 -0.11 1.49 19.0 0.00

Mergers arbitrage 0.70 0.84 1.08 -5.69 3.12 -1.71 6.31 428.8 0.00

Macro 0.81 0.64 1.86 -3.77 6.82 0.42 0.53 8.2 0.02

Relative value 0.73 0.83 1.27 -8.03 3.93 -3.08 17.03 2731.1 0.00

Fund of funds 0.53 0.74 1.76 -7.47 6.85 -0.75 4.05 155.2 0.00

Index ARCH pval LB-Q pval ACF(1) ACF(2) ACF(3) ACF(4) ACF(5)

Convertible arbitrage 39.73 0.00 108.48 0.00 0.59 0.29 0.17 0.13 -0.03

Distressed securities 21.96 0.00 90.53 0.00 0.54 0.30 0.19 0.15 0.05

Event driven 5.12 0.28 42.05 0.00 0.39 0.17 0.12 0.09 0.04

Equity hedge 17.92 0.00 24.13 0.01 0.27 0.15 0.10 0.04 -0.06

Emerging markets 3.15 0.53 34.01 0.00 0.35 0.15 0.09 0.06 0.00

Equity market neutral 16.26 0.00 62.68 0.00 0.17 0.20 0.17 0.19 0.10

Mergers arbitrage 3.00 0.56 42.99 0.00 0.28 0.17 0.17 0.05 0.10

Macro 3.78 0.44 5.45 0.86 0.07 -0.04 -0.02 -0.01 0.04

Relative value 31.00 0.00 72.51 0.00 0.49 0.27 0.14 0.07 -0.03

Fund of funds 13.46 0.01 37.62 0.00 0.37 0.19 0.07 0.00 -0.05

Panel A: Summary Statistics

Panel B: Basic Time Series Properties
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Table 6.2 

List of Assets Used in Replicating Portfolio Construction 

The table lists stock, fixed income, commodity and foreign exchange rate assets to be used in constructing 
replicating portfolio. All indices are total return index and there are tradable highly liquid instruments on 
these indices (i.e. futures, ETFs, etc). All assets are traded in US Dollar. 
 
 

 
 

Ticker Asset

MSIEMF MSCI Emerging Markets :Investable TR Index

WILDJMI DJ US Micro Cap. Total Stock Market TR Index 

WILDJMG DJ US Medium Cap. Growth Total Stock Market TR Index

WILDJMV DJ US Medium Cap. Value Total Stock Market TR Index 

WILDJSV DJ US Small Cap. Value Total Stock Market TR Index

ICDCS CME-Canadian Dollar Cont. Settlement Price

LHTBW3M BARCLAYS US Treasury Bellwethers 3M

GSCI S&P GSCI Commodity TR Index

GSEN S&P GSCI Energy TR Index

GSPM S&P GSCI Precious Metal TR Index

Foreign Exchange Futures

Equity Indices

Bonds Index

Commodity Indices
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Table 6.3a 

Out-of-Sample Evaluation Criteria of Monthly Rebalancing Hedge Fund Return 

Replicating Portfolios 

The table reports evaluation criteria for the out-of-sample monthly rebalancing replicating portfolios of 
HFRI indices in the period October 2002 to January 2011 (100 months). Evaluation criteria include 
regression results (i.e. beta, t statistics (tstat) of beta coefficient and adjusted R square (adjR2)), first four 
moments (i.e. annualized average return (AR), annualized standard deviation (SD), skewness (Skew), 
kurtosis (Kurt)), Sharp Ratio (SR) and risk measures (i.e. maximum drawdown (MDD), annualized 
conditional value at risk (CVaR) and annual conditional drawdown at risk (CDaR)). CVaR and CDaR 
statistics are estimated at 99 percent confidence level. Values of evaluation criteria of each replicated 
hedge fund index are also given to facilitate comparison to model results. 
 
 

 
 
 
 
 
 
 

Contraint Beta tstat adjR² AR SD Skew Kurt SR MDD CVaR CDaR

Panel 1: Convertible arbitrage 0.07 0.19 -1.44 11.42 0.07 0.73 1.16 0.05

CVaRC 0.75 6.86 31.75% 0.12 0.14 -0.82 5.64 0.19 0.51 0.61 0.04

CDaRC 0.85 6.36 28.49% 0.12 0.12 -0.07 3.28 0.23 0.30 0.34 0.03

PMC 0.58 7.15 33.64% 0.14 0.19 -0.95 5.82 0.18 0.76 0.79 0.05

ALLC 0.57 4.91 18.95% 0.05 0.15 -0.38 5.02 0.06 0.63 0.44 0.05

RC 0.72 4.20 14.39% 0.11 0.10 -0.02 3.64 0.25 0.23 0.31 0.02

FM 1.11 5.70 24.12% 0.05 0.09 -2.09 15.61 0.09 0.31 0.56 0.03

Panel 2: Distressed securities 0.11 0.12 -0.87 4.99 0.21 0.39 0.49 0.03

CVaRC 0.60 9.61 48.01% 0.11 0.14 -1.73 11.43 0.18 0.47 0.74 0.04

CDaRC 0.58 8.67 42.82% 0.12 0.13 -1.28 9.03 0.22 0.38 0.67 0.03

PMC 0.45 11.71 57.89% 0.12 0.20 -1.37 8.81 0.15 0.79 1.01 0.05

ALLC 0.56 7.98 38.76% 0.09 0.13 -0.76 5.21 0.16 0.42 0.53 0.04

RC 0.61 9.81 49.03% 0.11 0.13 -1.53 10.60 0.19 0.43 0.71 0.04

FM 0.90 9.84 49.18% 0.06 0.09 -1.32 8.46 0.12 0.40 0.45 0.03

Panel 3: Event driven 0.10 0.10 -1.14 5.30 0.24 0.31 0.46 0.03

CVaRC 0.58 14.22 67.01% 0.11 0.14 -1.67 10.38 0.19 0.52 0.71 0.04

CDaRC 0.60 13.78 65.60% 0.10 0.13 -1.10 6.88 0.19 0.37 0.60 0.03

PMC 0.35 10.77 53.74% 0.12 0.20 -1.25 7.00 0.14 0.79 0.95 0.05

ALLC 0.62 12.00 59.11% 0.09 0.12 -1.07 7.13 0.17 0.38 0.54 0.03

RC 0.51 11.08 55.13% 0.11 0.14 -1.00 7.35 0.19 0.47 0.66 0.04

FM 0.84 16.37 72.94% 0.06 0.10 -1.60 9.57 0.11 0.44 0.52 0.04

Panel 4: Equity hedge 0.08 0.11 -0.84 4.29 0.15 0.39 0.46 0.03

CVaRC 0.68 15.77 71.44% 0.09 0.14 -1.33 7.63 0.14 0.54 0.66 0.04

CDaRC 0.67 15.11 69.65% 0.10 0.14 -0.74 5.10 0.17 0.40 0.56 0.03

PMC 0.39 11.84 58.45% 0.10 0.22 -1.05 5.97 0.11 0.89 1.06 0.06

ALLC 0.74 15.37 70.39% 0.09 0.13 -1.11 6.18 0.17 0.46 0.59 0.04

RC 0.39 7.83 37.83% 0.08 0.18 -0.59 7.45 0.10 0.47 0.74 0.04

FM 0.92 19.38 79.10% 0.06 0.11 -2.09 13.45 0.12 0.46 0.66 0.04

Panel 5: Emerging markets 0.15 0.17 -1.00 4.55 0.22 0.56 0.69 0.04

CVaRC 0.60 11.79 58.24% 0.13 0.22 -1.73 11.11 0.14 0.90 1.29 0.06

CDaRC 0.80 12.67 61.71% 0.16 0.17 -1.45 12.10 0.25 0.45 0.89 0.04

PMC 0.43 9.39 46.84% 0.05 0.27 -1.68 9.83 0.03 1.57 1.69 0.07

ALLC 0.73 10.47 52.33% 0.11 0.17 -1.13 8.17 0.16 0.60 0.84 0.05

RC 0.74 15.94 71.87% 0.17 0.19 -1.20 8.19 0.23 0.60 0.92 0.05

FM 0.88 23.44 84.71% 0.16 0.17 -1.45 7.86 0.23 0.70 0.88 0.05
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Table 6.3b 

Out-of-Sample Evaluation Criteria of Monthly Rebalancing Hedge Fund Return 

Replicating Portfolios  

The table reports evaluation criteria for the out-of-sample monthly rebalancing replicating portfolios of 
HFRI indices in the period October 2002 to January 2011 (100 months). Evaluation criteria include 
regression results (i.e. beta, t statistics (tstat) of beta coefficient and adjusted R square (adjR2)), first four 
moments (i.e. annualized average return (AR), annualized standard deviation (SD), skewness (Skew), 
kurtosis (Kurt)), Sharp Ratio (SR) and risk measures (i.e. maximum drawdown (MDD), annualized 
conditional value at risk (CVaR) and annual conditional drawdown at risk (CDaR)). CVaR and CDaR 
statistics are estimated at 99 percent confidence level. Values of evaluation criteria of each replicated 
hedge fund index are also given to facilitate comparison to model results. 
 
 

 
 

Contraint Beta tstat adjR² AR SD Skew Kurt SR MDD CVaR CDaR

Panel 6: Equity market neutral 0.03 0.03 -1.15 5.28 0.07 0.10 0.15 0.01

CVaRC 0.14 3.52 10.30% 0.06 0.07 -1.33 10.43 0.15 0.18 0.39 0.02

CDaRC 0.10 2.42 4.68% 0.08 0.08 -0.28 3.75 0.23 0.12 0.24 0.01

PMC 0.10 4.70 17.54% 0.10 0.13 -1.79 10.88 0.16 0.57 0.73 0.04

ALLC 0.13 2.64 5.70% 0.03 0.06 -0.83 5.91 0.05 0.18 0.27 0.02

RC 0.13 3.00 7.48% 0.07 0.07 -1.09 8.43 0.19 0.16 0.33 0.02

FM 0.19 1.32 0.74% 0.00 0.02 -3.07 22.95 -0.30 0.09 0.15 0.01

Panel 7: Mergers arbitrage 0.06 0.05 -0.82 4.37 0.26 0.10 0.14 0.01

CVaRC 0.34 8.29 40.63% 0.07 0.09 -1.53 10.15 0.18 0.22 0.44 0.02

CDaRC 0.30 6.76 31.12% 0.08 0.09 -0.69 5.86 0.21 0.17 0.36 0.02

PMC 0.19 9.04 44.91% 0.10 0.16 -1.60 8.58 0.15 0.68 0.82 0.05

ALLC 0.37 7.46 35.57% 0.05 0.07 -0.91 6.12 0.12 0.20 0.31 0.02

RC 0.36 8.73 43.16% 0.08 0.08 -1.02 7.54 0.21 0.20 0.39 0.02

FM 0.62 8.29 40.62% 0.02 0.05 -2.21 13.74 -0.02 0.20 0.31 0.02

Panel 8: Macro 0.08 0.06 0.26 3.16 0.30 0.05 0.18 0.01

CVaRC 0.28 6.23 27.63% 0.08 0.11 -1.82 11.67 0.16 0.31 0.61 0.03

CDaRC 0.21 4.52 16.43% 0.12 0.12 -0.27 5.20 0.25 0.18 0.43 0.02

PMC 0.18 6.17 27.27% 0.11 0.17 -2.03 12.48 0.15 0.59 0.96 0.05

ALLC 0.31 5.30 21.52% 0.08 0.09 -1.09 7.06 0.18 0.19 0.41 0.02

RC 0.29 6.61 30.12% 0.11 0.11 -1.43 10.16 0.23 0.28 0.58 0.03

FM 0.60 5.96 25.84% 0.04 0.05 -2.29 16.57 0.09 0.16 0.30 0.02

Panel 9: Relative value 0.07 0.08 -2.20 11.97 0.18 0.28 0.58 0.03

CVaRC 0.54 8.78 43.43% 0.09 0.10 -1.55 10.09 0.20 0.31 0.53 0.03

CDaRC 0.41 5.78 24.69% 0.10 0.10 -0.67 4.64 0.22 0.26 0.40 0.02

PMC 0.37 10.58 52.85% 0.12 0.16 -1.37 7.52 0.18 0.68 0.79 0.05

ALLC 0.46 6.46 29.17% 0.07 0.10 -0.80 4.84 0.14 0.36 0.38 0.03

RC 0.56 8.51 41.92% 0.09 0.10 -1.31 9.25 0.21 0.27 0.48 0.03

FM 0.97 8.69 42.93% 0.04 0.06 -1.87 11.85 0.08 0.23 0.33 0.02

Panel 10: Fund of funds 0.05 0.08 -1.22 5.52 0.10 0.28 0.40 0.03

CVaRC 0.59 12.40 60.67% 0.08 0.11 -1.76 10.87 0.15 0.43 0.58 0.04

CDaRC 0.62 9.86 49.29% 0.08 0.09 -0.96 7.19 0.19 0.27 0.42 0.03

PMC 0.39 12.88 62.48% 0.12 0.16 -1.64 9.37 0.17 0.69 0.92 0.05

ALLC 0.47 7.71 37.14% 0.06 0.11 -0.93 4.61 0.11 0.40 0.46 0.03

RC 0.73 12.00 59.09% 0.07 0.09 -1.37 9.37 0.16 0.30 0.44 0.03

FM 0.86 11.68 57.77% 0.04 0.07 -2.54 16.84 0.10 0.32 0.46 0.03



 172

 
 

Figure 6.1. Net Asset Values of Replicating Model Portfolios and Replicated Convertible Arbitrage Strategy Index. This figure displays net asset values of 
replicating model portfolios in comparison to replicated Convertible Arbitrage hedge fund strategy index during the out-of-sample period October 2002 to January 
2011 (100 months). 
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Figure 6.2. Net Asset Values of Replicating Model Portfolios and Replicated Distressed Securities Index. This figure displays net asset values of replicating 
model portfolios in comparison to replicated Distressed Securities hedge fund strategy index during the out-of-sample period October 2002 to January 2011 (100 
months). 
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Figure 6.3. Net Asset Values of Replicating Model Portfolios and Replicated Event Driven Strategy Index. This figure displays net asset values of replicating 
model portfolios in comparison to replicated Event Driven hedge fund strategy index during the out-of-sample period October 2002 to January 2011 (100 months). 
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Figure 6.4. Net Asset Values of Replicating Model Portfolios and Replicated Equity Hedge Strategy Index. This figure displays net asset values of replicating 
model portfolios in comparison to replicated Equity Hedge hedge fund strategy index during the out-of-sample period October 2002 to January 2011 (100 months). 
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Figure 6.5. Net Asset Values of Replicating Model Portfolios and Replicated Emerging Markets Strategy Index. This figure displays net asset values of 
replicating model portfolios in comparison to replicated Emerging Markets hedge fund strategy index during the out-of-sample period October 2002 to January 2011 
(100 months). 
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Figure 6.6. Net Asset Values of Replicating Model Portfolios and Replicated Equity Market Neutral Strategy Index. This figure displays net asset values of 
replicating model portfolios in comparison to replicated Equity Market Neutral hedge fund strategy index during the out-of-sample period October 2002 to January 
2011 (100 months). 
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Figure 6.7. Net Asset Values of Replicating Model Portfolios and Replicated Merger Arbitrage Strategy Index. This figure displays net asset values of 
replicating model portfolios in comparison to replicated Merger Arbitrage hedge fund strategy index during the out-of-sample period October 2002 to January 2011 
(100 months). 
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Figure 6.8. Net Asset Values of Replicating Model Portfolios and Replicated Global Macro Strategy Index. This figure displays net asset values of replicating 
model portfolios in comparison to replicated Global Macro hedge fund strategy index during the out-of-sample period October 2002 to January 2011 (100 months). 
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Figure 6.9. Net Asset Values of Replicating Model Portfolios and Replicated Relative Value Arbitrage Strategy Index. This figure displays net asset values of 
replicating model portfolios in comparison to replicated Relative Value Arbitrage hedge fund strategy index during the out-of-sample period October 2002 to January 
2011 (100 months). 
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Figure 6.10. Net Asset Values of Replicating Model Portfolios and Replicated Fund of Hedge Funds Strategy Index. This figure displays net asset values of 
replicating model portfolios in comparison to replicated Fund of Hedge Funds strategy index during the out-of-sample period October 2002 to January 2011 (100 
months). 
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CChhaapptteerr  77  

CCoonncclluussiioonnss  

 
 

7.1. Conclusions 
 

The research presented in this thesis had three overall aims: first, to examine portfolio 

construction and risk measurement performance of a broad set of volatility forecast and 

portfolio optimization models, second, in an effort to improve their forecast accuracy 

and portfolio construction performance, to propose new models or new formulations to 

these models, third, to introduce a (hedge fund) return replication approach that has the 

potential to be used in numerous applications in investment management. In achieving 

these overall aims and the aims specific to each chapter, set out in the first chapter, the 

following conclusions were reached. 

 

In the second chapter, well-known multivariate volatility models were empirically 

examined, and further evidence on the use of these models in the dynamic measurement 

of hedge fund risk and portfolio allocation were provided. In particular, it is found that 

multivariate GARCH models provide significant improvement over static models in 

dynamic hedge fund portfolio construction and risk measurement. However, these 

models are generally dominated by the EWMA model. In addition to providing better 

risk-adjusted performance, the EWMA model leads to dynamic allocation strategies that 

have substantially lower turnover and could, therefore, be expected to involve lower 

transaction costs. Moreover, it was shown that these results are robust across the low - 

volatility and high-volatility sub-periods. Therefore, empirical evidence was provided 

for that highly complicated models may not necessarily be the best performing models. 

 

In the third chapter, the potential advantages of employing alternative optimization 

frameworks to the mean-variance framework are investigated. First, portfolio 

construction performance of non-parametrically estimated CVaR, CDaR and Omega 

models are compared with the benchmark models and the benchmark index. Second, 

possible areas of improvement in the performance of the alternative optimization 

models are searched for. In so doing, a semi-parametric estimation for CVaR, CDaR 
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and Omega models is proposed. The analyses presented in this chapter report two main 

findings. The first finding is that CVaR-, CDaR- and Omega-based optimization offers 

a significant improvement in terms of risk-adjusted portfolio performance over the 

mean-variance optimization. The second finding is that for all three risk measures, semi-

parametric estimation of the optimal portfolio offers a very significant improvement 

over non-parametric estimation. In particular, the optimal portfolios, estimated by using 

the proposed semi-parametric approach, display significantly higher portfolio return, 

lower risk, higher risk-adjusted return, better upside potential and higher active 

management ratios, at the expense of higher portfolio turnovers. Another remarkable 

finding is the demonstrated success of the semi-parametrically estimated models in 

predicting the market upturn and downturns. These models exhibit superior 

performance during the rising markets as well as during to, and recovery from the crisis. 

It is also examined if certain parameter preferences, such as risk tolerance limits, target 

return, size of the estimation period, have any effects on the main findings of the 

previous section. It has been found that the main results are robust to as the choice of 

target return and the estimation period.    

 

In the fourth chapter, in order to improve one's ability to measure risks dynamically, 

two univariate volatility models, which combine useful properties of range, regime 

switching, nonlinear filtration and GARCH frameworks, were proposed, and their in-

sample fit and out-of-sample forecast performance were tested against eminent return 

and range-based models. Chapter 4 concluded that the proposed models produce more 

accurate out of sample forecasts, contain more information about true volatility and 

exhibit similar or better performance when used for value at risk comparison. In 

particular, two-component model performs better than all other models. 

 

In the fifth chapter, the univariate models proposed in the fourth chapter were extended 

to their multivariate setting and tested for their out-of-sample risk forecast and portfolio 

construction performance in comparison to eminent return and range-based benchmark 

models. With the proposed extensions to the multivariate setting, the univariate models 

introduced in the fourth chapter were able to be used in improving the portfolio risk 

measurement and construction performance. Fifth chapter concluded that, in terms 

statistical test results, proposed models offer significant improvements in forecasting 

true volatility process, and, in terms of risk and return criteria employed, proposed 

models perform better than benchmark models. Proposed models construct hedge fund 
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portfolios with higher risk-adjusted returns, lower tail risks, and they offer superior risk-

return tradeoffs and better active management ratios. However, in most cases these 

improvements come at the expense of higher portfolio turnover and rebalancing 

expenses. 

 

In the sixth chapter, a composite hedge fund return replication approach was proposed, 

and proofs of improvements in the replication performance of clone portfolios were 

provided in an empirical study. Chapter 6 concluded that proposed composite approach 

yields replicating portfolios that better mimic both the risk-adjusted performance and 

distributional characteristics of the hedge fund indices that they are designed to track in 

out-of-sample evaluation. On balance, proposed approach appears to represent an 

improvement over the out-of-sample performance of the factor and payoff distribution 

approaches reported by Jaeger and Wagner (2005) and Amenc et al. (2010). 

 

7.2. Suggestions for Further Research 
 
Volatility forecast models based on range offers a fruitful further research area. 

Applying the range data on asymmetric GARCH models or long memory models (e.g. 

FIGARCH) would be a possible route for further research in the area. Another 

significantly important area would be developing the multivariate extension of the 

univariate asymmetric and long memory range-based models. Also application of range 

based models to different frequencies of range (e.g. daily, hourly, minute data) and 

searching for possible market microstructure effects would be another area of further 

research. Moreover, application to different asset classes (fixed income, foreign 

currency, derivatives) or economic time series might also be considered. 

 

There is significant need for further research in alternative portfolio optimization 

frameworks. A possible route would be full parametric estimation methods of these 

frameworks. Another possible route would be implementing the re-sampling techniques 

(e.g. bootstrapping) in an effort to improve the performance of non-parametric 

frameworks.  

 

Hedge fund return replication area is quite a new area and offers possible further 

research in many directions. For example, developing factors for hedge fund returns 

similar to Fama-French factors, or considering jump-diffusion models in estimating 

distribution matching approach would be considered for further research.  
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