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Abstract: We study dynamical systems that switch between two different vector fields
depending on a discrete variable. If the two vector fields have linearly unstable fixed points
and the switch is subject to a hysteresis and to a delay one expects the system to switch
periodically back and forth between the two vector fields, always switching at certain
submanifolds of the state space. This is true as long as the delay is sufficiently small.
When the delay reaches a problem-dependent critical value so-called event collisions
occur. We show that at these event collisions the switching manifolds can increase
their dimension, giving rise to higher-dimensional dynamics near the periodic orbit than
expected. In many practical applications such as control engineering the dynamical
system has additional symmetry, which adds difficulty in the analysis because event
collisions generically occur at several points along the periodic orbit simultaneously.
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1. INTRODUCTION

The motivation behind this paper is the observation
that hybrid dynamical systems arising in practical
applications often show a surprisingly intricate dy-
namical behavior if their switch is subject to a de-
lay [Barton et al. (2005b); Bayer and an der Heyden
(1998); Holmberg (1991)]. The observed behavior of-
ten does not match the simple classification of possi-
ble codimension-one bifurcations as given in [Sieber
(2005)]. The reason behind this phenomenon is that
practical systems often have special symmetries. For
example piecewise affine systems as arising in con-
trol engineering have a full reflection symmetry. The
presence of this symmetry causes a violation of the
genericity assumptions made in [Sieber (2005)]. Most
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prominently, periodic orbits of systems with delayed
switching typically have ‘corners’. A classical event
collision corresponds to the case when, varying a pa-
rameter, one of the corners of the orbits crosses a
switching boundary [Sieber (2005)]. In the examples
of [Barton et al. (2005b); Bayer and an der Hey-
den (1998); Holmberg (1991)] the symmetry enforces
that one of the other corners of the periodic orbit
crosses a switching boundarysimultaneously(at least
for symmetric periodic orbits), which violates the as-
sumptions of [Sieber (2005)]. This paper studys the
simplest but most common case of symmetric hybrid
systems, namely systems with full reflection symme-
try. This symmetry is present in all examples studied
in [Barton et al. (2005b); Bayer and an der Heyden
(1998); Holmberg (1991)].

Let us consider hybrid dynamical systems of the form
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ẋ(t) = f (x(t),u(t− τ))

u(t) =


−1 if h(x)≥ 1, or

if h(x(t)) ∈ (−1,1) andu−(t) =−1

1 if h(x(t))≤−1, or,

if h(x(t)) ∈ (−1,1) andu−(t) = 1
(1)

wherex(t) ∈ Rn, u(t) ∈ {−1,1}, f : Rn×{−1,1} 7→
Rn is smooth andh : Rn 7→ R is continuous and
piecewise smooth with a nonzero gradientH(x) =
∂xh(x). In the definition ofu(t) in (1), u−(t) is defined
by

u−(t) := lim
s↗t

u(s),

which gives rise to a switch betweenu = −1 andu =
+1 with hysteresis betweenh(x) =−1 andh(x) = 1. In
control problems, typically,x is the state variable, and
u is a discrete control input governed by the switching
law in (1). For a trajectory(x(·),u(·)) of (1) we callt a
crossing timeif u(t)u−(t) =−1 (that is,u(t) 6= u−(t)).
The level sets(−∞,−1], (−1,1) and [1,∞) of the
function h provide a partition ofRn into disjoint sets
with piecewise smooth boundaries given by{h(x) =
±1}. Thus, at a crossing timet, x(t) crosses either
{h(x) = 1} from {h(x) < 1} to {h(x)≥ 1}, or{h(x) =
−1} from {h(x) > −1} to {h(x) ≤ −1}. The state
variablex in system (1) follows at any instance of time
one of the two flowsϕ+ or ϕ− whereϕ± is generated
by the ordinary differential equation ˙x = f (x,±1).
That is,x(t + δ ) = ϕδ

+x(t) if u([t− τ, t− τ + δ ]) = 1,
andx(t +δ ) = ϕδ

−x(t) if u([t− τ, t− τ +δ ]) =−1.

A special feature of system (1) is that the switch
introduced byu is subject to a delay. That is, the
evolution ofx depends, viau, on the value ofx from
time τ ago. Typically, systems with delayed switches
admit non-stationary, periodic or more complicated,
dynamics [Barton et al. (2005a); Fridman et al. (2002);
Holmberg (1991)]. The phase space of system (1) is
infinite-dimensional because it is necessary to keep
track of the history ofu in [t − τ, t] to determine
the forward evolution ofx and u. More precisely,
an appropriate initial value for (1) would be a tuple
(x0,u0) consisting ofx0 ∈ Rn, and a functionu0 :
[−τmax,0) 7→ {−1,1} of, say, bounded variation (that
is, u ∈ BV := BV([−τmax,0];{−1,1}) whereτmax is
an upper bound for the delay). However, it is well
known that the dynamics close to a periodic orbitL =
(x(·),u(·)) of (1) can be described locally by a finite-
dimensional smooth local return (Poincaŕe) mapM if
L satisfies the following two genericity conditions.

Condition 1. (Generic periodic orbits) All crossing
timest of L satisfy the following two conditions.

(1) (Absence of event collision)The timet − τ is a
not a crossing time ofL.

(2) (Transversality)The gradientH of h is well
defined and continuous inx(t) and satisfies
H(x(t))ẋ(t) 6= 0.

Condition 1.1 automatically guarantees thatx(·) is
continuously differentiable in all crossing times, mak-
ing the time derivative ofx in Condition 1.2 well
defined. If the orbitL is alsoslowly oscillating, that is,
if the time differences between subsequent crossing
times are all larger than the delayτ, then the local
return mapM is n− 1-dimensional. In this case the
mapM can be obtained by recording the first return
map (Poincaŕe map) to a local cross-section (Poincaré
section) inRn, transversal to the graph ofx(·) in a
point x(t) whereu is constant in[t − τ, t]. A reduc-
tion of the description of the dynamics of (1) near
L to the smooth finite-dimensional mapM links the
bifurcation theory of slowly oscillating periodic or-
bits satisfying Condition 1 to the classical bifurcation
theory of smooth finite-dimensional maps [Kuznetsov
(2004)]. [Sieber (2005)] proves that this reduction to
(higher-dimensional) smooth maps works also for pe-
riodic orbits that are not slowly oscillating as long as
Condition 1 is satisfied. Furthermore, [Sieber (2005)]
classifies what can happen generically near slowly os-
cillating periodic orbits that violate one of the condi-
tions 1.1 or 1.2. It derives that the local return maps
are piecewise smoothn−1-dimensional maps assum-
ing certain secondary genericity conditions. This links
the theory of codimension-one discontinuity-induced
bifurcations of slowly oscillating periodic orbits to
the theory of finite-dimensional piecewise smooth
maps [Banerjee and Grebogi (1999); di Bernardo et al.
(1999); Nordmark (1997); Nusse et al. (1994)].

The motivation behind this paper is the observation
that many systems arising in applications have special
symmetry properties that obstruct the application of
the generic theory outlined in [Sieber (2005)]. The
symmetry of the periodic orbit often implies that a col-
lision (that is, the violation of Condition 1.1) for one
crossing timet leads automatically to a simultaneous
collision for all other crossing times, which violates
the secondary conditions assumed in [Sieber (2005)].
This has been observed in the example system studied
extensively in [Barton et al. (2005b); Bayer and an der
Heyden (1998)] as well as in many of the examples
discussed in [Holmberg (1991)]. The major source of
examples of systems of the form (1) is control engi-
neering where oftenf is linear and the switching law
is affine, that is,

f (x,u) = Ax+bu

h(x) = hTx
(2)

whereA∈ Rn×n, andb,h∈ Rn. The form (2) implies
that system (1) has theZ2 symmetry of full reflection
at the origin(x,u) 7→ (−x,−u), which occurs if the
right-hand-side of (1) satisfies

f (x,u) =− f (−x,−u)
h(x) =−h(−x).

(3)

TheZ2 reflection symmetry (3) typically gives rise to
a symmetric periodic orbitL = (x(·),u(·)) satisfying
x(t −T) = −x(t) andu(t −T) = −u(t) for the half-



periodT and allt. An event collision of this symmet-
ric periodic orbit for a crossing timet automatically
induces a simultaneous event collision for the crossing
time t − T, a scenario which is not covered by the
classification of [Sieber (2005)]. We point out that
affine systems of the form (1), (2) can exhibit complex
behavior, including chaos, even though all ingredients
of the right-hand-side are linear. The switch governing
u in (1) is a strong nonlinearity which is a common
cause of complicated dynamics.

2. LOCAL RETURN MAPS OF SYMMETRIC
PERIODIC ORBITS AT EVENT COLLISIONS

Let us suppose that system (1), (3) has a symmetric pe-
riodic orbit L∗ = (x∗(·),u∗(·)) of half-periodT which,
for a critical delayτ∗, experiences an event collision
for crossing time 0, and, enforced by the reflection
symmetry, for crossing timeT. For compactness of
presentation let us assume that 0 andT are the only
crossing times ofL∗. Thus,T = τ∗, andx∗ switches
between the flowsϕ+ andϕ− at the crossing times 0
andτ∗. Consequently, (without loss of generality)L∗
consists of the two segments

x∗([0,τ∗]) = ϕ
[0,τ∗]
+ (x∗(0)),

u∗([0,τ∗)) =−1, and

x∗([τ∗,2τ∗]) = ϕ
[0,τ∗]
− (−x∗(0)) =−x∗([0,τ∗]),

u∗([τ∗,2τ∗)) = 1.

Moreover, h(x∗(0)) = 1 and h(x∗(τ∗)) = −1. The
following transversality condition guarantees that the
evolution of system (1), (3) is continuous inL∗:

Condition 2. (Continuous event collision of symmet-
ric orbits) The orbitL∗ intersects the switching mani-
fold {x : h(x) = 1} transversally at time 0:

q := H(x∗(0)) f+ ·H(x∗(0)) f− > 0

where f+ = f (x∗(0),1) and f− = f (x∗(0),−1).

Condition 2 means that, even though the orbitx∗(·)
is not differentiable in its crossing times 0 andτ∗, it
still crosses the switching manifolds{x : h(x) = ±1}
transversally in the sense that the left- and the right-
sided time derivatives ofx∗(·) both point through
the switching manifold and both point in the same
direction. Condition 2 is formulated for crossing time
0. The reflection symmetry implies that the same
condition automatically holds also for the crossing
time τ∗. The pointp∗ = (x∗(0),u∗) where

u([−τ∗,0)) = 1, u([−τ−∆,−τ)) =−1

is an element ofL∗ (choosing∆ > 0 such thatτ +
∆ ≤ τmax for all τ ≈ τ∗). Consider the following set
of initial conditions in the vicinity ofp∗ (denoting a
sufficiently small neighborhood of a pointx ∈ Rn by
U(x)):

Uτ := {(x,u(·))∈Rn×BV : u((−τ−∆,−τ)) =−1,

u([−τ,−τ +∆)) = 1,x∈U(x∗(0))}.

The setUτ is the set of initial conditions that switch
exactly once fromϕ− to ϕ+ in U(x∗(0)). The point
p∗ on the periodic orbitL∗ is an element ofUτ∗ . For
a given delayτ the setUτ can be identified with
U(x∗(0)), thus, defining a topology onUτ . Condition 2
guarantees that for delaysτ close toτ∗ the setUτ is
invariant relative to a sufficiently small neighborhood
Ũ of L∗ in the following sense. Thex-components of
all trajectories starting from elements ofUτ switch
exactly once fromϕ− to ϕ+ in U(x∗(0)), then follow
ϕ+ to U(x∗(τ∗)) = U(−x∗(0)), then switch fromϕ+
to ϕ− in U(x∗(τ∗)), and then return toU(x∗(0)), fol-
lowing ϕ− (as long as the trajectory does not leaveŨ).
Consequently, forτ = τ∗+ δ ≈ τ∗ the system (1), (3)
restricted toUτ defines a return mapM∞ : D(M∞) ⊂
Uτ 7→ Uτ whereD(M∞), the domain of definition of
M∞, is an open subset ofUτ . The identification ofUτ

with U(x∗(0)) identifiesM∞ with an-dimensional map
M fromU(x∗(0)) toU(x∗(0)). The following theorem
states that then-dimensional mapM : U(x∗(0)) 7→
U(x∗(0)) describes the long-time behavior of sys-
tem (1), (3) for smallδ and nearL∗ completely. More-
over, it provides a formula for the piecewise smooth
mapM.

Theorem 3.(Dynamics near symmetric collisions) Let
τ be sufficiently close toτ∗ and let Ũ be a suffi-
ciently small neighborhood ofL∗ ⊂ Rn×BV. Then
all initial conditions inŨ are mapped intoD(M∞) by
system (1), (3) within a finite time less than 3τ∗. On
D(M∞) the reduced mapM of M∞ is given asM = Fτ ◦
Fτ whereFτ : U(x∗(0)) 7→U(x∗(0)) is defined as

Fτ(x) =−ϕ
τ+t(x)
+ x (4)

andt(x) ∈ (−τ,τ) is the unique time such thath
(

ϕ
t(x)
+ x

)
= 1 if h(x)≤ 1,

h
(

ϕ
t(x)
− x

)
= 1 if h(x) > 1.

(5)

The definition of the traveling timet(x) implies that
Fτ is continuous inD(M) and smooth in its two sub-
domainsD− := U(x∗(0))∩{x : h(x) ≤ 1} andD+ :=
U(x∗(0))∩{x : h(x) > 1} but, in general, its derivative
has a discontinuity along the boundaryD0 between
D− and D+. The existence and uniqueness of the
traveling time is a consequence of the transversality
Condition 2. The linearizations of both parts ofFτ with
respect tox andτ in x∗(0) andτ∗ are:

Fτ∗+δ (x∗(0)+ξ )−x∗(0) =

−Aτ∗

[[
I − f+H∗

g

]
ξ +δ f+

]
+O(|(ξ ,δ )2|) (6)

whereH∗ = H(x∗(0)), Aτ∗ = ∂x

[
ϕ

[0,τ∗]
+ x

]
x=x∗(0)

, f+ =

f (x∗(0),1), and



g =

{
H∗ f+ if x∗(0)+ξ ∈ D− \D0,

−H∗A
τ∗ f+ if x∗(0)+ξ ∈ D+.

(7)

Condition 2 asserts that the productq of H∗ f+ and
H∗ f− = −H∗Aτ∗ f+ is nonzero. Thus, Condition 2
implies thatg in nonzero in both cases. The affine
approximation of the boundaryD0 betweenD− and
D+ in x∗(0) is given by{x∗(0) + ξ : H∗ξ = 0}. The
map Fτ projects the whole subdomainD− onto the
n− 1-dimensional local submanifold{x ∈ U(x∗(0)) :
h(−ϕ

−τ
+ x) = 1} which is the delayed switching man-

ifold. Correspondingly, its linearization (6) projectsξ

linearly by I − f+H∗/(H∗ f+) before propagating it by
−Aτ∗ . Consequently, an event collision for a symmet-
ric periodic orbit satisfying Condition 2 increases the
dimension of the image of the local return map from
n−1 in D− to n in D+.

3. ILLUSTRATIVE EXAMPLE

This section will illustrate the most common scenario
for the dynamics near an event collision of a sym-
metric periodic orbit. We will use a two-dimensional
example of the piecewise linear form (1), (2) to demon-
strate how the increase of the dimension of the return
map of the periodic orbit manifests itself near an event
collision.

We choosehT = (1,0) (without loss of generality) and
the right-hand-side parametersA and b in (2) such
that, for a critical delayτ = τ∗ system (1)–(2) has a
symmetric periodic orbitL∗ = (x∗(·),u∗(·)) with half-
period τ∗ and crossing times 0 andτ∗. Furthermore,
we chooseA, b andτ∗ in a manner such thatA, b and
L∗ satisfy the following conditions.

(a) The matrixA and the critical delayτ∗ satisfy
Aτ∗ := exp(Aτ∗) = r

[
0 −1
1 0

]
with r > 1.

(b) The colliding orbitx∗ intersects the switching
line {x : hTx = 1} in x∗(0) = (1,z∗)T and the
switching line {x : hTx = −1} in x∗(τ∗) =
(−1,−z∗)T transversally. That is,hT f+ > 1 and
hT f− > 0 where

f+ :=
d
dt

ϕ
t
+|t=0x∗(0) = Ax∗(0)+b

f− :=
d
dt

ϕ
t
−|t=0x∗(0) = Ax∗(0)−b =−Aτ∗ f+.

The coordinatez∗ is uniquely defined byA and
τ∗ (chosen as required in point (a)) andf+. The
concrete expression forz∗ is given in the Ap-
pendix A.

(c) The vectorf+ has the formf+ = (1,c)T , which
implies that f− = (rc,−1) due to point (a), and
c > 0 due to point (b).

Thus, both crossing times ofL∗ violate genericity
condition 1.1 simultaneously. Figure 1(a) shows a
phase portrait ofL∗ (grey, thick, solid curve), super-
imposed with the non-delayed switching lines{hTx =

−4
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−
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T x = −1}

Fig. 1. Phase portrait of a colliding periodic orbit as
discussed in Section 3. The dashed lines are the
time τ∗ images of the lines{hTx = y = ±1}
under the flowsϕ+ and ϕ−, respectively. The
periodic orbitL∗ (in (a)) switches at times 0 and
τ∗ due to the crossing of the line{y = ±1} time
τ∗ ago simultaneous to its crossing of the other
switching line{y = ∓1}. How this collision is
unfolded by increasing the delay toτ∗ + δ is
shown in the zoom (b). The delayτ∗+δ is larger
than the half-period and the periodic orbit no
longer switches at the delayed switching lines.

±1} (solid) and their timeτ∗ imagesϕ
τ∗
± {hTx = ±1}

(dashed).

Condition (a) means thatA has a complex pair of
eigenvalues with positive real part and thatτ∗ is such
that the rotation angleα induced by exp(Aτ∗) is π/2
(which results in the simple form of exp(Aτ∗) in point
(a)). Condition (b) corresponds to the transversality
Condition 2 of Section 2. If condition (b) is satisfied
the choice f+ = (1,c) can be made without loss of
generality. Appendix A describes in detail how the
parametersr, c andα uniquely defineA, b, the critical
delay τ∗, and the colliding symmetric periodic orbit
x∗(·) of period 2τ∗. The requirement that the delayτ∗
is non-negative and the conditionhT f− > 0 (part of
condition (b)) restrict the set of admissibler andc by
the conditionsr > 1, c > 0, and

c >
rπ−2logr
π +2r logr

(8)



(see Appendix A).

The linearizations (6) and (7) (whereH∗ = (1,0))
approximate the half mapFτ of the local return map
(which is nonlinear, even though system (1), (2) is
piecewise affine) forx = [1,z∗]T +[y,z]T andτ = τ∗+
δ for small [y,z]T andδ . Expressed in the quantities
r, c, [y,z] and δ the linearizedFτ reads (calling the
truncation to affine terms byFlin)

Flin :

[
y
z

]
7→



[
−rcy+ rz+ rcδ

−rδ

]
if y≤ 0[

−y+ rz+ rcδ

(c−1− r)y− rδ

]
if y > 0.

(9)

Hence, ifc > r (then also restriction (8) is satisfied)
the mapFlin has the fixed point

[
y0

z0

]
=



[
rδ (c− r)/(rc+1)

−rδ

]
if δ < 0,[

rδc(c− r)/(2c+ r2c− r)
−rδc(rc+1)/(2c+ r2c− r)

]
if δ > 0,

Thus, there exists a continuous familyxδ = [yδ ,zδ ]T of
fixed points ofFlin for δ ∈ (−δ0,δ0). This continuous
family persists under the small perturbation towardFτ .
The fixed points ofFτ correspond to a family of sym-
metric periodic orbits of system (1), (2) which has an
event collision atτ = τ∗ (i.e., δ = 0). The fixed point
xδ has only one nonzero eigenvalue (corresponding to
a nonzero Floquet multiplier of the periodic orbit) for
δ < 0. This eigenvalue isrc > 1. Hence,xδ is unstable
with only one nontrivial direction.

When δ > 0, the fixed pointxδ has a complex con-
jugate pair of eigenvalues−1/2±

√
1/4− r2 + r/c if

c > (r−1/(4r))−1 which is stable ifc < (r−1/r)−1,
loosing its stability in a 1:3 resonant torus bifurcation
at c = (r−1/r)−1. Consequently, forr ∈ (

√
5/2,

√
2)

and for all c ∈ (r,(r − 1/r)−1) there exists a stable
symmetric periodic orbit of system (1), (2) with a
stable complex conjugate pair of Floquet multipliers
for all τ = τ∗ + δ and δ > 0 sufficiently small. The
degeneracy of the strong (1 : 3) resonance is caused
by our selection of the rotation angleα = π/2 in the
choice of the parameters inA andτ∗. In general, no
torus will emanate from this resonant torus bifurcation
[Kuznetsov (2004)]. Variation of the angleα unfolds
this degeneracy.

Figure 2 shows the iterations of the nonlinear map
Fτ (the exact negative half-return map of the sys-
tem (1), (2)) forτ = τ∗ + δ whereδ = 0.1, c = 3/2
and r = (1+

√
10)/3≈ 1.39 (Fig. 2(a)) andr =

√
2

(Fig. 2(b)). Fig. 2(a) gives evidence of a stable fixed
point with two complex conjugate eigenvalues in ap-
proximate 1 : 3 resonance whereas Fig. 2(b) clearly
shows an unstable fixed point at the center (and, possi-
bly, the period three saddle-type orbit which is generi-
cally present near 1 : 3 resonances). Fig. 1(b) shows a
zoom-in into the neighborhood ofx∗(0) of the phase
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−0.75

−0.74

−0.73

−0.72

−0.71

0 0.01 0.02 0.03 0.04 0.05 0.06

(a)

(b)

z× 102

y× 102

y

z

Fig. 2. Iterations of the half-return mapFτ starting near
the fixed point. The first 100 iterates are marked
by crosses, the iterates 101–200 are marked by
boxes, giving evidence of a stable fixed point for
c = 3/2, r = (1+

√
10)/3≈ 1.39, δ = 0.1 (τ =

τ∗ + δ ) and an unstable fixed point forc = 3/2,
r =

√
2.

portrait of the periodic orbitLδ whereδ = 0.1 corre-
sponding to the stable fixed point in Fig. 2(a). The peri-
odic orbitLδ does not switch at the delayed switching
line ϕ

τ∗+δ

− {hTx = −1}. The half-period ofLδ is less
thanτ∗− δ . Thus,Lδ is a stable symmetric periodic
orbit that is not slowly butrapidly oscillating. Hence,
this example also illustrates that a stable symmetric
periodic orbit can be created in an event collision by
increasing the delay beyond the critical valueτ∗.

4. CONCLUSION

The paper discusses the dynamics near periodic orbits
in hybrid dynamical systems. It is motivated by the
fact that in many practical applications the presence
of symmetry prevents the generic and simple bifurca-
tion scenarios as classified in [Sieber (2005)] but in-
stead gives rise to intricate and counterintuitive event
collision phenomena [Holmberg (1991); Barton et al.
(2005b); Bayer and an der Heyden (1998)].



We describe and unfold the simplest and most com-
mon case of an event collision in a symmetric system
as it occurs, for example, in a piecewise affine system
which is switching with hysteresis and delay. In this
case two corners of a symmetric periodic orbit simulta-
neously collide with a switching manifold. This causes
an increase of the dimension of the phase space for the
return map along the periodic orbit. We demonstrated
this fact with a simple two-dimensional piecewise lin-
ear example which has a symmetric periodic orbit with
a weakly stable or unstable complex conjugate pair
of eigenvalues if the delay is greater than the critical
value corresponding to an event collision.

The analysis of the possible dynamics in the unfolding
of the event collision is far from complete but the
initial theoretical results presented in this paper will
lead to classifications of practically relevant behavior
for concrete systems.
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Appendix A. RECONSTRUCTION OF THE
RIGHT-HAND-SIDE

This appendix describes in which sense the right-
hand-side parametersA, b and τ∗ of the piecewise
affine system (1), (2) are uniquely determined by the
artificial parametersc, r and α which we use in
Section 3 to describe the return map of the colliding
periodic orbitL∗.

Let us denote the first component of the state variable
x ∈ R2 by y and the second component byz. We
chooseh = (1,0)T and the matrixA = τ−1

∗ A0 where

A0 =
[
logr −α

α logr

]
(A.1)

andr > 1. Thus, the flowsϕ± are given by

ϕ
t
±x = exp(At)x± (exp(At)− I)τ∗A−1

0 b,

spiraling outward from the unstable sources∓τ∗A
−1
0 b.

Consequently, system (1), (2) with delayτ∗ has a
symmetric periodic orbit that switches fromϕ− to ϕ+
in x∗(0) = (1,z∗)T on the switching linehTx = 1 if

−
[

1
z∗

]
= expA0

[
1
z∗

]
+(expA0− I)τ∗A−1

0 b.

Furthermore, if we prescribe the time derivative of
the outgoing flowϕ+ in (1,z∗)T by (1,c) then the
parametersA, b and τ∗ and the periodic orbit are
uniquely determined by the parametersr, α andc and
the relations[

τ
−1
∗

τ
−1
∗ z∗

]
=

1
2

[I −expA0]A−1
0

[
1
c

]
,

b = [expA0 + I ]
[
1
c

]
(A.2)

x∗(±t) = exp(±A0τ
−1
∗ t)

[
1
z∗

]
±[

exp(±A0τ
−1
∗ t)− I

]
τ∗A

−1
0 b

whereA0 is given by (A.1) andt runs from 0 toτ∗.
Hence, the relations (A.2) allow one to study the return
map near the colliding periodic orbit in dependence
of the parametersr, c and α. We chooser > 1 and,
for convenience,α = π/2 in Section 3, implying that
expA0 =

[
0 −r
r 0

]
. This results in the relation

τ∗ =
4log2 r +π2

2logr− rπ +cπ +2cr logr
.

for τ∗. The conditionτ∗ > 0 implies the admissibility
condition onc

c >
rπ−2logr
π +2r logr

,

which is always satisfied ifc > r > 1.


