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[1] Distributions of scour and fill depths recorded in three low-order sand bed dryland
rivers were compared with the Weibull, gamma, exponential, and lognormal probability
density functions to determine which model best describes the reach-scale variability in
scour and fill. Goodness of fit tests confirm that the majority of scour distributions
conform to the one-parameter exponential model at the 95% significance level. The
positive relationship between exponential model parameters and flow strength provides a
means to estimate streambed scour depths, at least to a first approximation, in comparable
streams. In contrast, the majority of the fill distributions do not conform to the
exponential model even though depths of scour and fill are broadly similar. The disparities
between the distributions of scour and fill raise questions about notions of channel
equilibrium and about the role of scour and fill in effecting channel change.
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1. Introduction

[2] Soundings made from bridge crossings and at gaug-
ing station cable crossings commonly reveal fluctuations in
the vertical position of an alluvial streambed during flood
events [e.g., Leopold and Maddock, 1953]. The fluctuations
occur in response to the entrainment (or scour) and depo-
sition (or fill) of bed material and reflect both the redistri-
bution of sediment within the channel and the short-term
hydraulic adjustments that help a river to maintain a quasi-
equilibrium channel form [Andrews, 1979]. As a result,
scour and fill processes have been of longstanding interest
to geomorphologists, engineers and aquatic ecologists seek-
ing to understand the morphodynamics of alluvial rivers
[Haschenburger, 1999], the stability of artificial structures
such as bridge piers, pipelines and water abstraction points
[Chang, 1988] and the role of flood disturbance in struc-
turing lotic ecosystems [Lapointe et al., 2000; Rennie and
Millar, 2000].
[3] Although scour and fill are characteristic of all

alluvial rivers, they are of particular importance in dryland
environments where there is effectively an unlimited supply
of sandy-gravelly material that is readily entrained by
infrequent, but intense, flooding [Leopold et al., 1966].
Some studies have suggested that scour tends to occur in
reaches that are narrow and deep, whereas wide and shallow
reaches tend to aggrade [Lane and Borland, 1954]. This
dynamic is thought to reflect the control of channel width
on unit discharge and as a result, a predictive relationship
between unit discharge and scour depths has been identified

[Leopold et al., 1966]. Other studies have shown depth and
continuity of scour to be independent of cross-sectional
morphology [Emmett and Leopold, 1965] and to be consis-
tent with the migration of bed forms [Foley, 1971].
[4] This uncertainty over channel bed behavior during

flood flows arises because few studies have featured
measurements of sufficient density to characterize the
magnitude and distribution of scour and fill occurring
within a reach. Gauging station measurements are limited
because they are restricted to observations made at isolated
cross sections while other studies [e.g., Leopold et al.,
1966] are constrained by the low density of data acquisi-
tion. As a result, it is not known whether scour and fill are
localized phenomena or are more or less continuous along
the stream. Some progress has been made in characterizing
the reach-scale variability of scour and fill in coarse-grained
perennial rivers. Haschenburger [1999], for example, has
shown that scour depth populations in gravel bed rivers
are characterized by negative exponential populations, and
Rennie and Millar [2000] have shown that spatial patterns of
scour in the coarse-grained Kanaka Creek, British Columbia,
Canada, are essentially random. Very little, however, is
known about reach-scale variability of scour and fill in sand
bed rivers, even though it is known that such rivers are
particularly susceptible to scour and fill, and that the
associated convergence and divergence in sediment trans-
port rates control their morphological development.
[5] The aim of this paper is to present a statistical analysis

of event-based measurements of scour and fill made in three
reaches of low-order sand bed rivers. The objective is to
determine the best distributional model to describe the
reach-scale variability in scour and fill depths recorded over
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a range of competent flows. Four plausible model distribu-
tions are tested to answer three basic questions (http://
www.itl.nist.gov/div898/handbook/): (1) Does a given dis-
tributional model provide an adequate fit to the data? (2) Of
the candidate distributional models, is there one distribution
that fits the data better than the other candidate distribu-
tional models? (3) Can the findings be generalized to
provide a simple model for predicting scour and fill depths
in sand bed streams.

2. Field Site

[6] The study was conducted within the Walnut Gulch
Experimental Watershed of the United States Department of
Agriculture, Agricultural Research Service, in southeastern
Arizona (Figure 1a). Walnut Gulch is a sand- and gravel-
bedded, ephemeral stream channel draining a dissected
grass- and shrub-covered piedmont composed primarily of
weakly consolidated Quaternary alluvium [Lane et al.,
1997]. The climate is semiarid with a mean annual rainfall
of 350 mm. Virtually all of the runoff occurs during the
summer months, and results from intense, short-lived and
highly localized convective storms [Renard and Keppel,
1966; Renard and Laursen, 1975].
[7] Measurement efforts were concentrated in three rea-

ches within Lucky Hills, a 0.47 km2 subcatchment of the
main watershed [Nichols, 1999]. One reach was located on
the main channel (MCR) (Figure 1b) and two reaches were
located in upper and lower tributary channels (UTR and
LTR, respectively) (Figure 1c). All three reaches were
straight, single thread and relatively narrow and steep.
The beds were planar and composed of a poorly sorted
and spatially undifferentiated mixture of sand and fine

gravel (Table 1). Although typical of headwater streams
within the Walnut Gulch drainage network, these sedimen-
tological characteristics are not representative of the higher-
order stream channels, many of which exhibit low relief,
gravel bar forms and short reaches of predominantly gravel-
sized bed material.

3. Methods

[8] Scour and fill data were collected by means of scour
chains [Emmett and Leopold, 1965; Laronne et al., 1994].
Scour chains provide information on maximum depths of
scour and net depths of fill and therefore offer advantages
over conventional survey techniques that only provide
estimates of net channel change (scour or fill). Scour chains,
however, cannot provide data pertaining to the temporal
variation in scour and fill and to bed elevation changes
associated with multiple cycles of scour and fill during a
single event. Such information can only be gathered with
more sophisticated electronic scour monitors [e.g., De Vries
et al., 2001]. However, such sophistication entails great
expense and thus would be impracticable for investigating
the distributions of scour and fill, which is the central aim of
the paper.
[9] In each of the three study reaches, scour chains were

inserted across 30 cross sections located one channel width
apart for a downstream distance of 30 channel widths. In the
absence of any a priori information about the variability of
scour and fill in sand bed channels, this pattern was
considered sufficient to characterize the reach-scale vari-
ability in depths of scour and fill. Three to five chains were
installed at equally spaced distances across each cross
section in the relatively wide main channel and lower

Figure 1. (a) Location of study area at Walnut Gulch, SE Arizona and views of (b) the main channel
reach and (c) the upper tributary reach.

Table 1. Characteristics of the Study Reaches

Site
Reach

Length, m
Number of
Chains

Width,a

m
Depth,b

m
Discharge,
m3 s�1 Slope, % D50, mm

MCR 87.0 99 3.1 0.45 0.21–11.4 1.9 1.3
UTR 29.8 45 1.2 0.75 0.03–1.05 1.9 2.2
LTR 58.7 95 2.0 0.42 0.04–1.23 1.7 1.2

aMean bed width for reach.
bBank-full depth.
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tributary reaches. In the narrower upper tributary reach,
chains were installed in an alternating sequence of one in
the channel center and two at left and right locations. This
pattern ensured that adjacent chains did not become
entangled. Accordingly, the number of chains installed in
each reach ranged from 45 in the upper tributary reach to 99
in the main channel reach (Table 1). Chain densities varied
between 0.36 and 1.3 m�2, values that exceed those in
previous studies by two to three orders of magnitude
[Rennie and Millar, 2000]. Scour chain recovery after each
competent flood event always exceeded 97% of the total
installed at each site.
[10] Flows in the main channel were measured with an

ultrasonic depth recorder that was logged at 30-s intervals.
Flows in the tributaries were monitored with maximum
stage recorders and as a result, hydraulic information is
restricted to peak flow depths (Yp). At all locations, esti-
mates of flow depth were converted to discharge (Q) using
Manning’s equation. Estimates of channel average shear
stress (t, N m�2) were derived as t = rgRS in which r is the
density of the flow (kg m�3), g is the acceleration due to
gravity (m s �2), R is the hydraulic radius (m) and S is the
surveyed bed slope (m m�1).

4. Probability Distribution Functions

4.1. Selection of Suitable Probability Distribution
Functions for Modeling Scour and Fill in Sand Bed
Streams

[11] Reach-scale distributions of scour and fill depths
in perennial gravel bed rivers have been modeled using

the exponential probability density function (pdf)
[Haschenburger, 1999]. The exponential pdf is defined by

p xð Þ ¼ 1

a
exp � x� l

a

� �
; x > l;a > 0 ð1Þ

in which p(x) is the probability of scour (or fill) occurring to
a depth of x cm, and a and l are the scale and location
parameters, respectively. The location parameter locates the
distribution along the abscissa and has the same units as
the variable being modeled (i.e., cm). If l = 0, then the
distribution starts at the origin (x = 0). Positive and negative
location parameters shift the distribution l units to the right
and left, respectively. The scale parameter stretches or
compresses the distribution. Because the exponential pdf
starts at x = l at the level p(x = l) = 1/a and decreases
exponentially thereafter (i.e., p(x) ! 0 as x ! 8), the shape
of the distribution is always monotonic and concave up
(Figure 2a).
[12] Haschenburger [1999] employed the one-parameter

exponential pdf in which l = 0 to characterize the reach-
scale variability of scour and fill in gravel bed streams. The
choice of the one-parameter exponential model reflects the
widespread view that bed material movement in coarse-
grained rivers is a close-to-threshold process and that
although limited areas may scour or fill relatively deeply,
most gravel beds experience little, if any, activity during
competent flow events. Such a dynamic, however, may not
be observed in steep sand bed rivers where high excess
shear stresses and mobile bed sediments may cause much of
the sand bed to scour (and subsequently fill) at quite modest

Figure 2. Shapes of (a) exponential, (b) gamma, (c) lognormal, and (d) Weibull frequency distributions.
The exponential distribution is monotonic and always concave; the shape of the gamma, lognormal, and
Weibull distributions can take a variety of forms depending on the value of the shape parameter (g). For
all distributions the scale parameter (a) has the effect of stretching the distribution as it increases in value,
as illustrated for the exponential distribution (Figure 2a).
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flows and depths of scour (and subsequent fill) to increase
dramatically with flow strength. As a result, more flexible
models in which both the location and shape of the
distributions can vary with flow strength may be required
to describe the distributions of scour and fill in sand bed
streams [Hassan et al., 1999] (Figure 3).
[13] Additional flexibility is provided by distributions

that incorporate a third parameter (g) that allows them to
take on a variety of shapes depending on its value. The

gamma, lognormal, and Weibull probability density func-
tions incorporate shape parameters and have variously been
used to model a wide range of geomorphological variables
including particle travel distances and burial depths [Hassan
et al., 1991, 1999], bed form amplitude [Paola and
Borgman, 1991], and wind speed and particle size distribu-
tions [Takle and Brown, 1978; Zobeck et al., 1999; Kondolf
and Adhikari, 2000]. These three-parameter pdfs are
defined by equations (2)–(4):

Gamma

p xð Þ ¼ x� lð Þg�1

agG gð Þ exp � x� l
a

� �
; x > l;a; g > 0 ð2Þ

in which G is the gamma function;

Lognormal

p xð Þ ¼ 1

g x� lð Þ
ffiffiffiffiffiffi
2p

p exp � ln x� lð Þ=að Þð Þ2

2g2

 !
; x > l;a; g > 0;

ð3Þ

Weibull

p xð Þ ¼ g

a
x� l
a

� �g�1

exp � x� l
a

� �g� �
; x > l;a; g > 0: ð4Þ

The effect of different values of the shape parameter on the
shape of gamma, lognormal, and Weibull frequency
distributions is shown in Figures 2b–2d and summarized
in Table 2. The ability to model a range of distributional
shapes with a single distributional model makes each of
these distributions more flexible than the exponential
distribution which only has one shape. They may potentially

Table 2. Characteristic Shapes of the Lognormal, Weibull, and Gamma pdfs for Different Values of the Shape Parametera

Distribution Shape Parameter Shape of Probability Density Function

Lognormal g > 0 The pdf is positively skewed (has a right tail); starts at zero, increases to
mode and decreases thereafter. If g � 1 then the pdf rises very sharply
for small values of x and essentially follows the ordinate axis, peaks out
early and then decreases sharply like an exponential pdf or a Weibull
pdf with 0 � g � 1.

Weibull 0 � g < 1 As x ! 0 (or l), p(x) ! 1; as x ! 1, p(x) ! 0, i.e., p(x) decreases
monotonically and is concave as x increases beyond the value of a and
the mode is nonexistent.

Weibull g = 1 The pdf is the two-parameter exponential distribution.
Weibull g > 1 p(x) = 0 at x = 0 (or l); p(x) increases as x ! x0 (the mode) and decreases

thereafter.
Weibull g < 2.6 The pdf is positively skewed (has a right tail).
Weibull 2.6 � g � 3.7 The skewness of the pdf approaches zero (no tail).
Weibull g > 3.7 The pdf is negatively skewed (has a left tail).
Gamma 0 � g < 1 As x ! 0 (or l), p(x) ! 1; as x ! 1, p(x) ! 0, i.e., p(x) decreases

monotonically and is concave as x increases beyond the value of a and
the mode is nonexistent.

Gamma g = 1 The pdf is the two-parameter exponential distribution
Gamma g > 1 The pdf is positively skewed (has a right tail); starts at zero, increases to mode

and decreases thereafter.

aThe case where l = 0 defines the two-parameter version of the pdf in each case. Note that the gamma and Weibull distributions converge to the
exponential distribution as l ! 1 and conform to the exponential distribution when l = 1 (see equations (2) and (4)).

Figure 3. Hypothesized frequency distributions of scour
(or fill) depths in a sand bed stream at low, medium, and
high discharges. At all but the lowest competent flows the
whole of the channel bed is activated (scoured or filled), and
the depths of scour (or fill) increase with flow magnitude.
As a result, both the location and shape of the distribution
change with increasing flow strength.
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therefore be better candidates for modeling the reach-scale
variability of scour and fill in sand bed streams.

4.2. Parameter Estimation

[14] The parameters of a probability distribution can be
estimated using a variety of methods. In this study, the
parameters of the distributions were estimated using max-
imum likelihood methods using Matlab programs [The
MathWorks, 2000]. The direct search algorithm employed
in the maximization procedure is based on a simplex search
method as implemented by the Matlab function ‘‘fmin-
search.’’ Confidence intervals (95%) for shape and scale
parameters were calculated using the Matlab functions
‘‘expfit,’’ ‘‘gamfit’’ and ‘‘weibfit’’ [The MathWorks,
2000]. It should be noted that the location parameter often
drifted below zero during the numerical optimization. Since
a negative location parameter has no physical meaning in
the context of a depth distribution, l was constrained to
be �0. The results therefore are maximum likelihood
parameters for which l � 0.
[15] The numerical optimization procedure requires initial

values a0, l0 and g0 for the parameters a, l, and g

respectively (Table 3). Since l � 0, and l is expected to
be small, l0 = 0. a0 for the exponential and the lognormal
distributions and g0 for the lognormal distributions were
calculated as the MLEs of a and g respectively [Johnson et
al., 1994, pp. 207, 220, 223, 506]. For the gamma and
Weibull distributions, a0 was estimated as the MLE of a
after the simplifying assumption that g0 = 1 was made
[Johnson et al., 1994, pp. 361, 660].

4.3. Goodness of Fit

[16] The similarity between the empirical and theoretical
distributions was evaluated using root mean square error
(RMSE) statistics and probability plots [Filliben, 1975].
RMSE statistics provide a measure of the absolute error
between the observed and theoretical distributions and were
calculated for each candidate distribution as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xoi � xpi
� �2

n

vuuut
ð5Þ

in which xo and xp are observed and predicted frequencies
of depths falling within specified bin classes and n is the
number of bin classes. RMSE statistics provide a quanti-
tative estimate of the difference between the observed and
fitted distributions. Probability plots and associated prob-
ability plot correlation coefficients (PPCCs) for each

candidate distribution were calculated using the software
package ‘DATAPLOT’ (http://www.itl.nist.gov/div898/
software/dataplot/homepage.htm). Although probability
plots are used primarily as a graphical technique for
determining scale and location parameters of theoretical
distributions [Chambers et al., 1983], they can also be used to
assess how well a particular distribution resembles an
observed distribution when the parameters of the former
have been estimated using other techniques (e.g., maximum
likelihood methods). There are two stages to the interpreta-
tion of the probability plots in terms of goodness of fit
comparisons [Chambers et al., 1983, p. 199]. First, the
linearity of the probability plot as quantified by the PPCC is
used to judge whether the data and reference distribution
have the same distributional shape. Second, the probability
plot is compared to the line Y = l + aX to evaluate the
acceptability of the location and scale parameter estimates.
Good distributional fits are characterized by near-linear
probability plots (with high PPCCs) that conform to the line
Y = l + aX: nonlinear probability plots (with low PPCCs)
indicate that the shapes of the distributions do not match,
whereas shifts and tilts away from the line Y = l + aX
indicate differences in location and spread respectively.Mean
values of RMSEs and PPCCs are denoted by RMSE and
PPCC, respectively.

5. Results

5.1. Characteristics of Flow Events

[17] Ten flow events were monitored during a 3 year
study period. The bed of the main channel reach was
activated in all 10 events. Most of the flows were single
peak discharge events and included one overbank flow (Qp =
11.4 m3 s�1) and two bank-full flows, (Qp � 4 m3 s�1). The
hydrograph time of rise for the six largest events ranged
from 3 to 44 min with average rates of rise of up to 0.09 m
per min. In keeping with expectations of flash flood
behavior, flow durations were short at between 40 and
120 min. In the tributaries, nine of the 10 flow events
activated the bed. As expected, peak discharges estimated
from the maximum stage recorders were substantially lower
than those recorded in the main channel; the highest flows
of about 1 m3 s�1 were about 0.1 of the highest flow in the
main channel reach.

5.2. Distributions of Scour and Fill Depths

[18] The distributions of scour and fill depths for the
10 events recorded in the main channel reach are shown in
Figure 4 together with the frequency distributions of the
fitted exponential, gamma, lognormal, and Weibull pdfs.
The data are grouped into 2 cm class intervals. Both sets of
distributions are ranked from smallest to largest according
to peak discharge (Qp) to show how the range and shape of
the depth distributions vary with discharge. Maximum
likelihood parameter estimates for the theoretical distribu-
tions and values of the root mean square error (RMSE)
statistics and probability plot correlation coefficients
(PPCCs) are shown in Table 4 together with values of peak
discharge and shear stress (tp).
[19] Median scour depths ranged from 1.1 to 15.6 cm

with higher flows generating greater depths of scour over an
increasing proportion of the bed. For example, during the
two lowest flows (Qp � 0.3 m3 s�1) about two thirds of the

Table 3. Initial Values of the Parameters a, g, and l (a0, g0, and

l0) Utilized in the Maximum Likelihood Procedurea

l0 a0 g0 Variable Definition

Exponential 0 m - m ¼
PN

i¼1
xi

N

Gamma 0 m 1 m ¼
PN

i¼1
xi

N

Lognormal 0 exp(m)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
ln xi�mð Þð Þ2

N

r
m ¼

PN

i¼1
ln xið Þ

N

Weibull 0 X̂/ln(2) 1 X̂ = sample median

aN is the number of observations in the distribution.
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bed experienced scour of less than 2 cm and elsewhere, bed
activity did not exceed 10 cm (Figures 4a and 4b). In
contrast, the highest discharge (Qp = 11.4 m3 s�1) activated
all areas of the bed and generated significant scour (>15 cm)
over 50% of the bed with maximum scour depths approach-
ing 50 cm (Figure 4j). Significant areas of the bed remained
relatively stable at high discharges. During the two bank-
full events, for example, up to 25% of the bed area
experienced scour of less than 2 cm (Figures 4h–4i).
Median depths of fill ranged from 1-12 cm (Figures 4k–4t)
with a maximum of 53 cm occurring during the largest event
(Figure 4t). Mean differences between paired depths of scour
and fill for individual events were small, ranging from 1.1 to
4.1 cm with standard errors of 1 and 2.5 cm, respectively.
Paired values of scour and fill depths differed, on average, by
only 1.7 ± 2.0 cm for small flows (Qp < 0.5 m3 s�1) and by
2.7 ± 2.4 cm for the larger flows. The Mann-Whitney test
statistic indicates that only in events 1, 6 and 10 were there

significant differences between the scour and fill distributions
(p < 0.05). In these events, median depths of fill exceeded
median depths of scour by 2.5, 1.4 and 1.6 cm, respectively.
[20] The distributions of scour depths for the nine within-

bank flow events are all monotonic and concave
(Figures 4a–4i) and are well described by the exponential
model (RMSEs = 1.07 to 4.69 cm; PPCCs = 0.941 to
0.997). The Weibull and gamma distributions also perform
well with similar RMSEs and PPCCs (Table 4). Comparison
of the exponential, Weibull, and gamma probability plots
confirm that the three distributional models provide good
descriptions of the scour depth distributions measured
during within-bank flow events (Figure 5). The similarity
in descriptive performance is not surprising given that all
but one of the Weibull and gamma models fitted to data
collected from subbank-full flows have shape parameters
that do not differ significantly from one (p < 0.05; Table 4).
As noted in Table 3, Weibull and gamma distributions with

Figure 4. Frequency distributions of depths of (a–j) scour and (k–t) fill for the 10 events recorded in
the main channel. Note that events 1 and 2 are bank-full events and event 9 is an overbank event.
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shape parameters of one are equivalent to exponential
distributions.
[21] The largest flow event in the Main Channel Reach

exceeded bank-full and generated a right skewed bimodal
scour depth distribution (Figure 4j). Although the RMSE
associated with the exponential distributional fit is not
particularly high (2.52 cm), it is clear that the model
overestimates the frequency of shallow scour depths and
underestimates the frequency of deep scour. The poorer fit
of the exponential pdf to this scour depth distribution is
clear from the significant nonlinearity shown by the prob-
ability plot (Figure 5d) and the relatively low PPCC
(Table 4). The gamma and Weibull models perform some-
what better than the exponential model. Although a compar-
ison of their respective probability plots (Figures 5l and 5p)
and RMSE statistics (Table 4) suggests that the Weibull
model performs slightly better than the gamma model, any
distinction between the two pdfs in terms of model
performance is of little significance as neither is an
appropriate model for a bimodal distribution. With regard
to the lognormal pdf, it is clear from the RMSE and PPCC

statistics (Table 4) and probability plots (Figures 5e–5h)
that this model performs poorly at all but the lowest
discharges.
[22] Distributions of fill depths for the nine within-bank

flows are either monotonic and concave or right skewed
(Figures 4k–4s). Monotonic distributions were obtained in
six subbank-full events (Figures 4k–4m and 4o–4q). These
distributions are described well by the gamma and Weibull
models with RMSEs and PPCCs of 1.22–9.20 cm and
0.954–0.9966 respectively (RMSE = 4.04 cm; PPCC =
0.981) even though the probability plots reveal several
outliers (e.g., Figures 6j and 6n). The shape parameters in
all but two of the gamma and Weibull model fits are not
significantly different from one (p < 0.05) indicating that the
majority of the monotonic distributions are exponential in
nature. A Weibull model conforming to the exponential pdf
also fits one of the skewed distributions. The probability
plots for the exponential model and the PPCC and RMSE
statistics indicate that the monotonic distributions are equally
well described by the simpler exponential model (Figures 7a
and 7b and Table 4). The exponential model fits to the

Figure 5. Probability plots for the theoretical pdfs fitted to monotonic (m) scour distributions obtained
at discharges representative of low (Qp = 0.33 m3 s�1), medium (Qp = 1.45 m3 s�1), and high (Qp =
3.85 m3 s�1) within-bank flow events and a bimodal (bi) scour distribution collected at an overbank event
(Qp = 11.4 m3 s�1) in the main channel. In each plot the straight line is Y = l + aX, where l and a are the
MLEs of the location and scale parameters of the fitted distributions, respectively.
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skew-peaked distributions generate PPCCs and RMSEs that
are little different from those calculated for the monotonic
distributions even though Figures 4n, 4r, and 4s clearly
indicate that the exponential model overestimates the fre-
quency of shallow fill depths and underestimates the fre-
quency of deeper fill depths. The shortcomings of the
exponential pdf for modeling skew-peaked events is, how-
ever, clearly revealed by the exponential probability plots
which show that the left- and right-hand tails fall above and
below the line representing Y = l + aX, respectively (e.g.,
Figure 6c). These systematic departures from linearity are
not seen in the exponential probability plots for the mono-
tonic distributions (see Figures 6a and 6b) and indicate that
the observations in the tails of the skew-peaked distributions
are closer to the distribution medians than they ought to be
for samples drawn from an exponential distribution; i.e., the
observed distributions have shorter tails [Chambers et al.,
1983, p. 206]. The probability plots indicate that the skew-
peaked distributions are better described by the Weibull and
gamma distributions (Figures 6k and 6o). Although the
RMSEs and PPCCs suggest that the Weibull distribution
performs somewhat better than the gamma distribution,

such a fine distinction in model performance may be
unwarranted. As noted above, the discriminatory power of
PPCCs and RMSE statistics appears to be limited by their
insensitivity to small differences between the distributions
under comparison.
[23] The distribution of fill depths associated with the

overbank event is more irregular and platykurtic than those
associated with within-channel events (Figure 4t). Compar-
ison of the RMSE and PPCC statistics (Table 4) and
probability plots for the four candidate models (Figure 6)
indicate that the Weibull model provides the best distribu-
tional fit for this data set (RMSE = 2.07 cm; PPCC = 0.992).
None of the fill distributions was described adequately by
the lognormal pdf (Figures 4k–4t and 6e–6h).
[24] Representative frequency distributions of scour and

fill depths for the upper and lower tributary reaches are
shown in Figure 7. In both reaches, discharges were lower
than in the main channel and depths of bed activity were
consequently less. However, as in the main channel, higher
flows generated greater depths of scour over an increasing
proportion of the bed. At low discharges (Qp < c. 0.05m

3 s�1)
bed activity in both reaches was limited to a few locations

Figure 6. Probability plots for the theoretical pdfs fitted to monotonic (mo) and skew-peaked (sp)
fill distributions obtained at discharges representative of low (Qp = 0.33 m3 s�1), medium (Qp =
1.45 m3 s�1), and high (Qp = 3.85 m3 s�1) within-bank flow events and an overbank event (Qp =
11.4 m3 s�1) in the main channel.
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and to generally less than 1–2 cm, whereas the highest
flows (Qp � 1 m3 s�1) generated more than 5 cm of scour
over 75% of the bed area. Local maxima were 19 and 37 cm
in the upper and lower tributaries, respectively. Depths of
fill for individual events were comparable to depths of
scour. For example, mean differences between paired
depths of scour and fill in the lower tributary reach
ranged from 0.7 ± 0.73 to 3.2 ± 2.5 cm with average
differences of 1.2 ± 2.1 cm for the lowest five flows
(Qp < 0.2 m3 s�1) and 1.8 ± 2.1 cm for the four larger
flows (0.3 � Qp � 1.2 m3 s�1).
[25] As a result of limited bed activity (<2 cm), one of

the fill distributions recorded in the upper tributary is
restricted to one bin and cannot be subjected to analysis.
The remaining 27 distributions exhibit similar shapes to
those recorded in the main channel reach (compare Figures 4
and 7). All but two of the scour distributions recorded in the
tributary reaches are monotonic and concave and are
represented well by exponential, gamma and Weibull
models (RMSE = 2.28, 2.42, 2.24 and PPCC = 0.942,
0.948 and 0.941 respectively). Half of the Weibull and
gamma models fitted to the monotonic distributions con-
form to the exponential model (i.e., g = 1; p < 0.05). Skew-
peaked scour distributions were observed for events 2 and
9 in the upper and lower tributary reaches respectively. The
former is characterized by Weibull and gamma models that
are exponential in nature. The latter is fitted by Weibull and
gamma distributions with g > 1. Close comparisons of the
observed and fitted frequency distributions and the associ-
ated probability plots indicate that the Weibull model yields
slightly better descriptions of the skew-peaked distributions
than are provided by either the gamma or exponential
models (RMSE = 3.56, 4,26, 6.37 cm and PPCC = 0.930,
0.958, 0.973 respectively). Similar conclusions can be
drawn about the fill distributions. The shapes of all but
three are monotonic and concave; the monotonic distribu-
tions are described equally well by the exponential, gamma

and Weibull pdfs (RMSEs = 2.68, 2.88, 2.79 cm and PPCCs
of 0.960, 0.967, 0.961 respectively); the majority (64%) of
the gamma and Weibull models fitted to the monotonic
distributions conform to the exponential model, whereas
those fitted to the skew-peaked distributions do not; and the
skew-peaked distributions (from events 1, 8 and 9 in the
upper tributary reach) are best described by the Weibull pdf
(RMSE = 2.57 cm, PPCC= 0.966).

5.3. Model Evaluation

[26] Consideration of the RMSE and PPCC statistics
together with the probability plots indicate that the lognor-
mal distribution performs least well of the four theoretical
distributions under consideration. It generates the highest
RMSEs, the lowest PPCCs and the least satisfactory prob-
ability plots for both scour and fill distributions. Much
better fits are provided by the exponential, gamma, and
Weibull pdfs. In general, the observed distributions of scour
and fill are equally well represented by these alternative
models. However, more than half of the scour and fill
distributions are modeled by Weibull and gamma pdfs with
shape parameters of one rendering them equivalent to
the exponential pdf. The monotonic and concave shape of
the majority of the observed distributions suggests that the
simpler exponential model may be adequate to model the
reach–scale variability in scour and fill depths, particularly
those that occur during within-channel flow events.
[27] To examine further the suitability of the exponential

function, the similarity between the fitted and observed
distributions was tested statistically using the Anderson-
Darling test with a significance level of 0.95. The Anderson-
Darling test is used in preference to the chi-square test
because the minimum frequency requirement of the latter
often resulted in insufficient degrees of freedom to conduct
the test. The Anderson-Darling test indicates that 17 of the
28 scour distributions conform to the exponential model.
All of the scour distributions successfully modeled by the

Figure 7. Frequency distributions of scour and fill for four representative events in the (a–h) upper and
(i–p) lower tributary reaches.
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exponential pdf are concave and monotonic. Of the 11
distributions that do not conform to the exponential model,
eight are monotonic, two are skew-peaked and one is
bimodal. Failure of the exponential pdf to model the
skew-peaked and bimodal distributions is not surprising
given the constraints on the shape of the exponential model
(Table 3 and Figure 2). The failure of the exponential pdf to
model the monotonic distributions occurs because it over-
estimates the frequency of low scour depths and under-
estimates the frequency of high scour depths. The
exponential pdf is less successful at modeling the 27 fill
distributions even though they have the same general shape
as the scour distributions. Only nine fill distributions
conform to the exponential model at a significance level
of 0.05. The 18 nonconforming distributions comprise 12
monotonic and concave distributions and six skew-peaked
distributions.

6. Discussion

[28] The analysis presented above addresses the first two
questions posed in the introduction. Visual inspection of the
fitted distributions and close inspection of PPCCs and
RMSE statistics indicate that the gamma, Weibull, and
exponential pdfs provide reasonable descriptive models
for the reach-scale variability of scour and fill in the three
study streams. Interestingly, however, many of the Weibull
and gamma models conform to the exponential pdf (i.e.,
g � 1). Nearly two thirds of the 28 scour distributions
conform to the exponential model at a significance level of
0.95. The scale parameters show a correlation with dis-
charge ranging from about 1.6 at low flows to about 14.7 at
an overbank flow (Table 4). The correlation indicates that
the distributions become stretched to the right as event
discharge increases (see Figure 2a) and reflects the increas-
ing depth of scour at progressively higher flows. Surpris-
ingly, the location parameters approximate zero at all
discharges indicating that despite highly mobile sand-sized
sediment, scour did not occur across the channel bed at
discharges up to and in excess of the bank-full discharge.
This observation is contrary to the expectation that the
whole bed would be scoured at quite modest discharges

and that minimum depths of bed lowering during an event
would increase significantly with discharge (e.g., Figure 3).
[29] In contrast, although the majority of fill distributions

exhibit monotonic and concave shapes, the Anderson Dar-
ling test demonstrates a general disparity between the
exponential models and the measured distributions with
the null hypothesis (that the data conform to the models)
being rejected in 67% of the cases. That scour distributions
are adequately fitted by an exponential model, whereas fill
distributions are not raises interesting questions about the
notion of quasi-equilibrium channel form and the role of
scour and fill in effecting channel change. Detailed analyses
of the spatial patterns of scour and fill and their relationship
to longer-term measurements of channel change based on
cross-section surveys [Nichols, 1999] are being undertaken
to shed some light on this role. Interestingly, distributions of
event-based estimates of net changes in streambed eleva-
tions (i.e., � scour depths + fill depths) show similarities to
the Laplace distribution (Figure 8). The Laplace distribution
has a similar shape to the normal distribution but is more
leptokurtic. It is defined as distribution of differences
between two independent variates with identical exponen-
tial distributions [Abramowitz and Stegun, 1972, p. 930].
[30] Even for scour, there is some suggestion that there is

a change in the shape of the distribution for larger flow
events (and, particularly, overbank events). However, the
significance of these distributions cannot be assessed with
the present data set because they are too few in number, and
further data obtained at high flows are required to resolve
whether increases in flow strength generate systematic
changes in the shape of scour and fill distributions as
hypothesized in Figure 3 and suggested by Hassan et al.
[1999].
[31] For scour, the inverse relation between the exponen-

tial model parameters and peak flow can be used to produce
a model for predicting depths of scour (question three)
similar to that shown by Haschenburger [1999] for gravel
bed streams. Figure 9 shows that exponential model param-
eters collapse onto a general trend when rated against the
bed shear stress in excess of a threshold value (tc). A value
for tc was estimated from the scour chain record. As noted
above, three events in the lower tributary reach exerted

Figure 8. Frequency distributions of net change in streambed elevations for two events in the main
channel reach.
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maximum shear stresses of between 6 and 8.5 N m�2 (peak
water depths of approximately 0.05 and 0.07m, respectively).
On these occasions, the scour chains registered only limited
and patchy movement of bed material suggesting conditions
approaching incipient motion. If, in the light of this, a water
depth of 0.05 m is taken as critical and the local bed slope of
0.0173 is used, then tc = 6.1 N m�2. The resultant least
squares relation is

a ¼ 0:34 t� tcð Þ0:78:

It explains 68% of the variance (p < 0.05) and provides a
means to estimate the distribution of scour depths to a first
approximation in similar streams when only flow and
sediment characteristics are known.

7. Conclusions

[32] In this study we have undertaken a detailed analysis
of scour and fill during 10 flood events along three reaches
of low-order sand bed, dryland rivers. The density of
measurements obtained from this study exceeds that of
previous studies by two to three orders of magnitude. Our
analysis of the distributions of scour and fill depths reveals
that of four distribution functions fitted (lognormal, expo-
nential, gamma, and Weibull) all but the first of them
successfully models the distributions of scour depths. Inas-
much as the exponential distribution is the simplest of the
three successful fits, it is proposed here as an adequate
model to describe the distribution of scour depths in sand
bed channels over the range of flows studied. The inverse
relation between the parameters of this distribution and peak
excess shear stress defines a general relationship that can be
used to estimate the magnitude of scour in sand bed streams,
at least to a first approximation. The disparity between the
distributions of scour and fill raises questions about the role
of scour and fill in effecting channel change. These
questions will be addressed in a subsequent paper through
a detailed examination of the spatial patterns of scour and
fill within reaches.

Notation

a scale parameter.
g shape parameter.
G gamma function.
l location parameter.
r density of flow, kg m�3.
t shear stress, N m�2.
tc critical shear stress, N m�2.

D50 median particle size, mm.
g acceleration due to gravity, m s�2.
n number of bin classes.

Qp peak discharge, m3 s�1.
R hydraulic radius, m.
S bed slope, m m�1.
xo observed frequencies of depths falling with specified

bin classes.
xp predicted frequencies of depths falling with specified

bin classes.
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