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Abstract:  The excitation of ‘designer’ surface-plasmon-like modes on 
periodically perforated metals is demonstrated at microwave frequencies 
using the classical method of prism-coupling.  In addition we provide a 
complete formalism for accurately determining the dispersion of these 
surface modes.  Our findings fully validate the use of metamaterials to give 
surface plasmon-like behavior at frequencies below the visible. 
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1. Introduction  

The excitation of electromagnetic (EM) surface waves confined at a conductor-insulator 
interface has been the subject of extensive research since the late 19th Century [1,2] including 
the 1902 observations by Wood of ‘anomalous’ dark bands in the TM- (transverse magnetic) 
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polarized reflectivity spectra from ruled metal diffraction gratings [3].  Yet his results had to 
wait nearly forty years before theory [4] provided an explanation – the excitation of surface 
plasmons (SPs).  A further twenty-five years passed before the seminal work of Otto. He used 
an attenuated total reflection technique [5] to couple visible light to a SP on a smooth metal 
film.   In the visible domain, SP fields are strongly enhanced at the metal-dielectric interface 
and decay exponentially with distance into the media either side (~10–2λ in the metal, and  
~10–1λ in the dielectric) [6]. In the terahertz and microwave regimes, metals have 
conductivities close to their dc values, and therefore almost perfectly screen the incident 
radiation.  Therefore the fields associated with the surface mode may extend for many 
hundreds of wavelengths above the interface. In this limit, the mode may be reasonably 
described as a grazing photon.  However it has recently been demonstrated [7-10] that if one 
carefully structures metal-dielectric composites on a subwavelength scale (‘metamaterials’), 
EM properties can be engineered for which there is no naturally occurring material equivalent.   

      The idea of structuring metal surfaces to gain new EM properties is clearly not a new 
one.  Examples include the measurements of Palmer et al. [11], who recorded the reflectivity 
of radiation of 4 mm wavelength as a function of the angle of incidence from metal gratings of 
rectangular profile and observed dark anomalies that became wider as the groove depth was 
increased.  These features occurred within a fraction of a degree from the angle at which a 
diffracted order becomes tangential to the surface (and ceases to propagate).  They explained 
this phenomenon using a theory based on “surface wave modes which are supported by the 
rectangular periodic structure of the grating”.  A few years later, Ulrich and Tacke [12] 
determined the band structure of the surface modes supported by a thin metallic mesh, 
demonstrating that the surface mode supported only exhibits significant curvature from the 
light line in the vicinity of the Brillouin zone boundaries.   It is important to realize that the 
surface waves studied by both Palmer et al., and Ulrich and Tacke only show dispersion due 
to diffraction effects (i.e., the photonic band gaps).  The importance of our study is that the 
modes considered exhibit very strong dispersion and surface localization far away from the 
Brillouin zone boundaries.   

 Pendry et al. [9,10] originally reignited interest in low frequency surface modes, 
proposing that a simple, non-diffractive array of holes can provide the conditions required to 
confine a wave to the interface even in the limit of perfect conductivity.  They showed that if 
the holes are sufficiently small to support only evanescent fields (i.e., below their cut off 
frequency), with a periodicity much smaller than the incident wavelength, then the surface 
waves supported are governed by an effective surface plasma frequency, νSP, dictated 
primarily by their cut off frequency, and have a frequency dependent permittivity similar in 
form to that of real (Drude) metals.  Since these modes can be engineered to occur at almost 
any frequency, but are analogous in many ways to the conventional surface plasmons that 
propagate on metals in the visible, they are labelled designer surface plasmons.   

 The observation of these SP-like modes was initially corroborated by experiments in 
the microwave domain using grating coupling [13], rather like the observations of Wood’s [3] 
in the visible domain.  However the ultimate test of this new idea is to use, as did Otto [5] 
(and also Ulrich and Tacke [12]), simple prism coupling.  By recording the largely 
unperturbed dispersion curve, Otto was able to compare for the first time his experimental 
dispersion with that derived analytically. Both of these two key issues are explored in this 
paper for our plasmonic-like metamaterial.  Firstly we use a prism-coupling technique to 
experimentally determine the dispersion of these designer SP-like modes, having designed the 
sample and experiment to ensure that the mode is largely unperturbed by diffraction.  
Secondly, we compare experimental and numerical results to a new analytical model. 

2. Method 

A large wax prism, of refractive index n = 1.5, is used to couple collimated microwave 
radiation on to a metal surface perforated with an array of holes (Fig. 1). For TM-polarized 
incident radiation and a suitable tunnel barrier (established by spacing the prism some t 
millimeters from the sample), with the microwave beam incident beyond the critical angle of 
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the prism, ( )1
int sin 1 nθ −> , the evanescent fields beyond the prism will resonantly couple to 

the SP-like mode on the surface of the array, and a minimum will be recorded in the reflected 
spectrum. By varying the spacing between the prism and the sample, and recording the 
frequency of the reflectivity minimum, the in-plane wave vector of the mode, k� , may be 

extracted. Repetition of this measurement for different incident angles allows for a good 
approximation of the surface mode’s dispersion to be derived.  

 

 
Fig. 1. (a) Schematic of the experimental set-up.  (b) Photograph of sample surface and 
experimental coordinate system, where a = 6.96 mm and d = 9.53 mm. 

 
For the case where the holes in a perfectly conducting surface are of infinite length, 

h → ∞ , the asymptotic limit is given by 

 1 2
SP h2c aν ε=  (1) 

where each tube has side length a and is filled with a dielectric of relative permittivity, εh.  In 
order to calculate the dispersion of the surface modes, one may make the approximation that 
the waveguide modes are completely confined to the cavity [9,10]: a valid approximation if 
the fields in the region above the surface result entirely from specular reflection (i.e., far from 
the diffracting regime, periodicity d « λ  ).  A further simplification can be made by assuming 
that the first wave guide mode (i.e., TE01) will dominate in the cavity since it is the least 
strongly decaying.  In these approximations Pendry et al. [9] showed that the in plane wave 
vector of the surface mode is given by 

 
1 2

2

0 2 2
SP

1k k βν
ν ν

⎛ ⎞⎡ ⎤= +⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠
�  (2) 

where 0 2k π λ=  and 4 4 4
h64a dβ π ε= . Subsequently García de Abajo and Saenz [14] also 

provided an exact derivation of the dispersion relation for small, infinitely deep holes in the 
long wavelength limit by representing the holes by effective dipoles [15].  The coefficient has 
to be changed substantially to  

 ( )4 4 4
h4 a dβ π ε= Γ  (3) 

where  

 ( ) ( )
21 1

3 1 3 1
e mRe Rea aα α

− −− −⎛ ⎞⎡ ⎤ ⎡ ⎤Γ = +⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠
 (4) 

and αe and αm are the electric and magnetic polarizabilities of the effective dipoles.   
Our 350 × 350 mm sample is a close-packed array of hollow, square-ended brass tubes of 

side d = 9.53 mm and length h = 15 mm, placed on a flat metal plate. The inner size of the 
tubes is a = 6.96 mm giving νSP ~ 22 GHz when unfilled, with the onset of diffraction at the 
Brillouin Zone boundary, { }diff 10 2 15.7 GHzc dν = = .  In order to satisfactorily separate the 

diffractive effects (photonic band gap) from the plasmonic behavior, it is necessary for the 
effective surface plasma frequency νSP to be significantly suppressed below νdiff.  This is 
achieved by firstly filling the tubes with wax (εh = 2.29) to lower νSP to approximately 14 

#101802 - $15.00 USD Received 19 Sep 2008; revised 7 Nov 2008; accepted 21 Nov 2008; published 25 Nov 2008

(C) 2008 OSA 8 December 2008 / Vol. 16,  No. 25 / OPTICS EXPRESS  20443



GHz.  We then rotate the plane of incidence by φ = 45º around the z-axis so that it lies along 
one diagonal axis of the square tubes (Fig. 1).  Thereby we increase the onset of diffraction to 

{ }diff 11 2 22.3 GHzc dν = =   at the Brillouin zone boundary.  

3. Results and discussion 

A typical data set is illustrated in Fig. 2(a) (θint = 46.5º, φ = 45º, t = 10 mm) and is in excellent 
agreement with the finite element method (FEM) model predictions [16] using the parameters 
given, and setting the conductivity of brass to 1.5 × 107Sm−1.  Note that the frequency of the 
surface mode has exceeded the infinite-length cut off frequency of the waveguides (solid 
vertical line), and appears to have approached that associated with the finite length tubes 
(broken line).  In Fig. 2(b) we plot the EM fields associated with the resonance of the SP-like 
mode at  14.6 GHz.  The electric field, plotted at a phase corresponding to maximal field 
enhancement, and the Poynting vector distributions are shown.  Strong localization of the 
mode at the surface is clearly evident, with exponential decay of the fields away from the 
interface.  Furthermore, the electric field-line loops are also highly reminiscent of SP-like 
character.  However the non-zero power flow across the surface suggests that the mode has 
not yet reached its true asymptotic value (at which its group velocity 0d dkν = ), a result that 
becomes evident below when we determine the full dispersion curve.  

 

 
Fig. 2.  (a) Reflection spectrum from the sample surface for θint = 46.5º and φ = 45º (where φ is 
the angle between the plane of incidence and the xz-plane) (squares).  The predictions of the 
FEM model are also shown (line).  The solid vertical line corresponds to the cut off frequency 
of an infinite length guide, Eq. (1), filled with εh = 2.29 and the dimensions previously 
described.  The broken vertical line corresponds to the modified νSP associated with complete 
confinement of the waveguide mode to the truncated cavity.  (b) EM field predictions on the 
plane of incidence of the mode at 14.6 GHz.  The greyscale on the left shows the electric field 
at a phase corresponding to maximal field enhancement.  The lightest shading indicates field 
intensities of at least five times the incident field. The plot on the right shows the Poynting 
vector (magnitude and direction) on resonance. Here the lightest shading corresponds to power 
enhancements of at least ten times.   

 
Returning to our experiment, for a fixed angle of incidence θint, we record a series of 

reflectivity spectra for different tunnel gaps t.  We determine the resonant frequency at the gap 
spacing for which coupling to the mode is strongest, and then repeat the procedure for a 
number of different angles, 1 1

int sin ( )nθ − −>   (Fig. 3, circles).  In the same manner we extract 
the optimum coupling frequencies from the reflectivity spectra predictions of the FEM model 
[15] (Fig. 3 inset: grey line).  The circles (data) and grey line (FEM model) are in excellent 
agreement. At the largest angles, both experiment and modeled data exhibit a small decrease 
in the resonant frequency with increasing wave vector.  These points correspond to the 
smallest tunnel gaps (typically only a few millimeters for θ ~ 55º) for which the penetration of 
the resonant fields into the high index prism becomes significant.  Ideally, rather than 
recording the resonant frequency at the optimum coupling condition, one would increase the 
tunneling gap t and note the limiting frequency at which the influence of the prism is no 
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longer significant.  However coupling to the mode is often so weak in this limit that it makes 
accurate determination of the frequency impossible.  Therefore we need to confirm the 
experimental validity of determining the dispersion via the optimum coupling condition.  This 
is satisfactorily achieved by modeling the dispersion of the surface mode in the absence of the 
prism using the Eigen mode solver of the FEM software [15] (Fig. 3 inset: broken line), and 
comparing this to our experimental result.  There is clearly very good agreement of the Eigen 
mode with experiment for 1380 mk −<� . 

 

 
Fig. 3.  Dispersion curves of the SP-like mode determined from experiment, and numerical and 
analytical models, when φ = 45º.  Frequency is plotted against wave vector along the surface of 
the sample.  The data points derived from the experiment (optimum coupling condition) are 
shown as circles, and the straight line represents the air light line.  The dashed and dotted 
curves correspond to the analytical solutions provided in Refs. 9 (and 10), and 12 respectively.  
The solid curve represents the solution of the analytical formalism provided in the present 
study, Eq. (7).  The inset provides a comparison between the FEM modelled results on the 
same axes as the main diagram.  The data points from the optimum coupling condition are 
shown as a solid grey line, whereas the broken line represents the Eigen mode solution in the 
absence of the prism. 

 
4. Comparison to theory 

Predictions of the surface mode dispersion from the analytical theories discussed above [9, 10, 
14] are also plotted in the main part of Fig. 3.  These analytical models clearly do not 
adequately describe our data.  This is because, within their derivation, all three models contain 
inherent approximations which are invalid here. They are formulated to be exact in the long 
wavelength limit for narrow, deep holes (i.e., a « d « λ « h), whereas in the present study, a = 
6.96 mm, d = 9.53 mm, h = 15 mm and λ ~ 20 mm.  It is therefore clear that a more general 
formalism is required in order to describe the dispersion of these SP-like modes close to the 
asymptotic frequency.  We achieve this here without the a priori assumptions intrinsic to Refs. 
9, 10 and 14.  In brief, we define general expressions for the EM fields in the regions either 
side of the interface and then match boundary conditions.  In the semi-infinite vacuum region, 
the electric and magnetic fields are expressed as two dimensional Fourier-Floquet expansions 
for the set of evanescent diffracted orders.  Each order is described by a wave vector 
component normal to the surface given by  

 , 2 2 2 2
0( ,) ( 2 / ) ( 2 / )m n

z x yk k k m d k n dπ π= − + − +  (5) 

where m and n are integers and kx and ky describe the wave vector components parallel to the 
surface. Since we are interested in the dispersion of a propagating surface mode, we assume 
kx and ky to be real.  Inside the finite depth cavities the fields are represented by a sum over the 
evanescent waveguide modes, where each mode is described by propagation constant  

 , 2 2 2 2
0( ,) ( / ) ( / )s t

z hq k s a t aε π π= − −  (6) 
where s and t are non-negative integers.  The electric fields in vacuum (vac) and cavity (cav) 
regions may be then written as: 
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x x z

m n
vac m n m n
y y z

m n
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x x z z
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cav s t s t s t
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ψ

ψ
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ψ

= −

= −

⎡ ⎤= − −⎣ ⎦
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∑

∑

∑
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 (7) 

where 

 

1

2

3

1 2

1 2

1 2

2 2( , ) ,

( , ) cos sin ,

( , ) sin cos .

exp expx y
m nx y i k x i k y
d d

t ys xx y
a a

t ys xx y
a a

π πψ

ππψ

ππψ

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞= + ⋅ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8) 

 

We can obtain the z components of the electric field inside and outside the cavity, and 
subsequently expressions for the magnetic field, through the free space Maxwell’s relations. 
One can eliminate the set of unknowns , , ,, ,m n m n s t

x y xA A B and ,s t
yB  by applying the continuity at 

the vacuum-substrate interface (i.e. 0z = ) of x and y components of the electric and magnetic 
fields  over the entire unit cell over the aperture, respectively. Solving these coupled equations 
in the normal fashion yields the dispersion relation. In principle any number of waveguide 
modes and/or diffracted orders can be included in the calculation.  In Refs. 9 and 10, the 
authors consider only the TE01 (i.e., s = 0, t = 1) waveguide mode.  Furthermore, in the region 
of interest here, near the cut-off frequency of the TE01 mode, the higher order waveguide 
modes are very strongly evanescent (i.e., qz

s,t is large and imaginary) and have little effect on 
the surface mode dispersion. In Refs. 9 and 10 the authors also consider only the specular 
field outside the cavity (i.e., m = n = 0). This is a strict assumption, valid only in the long 
wavelength limit (i.e., λ » d), which is not the case for our sample.  It is, however, 
straightforward to include higher order diffraction in our derivation of the dispersion relation, 
resulting in  

 ( ) 0,1

0,1

2 , 2
2
0 ,

,

tan( )( )2 1,
m n

z
y m n

z zm n

i hq Snk k
d k q
π⎛ ⎞

− + =⎜ ⎟
⎝ ⎠

∑  (9) 

where  

 
( )( ) ( )( )

( ) ( ) ( )( )
,

2 22

2 22

2 2

sin cos4 x ym n

x y

a k m d a k n d

k m d a k n d
S

a d

π π

π π π
π + +

+ − +
= . (10) 

Here Sm,n is termed the overlap integral between the TE01 waveguide mode inside the cavity 
and the (m,n) diffracted order outside the cavity.  

For infinitely deep holes (h = ∞), the term itan(hqz
0,1) in Eq. (9) tends to –1. For holes of 

finite depth, it is the itan(hqz
0,1)  term that modifies the asymptotic frequency νSP, accounting 

for the quantization of electric field in the z direction discussed qualitatively above.  It should 
be noted that, in the limit where only the specular diffracted order (i.e., m = n = 0) is 
considered, together with infinitely deep holes and ky = 0 (i.e., dispersion in the x direction), 
Eq. (9) simplifies to that found in Refs. 9 and 10. In practice, a more accurate dispersion 
relation is obtained by including first order diffraction by summing the terms in Eq. (9) for m 
and n from –1 to +1. Including first order diffraction and the finite hole depth, we calculate 
the dispersion predicted for our sample from Eq. (9) in the direction given by φ = 45°, where 
ky = kx.  The results from this analytical dispersion are plotted in the main part of Fig. 3 (solid 
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line) and clearly give an excellent fit to the experimental data, accurately reproducing both the 
curvature and asymptote (νSP ≈ 14.9 GHz). It should be noted that the relation provided in Eq. 
(9) is very general, valid for square arrays of holes of any size and depth, near the cut off of 
the holes.  Interestingly, the character of the metamaterial designs studied here limits the 
divergence of the mode’s dispersion from the light line for frequencies well below the 
asymptote.  As a result, their dispersion exhibits a much faster approach to the asymptotic 
frequency than an “intrinsic” SP supported by a flat, real metal [17].  

5.  Conclusions 

In conclusion, we have provided a novel study of the dispersion of surface waves on 
plasmonic metamaterials close to their effective surface plasma frequency using the Otto 
prism coupling technique.  Unlike previous studies, which at first sight may appear similar, 
the deviation of the surface mode’s dispersion from the light line is not induced by photonic 
band gaps at the Brillouin zone boundaries.  Importantly we have also employed two 
techniques to ensure that the mode’s plasmonic-like dispersion is not perturbed by photonic 
effects.  These microwave metamaterial surfaces are thus analogous in many ways to smooth 
metal surfaces in the visible and IR.  As such, our unique microwave experimental techniques 
mirror the seminal prism-coupling work undertaken by Otto for conventional surface 
plasmons.  By employing a modal matching method, we have developed a general formalism 
for determining the dispersion of the surface modes, which shows very good agreement with 
our measured dispersion.   

The capability to confine electromagnetic energy at the interface of a conductor makes these 
“designer” SPs very promising for applications where efficient guiding of electromagnetic 
radiation on very small length scales is important. These may include sub-wavelength 
microscopy, non-linear optics, photolithography and sensing.  Applications that involve the 
slowing or even storing of telecommunication signals (e.g., Ref. 18) will also benefit from 
these results. 
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