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Abstract

Methods of equivariant bifurcation theory are applied to Boussinesq convection in a plane layer
with stress-free horizontal boundaries and an imposed square lattice periodicity in the horizontal
directions. We consider the problem near the onset of instability of the uniform conducting state
where spatial roll patterns with two different wavelengths in the ratio 1 :

√
2 become simultaneously

unstable at a mode interaction. Centre manifold reduction yields a normal form on C4 with very
rich dynamical behavior. For a fixed Prandtl number P the mode interaction occurs at an isolated
point in the parameter plane (R,L) (where R is the Rayleigh number and L the length of the
horizontal periodicities) and acts as an organizing center for many nearby bifurcations. The normal
form predicts appearance of many steady states and travelling waves, which are classified by their
symmetries. It also predicts the appearance of robust heteroclinic networks involving steady states
with several different symmetries, and robust attractors of generalized heteroclinic type that include
connections from equilibria to subcycles. This is the first example of a heteroclinic network in a
fluid dynamical system that has ‘depth’ greater than one. The normal form dynamics is in good
correspondence (both quantitatively and qualitatively) with direct numerical simulations of the full
convection equations.

Key words: mode interaction, steady-state bifurcation with symmetry, centre manifold reduc-
tion, Boussinesq convection, robust heteroclinic network

1 Introduction

Thermal convection, a common and important phenomenon in nature, is a subject of intensive scientific
investigation for more than a century. It was investigated by a variety of analytical (asymptotic,
perturbation, multiscale, etc.) and numerical methods, as well as by experimental work. Convection
is a source of new ideas, for example, on pattern formation and on transition from order to chaos and
from laminar to turbulent flows.
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In this paper we consider fluid in a non-rotating plane horizontal layer heated from below, assuming
Boussinesq approximation, whereby variation of density is neglected in the mass conservation equation
and flows are regarded as incompressible. For small Rayleigh number, R, (proportional to the temper-
ature difference between the horizontal boundaries) fluid is at rest and heat is transferred by thermal
diffusion only. When R exceeds the critical value, fluid motion in the form of two-dimensional rolls
sets in. We assume periodicity in horizontal directions with equal periods, such that instabilities with
respect to rolls aligned along edges and along diagonals of the periodicity cell occur simultaneously
(for the same value of R). Spatial periods of these critical modes are in the ratio 1 :

√
2.

For a square periodicity cell the symmetry group of the system is D4 ⋉ T2 × Z2 and the center
eigenspace is C4. We derive a general third order ODE (a normal form) commuting with the action
of the group on the center eigenspace, and study its bifurcations. The system has a large variety
of steady states and travelling waves, which are classified by their symmetries. It can also possess
heteroclinic connections forming complex networks. We derive sufficient conditions for existence of
some of these connections.

Steady states emerging in a D4 ⋉ T2 × Z2-symmetric system on C2 have been considered by a
number of authors; notably [24, 21, 22], and bifurcations in a D4 ⋉ T2-symmetric system (to which
equations of non-Boussinesq convection are reduced) involving 1 :

√
2 mode interaction were studied

in [20]. The Boussinesq case is richer, in particular, it gives rise to more steady states than found in
[20]. We note that a number of other authors (e.g., [7, 6, 21, 22]) have considered related bifurcations
to planforms for periodic boundary conditions on a square lattice.

We apply our results on bifurcations in the general normal form to the particular case of Boussinesq
convection, considering the normal form for the values of coefficients calculated by the center manifold
reduction of the equations of convection. We obtain bifurcation diagrams of the behavior near the
mode interaction in terms of three parameters that generically unfold the problem, which are the
Rayleigh number R, the domain size L and the Prandtl number P . We study attractors of the
reduced system when the growth rates of roll modes (depending on R and L) are varied and P is
fixed. This study was performed for several values of Prandtl number.

In addition to steady states and periodic orbits, the system possesses several types of heteroclinic
attractor, as well as robust heteroclinic-type attractors incorporating connections between equilibria
and sub-cycles. The latter are heteroclinic networks of ‘depth two’ in the terminology of [1], because
there are trajectories within the attractor that connect unstable equilibria and heteroclinic cycles of
the more conventional type. More precisely, there are connections that do not lie within the stable
manifold of any relative equilibrium. Although such attractors have been found in other systems (e.g.,
replicator systems [4]) this is the first example in a dynamical system related to hydrodynamics.

Bifurcations of the normal form are compared with those observed in numerical simulations of
equations of convection. Attractors in the systems are similar, and the critical values of parameters
agree well.

2 Thermal convection in a plane layer

Consider the nondimensional equations for Boussinesq convection of a unit density fluid in a plane
layer (x, y, z) (where 0 < z < 1) uniformly heated from below. The flow velocity v and pressure p
satisfy the Navier-Stokes equation

∂v

∂t
= v × (∇× v) + P∆v + PRθez −∇p (1)

with incompressibility condition
∇ · v = 0. (2)
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The heat transfer equation
∂θ

∂t
= −(v · ∇)θ + vz + ∆θ (3)

gives the evolution of θ, the difference between the temperature in the flow and the linear temperature
profile. The parameters R and P are the Rayleigh and Prandtl numbers, respectively. We assume
stress-free boundary conditions for the flow and fixed temperature on horizontal boundaries:

∂vx

∂z
=
∂vy

∂z
= vz = 0, θ = 0 at z = 0, 1. (4)

For the remainder of the paper we will consider only those flows that are periodic on a square lattice
in the (x, y)-plane, i.e. such that there is an L > 0 such that

v(x, y, z) = v(x + pL, y + qL, z) and θ(x, y, z) = θ(x+ pL, y + qL, z) (5)

for any (p, q) ∈ Z2.
The system Eq. (1-4) admits the trivial solution v = 0, θ = 0 describing pure thermal conduction.

The steady state becomes unstable to perturbations with wavenumber k at R = (k2 + π2)3k−2 with
an associated eigenvector

V(k) =




−πk−1 cos πz sin kx
0

sinπz cos kx
(k2 + π2)−1 sinπz cos kx


 . (6)

(Other eigenvectors can be obtained by application of symmetries of the system.) The critical Rayleigh
number for the onset of convection is R = 27

4
π4 ≈ 657, and the critical wavenumber is kc = π/

√
2.

Figure 1 shows the instability neutral curves for the first few modes in the (k,R) plane.
Modes with wavenumbers k and

√
2k become unstable simultaneously at

Rm = 2−2/3(21/3 + 1)−2(22/3 + 21/3 + 1)3π4 ≈ 684 (7)

while the critical wavenumber for the mode interaction point satisfies

km = 2−1/6(21/3 + 1)−1/2π ≈ 1.86 (8)

in agreement with the value reported in [20]. The periodicity L in Eq. (5) is chosen to be close to the
critical value

Lm = 2π/km = 2 · 21/6(21/3 + 1)1/2 (9)

so that the rolls V(km) are aligned along the edges of the periodicity cell. The rolls

W(km) =




−πk−1
m cos πz sin(kmx+ kmy)

−πk−1
m cos πz sin(kmx+ kmy)
sinπz cos(kmx+ kmy)

(2k2
m + π2)−1 sinπz cos(kmx+ kmy)


 (10)

with the wavenumber
√

2km are aligned along a diagonal.
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Figure 1: Critical Rayleigh number R as a function of k = 2π/L for a range of modes in a box with
horizontal dimension L. The line (p, q) indicates where the trivial steady state v = 0 θ = 0 becomes
unstable to the mode with wavevector (pk, qk, π); there are additional lines for lower k and higher
p2 + q2 that accumulate on k = 0. The point (km, Rm) shows where the 1 :

√
2 mode interaction

occurs.

2.1 The symmetry group

The symmetry group of the convective system Eq. (1-3) with the boundary conditions Eq. (4,5) can be
expressed as D4 ⋉T2×Z2. The 8-element group of symmetries of the square lattice, D4, is comprised
of the set of rotations

s1 : (x, y, z) 7→ (y,−x, z),
s2 : (x, y, z) 7→ (−x,−y, z),
s3 : (x, y, z) 7→ (−y, x, z),

reflections
s4 : (x, y, z) 7→ (x,−y, z),
s5 : (x, y, z) 7→ (−x, y, z),
s6 : (x, y, z) 7→ (y, x, z),

s7 : (x, y, z) 7→ (−y,−x, z)
and the identity s0 = e. The group T2 = Tx ×Ty where Tx and Ty are groups of translations in the
x and y directions, respectively:

γx
α : (x, y, z) 7→ (x+ α, y, z)

and
γy

α : (x, y, z) 7→ (x, y + α, z)

where 0 ≤ α < L (so that γx
L = γy

L = e). Denote by Txy the group of translations along the diagonal:

γxy
α : (x, y, z) 7→ (x+ α, y + α, z).
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The group Z2 is generated by the so-called Boussinesq symmetry, which is reflection about the hori-
zontal midplane:

r : (x, y, z) 7→ (x, y, 1 − z).

Consider a centre eigenspace spanned by rolls Eq. (6,10) and their symmetric images

X1 = V, Y1 = γx
L/4

V, X2 = s6V, Y2 = γy
L/4

s6V,

X3 = W, Y3 = γx
L/4

W, X4 = s4W and Y4 = γx
L/4

s4W.
(11)

The coordinates (z1, z2, z3, z4) ∈ C4 on the center manifold can be introduced as projections in the
directions Xj and Yj , j = 1, 2, 3, 4. The symmetries of the system transform the coordinates in the
following way:

s1 : (z1, z2, z3, z4) 7→ (z2, z̄1, z̄4, z3),

s2 : (z1, z2, z3, z4) 7→ (z̄1, z̄2, z̄3, z̄4),

s3 : (z1, z2, z3, z4) 7→ (z̄2, z1, z4, z̄3),

s4 : (z1, z2, z3, z4) 7→ (z1, z̄2, z4, z3),

s5 : (z1, z2, z3, z4) 7→ (z̄1, z2, z̄4, z̄3),

s6 : (z1, z2, z3, z4) 7→ (z2, z1, z3, z̄4),

s7 : (z1, z2, z3, z4) 7→ (z̄2, z̄1, z̄3, z4),

γx
α : (z1, z2, z3, z4) 7→ (e2πiα/Lz1, z2, e

2πiα/Lz3, e
2πiα/Lz4),

γy
α : (z1, z2, z3, z4) 7→ (z1, e

2πiα/Lz2, e
2πiα/Lz3, e

−2πiα/Lz4).

r : (z1, z2, z3, z4) 7→ (−z1,−z2,−z3,−z4).

2.2 Normal form

The normal form on centre manifold C4 for the symmetry group D4 ⋉ T2 was considered by [20]. In
the presence of the Boussinesq symmetry, the even order terms vanish meaning that the normal form
with D4 ⋉ T2 × Z2 symmetry truncated at cubic order is:

ż1 = λ1z1 + z1(A1|z1|2 +A2|z2|2 +A3(|z3|2 + |z4|2)) +A4z̄1z3z4,
ż2 = λ1z2 + z2(A1|z2|2 +A2|z1|2 +A3(|z3|2 + |z4|2)) +A4z̄2z3z̄4,
ż3 = λ2z3 + z3(A5|z3|2 +A6|z4|2 +A7(|z1|2 + |z2|2)) +A8(z

2
2
z4 + z2

1
z̄4),

ż4 = λ2z4 + z4(A5|z4|2 +A6|z3|2 +A7(|z1|2 + |z2|2)) +A8(z̄2
2z3 + z2

1
z̄3),

(12)

where Ai are real numbers (the normal form coefficients). The linear growth rates λ1 and λ2 are close
to zero for the truncation to be valid; otherwise higher order terms become important. In Section 4
we relate λi and Ai to the Boussinesq problem for parameters (k,R) close to (km, Rm) (implying that
L is close to Lm).
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In polar coordinates zj = rje
iθj (with rj ≥ 0 and θj ∈ [0, 2π)) the normal form becomes:

ṙ1 = r1(λ1 +A1r
2
1

+A2r
2
2

+A3(r
2
3

+ r2
4
)) +A4r1r3r4 cos(θ4 + θ3 − 2θ1)

ṙ2 = r2(λ1 +A1r
2

2
+A2r

2

1
+A3(r

2

3
+ r2

4
)) +A4r2r3r4 cos(θ3 − 2θ2 − θ4)

ṙ3 = r3(λ2 +A5r
2

3
+A6r

2

4
+A7(r

2

1
+ r2

2
))

+A8(r
2

2
r4 cos(2θ2 + θ4 − θ3) + r2

1
r4 cos(2θ1 − θ4 − θ3))

ṙ4 = r4(λ2 +A5r
2
4

+A6r
2
3

+A7(r
2
1

+ r2
2
))

+A8(r
2
2
r3 cos(θ3 − 2θ2 − θ4) + r2

1
r3 cos(2θ1 − θ3 − θ4))

θ̇1 = A4r3r4 sin(θ3 + θ4 − 2θ1)

θ̇2 = A4r3r4 sin(θ3 − 2θ2 − θ4)

r3θ̇3 = A8(r
2
2
r4 sin(2θ2 + θ4 − θ3) + r2

1
r4 sin(2θ1 − θ4 − θ3))

r4θ̇4 = A8(r
2

2
r3 sin(θ3 − 2θ2 − θ4) + r2

1
r3 sin(2θ1 − θ3 − θ4))

(13)

The expressions in the r.h.s. of Eq. (13) involve angles only in the following combinations: φ =
2θ1 − θ3 − θ4 and ψ = 2θ2 − θ3 + θ4, and a pattern with constant rj, j = 1, 2, 3, 4, can be described by
the coordinates (r1, r2, r3, r4, φ, ψ). Note that relative equilibria for Eq. (12) are solutions of Eq. (13)
with ṙj = 0 constant. These drift on the group orbit if either φ 6= 0(modπ) or ψ 6= 0(modπ). Below
we use the 6-dimensional polar coordinates (r, φ, ψ) as well as the 4-dimensional complex Cartesian
coordinates z.

3 Bifurcations of the normal form Eq. (12) for a general set of co-
efficients

First we consider the solutions and bifurcation structure for generic choice of the real normal form
coefficients Ai, i = 1, · · · , 8. We define the primary bifurcations to be bifurcations of the trivial (non-
convecting) state (0, 0, 0, 0); this creates primary branches of solutions. A bifurcation from a primary
branch is called a secondary bifurcation and creates secondary branches and similarly a bifurcation
from secondary branches is a tertiary bifurcation and creates tertiary branches. In the case that
a branch starts at a primary branch and ends at a secondary branch referred to as tertiary. We
study bifurcations occurring when λi are varied and Aj are fixed: for convection (see Section 5)
this corresponds to a fixed P and a varying R and L. Generic bifurcations of equilibria of different
symmetry types occurring in the normal form (12) are summarized in Figure 2 and the structure of
emerging steady states and travelling waves is illustrated in Figure 3.

For the action of D4 ⋉ T2 ×Z2 on C4 we consider, steady states with symmetry groups not listed
in Figure 2 can exist, for example (x1, x2, 0, 0), (0, 0, x3, x4) and (x1, x2, x3, x3), although these are
not isolated solutions for the normal form Eq. (12). In fact the third order normal form is degenerate
and to resolve the degeneracy some of the fifth order terms should be included. (See e.g. the study
of bifurcations in a D4-symmetric system on R2 in [9]). However, these solutions emerge only in the
special cases A1−A2 = 0 or A5−A6 = 0. For the considered convective system in fact these differences
are always positive (see Section 4), meaning that the third order truncation is sufficient.

3.1 Primary bifurcations

Bifurcations from the trivial steady state S0, (z1, z2, z3, z4) = 0, take place when λ1 = 0 or λ2 = 0. In
both subspaces the group action is isomorphic to D4 ⋉ T2, therefore branches of steady states listed
in Table 1 can be obtained applying standard results.
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Figure 2: Lattice of symmetry types of relative equilibria emerging in the normal form (12). The
dimensions of the group orbits of these states are shown on the left, and the generic dimension of drift
of the drifting states STW, TW1, TW2, TW3, TW4 and DNS (drifting no symmetry) are shown.

Bifurcates at Name Group Generators Typical point Amplitude No
λ1 = 0 LR D2 ⋉ T × Z2 s2, s4, γ

y
α, γ

x
L/2

r (x, 0, 0, 0) x2 = −λ1/A1 1, 29

λ1 = 0 LS D4 × Z2 s1, s4, γ
xy
L/2

r (x, x, 0, 0) x2 = −λ1/(A1 +A2) 1, 29

λ2 = 0 SR D2 ⋉ T ⋉ Z4 s2, s6, γ
x,−y
α , γxy

L/4
r (0, 0, x, 0) x2 = −λ2/A5 2, 33

λ2 = 0 SS D4 ⋉ Z2 s1, s4, γ
x
L/2

r (0, 0, x, x) x2 = −λ2/(A5 +A6) 2, 33

Table 1: Steady state branches bifurcating from S0: the condition for occurrence of the bifurcation, label
of the bifurcating steady state, the symmetry group of the state, generators of the group, typical point
and equation for the branch. The last column gives the bifurcation numbers in the order of reference
in sections 4, 5 and 6.
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LR (Large Rolls) LS (Large Squares) SR (Small Rolls)

(1, 0, 0, 0) (
√
.5,

√
.5, 0, 0) (0, 0, 1, 0)

SS (Small Squares) RC (Rectangles) WR1 (Wavy Rolls 1)

(0, 0,
√
.5,

√
.5) (

√
.4, 0,

√
.3,

√
.3) (

√
.4, 0,

√
.3,−

√
.3)

WR2 (Wavy Rolls 2) SQ (Squares) WS (Wavy Squares)

(
√
.3,

√
.3, i

√
.4, 0) (

√
.3,

√
.3,

√
.2,

√
.2) (

√
.4,

√
.4,

√
.1,−

√
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Figure 3: Isolines (step 0.2) of the vertical component of the velocity in the horizontal midplane for
convective steady states and travelling waves evaluated for the respective solutions of Eq. (12). Four
copies of the periodicity cell is shown for clarity. The relation between convective and solutions of
Eq. (12) is given by Eq. (6), Eq. (10) and Eq. (11). The numbers below a pattern are coordinates of
the pattern on the center manifold in the basis defined by Eq. (11).

8



AR1 (Asymm. Rolls 1) AR2 (Asymm. Rolls 2) AS (Asymm. Squares)

(
√
.5, 0,

√
.35,

√
.15) (

√
.4, i

√
.3,

√
.15,

√
.15) (

√
.3,

√
.3,

√
.25,

√
.15)

STW (Symm. Travelling Waves) TW1 (Travelling Waves 1) TW2 (Travelling Waves 2)

(
√
.4, 0,

√
.2 + i

√
.1,

√
.2 + i

√
.1) (

√
.5, 0,

√
.3,

√
.15 + i

√
.05) (

√
.4,

√
.2,

√
.15 + i

√
.05,

√
.15 + i

√
.05)

TW3 (Travelling Waves 3) TW4 (Travelling Waves 4) NS (Nonsymmetric Steady)

(
√
.4,

√
.2,

√
.15 + i

√
.05,−

√
.15 − i

√
.05) (

√
.3,

√
.3,

√
.2 + i

√
.05,

√
.15) (

√
.4, i

√
.2,

√
.25,

√
.15)

Figure 3 continued
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Steady state Typical point Invariant subspaces Eigenvalues Action Kernel
LR (x, 0, 0, 0) (q, 0, 0, 0) −2λ1 1 all

(iq, 0, 0, 0) 0 Z2 s4, γ
y
α, γ

x
L/2

r

(0, w, 0, 0) λ1(A1 − A2)/A1 Z2 ⋉ T γxy
L/2

r, s5
(0, 0, w, w̄) λ2 + (A7 +A8)x

2 Z2 ⋉ T s5, γ
x
L/2

r

(0, 0, w,−w̄) λ2 + (A7 −A8)x
2 Z2 ⋉ T γx

L/2
r, γy

L/2
s5

LS (x, x, 0, 0) (q, q, 0, 0) −2λ1 1 all
(iq1, iq2, 0, 0) 0 D4 γxy

L/2
r

(q,−q, 0, 0) 2λ1(A2 −A1)/(A1 +A2) Z2 s2, s4, γ
xy
L/2

r

(0, 0, q, q) λ2 + 2(A7 +A8)x
2 Z2 s1, s4

(0, 0, q,−q) λ2 + 2(A7 −A8)x
2 Z2 s2, γ

xy
L/2

rs1
(0, 0, iq1, iq2) λ2 + 2A7x

2 D4 γxy
L/2

rs2

SR (0, 0, x, 0) (0, 0, q, 0) −2λ2 1 all
(0, 0, iq, 0) 0 Z2 s6, γ

x,−y
α , γxy

L/4
r

(0, 0, 0, w) λ2(A5 − A6)/A5 Z2 ⋉ T s7, γ
x
L/2

r

(w1, w2, 0, 0) λ1 +A3x
2 D2 ⋉ T× Z4

SS (0, 0, x, x) (0, 0, q, q) −2λ2 1 all
(0, 0, iq1, iq2) 0 D4 γx

L/2
r

(0, 0, q,−q) 2λ2(A6 −A5)/(A5 +A6) Z2 s2, s6, γ
x
L/2

r

(q1, q2, 0, 0) λ1 + (2A3 +A4)x
2 D4 s2, s4

(iq1, iq2, 0, 0) λ1 + (2A3 −A4)x
2 D4 s4γ

x
L/2

r, s5γ
y
L/2

r

Table 2: Invariant subspaces and associated eigenvalues that determine the stability of respective steady
states. The fifth column gives the action of the steady state symmetry groups on the subspace and the
sixth column gives the generators of the kernel of this action.

3.2 Secondary bifurcations

In this subsection we study bifurcations from the primary steady states. To label the bifurcating
branches we try to follow the terminology used in [20] as much as possible, however, in our case there
are more types of steady state because of the presence of the Boussinesq symmetry.

Table 2 presents eigenspaces and associated eigenvalues of the mapping Eq. (12) linearized in the
vicinity of the respective steady states. The fifth column gives the action of the steady state symmetry
groups on the eigenspaces, and the sixth column indicates which elements of this group act trivially.

Bifurcation takes places if an eigenvalue crosses the imaginary axis. From the action of the symme-
try group on the associated eigenspace we determine branches of bifurcating solutions, using results
[9] for the respective group. Bifurcations from primary branches are listed in Table 3. Branching
equations can be obtained by substitution of expressions for steady states into Eq. (12); they are
cumbersome and not listed here. We did not find in the literature any analysis of bifurcations with
the symmetry group D2 ⋉T×Z4 (from SR); hence we include branching and the stability conditions
for the branches for this group as Appendix A.

3.3 Tertiary bifurcations

In this subsection we consider stability and bifurcation of secondary steady states, i.e. those connecting
branches of primary steady states. They have symmetry groups isomorphic to D4, D2 ×Z2 or to D2.
Similarly to above, to determine stability we decompose C4 into isotypic components for the action
of the groups and calculate the eigenvalues of the linearization of Eq. (12) near the steady state,
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Bifurcates at Name Group Generators Typical point No
FROM LR=(x, 0, 0, 0)

λ2 + (A7 +A8)x
2 = 0 RC D2 × Z2 s2, s5, γ

x
L/2

r (x1, 0, x3, x3) 17

λ2 + (A7 −A8)x
2 = 0 WR1 D2 × Z2 s2, γ

y
L/2

s5, γ
x
L/2

r (x1, 0, x3,−x3) 25

FROM LS=(x, x, 0, 0)

λ2 = −2(A7 +A8)x
2 SQ D4 s1, s4 (x1, x1, x3, x3) 12

λ2 = −2(A7 −A8)x
2 WS D4 γxy

L/2
rs1, s6 (x1, x1, x3,−x3) 24

λ2 + 2A7x
2 = 0 AR2 D2 s4, γ

xy
L/2

rs2 (x1, x2, ix3, ix3) 18

λ2 + 2A7x
2 = 0 WR2 D2 s6, γ

xy
L/2

rs2 (x1, x1, ix3, 0) 18

FROM SR=(0, 0, x, 0)

λ1 +A3x
2 = 0 WR2 D2 γy

L/2
rs2, γ

x,−y
L/4

s6 (ix1, x1, x3, 0) 26

λ1 +A3x
2 = 0 AR1 D2 s2, γ

y
L/2

r (x1, 0, x3, x4) 26

λ1 +A3x
2 = 0 AS D2 s2, s6 (x1, x1, x3, x4) 26

FROM SS=(0, 0, x, x)

λ1 + (2A3 +A4)x
2 = 0 SQ D4 s1, s4 (x1, x1, x3, x3) 3

λ1 + (2A3 +A4)x
2 = 0 RC D2 × Z2 s2, s5, γ

x
L/2

r (x1, 0, x3, x3) 3

λ1 + (2A3 −A4)x
2 = 0 WS D4 γx

L/2
rs1, s6 (ix1, ix1, x3, x3) 32

λ1 + (2A3 −A4)x
2 = 0 WR1 D2 × Z2 s4, γ

xy
L/2

s2, γ
x
L/2

r (ix1, 0, x3, x3) 32

Table 3: Branches of steady states bifurcating from LR, LS, SR and SS. Columns are the same as in
Table 1.

restricted to the respective subspace. The results of calculations are presented in the Table 4.
Bifurcations from secondary branches (see Table 5) are investigated the same way those from

primary branches. Some of these bifurcations give rise to branches of drifting patterns (we refer to as
travelling waves). Examples of such bifurcations are discussed in Appendix B.

3.4 Bifurcations from tertiary branches

Here we focus on bifurcations from AR1, AR2, AS and STW which all have symmetry groups iso-
morphic to D2. Methods and presentation are the same as above for more symmetric steady states.
We do not list expressions for eigenvalues in the cases where isotypic components are 3-dimensional
because they are unwieldy and uninformative. In Appendix C we give an example how bifurcations
in a 3-d subspace can be studied without explicitly evaluating the eigenvalues. Tertiary branches and
eigenvalues determining their stability are listed in Table 6, and possible bifurcations in Table 7.

3.5 Robust heteroclinic connections between steady states

A heteroclinic connection from one steady state to another one is robust only if there exists such a
fixed point subspace for a subgroup of the system symmetry group such that the connection within
that subspace is robust [14], for example if it is a saddle to sink connection. Examination of Table 2
reveals the possibility of robust heteroclinic connections given in Table 8 where we list pairs of steady
states between which robust heteroclinic connections are possible.

The connections within subspaces listed in Table 8 can form homoclinic and heteroclinic cycles,
e.g. the connection SS → SS implies existence of the respective homoclinic cycle. There are three
subspaces in which connections between LS and SS are possible. If there exists a connection LS → SS
in one of them, and SS → LS in another one, a heteroclinic cycle LS → SS → LS emerges. The
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Steady Typical point Invariant Eigenvalues Action Kernel
state subspaces
RC (x1, 0, x3, x3) (q1, 0, q3, q3) µ1 + µ2 = 2A1x

2
1 + 2(A5 +A6)x

2
3 1 all

µ1µ2 = 4x2
1x

2
3

×(A1(A5 +A6) − (2A3 +A4)(A7 +A8))
(0, q, 0, 0) (A2 −A1)x

2
1 Z2 s2, s5

(0, iq, 0, 0) (A2 −A1)x
2
1 − 2A4x

2
3 Z2 s5, γ

x
L/2

rs2
(0, 0, q,−q) 2(A5 −A6)x

2
3 − 2A8x

2
1 Z2 s2, γ

x
L/2

r

(0, 0, iq,−iq) 0 Z2 s5, γ
x
L/2

r

(iq1, 0, iq3, iq3) 0,−2A8x
2
1 − 2A4x

2
3 Z2 s4, γ

x
L/2

r

WR1 (x1, 0, x3,−x3) (q1, 0, q3,−q3) µ1 + µ2 = 2A1x
2
1 + 2(A5 +A6)x

2
3 1 all

µ1µ2 = 4x2
1x

2
3

×(A1(A5 +A6) − (2A3 −A4)(A7 −A8))
(0, q, 0, 0) (A2 −A1)x

2
1 Z2 s2, γ

xy
L/2

rs5
(0, iq, 0, 0) (A2 −A1)x

2
1 + 2A4x

2
3 Z2 γx

L/2
rs2, γ

xy
L/2

rs5
(0, 0, q, q) 2(A5 −A6)x

2
3 + 2A8x

2
1 Z2 s2, γ

x
L/2

r

(0, 0, iq, iq) 0 Z2 γx
L/2

r, γy
L/2

s5
(iq1, 0, iq3,−iq3) 0, 2A8x

2
1 + 2A4x

2
3 Z2 γx

L/2
r, γy

L/2
s4

WR2 (x1, x1, ix3, 0) (q1, q1, iq3, 0) µ1 + µ2 = 2(A1 +A2)x
2
1 + 2A5x

2
3 1 all

µ1µ2 = 4x2
1x

2
3((A1 +A2)A5 − 2A3A7)

(q1,−q1, 0, iq4) µ1 + µ2 = 2(A1 −A2)x
2
1 + (A6 −A5)x

2
3 Z2 γxy

L/2
rs2

µ1µ2 =
4x2

1x
2
3((A1 −A2)(A6 −A5) − A3A8)

(iq1,−iq1, 0, 0) 0 Z2 γxy
L/2

rs7
(iq1, iq1, q3, q4) µ1 = 0 Z2 s6

µ2 + µ3 = (A6 − A5)x
2
3

µ2µ3 = −4A8x
2
1(A8x

2
1 +A4x

2
3)

SQ (x1, x1, x3, x3) (q1, q1, q3, q3) µ1 + µ2 = 2(A1 +A2)x
2
1 + 2(A5 +A6)x

2
3 1 all

µ1µ2 = 4x2
1x

2
3

×((A1 +A2)(A5 +A6) − 2(2A3 +A4)(A7 +A8))
(q,−q, 0, 0) 2(A1 −A2)x

2
1 Z2 s2, s4

(0, 0, q,−q) 2(A5 −A6)x
2
3 − 4A8x

2
1 Z2 s2, s6

(iq1, iq2, iq3, iq4) µ1 = µ2 = 0 D4

µ3 = µ4 = −2A8x
2
1 − 2A4x

2
3

WS (x1, x1, x3,−x3) (q1, q1, q3,−q3) µ1 + µ2 = 2(A1 +A2)x
2
1 + 2(A5 +A6)x

2
3 1 all

µ1µ2 = 4x2
1x

2
3

×((A1 +A2)(A5 +A6) − 2(2A3 −A4)(A7 −A8))
(q,−q, 0, 0) 2(A1 −A2)x

2
1 Z2 s2, γ

xy
L/2

rs5
(0, 0, q, q) 2(A5 −A6)x

2
3 + 4A8x

2
1 Z2 s2, s6

(iq1, iq2, iq3, iq4) µ1 = µ2 = 0 D4

µ3 = µ4 = 2A8x
2
1 + 2A4x

2
3

Table 4: Invariant subspaces and associated eigenvalues determining stability of secondary steady
states. Columns are the same as in Table 2.
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Bifurcates at Name Group Generators Typical point No
FROM RC

2A1x
2
1 + 2(A5 +A6)x

2
3 = 0 P (RC) D2 × Z2 s2, s5, γ

x
L/2

r (x1, 0, x3, x3)

(periodic orbit)
(A2 −A1)x

2
1 − 2A4x

2
3 = 0 AR2 D2 s5, γ

x
L/2

rs2 (x1, ix2, x3, x3) 13

(A5 −A6)x
2
3 = A8x

2
1 AR1 D2 s2, γ

x
L/2

r (x1, 0, x3, x4) 5

A8x
2
1 = −A4x

2
3 STW D2 s4, γ

x
L/2

r (z1, 0, z3, z3) = 8

(r1, 0, r3, r3, φ, 0)
FROM WR1

2A1x
2
1 + 2(A5 +A6)x

2
3 = 0 P (WR1) D2 × Z2 s2, γ

y
L/2

s5, γ
x
L/2

r (x1, 0, x3,−x3)

(periodic orbit)
(A2 −A1)x

2
1 + 2A4x

2
3 = 0 AR2 D2 γy

L/2
s4, γ

x
L/2

rs2 (x1, ix2, x3,−x3)

(A5 −A6)x
2
3 +A8x

2
1 = 0 AR1 D2 s2, γ

x
L/2

r (x1, 0, x3, x4)

A8x
2
1 +A4x

2
3 = 0 STW D2 γy

L/2
s4, γ

x
L/2

r (z1, 0, z3,−z3) = 31

(r1, 0, r3, r3, φ, π)
FROM WR2

(A1 +A2)x
2
1 + 2A5x

2
3 = 0 P (WR2) D2 s6, γ

xy
L/2

rs2 (x1, x1, ix3, 0)

(periodic orbit)
(A1 −A2)(A6 −A5) −A3A8 = 0 NS Z2 γxy

L/2
rs2 (x1, x2, ix3, ix4)

2(A1 −A2)x
2
1 + (A6 −A5)x

2
3 = 0 P (NS) Z2 γxy

L/2
rs2 (x1, x2, ix3, ix4) 20

(periodic orbit)
A8x

2
1 +A4x

2
3 = 0 TW4 Z2 s6 (z1, z1, z3, x4) = 19

(r1, r1, r3, r4, φ,−φ)
FROM SQ

(A1 +A2)x
2
1 + (A5 +A6)x

2
3 = 0 P (SQ) D4 s1, s4 (x1, x1, x3, x3)

(periodic orbit)
(A5 −A6)x

2
3 − 2A8x

2
1 = 0 AS D2 s2, s6 (x1, x1, x3, x4) 4

A8x
2
1 +A4x

2
3 = 0 TW2 Z2 s4 (z1, x2, z3, z3) = 9

(r1, r2, r3, r3, φ, 0)
A8x

2
1 +A4x

2
3 = 0 TW4 Z2 s6 (z1, z1, z3, z4) = 9

(r1, r1, r3, r4, φ, φ)
FROM WS

(A1 +A2)x
2
1 + (A5 +A6)x

2
3 = 0 P (WS) D4 γxy

L/2
rs1, s6 (x1, x1, x3,−x3)

(periodic orbit)
(A5 −A6)x

2
3 + 2A8x

2
1 = 0 AS D2 s2, s6 (x1, x1, x3, x4)

A8x
2
1 +A4x

2
3 = 0 TW3 Z2 γxy

L/2
rs4 (z1, x2, z3,−z3) = 27

(r1, r2, r3, r3, φ, π)
A8x

2
1 +A4x

2
3 = 0 TW4 Z2 s6 (z1, z1, z3, z4) = 27

(r1, r1, r3, r4, φ,−φ)

Table 5: Bifurcations from secondary steady states. Columns are the same as in Table 1. P (M)
indicates there is bifurcation to periodic orbits with instantaneous symmetry equal to that of M .
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Steady Typical point Invariant subspaces Eigenvalues Action Kernel
state
AR1 (x1, 0, x3, x4) (q1, 0, q3, q4) µ1, µ2, µ3 1 all

(iq1, 0, iq3, iq4) 0, 0,−A8x
2
1(x4/x3 + x3/x4) − 2A4x3x4 Z2 γx

L/2
r

(0, q, 0, 0) (A2 −A1)x
2
1 Z2 s2

(0, iq, 0, 0) (A2 −A1)x
2
1 − 2A4x3x4 Z2 γx

L/2
rs2

AR2 (x1, ix2, x3, x3) (q1, iq2, q3, q3) µ1, µ2, µ3 1 all
(iq1, 0, iq3, iq3) 0,−2A8x

2
1 − 2A4x

2
3 Z2 γx

L/2
s4

(0, q2, iq3,−iq3) 0, 2A8x
2
2 + 2A4x

2
3 Z2 s5

(0, 0, q,−q) 2A8(−x2
1 + x2

2) + 2(A5 −A6)x
2
3 Z2 γx

L/2
s2

AS (x1, x1, x3, x4) (q1, q1, q3, q4) µ1, µ2, µ3 1 all
(iq1, iq1, iq3, 0) 0,−2A8x

2
1x4/x3 − 2A4x3x4 Z2 s6

(iq1,−iq1, 0, iq4) 0,−2A8x
2
1x3/x4 − 2A4x3x4 Z2 s7

(q,−q, 0, 0) 2(A1 −A2)x
2
1 Z2 s2

STW (z1, 0, z3, z3) = (q1, 0, q2, q2, ξ, 0) µ1, µ2, µ3 1 all
(r1, 0, r3, r3, φ, 0) (0, q, 0, 0) (A2 −A1)r

2
1 +A4r

2
3(1 − cosφ) Z2 s4

(0, iq, 0, 0) (A2 −A1)r
2
1 −A4r

2
3(1 + cosφ) Z2 γx

L/2
rs4

(0, 0, w,−w) 0, 2(A5 −A6)r
2
3 − 2A8r

2
1 cosφ Z2 γx

L/2
r

Table 6: Invariant subspaces and associated eigenvalues determining stability of tertiary branches of
relative equilibria. Note that AR1, AR2, AS are steady solutions whereas STW are drifting (travelling
waves). Columns are the same as in Table 2.

system can possess other types of heteroclinic cycles, for example LR→ SS → LR and LS → SS →
SR→ LS, and much more intricate heteroclinic networks.

The two-dimensional subspaces listed in Table 8 are of special interest because for them it is possible
to derive analytically a sufficient condition for existence of a heteroclinic connection. Existence of the
connection if one state of a pair is stable and another one is unstable is implied by the following
Theorem that is a modification of Theorem 1 in [10].

Theorem 1 Consider the system

ẋ = λx+B1x
3 +B2xy

2,

ẏ = µy + C1y
3 + C2x

2y.

If λ > 0, µ > 0, B1 < 0, C1 < 0, λ−B2µ/C1 > 0, µ−C2λ/B1 < 0, then the only steady states of the

system are (0, 0), S1 =
(
±

√
−λ/B1, 0

)
, S2 =

(
0,±

√
−µ/C1

)
and there exists a robust heteroclinic

connection from S1 to S2.

4 Analysis of bifurcations of the reduced system

Consider the original motivating hydrodynamic problem of Boussinesq convection in a layer Eq. (1)-
Eq. (4) for parameters k and R close to the mode interaction point (km, Rm) shown in Figure 1. We
set

ǫ = R−Rm, δ = k − km, (14)

and assume ǫ and δ are small, so that a centre manifold approximation performed in the vicinity
of (km, Rm) is valid. Details of calculation of the normal form Eq. (12) coefficients are given in

14



Bifurcates at Name Group Generators Typical point No
FROM AR1

µ1 = iω, µ2 = −iω P (AR1) D2 s2, γ
x
L/2

r (x1, 0, x3, x4) 7

(periodic orbit)
A8x

2
1(x4/x3 + x3/x4) +A4x3x4 = 0 TW1 Z2 γx

L/2
r (z1, 0, z3, z4) = 11

(r1, 0, r3, r4, φ, ψ)
(A2 −A1)x

2
1 − 2A4x3x4 = 0 NS Z2 γx

L/2
rs2 (x1, ix2, x3, x4)

FROM AR2

µ1 = iω, µ2 = −iω P (AR2) D2 s5, γ
y
L/2

rs2 (x1, ix2, x3, x3)

(periodic orbit)
A8x

2
1 +A4x

2
3 = 0 TW3 Z2 γx

L/2
rs4 (z1, ix2, z3, z3) =

(r1, r2, r3, r3, φ, π)
A8x

2
2 +A4x

2
3 = 0 TW2 Z2 s5 (x1, z2, z3, z̄3) = 14

(r1, r2, r3, r3, 0, φ)
A8(−x2

1 + x2
2) + (A5 −A6)x

2
3 = 0 NS Z2 γy

L/2
rs2 (x1, ix2, x3, x4)

FROM AS

µ1 = iω, µ2 = −iω P (AS) D2 s2, s6 (x1, x1, x3, x4) 6
(periodic orbit)

A8x
2
1x4/x3 +A4x3x4 = 0 TW4 Z2 s6 (z1, z1, z3, x4) =

(r1, r1, r3, r4, φ, φ)
A8x

2
1x3/x4 +A4x3x4 = 0 TW4 Z2 s7 (z1, z̄1, x3, z4) = 10

(r1, r1, r3, r4, φ,−φ)
FROM STW

µ1 = iω, µ2 = −iω P (STW ) D2 s4, γ
x
L/2

r (z1, 0, z3, z3) 28

(periodic orbit)
(A2 −A1)r

2
1 +A4r

2
3(1 − cosφ) = 0 TW2 Z2 s4 (z1, x2, z3, z3) =

(r1, r2, r3, r3, φ, 0)
(A2 −A1)r

2
1 −A4r

2
3(1 + cosφ) = 0 TW3 Z2 γx

L/2
rs4 (z1, ix2, z3, z3) = 30

(r1, r2, r3, r3, φ, π)
2(A5 −A6)r

2
3 − 2A8r

2
1 cosφ = 0 TW1 Z2 γx

L/2
r (z1, 0, z3, z4) = 21

(r1, 0, r3, r4, φ, ψ)

Table 7: Bifurcations from tertiary branches. Columns are the same as in Table 1.
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Subspace Subgroup Generators Steady states Eigenspaces Eigenvalues
(q1, q2, iq3, iq3) D2 s4, γ

xy
L/2

rs2 LR = (x, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, q, 0, 0) λ1(A1 −A2)/A1

(0, 0, iq, iq) λ2 + (A7 − A8)x
2
1

LR = (0, x, 0, 0) (0, q, 0, 0) −2λ1

(q, 0, 0, 0) λ1(A1 −A2)/A1

(0, 0, iq, iq) λ2 + (A7 + A8)x
2
1

(q1, q2, 0, 0) D2 × Z2 s2, s4, γ
xy
L/2

r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, q, 0, 0) λ1(A1 −A2)/A1

LS = (x2, x2, 0, 0) (q, q, 0, 0) −2λ1

(q,−q, 0, 0) λ1(A2 −A1)/(A1 +A2)
(0, 0, q1, q2) D2 × Z2 s2, s6, γ

xy
L/2

SR = (0, 0, x1, 0) (0, 0, q, 0) −2λ2

(0, 0, 0, q) λ2(A5 −A6)/A5

SS = (0, 0, x2, x2) (0, 0, q, q) −2λ2

(0, 0, q,−q) λ2(A6 −A5)/(A6 +A5)
(q1, 0, q2, q3) D2 s2, γ

x
L/2

r SS = (0, 0, x, x) (0, 0, q, q) −2λ2

(0, 0, q,−q) λ2(A6 −A5)/(A6 +A5)
(q, 0, 0, 0) λ1 + (2A3 +A4)x

2

SS = (0, 0,−x, x) (0, 0,−q, q) −2λ2

(0, 0, q, q) λ2(A6 −A5)/(A6 +A5)
(q, 0, 0, 0) λ1 + (2A3 −A4)x

2

(q1, 0, q2, q3) D2 s2, γ
x
L/2

r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, 0, q, q) λ2 + (A7 + A8)x
2
1

(0, 0, q,−q) λ2 + (A7 − A8)x
2
1

SR = (0, 0, x2, 0) (0, 0, q, 0) −2λ2

(0, 0, 0, q) λ2(A5 −A6)/A5

(q, 0, 0, 0) λ1 +A3x
2
2

(q1, 0, q2, q2) D2 × Z2 s2, s4, γ
x
L/2

r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, 0, q, q) λ2 + (A7 + A8)x
2
1

SS = (0, 0, x2, x2) (0, 0, q, q) −2λ2

(q, 0, 0, 0) λ1 + (2A3 +A4)x
2
2

(q1, 0, q2,−q2) D2 × Z2 s2, γ
y
L/2

s4, γ
x
L/2

r LR = (x1, 0, 0, 0) (q, 0, 0, 0) −2λ1

(0, 0, q,−q) λ2 + (A7 − A8)x
2
1

SS = (0, 0, x2,−x2) (0, 0, q,−q) −2λ2

(q, 0, 0, 0) λ1 + (2A3 −A4)x
2
2

Table 8: Fixed points subspaces for subgroups of D4 ⋉T2×Z2, in which robust heteroclinic connections
are possible. Shown are: a typical point of a subspace (where qk are real quantities), symmetry group,
its generators, the steady states, eigenspaces, and associated eigenvalues.
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Subspace Subgroup Generators Steady states Eigenspaces Eigenvalues
(q1, q1, q2, q2) D4 s1, s4 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(0, 0, q, q) λ2 + 2(A7 +A8)x
2
1

SS = (0, 0, x2, x2) (0, 0, q, q) −2λ2

(q, q, 0, 0) λ1 + (2A3 +A4)x
2
2

(q1, q1, q2,−q2) D4 γxy
L/2

rs1, s6 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(0, 0, q,−q) λ2 + 2(A7 −A8)x
2
1

SS = (0, 0, x2,−x2) (0, 0, q,−q) −2λ2

(q, q, 0, 0) λ1 + (2A3 −A4)x
2
2

(q1, q2, iq3, iq3) D2 s4, γ
xy
L/2

rs2 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(q,−q, 0, 0) λ1(A2 −A1)/(A2 +A1)
(0, 0, iq, iq) λ2 + 2A7x

2
1

SS = (0, 0, ix2, ix2) (0, 0, iq, iq) −2λ2

(q, 0, 0, 0) λ1 + (2A3 −A4)x
2
2

(0, q, 0, 0) λ1 + (2A3 +A4)x
2
2

(q1, q1, iq2, 0) D2 s6, γ
xy
L/2

rs2 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(0, 0, iq, 0) λ2 + 2A7x
2
1

SR = (0, 0, ix2, 0) (0, 0, iq, 0) −2λ2

(q, q, 0, 0) λ1 +A3x
2
2

(q1, q1, q3, q4) D2 s2, s6 LS = (x1, x1, 0, 0) (q, q, 0, 0) −2λ1

(0, 0, q, q) λ2 + (A7 +A8)x
2
1

(0, 0, q,−q) λ2 + (A7 −A8)x
2
1

SR = (0, 0, x2, 0) (0, 0, q, 0) −2λ2

(0, 0, 0, q) λ2(A5 −A6)/A5

(q, q, 0, 0) λ1 +A3x
2
2

Continuation of Table 8.

17



βij j = 1 j = 2
i = 1 3.1551 0.01949
i = 2 −4.2921 0.02456

αij j = 1 j = 2 j = 3
i = 1 0 0 −0.125
i = 2 −0.03207 −0.01843 −0.18081
i = 3 0.02281 0.13589 −0.1744
i = 4 −0.08110 −0.3240 −0.1441
i = 5 0 0 −0.125
i = 6 −0.03108 −0.01958 −0.17434
i = 7 −0.1954 −0.2513 −0.2667
i = 8 0.1314 0.2237 −0.1096

Table 9: The coefficients αij and βij in Eq. (15, 16) that determine the coefficients Ai and λi of the
normal form Eq. (12).

Appendices D, E and F. The coefficients have dependence on P given by

λi = P (P + 1)−1(βi1δ + βi2ǫ) +O(ǫ2 + δ2) (15)

Ai = P (P + 1)−1(P−2αi1 + P−1αi2 + αi3) +O(|ǫ| + |δ|). (16)

The values of αij and βij are listed in Table 9. The α’s agree with those in [20]: if the variables in

Eq. (12) are rescaled zi → γizi with γ1 = γ2 =
√
ARM

1
/A1 and γ3 = γ4 =

√
ARM

5
/A5, where the

superscript PM denotes the respective coefficients in the paper [20], the values of α’s differ only in
the last shown digit.

4.1 A summary of bifurcations for the reduced system for fixed P

We investigate the dynamics of the Boussinesq problem near (km, Rm) shown on Figure 1 for a range
of Prandtl numbers P . We use numerical path following [8] and the results from Section 3.

We produce gyrant bifurcation diagrams that show the bifurcating branches on varying parameters
around a small circle in the (k,R) plane that encloses the mode interaction. These are found by taking
parameters θ and r that determine the growth rates of the primary modes

λ1 = r cos θ, λ2 = r sin θ (17)

and investigating the behavior of Eq. (12) with coefficients as in Eq. (15,16) determined by centre
manifold reduction. The cubic truncation the dynamics does not qualitatively depend on r as r can
be scaled to be unity by a change in timescale.

Figure 4 gives some bifurcation diagrams calculated in this way for a range of Prandtl numbers,
where the locations of the labelled bifurcations are listed in Table 10 and θ increases from −π/2 at
1 to π at 33. Solid single lines correspond to relative equilibria that are stable if the lines are bold.
Dashed lines correspond to periodic solutions that are similarly stable if the lines are bold. Wavy
line denotes chaotic attractors. Double lines indicate that there are robust heteroclinic networks that
exist in this region; these correspond to attractors if the lines are bold. The double lines start and end
at steady bifurcations where robust cycles are created. However they do not indicate all the steady
branches and bifurcations involved in the network.
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(a)

(b) (c)

(d) (e)

Figure 4: Bifurcation diagrams for the reduced normal form equations for a range of Prandtl numbers;
(a) P = 1, (b) P = 0.5, (c) P = 0.3, (d) P = 0.1, (e) P = 2. The horizontal axis (not shown to
uniform scale) shows θ varying from −π/2 (labelled 1) to π (labelled 34). Only one representative of
each branch is illustrated, and the vertical axis represents a solution norm that is also not to scale. All
primary and secondary branches along with selected tertiary branches are shown. The only periodic
branches shown are those bifurcating from stable states.
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P = 1
1 2 3 4 5 6 7 8 9 10 11 12

θ −π/2 0 0.5425 0.6609 0.7078 0.8524 0.8845 1.019 1.057 1.127 1.136 1.2067
13 14 15 16 17 18 19 20 21 22 23 24

θ 1.2240 1.262 1.264 1.279 1.3095 1.3259 1.330 1.3444 1.352 1.353 1.372 1.3870
25 26 27 28 29 30 31 32 33

θ 1.4411 1.4458 1.511 1.522 π/2 1.571 1.666 2.547 π

P = 0.5
1 2 3 4 5 12 13 17 18 24

θ −π/2 0 0.559 0.670 0.687 1.240 1.306 1.390 1.420 1.473
36 35 25 20 29 34 26 32 33

θ 1.500 1.508 1.519 1.547 π/2 1.646 2.557 2.842 π

P = 0.3
1 2 3 4 5 12 13 18 17 24

θ −π/2 0 0.590 0.703 0.727 1.272 1.379 1.460 1.465 1.503
25 29 35 20 34 26 32 33

θ 1.548 π/2 1.602 1.625 1.76 2.911 2.923 π

P = 0.1
1 2 3 4 5 12 13 18 24 17

θ −π/2 0 0.668 0.803 0.842 1.313 1.464 1.484 1.522 1.553
25 29 37 20 35 34 32 26 33

θ 1.567 π/2 1.645 1.647 1.660 1.85 2.948 3.106 π

P = 2
1 2 3 26 4 5 20 13 12 18 24 17

θ −π/2 0 0.54 0.89 0.92 0.96 1.13 1.18 1.20 1.23 1.24 1.28
25 29 32 33

θ 1.32 π/2 1.95 π

Table 10: This table gives the locations of the bifurcations shown in Figure 4 on increasing θ from
left to right for a small circuit around the mode interaction at (km, Rm). The labels are sequential for
P = 1 but change ordering for different values of P .
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For P = 1 we observe the following sequence of attractors on increasing θ. Referring to the
numbered bifurcations in Figure 4(a) up to point 1 the trivial solution is stable. At 1 (corresponding
to λ1 = 0 and λ2 < 0) there is bifurcation to stable LR. These persist up to 17 where there is a
bifurcation to RC with no nearby stable states. In the interval 17-20 the only attractor is a robust
heteroclinic attractor that we describe in detail in Section 4.3. At 20 there is a subcritical Hopf
bifurcation that stabilizes WR2 and that apparently destroys the stable heteroclinic attractor. The
branch of WR2 is stable to 26 where it branches from and stabilizes the SR state. The latter finally
disappears at point 33 (corresponding to λ2 = 0 and λ1 < 0).

For P = 0.5 Figure 4(b) shows a similar sequence of bifurcations as for P = 1 except that the
ordering and criticality of some of the steady bifurcations has changed. In addition there is a limit
point 34 on the branch of subcritically branching periodic solutions from WR2 at 20. This gives rise
to bistability of the WR2 solution with large amplitude periodic orbits in the interval from 20 to 34.
These large amplitude periodic orbits form the only attractors for 20 to 35. As we move from 35 down
to 36 there is a complicated sequence of bifurcations of periodic orbits and chaotic attractors that
may be evidence of structural instability in this region. At the end of this sequence of bifurcations
there is an attracting heteroclinic network between 17 and 36.

For P = 0.3 and 0.1 (Figures4(c) and (d) respectively) the heteroclinic network is attracting up to
25 where the last cyclic connections are destroyed by bifurcation from LR to WR1. In both cases there
is bistability of periodic solutions and WR2 in the region from 35 to 34 and a complicated sequence
of bifurcations including period doubling and symmetry breaking of periodic orbits between 25 and
34. The main difference between the cases P = 0.3 and P = 0.1 is that the bifurcations 17 and 24
change order meaning that the region of existence of robust heteroclinic cycles splits into two intervals
for P = 0.1. After destruction of the heteroclinic cycle at 25 there are highly intermittent chaotic
attractors between 25 and 37. An example of such an attractor is shown in Figure 5 for P = 0.1 and
θ = 1.58.

Finally for P = 2 Figure 4(e) shows the dynamical complexity is reduced for the attractors; there is
simply bistability of LR and SR of the whole region from 26 to 17 and apparently no other attractors.
There are still robust heteroclinic cycles from 12 to 24 and from 17 to 25 but they are not attracting.

4.2 Bifurcations for the reduced system on varying P

The main (primary and secondary) bifurcations of the normal form Eq. (12) with coefficients Eq. (15,16)
and (17) are shown on Figure 6. This illustrates the variation of the bifurcation points in Figure 4
with P . Tertiary and Hopf bifurcations are not shown in this diagram.

To the left of the line 17 there are stable LR solutions while to the right of 26 up the line 33 there
are stable SR solutions. The attracting heteroclinic cycles exist within the region enclosed by 17, 26
and P = 0. Tables 1 and 3 imply that lines 17 and 26 intersect at Pc such that

A3(A7 +A8) = A1A5.

Substituting in Eq. (16) with coefficient values listed in Table 9 and solving the equation for P
numerically we obtain Pc ≈ 1.118. For P > Pc there is an interval of θ where stable LR and SR
coexist; for any θ at least one stable steady state is always present. This implies that the heteroclinic
network of the type considered in subsection 4.3 (or its subcycle) can not be an attractor or a part of
an attractor for P > Pc. To see this, suppose that a heteroclinic attractor of the type considered in
4.3 exists in the system. For P > Pc at least one of SR or LR is stable. Let it be SR. Hence, SR does
not belong to the heteroclinic attractor. Hence, SS belongs to the attractor. (Any subcycle involves
either SR or SS.) A connection from SS to SR exists for all P , and a trajectory close to the assumed
attractor finally will be attracted by the stable SR.
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Figure 5: Example of a chaotic attractor in the system for P = 0.1 and θ = 1.58. For t < 2000 the
trajectory appears to be on a periodic orbit that is close to a heteroclinic cycle, while for 2000 < t < 3000
there is a transition to WR2 after which (for 2900 < t < 3000) it returns to the orbit. For k = 1.84,
employed in numerical investigation of convective attractors, the Rayleigh number corresponding to
θ = 1.58 is R = 687.0.

The directions of branching and stability of bifurcating solutions in bifurcation of SR are different
for different P . Appendix A demonstrates that that bifurcation from SR gives three bifurcating
branches. Only one of branches can be stable, and that only if all three bifurcate supercritically,
the two remaining branches being unstable. Moreover the stable one has the largest amplitude. The
steady state WR2 bifurcates supercritically for P < Pr, where Pr is the value for which the lines
marked 26 and 18 on Figure 6 intersect. Pr is a root of the equation

2A3A7 = A5(A1 +A2).

Substituting here Eq. (16) with the coefficient values listed in Table 9 and solving the resultant
equation numerically we obtain Pr ≈ 1.110. We have checked that for P < Pr the steady state WR2
has the largest amplitude (amplitudes were calculated from Tables 3 and 9) and two other steady
states bifurcate supercritically. Therefore, for P < Pr stable WR2 bifurcate from SR, and for P > Pr

no stable branches bifurcate from it.
We remark that there are codimension two bifurcation points at all crossings of lines in the (θ, P )

plane. These are typically degenerate for the cubic truncation of the normal form; for example there
is a vertical branch of WR2 on crossing of the lines 18 and 26 that can only be resolved by including
fifth order terms in Eq. (12).

4.3 Heteroclinic attractors for P = 1

We study the heteroclinic attractors in the case P = 1 in more detail, for parameters in the interval
between 17 and 20 in Figure 4(a).
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Figure 6: Two parameter bifurcation diagram showing the location of the primary and secondary
bifurcations for a range of θ and P . The numbering is the same as on Figure 4. Note that the
bifurcation number 1 is not shown because it is to the left of this diagram at θ = −π/2.

For the sub-interval between 19 and 20 the attractor is not a conventional type of heteroclinic
cycle but also includes connections from within the cycle to a subcycle; this means that the network
has depth two in the terminology of [1]. As such this the first example of a depth two cycle in a fluid
dynamical system.

Figure 7 schematically illustrates the structures of attractor for parameters in this range as far as
we have been able to determine. On increasing θ the first bifurcation at 17 creates the LR→SS→LR
cycle at disappearance of the branch of RC. The full dynamics of all connections in the interval between
17 and 18 is not clear but there are robust connections from AS and AR1 to the cycle between LR
and SS. Between 18 and 20 there is a connection from WR2 to the cycle that affects the dynamics
also for nearby θ as shown in Figure 8. This Figure shows the evolution of amplitudes of modes
|zi| for a randomly chosen initial condition for P = 1 and θ = 1.325. After an initial slowing down
oscillation between LR and SS states the trajectory takes an alternative route on the unstable manifold
at approximately t = 1000 that takes it close to SR, then AR1 and at approximately t = 3300 towards
a state near where WR2 is created. The process then repeats by approaching the LR-SS cycle.

5 Numerical simulations of convective attractors

In this section we present results of numerical investigation of attractors of Boussinesq convection
Eq. (1)-Eq. (4). Computations have been performed using the standard pseudospectral methods and
a 4th order Runge-Kutta scheme for integration in time (see details in [17]) for P = 0.1, 0.3, 0.5, 1
and 2, δ = ±0.01km (i. e. k = 1.84 and 1.88) and R increasing from 0. A small value of δ has been
chosen so that the third-order truncated normal form can be expected to be valid.

Attractors found in numerical simulations are listed in Table 11, where intervals of existence of
attractors are given in terms of both R and θ, where θ is calculated from R using Eq. (14), (15) and
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Figure 7: Schematic illustration of connections between different symmetry types for P = 1 between
parameters near 18 and 25 of Figure 4(a). Open circles indicate saddles, filled circles are sinks.
The size of the unstable manifold (ignoring group orbit directions) is indicated as a number next
to that state. Note that for 1.2067 < θ < 1.3095 from 12 to 17, LR is the only attractor. For
1.378 < θ < 1.4411 from 24 to 26, WR1 is the only attractor. For 1.3095 < θ < 1.344 from 17 to 20
the only attractor is a network involving all states and including a connection to the subcycle including
LR and SS. The bifurcation at θ = 1.344, 20, is a subcritical Hopf bifurcation that stabilizes the WR2
solution. For 1.344 < θ < 1.3870 from 20 to 25 there is still a heteroclinic cycle between LR and SS
states but typical orbits near this are transients to the WR2 state.
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Figure 8: Time series showing a typical trajectory approaching a depth 2 heteroclinic network for
P = 1 and θ = 1.325. Note the approach to a cycle between LR and SS states is interrupted by the
trajectory choosing the unstable manifold towards an AR1 and then a WR2 state. For t > 3300 it
heads towards LS before showing oscillatory growth near where WR2 appears for θ > 1.3259.

(17):

tan θ =
λ2

λ1

=
β21 + β22(R −Rm)/δ

β11 + β12(R −Rm)/δ

and hence a straight line on the (k,R) plane corresponds to each value of θ. Therefore, θ → θ∞ =
arctan(β22/β12) ≈ 0.900 as R → ∞ and on the diagrams of Fig. 4 the part θ < θ∞ corresponds to
δ > 0 and the part θ > θ∞ to δ < 0.

For P = 2 for the range of R where the centre manifold approximation is valid the attractors are
either SR or LR, in agreement with results of section 4.1.

For P = 1 and δ = −0.01km for increasing R we observe transitions from S0 to SR and to
WR2. Simultaneously with the WR2, there exists another attractor, a periodic orbit of a very large
period which is close to the heteroclinic cycle connecting LR and SS. On Figure 9a the plateaux with
|z1| 6= 0, |z2| 6= 0 and |z3| = |z4| 6= 0 indicate time intervals when the shown trajectory is close to
large rolls parallel to y-axis, large rolls parallel to x-axis, and to small squares, respectively. The orbit
has appeared from the cycle either due to numerical inaccuracy, or perhaps for some other unknown
reasons. For larger R the attractor is LR, which then bifurcates to a T̃W, this bifurcation being
outside the region of validity of the approximation. For δ = 0.01km, where the approximation is valid,
the attractor is LR.

For P = 0.5 and δ = −0.01km we also see bifurcations from S0 to SR and to WR2. In agreement
with the bifurcation diagram for the 8-dimensional system, the periodic orbit bifurcating from WR2
undergoes a saddle-node bifurcation and becomes stable (Figure 9b). Unlike in the 8-dimensional
normal form, the branch of periodic orbits ends on the heteroclinic cycle, instead of bifurcating to
another orbit (note the similarity between Figures 9a and b; the trajectory visits unstable LR and SS
flows on both plots, however the period of the orbit on Figure b is smaller, it increases as R gets closer
to the point of bifurcation of the orbit into the heteroclinic cycle involving LR and SS). The bifurcation
value of R is the lower end of the interval of chaotic heteroclinic behavior, where trajectories jump
between LR and SS steady states. In each run the time spent near each of the steady state changes
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P δ Type of attractor Interval of existence(R) Interval of existence(θ)
2 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287

SR 681.3 ≤ R ≤ 736.1 0.9549 ≤ θ ≤ 3.1068
LR 690.1 ≤ R ≤ 2200 0.9018 ≤ θ ≤ 1.3104

T̃W R ≥ 2300 θ ≤ 0.9017
0.01km S0 R ≤ 681.0 θ ≤ −1.5695

LR 681.1 ≤ R ≤ 2300 −1.5575 ≤ θ ≤ 0.8979

T̃W R ≥ 2400 θ ≥ 0.8980
1 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287

SR 681.3 ≤ R ≤ 687.9 1.4762 ≤ θ ≤ 3.1068
WR2 688 ≤ R ≤ 689.8 1.3275 ≤ θ ≤ 1.4661

periodic(heteroclinic) 688.9 ≤ R ≤ 690.2 1.3049 ≤ θ ≤ 1.3879
LR 690.3 ≤ R ≤ 1100 0.9069 ≤ θ ≤ 1.2996

T̃W R ≥ 1200 θ ≤ 0.9055
0.01km S0 R ≤ 681.0 θ ≤ −1.5695

LR 681.1 ≤ R ≤ 1100 −1.5575 ≤ θ ≤ 0.8920

T̃W R ≥ 1200 θ ≥ 0.8935
0.5 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287

SR 681.3 ≤ R ≤ 683.2 2.5534 ≤ θ ≤ 3.1068
WR2 683.3 ≤ R ≤ 687.1 1.5697 ≤ θ ≤ 2.5190

periodic 686.6 ≤ R ≤ 687.6 1.5084 ≤ θ ≤ 1.6421
chaotic(heteroclinic) 687.7 ≤ R ≤ 688.9 1.3879 ≤ θ ≤ 1.4973

LR 689 ≤ R ≤ 800 0.9248 ≤ θ ≤ 1.3804

T̃W R ≥ 810 θ ≤ 0.9228
0.01km S0 R ≤ 681.0 θ ≤ −1.5695

LR 681.1 ≤ R ≤ 780 −1.5575 ≤ θ ≤ 0.8653

T̃W R ≥ 790 θ ≥ 0.8686
0.3 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287

SR 681.3 ≤ R ≤ 682.1 2.9038 ≤ θ ≤ 3.1068
WR2 682.2 ≤ R ≤ 686.4 1.6748 ≤ θ ≤ 2.8750

periodic 685.9 ≤ R ≤ 687.4 1.5317 ≤ θ ≤ 1.7669
chaotic(heteroclinic) 687.5 ≤ R ≤ 688.1 1.4563 ≤ θ ≤ 1.5199

LR 688.2 ≤ R ≤ 720 0.9790 ≤ θ ≤ 1.4468

P̃O R ≥ 730 θ ≤ 0.9621
0.01km S0 R ≤ 681.0 θ ≤ −1.5695

LR 681.1 ≤ R ≤ 710 −1.5575 ≤ θ ≤ 0.7687

P̃O R ≥ 720 θ ≥ 0.8061
0.1 −0.01km S0 R ≤ 681.2 θ ≥ 3.1287

SR R = 681.3 θ = 3.1068
WR2 681.4 ≤ R ≤ 686.2 1.7097 ≤ θ ≤ 3.0841

periodic 685.7 ≤ R ≤ 686.7 1.6266 ≤ θ ≤ 1.8084
chaotic(heteroclinic) 686.8 ≤ R ≤ 687.3 1.5440 ≤ θ ≤ 1.6117

LR 687.4 ≤ R ≤ 690 1.3159 ≤ θ ≤ 1.5317

P̃O R ≥ 691 θ ≤ 1.2660
0.01km S0 R ≤ 681.0 θ ≤ −1.5695

LR 681.1 ≤ R ≤ 684 −1.5575 ≤ θ ≤ −1.0009

P̃O R ≥ 685 −0.7087

Table 11: Attractors found in numerical simulations of convective flows.
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randomly, unlike for P = 1 (Figure 9a). We also observe occasional transitions SS → LS → SS
(e.g. the trajectory shown on Figure 9c at t ≈ 8500 is close to the LS steady state, other plateaux
correspond to the LR or SS steady states), i.e. another cycle predicted by the theory persists in the
temporal evolution.

For P = 0.3 and for P = 0.1 attractors are the same as for P = 0.5. For P = 0.1 the heteroclinic
cycle connecting SS and LS is always unstable, but it is visible as a transient in some runs for
687.8 ≤ R ≤ 688.1 (on Figure 9d in the interval 1000 ≤ t ≤ 6500, when |z1| and |z2| are small the
trajectory is close to SS, and when |z3| and |z4| are small to LS).

In simulations with δ = ±0.05km and P = 1 the same sequence of bifurcations as for δ = ±0.01km

has been observed. In [18] numerical investigation of convective attractors was carried out with L = 4
(i.e. δ = −0.16km) and P = 6.8, 1 and 0.3. Some of the observed bifurcations are the same as in the
reduced system considered here, but several are different, e.g. for P = 1 and 0.3 the bifurcation from
WR2 is supercritical.

6 Comparison of bifurcations in the original and reduced systems

Critical values of θ for the reduced system and for the original convective system are compared in
Table 12 for the bifurcations which are identical in two systems. Since for the convective system
results are obtained numerically, information about bifurcations of attractors only is available, and
only brackets for critical θ’s are known.

The critical values of θ (see Table 12) are similar for the original and reduced systems. Attractors
(for R such that the center manifold approximation is valid) are also similar, except where heteroclinic
attractors are present. In such cases the numerics may not shadow the true system dynamics. This is
because numerical noise (including rounding errors) can cause the heteroclinic attractor to appear as
a long period orbit that moves very close to states with different symmetries.

In the convective simulations analogues of the following attractors of the reduced system were not
found: for P = 0.5 periodic orbits existing between bifurcations 36 and 35; for P = 0.3 periodic orbits
existing between 25 and 35; for P = 0.1 the irregular chaotic attractor illustrated in Figure 5 between
25 and 37 is replaced by a more regular heteroclinic behaviour, similar to the one shown on Figures 9a
and c.

Hence many of the more subtle effects due to heteroclinic connections within attractors are not
well reproduced numerically. Indeed numerical integration of the original system can be viewed as an
ideal system perturbed by low-amplitude numerical noise. It is known [23] that additive noise in a
system with heteroclinic attractors typically produces approximately periodic behaviour and this is
what we often observe. Similarly, an orbit of a very long period instead of a theoreticaly predicted
heteroclinic cycle related to the 1 : 2 mode interaction was observed in non-Boussinesq convection by
Mercader et al. [15]. They suggested that higher modes present in the PDE’s could possibly prevent
formation of the structurally stable heteroclinic cycle (or perhaps destabilize it) with the result that
a long periodic orbit was present instead.

Center manifold approximation is not valid for the R’s for which bifurcations to T̃W and P̃O (see

Table 11) take place (T̃W and P̃O are periodic in time, and in the system (12) no bifurcations from rolls
to time-periodic flows are possible, see Table 3). The range of validity of the approximation decreases
with P , for the considered |δ| = 0.01km it is (R−Rc) ∼ 3.5Rc for P = 2 and (R−Rc) ∼ 0.005Rc for
P = 0.01.
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Figure 9: Temporal evolution of the quantities |z1|, |z2|, |z3| and |z4| of convective attractors for
δ = −0.01km (k = 1.84) and (a) P = 1, R = 690 (θ = 1.3159); (b) P = 0.5, R = 687.5 (θ = 1.5199);
(c) P = 0.5, R = 688.5 (θ = 1.4219) and (d) P = 0.1, R = 688 (θ = 1.4661). (See details in the text.)
By |zi|, i = 1, 4, we denote projections into the basic vectors in the centre eigenspace. The horizontal
axis shows time.
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Figure 9 continued
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P number θc θc

of bifurcation (reduced system) (convection)
2 1 −π/2 (−1.5695,−1.5575)

26 0.89 (0.9548, 0.9549)
17 1.28 (1.3104, 1.3159)
33 π (3.1068, 3.1287)

1 1 −π/2 (−1.5695,−1.5575)
17 1.3095 (1.2996, 1.3049)
20 1.330 (1.3216, 1.3275)
26 1.4458 (1.4661, 1.4762)
33 π (3.1068, 3.1287)

0.5 1 −π/2 (−1.5695,−1.5575)
17 1.390 (1.3804, 1.3879)
36 1.500 (1.4973, 1.5084)
20 1.547 (1.5566, 1.5697)
34 1.646 (1.6421, 1.6581)
26 2.557 (2.5190, 2.5534)
33 π (3.1068, 3.1287)

0.3 1 −π/2 (−1.5695,−1.5575)
17 1.465 (1.4468, 1.4563)
25 1.548 (1.5199, 1.5317)
20 1.625 (1.6521, 1.6748)
34 1.76 (1.7669, 1.7873)
26 2.911 (2.8750, 2.9038)
33 π (3.1068, 3.1287)

0.1 1 −π/2 (−1.5695,−1.5575)
17 1.553 (1.5337, 1.5440)
25 1.567 (1.6117, 1.6226)
20 1.647 (1.6920, 1.7097)
34 1.85 (1.8084, 1.8303)
26 3.106 (3.0841, 3.1068)
33 π (3.1068, 3.1287)

Table 12: Comparison of critical values of θ’s for bifurcation occurring in the original convection
problem and the reduced system.
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7 Conclusions

We have analyzed bifurcations of steady states and travelling waves emerging in the third order normal
form invariant under the considered action of D4 ⋉ T2 × Z2 for arbitrary normal form coefficients.
We have derived sufficient conditions for existence in the system of up to seven types of distinct
(unrelated by symmetries) heteroclinic connections, which can form a complex network. The results
have been applied to Boussinesq convection in a plane layer with stress-free boundaries and a square
lattice periodicity in horizontal directions. They can be applied to other planar systems, e.g. to
Boussinesq convection with other boundary conditions (as long as they are the same on upper and
lower boundaries) or to systems in chemistry and biology.

For a complete study of bifurcations of steady states in the system with the symmetry group
D4 ⋉ T2 × Z2 some of the fifth order terms should be included into the normal form. They become
important if A1 = A2 or A5 = A6. However, in Boussinesq convection with both stress-free or
both rigid boundaries, these coefficients are unequal and thus the fifth order terms are irrelevant. In
Boussinesq binary-fluid convection and magnetoconvection (with the same symmetry groups) with
stress-free boundaries these pairs of of normal form coefficients are never equal [21, 5] as well.

For several values of Prandtl number comparison has been carried out between attractors of the
reduced system and attractors found by numerical simulation of equations for convection. The attrac-
tors are similar in both systems, except for some heteroclinic attractors; this is apparently the effect
of numerical noise which is introduced into the convection system [23]. Critical parameter values also
turn out to be close as demonstrated in Table 12. The interval where the center manifold approxi-
mation is valid varies from R − Rc < 3.5Rc at P = 2 to R − Rc < 0.005Rc at P = 0.1. For Prandtl
number close to P = 1 and below the reduced system possesses complex heteroclinic networks. We
observe some highly nontrivial intermittent spatio-temporal behavior in the form of heteroclinic cycles
of depth 2.

Natural questions arising from this study are what happens if symmetries of the system are slightly
broken: square periodicity cell is changed to a rectangular or rhombic cell, weak rotation or weak non-
Boussinesq effects are added. In the presence of weak symmetry breaking, heteroclinic attractors are
typically destroyed giving rise to temporally periodic intermittent oscillations. It would be interesting
to understand the influence of noise on the attracting heteroclinic dynamics, for example that observed
in Figure 7. Preliminary investigations indicate that it appears to stabilize the cycle between SS and
LR. Finally, the convective regimes that we consider can be unstable to perturbations with other spatial
periods. Nonetheless our results give a good indication of minimum complexity of the spatio-temporal
dynamics of planar convection.
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A Steady state bifurcation with the D2 ⋉ T ⋉ Z4 symmetry group

We apply theory and methods of [9] to find branches of steady states emerging in a steady state bifurcation
with this symmetry group. Consider the action of D2 ⋉ T × Z4 on C2 generated by

h1(= s2) : (w1, w2) → (w̄1, w̄2),
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h2(= s6) : (w1, w2) → (w2, w1),

ψα(= γx,−y
α ) : (w1, w2) → (e2πiα/Lw1, e

−2πiα/Lw2),

h3(= γxy
L/4

r) : (w1, w2) → (−iw1,−iw2).

The third order dynamical system commuting with the group action (derived following the procedure described
in [19]) is

ẇ1 = µw1 + w1(B1|w1|2 + B2|w2|2) +B3w̄1(w̄2)
2,

ẇ2 = µw2 + w2(B1|w2|2 + B2|w1|2) +B3w̄2(w̄1)
2.

(18)

One-dimensional fixed point subspaces are: (x, x) (isotropy subgroup is D2 generated by h1 and h2), (x, ix)
(isotropy subgroup is D2 generated by ψL/4h2 and h1h2h3), (x, 0) (isotropy subgroup is D2 generated by h1

and h3ψL/4). Equations for amplitudes of steady states bifurcating from (w1, w2) = 0 at µ = 0 in the respective
subspaces are:

(x, x) : µ+ (B1 +B2 +B3)x
2 = 0,

(x, ix) : µ+ (B1 +B2 −B3)x
2 = 0,

(x, 0) : µ+B1x
2 = 0.

(19)

Stability of a steady state is determined by eigenvalues of Eq. (18) linearized in the vicinity of the steady state,
which are:

steady state eigenspace eigenvalue
(x, x) (q, q) 2(B1 +B2 +B3)x

2

(q,−q) 2(B1 −B2 −B3)x
2

(iq, iq) −4B3x
2

(iq,−iq) 0
(x, ix) (q, iq) 2(B1 +B2 −B3)x

2

(q,−iq) 2(B1 −B2 +B3)x
2

(iq,−q) 4B3x
2

(iq, q) 0
(x, 0) (q, 0) 2B1x

2

(0, q) (−B1 +B2 +B3)x
2

(0, iq) (−B1 +B2 −B3)x
2

(iq, 0) 0

(20)

Comparison of Eq. (19) with Eq. (20) implies that just one branch is stable if all the three bifurcate supercriti-
cally, the stable branch is the one with the largest amplitude. If there is a branch bifurcating subcritically, all
the three are unstable.

B Bifurcations to travelling waves

In this subsection we consider examples of a steady state bifurcation to travelling waves (which is also called
relative equilibria in [12]), a pattern which is steady in a co-moving reference frame and periodic in a reference
frame at rest. Such bifurcation happens if the isotypic component containing the critical eigenmode also contains
an eigenmode responsible for the shift along the group orbit of the bifurcating steady state (the associated
eigenvalue is zero).

Expressions in the r.h.s. of Eq. (13) involve angles only in combinations

φ = 2θ1 − θ3 − θ4 and ψ = 2θ2 − θ3 + θ4.

Assuming r3 6= 0 and r4 6= 0, one can rewrite the system Eq. (13) as

ṙ1 = r1(λ1 +A1r
2
1 +A2r

2
2 +A3(r

2
3 + r24)) +A4r1r3r4 cosφ

ṙ2 = r2(λ1 +A1r
2
2 +A2r

2
1 +A3(r

2
3 + r24)) +A4r2r3r4 cosψ

ṙ3 = r3(λ2 +A5r
2
3 +A6r

2
4 +A7(r

2
1 + r22)) +A8(r

2
2r4 cosψ + r21r4 cosφ)

ṙ4 = r4(λ2 +A5r
2
4 +A6r

2
3 +A7(r

2
1 + r22)) +A8(r

2
2r3 cosψ + r21r3 cosφ)

φ̇ = sinφ(−2A4r3r4 −A8r
2
1(r4/r3 + r3/r4)) − sinψA8r

2
2(r4/r3 − r3/r4)

ψ̇ = sinψ(−2A4r3r4 −A8r
2
2(r4/r3 + r3/r4)) − sinφA8r

2
1(r4/r3 − r3/r4).

(21)
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The steady states of Eq. (21) with φ = ψ = 0 are true steady states of Eq. (13). Steady states with one of φ
or ψ non-vanishing are patterns drifting along the x or y direction, respectively. If φ = ±ψ 6= 0, the pattern is
drifting along the diagonal. Finally, if 0 6= φ 6= ψ 6= 0, there is drift in both horizontal directions.

B.1 Bifurcation from RC

A steady state of Eq. (21) which belongs to the subspace (r1, 0, r3, r3, φ, 0) satisfies

λ1 +A1r
2
1 + 2A3r

2
3 +A4r

2
3 cosφ = 0,

λ2 + (A5 +A6)r
2
3 +A7r

2
1 +A8 + r21 cosφ = 0,

A4r
2
3 +A8r

2
1 = 0.

For them, both φ = 0 and φ 6= 0 are possible. Assume that λ’s depend on a parameter Q. The two types of
steady states coincide at a point where

λ1(Q) +A1r
2
1 + 2A3r

2
3 +A4r

2
3 = 0,

λ2(Q) + (A5 +A6)r
2
3 +A7r

2
1 +A8 + r21 = 0,

A4r
2
3 +A8r

2
1 = 0.

This system of 3 equations in 3 variables (Q, r1, r3) is, in general, solvable. The steady state with φ = 0 exists
for Q both slightly larger and slightly smaller than the critical value, the steady state with φ 6= 0 exists only at
one side of the critical Q, because cosφ ≤ 1. The pattern moves along the x axis with the speed

θ̇1 = A4r3r4 sinφ,

small near the point of bifurcation.

B.2 Bifurcation from SQ

In polar coordinates the action of the symmetry group of SQ, D4, on the subspace (0, 0, 0, 0, φ, ψ) is generated
by

s1 : (φ, ψ) 7→ (ψ,−φ) and

s4 : (φ, ψ) 7→ (φ,−ψ).

Therefore [9], there are two types of maximal isotropy bifurcating branches: with ψ = 0 (or φ = 0) and ψ = φ
(or ψ = −φ). They are: TW2= (r1, r2, r3, r3, φ, 0) and TW4= (r1, r1, r3, r4, φ, φ). In the normal form Eq. (21)
TW4 bifurcating from SQ will have the form (r1, r1, r3, r3, φ, φ) (i.e. r3 = r4) because the terms breaking this
relation are outside the 3rd order truncation we are considering.

C Bifurcations from AS1

When calculating stability and bifurcations from tertiary branches we have determined 3-dimensional isotypic
components for the actions of the steady states symmetry groups. For one- and two-dimensional subspaces the
study is straightforward, the case of three dimensions is more difficult. Here we demonstrate that some results on
bifurcations and stability can be obtained without explicit calculation of eigenvalues, considering as an example
bifurcations from AS1=(x1, ix2, x3, x3) with the critical mode belonging to the subspace (q1, iq2, q3, q3).

The matrix of the restriction of the linearization of (8) onto the subspace is

B =




2A1x
2
1 2A2x1x2 (4A3 + 2A4)x1x3

2A2x1x2 2A1x
2
1 (4A3 − 2A4)x2x3

2(A7 +A8)x1x3 2(A7 −A8)x1x3 2(A5 +A6)x
2
3


 . (22)

Its eigenvalues satisfy:

µ1µ2µ3 = detB, µ1 + µ2 + µ3 = trB, µ1µ2 + µ1µ3 + µ2µ3 = B̃,
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where by B̃ we denoted the sum of the 3 second order minors of B.
The necessary and sufficient conditions for steady state bifurcations are detB = 0. Eq. (22) implies that

detB = x2
1x

2
2x

2
3F (A). The values of xj , j = 1, 2, 3 for the steady state satisfy a linear system of equations on

x2
j , stemming from (12). By Kramer’s rule, the solution of the system is

x2
j =

gj(λ1, λ2,A)

f(A)
, j = 1, 2, 3,

where gj is linear in λ’s and quadratic in A’s, and f is cubic in A’s. It turns out that f(A) = F (A). Hence,
the condition detB = 0 is never satisfied and the condition F (A) = 0 gives a boundary of the domain where
AS1 exists.

A Hopf bifurcation takes place if
trBB̃ = detB, B̃ > 0;

hence bifurcations from the steady state can be found by solving this equation simultaneously with equations
for the steady state.

D Calculation of λ1 and λ2

We calculate here coefficients of the linear terms of (12).
Denote by L the system Eq. (1)-Eq. (4) linearized near the trivial steady state. The subspace spanned by

S1 =




−πl−1 cosπz sin lx
0

sinπz cos lx
0


 ,S2 =




0
cosπz sin lx

0
0


 ,S3 =




0
0
0

sinπz cos lx


 (23)

is L-invariant:
LS1 = −PaS1 + S3,
LS2 = −PaS2,
LS3 = PRl2a−1S1 − aS3,

(24)

where a = l2 + π2. Therefore, there is an eigenvalue −P (l2 + π2) with the associated eigenvector S2 and two
eigenvalues

Λ±(l, R) =
1

2
(−(Pa+ a) ±D1/2) where D = (Pa+ a)2 − 4(Pa2 − PRl2a−1).

In the vicinity of l0 and R0, such that Λ+(l0, R0) = 0, Taylor expansion of Λ+ in δ = l− l0 and ǫ = R−R0

yields:
Λ+(l, R) = P (P + 1)−1(2(π2 − 2l20)l

−1

0 δ + l20a
−2ǫ) +O(ǫ2 + δ2). (25)

Substituting into Eq. (25) l0 = km and l0 =
√

2km, find

λ1 = P (P + 1)−1(2(π2 − 2k2
m)k−1

m δ + k2
m(π2 + k2

m)−2ǫ) +O(ǫ2 + δ2)

and
λ2 = P (P + 1)−1(2(π2 − 4k2

m)k−1
m δ + 2k2

m(π2 + 2k2
m)−2ǫ) +O(ǫ2 + δ2).

For km given by (8) these relations yield the coefficients βij presented in Table 9.

E Center manifold reduction

The centre manifold is an invariant manifold tangent to Xc at (0, Rm); standard theory [11] means that near a
bifurcation the local solutions are determined by the dynamics on the centre manifold. Locally it is represented
as a graph of the mapping ψ(v) : Xc → Xh defined in a neighborhood of (0, Rm).

The second-order Taylor’s expansion is

ψ(v) =

4∑

j,l=1

φ1
j,lxjxl +

4∑

j,l=1

φ2
j,lxjyl +

4∑

j,l=1

φ3
j,lyjyl, (26)
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where xj and yl are components of (v) ∈ Xc in the basis {Xj ,Yl} and φ ∈ Xh.
Denote

f1(m1,m2,m3) =




kmm2 cosm3πz sin(m1kmx+m2kmy)
−kmm1 cosm3πz sin(m1kmx+m2kmy)

0
0


 , (27)

f2(m1,m2,m3) =




−πkmm1m3 cosm3πz sin(m1kmx+m2kmy)
−πkmm2m3 cosm3πz sin(m1kmx+m2kmy)
(m2

1 +m2
2)k

2
m sinm3πz cos(m1kmx+m2kmy)

0


 , (28)

f3(m1,m2,m3) =




0
0
0

sinm3πz cos(m1kmx+m2kmy)


 . (29)

The center manifold coefficients are:

φ1
1,1 = (8a1π)−1f3(0, 0, 2),

φ1
3,3 = (8a2π)−1f3(0, 0, 2),

φ1
1,2 = g−1

1 ((P−1b1 + b2)(f2(1, 1, 2) + f2(1,−1, 2)) + (P−1b3 + b4)(f3(1, 1, 2) + f3(1,−1, 2))),

φ1
3,4 = g−1

2 ((P−1b5 + b6)(f2(2, 0, 2) + f2(0, 2, 2)) + (P−1b7 + b8)(f3(2, 0, 2) + f3(0, 2, 2))),

φ1
1,3 = P−1(c1f1(0, 1, 0) + c2f1(2, 1, 0) + c3f1(0, 1, 2) + c4f1(2, 1, 2)+

g−1

3 ((d1 + Pd2)f2(0, 1, 2) + (d3 + Pd4)f3(0, 1, 2)) + g−1

4 ((d5 + Pd6)f2(2, 1, 2) + (d7 + Pd8)f3(2, 1, 2))),

where

a1 = π2 + k2
m, a2 = π2 + 2k2

m, a3 = 2π2 + k2
m, a4 = 4π2 + k2

m, a5 = 4π2 + 5k2
m,

b1 = −πa1(2k
2
m)−1, b2 = −Rπ(4a1a3)

−1, b3 = −πa1(2a3)
−1, b4 = −πa3a

−1
1 , b5 = −πa2(4k

2
m)−1,

b6 = −Rπ(8a1a2)
−1, b7 = −πa2(4a1)

−1, b8 = −π2a1a
−1

2

g1 = 4a2
3 − k2

mRa
−1

3 , g2 = 16a2
1 − k2

mRa
−1

1 , g3 = a2
4 −Rk2

ma
−1

4 , g4 = a2
5 − 5Rk2

ma
−1

5 ,
c1 = π2(8k4

m)−1, c2 = −π2(200k4
m)−1, c3 = −π2(8k2

ma4)
−1, c4 = π2(40k2

ma5)
−1,

d1 = −π(7k2
m + 4π2)(8k2

m)−1, d2 = −πR((2a2)
−1 + 3(8a1)

−1)a−1
4 ,

d3 = −π(7k2
m + 4π2)(8a4)

−1, d4 = −πa4((2a2)
−1 + 3(8a1)

−1),
d5 = −πa5(40k2

m)−1, d6 = −πR(8a1a5)
−1, d7 = −π/8, d8 = −πa5(8a1)

−1.

All other coefficients of Eq. (26) can be obtained from these applying symmetries of the system.

F Exact expressions for the normal form coefficients

A1 = −1

8
P (P + 1)−1,

A2 = A1 − g−1

1 (P + 1)−1(P−1 1

2
π2a1 +Rπ2k2

m(a1(2k
2
m + 4π2))−1 +

1

4
Pπ2(2k2

m + 4π2)),

A3 = −P (P + 1)−1a1(8a2)
−1+

(P + 1)−1k2
m(8a1)

−1(4c1k
2
m + 2(2π2 − k2

m)(2c2 + c3) + 2c4k
2
m + g−1

3 (P−1d1 + d2)π(5k2
m − π2)+

g−1

4 (P−1d5 + d6)π(7k2
m + 5π2)) + P (P + 1)−1a1(8a2)

−1(2k2
m(2c1 − 2c2 − c3 + c4) + 2πk2

mg
−1

3 (P−1d1 + d2)+

3πa2g
−1

3 (P−1d3 + d4) + 2πk2
mg

−1

4 (P−1d5 + d6) + πa2g
−1

4 (P−1d7 + d8)),

A4 = (P + 1)−1k2
m(4a1)

−1(−4c1k
2
m − 2(2π2 − k2

m)c3 + g−1
3 (P−1d1 + d2)π(5k2

m − π2))+

P (P + 1)−1a1(4a2)
−1(2k2

m(−2c1 + c3) + 2πk2
mg

−1
3 (P−1d1 + d2) + 3πa2g

−1
3 (P−1d3 + d4)),
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A5 = A1,

A6 = A5 − g−1
2 (P + 1)−1(P−1 1

2
π2a2 +Rπ2k2

m(a2(2k
2
m + 2π2))−1 + Pπ2(k2

m + π2)),

A7 = −P (P + 1)−1a2(8a1)
−1 +

+
k2

m(−2c1a2 + (2k2
m − 3π2)(2c2 + c3) − c4a2 + g−1

3 (P−1d1 + d2)π(2k2
m + 5π2) − g−1

4 (P−1d5 + d6)πa2)

(P + 1)4a2

+

a2(k
2
m(−2c1 + 2c2 + c3 − c4) − πk2

mg
−1

3 (P−1d1 + d2) + 2πa1g
−1

3 (P−1d3 + d4) − πk2
mg

−1

4 (P−1d5 + d6))

P (P + 1)4a1

,

A8 = (P + 1)−1k2
m(4a2)

−1(2a2c1 + (3π2 − 2k2
m)c3 + g−1

3 (P−1d1 + d2)π(2k2
m + 5π2))+

P (P + 1)−1a2(4a1)
−1(k2

m(2c1 − c3) − πk2
mg

−1

3 (P−1d1 + d2) + 2πa1g
−1

3 (P−1d3 + d4)).

G Reduction of the group action

The original system of ODEs Eq. (12) on C4 have a continuous group symmetry T2 that means
that conventional path following programs fail to work. The normal form Eq. (12) in the form can be
reduced by the two dimensional group action as follows, so that the remaining system is nondegenerate
and on C3. We write Eq. (12) as

ż1 = f1

ż2 = f2

ż3 = f3

ż4 = f3

(30)

and then define

a1 = −ℑ(f1z1)

|z1|2
, a2 = −ℑ(f2z2)

|z2|2
.

The modified system of equations
ż1 = f1 + ia1z1
ż2 = f2 + ia2z2
ż3 = f3 + i(a1 + a2)z3
ż4 = f3 + i(a1 − a2)z4

(31)

has solutions that are in one-to-one correspondence with those of Eq. (30). This is because the
infinitesimal action of (eiαz1, z2, e

iαz3, e
iαz4) is (iα̇z1, 0, iα̇z3, iα̇z4) and the infinitesimal action of

(z1, e
iβz2, e

iβz3, e
−iβz4) is (0, iβ̇z2, iβ̇z3,−iβ̇z4). Hence, for our choice of a1 and a2, solutions to Eq. (31)

satisfy
ℑ(ż1z1) = 0, ℑ(ż2z2) = 0

meaning that effectively we have removed the group orbit drift from the trivial stratum of the orbit
space. This means that we can set ℑ(z1) = ℑ(z2) = 0 and compute all solutions within this six-
dimensional section of the orbit space. Note that the equations transformed this way becomes a
system on R6 on parameterizing by (x1, x2, x3 + iy3, x4 + iy4). Care needs to be taken near solutions
where z1 and/or z2 are zero as the system is singular on x1 = x2 = 0.
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