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ABSTRACT

Misreporting is a problem that plagues researchers that use survey data. In

this paper, we develop a parametric model that corrects for misclassified binary

responses using information on the misreporting patterns obtained from auxiliary

data sources. The model is implemented within the Bayesian framework via

Markov Chain Monte Carlo (MCMC) methods, and can be easily extended to

address other problems exhibited by survey data, such as missing response and/or

covariate values. While the model is fully general, we illustrate its application

in the context of estimating models of turnout using data from the American

National Elections Studies.

Much of the empirical work in the social sciences is based on the analysis of survey

data. However, as has been widely documented (Bound, Brown and Mathiowetz 2001),

these data are often plagued by measurement errors. There are many possible sources for

such errors. Interviewers may erroneously record answers to survey items, and respondents

may provide inaccurate responses due to an honest mistake, misunderstanding or imperfect

recall (Bound, Brown and Mathiowetz 2001; Hausman, Abrevaya and Scott-Morton 1998;

Molinari 2003). Also, as underscored by the social psychology literature, survey respondents
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tend to overreport socially desirable behaviors and underreport socially undesirable ones

(Loftus 1975). In the case of discrete or categorical variables, mismeasurement problems

have been traditionally referred to as “misclassification” errors (Molinari 2003).

In the political science literature, concerns about misclassification have been particularly

prevalent in the analysis of voting behavior. Empirical studies of the determinants of voter

turnout focus on how the probability of an individual voting varies according to relevant

observable factors, such as citizen’s level of political information, registration laws, or de-

mographic characteristics.1 The decision to vote, however, is typically not observed due to

the use of secret ballot in the U.S. Furthermore, even if we could observe turnout from the

official ballots we would not, in general, be able to observe all the characteristics — e.g.,

the voter’s policy preferences or information about the candidates — that presumably affect

the decision. Hence, political scientist rely on the use of survey instruments, such as the

American National Election Study (ANES) or the Current Population Survey (CPS), that

include both measures of respondents’ relevant characteristics and their self-reported voting

behavior. This almost always leads to estimation of the common logit or probit models, since

the turnout decision is dichotomous, although there are alternatives such as scobit (Nagler

1994) or non-parametric models (Härdle 1990) for discrete choice models.

However, it has been long established that some survey respondents misreport voting,

i.e., they report that they have voted when in fact they did not do so (Burden 2000; Katosh

and Traugott 1981; Sigelman 1982). The evidence that misreporting is a problem can be

found in a series of validation studies that the ANES conducted in 1964, 1976, 1978, 1980,

1984, 1988 and 1990. After administering a post-election survey to a respondent, an official

from the ANES was sent to the respondent’s local registrar of elections to see if in fact she

was recorded as having voted in the election. This is not an easy task, since respondents

1The literature is far too vast to even begin to fully cite here. See Aldrich (1993) for a

review of the theoretical literature and Wolfinger and Rosenstone (1980) for an influential

empirical study.
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often do not know where they voted, election officials differ in their ability to produce the

records in a usable form, and there might be differences between the survey data and the

public records due to errors in spelling or recording. This means that the validated data

may also be mismeasured, but for this paper we will assume it is correct.

That said, the ANES for these years included both the respondent’s self-reported vote and

the validated vote. The differences between the two measures are fairly shocking. Depending

on the election year, between 13.6% and 24.6% percent of the respondents claiming to have

voted did in fact not according to the public records.2 In contrast, only between 0.6% and

4.0% of the respondents in the 1964 – 1990 validated surveys who reported not having voted

did vote according to the official records. Since there is no reason to believe that measurement

errors should mainly be of false positives — i.e., reporting voting when the official record

contradicts this claim — this lends some credence to the social pressures argument for

misreporting (Bernstein, Chadha and Montjoy 2001) and should help mitigate some of our

concerns about other potential sources of classification errors, such as inaccurate records. The

large differences between reported and validated turnout led to a cottage industry analyzing

the causes of misreporting and to a debate about how to best measure it (e.g., Abramson and

Claggett (1986), Cassel (2003), Katosh and Traugott (1981), Sigelman (1982)). All of these

studies find that misreporting varies systematically with some characteristics of interest, but

none of them provides an estimation solution to correct for possible misreporting.

The open question then is what to do about the problem of respondents misreporting.

One possibility would be to use only validated data. At some level this is an appealing

option. If we are sure that the validated data is correct, then estimation and inference is

straightforward. Unfortunately, collecting the validated turnout data is difficult and expen-

2The Current Population Survey (CPS) also exhibits considerable turnout overreporting,

although the magnitude is substantially lower than for the ANES (Highton 2004). As shown

by Hausman, Abrevaya and Scott-Morton (1998) and Neuhaus (1999), however, even modest

amounts of misreporting can affect parameter estimates.
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sive, and ANES has stopped doing validation studies for these reasons. Furthermore, even

if validation studies were free, some states, such as Indiana, make it impossible to validate

votes. Hence, if we are going to limit ourselves to use only fully validated data, our samples

will be much smaller. Moreover, we would also be throwing away the useful information

included in the already collected but non-validated studies.3 On the other hand, simply

ignoring misreporting and using self-reported turnout to estimate standard probit or logit

models can result in biased and inconsistent parameter estimates and inaccurate standard

errors, potentially distorting the relative impact of the characteristics of interest on the re-

sponse variable and leading to erroneous conclusions (Hausman, Abrevaya and Scott-Morton

1998; Neuhaus 1999).4

In this paper we develop a simple Bayesian approach to correct for misreporting, allow-

ing researchers to continue to use the self-reported data while improving the accuracy of

the estimates and inferences drawn in the presence of misclassified binary responses.5 Our

model draws on Hausman, Abrevaya and Scott-Morton (1998), but incorporates information

on the misreporting process from auxiliary data sources, aiding in identification (Molinari

2003) and making it easier to avoid the problems that limit the use of Hausman, Abre-

vaya and Scott-Morton (1998)’s modified maximum likelihood estimator in small samples

3In the case of the ANES, turnout is one of the few survey items included since the late

1940s, covering a larger period than any other continuing survey (Burden 2000). Validation

studies, on the other hand, only comprise a handful of elections.

4While other procedures for reducing the frequency of overreporting - e.g., altering ques-

tion wording or reformulating survey questions (Bound, Brown and Mathiowetz 2001) - can

also improve the quality of future datasets, we would still be wasting large amounts of data

collected in previous surveys.

5We focus on the case of misclassified responses and error-free covariates. Several methods

have been proposed to adjust for measurement error in the covariates. See (Carroll, Ruppert

and Stefanski 1995) for a review.
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such as those typically used in political science (Christin and Hug 2004; Gu 2006). While

incorporating this information into the study of the sample of interest using frequentist

methods is far from straightforward (Prescott and Garthwaite 2005), the Bayesian paradigm

provides a flexible framework for summarizing and integrating historical or supplementary

evidence on misreport patterns from different sources and levels of analysis (Dunson and

Tindall 2000; Ibrahim and Chen 2000; Prescott and Garthwaite 2002). Using Markov chain

Monte Carlo (MCMC) methods, the model presented here allows placing prior restrictions

on the misclassification probabilities or on relevant regression coefficients based on estimates

from previous studies or summary statistics, improving identification and convergence when

adjusting for misreporting and avoiding asymptotic approximations that may not apply in

small or moderate samples. Our approach also enables us to simultaneously address another

important problem with survey data, namely missing outcome and/or covariate values, using

Bayesian model-based imputation (Ibrahim et al. 2005). Compared to alternative imputa-

tion techniques, Bayesian methods allow easily estimating standard errors in multiparameter

problems and handling “nuisance” parameters, and have been shown to be particularly effi-

cient when data loss due to missing observations is substantial, as is the case of the Election

Studies examined here (Ibrahim, Chen and Lipsitz 2002).

Although other Bayesian approaches have been proposed to adjust for misclassification

using prior information to overcome fragile or poor identifiability, they either rely exclusively

on elicitation of experts’ opinions (e.g., Paulino, Soares and Neuhaus (2003)) or assume that

information on both the true and the fallible response is available for all subjects in a random

subsample of the data (Prescott and Garthwaite 2002, 2005). In contrast, the information

on the misreport patterns incorporated into our model need not come from the sample of

interest, and can be combined with elicitation of experts’ beliefs if needed. In the empirical

application presented in this paper we will use earlier and small-sample validation studies

to correct for misreporting. However, matched official records, administrative registers and

possibly even aggregate data might be used to gain this information. Given the potential
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difficulties of eliciting probabilities from experts’ opinions and the scarcity of internal val-

idation designs relative to administrative data sets, external validation studies and other

sources of ancillary information (Bound, Brown and Mathiowetz 2001), the correction devel-

oped in this paper provides a more flexible way of incorporating prior information and can

be more widely applied than existing approaches.6 In addition, these alternative approaches

focus only on the case in which the misclassification rates are independent of all covariates.

As mentioned above, this assumption seems to be inappropriate when examining the deter-

minants of voter turnout, as well as in many other potential applications. The magnitude

and direction of the biases when misreporting is covariate-dependent can be quite different

than in the case of constant misclassification rates (Neuhaus 1999) and, in the context of

analyzing voting behavior, Bernstein, Chadha and Montjoy (2001) show that ignoring the

correlation between the covariates of interest and the misreport probabilities may seriously

distort multivariate explanations of the turnout decision.

While our model is developed in the context of estimating the conditional probability of

turning out to vote, the method is general and will be applicable whenever misclassification

of a binary outcome in a survey is anticipated and there is auxiliary information on the

misreporting patterns. For instance, our approach could be used to analyze survey data on

participation in pension plans and social welfare programs (Molinari 2003), energy consump-

tion (Gu 2006), employment status (Hausman, Abrevaya and Scott-Morton 1998) and many

other areas where we expect to see substantial rates of misreporting and potential correla-

tion between some of the covariates affecting the response and the misreport probabilities.

The model can also be implemented when misreporting depends on covariates other than

those influencing the outcome. For example, for a substantial proportion of the CPS sample,

turnout is measured by proxy, rather than self-reported (Highton 2004). In this case, the

6In internal validation studies, the true response is available for a subset of the main

study and can be compared to the imperfect or observed response. In the case of external

validation designs, the misreport pattern is estimated using data outside the main study.
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misclassification probabilities would be modeled using information on misreporting patterns

among household members reporting other members’ turnout decision, which could be ob-

tained from validated CPS studies.7 Extensions of our method to discrete choice models

with more than two categories along the lines of Abrevaya and Hausman (1999) are possible

as well.

The paper proceeds as follows. The next section formally lays out the estimation problem

in the presence of misreporting and develops our proposed solution. Section 2 presents results

from a Monte Carlo experiment evaluating the robustness of our approach to misspecification

of the misreport model. In Section 3, we provide three applications of our methodology using

data on voter turnout from the ANES. Finally, Section 4 concludes.

1. CORRECTING FOR MISREPORTING IN BINARY CHOICE MODELS

1.1. Defining the Problem

Let yi be a dichotomous (dummy) variable, and denote by xi a vector of individual

characteristics of interest. We want to estimate the conditional distribution of yi given xi,

Pr[yi|xi]. However, instead of observing the “true” dependent variable yi, assume we observe

the self-reported indicator ỹi. Most studies use the observed ỹi as the dependent variable,

typically running either a probit or logit model to estimate Pr[ỹi = 1|xi].

In order to know whether this substitution can lead to incorrect inferences, we need to

know the relationship between Pr[ỹi = 1|xi] and Pr[yi = 1|xi]. We can always write

Pr[ỹi = 1|xi] = Pr[ỹi = 1|xi, yi = 1] · Pr[yi = 1|xi]+

Pr[ỹi = 1|xi, yi = 0] · Pr[yi = 0|xi],
(1)

by the law of total probability. All that we have done is to rewrite the probability Pr[ỹi =

7We thank an anonymous referee for pointing us to this potential application of our

model.
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1|xi] into two components: when the self-reported or observed variable ỹi coincides with the

true response yi, and when it does not. Also, noting that Pr[ỹi = 0|xi, yi = 1] = 1− Pr[ỹi =

1|xi, yi = 1] we can re-write the relationship as

Pr[ỹi = 1|xi] = (1− π1|0
i − π

0|1
i ) Pr[yi = 1|xi] + π

1|0
i (2)

where π
1|0
i = Pr[ỹi = 1|yi = 0,xi] is the probability that the respondent falsely claims ỹi = 1

when in fact yi = 0, and π
0|1
i = Pr[ỹi = 0|yi = 1,xi] is the probability that the observed

response takes the value 0 when the true response is yi = 1. It is important to the probability

of each type of misreporting is conditional on xi.

Standard methods for estimating binary choice models generally assume that the con-

ditional distribution of the dependent variable given xi is known up to a parameter vector

β. However, unless π
0|1
i = π

1|0
i = 0 ∀i, estimating the conditional probability Pr[ỹi = 1|xi]

rather than Pr[yi = 1|xi] will generally lead to biased estimates of β and inaccurate stan-

dard errors, with even small probabilities of misreporting potentially leading to significant

amounts of bias (Hausman, Abrevaya and Scott-Morton 1998; Neuhaus 1999). In addition,

the marginal effect of covariate x on the observed response ỹi and on the true response yi

will differ by

∂Pr[ỹi = 1|xi]
∂x

− ∂Pr[yi = 1|xi]
∂x

= −
(
∂π

1|0
i

∂x
+
∂π

0|1
i

∂x

)
Pr[yi = 1|xi]

− (π
1|0
i + π

0|1
i )

∂Pr[yi = 1|xi]
∂x

+
∂π

1|0
i

∂x
.

(3)

As a result, inferences drawn on the relationship between the covariates of interest and the

response variable may change substantially when estimated based on the likelihood function

defined by Pr[ỹi = 1|xi] rather than on the true model Pr[yi = 1|xi], depending on the

distribution of β′xi and the covariate vector xi, on the prevalence of misclassification and on

the relationship between the probabilities of misreporting and the covariates in xi (Bernstein,

Chadha and Montjoy 2001; Hausman, Abrevaya and Scott-Morton 1998; Neuhaus 1999).

Different parametric models have been proposed to correct for misclassification of the

dependent variable in binary choice models (Carroll, Ruppert and Stefanski 1995; Haus-
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man, Abrevaya and Scott-Morton 1998; Paulino, Soares and Neuhaus 2003; Prescott and

Garthwaite 2002, 2005).8 In particular, Hausman, Abrevaya and Scott-Morton (1998) pro-

posed a modified maximum likelihood estimator that requires the “monotonicity” condition

π
1|0
i + π

0|1
i < 1 to achieve identification. Using Monte Carlo simulations, they showed that

their model consistently estimates the extent of misclassification and the parameter vector

β, at least in large samples. More recently, however, Christin and Hug (2004) replicated the

work of Hausman, Abrevaya and Scott-Morton (1998) for different sample sizes, and found

that the modified maximum likelihood estimator performed consistently better than simple

probit models ignoring misclassification only in samples of 5,000 or more observations. As

noted by Gu (2006), the failure of Hausman, Abrevaya and Scott-Morton (1998)’s estimator

in small samples is likely due to the insufficiency of the monotonicity condition to ensure

model identification. For such sample sizes typically available in political science, even mod-

erate rates of misclassification may hinder model identification, so different assumptions may

be required to put bounds on the misclassification rates and the regression coefficients. In

addition, Hausman, Abrevaya and Scott-Morton (1998) and, in fact, most empirical applica-

tions of models proposed to correct for misreporting, assume constant misclassification rates,

failing to account for the potential influence of the covariates of interest on π1|0 and π0|1.9

Relevant prior information on the misreport patterns is often available from auxiliary

data sources, such as internal or external validation studies, small sample pilots or adminis-

trative registers, which can be used to impose restrictions on the misreport probabilities and

regression coefficients to aid in identification and improve inferences on the relationship be-

tween x and y (Molinari 2003). In order to incorporate this information, we propose a simple

8A review of different methods developed to deal with misclassification and measurement

errors in nonlinear models can be found in Carroll, Ruppert and Stefanski (1995).

9Abrevaya and Hausman (1999); Hausman, Abrevaya and Scott-Morton (1998) and

Paulino, Soares and Neuhaus (2003), among others, discuss extensions to deal with covariate-

dependent misclassification, but they do not analyze this case in practice.
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Bayesian approach based on Markov Chain Monte Carlo (MCMC) methods that can be eas-

ily implemented by practitioners and applied researchers using flexible and freely available

software for Bayesian analysis such as WinBUGS or JAGS (Plummer 2009; Spiegelhalter,

Thomas and Best 2003).

1.2. A Bayesian Model to Correct for Misreporting using Auxiliary Data

We are interested in accurately estimating the effect of relevant individual characteristics

on the conditional distribution of the true response. Hence, the focus of our analysis lies in

the marginal posterior distribution of β, while the model for the conditional probabilities

π
1|0
i and π

0|1
i can be regarded as “instrumental”.

Since the observed response variable is dichotomous, we can start by assuming that,

conditional on some set of individual characteristics, the observations are independently and

identically distributed according to a Bernoulli distribution — as in Hausman, Abrevaya and

Scott-Morton (1998). The probability of the sample can therefore be written as

L(θ|ỹ,x) =
N∏
i=1

Pr[ỹi|xi, θ]ỹi(1− Pr[ỹi|xi, θ])1−ỹi , (4)

with θ = {π1|0
i , π

0|1
i , β ′}. We will further assume that the conditional probability of the true

response variable is given by Pr[yi = 1|xi] = F (β′xi), where F (·) is some cumulative density

function. For ease of exposition, we use the probit link, so that F (·) is the standard normal

distribution denoted by Φ(·).10 We also assume that Pr[yi = 1|xi] is a priori independent

of π
1|0
i and π

0|1
i .11 Substituting for Pr[ỹi|xi, θ] in Equation 2 and denoting by S the sample

10This will lead to a probit model with a correction for misreporting; the use of the logit

link function would result in a logit model with a correction for misreporting.

11This assumption simplifies the analysis considerably without entailing any obvious draw-

back from a practical perspective (Paulino, Soares and Neuhaus 2003).
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data, we arrive at:

L(β, π
1|0
i , π

0|1
i |S) =

N∏
i=1

[[
(1− π1|0

i − π
0|1
i )Φ(β′xi) + π

1|0
i

]ỹi
×
[
(1− π1|0

i − π
0|1
i )(1− Φ(β′xi) + π

0|1
i

]1−ỹi], (5)

which represents the probability of observing the sample under misreporting. The joint

posterior density of θ = {π1|0
i , π

0|1
i , β ′} is therefore given by:

p(β, π
1|0
i , π

0|1
i |S) ∝ L(β, π

1|0
i , π

0|1
i |S)× p(β, π1|0

i , π
0|1
i ). (6)

Suppose that both the true and the self-reported dependent variables are recorded for

all respondents in a validation study of size M . Comparing yj to ỹj for every j = 1, . . . ,M ,

we can estimate the misreport probabilities for the validated sample. Let z1j and z2j denote

sets of regressors that are useful in predicting the conditional probabilities π
1|0
j and π

0|1
j ,

where the notation allows for the fact we may use different regressors to predict the two

types of misreporting. z1j and z2j may include some or all of the variables in x, as well as

other variables not affecting the true response. Again, we assume probit link functions and

specify the conditional probabilities of misreporting as π
1|0
j = Φ(γ1

′z1j) and π
0|1
j = Φ(γ2

′z2j).

Letting V denote the data from the validation study, the likelihood from V is:

L(β, γ1, γ2|V) =
M∏
j=1

(
Φ(β′xj)

)yj(1− Φ(β′xj)
)(1−yj) ×

∏
yj=1

Φ(γ1
′z1j)

ỹj ×
(
1− Φ(γ1

′z1j)
)1−ỹj ×

∏
yj=0

Φ(γ2
′z2j)

1−ỹj ×
(
1− Φ(γ2

′z2j)
)ỹj .

(7)

The posterior distributions p(β, γ1, γ2|V) or p(γ1, γ2|V) could then be used to specify the

priors for β, γ1 and γ2 in the model fit to the sample of interest by repeated application

of Bayes’ theorem. However, since these posteriors cannot be expressed as tractable distri-

butions, there is no straightforward way of transferring the relevant information from the

validation study to the analysis of the main sample (Prescott and Garthwaite 2005). In
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addition, unless the validation study is a random sub-sample of the main study, heterogene-

ity between the two samples might in some circumstances lead to misleading conclusions

if inference on β is based on the pooled datasets (Dunson and Tindall 2000). Hence, we

consider both samples simultaneously, combining the likelihoods in Equations 5 and 7 with

vague independent priors p(β), p(γ1) and p(γ2) and weighting the likelihood from the vali-

dated sample by a “tunning” parameter δ that controls how much influence the validated

data has relative to the main sample (Ibrahim and Chen 2000). The joint posterior density

of the unknown parameters thus becomes:

p(β, π
1|0
i , π

0|1
i |S) ∝ L(β, π

1|0
i , π

0|1
i |S)× L(β, γ1, γ2|V)δ × p(β)× p(γ1)× p(γ2) (8)

with 0 ≤ δ ≤ 1, where δ = 0 corresponds to the case in which no auxiliary information

is incorporated into the analysis for the main sample, while δ = 1 gives equal weights to

L(β, π
1|0
i , π

0|1
i |S) and L(β, γ1, γ2|V). δ can be assigned either a fixed value or a prior distribu-

tion – e.g., δ∼Beta(a, b) – (Ibrahim and Chen 2000).12 Although Equation 8 is intractable

analytically, inference can be performed using Gibbs sampling along with Metropolis steps

to sample the full conditionals for β, γ1 and γ2 (Gelfland and Smith 1990). Under mild

regularity conditions, for a sufficiently large number of iterations, samples from these con-

ditional distributions approach samples from the joint posterior (Robert and Casella 2004).

The posterior marginals obtained from these convergent samples can then summarized and

used to estimate the effect of the relevant individual characteristics on the true response and

the misreport probabilities.

Consequently, we only need to have validated data from a previous sample or for a sub-

sample of the respondents in order to correct for misreporting in the model for the main

study. In case several validation studies are available, they can be easily integrated into

our analysis by adapting the method proposed in Ibrahim and Chen (2000) to incorporate

12In the latter case, the prior p(δ) would be added to Equation 8. See the discussions in

Ibrahim and Chen (2000) for additional details.
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historical data in binary choice models, substituting L(β, γ1, γ2|V) in Equation 8 by:

D∏
d=1

L(β, γ1, γ2|Vd)δd (9)

where V = {V1, . . . ,VD} denotes the data from D validation samples and δ = {δ1, . . . , δD},

0 ≤ δd ≤ 1 can be assigned I.I.D. Beta priors. Note that, while we must assume the

same error structure and similar misreporting processes in the validated and non-validated

samples, the covariates included in x and z = {z1, z2} do not have to be necessarily identical

for both datasets. For instance, when estimating the determinants of the turnout decision, we

could allow for election-specific factors affecting the turnout and the misreport probabilities,

combining information from validation studies with experts’ opinions, theoretical restrictions

or specifying diffuse priors for some of the predictors. Covariates that were not measured in

previous studies can be incorporated into the analysis of the sample of interest through the

“initial” prior p(β, γ1, γ2) in Equation 8 (Ibrahim et al. 2005).

Even if we did not have access to a validation sample, several other sources of information,

such as administrative records or even aggregate data could be used to impose informative

constraints on the misclassification rates and improve the parameter estimates. For example,

in the analysis of voter turnout, we may observe turnout rates in small geographic areas,

such as counties or congressional districts, that could be used to specify the misreport prob-

abilities for all individuals in the sample belonging to a given area. Hierarchical beta priors

can then be used to summarize auxiliary information available on misreporting patterns by

location or relevant socio-demographic characteristics following the approach in Dunson and

Tindall (2000). A Bayesian hierarchical model would also allow combining aggregate and

individual data on misreport patters if available (Congdon 2002). Finally, if no auxiliary

data is available to predict misreporting, constraints on the misreport probabilities could be

imposed via elicitation of experts’ opinions. Our model would then be virtually identical to

Paulino, Soares and Neuhaus (2003).

Despite the advantages of our approach, it is worth mentioning that, like all parametric

estimators, our model might be quite sensitive to distributional and modeling assumptions.
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Although semi-parametric methods have been used to estimate discrete choice models with

misclassified dependent variables (Abrevaya and Hausman 1999; Hausman, Abrevaya and

Scott-Morton 1998), they are also subject to potential misspecification (Molinari 2003). A

different approach would be to adapt and implement non-parametric methods based on

Horowitz and Manski (1995) and Molinari (2003).13 In particular, the “direct misclassi-

fication approach” proposed by the latter allows incorporating prior information on the

misreporting pattern to obtain interval identification of parameters of interest, and can be

easily applied to the case in which misclassification depends on observed covariates with

relatively little computational cost. However, as is well known, non-parametric methods are

subject to the curse of dimensionality, which can pose a problem in applications where the

misreporting probabilities might depend on a relatively large set of covariates, and is uncer-

tain whether point identification can be achieved in this setting (Hu 2008). To the best of

our knowledge, there is very little research comparing the performance of parametric versus

non-parametric methods to correct for covariate-dependent misclassification and evaluating

the relative weaknesses and advantages of both approaches in applied work.

1.3. Extending the model to account for missing data

Besides measurement errors, survey data is often plagued with large proportions of miss-

ing outcome and covariate values due to non-response or loss of data. As is well known,

unless the data are missing completely at random (MCAR), using list-wise deletion and

restricting the analysis only to those respondents who are completely observed can lead to

biased parameter estimates (Little and Rubin 2002).14 Furthermore, even if the data are

13This was the approached taken by Jackman (1999) to handle both misclassification and

non-response in surveys about political participation.

14It is worth mentioning, however, that there are situations in which inference based on a

complete-case analysis might yield unbiased estimates and outperform imputation methods
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MCAR, complete-case analyses may lead to discard a large proportion of observations and

can be therefore quite inefficient (Ibrahim et al. 2005).

While several alternative procedures have been proposed to accommodate missing data,

fully Bayesian methods such as the one presented in this paper are especially appealing when

dealing with small sample sizes and when the fraction of missing values is considerable, and

can be easily implemented withour requiring new techniques or additional steps for inference

(Ibrahim, Chen and Lipsitz 2002; Ibrahim et al. 2005).15 There is no distinction between

missing data and parameters within the Bayesian framework, and thus inference in this

setting essentially requires defining a prior for the missing values and sampling from the joint

posterior distribution of the parameters and missing values, incorporating just an “extra-

layer” in the Gibbs sampling algorithm compared to the complete-case analysis (Ibrahim

et al. 2005). Hence, our model can be immediately extended to deal with missing response

and covariate values, including cases with missing responses alone, with missing covariates

alone, and with missing covariates and responses. This allows us to accommodate item and

unit nonresponse in both the main and the validation studies.16

Let wi = (wi,1, . . . , wi,p)
′
, i = 1, . . . , N , denote a p × 1 vector of covariates included

in xi, z
1
i and z2i , and denote the marginal density of wi by p(wi|α), where α parametrizes

the joint distribution of the covariates. If some of hte covariates are missing, we can write

wi = (wi,obs,wi,mis), where wi,mis is the qi×1 vector of missing components of wi, 0 ≤ q ≤ p,

and wi,obs is the observed portion of wi. Similarly, we use ỹi,mis if the self-reported outcome

ỹi is missing, and ỹi,obs otherwise. Assuming that the missing data mechanism is ignorable

even when the data are not missing completely at random (Ibrahim et al. 2005).

15A detailed review of different methods commonly used to handle missing data is beyond

the scope of this paper. See Ibrahim et al. (2005) and Little and Rubin (2002), among others,

for a detailed discussion.

16However, as seen in Equation 10 below, respondents with completely missing outcomes

and covariates do not contribute to the likelihood function.
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(Little and Rubin 2002), the observed-data likelihood for the main study reduces to:

L(β, γ1, γ2, α|Sobs) =
∏

ỹi,obs,wi=wi,obs

p(ỹi|wi, β, γ1, γ2) p(wi|α) ×

∏
ỹi,obs,wi=(wi,obs,wi,mis)

∫
p(ỹi|wi, β, γ1, γ2) p(wi,obs,wi,mis|α) dwi,mis ×

∏
ỹi,mis,wi=wi,obs

p(wi|α) ×

∏
ỹi,mis,wi=(wi,obs,wi,mis)

∫
p(wi,obs,wi,mis|α) dwi,mis.

(10)

As suggested by Ibrahim, Chen and Lipsitz (2002), it is often convenient to model the

joint distribution p(wi|α) is as a series of one-dimensional conditional distributions:

p(wi,1, . . . , wi,p|α) = p(wi,p|wi,1, . . . , wi,P−1, αp)

× p(wi,p−1|wi,1, . . . , wi,p−2, αp−1)× · · · × p(wi,1|α1)
(11)

where αl, l = 1, . . . , p, is a vector of parameters for the lth conditional distribution, the αl’s

are distinct, and α = (α1, . . . , αp). Specification 11 has the advantages of easing the prior

elicitation for α and reducing the computational burden of the Gibbs algorithm required for

sampling from the observed data posterior, and is particularly well-suited for cases in which

w includes categorical and continuous covariates.17

Information on the misreport patterns and on all the parameters of interest can be incor-

porated from the validation study in essentially identical way as in the case with no missing

data. A joint prior for (β, γ1, γ2, α) could be specified as:

p(β, γ1, γ2, α) ∝ L(β, γ1, γ2, α|Vobs)δ × p(β)× p(γ1)× p(γ2)× p(α),

17Obviously, 11 needs to be specified only for those covariates that have missing values.

If some of the covariates in w are completely observed for all respondents in a survey, they

can be conditioned on when constructing the distribution of the missing covariates.
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where L(β, γ1, γ2, α|Vobs) is obtained from the complete-data likelihood of the validation

study:

L(β, γ1, γ2, α|Vobs) =

∫ ∫
p(ỹ,y|w, β, γ1, γ2, α) dỹmis dwmis,

and, as mentioned in 1.2, δ is a scalar prior parameter that weights the validated data relative

to the data from the main study. Note that this specification allows for missing responses ỹi

and covariate values in the validated sample as well, and can accommodate cases in which

the missing self-reported variable depends on the true yi.

In principle, it is possible to extend this approach to the case of non-ignorably missing

values. However, there is usually little information on the missing data mechanism, and

the parameters of the missing data model are often quite difficult to estimate (Ibrahim

et al. 2005). The plausibility of the assumption that the data is missing at random (MAR)

can be enhanced by including additional individual and contextual variables in the model

specification (Gelman, King and Liu 1998).

2. ASSESSING ROBUSTNESS TO THE SPECIFICATION OF THE MISREPORT

MODEL: A MONTE CARLO EXPERIMENT

In this section, we conduct a series of simulation analyses aimed at assessing the sensi-

tivity of our method to misspecification of the model of misreporting. This is a particularly

relevant issue, since misspecification of the misreport model may lead to inconsistent esti-

mates of β and affect inferences on the covariate of interest (Abrevaya and Hausman 1999;

Hausman, Abrevaya and Scott-Morton 1998). Drawing on research analyzing a somewhat

similar problem, namely, the sensitivity of the estimated treatment effects to the specifica-

tions of the propensity score model (Zhao 2008), we examine the influence on the estimated

covariate effects of misspecifying the disturbance distribution and the linear predictor of the

misreport model. For reasons of space, we only present a brief overview of the results from
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the Monte Carlo simulations. A detailed analysis is presented in Katz and Katz (2009).18

Based on the Monte Carlo design in Neuhaus (1999), we simulated 2,000 observations

for two covariates: x1 is drawn from a standard normal distribution, and x2 is a dummy

variable equal to one with probability 1/2. The true response yi was generated as:

yi = I(β0 + β1xi,1 + β2xi,2 + εi ≥ 0)

where I(E) is the indicator function equal to one if E is true and zero otherwise, (β0, β1, β2) =

(−1, 1, 1) and εi drawn from a N(0, 1) distribution. We also simulated a dichotomous variable

di:

di =

 I
(
γ1,0 + γ1,1xi,1 + γ1,2xi,2 + ηi ≥ 0

)
; if yi = 0

I
(
γ2,0 + γ2,1xi,1 + γ2,2xi,2 + ηi ≥ 0

)
; if yi = 1

where η is an error term, and γ1 = {γ1,0, γ1,2, γ1,3}, γ2 = {γ2,0, γ2,2, γ2,3}, are chosen to obtain

different levels of misclassification and different degrees of correlation between the simulated

covariates and the misreport probabilities π
1|0
i and π

0|1
i . The observed response was then

obtained as:

ỹi =

 I(di = 1); if yi = 0

1− I(di = 1); if yi = 1.

In order to analyze the sensitivity of our method to misspecification of the error disturbance

in the model of misreporting, we follow Horowitz (1993) and Zhao (2008) and considered

4 distributions for η: a standard normal distribution, a logistic distribution, a bimodal

distribution - η = 0.5N(3, 1) + 0.5N(−3, 1) - and heteroskedastic error terms η∼N(1, 1 +

0.1x21). We also implemented 4 alternative specifications for the linear predictor of the

18In Katz and Katz (2009), we conduct a comprehensive simulation study comparing the

performance of our approach vis a vis alternative models proposed in the literature to account

for misreporting in the presence of both misclassification and missing data.
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misreport model:

Specification 1 : τk,0 + τk,1xi,2;

Specification 2 : τk,0 + τk,1xi,1 + τk,2xi,2 + τk,3x
2
i,1;

Specification 3 : τk,0 + τk,1xi,1 + τk,2xi,2 + τk,3(xi,1 × xi,2);

Specification 4 : τk,0 + τk,1xi,1 + τk,2xi,2 + τk,3xi,3;

with k = 1, 2 and x3 drawn from a log-normal distribution. We examined the effect of

both forms of misspecification separately - i.e., we correctly specified the linear predictor

of the misreport model when analyzing the role of misspecified error distributions and used

standard normal errors when examining the influence of the functional form of the index

term. In all cases, we randomly selected half of the observations in the sample and assigned

them to be the validation study. We ignored the true response and the information on the

misreport probabilities for the remaining 1,000 observations, using the information from the

validated sub-sample to fit the model in Equation 8.19

Figure 1 reports the estimates of the marginal covariate effects when x1 is omitted from

the linear predictor of the misreport model (Specification 1) for different values of γ1,1, γ2,1

and average symmetric misreport rates of 5%, 10% and 20%.20 The estimates of the marginal

effect of x1 worsen as the average misclassification rates increase and as the the correlation

between the covariate and the misreport probabilities increase. However, for all values of

γ1,1, γ2,1, the estimates from our model are closer to the true marginal effects than those

from a model ignoring misreporting. The estimates for x2, on the other hand, are virtually

19Since the validation study is a random sub-sample of the main study, a point mass prior

δ = 1 with probability 1 was used, equally weighting the validated and main samples. We

also let the covariates in z1 and z2 differ across specifications and considered several values of

γ1, γ2, with little change in the main substantive results presented in this section. Additional

details are available in Katz and Katz (2009).

20In all cases, we set γ1,2 = 1.25, γ2,2 = −1.25, and adjust the value of the intercept to

achieve the desired average misclassification rates.
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unaffected by the omission of x1 from the model of misreporting, and are again between 6

and 23 percentage points closer to the true effects than those from a standard probit model.

Table 1 complements the information from the figure, illustrating the influence of the

other forms of misspecification considered for different values of π̄1|0, π̄0|1, γ1 and γ2. Adding

irrelevant covariates and unnecessary nonlinear terms to the linear predictor of the misreport

model has relatively little influence on the estimated marginal effects, and the same holds

for the case of misspecified disturbance distributions. In all cases, the true average covariate

effects lie within the central 95% credible intervals from our model, and the point estimates

are betwen 4 and 18 percentage points closer to the true values than those obtained ignoring

misreporting. It is worth mentioning that, as illustrated in Katz and Katz (2009), the esti-

mates of γ1 and γ2 can be far away from the true coefficients when the model of misreporting

is misspecified, particularly when the error terms are bimodal or heteroskedastic (Horowitz

1993; Zhao 2008). Nonetheless, the estimated covariate effects seem to be quite robust to

the specification of the misreport model and much more accurate than those from standard

parametric models when misclassificaton is non-negligible.

We also conducted additional simulations assuming a slightly different misreport pro-

cesses for the validated and the main samples. Specifically, the values of γ1 and γ2 in the

main sample were obtained by adding uniformly distributed errors to the corresponding pa-

rameters from the validation study. The amount of misclassification and the direction of the

relationship between the covariates and the misreport probabilities was preserved, but we

changed the magnitude of the effect of x1 and x2 on π
1|0
i and π

0|1
i . Again, as illustrated in

Table 1, the marginal effects estimated from our model are quite close to the true covari-

ate effects. In contrast, the model ignoring misclassification systematically underestimates

∂Pr(y = 1|x)/∂x1 and overestimates ∂Pr(y = 1|x)/∂x2. We must note, though, that these

results are based on limited simulation analyses and may not be true in general.
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3. AN EMPIRICAL APPLICATION: CORRECTING FOR MISREPORTING IN THE

ANALYSIS OF VOTER TURNOUT

Next, we illustrate the potential consequences of misreporting in the context of estimating

the determinants of voter turnout and provide three different applications of our methodology

using data from all the validated ANES surveys between the 1978 and 1990.21 This dataset

comprises three Midterm (1978, 1986, 1990) and three Presidential elections (1980, 1984,

1988), and has the obvious advantage of allowing us to directly compare the estimates from

our model to a known benchmark, i.e., the same model estimated directly on the validated

vote. We assume the validated vote to be the “gold-standard” measure of turnout, although

there is considerable disagreement on this point (Burden 2000). The concern is that the

validation studies are far from perfect. As stated at the outset, vote validation is expensive

and difficult. The ANES is conducted in two parts, a pre- and post- election survey. In the

studies from 1978, 1980, 1984, 1986, 1988 and 1990 there were in total 11,632 completed

post election surveys. Unfortunately, of these completed surveys, the ANES was unable

to validate 2,189 respondents, about 19.8 percent of the usable sample.22 The majority of

these failures were caused either because no registration records were found or because the

local election office refused to cooperate with the ANES. If we are willing to maintain the

assumption that these errors are essentially random (in the sense of being independent of

the characteristics of interest), then there is no real harm done. The measurement error

21We use data from the 1978–1990 studies to preserve the comparability of the survey

questions regarding the conditions of the interview; we will use this information to model

the conditional probability of misreporting. The main substantive results reported in this

Section hold for the Current Population Survey as well, and are available from the authors

upon request.

22The rate of non-validation varies considerably across Election Studies, from around 2%

of sample in 1978 to more than 31% in 1990.
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will merely result in less efficient estimates of the misreporting model and a corresponding

reduction in efficiency of the corrected turnout model. However, if there is systematic error,

then we are just substituting one form of measurement error for another.

In Section 3.1, we estimate a simple model of the determinants of the turnout decision

using both self-reported and validated turnout as the dependent variable in order to assess the

consequences of ignoring misreporting. In 3.2, we re-estimate the turnout model with self-

reported vote but applying our proposed solution to correct for misreporting, using a random

sample of each survey as a validation sub-study. In Section 3.3, we apply our correction for

misreporting under an external validation design, using information from previous ANES

studies to correct for misreporting in the main sample. Both applications are based on

a complete-case analysis. We deal with the problem of incomplete data in 3.4, where we

account for item and unit non-response using the approach described in Section 1.3.

3.1. Turnout misreporting in the 1978–1990 ANES

As mentioned in the introduction, it has long been established in the political science

literature that survey respondents often report to have voted when they did not actually

do so (Bernstein, Chadha and Montjoy 2001; Katosh and Traugott 1981; Sigelman 1982).

Figure 2 illustrates the differences between turnout rates computed from self-reported and

validated vote in the six ANES studies under analysis. Validated turnout is systematically

lower than reported turnout, and while both rates tend to follow similar trends, differences

vary considerably across years, ranging from 7 percentage points in 1990 to more than 15

percentage points in 1980. 17.3% of the survey respondents who claimed to have voted but

did not do so according to the validated data, and more than 28% of those who did not

vote according to the official records responded affirmatively to the turnout question. In

contrast, only 84 respondents in the 1978-1990 ANES studies reported not voting when the

official record suggested they did, representing 0.7% of the sample. Additional descriptive
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statistics on vote misreporting in the 1978–1990 validated ANES can be found in Table 2 in

the Appendix.

In order to examine whether such high rates of overreporting affect inferences on the

determinants of the turnout decision, we fit two hierarchical probit models allowing for

election year and regional effects with both self-reported (SR) and validated turnout (V ) as

the response variable:

Pr[ỹi = ySRi ]∼Bernoulli(pSRi );

pSRi = Φ(λSRt + ηSRr + βSR′xi)

and

Pr[yi = yVi ]∼Bernoulli(pVi );

pVi = Φ(λVt + ηVr + βV ′xi);

where the k=1,. . . ,K elements of βs, s=SR, V , are assigned diffuse prior distributions:

βsk∼N(µβk , σ
2
βk

)

and λst and ηsr are election- and region- random effects, with:

λst∼N(µλ, σ
2
λ), s = SR, V ; t = 1978, 1980, 1984, 1986, 1988, 1990;

ηsr∼N(µη, σ
2
η), s = SR, V ; r = Northeast, North Central, South, West

The regressors included in xi are indicators for demographic and socio-economic con-

ditions and political attitudes: Age, Church Attendance, Education, Female, Home owner,

Income, Nonwhite, Party Identification and Partisan Strength. A description of the coding

used for each of the variables may be found in the Appendix. We should note that, while this

specification includes some of the variables most commonly used in models of voter turnout

found in the literature (Bernstein, Chadha and Montjoy 2001; Highton 2004; Wolfinger and

Rosenstone 1980), it does not examine the effect of other factors we might plausibly believe
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could alter turnout, such as political information (Alvarez 1997) or differences in state-level

ballot laws (Wolfinger and Rosenstone 1980). The sample used in the analysis consists of

6,411 observations for the 6 elections under study and was constructed so that they are iden-

tical for both models. Only the respondents with no missing response or covariate values are

included in the analysis. The remaining observations were dropped using list-wise deletion.

Figure 3 presents the main results from both models.23 The left panel summarizes the

posterior distribution of the model’s coefficients using self-reported vote as the dependent

variable, and the right panel re-does the analysis with the ANES validated vote. Most of

the parameter estimates are quite similar in both models, and inferences on the role of these

predictors on the probability of voting agree with common expectations. For example, for

both sets of estimates, older, wealthier and more educated respondents are more likely to

turn out to vote. Also, strong partisans are on average 15 percentage points more likely to

vote than independents, while respondents who attend church every week are on average 12

percentage points more likely to turn out to vote than those who never attend. Respondents

are much more likely to turn out to vote in Presidential than in Midterm elections, and are

less likely to vote if they live in the South. These results are similar using either reported

or validated vote as the dependent variable. However, there are some interesting differences

between the two sets of results regarding the role of some socio-demographic variables such

as gender and race. In particular, the mean posterior of the coefficient for the race indicator

is more than twice as large (in absolute value) using validated vote than using self-reported

vote as the dependent variable.

These differences in the parameter estimates can affect inferences drawn from both models

regarding the impact of the covariates on the turnout decision. In order to illustrate this

23Three parallel chains with dispersed initial values reached approximate convergence after

50,000 iterations, with a burn-in period of 5,000 iterations. In order to ensure that inferences

are data dependent, several alternative values for the hyperparameters were tried, yielding

essentially similar results.
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fact, Figure 4 plots the marginal effect of race on the probability of voting using reported

and validated vote for the elections under analysis. As seen in the figure, the negative effect

of being Non-white on turnout is higher when validated vote is used as the response variable

for each of the surveys considered. The average marginal effects (posterior means) are more

than 6 percentage points higher than if we look only at the reported vote, with differences

ranging from about 3 percentage points in the 1984 and 1986 elections to almost 11 points

in the 1978 and 1988 elections. While a researcher using reported turnout would conclude

that race had no significant effect on the probability of voting in the 1978 and 1988 elections

at the usual confidence levels, the results obtained using validated data indicate otherwise.24

Fitting a model of turnout using reported vote as the dependent variable will therefore tend

to overpredict the probability of voting among non-white respondents and might in some

cases affect substantive conclusions about the effect of race on turnout.

Finally, we examine whether over-reporting varies systematically with individuals’ char-

acteristics, fitting a probit model for Pr[ỹi = 1|yi = 0]. As with the turnout model, the

misreport model is fairly simple. The predictors include four variables that have been shown

to be strongly correlated with over-reporting in previous studies: Age, Church Attendance,

Education, Non-white, and Partisan Strength (Bernstein, Chadha and Montjoy 2001; Cassel

2003). In addition, we also include three additional covariates aimed at capturing some

of the conditions of the interview. The first is an indicator of whether the interview was

conducted while the respondent was alone. According to the “social pressures” argument

(Loftus 1975), a respondent should be more likely to lie about voting if others will learn

of the statement. The other two variables are the interviewers’ assessments of the respon-

dents’ cooperation and sincerity during the interview.25 Point and interval summaries of the

24In the case of the 1988 election, the marginal effect of Non-white estimated from the

self-reported vote is not significant even at the 0.1 level

25All interviewers in the 1978 – 1990 ANES were asked to rate the level of cooperation

and sincerity of the respondent after the completion of the survey.
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posterior distribution of the parameters are presented in Figure 5.

In line with previous analyses, we find that overreporters tend to be more educated, older,

more partisan, and are more likely to be regular church attendees. Also, consistent with the

results reported in Figures 3 and 4, being Non-white has a positive effect on the probability

of misreporting vote status: non-whites are on average 0.05 more likely to misreport than

their white counterparts, and this effect is significant at the 0.1 level. Several scholars have

argued that African Americans and Latinos feel pressured to appear to have voted due to the

struggles and sacrifices needed to gain voting rights for their racial or ethnic group (Abramson

and Claggett 1986), although recent research has suggested that the relationship between

race and over-reporting is much more complex than previously thought and depends on the

demographic and geographical context (Bernstein, Chadha and Montjoy 2001).26 None of

the other variables has a statistically significant effect on misreporting at the usual confidence

levels. In particular, the interviewers seem unable to pick up a “feeling” that is not otherwise

captured by the characteristics observable from the survey. This is probably caused by the

fact that very few of the interviewers were willing to rank a respondent as uncooperative

and/or insincere.27

Hence, the results from these simple models indicate that the probability of misreport-

26This relationship between race and vote over-reporting could also be associated with the

socio-economic status of the non-white population. If it is the case that nonwhites, who are

more concentrated in poorer areas, are more likely to be incorrectly validated or excluded

from the validation studies because no records can be found (e.g., due to poorly staffed and

maintained election offices), then this result could very well be an artifact. While it is difficult

to rule this claim out, addressing this concern is beyond the focus of this paper. Hence, as

noted above, we proceed as if the validated data provides “gold-standard” information on

turnout, or is at least not subject to systematic bias.

27Only 1.3% of all the respondents in the sample were ranked as uncooperative by the

ANES interviewers and only 0.7% were deemed to be “often insincere”.
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ing varies systematically with characteristics we might be interested in, and that failing to

account for misreporting may affect parameter estimates and inferences about the determi-

nants of voter turnout drawn from non-validated survey data. Unfortunately, as previously

mentioned, the ANES has stopped conducting validation studies due to the cost and dif-

ficulty in collecting the data as well as to the fact that few researchers used the validated

data. The next three sections allow us to evaluate the performance of our proposed method

to correct for misreporting and improve estimates and inference obtained from self-reported

turnout. Although our model accounts for the possibility of two types of misreporting, we

saw before that virtually no one reports not voting when they did, and thus π
0|1
i would be

poorly estimated (Prescott and Garthwaite 2005). Therefore, in the applications below we

will assume that π
0|1
i = 0, and we therefore only need to account for π

1|0
i .

3.2. Correcting for misreporting using a validation sub-sample

We first apply our method assuming an internal validation design. As in the simulation

exercise in Section 2, we randomly assign half of the respondents in each of the 1978–

1990 surveys to be the validation sub-study and ignore the validated data for the remaining

respondents. We then used the information from the validated sub-sample to correct for over-

reporting in the main sample, equally weighting both datasets. For illustrative purposes,

we fit the same turnout and misreport models described in 3.1 for all the ANES studies

considered. Nonetheless, as indicated above, the probability of voting is considerably higher

in Presidential than in Midterm elections, and it is likely that different factors affect turnout

in different election years. More importantly, the patterns of overreporting have also been

shown to differ substantially across types of races and election years (Cassel 2003). As a

result, the misreport model does not predict over-reporting very well: the mean error rate of

the misreport model across election studies is 36%, while a null model that simply predicts

that no respondent overreports has an error rate of 31%. The model correctly classifies
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64% of the survey respondents in cases, and the mean predicted probability of misreporting

averaged across simulations is 0.45; ideally this would be near zero or one for the entire

sample. Therefore, while the simulation results from Section 2 suggest that our approach is

quite robust to misspecification of the model of misreporting, we note that the performance

of our proposed method would benefit from better modeling of the misreport process.

Figure 6 summarizes the posterior distribution of the coefficients of selected regressors

estimated using validated, self-reported vote, and corrected self-reports for the two ANES

studies with lowest (1978) and largest (1984) percentage of overreporters (see Table 2 in the

Appendix). Assuming that the parameters estimated using validated vote are the “correct”

ones, the point estimates (posterior means) from our model for the two elections are between

32% and 92% closer to the “true” values of each of the parameters than the estimates ignoring

overreporting. In addition, like the “true” estimate, the estimate of βNon−white under our

approach is significantly negative at the 0.05 level for the 1978 ANES. Figure 7, in turn,

plots the marginal effect of race on the probability of voting estimated using our approach to

correct for misreporting. A comparison of the results in the left panel of the figure with those

presented in Figure 4 above shows that, after correcting for misreporting, the impact of race

in the 1978 and 1988 elections is now statistically significant at the usual confidence levels.

Moreover, as seen in the right panel of Figure 7, the point estimates from our model are closer

to the “true” effects than those obtained from the model using self-reported vote for all the

ANES studies, with differences ranging between 1 and 9 percentage points. Therefore, the

evidence presented in this Section indicates that, even with the simple model of misreporting

estimated here, the improvements in the accuracy of the parameter estimates obtained using

our method are important, and can eventually change the substantive conclusions drawn

regarding the effect of relevant covariates on the turnout decision.
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3.3. Correcting for misreporting under an external validation design

We also apply our correction for misreporting assuming an external validation design,

ignoring the validated vote for the sample under analysis and incorporating information

on the misreport probabilities and regression parameters from other ANES studies. Fig-

ure 8 illustrates the results of this exercise, plotting the marginal posterior distribution of

selected coefficients for the 1988 and 1992 Presidential elections obtained by updating the

corresponding posteriors from previous validated ANES surveys.

The upper panel compares the posterior distributions of βEducation, βIncome, βNon−white

and βPartisan Strength for the 1988 ANES, the last Presidential election for which vote vali-

dation is available, using validated, self-reported and corrected vote. In order to implement

our correction for misreporting, we used auxiliary data from the two previous Presidential

elections for which validated turnout data was collected (1980 and 1984). As seen in the

figure, the marginal posterior means and modes from the model accounting for overreporting

are in all cases closer to “true” values than those obtained from the unadjusted self-reports.

Again, as the “correct” estimate, the estimate of βNon−white under our model is significantly

negative at the 0.05 level. In the case of the 1992 ANES, for which there is no validated

data, we implemented our correction for misreporting using information from the previous

presidential elections for which vote validation was conducted (1980, 1984 and 1988) and

compared the estimates from our model with those from a model using self-reported vote.

As seen in the lower panel of Figure 8, the posterior distributions of some of the parameters —

βEducation and βPartisan Strength — remain essentially unchanged when applying the correction

for misreporting. However, using auxiliary information does affect the posterior distribution

of the coefficients of Income and Non-white. In particular, accounting for misreporting sub-

stantially affects the marginal posterior distribution of βNon−white. The mean posterior is

more than twice as large (in absolute value) when using the corrected self-reports, and the

effect of Non-white on the probability of turning out to vote is significantly negative at the
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0.05 level, while it is not significant even at the 0.2 level when estimated using self-reported

vote. Similar results hold when applying our model to correct for misreporting in the 1994

ANES - for which, again, vote validation was not conducted - using validated turnout data

from previous Midterm elections.

We also conducted a series of sensitivity analyses aimed at assessing the robustness of

the parameter estimates to changes in the composition of the auxiliary data used to correct

for misreporting and in the weight assigned to the validated vis a vis the main sample.

Figure 9 summarizes some of the results for the 1988 and 1992 ANES. The left panel plots

point and interval summaries for βNon−white from our model for the 1988 ANES using two

different sets of values for the weighting parameters δd in Equation 9: a point mass prior

δd = 1 with probability 1 ∀d, and uniform Beta(1, 1) priors ∀d, where d = 1980, 1984. In

the first case, the validated and main samples are pooled together and the estimates of β for

the main sample are obtained by updating the posteriors from the previous ANES surveys

via Bayes’ theorem. In the second case, we allow for different a posteriori weights for each

of the validated samples, accounting for heterogeneity between the previous ANES studies.

The right panel, in turn, compares the estimates from our model for the 1992 survey for

the cases in which only validated data from the immediate previous (1988) or from all the

previous (1980, 1984, 1988) Presidential elections is used to adjust for misreporting.28 For

both election years, the estimates from our model are compared to those from the unadjusted

self-reports.

As illustrated in the figure, the posterior standard deviations of β tend to decrease with

the amount of auxiliary data used to correct for misreporting in the main sample, but the

point estimates (posterior means) and the main substantive conclusions about β seem to be

quite robust to changes in the values of δ and in the size and heterogeneity of the auxiliary

data. In particular, correcting for overreporting using information from previous validated

studies leads to stronger negative effects of being Non-white on the probability of voting than

28For the 1992 ANES, we fixed the value of δ at 1 for this sensitivity analysis.
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using self-reported vote, with differences of approximately 4 and 9 and percentage points for

the 1988 and 1992 ANES, respectively.

3.4. Accounting for item and unit non-response

Both applications of our methodology in Sections 3.2 and 3.3 have been based on a

complete-case analysis, including in the sample only those respondents for whom both the

response to the turnout question and all the relevant covariates are completely observed.

When respondents with missing covariates differ systematically from those with complete

data with respect to the outcome of interest, this approach may lead to significantly biased

estimates and inference (Little and Rubin 2002). In our sample from the 1978–1990 ANES

studies, 14.5% of whites and 20.9% of non-whites have missing covariate values (other than

race), and the percentage of missingness for the self-reported vote is almost 2 times larger

for the latter. Since the evidence above indicates that voting patterns vary systematically

with race, inferences from a complete-case analysis may be quite misleading in this setting

(Ibrahim et al. 2005). In addition, list-wise deletion due to missing values in the response

variable and/or the predictors leads to discard more 40% of the respondents in the 1978–

1992 ANES, so that complete-case analyses are extremely wasteful and potentially inefficient.

Table 3 in the Appendix reports the rates of item nonresponse for all the variables included

in the turnout models estimated in 3.2 and 3.3.

In order to accommodate item and unit non-response, we implement the approach de-

scribed in Section 1.3, fitting a separate model for each of the ANES studies.29 Based on

Equation 11, we specified probit regression models for all the dichotomous covariates in the

model – Female, Non-white, Own Home, and Alone – while the remaining categorical co-

variates were assigned conditional normal distributions and discrete values were afterwards

29See Gelman, King and Liu (1998) for an approach to multiple imputation for multiple

surveys using hierarchical modeling.
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imputed for the missing responses (Gelman, King and Liu 1998).30 In all cases, we assigned

vague independent normal priors for the components of α. Figure 10 illustrates the results

for the 1978 and 1992 ANES. For the former, 31% of the survey respondents have at least 1

missing covariate value, and 0.5% of the respondents failed to answer the turnout question.

The corresponding rates for the latter are 47% and 9%, respectively. A complete-case analy-

sis would keep 77% of our sample for the 1978 ANES, and only 42% for the 1992 ANES. The

left panel of the figure summarizes the marginal posterior distribution of βNon−white for the

1978 ANES using reported, validated and corrected vote. As in Section 3.2, our correction

for misreporting was implemented based on auxiliary information from a random sub-sample

of the ANES survey. The right panel, in turn, plots the estimates for the 1992 ANES, for

which we use validated turnout data from the 1988 ANES, as in 3.3. In both cases, estimates

obtained using Bayesian imputation are compared to those from the complete-case analyses.

Two interesting facts emerge from the figure. First, for both election-studies, the marginal

posterior distribution for βNon−white estimated using our the Bayesian imputation model is

not statistically different from the that obtained using list-wise deletion, at least at the

0.05 level. However, the standard errors tend to be lower when missing values are imputed

than under list-wise deletion. This result holds in fact for most of the election-years under

analysis, suggesting that by omitting the cases with missing values, much information is

lost on the variables that are completely or almost completely observed, thus leading to

less efficient parameter estimates (Ibrahim, Chen and Lipsitz 2002; Ibrahim et al. 2005).

This is likely to be an important concern in the Election Studies examined here, given that

there is substantial variation in the rates of item nonresponse, with most of the variables

exhibiting relatively low percentage of missing values while a few others showing very high

rates of nonresponse (see the Appendix). Second, imputing missing values does not change

30The substantive results are essentially unchanged if, instead of the normal distributions,

one-dimensional conditional gamma distributions are specified for these covariates, all of

which are strictly positive.
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the substantive findings reported above regarding the performance of our methodology. The

results for the 1978 ANES show that the estimated effects from our model correcting for

misreporting are again closer to the benchmark case – using validated vote– than the effects

estimated using recalled vote. This result holds for the other ANES validated studies as

well. For the 1992 election, the marginal effect of race obtained from the corrected turnout

model is also higher than in the uncorrected model, as was in the complete-case analysis.

For both elections, once again, the main substantive conclusions regarding the effect of being

Non-white on the probability of voting drawn from the model correcting for misreporting

differ from those obtained using recalled vote.

4. CONCLUDING REMARKS

Survey data are usually subject to measurement errors, generally referred to as classifi-

cation errors when affecting discrete variables. In the political science literature, misclassi-

fication of binary dependent variables has received considerable attention in the context of

estimating the determinants of voter turnout. High rates of overreporting have been doc-

umented in survey instruments commonly used to study turnout in the U.S., such as the

American National Election Study (ANES) and the Current Population Survey (CPS), and

most previous research has found that misreporting varies systematically with some of the

relevant characteristics affecting the turnout decision.

In the presence of misreporting, standard binary choice models will generally yield biased

parameter estimates and inaccurate standard errors and may lead to erroneous substantive

conclusions. This paper develops a simple Bayesian method to correct for misreporting using

information on the misreport mechanism from auxiliary data sources. Our model does not

require full validation studies to be conducted every time a researcher is concerned about

potential misreporting. As long as enough data exists to reasonably estimate the misreport-

ing probabilities, our approach can be applied for drawing inference from the non-validated
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samples, improving the accuracy of the parameter estimates and inferences regarding the

effect of covariates of interest on the true response vis a vis standard models ignoring mis-

classification and methods assuming constant misreport rates. This is clearly important,

since obtaining “gold-standard” data is usually quite expensive and time consuming, and

thus restricting the analysis only to validated studies will generally lead to discard large

amounts of useful information, as in the case of the ANES.

The proposed model is fully general and modular, can be easily implemented using freely

available software, and can be readily applied in the case of missing data in the response

and/or covariates. While we illustrate our technique using turnout data from the ANES,

it could be applied in general to account for potential misclassification of a binary depen-

dent variable in many other situations in which auxiliary data on the misreport structure

is available. Extensions to more general discrete choice models are also straightforward.

Potential avenues for future research would be to use semi- or non-parametric methods to

estimate both the misreporting and turnout models, simultaneously account for response and

covariate measurement errors within our model, and explore the possibility of incorporating

semi-parametric approaches for inference with missing data.

While the primary focus of the paper has been on estimation techniques as opposed to

substantive findings, the empirical application of our model to the analysis of the determi-

nants of voter turnout has clear implications for researchers interested in race. Our results

confirm that race does have a clear negative impact on turnout, and suggest that the null

previous findings have been probably due to problems of misreporting, as had been argued

by Abramson and Claggett (1986). With the correction for misreporting developed in this

paper, researchers could now better estimate the effect of race over the length of the ANES

datasets and not just for the few years with validated turnout data. In addition, researchers

might wish to revisit Wolfinger and Rosenstone (1980) findings of the effect of registration

laws to see if properly correct misreporting re-enforces or diminishes their findings.
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APPENDIX: DESCRIPTION OF THE DATASET USED FOR THE ANALYSIS OF

TURNOUT MISREPORTING

Variables used in the turnout model

1. Indicators for demographic, socio-economic and political characteristics

Age: 1 if Age < 30; 2 if 30 ≤ Age < 45; 3 if 45 ≤ Age < 60; 4 if Age ≥ 60.

Church Attendance: Frequency of church attendance. Coding: 1 if never; 2 if a few

times a year; 3 if once or twice a month; 4 if every week or almost every week.

Education: Highest grade of school or year of college completed. Coding: 1 if 8 grades

or less; 2 if 9–12 grades with no diploma or equivalency; 3 if 12 grades, diploma

or equivalency; 4 if some college; 5 if college degree.

Female: 1 if the respondent is female, 0 if male.

Home owner: 1 if the respondent owns his house, 0 otherwise.

Income: Household income. Coding: 1 if 0–16th percentile; 2 if 17h–33d percentile;

3 if 34th–67th percentile; 4 if 68th–95th percentile; 5 if 96th–100th percentile.

Non-white: 0 if white, 1 otherwise.

Party Identification: -1 for Democrats, 0 for Independents, 1 for Republicans.

Partisan Strength: Coded on a four-point scale ranging from 1 for pure independents

to 4 for strong partisans.

2. Additional covariates to account for misreporting

Alone: 1 if the respondent was interviewed alone, 0 otherwise.

Uncooperative: Respondent’s level of cooperation in the interview, as evaluated by

the interviewer. Coding: 1 if very good; 2 if good; 3 if fair; 4 if poor; 5 if very

poor.
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Sincerity: How sincere did the respondent seem to be in his/her answers, as evaluated

by the interviewer. Coding: 1 if often seemed insincere; 2 if usually sincere; 3 if

completely sincere.

In order to reduce the correlation between the parameters and to accelerate convergence and

mixing of the Gibbs sampling algorithm, all variables where centered at their mean values

(Gu 2006).
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Figure 1: Marginal covariate effects when x1 is omitted from the misreport

model. The graph plots the marginal effects x1 and x2 estimated under our method when x1

is omitted from the linear predictor of the misreport model, for different values of γ1 and γ2.

Results are compared to those obtained ignoring misclassification. The center dots correspond

to the the posterior means, the vertical lines to the central 95% credible intervals, and the

horizontal lines represent the average effects (dashed) and 95% intervals (dotted) estimated

using yi as the response.
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Figure 2: Self-reported vs. Validated Turnout, 1978–1990. The graph shows the self-

reported and validated turnout from the 1978–1990 ANES only in years for which there were

vote validation studies. Reported turnout rates are systematically larger than the validates

ones.
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Figure 3: Coefficients of the probit models for Self-reported vs. Validated

Turnout. The graph summarizes the posterior distribution of the coefficients of the turnout

model, using self-reported and validated vote as the response variable. The center dots corre-

spond to the posterior means, the thicker lines to the 50% credible intervals, and the thinner

lines to the 95% credible intervals.
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Figure 4: Marginal effect of race on turnout. The graph shows the marginal effect of

the race indicator on the likelihood of voting for each election year under study, using both

reported and validated vote. The center dots correspond to the point estimates (posterior

means), the thicker lines to the 50% credible intervals, and the thinner lines to the 95%

credible intervals.
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Figure 6: Posterior summaries for selected parameters under an internal vali-

dation design. The figure plots point and interval summaries of the posterior distributions

of selected coefficients for the 1978 and 1984 ANES Presidential elections, using corrected,

self-reported, and validated vote. The center dots correspond to the posterior means, the

thick horizontal lines to the central 50% credible intervals, and the thin lines to the central

95% credible intervals from the three different models.
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Figure 7: Marginal effect of race on turnout estimated under our proposed

method. The left panel of the graph plots the point and interval (50% and 95%) esti-

mates of the marginal effect of race on the probability of voting obtained using our method to

correct for misreporting. The right panel compares the point estimates from our model and

the model ignoring misreporting with the estimates obtained using the validated data.
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Figure 8: Posterior densities of β under an external validation design. The figure

compares the posterior densities of selected coefficients for the 1988 and 1992 Presidential

elections. The solid lines plot the posterior distributions of the parameters estimated from

the validated vote, the dotted lines represent the estimates obtained using self-reported vote,

and the dashed lines the ones obtained adjusting for misreporting.
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ies. The estimates are compared to those obtained using self-reported vote. The center dots
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Figure 10: Posterior summaries for βNon−white with list-wise deletion versus

Bayesian imputation. The graph plots point and interval summaries for βNon−white for

the 1978 and 1992 ANES, using list-wise deletion and fully Bayesian imputation. The center

dots correspond to the point estimates (posterior means), and the horizontal bars indicate

the 90% and 50% credible intervals for the models with imputed missing values.
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Table 1: Marginal covariate effects under alternative specifications of the misreport model

Estimator ∂Pr(y = 1|x)/∂x1 ∂Pr(y = 1|x)/∂x2

0.25 0.25
True Model

(0.24, 0.27) (0.21, 0.30)

Linearpredictora 0.29 0.26
Specification 2

(0.24, 0.33) (0.13, 0.38)

0.29 0.27
Specification 3

(0.24, 0.32) (0.15, 0.38)

0.29 0.26
Specification 4

(0.24, 0.33) (0.15, 0.38)

Error disturbance 0.27 0.23

Logistic distributionb
(0.21, 0.32) (0.09, 0.38)

0.24 0.21
Bimodal distributionc

(0.20, 0.28) (0.10, 0.29)

0.24 0.28

Heteroskedasticd
(0.17, 0.29) (0.17, 0.39)

0.24 0.30
Different misreport models in both sub-samplese

(0.21, 0.28) (0.21, 0.38)

a γ1,0 = −1.5, γ1,1 = 0.05, γ1,2 = 1.25, γ2,0 = −0.2, γ2,1 = 0.05, γ2,2 = −1.25, π̄1|0, π̄0|1 ≈ 0.2.

b γ1,0 = −1.75, γ1,1 = 0.65, γ1,2 = 1.3, γ2,0 = −0.75, γ2,1 = 0.20, γ2,2 = −1.3, π̄1|0, π̄0|1 ≈ 0.2.

c γ1,0 = −1.6, γ1,1 = 0.5, γ1,2 = 1.3, γ2,0 = −1, γ2,1 = 0.5, γ2,2 = −1.30, π̄1|0, π̄0|1 ≈ 0.1.

d γ1,0 = −2.05, γ1,1 = 0.95, γ1,2 = 0.1, γ2,0 = −1.5, γ2,1 = −2.5, γ2,2 = −0.70, π̄1|0 ≈ 0.1, π̄0|1 ≈ 0.2.

e π̄1|0, π̄0|1 ≈ 0.1

Validation sample: γ1,0 = −1.8, γ1,1 = 0.52, γ1,2 = 1.3, γ2,0 = −1.1, γ2,1 = 0.5, γ2,2 = −1.3.

Main sample: γ1,0 = −2.14, γ1,1 = 0.89, γ1,2 = 1.74, γ2,0 = −1.22, γ2,1 = 0.76, γ2,2 = −1.32.
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Table 2: Vote misreporting in 1978–1990 ANESa

Election P (ỹi = 1|yi = 0) P (yi = 0|ỹi = 1) P (ỹi = 0|yi = 1) P (yi = 1|ỹi = 0)

1978 23.27 24.55 3.02 2.84

1980 24.48 16.52 0.58 1.37

1984 38.83 13.63 0.22 1.70

1986 31.55 17.70 0.66 1.40

1988 36.30 14.63 1.06 7.10

1990 26.83 16.83 3.67 6.46

a In percentage points.
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Table 3: Rates of nonresponse for the variables included in the voter turnout models

Variable 1978-1990 validated ANES 1992 ANES

Age 2.07 0.00

Church Attendance 13.20 33.72

Education 0.80 2.61

Female 4.28 0.00

Income 13.58 10.66

Non-white 4.41 1.41

Home owner 0.70 6.44

Partisan Strength 4.44 0.56

Party Identification 2.60 0.36

Alone 4.55 1.57

Cooperation 4.49 0.16

Sincerity 0.47 0.24

Reported turnout 6.12 9.30

Total sample 11,632 2,485

Complete-case sample 6,411 1,206
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