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A recent trend in the development of flood simulation algorithms shows the move toward 
fast simplified models instead of slow full hydrodynamic models. CADDIES is a research 
project that aims to develop a real/near-real time pluvial urban flood simulation model using 
the computational speed of cellular automata (CA) algorithms. This paper presents a 
component of the software framework that is part of the CADDIES project. Its objective is 
to simplify the development of CA algorithms and their acceleration using modern high 
performance hardware and techniques. The performance results obtained on a simple case 
study clearly demonstrate the effectiveness and efficiency of the CADDIES framework. 
 
INTRODUCTION  
 
CADDIES (Cellular Automata Dual-DraInagE Simulation) is a research project that aims to 
develop cellular automata (CA) algorithms [1] for fast pluvial flood modelling. The 
objective is to improve the speed and efficiency of flood modelling that involves both urban 
surface and drainage system (2D urban surface flow and 1D sewer flow) for real/near-real 
time applications.  

Typical flood simulations use full hydrodynamic models, which are computationally 
expensive at finer resolution, and may easily take many hours to complete even if run on 
modern hardware. CA algorithms do not solve the full hydraulic equations but employ 
simple operations of the CA rules; thus execution speeds could be orders of magnitude 
faster. Furthermore, CA algorithms are well suited for parallel execution on modern high 
performance hardware, since the computation of a cell's state depends only on the previous 
state of the local neighbouring cells and its previous state.  

However, defining a complex physical model using simple CA rules and developing 
algorithms that take full advantage of the parallel computation of modern hardware is not a 
trivial process. Therefore, there is a need for a software tool that allows developers to 
prototype parallel CA algorithms rapidly. This should happen automatically so that users can 
easily profit from modern hardware architecture.  

The CADDIES project includes a new software framework that provides developers 
with various tools that simplify development of parallel CA algorithms for pluvial flood 
simulation. The framework is composed of a graphical application and a CA application 
programming interface (API). The former is used to manage and visualise input and output 
data as well interfacing with GIS [2]; thus the need for the developers to invest valuable time 
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and resources on the creation of input and output code, GIS interface and visualisation tools 
is reduced.  The CA API defines a standard set of methods, data structures and variables that 
can be used to develop parallel CA algorithms. The CA API can handle different 
implementations depending on the type of hardware and CA algorithm used. Thus it allows a 
developer to focus mainly on writing the rules of the CA algorithm, while the data 
management, parallelisation and execution of the algorithm is handled by the specific 
implementation of the CA API.  

In this paper, the design and objectives of the CADDIES CA API are presented. The 
usage of the CA API is then illustrated using as example a CA algorithm for flood modelling 
developed in the CADDIES project [3]. Then, two implementations of the CA API available 
in the CADDIES framework are introduced: a simple serial version that uses a single CPU 
for the computation and a highly parallel implementation that uses the graphics processing 
unit (GPU) for the computation. The effectiveness and efficiency of the CA API is tested by 
analysing the performance of this CA algorithm using these two implementations of the CA 
API and by comparing their performance with the one of the physical based non-inertial 
urban inundation model (UIM) developed by Chen et al.[4]. 
 
CELLULAR AUTOMATA ALGORITHM DEVELOPMENT 
 
Cellular automata offer a versatile method for deriving reduced computational load for 
models of complex physical systems [5]. A CA is a discrete model which is typically 
composed of a regular grid of cells defined by a discrete location and a set of states. The 
evolution of each cell’s state is governed by local transition rules that use the previous state 
of the cell and the previous states of the neighbouring cells of the CA. Since the computation 
of the transition rules in each cell uses the data of the surrounding cells of the previous steps 
(it does not depend on the data at the same time step), CA algorithms are well suited to 
parallel computation. 

Various CA algorithms can be defined not only by different transition rules but also by 
the underlying CA grid used. Changing the attributes of the CA grid used by the algorithm 
can change how accurately a physical system is modelled. However, it is difficult to know in 
advance which type of CA grid is more effective. 

A CA grid can vary on the following attributes: the type of cell used (rectangular, 
hexagonal, triangular, etc.); the structure of the CA grid implemented (regular, rectilinear, 
unstructured, etc.); the number of neighbourhood cell used; the type of action to execute on 
the border cells (fixed value, function, wrap-around values, etc.) and the number and type 
(e.g. discrete, continuous) of cell states. Thus, to model a physical system accurately using a 
CA algorithm, a developer needs not only to write the CA rules that best define the system, 
but also to find the best attributes of the underlying CA grid for these rules to obtain the 
most accurate results.  

 
 



CADDIES CELLULAR AUTOMATA API 
 
The two main objectives of the CADDIES CA API design are: 1) to simplify the 
development of CA algorithms for flood modelling allowing the highest flexibility possible; 
and 2) to simplify the accelerated execution of CA algorithms using modern high 
performance hardware and techniques. 

A CA algorithm written using the CADDIES CA API is composed of three parts:  
• The CA execution, which contains the loading, initialisation and management of the 

data as well as the data flow control, i.e., the main computational loop. 
• The CA transition functions, which define the transition rules of the CA algorithm, 

i.e., the computation that is executed in each cell of the CA grid.  
• The CA options, which define the attributes of the CA grid such as cell type, grid 

type, border cell type, etc.  
The main idea of the CADDIES CA API is that a developer needs to write the code of 

the CA execution and the various CA transition functions only once. After that, the CA API 
can be used to produce the same CA algorithm for any type of CA grid. Furthermore, once a 
developer has selected the rules and CA grid attributes and tested the CA algorithm using 
serial computation, he/she should be able to execute the same CA algorithm using high 
performance acceleration techniques without changing the code or with minimum effort. 

Since a code written using the CA API can produce CA algorithms that use grids of 
different attributes and run on different hardware platforms, there are going to be different 
implementations of the CA API. This will depend on the CA options and hardware targeted. 
However, run-time flexibility can result in slow code execution. To avoid that situation, the 
CA API implementation desired is chosen at compile time. This produces the fastest 
possible execution speed. 

The methods, data structures and variables of the CA API are divided in two groups, 
which are each designed to perform different tasks. The entities of the first group, based on 
C++ language (classes, objects and methods), are used in the code of the CA execution. 
While entities of the second group, based on the C language (constant, methods and macros), 
are used in the code of the CA transition functions. This difference in the language used is 
necessary, since a CA transition function can be executed on specific hardware, such as a 
GPU, where a C++ compiler might not be supported or might have a limited 
implementation.  

In the following part of this section, the use of the CA API in defining a cellular 
automaton (the CA transition function) and in the execution of the CA itself( the main loop) 
is introduced by using as example the initial two-dimensional CA algorithm developed for 
the CADDIES project [3]. In this algorithm, the movement of water is modelled by 
calculating the outflows from each cell based on ranking the water surface elevation of the 
cells within the neighbourhood.  

CA Transition Function  
A CA transition function represents the computation made in each cell, i.e., the transition 
rules. The order of computation of the cells can be arbitrary during the computation of the 



CA transition function and can be executed in parallel, i.e., multiple cells can be computed 
simultaneously. The CA grid to which the CA transition function is applied can be of any 
type, see Figure 1, and it is chosen at compile-time. 
 

 
Figure 1. Example of three CA grids with different attributes  

 
Multiple CA transition functions can be called during the execution of the CA 

algorithm. Each CA transition function can take a different number of buffers as input and 
output parameters. The values in the buffers represent the data used in the computation of 
the CA transition function. The buffers can be of different types: a cell buffer which contains 
a value for each cell of the CA grid, an edge buffer which contains a value for each edge of 
the grid, and a vertex-buffer which contains a value for each vertex of the grid. Every type of 
buffer can contain discrete (state) or continuous (real) values. It is also possible to retrieve 
the information about the attributes of the cell and the underlying grid in a CA transition 
function. For example, these could be the number of edges, edge length, the number of 
neighbours, area of cell, etc. 

During the computation of a cell, to read/write all the values of a buffer, i.e., to access 
every cell of the grid, is not permitted. It is only possible to read/write the values of a limited 
set of visible cells. The visible cells (neighbourhood) are composed of the visited cell on 
which the transition rules are computed (called main cell) and its neighbour cells. The 
number of neighbour cells depends on the attributes of the CA grid chosen.  

In a CA transition function, two types of indices, a global index and a local index, can 
be used to access the values of a buffer and the cell information. The former is used to index 
the main cell in the buffers, while the local index is used to identify a cell between the 
visible cells. The local index of the main cell is 0, see Figure 1.  

Figure 2 shows an example of the CA API usage in the code of a CA transition function. 
This function computes the outflow fluxes for each edge of the main cell given the ranking 
of the elevation and water level within the neighbourhood. The function and its parameters 
are defined in the first 4 lines. The parameters are: the CA grid, an input/output real values 
edge buffer (which will contain the newly computed outflow), and two input real values cell 
buffers (one which contains the elevation, and one which contains the water level). In line 5, 
the CA grid parameter is initialised; this parameter must be passed as the first argument of 
each method of the CA API used in the CA transition function.  

In line 6 and 7, two arrays of real values are created; the sizes of these arrays are the 
number of visible neighbours plus one and the number of edges in a cell plus one, 
respectively. The additional ones are used to store also the main cell (index 0). The values of 
these two numbers change at compile time depending on the attributes of the CA grid 



chosen, i.e., both are 4 for the first grid of Figure 1, both are 6 for the second grid and both 
are 3 for the third grid. In line 8, the global index in the buffer of the main cell, local index 0, 
is retrieved. In line 10 and 11, the values of the neighbour and the main cells from the 
elevation buffer, and the values of the edges of the main cell from the outflow buffer are 
loaded in the two local arrays, respectively. These arrays are then used as normal C-
language arrays to loop through the values/and attributes of the visible cells and edges. 
 

 1 CA_FUNCTION outflow(CA_GRID grid,  
 2                     CA_EDGEBUFF_REAL_IO OUTF, 
 3                     CA_CELLBUFF_REAL_I  ELV,  
 4                     CA_EDGEBUFF_REAL_I  WL) { 
 5   CA_GRID_INIT(grid); 
 6   CA_ARRAY_CREATE(grid, CA_REAL, aelv,  caNeighbours+1); 
 7   CA_ARRAY_CREATE(grid, CA_REAL, aoutf, caEdges+1); 
 8   CA_INDEX index = caIndex(grid,0); 
 9   ... 
10   caReadCellBuffRealCellArray(grid, ELV, aelv); 
11   caReadEdgeBuffRealEdgeArray(grid, ELV, index, aoutf); 

Figure 2. An example of CA transition function code that uses the CADDIES CA API 

CA Execution  
The CA execution contains the code that loads, initialises and manages the data using the 
main CA API. Thus, the CA grid is created in the code of the main loop. While the CA API 
is designed to have different type of CA grid during the computation of the CA transition 
functions, the CA grid in the CA execution is always considered to be a regular square grid 
to simplify the management of the data.  
 

 1 #include CA_2D_INCLUDE(outflow) 
 2 
 3 int main(...){ 
 4  ... 
 5  CA::Grid         GRID(ncols,nrows,cellsize); 
 6  CA::CellBuffReal ELV(GRID);           // Elevation 
 7  CA::CellBuffReal WL(GRID);            // Water Level 
 8  CA::EdgeBuffReal OUTF(GRID);          // Outflow 
 9  CA::Box          area(GRID.box());    // Computational Area 
10  ... 
11  while(loop) { 
12   // Execution of the “outflow” CA transition function 
13   CA::Execute::function(area,outflow,GRID,OUTF,ELV,WL); 
14   ... 
15  }} 

Figure 3. An example of CA execution code that uses the CADDIES CA API  
 

Figure 3 shows an example of the main CA API usage in the CA execution C++ code. 
In the first line, the code includes the CA transition function called “outflow”. In the main, 
the code creates a CA grid object using the class CA::Grid (line 5). The given parameters 
define the columns, rows and cell size of the CA grid. The following objects represent 
respectively two buffers (line 6 and 7) that contain a real value for each cell of the CA grid, 
which are used to store the elevation (ELV) and water level (WL) of the desired area, and a 
buffer (line 8) that contains a real value for each edge of the CA grid (CA::EdgeBuffReal), 



which is used to store the outflow fluxes (OUTF). Inside the while loop (line 13), the CA 
transition function “outflow” is called using the following arguments: the area of the grid 
where to perform the computation (the full CA grid in this example), the name of the 
function, the CA grid, the outflow fluxes buffer, the elevation and the water level buffers. 
 
CA API IMPLEMENTATIONS 
 
As previously stated, the CADDIES CA API can have multiple implementations. These can 
vary depending on the attributes chosen for the CA grid and/or on the type of hardware 
targeted. In this work, two implementations are presented. In both, the CA grid used in the 
algorithm is a regular one with square cell and one level of Von Neumann neighbourhood, 
as the first grid of Figure 1. However, they differ in the final hardware targeted. The first 
implementation creates the CA grid and the buffers using simple memory arrays, executing 
the CA transition functions on the CPU; thus the computation of the generated CA 
algorithms is set to be completely serial even if it is executed on a multi-core CPU. The 
second implementation uses the OpenCL library [6] to create the CA grid and the buffers. 
This library adds specific extension to the C language to execute code on the GPU of 
graphics cards which is highly specialised for parallel computations [7]. Thus the 
computation of the generated CA algorithms is highly parallel and run on the GPU.  

OpenCL uses the idea of an external kernel to represent a computation on a device. A 
kernel is a function that is executed by a larger number of concurrent threads, i.e., 
independent similar computations. The OpenCL library creates and manages the 
synchronisation of the kernel's threads as well the data used by the kernel. The OpenCL 
implementation of the CA API transforms the CA transition function in a kernel; thus the 
CA transition function is executed by a very large number of concurrent threads, of the order 
of thousands, which uses the graphics card memory for the cell/edge buffers. 

Figure 4 shows in simple terms the difference between the CPU implementation of the 
CA API and the GPU OpenCL implementation performing the computation of a CA 
transition function. In the case of the simple serial implementation, the CA transition 
function is executed by a single thread which performs the computation one cell a time. In 
the case GPU, the CA transition function is executed in each cell of the CA grid by an 
individual thread independently.  

 

 
Figure 4. Execution of CA transition function on a single CPU, multi-core CPU and GPU 



EXPERIMENTAL RESULTS  
 
In order to show the effectiveness and efficiency of the CA API in creating CA algorithms 
that can be easily executed in parallel on modern hardware, the performance and the 
numerical results of two implementations of the CA API are compared using the physical 
based UIM model as reference. The CA algorithm used in these tests is the one that 
computes the outflow of a cell by ranking the water surface elevation of the cells within the 
neighbourhood [3].   

The case study used in these tests is the Stockbridge area in Keighley, UK. The size of 
the area considered is around 0.4 km2. The elevation buffer is loaded using a digital 
elevation model (DEM) of 2m resolution obtained from LiDAR. The CA grid is composed 
of 377x269 cells with open type boundary set, i.e., water is free to move out if the 
topography allows. An effective rainfall of 42.3 mm/hr intensity, which corresponds to 100 
year return period with 1-hour storm duration, is applied uniformly over the terrain under 
consideration [8]. The total simulation time in these tests is three hours.  

The CA API code used to generate the CA algorithm is the same for both 
implementations. This experimental results show how is possible to easily run a CA 
algorithm with higher performance by simply changing the underlying implementation of 
the CA API used, without changing the code of the algorithm.  

The tests are executed on two hardware configurations. The first machine contains an 
Intel Core 2 Quad Q8300 (four core CPU– 2.5 GHz) and NVIDIA GeForce GTX 285 GPU 
(240 CUDA cores – 648 MHz) which runs an Ubuntu 10.04 64bit Linux system.  The 
second machine contains Intel Core I5-2500K (four core CPU – 3.2 GHz) and NVIDIA 
GeForce GT 550 TI (192 CUDA cores – 900 MHz) which runs Windows 7 64bit system. 

  
Table 1. A performance and accuracy comparison of the two different CA API 
implementations applied to the same CA algorithm 

 UIM Simple Serial OpenCL 
M Time (s) Time (s) Sp

UIM RMSE (m) Time (s) Sp
Ser Sp

UIM RMSE (m) 
1 10371.1 280.9 36.9 0.027 50.8 5.5 204.2 0.027 
2 5885.7 161.6 36.4 0.029 44.5 3.6 132.3 0.029 

 
Table 1 shows the runt time of UIM and the average run time of ten executions of the 

CA Algorithm tested on the two machines using the two different implementations. 
Furthermore it shows the speed-up of the two implementations over UIM (Sp

UIM) and the 
speed-up of the OpenCL implementation over the serial one (Sp

Ser). The CA algorithm that 
uses the simple serial implementation is over thirty times faster than the UIM model. 
Furthermore the CA algorithm that uses the GPU for the main computation, i.e., the OpenCL 
implementation, runs between three to six times faster and thus over 100 times faster than 
UIM. The difference in speed-ups between the two machines is due to the difference in 
performance between the CPU and GPU installed. Table 1 also shows the root mean square 
error (RMSE) value of the maximum flood inundation of each test using the depth given by 



the UIM model. The CA algorithm produces numerical comparable results, irrespective of 
the CA API implementation used. 

CONCLUSION 

This paper introduces the cellular automata application programming interface (CA API) 
that is part of the software framework of the CADDIES project. Thanks to the methods, 
variables and class of this API, it is possible to simply develop CA algorithms for flood 
simulation that use different types of CA grid. Thus a developer can mainly focus on finding 
the CA rules and the CA grid that best model the desired physical system. The tests 
performed show that CA based algorithms for pluvial flood modelling can be more than an 
order of magnitude faster than physical based model such as UIM. Furthermore, by using the 
CA API it is possible to accelerate even more any CA algorithm produced effortlessly once 
the code is written. 

ACKNOWLEDGMENT 

The authors would like to acknowledge the funding provided by the U.K. Engineering and 
Physical Sciences Research Council, grant GR/J09796 (Cellular Automata Dual Drainage 
Simulation, CADDIES). The authors would like to thank the U.K. Environment Agency for 
supplying the LiDAR datasets. 

REFERENCES 

[1] Ilachinski, Cellular automata: a discrete universe. World Scientific Pub Co Inc, 2001. 
[2] M. Guidolin, A. Duncan, E. Keedwell, A. S. Chen, S. Djordjevic, and D. Savic, “Design 

of a graphical framework for simple prototyping of pluvial flooding cellular automata 
algorithms,” in Urban Water Management: Challenges and Opportunities, Exeter, 
2011, vol. 1, pp. 205-210. 

[3] B. Ghimire, A. S. Chen, S. Djordjevic, and D. Savic, “Application of cellular automata 
approach for fast flood simulation,” in Urban Water Management: Challenges and 
Opportunities, Exeter, 2011, vol. 1, pp. 265-270. 

[4] S. Wolfram, “Cellular automata as models of complexity,” Nature, vol. 311, pp. 419-
424, Oct. 1984. 

[5] A. Munshi and others, “The OpenCL specification version 1.1,” Khronos OpenCL 
Working Group, 2011. 

[6] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, “GPU 
Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879-899, May 2008. 

[7] B. Ghimire, A. S. Chen, M. Guidolin, S. Djordjevic, and D. A. Savic, “A New Two-
Dimensional Cellular Automata Approach For Fast Urban Flood Inundation 
Modelling,” in Understanding Changing Cimate and Environment and Finding 
Solutions, Hamburg, Germany, 2012. 

[8] A. Chen, S. Djordjevic, J. Leandro, and D. Savic, “The urban inundation model with 
bidirectional flow interaction between 2D overland surface and 1D sewer networks,” 
NOVATECH 2007, 2007 


