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Abstract:  Metal surfaces, which are generally regarded as excellent 
reflectors of electromagnetic radiation, may, at high angles of incidence, 
become strong absorbers for transverse magnetic radiation. This effect, 
often referred to as the pseudo-Brewster angle, results in a reflectivity 
minimum, and is most strongly evident in the microwave domain, where 
metals are often treated as perfect conductors. A detailed analysis of this 
reflectivity minimum is presented here and it is shown why, in the limit of 
very long wavelengths, metals close to grazing incidence have a minimum 
in reflectance given by ( )212 − . 
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1. Introduction  

The reflectivity of metals has long been a subject of scientific research. Recently there has 
been a resurgence of interest in this area. In the visible domain this has arisen primarily as a 
result of Ebbesen and coworkers observation of strongly enhanced transmission through holey 
metal films [1]. Further interest has also been stimulated by Pendry’s suggestion of using 
metals as perfect lenses [2] while at much the same time the same author [3] has re-stimulated 
general interest in the idea of negative index materials and consequentially the possibility of 
‘cloaking’ [4]. Another proposal that structured perfect metals may support surface modes [5] 
has also stimulated further work at longer wavelength [6]. It is in the context of this interest in 
metals, and in particular structured metals, as very interesting electromagnetic materials that 
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we wish here to revisit the well-known problem of the simple reflectivity of metals for 
transverse magnetic or p-polarised radiation. 

One of the best treatments of the reflectivity of metals to be found in any textbook is given 
by Stratton[7], although a more comprehensive coverage of the minimum in reflectivity for p-
polarised radiation is given by Humphreys-Owen [8]. The central issues are: (i) What is the 
minimum p-polarised reflectivity for a metal? and (ii) at what angle of incidence does it occur. 
In addition, we shall address the question of why the minimum in reflectance at long 
wavelengths is exactly ( )2

12 − . 
The general Fresnel amplitude reflection coefficient for p-polarised light incident on a 

planar interface between a dielectric, relative permittivity 1ε , and a metal, complex relative 

permittivity ( )irm iεεε += , is given by: 
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(1) 

If we define 1εεα m= and θ2tan=T  equation (1) can be recast as: 
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where ( )TA 1−+= αα . From this the reflectivity,
∗= ppp rrR  may be readily computed. Results 

for the visible, infra-red and microwave domain are illustrated in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1.  p-polarised reflectivity from a planar surface as a function of incident angle (θ) for an 
interface between air and silver described by a Drude model with ωp = 1.32×1016 rad/s and τ = 
1.45×10 14 s at wavelengths of 600 nm, 60 microns and 6 mm. Also shown are data for a 
wavelength of 600 nm with permittivity values taken from Palik [9] of εr = 13.91, εi = 0.93. 
(Inset: reflectivity as a function of tan(θ) [log scale]). 

In each case a clear minimum in the reflectivity is visible, with that minimum progressing to 
higher angles as the wavelength, and consequently the magnitude of the permittivities, is 
increased. 

Here we are interested in exploring in some detail this minimum. To find the properties of 
this minimum all that is required is to differentiate Rp with respect to θ  or, in this case tan(θ), 
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T, and find the real solutions for which this differential is zero. A little mathematical 
manipulation leads to the solution: 

( ) ( ) 0=−+− ∗∗∗ TATA αααα . 

This can re-expressed after substituting in ir iααα += and ( )TA 1−+= αα , as; 

( )( ) 013
2

1 2223
22

=++−+⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
− TTT ir

ir

r αα
αα

α  

Finally substituting in the material parameters leads to the cubic: 
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(2) 

This may be shown to be identical in form to equation 13 in Humphreys-Owen’s paper, with 
the substitution 11 =ε . 

Of course equation (2) normally admits three solutions for T but generally only one of 
these will be purely real while the remaining two constitute a complex conjugate pair. It is the 
real one which is of primary interest here as we are looking for a real angle solution.  

We next examine the reflectivity minimum for limiting cases: 

a. Visible domain, for a metal for which 1,εεε ir >>  and 0<rε  
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, in which case one solution is 
1ε

ε rT = , which is 

negative and thus tan θ is imaginary. This solution has some interest however as, it gives: 
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Fig.  2.  Reflectivity minimum due to surface plasmon (SP) excitation using the Kretschmann-
Raether [11] geometry (inset). Light of 600 nm wavelength is incident upon a 50 nm thick 
silver film (εr = 13.91, εi = 0.9255) through a glass prism (n = 1.5) with air bounding. The SP is 
excited at a particular internal angle (measured from the normal to the interface) giving a 
reflection minimum. 
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This is the well known surface plasmon [10] condition (Brewster angle for a metal with pure 
real permittivity). Though the angle at which the surface plasmon excitation occurs is 
imaginary it can be excited at real angles if some momentum enhancing method is utilized 
such as the well known Kretschmann-Raether [11] geometry. In this case a reflection 
minimum can also occur (Fig. 2), but the physics behind this minimum is very different to that 
of the pseudo-Brewster angle discussed in this paper. 
There are two other solutions which take the form:  
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Even with 0<rε one of these two solutions is also negative, leaving only one real solution 

− the one we seek. Substituting in values of −20 for rε and 1 for 1ε  gives a θ value of 77°, 
which agrees with model calculations obtained using Eq. (1).  

b. Infra-red region, for a metal for which 1εεε >>≈ ri  and 0<rε  

For most metals in the infra-red region of the spectrum there is a wavelength at which the 
magnitude of the real part of the permittivity becomes equal to the magnitude of the imaginary 
part of the permittivity. For the Drude model used here to approximately describe the 
frequency dependent permittivity of silver this occurs at a wavelength of 27.3 μm, at which 

18300== ir εε . In this situation Eq. (2) can be approximated as: 
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Fig. 3. The angle (open squares) and reflectivity (solid squares) at the reflectivity minimum as 

a function of ir εε = . The angle of the minimum is observed to rapidly approach grazing 

incidence, whilst the reflectivity of the minimum asymptotically approaches 44.7%. Inset: The 
reflection minimum for the case when 18300== ir εε  which occurs at a wavelength of 27.3 

μm for the Drude model with the parameters used here. 
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c. Microwave domain, for a metal for which 1εεε >>>> ri  or 1nkn >>≈  

Finally we consider the microwave region of the spectrum, a domain in which metals are 
often considered as perfect conductors, and as such as perfect reflectors. In this case equation 
2 becomes: 
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whereupon 1εε iT = .  

Substituting this back into Eq. 1 gives   
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which leads directly to ( ) %16.1712
2

=−=pR . 

For both cases b and c above the reflectivity minimum tends to a very high angle and the 
reflectivity toward a limit value. In the case of the microwave domain this limit value is given 
by ( )2

12 − , but what is the physics of this limit value? This is the question we now address. 

Consider p-polarised radiation of wavevector 0k  incident onto a surface at an angle θ. The 

incident medium has index n1 (purely real) and the metal has permittivity ( )irm iεεε += . 

Define normalized k vectors ( 0/ kkk =′ ) such that 00 // kkkkkkk zizrzizrz +=′+′=′  with 

normalized (conserved) in plane wavevector θsin1nkx =′ . 

This gives θεε 2
1

22 sin−=′−′ rzizr kk  and izizrkk ε=′′2 . Combining these gives a quadratic 

equation: 
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Inside the metal the field is described by ( )( ) zkzikxik
x

zizrx eeeiBAE −+= zxE ˆ),ˆ , and consequently 

( )( ) 0=−++=⋅∇ xzizrxx EkikiBAEikE . Resulting in 0=xE  or ( )( ) 0=−++ zizrx kikiBAik . 

The second of these solutions results in the following equations: 
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We now require solutions for the field components when ri εε >>  and 1εε >>i .  
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Thus the phase difference between Ex and Ez in the metal is 45°, the key result, as it means 
that the incident field in which Ex and Ez are in phase cannot match the fields inside the metal. 
Stratton points this out on p523 although it appears to have been largely overlooked. A 
reflected field is now essential.  

From Eqs. (3) and (4) inside the metal we have 4
1 sin

π
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ixz eEE = , whilst in the 

incident dielectric medium: θcos=in
xE , θsin=in
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z EE = , where 

we assume an incident field of 1 and 0E  is the electric field reflected from the interface. The 

superscripts ‘in’ and ‘ref’ refer to the incident and reflected fields respectively. Since 
tangential E is conserved we have xo EE =− θθ coscos or  
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o

EE =− . (5) 

Normal D is also conserved, and since ED  ε= and, in the wavelength range of interest, 
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Combining Eq. (5) and (6) leads to  
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Then the reflected intensity is  
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It is now a simple matter to find the minimum with respect to C, which occurs when C2 = 1. 

Taking this solution gives: ( ) %16.1712
2

=−=refI  as predicted. (Note this also gives 12 min −=pr , 

and 1cos1 =θεε i , which can be rewritten as 1tan εεθ i≅ and is the same as was obtained 

when solving the cubic.) The minimum value of 17.16% and the dependence of the angle of 
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the minimum on iε  is demonstrated in Fig. 4 in which the reflectivity curves for various 

values of εi are plotted as functions of tan θ (log scale). 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Fig. 4. Reflectivity curves for various values of εi as functions of tanθ (log scale) with 
11 =ε and 40000−=rε  (such that for the curve with 7101×=iε the system approximates that 

for silver at a wavelength of 1cm). The asymptotic limit of the minimum reflectance of 17.16% 

when 1εεε >>>> ri  is clearly evident. Inset: tan(θ) (log scale) as a function of iε (log scale) 

demonstrating the validity of the equation obtained for the angle of the reflectance 

minimum 1tan εεθ i≅  in this limit. 

In summary we have drawn attention to the curious minimum in the p-polarised 
reflectivity of metals which, at long wavelengths, gives an elegant solution for the reflectivity 
of ( )2

12 − . It has been shown that, because of the 45° phase difference between the normal 
and tangential components of E within a metal at these wavelengths, the reflected field can 
not be zero since the incident field has no out of phase components to match the fields at the 
boundary.  The minimum reflectivity of ( )2

12 − follows from this 45° phase difference. It 
should be noted, however, that this minimum limit on the reflectivity is only true for a single 
interface planar system. If the interface is structured in some manner this minimum value can 
be lowered. 
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