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We discuss the sensitivity of a population of coupled oscillators to differences in their natural
frequencies, i.e., to detuning. We argue that for three or more oscillators, one can get great sensitivity
even if the coupling is strong. For N globally coupled phase oscillators we find there can be bifurcation to
extreme sensitivity, where frequency locking can be destroyed by arbitrarily small detuning. This extreme
sensitivity is absent for N � 2, appears at isolated parameter values for N � 3 and N � 4, and can appear
robustly for open sets of parameter values for N � 5 oscillators.
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During the last two decades, the study of networks of
coupled oscillators has become a very popular and prom-
ising area of modern nonlinear science. Growing interest
has been stimulated by a wide variety of applications such
as Josephson junction arrays [1], semiconductor laser ar-
rays [2], coupled chemical reactions [3], and cardiac pace-
maker cells [4]. A crucial feature of such systems is their
ability to model transition between synchronized and de-
synchronized states. This transition can be identified, e.g.,
as a loss of frequency locking between oscillators in the
network. In neurophysiology, the appearance of phase
synchronization of oscillatory neurons, in particular, brain
areas, is associated with diseases such as Parkinson’s dis-
ease or epilepsy [5]. Uncovering the mechanisms of the
pathological neuronal synchrony represents a challenging
task in the development of novel deep brain stimulation
techniques for therapy of such diseases [6].

Work starting with Kuramoto [7,8] (see the review [9])
has examined generic properties of the interplay between
coupling strength and frequency spread for coupled phase
oscillators,

_�i � !i �
K
N

XN

j�1

g��i � �j�; (1)

where ��1; . . . ; �N� 2 TN and T1 � �0; 2��. We examine
this equation for the coupling function g of [10]

g��� :� � sin��� �� � r sin�2��: (2)

Many studies have considered the case r � 0 and � � 0 in
the thermodynamic limit N ! 1, and with frequencies !i
chosen independently from a fixed distribution [8,9]. Some
details of the very rich dynamics that can appear in a
system of a few coupled phase oscillators at a loss of
stability of a synchronized attractor have recently been
examined in [11]. Chaotic dynamics of the phases has
been found and studied in the Kuramoto model for weak
and intermediate coupling strength [12], while [13] inves-
tigates the dynamics of ‘‘repulsive interaction.’’
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For the standard Kuramoto model [8] with r � � � 0,
reduction of the coupling strength K will result in greater
sensitivity of synchronized behavior to variation in the
natural frequencies !i; this will manifest as frequency
mismatch in the response if the !i are sufficiently differ-
ent. For (1) with coupling function (2), the situation is
different and much richer: Extremely small detuning may
desynchronize phase dynamics even without decoupling.
Indeed, by varying � and r one can get an exchange of
stability of in-phase and antiphase states. We find that the
transition between the two phase locked states is typically
accompanied by so-called extreme sensitivity to detuning.
It means that near the transition, phase locking can be
destroyed by introducing arbitrary small differences of
the natural frequencies of individual oscillators. The ex-
treme sensitivity phenomenon is found for system (1)
beginning from dimension N � 3, and we believe it is a
robust phenomenon as it is driven by the existence of
robust heteroclinic attractors. We present detailed mecha-
nisms of the phenomenon and its relation to slow switching
oscillations.

It is known that (1) displays a variety of attractors and
bifurcations, including cluster states, periodic orbits, tori,
and heteroclinic cycles that may be robust [10]. Other
coupling functions of the form g��i; �j� can permit, for
example, the possibility of oscillation death [14], but sys-
tem (1) is justifiable for weak to moderate values of cou-
pling [15]. The dynamics of this system was investigated in
Refs. [10,16] for identical oscillators, !i � !. For N � 4
oscillators there can be robust slow oscillations between
cluster states, caused by the presence of attracting hetero-
clinic cycles. We show how these heteroclinic cycles can
be used to explain the emergence of extreme sensitivity to
detuning in system (1).

To quantify the sensitivity to detuning we define a vector
� � ��1; . . . ;�N�1� by �i � !i�1 �!1. Fixing all pa-
rameters in system (1) except �, we define sensitivity to
detuning to be the supremum of � such that k�k<�
implies all attractors for the system of oscillators have
phase differences that remain bounded. If � is small, the
2-1 © 2006 The American Physical Society
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system has a lower threshold of sensitivity to detuning. If
� � 0, we say the system shows extreme sensitivity to
detuning.

We find that loss of stability of in-phase oscillation �1 �
� � � � �N for identical oscillators (1) is associated with a
minimum of the sensitivity � on fixing r, K, and varying
�. The nature of this minimum depends critically on the
number of oscillators. ForN � 2 we find that the minimum
is positive while for N � 3 the minimum is zero (extreme
sensitivity) and remains exponentially close to zero for
parameter values near loss of stability of in-phase oscilla-
tion. ForN � 5, � can become zero for a whole interval of
parameter values, indicating robust extreme sensitivity.

We say two oscillators �i and �j have a bounded phase
difference if j�j�t� � �i�t�j is bounded uniformly for t > 0.
If !i � ! (so �i 	 0) then the sets Sij defined by those
phases where �i � �j are invariant for all i � j and form
codimension one barriers to the dynamics. Hence, in the
absence of detuning, we can consider the flow in the so-
called canonical invariant region [15] defined by �1 

�2 
 �3 
 � � � 
 �N 
 �1 � 2�. There must be a
bounded phase difference in this case regardless of the
detailed dynamics, and regardless of N. This argument
does not hold as soon as the !i are different. The model
(1) with r � � � 0 and �i � 0 has a degenerate bifurca-
tion on changing K at K � 0. For K > 0 the in-phase
oscillation is stable and antiphase states (i.e., where the
order parameter R � N�1k

PN
k�1 exp�i�k�k satisfies R �

0) are unstable. For K < 0 the only attractors are the
antiphase states, and these are degenerate manifolds of
neutrally stable periodic solutions [13].
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FIG. 1. Schematic bifurcation diagrams for (1) with r � 0:2,
K � 1 and (a) N � 2, (b) N � 3. For N � 2 in (a), obtained
analytically, there are pitchfork bifurcations at A and B located at
� � arccos��2r� and branches of attracting symmetry-broken
equilibria connecting A and B. For N � 3 in (b), the antiphase
state (where the order parameter R � 0) bifurcates at C to give a
branch of unstable periodic orbits (thin dotted curve). This has a
saddle node at F with a stable periodic orbit (bold dotted curve),
terminating at a global saddle-node heteroclinic bifurcation at E.
For limit cycles the minimum value over the cycle is plotted.
Lines show equilibria; bold indicates that they are attracting. The
bifurcations are A (� � 0:7691), pitchfork; B (� � 1:1269),
saddle node of equilibria; C (� � 1:1593), Hopf from antiphase
state; D (� � 1:1593), S3-transcritical bifurcation; E (� �
1:2574), global saddle-node heteroclinic; F (� � 1:4452),
saddle node of limit cycles. Branch AEBD lies within �2 � 0;
there are symmetrically related branches in �1�0 and �1��2.
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We now consider the more general case with r � 0 and
� � 0 but still identical oscillators, first for the cases N �
2 and 3. The complexity of bifurcation increases dramati-
cally with N and so for N � 4; 5 we focus only on robust
heteroclinic attractors that can appear in these cases. By
scaling time we set K � 1.

For N � 2 and � :� �2 � �1, Eq. (1) reduces to

_� � �1 � sin� cos�� r sin2�; (3)

from which one can determine that for fixed �1 � 0 and
0<r<0:5 there are solutions ��0 (in-phase) and ���
(antiphase) for all �. There are also branches of solu-
tions with � � � arccos�cos�

2r � that appear at � �
arccos2r and disappear at � � arccos��2r� via super-
critical pitchfork bifurcations. These transfer stability
from � � 0 to � � � via the branches of symmetry-
broken solutions as illustrated in Fig. 1(a). At r � 0 the
branches are vertical and hence degenerate. If N � 2 and
0< r< 0:5, then for any � one can find the sensitivity
� � minfkF�k; kF�kg, where F� (F�) is the global
maximum (minimum) of F��� � � sin� cos��
r sin2�. One can observe that these extrema occur at a

value of � arccos�cos��
�������������������
cos2��32r2
p

8r �. The sensitivity � as a
function of � is shown in Fig. 4 below for r � 0:2, includ-
ing the case N � 2. One can see that (i) this has minima at
� � �=2 (where jF�j � jF�j) corresponding to the sin�
term vanishing in Eq. (3) and (ii) the minimum value is
given by r and so is nonzero.

For N � 3 we can reduce system (1) to a two-
dimensional flow on a torus, given by an ODE for the
phase differences �1 � �2 � �1 and �2 � �3 � �1.
Fixing r � 0:2 and �1 � �2 � 0, the bifurcation diagram
on varying � is a lot more complicated than that forN � 2.
The bifurcations for N � 3 as found by numerical path
following with XPPAUT [17] are listed A� F in Fig. 1(b).
The bifurcation at E at � � �0 � 1:2574, r � 0:2 is of
particular interest as it gives extreme sensitivity to detun-
ing (qualitatively similar bifurcations occur for 0:156<
r< 0:375).

Figure 2 plots the phase differences forN � 3 using � �
�1 � e

2�i=3�2 � e
4�i=3�3 (permutations of the oscillators

correspond to rotations and reflections in the phase space
that preserve an equilateral triangle [18]). The lift of this
torus of phase differences to R2 can be represented by
reflecting triangles from Fig. 2 along their edges to build
a triangulation of the plane. The sides of the triangles
represent the invariant subspaces �1 � 0, �2 � 0, and
�1 � �2 bounding the canonical invariant region for �i �
0. There is a stable node P and saddles Q and R on the
invariant subspaces [Fig. 2(a)]. At � � �0, a saddle-node
bifurcation of P and R occurs [Fig. 2(b)], and at �> �0

there is a stable limit cycle L created near the union of
unstable manifolds of the remaining saddles Q [Fig. 2(c)].

At the bifurcation [Fig. 2(b)] we assume the eigenvalues
at Q are �1 < 0 and �2 > 0 while at P they are �3 < 0 and
0. We derive an approximating map F: �1 ! �0

1 with
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FIG. 2. Flow near the global saddle-node heteroclinic bifurca-
tion for N � 3 with r � 0:2 shown schematically in the plane
� � �1 � e

2�i=3�2 � e
4�i=3�3. The phase portraits show

(a) before the bifurcation for �< �0 � 1:2574, (b) at the
bifurcation for � � �0, and (c) after the bifurcation for �>
�0 there is an attracting limit cycle L. This limit cycle is very
close to the invariant subspaces, meaning that small detuning can
give an attractor with unbounded phase differences.
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F�a� � c, for 0< a� 1, where the symbols are as shown
in Fig. 3(a). Since �1 and �0

1 are symmetrically related,
the return map to �1 is given simply by F3. Consider a
parameter � that unfolds the saddle node at P, such that
there are two hyperbolic fixed points near P for � < 0 and
none for � > 0. Clearly for � 
 0 trajectories starting close
to the invariant subspaces, i.e., having a small enough, will
not intersect �0

1 as they will be trapped at P. For � > 0
suppose a trajectory starting on �1 at distance a from the
stable manifold of Q returns to �1 at a distance ~a from the
stable manifold. Approximation by a linear flow near Q
gives to leading order ~a � K1 exp��K2��1=2 for positive
constants K1 and K2. This implies there is a superstable
periodic orbit created close to the invariant subspace con-
taining Q. In terms of the original variables � � j�� �0j

we have ~a � K1 exp��K2j�� �0j
�1=2 independent of a

to leading order in j�� �0j. The period T of the cycle
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FIG. 3. (a) Construction of the return map from �1 to �0
1; this

map is defined only when the saddle node P has been destroyed
by a small perturbation [case (c) in Fig. 2]. (b) Phase portrait of
system (1) with N � 3 in the complex plane �Re���; Im���� for
r � 0:2, K � 1, � � 1:28, and �1 � �2 � � � 4:1� 10�7.
Bold solid curve depicts a stable limit cycle with the basin of
attraction indicated by gray. At the center of the triangle is a
coexisting stable antiphase state. (c) For a slightly larger detun-
ing � � 4:2� 10�7 we obtain an attracting periodic orbit that is
unbounded in �. The subspaces �1 � 0, �2 � 0, and �1 � �2,
which are invariant for � � 0, are depicted by dashed lines.
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scales as T � K3j�� �0j
�1=2, implying that the period

goes to infinity very slowly as we approach the bifurcation
point illustrated in Fig. 2 (as �! �0 from above). Such a
limit cycle is illustrated in Fig. 3(b) (bold curve). At the
saddle-node heteroclinic bifurcation the attracting web of
interconnecting invariant manifolds winds nontrivially
around the torus. These arise on lifting the invariant mani-
folds shown in Fig. 2(b) (where the sides of the triangles
denote the invariant subspaces �1 � 0, �2 � 0, and �1 �
�2, manifolds of P and Q and their symmetric images) to
the torus [see Fig. 3(c), dashed lines]. This web of con-
nections cause arbitrarily small detuning � to give attrac-
tors near this web that have unbounded phase differences.
Such a desynchronized attractor is shown in Fig. 3(c),
replacing a bounded stable limit cycle in Fig. 3(b).
Moreover, for �> �0 the attracting periodic orbits are
exponentially close to the invariant manifolds [Figs. 2(c)
and 3(b)] meaning that we can estimate � �
O�exp��Kj�� �0j

�1=2� for �> �0. For �< �0 we
have � � O�j�� �0j� because of the saddle-node pair.
This agrees with scaling of sensitivity � near � � �0, as
illustrated in Fig. 4(a) for the cases N � 3; 4; 5 [see also
Figs. 4(b) and 4(c) for scaling of � as �! �0 from above,
for N � 3 and N � 5, respectively) [19].

For N � 4 the bifurcation diagram is considerably more
complicated, and one can find open sets of parameter
values where the only attractor is a robust heteroclinic
cycle showing slow oscillations [19] between cluster states
of the form (�; �;�;�) with � � �. Rather than discuss
this in detail, we refer the reader to Refs. [10,16]. These
attractors consist of saddle periodic orbits and their one-
dimensional unstable manifolds. Typical initial conditions
are attracted to this union of connecting orbits, meaning
that they oscillate between symmetrically related saddle
periodic orbits while showing ‘‘slowing down’’ of the
oscillation period. The calculations for N � 4 and r �
0:2 in Fig. 4 indicate there is a bifurcation to extreme
sensitivity at �1 � 1:159 28.

The bifurcation illustrated in Fig. 2 and the transcritical
homoclinic bifurcation [18] have extreme sensitivity at the
point of bifurcation for the same reason; they give attract-
ing heteroclinic networks that allow winding of trajectories
around the torus. The dynamics in [13] shows extreme
sensitivity to detuning for larger N; however, in this case
the exceptional nature of the coupling gives nongeneric
behavior, and there are many neutrally stable periodic
orbits in the dynamics for N � 4. In our system, the
scenarios giving rise the sensitivity are nondegenerate,
except for the assumption of global coupling.

For N � 5 a new phenomenon appears. Figure 5(b)
illustrates a heteroclinic attractor robustly connecting one
fundamental region of the torus to the next (this was found
in Ref. [20]), which allows unbounded growth of phase
differences for arbitrarily small detuning. We contrast this
to N � 4 where the heteroclinic attractor is robust but does
not link fundamental regions. Numerical calculations of
2-3
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FIG. 4. Diagram showing sensitivity � for N � 2, 3, 4, and 5
coupled phase oscillators for K � 1 and r � 0:2 and varying �.
� gives the smallest amplitude detuning � such that at least one
attractor is not phase bounded (multistability is common in this
region). Observe that N � 2 remains a bounded distance from
� � 0 while the cases N � 3, 4, and 5 go to zero and remain
close to there for a range of � (in fact, for N � 5 it remains zero
to numerical accuracy for a range of �). The plots (b) and
(c) show, for the cases N � 3 and N � 5, respectively, the values
of � log��� plotted versus j�� �0j in log-log scale. The
straight lines are obtained by direct fit of the data and have a
slope �0:5, agreeing with the predicted scaling near the bifur-
cation in Fig. 2(b).
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the system with N � 5, K � 1, and r � 0:2 show there is
an interval of values � 2 �1:21; 1:41 for which the trajec-
tories of the system for small detuning � are spuriously
attracted by a saddle fixed point [Fig. 5(a)]. This gives
nonzero but incorrect values of the sensitivity � that are
reduced by higher precision calculations [Fig. 5(b)].
Hence, for N � 5 we conclude there are open regions of
robust extreme sensitivity. We believe this is typical for
N � 5.
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FIG. 5. The system (1) with N � 5, � � 1:411, r � 0:2, and
K � 1 at onset of the region of robust extreme sensitivity.
(a) Attractors calculated using double and quadruple precision
for � � 4:35� 10�7 and � � 9:45� 10�17, respectively.
Calculation with quadruple precision gives � � 9:5� 10�17,
whereas the double precision gives � � 4:4� 10�7. The double
precision calculation shows anomalous attraction to a saddle
point. (b) Calculations for a fixed � � 10�15 using quadruple
precision give an attractor that stays close to a robust heteroclinic
network with unbounded phase differences.
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In conclusion, we show in this Letter that extreme
sensitivity to detuning of the natural frequencies is a ge-
neric property in coupled oscillator systems, and can occur
without decoupling the oscillators. It will appear near
exchange stability of the in-phase and antiphase synchro-
nized states, and manifests itself as a violation of frequency
synchronization between individual oscillators by arbitrary
small detuning. We argue that in networks of N � 5 oscil-
lators the extreme sensitivity can appear robustly, i.e., for
open sets in parameter space.

Coupled oscillators, under certain generic types of cou-
pling, can have attractors that respond very sensitively to
differences in the oscillators, whether these are differences
in detuning, signal, or noise inputs, and even if the cou-
pling is neither weak nor degenerate. There can be a variety
of different bifurcation scenarios leading to extreme sensi-
tivity; these are clearly of great interest.
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