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Abstract. Szalai et al. (SIAM J. on Sci. Comp. 28(4), 2006) gave a general construction for
characteristic matrices for systems of linear delay-differential equations with periodic coefficients.
First, we show that matrices constructed in this way can have a discrete set of poles in the complex
plane, which may possibly obstruct their use when determining the stability of the linear system.
Then we modify and generalize the original construction such that the poles get pushed into a
small neighborhood of the origin of the complex plane.
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sec:intro

1. Introduction. Linear delay differential equations (DDEs) with coefficients
periodic in time come up naturally when one analyses nonlinear DDEs: one of the
most common and simplest invariant sets encountered in nonlinear systems are
periodic orbits [3]. If one wants to find out if a periodic orbit is dynamically stable
or unstable, or how its stability changes as one changes system parameters one has
to linearize the nonlinear DDE system in the periodic orbit, which results in a linear
DDE with time-periodic coefficients [1, 4]. This linear DDE is typically written in
the form

ẋ(t) = L(t)xt (1.1) eq:introdde

where the coefficients (hidden in the operator L(t)) are periodic in t. Without loss
of generality we can assume that the time dependence of L is of period 1 (this
corresponds to rescaling time and L). Then the exponential asymptotic stability of
the periodic orbit in the full nonlinear system is determined by the eigenvalues of the
time-1 map T generated by the linear DDE (1.1) [7]. For analytical purposes (and,
possibly, for numerical purposes) it is useful to reduce the eigenvalue problem for
the infinite-dimensional time-1 map T to an algebraic problem via a characteristic
matrix ∆(λ) ∈ Cn×n. One would expect that this matrix ∆ should satisfy, for
example, that

(i) ∆(λ) is regular if (and only if) λ ∈ C is in the resolvent set of T (that is,
λI − T is an isomorphism),

(ii) λ is a root of det ∆(·) of order q if and only if λ is an eigenvalue of T
of algebraic multiplicity q (see [5] or Lemma 4.2 in §4 how one can construct the
Jordan chains of T from ∆), and

(iii) dim ker ∆(λ) is the geometric multiplicity of λ as an eigenvalue of T .
An immediate consequence of the existence of such a matrix ∆ would be the upper
limit n (the dimension of ∆(λ)) on the geometric multiplicity of eigenvalues of T .

For time-invariant linear DDEs (where L does not depend on t in (1.1)) the
existence of a characteristic matrix has been known and used for a long time.
The general theoretical background and construction (extended to more general
evolutionary systems such as, for example, neutral equations and some classes of
hyperbolic partial differential equations) is given by Kaashoek and Verduyn-Lunel
in [5].

For time-periodic linear DDEs the textbook of Hale and Verduyn-Lunel [4] has
developed its theory only for single time delays equal to the period. This has been
generalized to delays depending rationally on the period in order to derive analytical
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stability results for periodic orbits of the classical scalar delayed positive feedback
problem [8].

Szalai et al. give a general construction for a characteristic matrix ∆ for time-
periodic DDEs in [9] that lends itself easily to robust numerical computation. Since
one expects that ∆(λ) must have an essential singularity at λ = 0 (the eigenvalues
of the compact time-1 map T accumulate at 0) the constructed matrix is rather of
the form ∆(µ) where µ = λ−1. We show (in §3) that the characteristic matrix ∆(µ)
as constructed by Szalai et al. typically has poles in the complex plane, making it
unusable whenever eigenvalues of T of interest coincide with these poles. However,
the set of these poles is discrete and accumulates only at ∞. Moreover, in §4 we
provide a modification ∆k(µ) of the original matrix ∆(µ), which allows us to push
the poles of ∆k to the outside of any given ball of radius R ≥ 1 in the complex
plane by increasing the dimension of ∆k. This modification reduces the eigenvalue
problem for T to a root-finding problem for det ∆k(µ) for all eigenvalues of T with
modulus larger than 1/R, which is useful because one is typically interested in the
largest eigenvalues of T . To keep the notational overhead limited we develop our
arguments for the case of a DDE with a single delayed argument and a constant
delay τ < 1. In Appendix B we show that the generalization to arbitrary delays
(distributed and reaching arbitrarily far into the past) is straightforward.

One immediate application for the characteristic matrix came up in [10] where
Yanchuk and Perlikowski consider periodic orbits of nonlinear DDEs with a single
fixed delay τ but change the delay to τ + kP (where k is an integer and P is the
period of the periodic orbit), and then study the stability of the periodic orbit (which
does not change its shape) in the limit k →∞. The limit is, of course, a singular
limit if one considers the time-P map T but the characteristic matrix ∆k has a
well-defined regular limit. This permitted the authors to draw conclusions about
the linear stability properties of periodic orbits for sufficiently large delays from the
properties of the so-called pseudo-continuous spectrum [10]. As [10] relies on the
original construction from [9], which may have poles near the unit circle, our note
closes a gap in the argument of [10].

sec:constr
2. Construction of characteristic matrix for a single fixed delay. Con-

sider a periodic linear differential equation of dimension n with a single delay τ and
continuous periodic coefficient matrices A(t) and B(t) (both of size n× n):

ẋ(t) = A(t)x(t) +B(t)x(t− τ) (2.1) eq:spdde

where we assume that the period of the time dependence of A and B equals 1
without loss of generality (this corresponds to rescaling time, τ , A and B). We
also assume for simplicity of notation that τ < 1. Let us denote the monodromy
operator (also called the time-1 map) for (2.1) by T : C([−1, 0];Cn) 7→ C([−1, 0];Cn).
C([−1, 0];Cn) is the space of continuous functions on the interval [−1, 0] with values
in Cn. That is, T maps an initial condition x in C([−1, 0];Cn) to the solution of
(2.1) after time 1 starting from the initial value x(0) (the head point) and using the
history segment x(·). For x ∈ C([−1, 0];Cn) we define Tx precisely as the solution
y ∈ C([−1, 0];Cn) of

ẏ(t) = A(t)y(t) +B(t)

{
y(t− τ) if t ∈ [τ − 1, 0]

x(1 + t− τ) if t ∈ [−1, τ − 1)

y(−1) = x(0).

(2.2) eq:tdef

The complex number λ is an eigenvalue of T (a Floquet multiplier for (2.1)) if one
can find a non-zero x such that Tx = λx. We know that T is compact [4] for τ < 1
(and that, for arbitrary τ , we can find a power Tm that is compact). Hence, any
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non-zero λ is either in the resolvent set of T (that is, λI − T is regular) or it is an
eigenvalue of T with a finite algebraic multiplicity.

If we introduce µ = 1/λ we may write the eigenvalue problem for T as follows:

ẋ(t) = A(t)x(t) +B(t)

{
x(t− τ) if t ∈ [τ − 1, 0],

µx(1 + t− τ) if t ∈ [−1, τ − 1),
(2.3) eq:bvp

x(−1) = µx(0) (2.4) eq:bc

where x ∈ C([−1, 0];Cn) is continuous. Reference [9] constructs a characteristic
matrix ∆(µ) for T based on the following hypothesis.

Hypothesis 1 (Szalai’06). The initial-value problem on the interval [−1, 0]thm:sz

ẋ(t) = A(t)x(t) +B(t)

{
x(t− τ) if t ∈ [τ − 1, 0],

µx(1 + t− τ) if t ∈ [−1, τ − 1),
(2.5) eq:ivp

x(−1) = v (2.6) eq:ic

has a unique solution x ∈ C([−1, 0];Cn) for all µ ∈ C and v ∈ Cn. Note that the
problem (2.5)–(2.6) differs from the boundary-value problem (2.3)–(2.4) because
we have replaced the boundary condition x(−1) = µx(0) by an initial condition
x(−1) = v. The formulation of the hypothesis in [9] is (only apparently) weaker: it
claims the existence only for µ ∈ C for which 1/µ is either in the resolvent set of T
or an eigenvalue of T of algebraic multiplicity one. If Hypothesis 1 is true then one
can define the characteristic matrix ∆(µ) via

∆(µ)v = v − µx(0) (2.7) eq:delta

where x(0) is the value of the unique solution of (2.5)–(2.6) at the end of the time
interval [−1, 0].

Integral equation for (2.5)–(2.6). For system (2.5)–(2.6) one has to clarify what
it means for x ∈ C([−1, 0];Cn) to be a solution. We call x ∈ C([−1, 0];Cn) a solution
of (2.5)–(2.6) if x satisfies the integral equation

x(t) = v +M1(µ)[x](t) where (2.8) eq:varp

[M1(µ)x] (t) =

∫ t

−1
A(s)x(s) +B(s)

{
x(s− τ) if s ∈ [τ − 1, 0],

µx(1 + s− τ) if s ∈ [−1, τ − 1)
ds (2.9) eq:varm

for t on the interval [−1, 0]. The linear operator M1(µ) maps C([−1, 0];Cn) back
into C([−1, 0];Cn) and is compact. (M1 will be generalized later to Mk for k > 1.)

Lemma 2.1. For µ sufficiently close to 0 the initial-value problem (2.5)–(2.6)thm:smallmu
has a unique solution for all v.

Proof. For (2.8) to have a unique solution it is enough to show that I −M1(µ)
is invertible. Since the time-1 map T is well-defined and linear in x = 0 (that is,
Tx = 0 for x = 0) we have that (2.2) has only the trivial solution for x = 0. This in
turn implies that the corresponding integral equation

x = M1(0)x (2.10) eq:fixp0

has only the trivial solution in C([−1, 0];Cn). Thus, the kernel of I −M1(0) is
trivial, and, since I −M1(0) is a compact perturbation of the identity, I −M1(0)
is invertible. Moreover, the real-valued function µ 7→ ‖M1(µ)−M1(0)‖ (using the
operator norm induced by the maximum norm of C([−1, 0];Cn)) is continuous in µ
because M1 depends continuously on µ (see definition of M1 in (2.9)). This implies
that I −M1(µ) is also invertible for small µ, which in turn means that (2.8)–(2.9)
has a unique solution for small µ.
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The following lemma states that the function on the complex domain µ 7→
[I −M1(µ)]−1, which has operators in L(C([−1, 0];Cn);C([−1, 0];Cn)) as its values,
is well-defined and analytic everywhere in the complex plane except, possibly, in a
discrete set of poles.

Lemma 2.2. The operator-valued complex function µ 7→ [I −M1(µ)]−1 canthm:finpoles
have at most a finite number of poles in any bounded subset of C. All poles of
[I −M1(µ)]−1 (if there are any) are of finite multiplicity. If µ is not a pole then
µ 7→ [I −M1(µ)]−1 is analytic in µ.

Proof. We can split the operator M1(µ) into a sum of two operators:

M1(µ) = M1(0) + µL where (2.11) eq:msplit

[Lx] (t) =

∫ t

−1
B(s)

{
0 if s ∈ [τ − 1, 0],

x(1 + s− τ) if s ∈ [−1, τ − 1)
ds. (2.12) eq:ldef

The operator I −M1(0) is invertible (and a compact perturbation of the identity)
and L : C([−1, 0];Cn) 7→ C([−1, 0];Cn) is compact. Thus, we can re-write I−M1(µ)
as

I −M1(µ) = (I −M1(0))
[
I − µ(I −M1(0))−1L

]
and, thus,

[I −M1(µ)]−1 = λ ·
[
λI − (I −M1(0))−1L

]−1
(I −M1(0))−1

(keeping in mind that µ = 1/λ). The operator on the right-hand side [λI − (I −
M1(0))−1L]−1 is the standard resolvent of the compact operator (I −M1(0))−1L,
which has only finitely many poles of finite multiplicity outside of any neighborhood
of the complex origin according to [6], and is analytic everywhere else.

Lemma 2.2 carries over to the characteristic matrix ∆(µ) defined in (2.7): since
x = [I−M1(µ)]−1v (if we extend v ∈ Cn to a constant function), ∆(µ)v = v−µx(0)
is an analytic function with at most a discrete set of poles of finite multiplicity
(possibly accumulating at ∞).

The characteristic matrix ∆(µ) (where it is well-defined) has the properties one
expects: a complex number µ in the domain of definition of ∆ 1/µ is a Floquet
multiplier of the DDE (2.1) if and only if ∆(µ) is singular (det ∆(µ) = 0). Any
vector v in its kernel is the value of an eigenfunction for 1/µ at time t = −1. The full
eigenfunction can be obtained as the solution of the initial-value problem (2.5)–(2.6).
If ∆(µ) is regular then 1/µ is in the resolvent set of the eigenvalue problem (2.3)–
(2.4). The Jordan chains associated to eigenvalues 1/µ can be obtained by following
the general theory described in [5]. We give a precise statement (see Lemma 4.2 in
Section 4) about the Jordan chain structure after discussing Hypothesis 1.

The construction can be extended in a straightforward manner to multiple fixed
discrete delays and distributed delays. The only modification is that higher powers
of µ have to be included for delays larger than 1. For example, if τ ∈ (1, 2] then the
initial-value problem (2.5)–(2.6) is modified to

ẋ(t) = A(t)x(t) +B(t)

{
µx(1 + t− τ) if t ∈ [τ − 2, 0],

µ2x(2 + t− τ) if t ∈ [−1, τ − 2),

x(−1) = v.

Thus, also for arbitrary delays ∆(µ) always has at worst finitely many poles of finite
multiplicity in any bounded subset of C. Appendix B discusses the case where the
functional accessing the history of x is a Lebesgue-Stieltjes integral.

sec:problem
3. The poles of the characteristic matrix. Hypothesis 1 is not true in its

stated form (and neither in the form stated in [9]). Hypothesis 1 can only be true if
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the homogeneous problem

ẋ(t) = A(t)x(t) +B(t)

{
x(t− τ) if t ∈ [τ − 1, 0],

µx(1 + t− τ) if t ∈ [−1, τ − 1),
(3.1) eq:ivp0

x(−1) = 0 (3.2) eq:ic0

has only the trivial solution x = 0 for all µ: if (3.1)–(3.2) has a non-trivial solution
x for some µ then for every v (otherwise ∆(µ)v 6= 0 for v = 0). Let us analyse the
simple scalar example

ẋ(t) = x

(
t− 1

2

)
(3.3) eq:cdde

on the interval [−1, 0]. Problem (3.1)–(3.2) re-stated for this example is equivalent
to

ẋ1(t) = µx2(t), x1(0) = 0

ẋ2(t) = x1(t), x2(0) = x1(1/2)
(3.4) eq:exdde

where x1 and x2 are in C([0, 1/2];C), and x1(t) = x(t− 1) and x2(t) = x(t− 1/2)
for t in the interval [0, 1/2]. The general solution of (3.4) (without regard to the
boundary conditions) is of the form[

x1(t)
x2(t)

]
=

[√
µ exp

(√
µt
) √

µ exp
(
−√µt

)
exp

(√
µt
)

− exp
(
−√µt

) ] [a
b

]
where

√
µ refers to the principal branch of the complex square root (the set of

solutions is the same for both branches). This solution satisfies x1(0) = 0 and
x2(0)− x1(1/2) = 0 for a non-zero (a, b)T if

0 = 2−√µ
[
exp

(√
µ

2

)
− exp

(
−
√
µ

2

)]
.

Thus, we see that for example (3.3) the homogeneous initial-value problem (3.1)–(3.2)
has a nontrivial solution whenever µ is a root of the function

f(µ) = 2−√µ
[
exp

(√
µ

2

)
− exp

(
−
√
µ

2

)]
.

This function f is a globally defined real analytic function of µ (the expression
on the right-hand-side is even in

√
µ). It has an infinite number of complex roots

accumulating at infinity. One of the roots is real: f(0) = 2, and f(µ) → −∞
for µ → +∞ and µ ∈ R (let’s call it µ0: µ0 ≈ 1.8535). Consequently, example
(3.3) provides a counterexample to Hypothesis 1. If one extends example (3.3)
by a decoupled equation that has its Floquet multiplier at 1/µ0 (for example,
ẏ = −[logµ0]y) then it also contradicts the hypothesis as stated in [9].

As we have discussed in Section 2, one finds that µ = 1/λ is a pole of ∆(µ) if λ
is a non-zero eigenvalue of the operator [I −M1(0)]−1L where M1 and L are defined
in (2.9) and (2.12). Thus, whenever [I −M1(0)]−1L has a non-zero spectral radius
we must expect that ∆(µ) has poles.

sec:fix
4. The extended characteristic matrix. The construction of ∆(µ) suffers

from the problem that the poles of ∆(µ) may coincide with the inverse of Floquet
multipliers of (2.1) of interest. A simple extension of the construction of ∆(µ)
permits one to push the poles to the outside of a circle of any desired radius R.
Then the characteristic matrix can be used to find all Floquet multipliers outside of
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the ball of radius 1/R. We explain the extension in detail for a single delay τ < 1
(the straightforward generalization to the general case is relegated to Appendix B).

The idea is based on the observation that the linear part of the right-hand-side
in the integral equation formulation (2.8)–(2.9) of initial-value problem (2.5)–(2.6)
has a norm less than 1 if the interval is sufficiently short (thus, making the fixed
point problem (2.8)–(2.9) uniquely solvable).

Similar to a multiple shooting approach, we partition the interval [−1, 0] into k
intervals of size 1/k:

Ji = [ti, ti+1) =

[
−1 +

i

k
,−1 +

i+ 1

k

)
for i = 0, . . . , k − 1. (4.1) eq:jidef

Then we write down a system of k coupled initial value problems for a vector of k
initial values (v0, . . . , vk−1)T ∈ Cnk:

ẋ(t) = A(t)x(t) +B(t)

{
x(t− τ) if t ∈ [τ − 1, 0],

µx(1 + t− τ) if t ∈ [−1, τ − 1),
(4.2) eq:ivpext

x(ti) = vi for i = 0, . . . , k − 1 (4.3) eq:icext

where t ∈ [−1, 0]. System (4.2)–(4.3) corresponds to a coupled system of k differential
equations for the k functions x|Ji in the time intervals Ji. More precisely, x is defined
as a solution of the fixed point problem

x(t) = vs(t) +

t∫
ak(t)

A(s)x(s) +B(s)

{
x(s− τ) if s ∈ [τ − 1, 0],

µx(1 + s− τ) if s ∈ [−1, τ − 1)
ds where

(4.4) eq:varpext

vs(t) = vi if t ∈ Ji, (4.5) eq:varpextv

ak(t) = ti if t ∈ Ji. (4.6) eq:varpexta

We point out that a solution x of (4.2)–(4.3) is not necessarily in C([−1, 0];Cn)

x(t2)−

x(t1)−

x(0)
−

0 = t3−1 = t0 t1 t2

J0 J1 J2

v0 = x(−1)+
v1 = x(t1)+

v2 = x(t2)+

Fig. 4.1. Illustration of solution x ∈ Ck for multiple-shooting problem (4.2)–(4.3) with k = 3
sub-intervals. The right-sided limits x(ti)+ are equal to the variables vi. The gaps between the
left-sided limits x(ti)− and x(ti)+ are zero if [v0, . . . , vk] is in the kernel of the characteristic
matrix ∆k(µ). The equations for x|Ji

on the sub-intervals are coupled due to the terms t− τ or
1 + t− τ in (4.2). fig:msproblem

because it will typically have discontinuities at the restarting times ti for i = 1 . . . k−1
as illustrated in Fig. 4.1 . Thus, we should define the space in which we look for
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solutions as the space of piecewise continuous functions:

Ck = {x : [−1, 0] 7→ Cn : x continuous on each (half-open) subinterval Ji

and limt↗ti x(t) exists for all i = 1 . . . k.}
(4.7) eq:ckdef

Ck,0 ={x ∈ Ck : x(ti) = 0 for all i = 0 . . . k − 1}. (4.8) eq:ck0def

We call x ∈ Ck a solution of (4.4)–(4.6) if it satisfies (4.4) for every t ∈ [−1, 0]. Both
spaces, Ck and Ck,0 are equipped with the usual maximum norm. For example,
the piecewise constant function vs as defined in (4.5) is an element of Ck. Several
operations are useful when dealing with functions in Ck to keep the notation compact.
Any element x ∈ Ck has well defined one-sided limits at the boundaries ti, which we
denote by the subscripts + and −:

x(ti)− = lim
t↗ti

x(t) for i = 1 . . . k,

x(ti)+ = lim
t↘ti

x(t) = x(ti) for i = 0 . . . k − 1.

We also define the four maps

S : Cnk 7→ Ck S[v0 . . . vk−1]T (t) = vi if t ∈ [ti, ti+1) for i = 0 . . . k − 1,

Γ+ : Ck 7→ Cnk Γ+[x(·)] = [x(−1)+, x(t1)+, . . . , x(tk−1)+]
T

,

Γ−(µ) : Ck 7→ Cnk Γ−(µ)[x(·)] = [µx(0)−, x(t1)−, . . . , x(tk−1)−]
T

,

Mk(µ) : Ck 7→ Ck,0 where

[Mk(µ)x] (t) =

t∫
ak(t)

A(s)x(s) +B(s)

{
x(s− τ) if s ∈ [τ − 1, 0],

µx(1 + s− τ) if s ∈ [−1, τ − 1)
ds

(4.9) eq:opsdef

(the piecewise constant function ak was defined in (4.6) as ak(t) = ti if t ∈ [ti, ti+1)).
The map S takes a tuple of vectors v0, . . . vk−1 and maps it to a piecewise constant
function, assigning x(ti) = vi and then extending with a constant to the subinterval
Ji. For example, the function vs in (4.4)–(4.5) is equal to Sv. The map Γ+ takes
the right-side limits of a piecewise continuous function (thus, Γ+S is the identity
in Cnk). The map Γ−(µ) takes the left-side limits at the interior boundaries ti
(i ≥ 1), and in its first component it takes the left-side limit at tk = 0 (the end of
the interval) multiplied by µ. The map Mk(µ) is the generalization of M1 defined in
(2.9): in the definition of Mk the lower boundary in the integral is not −1 but ak(t)
such that we can estimate its norm:

‖Mk(µ)‖∞ ≤
1

k

[
max

t∈[−1,0]
‖A(t)‖∞ + |µ| max

t∈[0,1]
‖B(t)‖∞

]
=:

C∗(|µ|)
k

. (4.10) eq:mknorm

According to the Theorem of Arzelá-Ascoli (see [2], page 266) the operator Mk(µ) is
also compact because it maps any bounded set into a set with uniformly bounded
Lipschitz constants. Using the above notation we can write the differential equation
(4.2)–(4.3) (or, rather, the corresponding integral equation (4.4)) as a fixed point
problem in Ck. For a given v = [v0, . . . , vk−1] ∈ Cnk and µ ∈ C find a function
x ∈ Ck such that

x = Sv +Mk(µ)x. (4.11) eq:fixpp

Due to the norm estimate (4.10) on Mk(µ) we can state the following fact about
the existence of a fixed point x of (4.11) for a given v and µ:

Lemma 4.1. Let R ≥ 1 be given. If we choose k > C∗(R) then the systemthm:uniquext
(4.2)–(4.3) has a unique solution x ∈ Ck for all initial values (v0 . . . vk−1)T and all
µ satisfying |µ| < R.
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Proof. The differential equation (4.2)–(4.3) is equivalent to fixed point problem
(4.11). The norm estimate (4.10) implies that I −Mk(µ) is invertible such that the
solution x of (4.11) is given by [I −Mk(µ)]−1Sv.

4.1. Extended characteristic matrix. We can use Lemma 4.1 to define the
extended characteristic matrix ∆k(µ) for µ satisfying C∗(|µ|) < k. This is a matrix
in C(nk)×(nk), and is defined as

∆k(µ)v = ∆(µ)

 v0
...

vk−1

 =


v0 − µx(0)
v1 − x(t1)−

...
vk−1 − x(tk−1)−

 (4.12) eq:deltaedef

where x = [I −Mk(µ)]
−1
Sv ∈ Ck is the unique solution of the coupled system of

initial-value problems, (4.2)–(4.3), with initial condition v = (v0, . . . , vk−1)T ∈ Cnk.
The first row in the right side of definition (4.12) corresponds to the boundary
condition (2.4). The other k − 1 rows, vi − x(ti)−, guarantee for v ∈ ker ∆(µ) that
the right and the left limit of x at the restarting times ti agree, making the gaps
shown in Fig. 4.1 zero. Thus, that x is not only in Ck but in C([−1, 0];Cn). In fact,
if ∆k(µ)v = 0 then the right-hand side of (4.2) for the solution x = [I−Mk(µ)]−1Sv
is continuous such that x is continuously differentiable and satisfies for every t the
differential equation (2.3)–(2.4) defining the eigenvalue problem for T .

Let us list several useful facts about Ck, Ck,0, ∆k(µ), T and the quantities
defined in (4.9).

1. We can express ∆k(µ) using the maps defined in (4.9):

∆k(µ) = I − Γ−(µ) [I −Mk(µ)]
−1
S (4.13) eq:deltaeexp

2. Ck is isomorphic to Cnk × Ck,0:

(v, ϕ) ∈ Cnk × Ck,0 7→ Sv + ϕ ∈ Ck
ψ ∈ Ck 7→ (Γ+ψ,ψ − SΓ+ψ) ∈ Cnk × Ck,0.

(4.14) eq:isock

item:dde 3. The differential equation

ẋ(t) = A(t)x+B(t)

{
x(t− τ) if t ∈ [τ − 1, 0],

0 if t ∈ [−1, τ − 1),

x(−1)+ = 0

x(ti)+ = x(ti)− for i = 1, . . . , k − 1

(4.15) eq:T0

has only the trivial solution (it is identical to (2.5)–(2.6) for µ = 0). Its integral
formulation is x = SΓ−(0)x + Mk(0)x. Thus, the operator I − SΓ−(0) −Mk(0) :
Ck 7→ Ck (which is of Fredholm index 0) is invertible.

4. The time-1 map T of the linear DDE ẋ(t) = A(t)x(t)+B(t)x(t−τ), defined
in (2.2) for initial history segments in x ∈ C([−1, 0];Cn), can be easily extended to
initial history segments in Ck. In fact, the extension of T to Ck can be defined by

T = [I − SΓ−(0)−Mk(0)]
−1

[S(Γ−(1)− Γ−(0)) +Mk(1)−Mk(0)] ,

which maps Ck into C([−1, 0];Cn), such that

I − µT = [I − SΓ−(0)−Mk(0)]
−1

[I − SΓ−(µ)−Mk(µ)] , (4.16) eq:texp

which maps Ck into Ck (see Appendix A for a detailed decomposition of expression
(4.16)). Since the extension of T maps into C([−1, 0];Cn) (the original domain of
the non-extended T ) its spectrum is identical to the spectrum of the original T .
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Lemma 4.1 and the above facts permit us to apply the general theory developed
in [5], relating the extended characteristic matrix ∆k(µ) ∈ C(nk)×(nk) to spectral
properties of the time-1 map T : eigenvalues, eigenvectors, and the length of their
Jordan chains.

Lemma 4.2 (Jordan chains). Assume that 0 < |µ∗| < R and k > C∗(R) wherethm:multiplicity
C∗(R) is defined by (4.10). If ∆k(µ∗) is regular then 1/µ∗ is in the resolvent set of
the monodromy operator T . If ∆k(µ∗) is not regular then λ∗ = 1/µ∗ is an eigenvalue
of T . The Jordan chain structure for λ∗ as an eigenvalue of T is also determined
by ∆k:

1. the dimension l0 of ker ∆k(µ∗) is the geometric multiplicity of λ∗,
2. the order p of the pole µ∗ of ∆k(µ)−1 is the length of the longest Jordan

chain associated to λ∗,
3. the order of µ∗ as a root of det ∆k(µ) is the algebraic multiplicity of λ∗,
4. the Jordan chains of length less than or equal p can be found as non-trivial

solutions (y0, . . . , yp−1) of the linear system

0 = ∆
(0)
k y0

0 = ∆
(1)
k y0 + ∆

(0)
k y1

0 =
∆

(2)
k

2
y0 + ∆

(1)
k y1 + ∆

(0)
k y2

...

0 =
∆

(p−1)
k

(p− 1)!
y0 + . . .+ ∆

(1)
k yp−2 + ∆

(0)
k yp−1

(4.17) eq:jcderiv

where ∆
(j)
k is the jth derivative of ∆k(µ) in µ∗ and ∆

(0)
k = ∆k(µ∗).

System (4.17) is equivalent to the requirement

∆k(µ)
[
y0 + (µ− µ∗)y1 + . . .+ (µ− µ∗)p−1yp−1

]
= O ((µ− µ∗)p)

for all µ ≈ µ∗. We note that the solutions of (4.17) are all Jordan chains, defined
as (finite) sequences (yk)p−1k=0 (k < p) satisfying y0 = µTy0, this is not a unique
construction). In a maximal Jordan chain all yj are non-trivial.

Proof. The proof extends and modifies the construction used by [9], and makes
the general theory of [5] applicable to time-periodic delay equations.

First, a brief summary of the relevant statement of [5]. Let G : Ω 7→ L(X1;Y1)
and H : Ω 7→ L(X2;Y2) be two functions which are holomorphic on the open subset
Ω of the complex plane C, and map into the space of bounded linear operators
from one Banach space X1,2 into another Banach space Y1,2. The functions G
and H are called equivalent if there exist two functions E : Ω 7→ L(X2;X1) and
F : Ω 7→ L(Y1;Y2) (also holomorphic on Ω) whose values are isomorphisms such that

H(µ) = F (µ)G(µ)E(µ) for all µ ∈ Ω.

If two operators G and H are equivalent then there is a one-to-one correspondence
between the Jordan chains of the eigenvalue problems G(µ)v = 0 and H(µ)v = 0.

We construct the equivalence initially only for the case of a single delay τ < 1.
The necessary modifications for arbitrary delays can be found in Appendix B (the
underlying idea is identical but there is more notational overhead). Also, we restrict
ourselves here to merely stating what the operators H, F , G and E are, relegating
the detailed checks and calculations to Appendix A.

The subset of permissible µ, Ω ⊂ C, is the ball of radius R around 0, where
the initial-value problem (4.2)–(4.3) has a unique solution. In our equivalence the
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operator functions G and H are

G(µ) = I − µT : X1 = Ck 7→ Y1 = X1,

H(µ) =

(
∆k(µ) 0

0 I

)
: X2 = Cnk × Ck,0 7→ Y2 = X2.

Note that the spaces X1 and X2 are isomorphic via relation (4.14). The eigenvalue
problem G(µ)v = 0 is the eigenvalue problem for T (re-formulated for µ = λ−1).
The eigenvalue problem H(µ)[v, ϕ] = 0 is equivalent to ∆k(µ)v = 0, ϕ = 0. Thus,
establishing equivalence between G and H proves Lemma 4.2. We define the
isomorphisms E and F as:

E(µ)[v, ϕ] = [I −Mk(µ)]
−1

[Sv + ϕ]

F (µ)ψ =

[
[Γ+ − Γ−(0)]ψ + Γ−(µ) [I −Mk(µ)]

−1
[I − SΓ+ −Mk(0)]ψ

[I − SΓ+ −Mk(0)]ψ

]
(4.18) eq:efdef

See (4.13) and (4.16) for expressions giving ∆k(µ) and I − µT , defining G and H
in terms of S, Γ± and Mk. The inverse of I −Mk(µ) is guaranteed to exist by
Lemma 4.1. The only choice we make is the definition of E, clearly an isomorphism
from X2 to X1 (because (v, ϕ) 7→ Sv + ϕ is an isomorphism from X2 to X1). The
definition of F is then uniquely determined if we want to achieve the equivalence
F (µ)G(µ)E(µ) = H(µ), and follows from a straightforward but technical calculation,
given in Appendix A.

sec:conc
5. Conclusions. By proving Hypothesis 1 (in its weakened form of Lemma 4.1)

we have fully justified the construction of a characteristic matrix for linear DDEs
with time-periodic coefficients proposed by Szalai et al. [9] (in a slightly weaker
form).

An open question is how our extended matrix is related to the characteristic
matrix introduced in the textbook of Hale and Verduyn-Lunel [4] for periodic DDEs
with delay identical to the period. An equivalent of a small delay expansion should
show what happens to poles of ∆(µ) as the delay approaches 1 (the period).

Appendix A. Details of the equivalence in the proof of Lemma 4.2.sec:check
Inverse of E(µ). Let [v, ϕ] = [(v0, . . . , vk−1)T , ϕ] ∈ Cnk ×Ck,0 be an element of

the space X2. Then the definiton of x = E(µ)[v, ϕ] in (4.18) means that x is the
solution of the fixed point problem

x = Sv + ϕ+Mk(µ)x. (A.1) eq:efixpp

Consequently, we can recover v by applying Γ+ to (A.1) (Γ+ϕ = 0 since ϕ ∈ Ck,0
and Γ+MK(µ) = 0 since Mk maps into Ck,0). Then ϕ can be recovered as ϕ =
x− SΓ+x−Mk(µ)x such that the inverse of E is

E−1(µ)x =

[
Γ+x

[I − SΓ+ −Mk(µ)]x

]
. (A.2) eq:einvdef

Expression (4.16) for I − µT . Before finding an expression for F (µ) we check
that G(µ) = I −µT is indeed given by the expression (4.16). If we denote the image
of x under G(µ) by y then y has the form x − ỹ where ỹ = µTx. By definition
(2.2) of the monodromy operator T , ỹ is the unique solution of the inhomogeneous
initial-value problem on [−1, 0]

˙̃y(t) = A(t)ỹ(t) +B(t)

{
ỹ(t− τ) if t ∈ [τ − 1, 0]

µx(1 + t− τ) if t ∈ [−1, τ − 1)
(A.3) eq:tde

ỹ(−1) = µx(0)

ỹ(ti)+ = ỹ(ti)− for i = 1 . . . k − 1.
(A.4) eq:tic
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This solution ỹ is in C([−1, 0];Cn). We note that the initial conditions in (A.4) mean
that Γ+ỹ = Γ−(0)ỹ + [Γ−(µ)− Γ−(0)]x. Thus, the integral equation corresponding
to (A.3)–(A.4) is

ỹ = S [Γ−(0)ỹ + [Γ−(µ)− Γ−(0)]x] +Mk(0)ỹ + [Mk(µ)−Mk(0)]x. (A.5) eq:tvoc

Inserting ỹ = x− y into (A.5) gives a fixed point problem for y = G(µ)x = x− µTx
equivalent to expression (4.16):

y = SΓ−(0)y +Mk(0)y + x− SΓ−(µ)x−Mk(µ)x. (A.6) eq:tfixpp

The factor I − SΓ−(0) −Mk(0) (which is in front of y if we want to isolate y in
(A.6)) is invertible as explained below (4.15) in the list of useful facts in §4.

Determination of F (µ). From the fixed point equation (A.6) it becomes clear how
to choose the other isomorphism F (µ) such that F (µ)G(µ)E(µ)[v, ϕ] = H(µ)[v, ϕ].
We observe that (A.6) implies (by applying Γ+ to both sides)

Γ+y = Γ−(0)y + Γ+x− Γ−(µ)x. (A.7) eq:gygx

We apply S to this identity and subtract it from the fixed point equation (A.6)
defining y:

y − SΓ+y = Mk(0)y + x− SΓ+x−Mk(µ)x.

If x = E(µ)[v, ϕ] = [I −Mk(µ)]−1[Sv + ϕ] then Γ+x = v such that

y − SΓ+y −Mk(0)y = ϕ. (A.8) eq:f2def

Thus, [I − SΓ+ −Mk(0)]G(µ)E(µ)[v, ϕ] = ϕ for all (v, ϕ) ∈ X1, which justifies
our choice of the second component of F (µ) in (4.18). Inserting the expression
E(µ)[v, ϕ] = [I −Mk(µ)]−1[Sv + ϕ] for x and Γ+x = v into (A.7) we obtain that

Γ+y − Γ−(0)y = v − Γ−(µ)[I −Mk(µ)]−1[Sv + ϕ] (A.9) eq:gyvphi1

= [I − Γ−(µ)[I −Mk(µ)]−1S]v − Γ−(µ)[I −Mk(µ)]−1ϕ

= ∆k(µ)v − Γ−(µ)[I −Mk(µ)]−1ϕ, (A.10) eq:gyvphi2

where we used the definition (4.13) of the characteristic matrix ∆k(µ). Since we
know that ϕ can be recovered from y via (A.8) we obtain from (A.10) the first
component of the definition of F (µ) in (4.18):

Γ+y − Γ−(0)y + Γ−(µ)[I −Mk(µ)]−1 [I − SΓ+ −Mk(0)] y = ∆k(µ)v

Inverse of F (µ). It remains to be checked that F is invertible. Given v ∈ Cnk
and ϕ ∈ Ck,0 such that

v = Γ+y − Γ−(0)y + Γ−(µ)[I −Mk(µ)]−1ϕ, (A.11) eq:vy

ϕ = y − SΓ+y −Mk(0)y, (A.12) eq:phiy

how do we recover y? Applying S to (A.11) and adding the result to (A.12) gives

Sv + ϕ = SΓ−(µ)[I −Mk(µ)]−1ϕ+ [I − SΓ−(0)−Mk(0)] y, (A.13) eq:vphiy

which can be rearranged for y because I−SΓ−(0)−Mk(0) is invertible. Consequently,

F (µ)−1[v, ϕ] = [I − SΓ−(0)−Mk(0)]
−1 [

Sv + ϕ− SΓ−(µ)[I −Mk(µ)]−1ϕ
]

.
(A.14) eq:finvdef



12 J. Sieber and R. Szalai

Appendix B. Characteristic matrices for general periodic delay equa-
tions. Consider a linear DDE with coefficients of time period 1 and with maximalsec:gen
delay less than or equal to an integer m:

ẋ(t) =

∫ m

0

dθη(t, θ)x(t− θ) (B.1) eq:genlong

where η(t, θ) is bounded, measurable and periodic in its first argument t (with
period 1), and of bounded variation in its second argument θ. We choose η(t, ·) ∈
NBV (R;Cn×n), that is, η(t, ·) = 0 on (−∞, 0], η(t, ·) is continuous from the right
on (0,m), and η(t, ·) is constant on [m,∞). In addition we assume that the total
variations of all η(t, ·) have a common upper bound:

V m0 η(t, ·) ≤ V̄ (B.2) eq:etabound

where V m0 f is the total variation of f [1]. In formulation (B.1) the dependent
variable is the function x on the history interval [−m, 0]. The time-1 map Tx of
(B.1) for x ∈ C([−m, 0];Cn) is defined as the solution y ∈ C([−m, 0];Cn) of the
equation

t > −1 : ẏ(t) =

∫ m

0

dθη(t, θ)

{
y(t− θ) if t− θ ≥ −1

x(1 + t− θ) if t− θ < −1
(B.3) eq:tgende

t ≤ −1 : y(t) = x(1 + t). (B.4) eq:tgenshift

Only the part of y on the interval (−1, 0] is the result of a differential equation
(namely (B.3)). The remainder of y, y|[−m,−1], is merely a shift of x, given by
(B.4). Note that we have included the initial condition for (B.3) into (B.4), namely
y(−1) = x(0). Correspondingly, the eigenvalue problem for T reads

t > −1 : ẋ(t) =

∫ m

0

dθη(t, θ)

{
x(t− θ) if t− θ ≥ −1

µx(1 + t− θ) if t− θ < −1
(B.5) eq:tevgende

t ≤ −1 : x(t) = µx(1 + t). (B.6) eq:tevgenshift

The spaces Ck and Ck,0, and the maps S, Γ± and Mk(µ) defined in (4.7), (4.8) and
(4.9) for a single delay can be extended in a straightforward way. We partition the
interval [−m, 0] into sub-intervals of length 1/k, Ji = [ti, ti+1] = [−1 + i/k,−1 + (i+
1)/k] (i = k −mk . . . k − 1; note that i can become negative), and define the spaces

Ck = {x : [−m, 0] 7→ Cn : x continuous on all (half-open) subintervals Ji,

and limt↗ti x(t) exists for all i = k −mk + 1 . . . k}
Ck,0 ={x ∈ Ck : x(ti) = 0 for all i = 0 . . . k − 1}.

(B.7) eq:ckgendef

Note that non-negative indices i of ti correspond to times ti in the interval [−1, 0]
whereas negative indices i correspond to times ti in the interval [−m,−1). These
points of discontinuity are treated differently in the definition of Ck,0: to be an
element of Ck,0 the function x is only required to be zero at ti with non-negative
i. The space Ck consists of piecewise continuous functions where the points of
discontinuity are the times ti ∈ [−m, 0]. For functions in Ck we define the maps
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(again analogous to the definitions in (4.9) for the single delay)

S : Cnk 7→ Ck S[v0 . . . vk−1]T (t) =

{
vi if t ∈ [ti, ti+1) for i = 0 . . . k − 1,

0 if t ∈ [−m,−1),

Γ+ : Ck 7→ Cnk Γ+x = [x(−1)+, x(t1)+, . . . , x(tk−1)+]
T

,

Γ−(µ) : Ck 7→ Cnk Γ−(µ)x = [µx(0)−, x(t1)−, . . . , x(tk−1)−]
T

,

Mk(µ) : Ck 7→ Ck,0 where

[Mk(µ)x] (t) =


t∫

ak(t)

m∫
0

dθη(s, θ)

{
x(s− θ) if s− θ ≥ −1

µx(1 + s− θ) if s− θ < −1

for t > −1,

µx(1 + t) for t ≤ −1.

(B.8) eq:opsgendef

The map S extends a tuple of vectors into a piecewise constant function using the
the elements of the tuple as the values on the subintervals Ji ⊂ [−1, 0], and setting
the function to 0 on [−m,−1). Γ+ and Γ− are defined in exactly the same way as
in (4.9) (again, the notation x(ti)± refers to left sided and right sided limits of x
at ti). The definition of Mk(µ) is identical to the single delay case for t > −1. For
t ≤ −1 we define Mk(µ) as a shift multiplied by µ. In the same manner as for the
single delay we consider the extended initial-value problem

t > −1 : ẋ(t) =

∫ m

0

dθη(t, θ)

{
x(t− θ) if t− θ ≥ −1,

µx(1 + t− θ) if t− θ < −1,
(B.9) eq:ivpxgende

x(ti)+ = vi for i = 0 . . . k − 1, (B.10) eq:ivpxgenic

t < −1 : x(t) = µx(1 + t). (B.11) eq:ivpxgenshift

Note that the initial values vi are only given at the discontinuity points ti ∈ [−1, 0]
(i ≥ 0). The solution x ∈ [−m,−1) is defined by a backward shift using (B.11). The
precise meaning of the initial-value problem is given by its corresponding integral
equation, which is a fixed point problem in Ck, and can be expressed as

x = Sv +Mk(µ)x (B.12) eq:fixppgen

using the maps S and Mk(µ). The following lemma gives a sufficient condition for
the existence of a unique solution x ∈ Ck of (B.12) and, thus, the invertibility of
I −Mk(µ). It is a straightforward generalization of Lemma 4.1. The only difference
in the proof is that we can achieve ‖Mk(µ)‖ < 1 only in a weighted maximum norm
‖ · ‖R (which is nevertheless equivalent to ‖ · ‖∞).

Lemma B.1 (Unique solution for initial-value problem). Let R > 1 be fixed.thm:uniquegen
Then the fixed point problem (B.12) has a unique solution x for all v ∈ Cnk and for
all complex µ satisfying |µ| < R if the spacing of the sub-intervals is chosen such
that

R1/k < 1 + V̄ −1
R− |µ|
Rm+2

logR. (B.13) eq:genkbound

Note that V̄ is the upper bound on the total variation of η. The left-hand side of
(B.13) approaches 1 for k →∞ whereas the right-hand side is larger than 1 if R > 1
and R > |µ|.

Proof. We define the norm

‖x‖R = max
t∈[−m,0]

|Rtx(t)|
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on the spaces Ck and Ck,0. This norm is equivalent to the standard maximum norm
such that (B.12) has a unique solution in Ck whenever ‖Mk(µ)‖R < 1. The norms
of two operators that appear in Mk(µ) are:

shift by θ (padded with zero) : ‖x(· − θ)‖R ≤ Rθ‖x‖R,

integration from ak(t) to t for t ∈ [−1, 0] :

∥∥∥∥∥∥∥
t∫

ak(t)

x(s)ds

∥∥∥∥∥∥∥
R

≤ R1/k − 1

logR
‖x‖R,

In order to find the ‖ · ‖R-norm of the integrand in the definition of Mk(µ), (B.8),
we have to estimate the ‖ · ‖R-norm for a Stieltjes sum over an arbitrary partition
0 ≤ θ0 < . . . < θN ≤ m (with are arbitrary intermediate values θ̃j ∈ [θj , θj+1]):

∥∥∥∥∥∥
N−1∑
j=0

[η(t, θj+1)− η(t, θj)]

{
x(t− θ̃j) if t− θ̃j ≥ −1

µx(1 + t− θ̃j) if t− θ̃j < −1

∥∥∥∥∥∥
R

≤ max
t∈[−1,0]

Rt
N−1∑
j=0

|η(t, θj+1)− η(t, θj)|R
{
|x(t− θ̃j)| if t− θ̃j ≥ −1

|x(1 + t− θ̃j)| if t− θ̃j < −1

≤ max
t∈[−1,0]

N−1∑
j=0

|η(t, θj+1)− η(t, θj)|Rθ̃j+1‖x‖R

≤Rm+1‖x‖R max
t∈[−1,0]

V m0 η(t, ·) = Rm+1‖x‖RV̄ .

Combined with the norm estimate for integration from ak(t) to t we obtain that

‖ [Mk(µ)x] |[−1,0]‖R < Rm+1V̄
R1/k − 1

logR
‖x‖R. (B.14) eq:genmkbound01

The part of Mk(µ)x on the interval [−m,−1) has a norm less than ‖x‖R by choice
of R:

‖ [Mk(µ)x] |[−m,−1)‖R ≤ |µ|R−1‖x‖R. (B.15) eq:genmkbound1m

Adding up the inequalities (B.14) and (B.15) we obtain an upper bound for the
total norm ‖Mk(µ)x‖R:

‖Mk(µ)x‖R ≤
[
Rm+1V̄

R1/k − 1

logR
+
|µ|
R

]
‖x‖R, (B.16) eq:proofgenmkbound

which is less than ‖x‖R if k satisfies inequality (B.13) required in the statement of
the lemma.

The invertibility of I−Mk(µ) permits us to choose exactly the same constructions
for the characteristic matrix ∆k(µ) and for the isomorphisms E and F proving
Lemma 4.2 in the same way as for the single delay case (see (4.13), (4.16) and
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(4.18)):

X1 = Ck,

X2 = Cnk × Ck,0,

G(µ) = I − µT = [I − SΓ−(0)−Mk(0)]
−1

[I − SΓ−(µ)Mk(µ)] ,

H(µ) =

(
∆k(µ) 0

0 I

)
,

∆k(µ) = I − Γ−(µ) [I −Mk(µ)]
−1
S ∈ Cnk × Cnk,

E(µ) = [I −Mk(µ)]
−1

[Sv + ϕ],

F (µ) =

[
Γ+ − Γ−(0) + Γ−(µ) [I −Mk(µ)]

−1
[I − SΓ+ −Mk(0)] ,

I − SΓ+ −Mk(0).

]
With these constructions the maps E(µ) : X2 7→ X1 and F (µ) : X1 7→ X2 are
isomorphisms for |µ| < R (see (A.2) and (A.14) for the inverses). The relation
H(µ) = F (µ)G(µ)E(µ) makes the infinite-dimensional eigenvalue problem of the
time-1 map, [I − µT ]x = 0, equivalent to the finite-dimensional eigenvalue problem
∆k(µ)v = 0.

We remark that the invertibility of I − SΓ−(0) −Mk(0) is equivalent to the
statement that the initial-value problem (B.3)–(B.4) has only the trivial solution for
x = 0 (the operator is a compact perturbation of the identity), in other words, it is
equivalent to the statement that the time-1 map Tx is well-defined (and equal to
zero) in x = 0.
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