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Abstract. We introduce a class of two-dimensional piecewise isometries on the plane
that we refer to as cone exchange transformations (CETs). These are generalizations
of interval exchange transformations (IETs) to 2D unbounded domains. We show for a
typical CET that boundedness of orbits is determined by ergodic properties of an associated
IET and a quantity we refer to as the ‘flux at infinity’. In particular we show, under
an assumption of unique ergodicity of the associated IET, that a positive flux at infinity
implies unboundedness of almost all orbits outside some bounded region, while a negative
flux at infinity implies boundedness of all orbits. We also discuss some examples of CETs
for which the flux is zero and/or we do not have unique ergodicity of the associated IET; in
these cases (which are of great interest from the point of view of applications such as dual
billiards) it remains an outstanding problem to find computable necessary and sufficient
conditions for boundedness of orbits.

1. Introduction
Several applications require one to investigate iterated maps of the plane, where the map
is a piecewise isometry defined by rotations on each of a number of subsets of the plane.
A topical application is that of dual billiards, where Schwartz [15] has recently resolved a
long-standing conjecture by Neumann and Moser. In particular, Schwartz has constructed
a dual billiard system (partition illustrated in Figure 1) for which he proves there is an
unbounded orbit.

In another example, Ashwin and Goetz [1] show that for a different system (illustrated in
Figure 2) all orbits are bounded, and they describe a partition into periodic and aperiodic
orbits. The question of boundedness of orbits is nontrivial even for the simplest map in
this class: a rotation on each of two half-planes. In this case Goetz and Quas [10] have
shown that if such a map is invertible, then it has periodic points arbitrarily close to infinity.
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FIGURE 1. Schwartz’s dual billiard cones. The Schwartz map T acts on the complement of the white quadrilateral
that is split into four infinite cones. Each cone is rotated about its vertex by π . The quadrilateral has interior angles
4π/5, 2π/5, 2π/5, 2π/5. Schwartz proves the existence of unbounded orbits for T .

In general almost all orbits are recurrent, but boundedness of orbits even for this simple
family of maps is yet to be proven or disproven. This paper aims to examine a class of
cone exchange transformations (CETs) that gives a unified framework for discussing such
questions and many more.

The structure of this article is as follows. In this section we define cone exchange
transformations, a class of piecewise isometry maps that act on cones. The main results
for this class are stated in §1.1. In §2 we parameterize CETs and discuss the properties of
asymptotic radial and mass flux. We then state and prove a series of lemmas, all of which
are building blocks for the proofs of Theorems 1 and 2. In §3, we discuss two examples
in the literature for which our theorems hold. We also include details of some examples
illustrating that the converse to the main theorem is particularly subtle; in §4 we discuss
these cases. This includes discussion of necessary conditions for there to be unbounded
oscillations or boundedness of orbits in a zero flux case. We finish with a discussion of
possible extensions of the results in §5.

1.1. Statement of main definitions and results. Recall that an interval exchange
transformation (IET) on a finite interval J is a piecewise linear invertible map θ 7→ S(θ)=
θ + φk(θ) such that φk is constant on a finite partition of J into intervals θ ∈ Ik . Generic
properties of IETs are relatively well understood [4, 13, 17]. We use some of these known
results about IETs to understand boundedness of orbits of CETs, a particular case of a cone
isometry transformation (CIT) that we now define.

Definition 1. (Cone isometry transformations) Let X ⊂ C be an unbounded polygonal
region with a partition {Pj } j∈N , a finite collection of mutually disjoint convex polygonal
subsets of C indexed by N . Let {T j } j∈N be a collection of isometries z 7→ u j z + b j , where
b j , u j ∈ C, and |u j | = 1. The collection of maps T = {T j |Pj } j∈N we call a cone isometry
transformation.

The sets {Pj } j∈N are called the domains of T . The CIT acts on X =
⋃

j∈N Pj by

T (z)= T j (z) if z ∈ Pj .
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FIGURE 2. The cone exchange T from [1] restricted to a large invariant pentagon. The collection of periodic cells
fills the smaller central pentagon (the right figure) and five trapezia, with the black lines indicating the boundaries
between differently coded periodic cells. The set of all aperiodic cells has non-zero measure and comprises the
white region. Outside of the periodic central pentagon, there is a foliation of one-dimensional invariant curves

(not shown) that exhaust C.

We define a cone (strip) to be the unbounded intersection of a finite number of open half-
planes, such that the unbounded boundary lines are non-parallel (parallel). The unbounded
pieces of the partition can include both cones and strips.

The action of T induces a map T̂ on a subset of the circle (at ∞). We define the
projection 5(X) onto the circle by

θ ∈5(X)⇔ {Reiθ
| R > 0} ∩ X is unbounded.

Consider a cone isometry T : X→ X and define the map induced from T by projection
onto the circle at infinity to be

T̂ (θ)= lim
R→∞

arg(T (Reiθ )), (1)

where T̂ is defined on5(X)⊂ S1
= [0, 2π). Note that cones map to non-empty intervals,

while strips map to points under 5. We show in Lemma 1 that this map is well defined
apart from a finite number of angles 2dis ⊂ [0, 2π). In fact, it is well defined independent
of choice of origin as well.

We will make a technical assumption that the CIT is regular, i.e. we assume that all
directions of strip boundaries are mapped under T to directions of one or other of the
bordering cone boundaries†. We concentrate from here on a special class of CITs such
that T̂ is invertible and X = C, although the definitions can clearly be adapted to more
general convex unbounded X ⊂ C.

Definition 2. (Cone exchange transformation) We say that a regular CIT T : C→ C is a
cone exchange transformation if T̂ is invertible.

While in this paper will not use it, it is worth noting that the family of CETs is closed
on taking the first return map to an infinite cone.

An important quantity for CETs is the average radial flux at infinity (we sometimes just
refer to this as the flux) defined by

8∞r = lim
R→∞

1
2π

∫ 2π

0
[|T (Reiθ )| − R] dθ. (2)

† Regularity implies that for typical T , far enough from the origin all points enter a cone after a single iterate and
then have angles that are approximately determined by iterates of the interval exchange T̂ .
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FIGURE 3. A two half-plane map T : C→ C. In this illustration, the upper and lower half-planes C0 and C1 are
separated by distinct translation vectors and then they are rotated by θ . The mass flux 8m (R) > 0 and the radial

flux is also 8∞r > 0. It is shown in [5] that this system is globally repelling.

The asymptotic dynamics of the CET is determined by the following theorem. For clarity
we state the main results; proofs, examples and further discussion are given in later
sections.

THEOREM 1. (Flux determines asymptotic behaviour) Suppose that T : C→ C is a CET
and T̂ is uniquely ergodic.
(a) If 8∞r > 0 then there is an ρ > 0 such that:

(a1) for all |z|> ρ we have
lim

k→∞
|T k(z)| =∞;

(a2) the ergodic averages of arg(T k(z)) are determined by the induced
transformation at infinity T̂ ; namely, for any integrable observable F : S1

→

R and all |z|> ρ, we have

lim
N→∞

1
N

N−1∑
k=0

F(arg(T k(z)))=
1

2π

∫ 2π

0
F(θ) dθ.

(b) If 8∞r < 0 then there is a ρ > 0 such that the system has a global attractor; namely,
for all z ∈ C,

lim sup
k→∞

|T k(z)|< ρ.

Theorem 1 shows that, subject to an assumption on T̂ , 8∞r > 0 implies unboundedness
of all forward trajectories that start sufficiently far from the origin, while 8∞r < 0 implies
boundedness of forward trajectories. The proof of Theorem 1 is based on some detailed
estimates and the uniform ergodicity theorem; in essence it generalizes the idea of the
proof in [5] for the specific map shown in Figure 3. As we show in §3, our results can be
used to recover several results from the literature. By using generic unique ergodicity for
the induced map T̂ we obtain the following result, precise details and proof of which are
also deferred to §2.

THEOREM 2. There is a natural parameterization of the set of CETs on C with n ≥ 2
cones, such that T̂ is uniquely ergodic and 8∞r 6= 0 on a set of parameters with full
Lebesgue measure. Hence there is a full Lebesgue measure set of parameters such that
precisely one of (a) or (b) from Theorem 1 holds.

http://journals.cambridge.org
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However, there are many CETs that do not satisfy either hypothesis (a) or (b) of
Theorem 1 and many of these are important in applications such as dual billiards. These
include cases of CETs that are non-uniquely ergodic and/or have zero flux,8∞r = 0; see §4.

2. Properties of cone exchange transformations
We start with the observation that for any CET, at least one of the domains of X must be
unbounded and convex, and hence it must be a cone or a strip outside a bounded region.

Assume the unbounded regions are comprised of n > 0 cones and m ≥ 0 strips. We
write the set of unbounded domains Pk where k ∈ {1, . . . , n} are the cones and Pn+k for
k ∈ {1, . . . , m} the strips. The unbounded boundaries of Pk are subsets of (iwk + R)eiαk

and (ivk + R)eiβk for R > 0, where wk, vk, αk, βk are constants. For the cones Pk we can
assume without loss of generality that αk < βk = αk+1 ≤ αk + π , while for the strips we
have αk = βk . We write

2dis = {αk : 1≤ k ≤ m}

to denote the discontinuity set of T̂ ; this is clearly of zero measure. The CET on each Pk

can be written
Tk(z)= eiφk z + ukeiτk for z ∈ Pk (3)

for some φk ∈ [0, 2π) and tk = ukeiτk ∈ C.
We think of the far-field behaviour of any CET as being determined by the data

{(αk, βk, τk, φk, wk, vk, uk)}
n
k=1 ∈ ([0, 2π)4 × R3)n (4)

subject to the constraint that T̂ (θ)= θ + φk for θ ∈ [αk, βk) is invertible and the Pk for
k = 1, . . . , m + n form a partition of X outside a bounded region. One can measure how
far this is from a simple exchange on angles by defining

Umax =max{|uk |, |vk |, |wk | : k = 1, . . . , m + n}

and noting that Umax = 0 implies that T (Reiθ )= Rei T̂ (θ), i.e. the CET is simply the IET
applied to the angle. We show in the next lemma that T̂ can be written using these
coordinates.

LEMMA 1. For any CET T : C→ C the map T̂ (θ) (1) is defined on S1
= [0, 2π) for

θ 6∈2dis. The map is equal to the IET defined for θ ∈5(Pk) by

T̂ (θ)= θ + φk

whenever θ ∈ (αk, βk).

Proof. Fix any θ 6∈2dis; then {Reiθ
|R > 0} ∩ Pk is unbounded for some k corresponding

to θ ∈ (αk, βk), and for this k we have

T̂ (θ)= lim
R→∞

arg(eiφk (w + Reiθ )+ tk)= θ + φk .

The map T̂ is an interval exchange transformation if T is almost everywhere invertible
(although the converse is not necessarily true). 2
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Any planar isometry will locally preserve 2D Lebesgue measure, and if T is injective
then ` is invariant on the range of T : `(T−1(A))= `(A) for all measurable A ⊂ T (X).
However, if X has infinite Lebesgue measure, T : X→ C can be injective but not
surjective†.

As we will compare the action of T (z) to that of T̂ (arg(z)) we define the set of ‘good
angles’ on the circle of radius R by

2good(R)= {θ : there is a k so that Reiθ
∈ Pk and θ ∈ [αk, βk)}

and its complement 2bad(R). Similarly define Xgood by

Xgood =
⋃

k

(Pk ∩5
−1((αk, βk)))=

⋃
R>0

Rei2good(R).

We note the following lemma.

LEMMA 2. For all R′ > R, the set of bad angles 2bad(R′) is contained within a
δ-neighbourhood of 2dis where

δ <
πUmax

R
.

Proof. Note that the bad angles consist of θ such that Reiθ lies within the strips

{(is + r)eiαk : r > 0, |s|< |wk |} ∪ {(is + r)eiβk : r > 0, |s|< |vk |}.

Hence, as |wk |, |vk | ≤Umax, by elementary trigonometry the set of bad angles on a circle
of radius R is at most a (πUmax/R)-neighbourhood of 2dis. 2

The next lemma relates the dynamics of T to that of T̂ . Suppose that T : C→ C is a
CET. Let FT (θ) be the piecewise continuous function defined by

FT (θ)= uk cos(τk − θ − φk) (5)

for θ ∈ [αk, βk).

LEMMA 3. There is an R0 such that if R > R0 then one of the following holds:
(a) if θ ∈2good(R) then

||T (Reiθ )| − R − FT (θ)|<

(
π2

8
+
π

2

)
U 2

max

R
(6)

and

|arg(T (Reiθ ))− T̂ (θ)|<
πUmax

2R
; (7)

(b) if θ ∈2bad(R), then

||T (Reiθ )| − R − FT (θ)|< 2Umax. (8)

† Contrast this with the case where X has finite Lebesgue measure where, up to a set of zero measure, T is
injective if and only if it is surjective.
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Proof. First assume that θ ∈2good(R) and we pick k such that Reiθ
∈ Pk . It follows that

T̂ (θ)= θ + φk (9)

and
Seiθ
= T (Reiθ )= eiφk Reiθ

+ ukeiτk .

Multiplying the above equation by e−iψ and taking real and imaginary parts, we have

S = R cos(θ + φk − ψ)+ uk cos(τk − ψ) (10)

0= R sin(θ + φk − ψ)+ uk sin(τk − ψ). (11)

From (11) we have

sin(θ + φk − ψ)=−
uk

R
sin(τk − ψ).

Fixing an R0 >Umax, then for any R > R0, by the intermediate value theorem there is a
solution ψ to this equation with

|θ + φk − ψ |< π/2 (12)

such that
2
π
|θ + φk − ψ |< sin |θ + φk − ψ |<

Umax

R
(13)

meaning that |θ + φk − ψ |< πUmax/(2R). Hence, using (9), we have (7). From (10) we
have

S − R − uk cos(τk − ψ)= R cos(θ + φk − ψ)− R

so that

|S − R − uk cos(τk − ψ)| = R|1− cos(θ + φk − ψ)| = R(1− cos(θ + φk − ψ))

where the last equality follows from (12). From 1− cos x ≤ x2/2 we have

|S − R − uk cos(τk − ψ)| ≤ R
|θ + φk − ψ |

2

2
so, using (7), we have

|S − R − uk cos(τk − ψ)|< R
π2U 2

max

2(2R2)
=
π2U 2

max

8R
. (14)

From the mean value theorem and (13) we have

|uk cos(τk − ψ)− uk cos(τk − θ − φk)|<Umax|θ + φk − ψ |<
πU 2

max

2R
. (15)

Applying the triangle inequality to (14), (15) we get

|S − R − uk cos(τk − θ − φk)|<
π2U 2

max

8R
+
πU 2

max

2R
which can be expressed as (6).

In the case of θ ∈2bad(R) one cannot make a uniformly better estimate than

|arg(T (Reiθ ))− T̂ (θ)| ≤ π

(by suitable choice of the argument). From this and (10) one obtains (8). 2
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2.1. Flux for cone exchanges. Suppose that T : C→ C is a CET. Define the asymptotic
radial flux of T to be

8∞r = lim
R→∞

8r (R) (16)

where the radial flux is given by

8r (R)=
1

2π

∫ 2π

0
[|T (Reiθ )| − R] dθ.

One can verify that the limit in (16) exists and8∞r is finite for any cone exchange; it is the
average change in radius on a circle of radius R.

Using the estimate (6) and the definition of FT (5), we have

8r (R) =
1

2π

n∑
k=1

∫ βk

θ=αk

uk cos(τk − θ − φk) dθ + E1 + E2

=
1

2π

∫ 2π

θ=0
FT (θ) dθ + E1 + E2

where the error term E1 is from integrating the error from (6) and E2 is the error from
those angles that lie in 2bad(R). One can verify that both of these can be estimated by
C/R uniformly in z, where C is a constant; hence

8∞r =
1

2π

∫ 2π

θ=0
FT (θ) dθ. (17)

Let BR(x) denote the closed ball of radius R centred on x , and let BR = BR(0). Suppose
that T : C→ C is a CET and define the mass flux of T to be the total net loss of area by BR

under iteration by T ; i.e. let

8m(R)= µ(T
−1(BR) ∩ Bc

R)− µ(T
−1(Bc

R) ∩ BR), (18)

where µ denotes Lebesgue measure restricted to X . We can relate the mass flux and the
radial flux as follows.

LEMMA 4. Suppose that T : C→ C is a CET, then the asymptotic radial flux and the mass
flux are related by

8∞r = lim
R→∞

8m(R)

2πR
.

Proof. We wish to compute

8m(R)= µ(T
−1(BR) ∩ Bc

R)− µ(T
−1(Bc

R) ∩ BR),

the net mass flux away from 0; note that

8m(R)=
∑

k

8m,k(R)

where
8m,k = µ(T

−1(BR) ∩ Bc
R ∩ Pk)− µ(T

−1(Bc
R) ∩ BR ∩ Pk),

hence

8m,k =

∫ βk

θ=αk

∫
|Tk (Reiθ )|

r=R
r dr dθ + Ek(R)
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where Ek(R) is an error term caused by terms in 2bad(R). We can bound this by a square
whose side is the largest translation; namely, |Ek(R)|<U 2

max uniformly in R. Hence

8m,k =

∫ β

θ=α

1
2
[|T (Reiθ )|2 − R2

] dθ + E

with E < nU 2
max, meaning that

8m =
∑

k

∫ βk

θ=αk

1
2
[|Reiθ+iφk + ukeiτk |

2
− R2
] dθ + O(1)

and so, by applying (6),

=

∑
k

∫ βk

θ=αk

R uk cos(τk − θ − φk) dθ + O(1)

= R
∫ 2π

θ=0
FT (θ) dθ + O(1)= 2πR 8r (R)+ O(1),

and hence 8r (R)=8m(R)/(2πR)+ O(1/R). In particular

8∞r = lim
R→∞

8m(R)

2πR
. 2

LEMMA 5. Suppose that T : C→ C is an invertible cone exchange and 8m(R)= 0
outside some finite R; then the asymptotic radial flux is also zero. Moreover, suppose
that there are radii 0< R1 < R0 such that:
(a) T is bijective from the preimage of the annulus A = BR0 ∩ Bc

R1
onto itself;

(b) there are no points that skip over the annulus A, i.e.

T (BR1) ∩ Bc
R0
= T (Bc

R0
) ∩ BR1 = ∅. (19)

Then it follows that
8m(R0)=8m(R1).

Proof. Let A = BR1 ∩ Bc
R0

be the annulus and suppose that T restricted to T−1(A) is
both injective and surjective onto A. Since T is piecewise isometric and invertible on A,
it is measure preserving in the sense that for any measurable subset X ⊂ A we have
µ(T−1(X))= µ(X). Note that

µ(T−1(A))= µ(T−1(A) ∩ (A ∪̇ Ac))= µ(T−1(A) ∩ A)+ µ(T−1(A) ∩ Ac)

while also

µ(A) = µ(A ∩ (T−1(A) ∪̇ T−1(Ac) ∪̇ Z))

= µ(A ∩ T−1(A))+ µ(T−1(A) ∩ Ac)+ µ(A ∩ Z)

where Z is the set of points that are not a preimage of T and ∪̇ indicates disjoint union.
Hence

µ(T−1(A) ∩ Ac)= µ(T−1(Ac) ∩ A).

If we write (using assumptions (19))

T−1(A) ∩ Ac
= (T−1(BR0) ∩ Bc

R0
) ∪̇ (T−1(Bc

R1
) ∪ BR1)
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and
T−1(Ac) ∩ A = (T−1(Bc

R0
) ∩ BR0) ∪̇ (T

−1(BR1) ∪ Bc
R1
),

then it follows that

µ(T−1(BR0) ∩ Bc
R0
)+ µ(T−1(Bc

R1
) ∩ BR1)

= µ(T−1(Bc
R0
) ∩ BR0)+ µ(T

−1(BR1) ∩ Bc
R1
)

which can be expressed as
8m(R0)=8m(R1). 2

2.2. Boundedness and radial flux. In this section we give a proof of Theorem 1. We
start with a lemma that gives a bound on minimum return times to the set of bad angles.

LEMMA 6. Suppose that T : C→ C is a CET and T̂ is minimal. Given any N > 0, there
is a ρ > 0 such that for any |z|> ρ and z ∈ Xbad, T k(z) 6∈ Xbad for all except at most n
values of k ∈ {0, 1, . . . , N }.

Proof. Fix on some N > 0 we can think of as arbitrarily large. As there are no periodic
orbits for T̂ , all θ ∈2dis must leave 2dis after at most n iterates and then never return.
To simplify the exposition we assume that they do leave immediately and never return.
Consider the closest approach to 2dis made by any starting point in 2dis after N iterates;
i.e. for fixed N we define

ε(N )=min{|T̂ k(θ)− θ̂ | : k = 1, . . . , N , (θ, θ̂ ) ∈22
dis}

and note that ε > 0. Lemma 2 means we can pick a ρ1 > 0 such that for all R > ρ1,
2bad(R) is within an ε/4-neighbourhood of 2dis. Lemma 3 means we can find a ρ2 > ρ1

such that if R > ρ = ρ2 + NUmax and θ ∈2bad(ρ1) (writing T k(Reiθ )= Rkeiθk ) then

Rk+1 > ρ2 and |θk+1 − T̂ (θk)|<
ε

4N

for k = 1, . . . , N − 1, so
|θk+1 − T̂ k(θ1)|<

ε

4
.

Hence for any R > ρ and θ ∈2bad(R), T k(Reiθ ) cannot return to within ε/2 of Xbad

during its first N iterates. For the more general case, we need to exclude the first n
iterates. 2

We will need a uniform ergodic theorem [14] stated here (without proof) for
convenience.

THEOREM 3. (Uniform ergodic theorem) Pick any integrable F : S1
→ R and suppose

T̂ : S1
→ S1 is uniformly ergodic for Lebesgue measure. Then for any ε > 0 there is an M

such that ∣∣∣∣ 1
N

N−1∑
k=0

F(T̂ k(θ0))−
1

2π

∫ 2π

0
F(θ) dθ

∣∣∣∣< ε
for all θ0 ∈ S1 and all N > M.
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Proof of Theorem 1. We commence with a proof of (a1). Pick any ε > 0; by Theorem 3
there is an M(ε) such that ∣∣∣∣ 1

N

N−1∑
k=0

FT (T̂
k(θ))−8∞r

∣∣∣∣< ε (20)

for all N > M and all θ . We will pick an N > M such that in addition

N8∞r
3

> 2ε + 2Umax. (21)

By Lemma 6 we can find a ρ1 > 0 such that |z|> ρ1 and z ∈ Xbad implies that T k(z) 6∈
Xbad for k = 1, . . . , N − 1.

Let us write T k(z)= Rkeiθk . By Lemma 3 there is a ρ2 > ρ1 such that for all |z|> ρ2

and k = 1, . . . , N − 1 we have

|θk − T̂ k−1(θ1)|<
ε

NUmax
. (22)

Defining dk = Rk+1 − Rk and assuming that Rk > ρ2 for k = 1, . . . , N − 1, we have

|dk − FT (θk)|<
ε

N
(23)

for all R0 > ρ2 and k = 1, . . . , N − 1, while for the ‘bad angle’ θ0 we have

|d0 − FT (θ0)|< 2Umax. (24)

From (22) we have

|FT (θk)− FT (T̂
k−1(θ1))|<

ε

N
. (25)

We now proceed by estimating the change in R over an orbit segment of length N that
remains outside a disk of radius ρ2. From (23) we have, defining DN = RN − R0, that

DN = dN−1 + dN−2 + · · · + d1 + d0

=

N−1∑
k=0

(dk − FT (θk))+

N−1∑
k=0

FT (θk).

Choosing θ̂ such that T̂ (θ̂)= θ1, we write

DN =

N−1∑
k=0

(dk − FT (θk))+

N−1∑
k=0

(FT (θk)− FT (T̂
k(θ̂)))+

N−1∑
k=0

FT (T̂
k(θ̂)). (26)

Note that from (25) we have∣∣∣∣N−1∑
k=0

(FT (θk)− FT (T̂
k(θ̂)))

∣∣∣∣< ε,
while from (23), (24) we have∣∣∣∣N−1∑

k=0

(dk − FT (θk))

∣∣∣∣< 2Umax + ε.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 07 Mar 2013 IP address: 144.173.176.73

1322 P. Ashwin and A. Goetz

(Note that the 2Umax term is absent if θk remains in 2good for all k.) Finally, from (20)
we have

N−1∑
k=0

FT (T̂
k(θ̂)) > N (8∞r − ε).

Putting this together into (26), we have

DN > N (8∞r − ε)− 2ε − 2Umax. (27)

Hence, taking ε =8∞r /3> 0 and using assumption (21), there is an ε > 0 such that
DN > N8∞r /3 and so

RN > R0 + N8∞r /3 (28)

implying that
Rk N > R0 + k N8∞r /3. (29)

Hence |T Nk(z)| must tend to infinity as k→∞.
For the proof of (a2), first pick any F : S1

→ R that is integrable. For any M > 0, there
is an R > ρ > 0 such that (i) if |T k(z)|> R for all k then the orbit of z visits the bad set
at most once every M iterates and (ii) we have uniform convergence of 8 to its ergodic
mean. Hence for any integrable F we have∣∣∣∣ lim

M→∞

1
M

M−1∑
k=0

F(arg(T k(z)))−
1

2π

∫ 2π

0
F(θ) dθ

∣∣∣∣< C

M
.

By using (a1) we have that the proportion of visits to 2bad goes to zero as k→∞; hence
one can choose M arbitrarily large and obtain the result.

The proof of (b) is obtained by noting that in a similar way to the proof of (a1) we have

DN < N (8∞r + ε)+ 2ε +Umax, (30)

so if 8∞r < 0 one can find a ρ > 0 such that all orbits starting in |z|> ρ have

|T N (z)|< |z| −
8∞r

3
.

Hence any initial condition starting outside a ball of radius ρ must enter it in finite time and
thereafter remain there. A consequence of this is that there is a bounded set that contains
the ω-limits for almost initial conditions. 2

We now prove the second main result, Theorem 2; we first state and prove a lemma
inspired by Boshernitzan (personal communication). Recall (e.g. [17]) that any (n + 1)-
interval exchange J on [β1, β1 + 2π) with partition

β1 < · · ·< βn+1 < βn+2 := β1 + 2π (31)

that permutes the order of the (n + 1) intervals according to the permutation 5 ∈

S({1, . . . , n + 1}) can be written explicitly as

J (θ)= θ + φk for θ ∈ [βk, βk+1),
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where φk = β
′

k − βk for β ′1 = β5−1(1) and

β ′k = β1 +

5−1(k)−1∑
j=1

(β5−1( j)+1 − β5−1( j))

for k > 1†.

LEMMA 7. Suppose that I : S1
→ S1 is an n-interval exchange on a circle S1

= R/2πZ
with partition

α1 < · · ·< αn < αn+1 := α1 + 2π. (32)

Then I can be written as an n-interval exchange on [α1, α1 + 2π) with partition {αk}
n
k=1

that fixes the interval [α1, α2), composed with a rotation by ξ ∈ S1. For Lebesgue almost
all (α1, . . . , αn, ξ) the map I is uniquely ergodic.

Proof. Consider the preimage α′ such that I+(α′)= α1 and set α′ + ξ = α1. Note that I
can be uniquely written as the composition of an IET on [α1, α1 + 2π) with partition (32)
and permutation 5̃ that fixes 5̃(1)= 1, composed with a rotation by ξ ∈ S1. Hence I
is parameterized uniquely by 5̃, ξ ∈ S1 and (α1, . . . , αn) satisfying (32). Boshernitzan
(personal communication) has a proof based on [13, 17] that an interval exchange on S1

parameterized in this way will be uniquely ergodic for Lebesgue almost all ξ , independent
of choice of αk in (32). We prove here a weaker result than this.

On identifying S1 with the interval [α1, α1 + 2π), I can also be viewed as an interval
exchange J on at most n + 1 intervals, introducing an additional discontinuity at α′ if
α′ 6∈ {α1, . . . , αn}. The trajectories of I and J are dynamically equivalent, as are their
respective ergodic invariant measures. More precisely, for any partition (α1, . . . , αn) there
is a full measure set of ξ for which the preimage α′ of α1 under I has α′ ∈ (αk, αk+1) for
some 1≤ k ≤ n. Hence, for a full measure set of ξ , I can be written as an (n + 1)-interval
exchange J on [α1, α1 + 2π), with a partition defined by

β j =


α j for j < k + 1,

α′ = α1 − ξ for j = k + 1,

α j−1 for j > k + 1,

(33)

for j = 1, . . . , n + 1, which clearly satisfies (31).
Consider the permutation 5 of the n + 1 intervals by J (note that this is not 5̃ unless

ξ = 0). If 5 is reducible in the sense of [17] then there is an invariant subinterval [β1, βk)

for some 1< k < n + 1. This means there is an invariant subinterval [α1, αk′) for some
1< k′ < n (only the αk are points of discontinuity for the map on S1) which means in
particular that α′ = α` for some 1≤ ` < k′. However, this can only happen for a finite set
of ξ ; hence for almost all (α1, . . . , αn, ξ), the permutation 5 for J is irreducible.

Given irreducibility of 5, [17] implies that for almost all choices of (β1, . . . , βn+1), J
(and hence I ) is uniquely ergodic. However, a set has zero measure for (β1, . . . , βn+1) if
and only if it has zero measure for (α1, . . . , αn, ξ), as there is an invertible linear map (33)
that relates the two (n + 1)-dimensional real spaces. Hence there is a full measure set of
(α1, . . . , αn, ξ) for which I is uniquely ergodic. 2

† Note that β ′k is such that J+(βk ) := limx↘βk J (x)= β ′k .
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Proof of Theorem 2. Take the parameterization of the far-field behaviour given by (4)
subject to the constraint that the induced map T̂ at infinity is an IET, which means that
we can choose αk as in the statement of Lemma 7, βk = αk+1 and φk = α

′

k − αk + ξ for
some ξ ∈ [0, 2π) and permutation5. By Lemma 7, for any 5̃ and almost all choices of αk

and ξ , the IET T̂ is uniquely ergodic.
Now the flux of any CET that projects to T̂ can be written as

8∞r =
1

2π

∫ 2π

0
FT (θ) dθ

=
1

2π

∑
k

∫ αk+1

αk

uk cos(τk − θ − φk) dθ

=
1

2π

∑
k

uk Vk

where Vk = sin(τk − αk − φk)− sin(τk − αk+1 − φk). We fix an arbitrary k and claim
that there is a full Lebesgue measure set of αk, ξ, τk such that Vk is non-zero. To see this,
observe that for a full measure of αk there will be a countable set of τk − φk and hence
of ξ that gives Vk = 0. Hence 8∞r = 0 on a non-degenerate linear subspace of {uk} and
so the set of parameters of the CET for which 8∞r 6= 0 has full measure. Hence for a full
Lebesgue measure set of these parameters precisely one of (a) or (b) of Theorem 1 holds. 2

3. Examples
We summarize some examples of planar CETs and some fundamental questions related to
boundedness of orbits under iteration of the map. We also show how Theorem 1 covers
results previously obtained in [5, 7].

Two half-plane map. Fix θ ∈ [0, 2π), a, b ∈ C and define T : C→ C by

T (z)=

{
eiθ (z + a) if z ∈ C0 = {z | Im(z)≥ 0},

eiθ (z + b) if z ∈ C1 = {z | Im(z) < 0}.
(34)

The general case of this map was studied in [5] where it was found that the map T is
surjective (the rotated half-planes overlap) if and only if Im(a − b)≤ 0 and it is injective
(the rotated half-planes get separated) if and only if Im(a − b)≥ 0, hence bijective if
and only if a − b ∈ R. Boshernitzan and Goetz found that in the non-injective case
(Im(a − b) < 0), the map is globally attracting, i.e. there exists M > 0 such that for all
z ∈ C, |T nz| ≤ M for all sufficiently large n. In the non-surjective case (Im(a − b) > 0),
the map is globally repelling, i.e. there exists M > 0 such that limn→∞ |T nz| =∞ for all z
satisfying |z| ≥ M .

For the map (34) the flux can be computed to be simply

8∞r = 2(|a| + |b|) · Im(a − b).

The sign of the flux is the sign of Im(a − b). Thus the map acts by separating the upper and
lower half-planes (Im(a − b) > 0) if8∞r > 0. If the map acts by forcing the half-planes to
overlap (Im(a − b) > 0), then 8∞r < 0. This recovers the main result from [5] in the case
where θ is an irrational multiple of π .
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The bijective case was more recently addressed in [10]. In that case, there exist periodic
points in every neighbourhood of infinity. Moreover, almost all points are recurrent (i.e.
for almost all Lebesgue z ∈ C, an arbitrary neighbourhood of z contains an iterate of z).
Whereas for θs that are rational multiples of π , all orbits are bounded, if θ/π 6∈Q, then
it remains an open question to exhibit an orbit escaping to infinity, or to show that all or
almost all orbits remain bounded.

One can verify for the bijective case that the radial flux is zero and so Theorem 1
cannot be applied. By [10] infinity is neither a forward nor backward attractor; in every
neighbourhood of it there are periodic points.

Bandpass sigma–delta map. Consider the map illustrated in Figure 4 defined on the plane
z ∈ C, written as

z′ = e−iφz + w(z)e−iφ (35)

where φ is a parameter and w is a piecewise constant real-valued function

w(z)=
2 cos φ sgn(Im(z))− sgn(Im(zeiφ))

sin φ

taking the values (±2 cos φ ± 1)/sin φ. This map arises in a model of a bandpass sigma–
delta modulator [3, 8] and was shown in [7] to possess a non-trivial global attractor. Note
that this map is a rotation everywhere except on the lines r and re−iφ for r ∈ R. This
splits the plane into four cones and the map becomes a cone exchange on these four cones.
Assuming that 0< φ < π , we compute the radial flux for this map. We note that

FT (θ)=



(2 cos φ − 1) cos(θ)/sin(φ), 0< θ < π − φ,

(2 cos φ + 1) cos(θ)/sin(φ), π − φ < θ < π,

(−2 cos φ + 1) cos(θ)/sin(φ), π < θ < 2π − φ,

(−2 cos φ − 1) cos(θ)/sin(φ), 2π − φ < θ < 2π,

(36)

and integrating this gives

8∞r =
1

2π

∫ 2π

0
FT (θ) dθ =−

2
π

(37)

independent of φ. The induced map at infinity for this map is simply the rotation

T̂ (θ)= θ − φ (mod 2π)

and so for all irrational values of θ/π , T̂ is uniquely ergodic. Hence we can apply
Theorem 1 to prove that the system has a bounded attractor for all irrational φ/π with
0< φ < π . It was shown in [7] that the geometric structure of the attractor is as shown
in Figure 4 for any φ ∈ (2π/3, 4π/3); this result cannot be obtained from our Theorem 1.
However, one should be able to weaken the statement of Theorem 1 to show that there is a
bounded attractor in cases where φ/π is not irrational by showing that the average of FT

along any orbit of T̂ is negative.
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FIGURE 4. Illustration of (left) the partition and (right) the global attractor for the bandpass sigma–delta map (35)
with φ = 1.8. The map T is a rotation on each of the four cones A, B, C, D shown, and for this parameter value

[7] shows that the global attractor is a union of two shaded parallelograms.

4. Partial converse results and examples
4.1. An example with zero flux and unbounded orbits. The negation of Theorem 1 would
mean that a necessary condition for an invertible map to have all orbits bounded is that
8∞r = 0 and/or T̂ is not uniquely ergodic.

In the next example we show the conditions for Theorem 1(a) are sufficient but not
necessary for unboundedness of orbits.

The check-board quadrant exchange. This is an example of a CET that is injective, but
not surjective on a bounded set. We partition the plane into four Cartesian quadrants
C0, . . . , C3 and define the map T to be rotation by π/2 followed by translations as follows:

T (z)=


i z − 1− i if z ∈ C0 = {z | Re(z)≥ 0 and Im(z)≥ 0},

i z + 1− i if z ∈ C1 = {z | Re(z) < 0 and Im(z)≥ 0},

i z + 1+ i if z ∈ C2 = {z | Re(z) < 0 and Im(z) < 0},

i z + i − 1 if z ∈ C3 = {z | Re(z) > 0 and Im(z) < 0}.

(38)

The images of C0, . . . , C3 are illustrated in Figure 5.

PROPOSITION 1. The asymptotic radial flux of T defined by (38) is zero. However, all
orbits of T diverge to infinity.

Proof. One can verify the zero flux by direct calculation. Note that T acts symmetrically
on each of the four quadrants. By identifying all points that can be reached by rotations
of π/2 about the origin (i.e. identifying all quadrants with C0), we obtain the factor map H
on C0 with a quadrant and a half-strip as atoms of H :

H : C0→ C0, z 7→

{
−1+ i + z if Re(z) ∈ [1,∞),

1+ i − i z if Re(z) ∈ [0, 1).

Pick any z ∈ C and let l(z)= |Re(z)| + |Im(z)|. Note that l(H(z))= l(z) if z ∈ C0 + 1
and l(H(z))= l(z)+ 2 otherwise (where C0 + 1= {z + 1 | z ∈ C0}). Since on the cone
C0 + 1, H acts as translation by (−1+ i), every orbits spends only a finite time in C0 + 1
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FIGURE 5. The images of the quadrants under the check-board quadrant exchange CET T . The square has vertices
±1± i .

before leaving it, as the translation vector is perpendicular to the symmetry axis of the cone
C0 + 1. It follows that l(Hn(z))→∞ as n→∞. Thus the H -orbit of z and hence the
T -orbit of z diverges to infinity. 2

We remark that one can modify T (z) to obtain an injective but non-surjective CET for
which some but not all orbits diverge to infinity. Let V (z)= T (z)+ 1+ i . It follows from
Proposition 2 (below) that almost all points in

G = C− V (C)= {z | Re(z), Im(z) ∈ [0, 2]}

have unbounded orbits. Since G consists of four lattice squares and V maps lattice squares
onto lattice squares, it follows that none of the points in G can accumulate except at infinity.
Hence, the orbit of G diverges to infinity. On the other hand, the reader may check that the
lattice squares whose vertices are 3+ 4k + i (k = 0, 1, . . .) are all periodic under V (z).

While for V we were able to guarantee that orbits accumulating at infinity must actually
diverge to infinity, in a more general setting we have a weaker proposition. In the case of
injective cone exchanges with bounded gaps we can conclude that almost all points in G
are unbounded.

PROPOSITION 2. Let T : C→ C be an injective and forward Lebesgue measure
preserving map. Then the orbits of almost all points in D = C− T (C) are unbounded.

Proof. Suppose that G R ⊂ D is the subset of all z such that |T nz|< R for all n > 0. We
claim that

T i (G R) ∩ T j (G R)= ∅ for all i, j ≥ 0, i 6= j. (39)

Since G R does not have preimages, the equation holds for i = 0. In general, equation (39)
holds by induction. Therefore the sets {G R, T (G R), T 2(G R), . . .} are mutually disjoint.
These sets are contained in a ball of radius R and they all have the same measure, meaning
that µ(G R)= 0. 2

4.2. A case where T̂ is not uniquely ergodic. We consider a family of CETs with
three parameters (α, β, w) ∈ S1

× S1
× C such that 0< β < α < π . This example is built

around an IET T̂ that is minimal but non-uniquely ergodic for Lebesgue measure, for

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 07 Mar 2013 IP address: 144.173.176.73

1328 P. Ashwin and A. Goetz

certain parameter values [12]. We define four cones

P0 = C[0,π+β−α),
P2 = C[−π,β−α),

P1 = C[π+β−α,π),
P3 = C[β−α+2π),

(40)

where C[a,b) = {z | arg(z) ∈ [a, b)} and define T : C→ C by

T (z)=

{
eiαz + w if z ∈ P0 ∪ P2,

−eiαz + w if z ∈ P1 ∪ P3.
(41)

We note that for w = 0 we have T (Reiθ )= Rei T̂ (θ). Although we do not have a detailed
proof, we suggest that there exist parameters α, β and w such that orbits of (41) have
unbounded oscillation, as defined below. This is because T̂ (θ) is the family of maps
with a subset I of parameters (α, β) ∈ I such that the map is non-uniquely ergodic and
minimal [12]. The radial flux for this T can be seen to be 0 by explicit calculation. For
a non-Lebesgue invariant measure µ′ for T̂ one can verify that the radial flux is typically
non-zero relative to this µ′ even if it is zero for Lebesgue measure. Now define the
asymptotic radial oscillation of the orbit of z to be

osc(z)= lim sup
n→∞

|T nz| − lim inf
n→∞

|T nz|.

We believe, but have not yet been able to prove, that this map has orbits with unbounded
radial oscillation, i.e. one can choose z such that osc(z) is arbitrarily large.

5. Discussion and open questions
The CETs introduced here give a convenient framework in which the ergodic properties
of IETs interplay with the two-dimensional behaviour of orbits of CET. The CETs offer a
rich set of examples for which one can investigate many fundamental questions about the
dynamics of piecewise isometries on unbounded domains.

One can generalize IET dynamics to two dimensions by taking direct or semidirect
products of IETs, and this may give rise to unexpected phenomena such as unbounded
return times to atoms, illustrated for example in [9]. Nonetheless, this will produce
examples that do not behave like typical two-dimensional piecewise isometries. For
example, a typical direct product of two IETs will be minimal while typical piecewise
isometries are known to have many ‘periodic islands’. The construction of CETs allows
one to derive examples of PWIs from IETs with known properties, while retaining much
of the typical behaviour of a two-dimensional piecewise isometry.

There are many open questions concerning the dynamics and asymptotic behaviour of
orbits for CETs; the following lists some of these.
• Can one extend Theorem 1 to cases where T̂ is not uniquely ergodic? For example,

one should be able to define a flux for each invariant measure µ of T̂ by

8∞r (µ)=
1

2π

∫ 2π

0
FT (θ) dµ(θ)

and then obtain similar results to (a) under the assumption that 8∞r (µ) > 0 for all
invariant measures µ for T̂ (one can clearly refine this to just ergodic invariant
measures).
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• In the case where 8∞r = 0, can one relate higher-order terms in the asymptotic
expansion of 8m(R) to dynamical boundedness of orbits of T ? We note from
Lemma 4 that the asymptotic expansion of8m(R) has 2πR 8∞r as the leading term;
can one obtain information from the next terms in this expansion?

• Can one characterize the structure of aperiodic and periodic orbits for CETs?
For example, can one show that typical zero flux CETs have at least one periodic
orbit? The dynamics of piecewise isometries in two-dimensional bounded domains
suggests that this may be the case; see for example [1, 9, 16, 18], where questions
focus on the geometric structure of the partition into aperiodic and periodic orbits.

• Can one generalize the results to unbounded cone isometries with overlap between
cones? In such cases, the map on the circle at infinity that is not an IET but rather an
interval translation map (see for example [6, 11] and references therein). We expect
that results such as Theorem 1 can be fairly easily generalized. Such maps arise in a
model defined on four quadrants [2].

• Can one understand local properties of return maps using CETs? Note that the class
of CETs is closed under taking the first return to map to any cone; the first return can
have only a finite number of unbounded atoms, though it may have an infinite number
of bounded atoms. Moreover, if T ∈ P and T1 denotes the return map of T , then T̂1
is the interval exchange transformation that is the first return of the interval exchange
map T̂1; in this sense the class of maps we consider here remain a sensible choice to
discuss renormalization of cone exchange transformations and should allow a good
understanding of the dynamics near infinity.
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