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The motion of a homogeneous fluid of viscosity ν confined in a librating ellipsoidal
cavity with semi-axes a and moderate equatorial eccentricity E is investigated. The
ellipsoid rotates with an angular velocity Ω0(1 + δ sin ω̂t), where Ω0 is the mean
rate of rotation, ω̂ is the libration frequency and Ω0δ represents the amplitude
of longitudinal libration. When δ � E2 and E1/2 � E2 � 1, where E is the Ekman
number defined as E = ν/(a2Ω0), an explicit analytical solution describing fluid motion
in librating ellipsoids is derived for any size of the libration frequency ω̂. Three-
dimensional numerical simulations of the same problem are also performed, revealing
the generation of mean zonal flow in librating ellipsoidal cavities and showing a
satisfactory agreement between the asymptotic and numerical analyses.
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1. Introduction and formulation
The combined effects of rotation and varying gravity cause most planets to assume

an ellipsoidal shape (for example, Dermott 1979). Interaction between an ellipsoidal
planet and its parent star or moon can force longitudinal libration of the planet,
a periodic variation of its angular velocity around its rotating axis (for example,
William et al. 2001; Margot et al. 2007; Noir et al. 2009). A number of authors
have studied librationally driven flows in spherical cavities. Aldridge & Toomre
(1969) investigated experimentally librationally driven flows in a spherical container,
revealing the resonance of inertial modes when the librating frequency is close to
that of an inertial mode. Rieutord (1991) and Tilgner (1999) studied numerically the
response to longitudinal libration in spherical systems (see also Calkins et al. 2010). In
an experimental and numerical study, Noir et al. (2009) demonstrated that, depending
on the libration amplitude, there exist a number of different classes of librationally
driven flows. When the libration frequency is sufficiently small in comparison to the
rotation rate, Busse (2010) showed that longitudinal libration can drive a steady
zonal flow in librating spheres, which is confirmed by a recent experimental and
numerical study (Sauret et al. 2010). In spherical geometry, coupling between a
librating container and its interior fluid is purely viscous, through the effect of a thin
viscous boundary layer at the bounding surface of the container.
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This paper represents the first asymptotic and numerical study that is concerned
with the dynamic response of a homogeneous incompressible Newtonian fluid
with kinematic viscosity ν confined within a ellipsoidal cavity with moderate
equatorial eccentricity E to longitudinal libration. The ellipsoidal cavity is described
by

x2

a2
+

y2

a2(1 − E2)
+

z2

a2
= 1, (1.1)

and rotates with an angular velocity Ω = ẑ[Ω0(1 + δ sin ω̂t)], where Ω0 is the mean
rate of rotation, ẑ is a unit vector in the direction of rotation axis, ω̂ is the libration
frequency and Ω0δ represents the amplitude of libration. We shall focus on the case
of moderate equatorial eccentricity E1/2 � E2 � 1, where E is the Ekman number
defined as E = ν/(a2Ω0), with the flux from the viscous boundary layer being of the
order E1/2 and the deformation from a sphere being of the order E2. Since typical
values of the Ekman number E for many librating planets and satellites (see table 2
in Noir et al. 2009) are extremely small, E � O(10−14), the topographic coupling
between a librating mantle and its liquid core is usually predominant. For a librating
ellipsoid with E1/2 � E2 � 1, we expect that the viscous effect, in comparison to the
topographic effect, is negligible in the leading-order approximation. This expectation
is confirmed by the result of the corresponding numerical simulation that includes
the full viscous effect.

In a frame of reference attached to the ellipsoidal container, the mantle frame,
librationally driven flow is governed by the dimensionless equations of motion and
continuity,

∂u
∂t

+ u · ∇u + 2 ẑ × u + ∇p = E∇2u − 2δ ẑ × u sin (ω̂l t) + (δω̂l) (r × ẑ) cos (ω̂l t), (1.2)

∇ · u = 0, (1.3)

where ω̂l = ω̂/Ω0 with 0 < |ω̂l | < 2 is the dimensionless frequency of libration, δ is
often called the Poincaré number which is usually small, r is the position vector,
p is a reduced pressure and u is the three-dimensional velocity field u = (ur, uθ , uφ)
with corresponding unit vectors (r̂, θ̂ , φ̂) in spherical polar coordinates (r, θ, φ) with
θ =0 at the axis of ẑ. The final term on the right-hand side of (1.2) is known as the
Poincaré force. Here we have employed a as the length scale, Ω−1

0 as the unit of time
and ρa2Ω2

0 as the unit of pressure. Librationally driven flow on the bounding surface,
S, of the ellipsoidal cavity is at rest, requiring that

n̂ · u = n̂ × u = 0, (1.4)

where n̂ denotes the normal to the ellipsoidal surface S.
In what follows we shall present the asymptotic analysis of (1.2) and (1.3) for a

librating ellipsoid with a small E and moderate E in § 2. The fully three-dimensional
numerical simulation of the same problem, valid for any size of E and E, is discussed
in § 3 along with some remarks.

2. Asymptotic solution for librating flows
For weakly librating flows in an ellipsoidal cavity with moderate equatorial

eccentricity marked by δ � E2 and E1/2 � E2 � 1, the viscous effect may be
neglected in the first approximation and the librating flows are then governed
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by

∂u
∂t

+ u · ∇u + 2 ẑ × u + ∇p = −2δ ẑ × u sin (ω̂l t) + (δω̂l) (r × ẑ) cos (ω̂l t), (2.1)

∇ · u = 0, (2.2)

while the non-slip boundary condition (1.4) becomes

n̂ · u = 0. (2.3)

A solution to (2.1) and (2.2) can be sought by expanding the variables, u and p, in a
double series in powers of δ and E2,

u = δu0 + (δE2)u1 + · · · , p = δp0 + (δE2)p1 + · · · , (2.4)

where u0 and p0 denote the leading-order solution directly driven by the Poincaré
forcing while u1 represents the flow in connection with the topographic effect of an
ellipsoidal container. For an ellipsoidal cavity with moderate equatorial eccentricity
E1/2 � E2 � 1, we may also expand the normal n̂ of the bounding ellipsoidal surface
S around the spherical surface r = 1, which gives rise to

n̂ = r̂ +
E2

2
[r̂ sin2 θ sin2 φ + θ̂ sin 2θ sin2 φ + φ̂ sin θ sin 2φ] + · · · . (2.5)

Note that harmonic terms like sin 4φ would appear at higher orders in the expansion
(2.5), which are neglected in the present analysis.

After substitution of the expansion (2.4) into (2.1) and (2.2) and the expansion of
n̂, given by (2.5), into the boundary condition (2.3), the leading-order problem in the
asymptotic sequence is governed by the equations,

∂u0

∂t
+ 2 ẑ × u0 + ∇p0 = ω̂l (r × ẑ) cos (ω̂l t), ∇ · u0 = 0, (2.6)

which are subject to the leading-order boundary condition r̂ · u0 = 0. It can be readily
shown that the leading-order solution in the double expansion (2.4) takes the form

u0 = − (r sin θ sin ω̂l t) φ̂, p0 = − (r sin θ)2 sin ω̂l t. (2.7)

This represents an oscillatory and axisymmetric zonal flow.
Topographic effects enter into the problem at the next order (δE2). We first look at

the boundary condition needed at this order. Substitution of the expansion of n̂ into
(2.3) yields the condition at the spherical surface r = 1 for u1,

(r̂ · u1)r=1 = − 1
2
u0 · [r̂ sin2 θ sin2 φ + θ̂ sin 2θ sin2 φ + φ̂ sin θ sin 2φ]. (2.8)

In other words, the problem at the next order (δE2) is governed by a homogeneous
partial differential equation with an inhomogeneous boundary condition (2.8). It
is usually mathematically convenient, however, to solve an inhomogeneous partial
differential equation with a homogeneous boundary condition. This suggests that we
may introduce a new variable,

U1 = u1 − r2

2

[
r̂ sin2 θ sin 2φ + φ̂2 sin3 θ cos 2φ

]
sin ω̂l t, (2.9)

such that U1 satisfies both the homogeneous boundary condition at the spherical
surface r = 1 and the divergence-free condition. It follows that U1 is described by the
equations,
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∂U1

∂t
+ 2 ẑ × U1 + ∇P1 = −r2ω̂l sin

2 θ

2

[
r̂ sin 2φ + φ̂ sin θ cos 2φ

]
cos ω̂l t

+ 2r2 sin3 θ

[
r̂ sin θ cos 2φ + θ̂ cos θ cos 2φ − φ̂

2
sin 2φ

]
sin ω̂l t, (2.10)

∇ · U1 = 0, (2.11)

where U1 satisfies the homogeneous boundary condition

r̂ · U1 = 0 at r = 1. (2.12)

A mathematically convenient way of solving (2.10) and (2.11) with the boundary
condition (2.12) is to assume that inertial modes, which automatically satisfy (2.11)
and (2.12), form a complete function system (Zhang, Chan & Liao 2010) and, thus,
can be employed to represent an arbitrary profile of U1. In other words, the problem
may be solved by making the following expansions:

U1 =
∑
nk

(
Ank unke

i2φ + c.c.
)
sin ω̂l t +

∑
nk

(
Bnk unke

i2φ + c.c.
)
cos ω̂l t, (2.13)

P1 =
∑
nk

(
Ank pnke

i2φ + c.c.
)
sin ω̂l t +

∑
nk

(
Bnk pnke

i2φ + c.c.
)
cos ω̂l t, (2.14)

where i =
√

−1, Ank and Bnk are complex coefficients to be determined, c.c. denotes
the complex conjugate of the preceding term and unk(r, θ)ei2φ and pnk(r, θ)ei2φ satisfy
the equations,

(i2σnk + 2 ẑ×)
(
unke

i2φ
)

= −∇
(
pnke

i2φ
)
, ∇ ·

(
unke

i2φ
)

= 0, (2.15)

where σnk is the half frequency of a spherical inertial mode with |σnk| < 1, subject to
the condition r̂ · unk = 0 at r = 1. The explicit general analytical solution for spherical
inertial modes was found by Zhang et al. (2001). In the present analysis, unk(r, θ)
and pnk(r, θ) for azimuthal wavenumber m =2 with the required symmetry can be
extracted from the general solution, and are

pnk =

k∑
i=0

k−i∑
j=0

Ckij r2(1+i+j )σ 2i−1
nk

(
1 − σ 2

nk

)j−1
sin2+2j θ cos2i θ, (2.16)

r̂ · unk = −i

k∑
i=0

k−i∑
j=0

Ckij r1+2(i+j )σ 2i−1
nk

(
1 − σ 2

nk

)j−1

× sin2+2j θ cos2i θ
[
σnk(1 + σnk + jσnk) − i

(
1 − σ 2

nk

)]
, (2.17)

θ̂ · unk = −i

k∑
i=0

k−i∑
j=0

Ckij r1+2(i+j )σ 2i−1
nk (1 − σ 2

nk)
j−1

× sin1+2j θ cos2i−1 θ
[
σnk(1 + σnk + jσnk) cos2 θ + i

(
1 − σ 2

nk

)
sin2 θ

]
, (2.18)

φ̂ · unk =

k∑
i=0

k−i∑
j=0

Ckij r1+2(i+j ) sin1+2j θ cos2i θσ 2i
nk

(
1 − σ 2

nk

)j−1
(1 + σnk + j ), (2.19)
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where the indices (n, k) are related to the spatial wavenumbers in the vertical and
radial directions, respectively, and Ckij is defined as

Ckij =
(−1)i+j [2(k + i + j ) + 3]!!

2j+1(2i − 1)!!(k − i − j )!i!j!(2 + j )!
, (2.20)

along with (2i − 1)!! = (2i − 1) · · · (3)(1), (−1)!! = 1, (0)! = 1. The half frequencies of
the spherical inertial modes in (2.16)–(2.19), σnk , are solutions of

0 =
[2(k + 2)]!

k!(k + 2)!
+

k−1∑
j=0

(−1)j+k[2(2k + 2 − j )]!

j!(2k + 2 − j )![2(k − j )]!

× [(1 + k − j )σnk − 2(k − j )] σ
2(k−j )−1
nk , (2.21)

where k = 1, 2, 3 . . .. There exist 2k different solutions to (2.21), which can be arranged
according to the size of |σnk|, 0 < |σ1k| < |σ2k| < |σ3k|, . . . , < |σnk| < . . . . In other words,
σnk denotes the n-th smallest root of (2.21) for given k. The two principal inertial
modes, which have the simplest spatial structure, are characterized by frequencies
ωnk = 2σnk with k = 1 and n= 1, 2: ω11 = 2σ11 = − 0.2319 and ω21 = 2σ21 = 1.2319.

The major task of our asymptotic analysis is to find the analytical expression for
coefficients Ank and Bnk in the expansions (2.13) and (2.14). After substituting the
expansions into (2.10), multiplying the resulting equation by the complex conjugate of
unke

i2φ and then integrating over the sphere, we obtain two equations for Ank and Bnk ,

Ank

(
ω2

nk − ω̂2
l

) ∫
V

|unk|2 dV =

(
ω̂2

l − ωnk

2

)
I1 + iωnkI2 − iω̂2

l I3

4
+ iωnkI4, (2.22)

Bnk

(
ω2

nk − ω̂2
l

) ∫
V

|unk|2 dV = ω̂l

[
i(1 − ωnk)I1

2
+ I2 − ωnkI3

4
+ I4

]
, (2.23)

where k � 1, 1 � n � 2k,
∫

V
denotes the volume integration over the sphere, and

I1, I2, I3 and I4 – representing the integrals resulting from the product of the
complex conjugate of unke

i2φ and the right-hand side of (2.10) – are given by

I1 = 2π

∫ π

0

∫ 1

0

(
φ̂ · u∗

nk

)
r4 sin4 θ dr dθ

=

k∑
i=0

k−i∑
j=0

Ckij2
j+2(j + 2)!(2i − 1)!!

(i + j + 3)(2i + 2j + 5)!!

[
σ 2i

nk

(
1 − σ 2

nk

)j−1
(1 + σnk + j )

]
, (2.24)

I2 = 2π

∫ π

0

∫ 1

0

(
θ̂ · u∗

nk

)
r4 sin4 θ cos θ dr dθ

= 2πi

k∑
i=0

k−i∑
j=0

Ckij2
j+2(j + 2)!(2i − 1)!!

(i + j + 3)(2i + 2j + 7)!!

[
σ 2i−1

nk

(
1 − σ 2

nk

)j−1]
×

[
(2i + 1)σnk + (j − 4i + 1)σ 2

nk + 2i(j + 3)
]
, (2.25)

I3 = 2π

∫ π

0

∫ 1

0

(
r̂ · u∗

nk

)
r4 sin3 θ dr dθ

= 2πi

k∑
i=0

k−i∑
j=0

Ckij2
j+2(j + 2)!(2i − 1)!!

(i + j + 3)(2i + 2j + 5)!!

[
σ 2i−1

nk

(
1 − σ 2

nk

)j−1]
×

[
σnk(1 + σnk + jσnk) − i

(
1 − σ 2

nk

)]
, (2.26)
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I4 = 2π

∫ π

0

∫ 1

0

(
r̂ · u∗

nk

)
r4 sin5 θ dr dθ

= 2πi

k∑
i=0

k−i∑
j=0

Ckij2
j+3(j + 3)!(2i − 1)!!

(i + j + 3)(2i + 2j + 7)!!

[
σ 2i−1

nk

(
1 − σ 2

nk

)j−1]
×

[
σnk(1 + σnk + jσnk) − i

(
1 − σ 2

nk

)]
, (2.27)

where the half frequency of an inertial mode, σnk, can be readily obtained from
(2.21) and Ckij is given by (2.20).

At first glance, (2.22) and (2.23) indicate that resonance with inertial modes would
occur when the libration frequency ω̂l approaches the frequency of an inertial mode
ωnk: |Ank| → ∞ and |Bnk| → ∞ as ω̂l → ωnk . An essential step in the analysis is then
to evaluate the complicated integrals on the right-hand side of (2.22) and (2.23). We
first consider the right-hand side of (2.23) to determine the values of Bnk . With the
expressions for I1, I2, I3 and I4 given by (2.24)–(2.27) together with Ckij given
by (2.20), we can show, after some straightforward but cumbersome manipulation,
that

B̃nk =

(
Bnk

2πiω̂l

)(
ω2

nk − ω̂2
l

) ∫
V

|unk|2 dV

= −i

[
i(1 − ωnk)I1

2
+ I2 − ωnkI3

4
+ I4

]

=

k∑
i=0

k−i∑
j=0

(−1)i+j [2(k + i + j ) + 3]!!

(k − i − j )!i!j![2(i + j ) + 5]!!

[
σ 2i

nk

(
1 − σ 2

nk

)j]
. (2.28)

It is, however, both surprising and remarkable that B̃nk ≡ 0, i.e. the complicated
summation in (2.28) vanishes identically for all possible values of n and k. Since this
mathematical property is not only non-trivial and totally unexpected but also at the
heart of determining the key physical properties of a librating flow in an ellipsoid, we
shall outline a brief proof below.

First, we notice that the two indices (i, j ) in the summation (2.28) are so intimately
entangled that a direct summation even for moderate k is impossible, although the
summation at k =1 can be easily carried out. A crucial step towards proving that
B̃nk ≡ 0 for all possible values of n and k is to establish a recurrence relationship that
links the large k summations of (2.28) with the small k ones. For this purpose, we
introduce one additional index, M , by considering a new summation

B̃M
nk =

k−M∑
i=0

k−i−M∑
j=0

(−1)i+j [2(k + i + j ) + 3]!!σ 2i
nk(1 − σ 2

nk)
j

(k − i − j − M)!i!j![2(i + j + M) + 5]!!
, (2.29)

where 0 � M � (k − 1) and, obviously, B̃0
nk = B̃nk . Even though the new summation

(2.29) appears to be more complicated than the original (2.28), it can be shown or
verified that B̃M

nk obeys the following recurrence relationship:

B̃M
nk =

[
2(M − k + 1)

k − M

]
B̃M+1

nk , (2.30)
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which implies that

B̃0
nk =

[
−2(k − 1)

k

]
B̃1

nk =

[
22(k − 2)

k

]
B̃2

nk = · · · =

[
(−2)k−1

k

]
B̃k−1

nk . (2.31)

At M = k − 1, the summation (2.29) can be readily carried out, which gives rise to

B̃k−1
nk =

1∑
i=0

1−i∑
j=0

(−1)i+jσ 2i
nk(1 − σ 2

nk)
j

(1 − i − j )!i!j!
≡ 0. (2.32)

By virtue of the recurrence relationship (2.31) and the summation (2.32) at M = k −1,
we derive that

Bnk = B̃0
nk = B̃k−1

nk ≡ 0 (2.33)

for any possible values of n and k. Moreover, the vanishing right-hand side of (2.23)
also implies that (

I1 − iI3

2

)
=

2

ωnk

(
I1

2
− iI2 − iI4

)
. (2.34)

Making use of the relationship (2.34), we can derive, from (2.22), that

Ank

(
ω2

nk − ω̂2
l

)
ωnk

∫
V

|unk|2 dV =
(
ω2

nk − ω̂2
l

) (
−I1

2
+ iI2 + iI4

)
. (2.35)

The appearance of the factor (ω2
nk − ω̂2

l ) on both sides of the above equation removes
the possibility of resonance with any inertial mode in a librating ellipsoid. With the
explicit expressions for I1, I2, I4 given by (2.24), (2.25) and (2.27), we obtain from
(2.35) that

Ank = π

[∫
V

|unk|2 dV

]−1 k∑
i=0

k−i∑
j=0

σ 2i−1
nk (1 − σ 2

nk)
j−1

× (−1)i+j+1[2(k + i + j ) + 3]!![3 + j + σnk(3 + 2j )]

(k − i − j )!i!j![2(i + j ) + 5]!!(i + j + 3)
, (2.36)

where carrying out the integration of |unk|2 over the sphere yields

∫
V

|unk|2 dV =

k∑
i=0

k−i∑
j=0

k∑
q=0

k−q∑
l=0

(−1)i+j+q+lπ(j + l + 1)!σ 2(i+q)
nk

2[2(i + j + q + l) + 5]!!(2i − 1)!!

×
{

8iq(2i + 2q − 3)!!(j + l + 2)

σ 2
nk

+
4 (2i + 2q − 1)!!

(1 − σ 2
nk)

2

× [(σnk + 1 + jσnk) (σnk + 1 + lσnk) + (σnk + 1 + j ) (σnk + 1 + l)]

}

×
[

(1 − σ 2
nk)

j+l[2(k + i + j ) + 3]!![2(k + q + l) + 3]!!

(2q − 1)!!(k − i − j )!(k − q − l)!i!q!j!l!(j + 2)!(2 + l)!

]
. (2.37)

The six largest coefficients Ānk , which are scaled by Ānk = Ank[
∫

V
|unk|2 dV ]1/2, are

shown in table 1. Furthermore, upon realizing that the nonlinear equation at the
order δ2 is automatically satisfied because of

u0 · ∇u0 + 2 ẑ × u0 sin ω̂l t = 1
2
∇

[
(r sin θ)2 sin2(ω̂l t)

]
, (2.38)
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n k ωkn = 2σkn |Ākn|

1 1 −0.231925 0.403325
2 1 1.231925 0.095736
1 2 −0.101790 0.037458
3 2 −1.092568 0.026989
4 2 1.643443 0.018030
1 3 −0.057710 0.009087

Table 1. Six largest scaled coefficients Ānk computed from the analytical expression (2.36).

the fluid motion u, up to the order (δ2E2) and valid for any value of ω̂l , can be
expressed as

u =
{

− δ (r sin θ) φ̂ +
(δE2)r2

2

[
r̂ sin2 θ sin 2φ + φ̂2 sin3 θ cos 2φ

]
+ (δE2)

[ ∑
nk

(
Ankunke

i2φ + c.c.
)]}

sin ω̂l t + O(δ2E2), (2.39)

where the explicit expression for Ank is given by (2.36) (see table 1) while the explicit
expression for unk is given by (2.17)–(2.19). While the validity of the asymptotic
solution (2.39) is restricted by E1/2 � E2 � 1, it is, because of the property (2.38), not
restricted by δ � E2.

In the asymptotic solution (2.39), the first term represents the axisymmetric flow
while the second and third terms describe the non-axisymmetric flow with the
azimuthal wavenumber m = 2 in connection with the topographic effect of ellipsoidal
geometry. Table 1 indicates that the six dominant inertial modes in (2.39) would lead
to a reasonably accurate solution of the problem.

3. Numerical simulation and some remarks
In the three-dimensional numerical simulation, the fully nonlinear equations (1.2)

and (1.3) are solved subject to the non-slip boundary condition (1.4). The primary
purpose of our numerical analysis is to validate the key features of the asymptotic
solution (2.39) in a librating ellipsoidal cavity with moderate equatorial eccentricity
characterized by E1/2 � E2 � 1 and to examine the effect of viscosity and nonlinearity
neglected in the asymptotic analysis.

For simulating librating flows in non-spherical geometry such as an ellipsoid
with moderate equatorial eccentricity, finite element methods – which are usually
complicated and cumbersome in their numerical implementation – are particularly
suitable. For example, a three-dimensional finite element mesh is flexible enough
to construct more nodes in the vicinity of the bounding surface of an ellipsoid
even with large equatorial eccentricity, for the purpose of resolving the thin viscous
boundary layer. A sketch of the finite element mesh used in our numerical simulation
is illustrated in figure 1. In our numerical simulation, a semi-implicit time stepping
scheme is employed for the time advancement, a second-order extrapolation is applied
to the nonlinear term and no spatial symmetries with respect to the equator or any
other plane are imposed.

There are two obvious features emerging from the asymptotic solution (2.39):
the longitudinal libration in ellipsoids cannot resonate with any inertial modes and,
the weakly librating flows are, when re-scaled by tscaled = tω̂l/(2π), independent of
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Figure 1. A schematic of the ellipsoidal meshes for numerical simulation with the denser
mesh in the vicinity of its bounding surface.
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Figure 2. (a) Kinetic energy Ekin and viscous dissipation Dν of the librationally driven flows
plotted as a function of t/T , where T =2π/ω̂l and (b) the mean zonal flow, U (r, θ = π/2), as
a function of r for δ =0.01, E = 10−4 and E = 0.5 with ω̂l = 1.0 (solid line) and ω̂l = 1.2319
(dashed line).

the size of the libration frequency ω̂l . Our numerical simulation will be also restricted
to the regime E1/2 � E2 � 1, consistent with that for the asymptotic solution (2.39).
We have performed a large number of numerical simulations at many different values
of ω̂l for a small Poincaré number δ = 0.01 and a small Ekman number E =10−4

together with a moderate equatorial eccentricity E =0.5. The result of two typical
simulations is displayed in figure 2, where ω̂l = 1.2319 is at the resonance frequency
of an inertial mode with azimuthal wavenumber m =2 while ω̂l = 1.0 is not. It is
worth noting that, although the scaled time tscaled = tω̂l/(2π) is adopted in plotting
the time dependence of numerical simulations, our actual computation always uses
the unscaled time t . It can be seen that there is an expected agreement between the
asymptotic solution and direct numerical simulation: the kinetic energy Ekin in figure 2
is quantitatively consistent with solution (2.39), resonance of any type cannot occur
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(a) (b)

(c) (d)

Figure 3. (a) Contours of the mean zonal flow U (r, θ ) in the meridional plane at x = 0 for
ωl = 1.2319, (c) contours of the radial flow ur at the equatorial z = 0 plane for ωl = 1.2319,
(b) contours of U (r, θ ) in the meridional plane at x = 0 for ωl = 1.0 and (d ) contours of the
radial flow ur at the equatorial z = 0 plane for ωl =1.0. Solid contours are for U > 0 (ur > 0)
while dashed contours for U < 0 (ur < 0). Other parameters of the two solutions are δ = 0.01
and E = 10−4 with E = 0.5.

in a librating ellipsoid with a moderate equatorial eccentricity even in the presence
of viscous effects and, furthermore, the size of the libration frequency ω̂l plays a
secondary role in determining the main properties of librating flows. Since the kinetic
energy Ekin in this weakly nonlinear solution is dominated by the leading-order term
shown in (2.39), there are no noticeable differences between the kinetic energies of
two numerical solutions obtained at different libration frequencies, as predicted by
the asymptotic solution. But the structure of the viscous boundary layer (where the
viscous dissipation mainly takes place) at ωl =1.2319 would be different from that
at ωl = 1.0. This is reflected in noticeable differences, shown in figure 2(a), between
the viscous dissipation Dν – which is defined as −[1/(2V )]

∫
V

|∇ × u|2 dV with V

being the volume of the ellipsoidal cavity – of two numerical solutions with different
frequencies. Figure 3(c, d ) shows the structure of the radial flow ur at the equatorial
z = 0 plane, which, apart from the expected influence of the viscous boundary layer,
exhibits the largely same structure as that of the inertial mode u11 (Zhang et al. 2001),
in a good agreement with the asymptotic expression (2.39).

An important feature, as a result of the combined effect of small viscosity and
the boundary-layer nonlinearity, is the generation of a mean zonal flow U (r, θ)
(obtained by averaging over both time t and the azimuthal angle φ of spheroidal
polar coordinates) in a librating ellipsoidal cavity, which is shown in figure 2(b)
for E = 10−4 and δ = 0.01 with two different frequencies ωl = 1.2319 and ωl =1.0. In
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spherical geometry, where there exists the only viscous coupling between the librating
container and fluid that produces only an axisymmetric flow, it has been found that
a mean zonal flow U (r, θ) can be generated via the effect of the nonlinear spherical
viscous boundary layer (Busse 2010; Sauret et al. 2010). In an ellipsoidal cavity, where
the librational flow is non-axisymmetric and the coupling between the container and
fluid is dominated by topographic effects, our simulation reveals that a mean zonal
flow U (r, θ) can be also generated. The mechanism of maintaining the mean flow
U (r, θ) in an ellipsoidal cavity would be similar to that in a librating sphere discussed
by Busse (2010). As required by conservation of mass, the interior fluid will be sucked
or ejected into the viscous boundary layer. Through this viscous process together
with the nonlinear effect, the boundary layer communicates with the bulk of the fluid
and maintains the time-independent equilibrium of the mean zonal flow U (r, θ). The
two-dimensional profile for the mean zonal flow U (r, θ) at the meridional plane x = 0
is displayed in figure 3(a, b): slightly different profiles are likely to be attributable to
changing structures of the viscous boundary layer at different libration frequencies.

Both the asymptotic and numerical solutions discussed in this paper are only for
weakly librating flows with small Poincaré number δ � 1. When the Poincaré number
is sufficiently large, the nonlinear effect would become strong and dominant. It is
anticipated that there would be substantial differences between the prograde and
retrograde phases and that the main features of the librating flow would depend on
the size of the libration frequency. Direct numerical simulation for large Poincaré
numbers with different equatorial eccentricities is currently underway and will be
reported in a future paper.

Finally, it is worth mentioning that the original purpose of our asymptotic and
numerical analyses is to search for possible resonance with inertial modes in ellipsoidal
geometry driven by longitudinal libration. We have reached, however, a negative
conclusion: even if both the libration frequency and the azimuthal wavenumber of
topographic forcing are exactly the same as those of non-axisymmetric inertial modes,
longitudinal libration cannot resonate with any inertial modes in ellipsoidal geometry.
Since the parameter regime E1/2 � E2 � 1 is not only geophysically relevant but also
accessible to laboratory experiments, it is hoped that the findings of this work will be
validated by the ongoing experiments currently taking place in several laboratories.
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