
J. Fluid Mech. (1999), vol. 398, pp. 245–270. Printed in the United Kingdom

c© 1999 Cambridge University Press

245

The spiral wind-up and dissipation of vorticity
and a passive scalar in a strained planar vortex

By A N D R E W P. B A S S O M AND A N D R E W D. G I L B E R T
School of Mathematical Sciences, University of Exeter, North Park Road,

Exeter, Devon EX4 4QE, UK

(Received 21 July 1998 and in revised form 6 April 1999)

The response of a Gaussian vortex to a weak time-dependent external strain field is
studied numerically. The cases of an impulsive strain, an on–off step function, and a
continuous random strain are considered. Transfers of enstrophy between mean and
azimuthal components are observed, and the results are compared with an analogous
passive scalar model and with Kida’s elliptical vortex model.

A ‘rebound’ phenomenon is seen: after enstrophy is transferred from mean to
azimuthal component by the external straining field, there is a subsequent transfer
of enstrophy back from the azimuthal component to the mean. Analytical support
is given for this phenomenon using Lundgren’s asymptotic formulation of the spiral
wind-up of vorticity. Finally the decay of the vortex under a continuous random
external strain is studied numerically and compared with the passive scalar model.
The vorticity distribution decays more slowly than the scalar because of the rebound
phenomenon.

1. Introduction
Simulations of two-dimensional turbulence, beginning with random small-scale

initial conditions, show that the vorticity distribution tends to organize into a number
of coherent vortices, which then dominate the fluid flow (see for example Fornberg
1977; McWilliams 1984; Brachet et al. 1988). These vortices have a high Reynolds
number Re and tend to be isolated, there being a disparity between the length scale l
of a typical vortex and that of the separation L between vortices. On the large scale L
the vortices move under their mutual interactions, and at leading order are governed
by the dynamics of a number of point vortices (excepting collisions) (Ting & Klein
1991; Lingevitch & Bernoff 1995). On the moderate scale l, an individual vortex can
be considered an approximately axisymmetric distribution of vorticity immersed in
the time-dependent irrotational flow generated by the remaining vortices (cf. Oetzel
& Vallis 1997). As far as the internal dynamics of the vortex are concerned, the
leading effect of neighbouring vortices is to impose a time-dependent straining field
of magnitude ε = l2/L2τ, varying over a time scale 1/ε, where τ is the turnover time
of an individual vortex.

In this paper we study numerically the response of a vortex to different types of
external straining field. We quantify the transfers of enstrophy between mean and
fluctuating components, and so the losses of enstrophy to dissipation. Our aim is to
understand the robustness of such vortices, as seen in two-dimensional turbulence
and in related geophysical situations (see for example Smith & Montgomery 1995).
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The inviscid equilibrium states of an elliptical vortex patch (with vorticity constant
inside and zero outside) in an external strain field, and their stability, have been
studied by Moore & Saffman (1971). Equilibrium states with viscosity in two and
three dimensions have been discussed by Robinson & Saffman (1984), Moffatt, Kida
& Ohkitani (1994), Jiménez, Moffatt & Vasco (1996) and Kevlahan & Farge (1997);
in these cases the leading-order structure of the vortex is viscously controlled and the
time scale for such a vortex to equilibrate is correspondingly long. The emphasis in the
present paper is rather different, being on transient, time-dependent phenomena, and
on the behaviour at high Reynolds number, or even in an inviscid vortex. The closest
dynamical model to ours is that of Kida (1981). Here an elliptical vortex patch evolves
inviscidly under its own flow field and a time-dependent external strain field. The
vortex always remains elliptical in form, the lengths and orientation of the principal
axes of the ellipse being governed by ordinary differential equations. Solutions to
these equations include the equilibria of Moore & Saffman (1971), rotating, nutating
ellipses, and indefinite extension of an ellipse in the strain field (Kida 1981; Dritschel
1990).

While Kida’s model is very attractive, the reversible, ‘elastic’ behaviour of an
elliptical vortex patch is rather special. Such vortices cannot show the process of
relaxation to axisymmetry which commonly† occurs for smooth vortices (for example
McCalpin 1987; Melander, McWilliams & Zabusky 1987; Smith & Montgomery
1995; Yao & Zabusky 1996). As an instance of such ‘axisymmetrization’, consider a
Gaussian vortex exposed to an impulsive external strain field (Bernoff & Lingevitch
1994, henceforth referred to as BL94). An azimuthal n = 2 mode is generated,
which rapidly evolves into spiral arms tightly wound around the vortex. Once the
azimuthal vorticity is of sufficiently small scale, the corresponding stream function is
subdominant, and the vorticity behaves approximately as a passive scalar.

If weak viscosity is present the azimuthal component is eventually destroyed on
a ‘shear–diffuse’ time scale of order Re1/3τ (Lundgren 1982; Rhines & Young 1982;
BL94). The corresponding time scale for a passive scalar in closed stream lines is
O(Pe1/3τ), where Pe is the Péclet number (Weiss 1966; Moffatt & Kamkar 1983;
Rhines & Young 1983). The generation of azimuthal structure and its destruction on
the shear–diffuse time scale represents an irreversible process that destroys enstrophy.
This is not present in the inviscid Kida vortex model; while a smooth viscous vortex
should exhibit some of the features of the Kida model, we would expect the elastic
behaviour to become damped.

Although consideration of the action of viscosity highlights this loss of enstrophy
through the shear–diffuse mechanism, the essential irreversible process is present even
if the fluid is inviscid. In such a fluid a Gaussian vortex in an impulsive strain field
again generates spiral arms of vorticity that are then driven to fine scales. With
Re = ∞, such vorticity fluctuations are never destroyed pointwise; however in an
average sense the fluctuations and corresponding enstrophy are lost from the large-
scale flow. This was quantified in Bassom & Gilbert (1998, henceforth referred to as
BG98), by considering the behaviour of spatial averages of the azimuthal vorticity
field. Such ‘weak’ measures of the fluctuation field decay in time because of its
progressive reduction in scale. In BG98 the decay rates were obtained, and differences

† Note that vortices do not always relax to axisymmetry; persistent nonlinear, non-axisymmetric
states are seen by Dritschel (1989a , 1998), Koumoutsakos (1997) and Rossi, Lingevitch & Bernoff
(1997). As far as we are aware, the issue of whether linear perturbations with n > 2 relax to
axisymmetry in the unbounded plane is unresolved (see Briggs, Daugherty & Levy 1970; Smith &
Rosenbluth 1990; Bernoff & Lingevitch 1994; Llewellyn Smith 1995).
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were found between the wind-up of vorticity and of a passive scalar, because of a
residual coupling of vorticity to the stream function near the origin.

From this point of view, weak viscosity acts merely as a fine-scale cut-off in
destroying azimuthal components through the fast shear–diffuse mechanism. The real
irreversible process is the essentially inviscid generation of fine-scale structure in the
first place: in the presence of the large-scale flow of the vortex, such structure is lost
from the large scales, whether or not it is finally dissipated by viscosity, hyperdiffusion
or contour surgery, or cascades indefinitely for Re = ∞. The amount of enstrophy
that is lost can also be calculated without consideration of viscosity. Similar ideas
underly the statistical approach of Robert & Sommeria (1991).

The study BG98 of the response of a Gaussian vortex to an impulsive strain was
entirely linear; in the present paper we consider the nonlinear response to several
types of external strain: an impulse, a step function, and a random function of time.
In § 2 we set up the equations governing vorticity in a weak external flow field,
with magnitude governed by the small parameter ε. These describe the generation of
azimuthal vorticity at order ε, and the interaction between mean and azimuthal fields
at order ε2. We also set up an analogous problem in which a passive scalar evolves
in a prescribed flow. Such problems form an important subject in their own right
(e.g. Aref 1984; Ottino 1989) and we shall say little that is new from this point of
view. However the passive scalar model provides a useful point of comparison for the
numerical results for vorticity (cf. Babiano et al. 1987; Ohkitani 1991).

We present numerical simulations of the response to an impulsive straining flow
in § 3, typical of a short correlation-time input. By comparison with a scalar field,
relatively small amounts of enstrophy are lost in the process of spiral wind-up, there
being a transfer of enstrophy back from azimuthal to mean components. This transfer
is also implicit in the results of BG98, and is particularly noticeable near the centre
of the vortex. A long correlation-time strain is considered in § 4: a constant strain
is switched on, and over many turnover times the vortex relaxes to a strained state
described by the asymptotics of Moffatt et al. (1994) and Jiménez et al. (1996). The
strain field is then switched off and the vortex relaxes once more to axisymmetry.

These studies of very simple external inputs complement § 5, in which we introduce a
weak time-dependent random strain; this is closest to what a vortex would experience
in two-dimensional turbulence. We compare how vorticity and scalar distributions
spread and dissipate. Finally § 6 offers conclusions and discussion. Our philosophy in
this paper, as in BG98, is as far as possible to work with Re = ∞. Since our study is
primarily numerical it is necessary to introduce some level of diffusion in all our sim-
ulations; however our aim is to establish the important features of inviscid behaviour.
We give further comments on the role of viscous diffusion as the paper proceeds.

2. Governing equations and invariants
2.1. Vorticity problem

A vortex with vorticity ω and stream function ψ in an externally imposed irrotational
flow with stream function ψext is governed by the dimensionless equations

∂tω = J(ψ + ψext, ω) + Re−1∇2ω, (2.1)

∇2ψ = −ω, ∇2ψext = 0, (2.2a, b)

where J(a, b) ≡ r−1(∂ra ∂θb − ∂θa ∂rb). The two stream functions, ψ and ψext, are
distinguished by their behaviour at infinity. The stream function ψ of the vortex is
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determined by inverting (2.2a) using the integral

ψ(r) = − 1

2π

∫
ω(s) log |r − s| d2s (2.3)

and grows as ψ ∼ −(γ/2π) log r as r → ∞, where γ is the total circulation of the
vortex. It is natural to take the non-dimensionalization in (2.1) above so as to make
the circulation γ and the length scale l of the vortex unity.

The external stream function ψext is assumed to be generated outside the vicinity
of the chosen vortex, by distant vortices or moving boundaries, and is a harmonic
function, having algebraic growth away from the vortex. Near the vortex ψext can
be expanded as a sum of decreasing terms rne±inθ , for n > 0. The constant (n = 0)
term has no effect while the next, n = 1, term gives a uniform flow, not of interest
to us here (but see Lingevitch & Bernoff 1995). The next term, n = 2, is an external
straining of the vortex and is the dominant effect on the internal dynamics of the
vortex; we therefore restrict investigation to an external flow with only n = 2 modes
and write

ψext = εq(t)φ(r)einθ + c.c., φ(r) ≡ rn (n = 2). (2.4a, b)

Here ‘c.c.’ denotes the complex conjugate of the preceding expression and to bring
out the general structure of equations we present, we leave n in explicitly even though
it is understood that our focus is on n = 2.

The quantity q(t) above is a complex function of time that determines the external
strain; the modulus |q| gives the strength of the strain, while the axes of the strain
are oriented at an angle π/4− (arg q)/2 to the usual Cartesian axes. This allows for
fixed axes (as in §§ 3, 4), randomly varying axes (§ 5), or steadily rotating axes (see,
for example, Kida 1981 or Dritschel 1990). (Note however that in contrast with these
references, we always work in a frame with irrotational fluid about the vortex, never
a rotating frame.)

Since the external flow is weak, in (2.4a, b) ε is a small parameter with 0 < ε � 1.
In §§ 2–4 we expand vorticity in powers of ε as follows:

ω = ω0(r, t) + εω1(r, t)e
inθ + c.c.+ ε2(ω2(r, t) + ω22(r, t)e

2inθ + c.c.) + · · · (2.5)

and similarly for ψ. When these are substituted into the governing equations (2.1),
(2.2) we obtain

∂tω0 = Re−1∆0ω0, −ω0 = ∆0ψ0, (2.6a, b)

∂tω1 + inαω1 + inβ(ψ1 + qφ) = Re−1∆1ω1, −ω1 = ∆1ψ1, (2.6c, d)

∂tω2 + inr−1∂r[(ψ1 + qφ)ω∗1] + c.c. = Re−1∆0ω2, −ω2 = ∆0ψ2. (2.6e, f)

Here ∆p ≡ ∂2
r + r−1∂r − n2p2r−2 and

α ≡ −1

r
∂rψ0, β ≡ 1

r
∂rω0; (2.7a, b)

α(r) is the angular velocity of the axisymmetric flow ψ0 and rβ(r) its vorticity gradient.
The quantities ω0, ψ0 give the basic axisymmetric structure of the vortex; for

comparison with previous studies (BL94; Jiménez et al. 1996; BG98) we take a
Gaussian vortex

ω0 = (4π)−1e−r
2/4, ψ0 = − 1

2π

[
log r +

∫ ∞
r

e−r
2/4 dr

r

]
(2.8a, b)
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with length scale and circulation of unity. For this vortex

α(r) = (2πr2)−1 [1− exp (−r2/4)], β(r) = −(8π)−1 exp (−r2/4) (2.9)

and as initial conditions we put

ω = ω0, ψ = ψ0, ω1 = ω2 = ψ1 = ψ2 = 0 (t = 0). (2.10)

Note that the non-dimensionalization implicit in (2.8) makes the rotation rate of the
vortex quite low. At the centre of the vortex, the angular velocity is α(0) = 1/8π, and
the period 16π2; for this reason the numerical runs below are quite long, and the
values of Re taken are large.

The full equations (2.1), (2.2) have a number of inviscid invariants; we shall focus
only on the enstrophy Eω and energy W ,

Eω =
1

2

∫
ω2 d2r, W =

1

2

∫
ψω d2r. (2.11a, b)

The enstrophy Eω and other moments of the vorticity distribution are conserved for
any external flow determined by q(t) because of the material conservation of vorticity.
The energy W of the flow is conserved only in the absence of an external flow, q(t) ≡ 0
(for a generalization, conserved when |q(t)| and d(arg q)/dt are both constants, see
Dritschel 1990, Appendix).

When the expansion (2.5) is substituted in (2.11), the contribution to the enstrophy
and energy at O(ε2) may be written

eω =

∫ ∞
0

(ω0ω2 + |ω1|2) 2πr dr, (2.12a)

w =
1

2

∫ ∞
0

(ψ0ω2 + ψ2ω0 + ψ∗1ω1 + ψ1ω
∗
1) 2πr dr, (2.12b)

and these quantities have the same conservation properties as those in (2.11). In these
equations we can identify a contribution from the mean parts ω2, ψ2, ω0 and ψ0, and
a contribution from the azimuthal part ω1 and ψ1. We consider these separately so
as to follow the transfer of invariants between mean and azimuthal parts, and use
a superscript ‘mean’ for the axisymmetric contribution and ‘azi’ for the azimuthal
component. For the enstrophy

emean
ω =

∫ ∞
0

ω0ω2 2πr dr, eazi
ω =

∫ ∞
0

|ω1|2 2πr dr; (2.13a, b)

it is the total eω = emean
ω + eazi

ω that is conserved inviscidly. Similar remarks apply to
the energy w = wmean + wazi. Note that since eω is conserved for any q(t) it follows
from the initial condition (2.10) that for Re = ∞,

emean
ω + eazi

ω = eω = 0, (2.14)

subsequently. However this will not generally be true of the energy w.

2.2. Passive scalar problem

We now define a passive scalar problem, analogous to the vorticity problem above
but much more tractable. We exchange the active scalar, vorticity ω, for the passive
scalar σ in (2.1) and decouple the stream function in (2.2a), to give

∂tσ = J(ψ + ψext, σ) + Pe−1∇2σ, (2.15)
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ψ ≡ ψ0(r), ∇2ψext = 0. (2.16a, b)

Now the flow, given by the total stream function ψ+ψext, is totally prescribed and the
scalar σ obeys a linear equation. We may expand σ analogously to (2.5) for vorticity
to yield equations similar to (2.6):

∂tσ0 = Pe−1∆0σ0, (2.17a)

∂tσ1 + inασ1 + inβqφ = Pe−1∆1σ1, (2.17b)

∂tσ2 + inr−1∂r(qφσ
∗
1) + c.c. = Pe−1∆0σ2. (2.17c)

Here Pe is a Péclet number and

α ≡ −1

r
∂rψ0, β ≡ 1

r
∂rσ0; (2.18a, b)

α(r) is the angular velocity as before, but now rβ(r) is the basic scalar gradient.
To make closest contact with the vorticity problem, the prescribed axisymmetric

flow ψ0 is taken to be (2.8b). Although the initial condition for the scalar may be
given independently of the flow field, we choose it to be the same as for vorticity in
(2.8a), with

σ = σ0 = (4π)−1e−r
2/4, σ1 = σ2 = 0 (t = 0). (2.19)

In the scalar system we consider only the invariant

Eσ =
1

2

∫
σ2 d2r, (2.20)

and refer to Eσ as the scalar variance (although strictly this is 2Eσ). The invariance
of Eσ in the absence of diffusion follows from the material conservation of scalar
and holds for any q(t). This invariant is analogous to the enstrophy in the vorticity
problem, and as there we may define the contribution at order ε2 as eσ (cf. 2.12a),
and its mean and azimuthal parts, emean

σ and eazi
σ (cf. 2.13).

2.3. Discussion and numerical code

At leading order in the expansions discussed above we have the basic distributions
ω0 and σ0 of vorticity and scalar, which are subject only to molecular diffusion (if
present) by (2.6a), (2.17a) and spread on the long time scale

Tmean = Re or Pe, (2.21)

respectively. The effect of strain on these basic fields is to generate a purely azimuthal
field, ω1, σ1, at next order, O(ε). These azimuthal fields obey the linear equations
(2.6c, d), (2.17b), forced by the inβqφ term. For both vorticity and scalar the shear–
diffuse mechanism operates: once azimuthal vorticity or scalar is driven to small
scales it is dissipated on the shear–diffuse time scale,

Tazi = (3Re/n2α′2)1/3 ' 20 Re1/3 or (3Pe/n2α′2)1/3 ' 20 Pe1/3, (2.22)

respectively (Lundgren 1982; Moffatt & Kamkar 1983; BL94). The numerical factor
is included here since α′(r), although strictly O(1), is small for the Gaussian vortex
with |α′(r)| <∼ 0.01.†

At order ε2 we are primarily interested in the mean fields ω2 and σ2 which, from

† Note that if α′(r) has considerable variation, for example in the case of a point vortex at the
origin, the variation of time scale Tazi with radius can lead to anomalous diffusion (Vassilicos 1995).
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Figure 1. (a) Evolution of enstrophy eω (solid) and scalar variance eσ (dotted) with time; the upper
two curves show the azimuthal parts, eazi

ω and eazi
σ , the lower two curves the mean parts, emean

ω and
emean
σ . (b) Evolution of the azimuthal energy wazi (upper solid curve) and the mean energy wmean

(lower solid curve); the total energy w is shown dashed.

(2.6e), (2.17c), are subject to diffusion on the long time scale (2.21) given above and
are forced by the O(ε) azimuthal fields. We could view the generation of mean field
at O(ε2) in ω2 as the slow evolution of the O(1) mean field ω0 on a long O(ε−2) time
scale (and similarly for the scalar), and we take this up in § 5. However in §§ 2–4 we
keep ω0 and ω2 distinct.

A numerical code was written to solve the vorticity system (2.6) for ω0, ω1, ω2,
ψ0, ψ1 and ψ2, based on that in BG98. Equations (2.6) were rewritten as sixteen real
equations of first order in r; of these equations four were first order in time. The code
used a Keller box method (Keller 1971), as implemented in the NAG library, to step
the system in time, with the boundary conditions

∂rω0 = ω1 = ∂rω2 = ∂rψ0 = ψ1 = ∂rψ2 = 0 at r = 0, (2.23)

ω0 = ω1 = ω2 = 0, ψ0 = −(2π)−1 log r, r∂rψ1 + nψ1 = 0, ψ2 = 0 at r = rmax.

(2.24)

For the passive scalar a similar code was written to solve (2.17) for σ0, σ1 and σ2 with

∂rσ0 = σ1 = ∂rσ2 = 0 at r = 0, σ0 = σ1 = σ2 = 0 at r = rmax. (2.25)
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Typical parameter values for the computations described in §§ 3, 4 are

rmax = 10, N = 1001, Re = Pe = 108, (2.26)

N being the number of spatial grid points, spaced evenly between r = 0 and r = rmax.
The codes were tested by verifying the conservation of vorticity and scalar invariants
at high Re and Pe. In particular the conservation of energy w (as seen for the dashed
line in figure 1b) is a good test of the vorticity code, as it verifies the calculation of
all the various components of the stream function.

In §§ 3, 4 our interest is in the strictly non-diffusive behaviour of vorticity and a
passive scalar, but we have to introduce diffusion in the code for numerical reasons.
However for the parameters used, the time scales for the viscous decay of mean and
azimuthal fields are

Tmean = 108, Tazi ' 104. (2.27)

These are both much longer than the runs presented, and so the results given in these
sections do show the behaviour of the non-diffusive case, Re = Pe = ∞. Irrespective
of diffusion, there is also the issue of the validity of the expansion (2.5) in powers of
ε, in the limit of long time t. It appears that the series remains uniform for arbitrarily
large t for ε � 1 in § 3 and for εtmax � 1 in § 4. The reason is that once the forcing
q(t) is turned off, the azimuthal fields relax to axisymmetry, the feedback to the mean
fields ω2, σ2 ceases, and the mean fields remain bounded subsequently, ensuring that
the series does not become disordered.

3. Response to an impulsive external strain
In this section we study the response of a vortex to an impulsive external strain.

We take

q(t) = 2t−1
max sin2(πt/tmax) (0 < t < tmax), (3.1)

and q(t) = 0 otherwise. This is a continuous input, for numerical reasons, but provided
tmax is sufficiently small, it is a good approximation to a delta function q(t) = δ(t)
from the point of view of the linear equations for ω1 and σ1. For small tmax it is
equivalent to imposing the initial condition,

ω1(r, 0
+) = −inβφ, σ1(r, 0

+) = −inβφ, (3.2)

on these fields. The subsequent linear evolution of vorticity, which gives a Green’s
function, was studied for 1 � Re < ∞ in BL94 and for Re = ∞ in BG98. We take
tmax = 1, which is short compared with all other time scales in the problem.

3.1. Transfer of enstrophy and scalar variance

The vorticity field is evolved under the near-impulsive input (3.1) with tmax = 1. In
figure 1(a) we show the evolution of the azimuthal enstrophy eazi

ω (upper solid curve)
and the mean enstrophy emean

ω (lower solid curve) as functions of time. The dotted
lines show the corresponding mean and azimuthal scalar variances under the same
input. At t = 0 all these quantities are zero by (2.10), (2.19), but during the input for
0 6 t 6 1 there is a transfer of enstrophy from mean to azimuthal component. At
t = 1,

eazi
ω = −emean

ω = eazi
σ = −emean

σ ' 1/π ' 0.318 (3.3)

from (3.2); for short times (too short to be visible in the figure) the scalar and vorticity
behave identically.
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However for t > 1 the enstrophy curves (solid) and scalar variance curves (dotted)
diverge. The scalar quantities remain constant for t > 1. This is no great surprise:
when q(t) = 0 the flow possesses only circular streamlines, and from (2.17b) with
Pe = ∞

∂t|σ1|2 = 0, σ1(r, t) = −inβφe−inα(r)t. (3.4a, b)

As a consequence eazi
σ and so emean

σ are individually conserved for q(t) = 0, as seen.
No similar deductions can be made for eazi

ω and emean
ω as the azimuthal vorticity

ω1 generates a stream function ψ1 which causes motion in and out of the vortex,
allowing a flow of enstrophy between mean and azimuthal components. This is evident
in figure 1(a) where for the vorticity there is a ‘rebound’ phenomenon, a transfer of
enstrophy from the azimuthal component back to the mean. By the end of the run
eazi
ω = −emean

ω ' 0.075 and so the mean and azimuthal enstrophies are reduced by
about a quarter. This suppression of eazi

ω was mentioned in BG98, and arises purely
through the linear evolution equations (2.6c, d).

Although dissipation is negligible during the numerical simulation in figure 1(a),
the above results have implications for the later dissipation of enstrophy and scalar
variance, because of the differing mechanisms for mean and azimuthal components.
From the results above the enstrophy destroyed by the shear–diffuse mechanism will
be eazi

ω ' 0.075 at a time t = O(Re1/3). The scalar variance destroyed will be much

greater, namely eazi
ω ' 0.318 at a time t = O(Pe1/3). The mean fields will only be

influenced by diffusion on the much longer O(Re) and O(Pe) time scales.
Even in the strictly non-dissipative situation Re = Pe = ∞, both azimuthal fields

are driven to small scales by differential rotation and effectively lost to the system
on the O(1) turnover time scale of the vortex; however again less enstrophy is lost in
this way than passive scalar variance. In this sense the vorticity distribution is more
robust than the analogous passive scalar. Even more robust is the Kida (1981) vortex:
under a weak impulsive strain, an initially circular vortex patch would be distorted
into an ellipse, which would rotate as a solid body thereafter, and there would be no
enhanced dissipation due to spiral wind-up.

To attempt to throw some light on the suppression of azimuthal enstrophy eazi
ω let

us take q(t) = 0 and Re = ∞ and consider

∂t|ω1|2 = inβ(ω1ψ
∗
1 − ω∗1ψ1) (3.5)

from (2.6c). For vorticity we lack an explicit solution analogous to (3.4b) and so the
behaviour for the most interesting times t = O(1) remains beyond our reach. We
can however study the suppression of azimuthal vorticity for large time t, when the
vorticity tends to axisymmetry and a long-time asymptotic solution is available. As
t→∞ the solution to (2.6c, d) is given by

ω1 = ωL + ωH, ψ1 = ψL + ψH, (3.6a, b)

where

ωL = (X0 + t−1X1 + O(t−2))e−inα(r)t, ψL = (t−2Y0 + t−3Y1 + O(t−4))e−inα(r)t, (3.7)

with

X0 = g(r), X1 = inβY0, (3.8a, b)

Y0 =
g(r)

n2α′2
, Y1 =

in

n2α′2

[(
β − α′′ − α′

r

)
Y0 − 2α′Y ′0

]
. (3.8c, d)
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This is Lundgren’s (1982, appendix A) spiral solution taken to second order (see § 5 of
BG98). The series involves a single complex function g(r): although this is not known
analytically, as it only emerges after evolution through times t = O(1), in principle it
is determined by the initial conditions, and can be found numerically.

The second part of the solution ωH, ψH was referred to as the Helmholtz solution
in BG98. This solution decays according to

ωH, ψH = O(t−λ), λ = 1 +
√
n2 + 8 (3.9)

(cf. Briggs et al. 1970), and because of this the Lundgren solution (3.7) always gives
the dominant contribution to the quantities discussed in this paper. We therefore do
not consider the Helmholtz solution further, although its presence has implications
for the far field of the vortex and the behaviour near the origin.

When these expansions are substituted into (3.5) we obtain

∂t|ω1|2 = −2n2t−3βr−1∂r(rα
′|Y0|2) + O(t−5); (3.10)

the right-hand side does not arise at leading order from (3.7) but from the next-order
cross-terms X0Y

∗
1 , X1Y

∗
0 and their complex conjugates. Integrating over the vortex in

(2.13b) and using integration by parts gives

∂te
azi
ω = 2n2t−3

∫ ∞
0

α′β′|Y0|2 2πr dr + O(t−5). (3.11)

For the Gaussian vortex (2.8), α′ 6 0 and β′ > 0 from (2.9), and so the integral is
negative definite. Thus as we observe numerically, at large times t there is decay of
the azimuthal component eazi

ω of the enstrophy, and a balancing generation of the
mean emean

ω .
This raises the question of how our (somewhat arbitrary) choice of the Gaussian

vortex as initial condition influences the numerical results we observe, in particular
the rebound of enstrophy from mean to azimuthal components. Investigation of this
issue remains a topic for future research; however we note that from (2.6b), (2.7) it
follows that β′ = r−3∂r(r

3α′) and then integrating by parts shows that∫ ∞
0

α′β′ r3 dr = −
∫ ∞

0

β2r3 dr < 0. (3.12)

Thus the combination α′β′ is either negative definite or indefinite in sign, but cannot
be positive definite. One can construct examples of vortices for which it is indefinite,
but then the sign of the weighted integral (3.11) giving the long-time behaviour of
azimuthal enstrophy is not known without further information about the elusive
function g(r) in (3.8).

Figure 1(b) shows the evolution of the energy (2.12b) for the case of vorticity. The
upper solid curve shows the azimuthal energy wazi and the lower solid curve wmean.
The dashed line is the total energy w; this decreases to w ' −0.64 while the forcing
acts in 0 < t < 1 and subsequently is constant. As t→∞, the azimuthal energy is

wazi = t−2

∫ ∣∣∣g(r)

nα′
∣∣∣2 2πr dr + O(t−3), (3.13)

from (3.7), (3.8), and tends to zero. This decay is a consequence of the relaxation of the
vortex to axisymmetry and the fact that very fine-scaled distributions of vorticity carry
negligible energy. At the same time the mean energy increases, and asymptotically the
net loss of energy is only evident in this mean distribution.
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Figure 2. (a) Evolution of |ω1| as a function of r for t = 1, 100, . . . , 1000, reading downwards;
the curves have been separated by adding constants. The curve for t = 1 also gives |σ1| for t > 1.
(b) Evolution of ω2 as a function of r for the same set of times. The curve for t = 1 also gives σ2

for t > 1.

3.2. Structure in physical space

Let us consider the structure of scalar and vorticity fields in more detail. At large
times the complex function ω1 giving the azimuthal vorticity field oscillates rapidly
in radius; we plot its envelope |ω1| against r in figure 2(a) which shows a sequence
for t = 1, 100, 200, . . . , 1000, reading downwards. (The curves are separated by adding
constants.) Note the presence of kinks at moderate times t ' 200–400, discussed
further below. We also observe that as time increases there is an overall suppression
of the level of the azimuthal vorticity, which confirms the results for enstrophy above.
The suppression is particularly noticeable near the origin, and the maximum value of
|ω1| moves outwards with time: at t = 1 the maximum is |ω1| ' 0.12 at r ' 2, whilst
at t = 1000 the maximum is 0.047 at r ' 3.4.

This outwards motion of vorticity fluctuations is also observed in Montgomery &
Kallenbach (1997), who ascribe it to vortex Rossby waves with a group velocity that
has an outwards radial component. Another view of this process is seen by integrating
(3.5) to yield

∂t

∫ ∞
0

β−1|ω1|2 r dr =

∫ ∞
0

in(ω1ψ
∗
1 − ω∗1ψ1) r dr = 0, (3.14)

using ω1 = −∆1ψ1 and integration by parts. Within our perturbative scheme, this
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(a) (b) (c)

(d) (e) ( f )

Figure 3. (a, b, c) Vorticity field ω̂1(r, θ) and (d, e, f) scalar field σ̂1(r, θ), for −6 6 x, y 6 6. In (a, d)
t = 200, in (b, e) t = 300 and in (c, f) t = 500, for the impulsive input of § 3. The scale is white
where 10ω̂1 > max |ω̂1| and black where 10ω̂1 < −max |ω̂1|, values close to zero being grey.

weighted integral of |ω1|2 is conserved for all t in the absence of forcing, and in
the Gaussian vortex β is of one sign. If we therefore consider large finite times t,
then we know from (3.14) that the integral of β−1|ω1|2 is constant while the integral
of |ω1|2 (which is 2eazi

ω ) is decaying from (3.11). For these two behaviours to hold
simultaneously there must be a general tendency for |ω1|2 to increase in regions of
low |β| and decrease in regions of high |β|. Since |β| is largest in the centre of the
vortex, this implies a shift of |ω1|2 from the centre to the periphery, as observed.

Figure 2(b) shows the corresponding time sequence for the mean vorticity pertur-
bation ω2. Once more there is a movement outwards to greater radii, as seen by
Montgomery & Kallenbach (1997). For large times the net effect of the perturbation
is only to modify the mean flow at quite large radii, the centre remaining relatively
unperturbed. The behaviour of the passive scalar is simpler than vorticity because for
t > 1, |σ1| and σ2 are constant as functions of radii. In fact |σ1| and σ2 for t > 1 are
practically indistinguishable from |ω1| and ω2 for t = 1, shown as the top curve of
figures 2(a) and 2(b) respectively.

Finally we reconstruct the azimuthal vorticity and scalar fields as grey-scale plots.
With

ω̂1(r, θ, t) = ω1(r, t)e
inθ + c.c., σ̂1(r, θ, t) = σ1(r, t)e

inθ + c.c., (3.15)

figures 3(a)–3(c) show ω̂1 for t = 200, 300 and 500, respectively. Figures 3(d)–3(f)
show the same sequence for σ̂1. The spiral arms generated by differential rotation
show more internal structure for vorticity than for a passive scalar (cf. Montgomery
& Kallenbach 1997). In figure 3(a) for ω̂1, there are essentially two distorted vortices
in each arm; these appear to result from a secondary instability reminiscent of
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Kelvin–Helmholtz roll-up. There are also radii at which there is very little vorticity,
and these correspond to the downward spikes of low |ω1| seen in figure 2(a) for
t = 200–400. However by the latest time t = 500 (figure 3c, f) the spiral arms in ω
have become uniform under the influence of differential rotation, which has the effect
of suppressing Kelvin–Helmholtz instabilities (Dritschel 1989b; Dritschel et al. 1991;
Kevlahan & Farge 1997). The suppression of vorticity in the centre of the vortex,
relative to the passive scalar, can be seen but is not prominent because the grey-scale
coding, detailed in the caption, is designed rather to emphasize structure in the spiral
arms.

4. Response to a step input
Above we studied the response of the vorticity and scalar systems to an impulsive

external strain q(t) = δ(t), typical of a short correlation-time input. A contrasting
situation, typical of a long correlation time, is to switch on a constant strain field
q = 1 at t = 0 and to observe how the vortex relaxes to its new environment. This
constant strain is given by

ψext = 2εr2 cos 2θ = 2ε(x2 − y2) (4.1)

from (2.4a, b) with n = 2. The Gaussian vortex will relax to take the form of a strained
vortex, plus fluctuations which will be subject to differential rotation and ultimately
dissipation; again our interest is to compare the behaviour of vorticity and passive
scalar (§§ 4.1, 4.2). When the external strain is subsequently switched off, the vortex
relaxes to axisymmetry, and we determine how much enstrophy is destroyed in the
process (§ 4.3). In this section we take

q(t) = 1 (0 < t < tmax), q(t) = 0 (t < 0, t > tmax), (4.2)

with tmax = 1000. For numerical reasons the jump at t = tmax is in fact smoothed by
putting 2q(t) = (1− tanh(t− tmax)).

4.1. Relaxation to the external strain field, t < tmax

For the step-function input, figure 4(a, b) parallels figure 1(a, b). Figure 4(a) shows the
azimuthal (upper) and mean (lower) enstrophy (solid) and scalar variance (dotted) as
functions of time. Figure 4(b) shows the evolution of energy for the vorticity problem.
The time tmax = 1000 is marked with a vertical dashed line. From figure 4(a), for
t < tmax we observe initial damped oscillations as enstrophy and scalar variance
are transferred between mean and azimuthal fields. More enstrophy is transferred
from the mean into the azimuthal component than occurs for the scalar variance; at
t = 1000, eazi

ω = −emean
ω ' 690 and eazi

σ = −emean
σ ' 440.

This strong response of the vorticity field arises through the positive feedback
mechanism depicted in figure 5. Kinematically, the sum of an axisymmetric stream
function and the strain field (a) gives elliptical stream lines (b). A passive scalar will
relax to a distribution constant on these stream lines, corresponding to positive and
negative σ1 as indicated in (c). When the scalar is instead vorticity this distribution ω1

generates a flow which tends to reinforce the original external strain (d ). The result
is that the vorticity equilibrates at a greater amplitude than a passive scalar. This
feedback mechanism is presumably responsible for the initial transient oscillations
of enstrophy seen in figure 4(a), which are of large amplitude. These results are in
accord with Ohkitani (1991), who found greater fluctuations in enstrophy transfer
(by comparison with a passive scalar) in two-dimensional turbulence. Note however
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Figure 4. (a) Evolution of enstrophies eω (solid) and eσ (dotted) with time for the step input of § 4;
the upper two curves show the azimuthal parts, eazi

ω and eazi
σ , the lower two curves the mean parts,

emean
ω and emean

σ . (b) Evolution of the azimuthal energy wazi (upper solid curve) and the mean energy
wmean (lower solid curve); the total energy is shown dashed. In each part the vertical dashed line
marks the time t = tmax when the external strain is switched off.

that for three-dimensional vortices strained along their axes, the feedback is such as
to reduce the external strain (Andreotti, Douady & Couder 1996).

The damped oscillations seen may be contrasted with Kida’s (1981) elliptical vortex
model: a circular vortex patch placed in a steady strain field will oscillate indefinitely
between elliptical and circular states (this is the case s = 1 on figure 1 of Kida 1981).
There is no irreversible transfer of enstrophy to small scales and so it is not possible
for the vortex to relax to the stable steady-state solution of an elliptical vortex with
principal axes at π/4 to the strain axes (Moore & Saffman 1971).

The vorticity ω1 and scalar σ1 are shown in figure 6(a, b) as functions of radius, at
t = tmax; the real parts are shown solid, imaginary parts dotted. Figure 7(a, b) shows
the corresponding two-dimensional distributions ω̂1 and σ̂1 (see (3.15)). In each case
the fields clearly take the form of a dipolar distribution, on which are superposed
oscillations. This behaviour may easily be confirmed for the passive scalar by solving
(2.17b) for q = 1, Pe = ∞ and zero initial conditions, giving

σ1 = (1− e−inα(r)t)Σ1(r), Σ1(r) ≡ −φβ/α. (4.3)

Here Σ1(r) satisfies the steady version of (2.17b) while the exponential term takes
account of the zero initial conditions. The solution for σ1 (solid and dotted) in figure
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(a) (b)

(c) (d )

Figure 5. (a) The sum of an axisymmetric stream function and the strain field gives (b) elliptical
stream lines. (c) Resultant distribution for a passive scalar. (d ) Resultant secondary flow for vorticity.

6(b) consists of the steady component Σ1 (shown dashed), superposed by oscillations
that vary more rapidly with radius as time increases.

Although plainly σ1 does not tend to Σ1 pointwise, it does in a weak sense quantified
in BG98. There we defined an inner product by (F,G) =

∫
F∗Gr dr dθ, the integral

being taken over all space. Given a smooth test function F(r, θ) a spatial average
of σ(r, θ, t) may be constructed by forming (F, σ). Here we take the test function
F(r, θ) = f(r)einθ and

(feinθ, (σ1 − Σ1)e
inθ) = O(t−n−1) (4.4)

in general (BG98). Thus while σ1 does not tend to Σ1 pointwise, spatial averages do,
and in this sense the scalar field σ1 relaxes to the solution Σ1 of the steady equation
(2.17b).

Similar arguments apply to the vorticity, although explicit solutions are not avail-
able; the vorticity ω1 appears to relax to a solution Ω1 of the steady governing
equations (2.6 c, d), which satisfies

∆1Ψ1 − (β/α)Ψ1 = βφ/α, −Ω1 = ∆1Ψ1. (4.5)

When the functions α and β refer to the Gaussian vortex (2.8), as here, the solution
to this equation has been studied by Moffatt et al. (1994), and gives the structure of
a viscously controlled vortex in an external strain flow. In our case the vortex is not
viscously controlled and this correspondence is in fact a coincidence arising from our
convenient but arbitrary choice of the Gaussian vortex as initial condition. As for
the scalar, the vorticity field ω1 does not tend to Ω1 pointwise, but instead spatial
averages converge with

(feinθ, (ω1 − Ω1)e
inθ) = O(t−λ), (4.6)
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Figure 6. (a) ω1 shown as a function of r for t = tmax, with real part shown solid and imaginary
part dotted. The dashed curve gives Ω1 (see (4.5)). (b) σ1 shown as a function of r for t = tmax, with
real part shown solid and imaginary part dotted. The dashed curve gives Σ1 (see (4.3)).

where λ was defined in (3.9) above (BG98). At time t = tmax figure 6(a) shows the
vorticity ω1 (solid, dotted) which takes the form of Ω1 (dashed) with superposed os-
cillations, which are suppressed near the origin. The vorticity distribution is generally
more coherent than that of the passive scalar in figure 6(b), and this is confirmed in
the grey-scale pictures for vorticity and scalar, figures 7(a) and 7(b) respectively.

4.2. Feedback to the mean vorticity and scalar

When the strain field is turned on at t = 0, then together with the generation of the
azimuthal fields σ1 and ω1 there is also a feedback to the axisymmetric mean fields at
O(ε2). For the passive scalar we can calculate this explicitly from (2.17c) with Pe = ∞:

σ2 = r−1∂r[2φ
2βα−2(1− cos nα(r)t)]. (4.7)

Again at large time t the term cos nαt oscillates rapidly as a function of radius; if it
is ignored we obtain a steady-state distribution,

Σ2 = r−1∂r(2φ
2βα−2), (4.8)

which can be written in the suggestive form (by substituting β from (2.18b)),

Σ2 = r−1∂r(rκ(r)∂rσ0), κ(r) = 2φ2/r2α2. (4.9)
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(a) (b)

Figure 7. (a) Vorticity field ω̂1(r, θ) and (b) scalar field σ̂1(r, θ) for t = tmax with
the step-function input of § 4. The scales are as in figure 3.

The modification to the mean profile takes the form of a diffusive spreading, where
κ(r) is a radius-dependent effective diffusivity.

The relaxation of σ2 to Σ2 is however not pointwise. In fact the maximum difference
between the two diverges as O(t) for large t (and so the perturbation series in ε becomes
non-uniform for εt = O(1)). However in the weak sense outlined above σ2 does relax
to Σ2: this follows by taking F(r, θ) = f(r) as a smooth axisymmetric test function
and considering

(f, σ2 − Σ2) = (f,−r−1∂r(2φ
2βα−2 cos nαt)) = (r−1∂rf, 2φ

2βα−2 cos nαt), (4.10)

using integration by parts. At the origin φ2βα−2 = O(r2n) and so using the methods
in BG98 it may be shown that

(f, σ2 − Σ2) = O(t−n−1), (4.11)

establishing the desired weak convergence.
To summarize, at the level of σ2 there is a spreading of the scalar distribution,

which can be considered one step of a diffusive process yielding Σ2. Superposed on
this are oscillations (which grow secularly with time and are a sign that perturbation
theory is breaking down), but these oscillations are tending to zero in a weak sense,
and so are unimportant. This suggests that a time-dependent, random strain field will
lead to a continuous diffusive spreading of the scalar distribution, as we will confirm
in § 5 below. We can say very little about the corresponding modification ω2 to the
mean vorticity distribution, except that we expect this to relax in a weak sense to
a profile Ω2. However in view of the non-local nature of the vorticity problem it is
unlikely that Ω2 can be expressed analogously to Σ2 above in terms of a local effective
diffusivity.

4.3. Relaxation to axisymmetry, t > tmax

For t > tmax = 1000, the external strain is switched off, q(t) = 0, and the vortex
relaxes to an axisymmetric configuration once more. Returning to figure 4(a), we
observe that for enstrophy (solid) there is a transfer from the azimuthal component
to the mean after t = tmax (marked by the vertical dashed line), which does not
occur for the scalar variance (dotted). At the end of the run the azimuthal enstrophy
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eazi
ω ' 250 is lower than the azimuthal scalar variance eazi

σ ' 440. As in § 3 this rebound
phenomenon means that less enstrophy than scalar variance is lost to fine scales and
so to dissipation by the shear–diffuse mechanism, if dissipation is present.

While the rebound of the enstrophy from azimuthal to mean component seen in
figure 4(a) for t > tmax is similar that found in § 3 (see figure 1a), it is more surprising
here since under the strain for t < tmax more enstrophy than scalar variance was
transferred into azimuthal components. In short, the enstrophy overshoots the scalar
when the strain is switched on, but then rebounds to lower values when it is switched
off. For comparison, the Kida (1981) vortex patch oscillates between circular and
elliptical states for 0 < t < tmax; when the strain is turned off the vortex will be
left in whatever state it happens to be at tmax and will rotate steadily thereafter.
No enstrophy can be lost to fine scales in this case, and the vortex cannot relax to
axisymmetry.

Analytically only the passive scalar may be handled; for t > tmax the solution for
σ1 is

σ1 = (e−inα(t−tmax) − e−inαt)Σ1(r). (4.12)

This relaxes weakly back to zero as t → ∞, as does the vorticity field ω1. For σ2 we
have

σ2 = r−1∂r[2φ
2βα−2(1− cos nαtmax)], (4.13)

and the weak convergence of σ2 to Σ2 is arrested.

5. Behaviour under a random forcing
We have seen that the vorticity distribution is more robust than the passive scalar,

with relatively little enstrophy lost to small scales and dissipation. We have also noted
that the effect of an external step input on the mean scalar field may be written
as a diffusion operator (plus fluctuations). In this section we present preliminary
investigations of the diffusive spreading of vorticity or a passive scalar in the presence
of a continuous random external input. We take q(t) to be a random stationary
Gaussian function with the correlation function

〈q(t)q∗(t′)〉 = c(t− t′), c(t) = exp (−t2/2t2corr), (5.1)

where 〈·〉 is an ensemble average and q(t) varies on a correlation time scale given by
tcorr.

For our original example of a vortex moving in two-dimensional turbulence in § 1,
the straining q(t) experienced by a given vortex has a magnitude l2/L2 = ε and time
scale tcorr = 1/ε, and will effectively be random if the configuration contains many
vortices moving in the plane. If instead there are only a few vortices in a periodic or
quasi-periodic motion, q(t) will contain only a limited number of frequencies and not
be random. For the passive scalar problem such a deterministic perturbation leads to
the creation of narrow islands at resonant surfaces of the basic flow given by ψ0, and
no systematic diffusion for small ε (see, for example, papers in the collection Mackay
& Meiss 1987). To obtain systematic diffusion within our perturbative framework, we
take q(t) to be a random function, modelling the motion of many external vortices.

5.1. Governing system and invariants

We now allow the O(ε2) changes to the mean profile in ω2 to affect the leading-order
mean profile ω0, in order to follow the diffusion of the vorticity field. In the expansion
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(2.5) we subsume ε2ω2 into ω0 and absorb the source terms in the equation (2.6e) for
ω2 into the equation (2.6a) for ω0 to give the system

∂tω0 + inε2r−1∂r[(ψ1 + qφ)ω∗1] + c.c. = Re−1∆0ω0, (5.2a)

∂tω1 + inαω1 + inβ(ψ1 + qφ) = Re−1∆1ω1, (5.2b)

with (2.6b, d) and (2.7) holding as before. This is essentially a multiple-scale expansion;
the source terms now appearing in the ω0 equation lead to evolution of the mean
profile over a long O(ε−2) time scale. However as we cannot deal with this system
analytically, the small parameter ε remains explicitly. Note that this system, consisting
of the n = 2 mode and mean field, is now more in the nature of a truncation of the
full dynamics than the systems studied in §§ 3, 4. For example, it is possible that the
mean vorticity field could evolve over O(ε−2) time scales so as to become unstable to
an n = 3 mode, but this mode is not present.

We will focus on the enstrophy in the system, which may now be written

Eω = Emean
ω + ε2eazi

ω + O(ε4), (5.3a)

Emean
ω =

1

2

∫ ∞
0

ω2
0 2πr dr, eazi

ω =

∫ ∞
0

|ω1|2 2πr dr. (5.3b, c)

For the analogous scalar problem, the system is

∂tσ0 + inε2r−1∂r(qφσ
∗
1) + c.c. = Pe−1∆0σ0, (5.4a)

∂tσ1 + inασ1 + inβqφ = Pe−1∆1σ1, (5.4b)

with (2.18) holding as before. The mean and azimuthal scalar variances Emean
σ and eazi

σ

are defined analogously to (5.3b, c).
For the vorticity problem we specify the initial condition (2.8); for the analogous

scalar problem we take ψ0 given by (2.8b) and σ0 by (2.19). Now that the basic
vorticity profile ω0 and scalar profile σ0 are allowed to evolve through the new source
terms in (5.2a) and (5.4a) it is important to note that the flow field ψ0 acquires a
different status in the two problems. In the passive scalar problem it is fixed for all
time, while for vorticity it is coupled to ω0 and so evolves (and generally weakens) as
the vorticity spreads out. Only for moderate times will the underlying axisymmetric
flows ψ0 be similar in the two problems.

5.2. Quasi-linear theory for a passive scalar

We begin by deriving a quasi-linear approximation for the diffusion of the passive
scalar (Bazzani, Siboni & Turchetti 1994) to obtain an eddy diffusivity κ(r). This
calculation quantifies the interaction between the basic flow specified by ψ0 and the
external straining given by the statistics of q(t). Our derivation is not rigorous, but is
corroborated numerically below. We solve (5.4b) (with Pe = ∞) for any q(t) as

σ1 = −inβφ

∫ t

0

e−inα(t−τ) q(τ) dτ. (5.5)

Substituting this into (5.4a) yields

∂tσ0 = r−1∂r

(
ε2n2φ2β

∫ t

0

q(t)q∗(τ)einα(t−τ) dτ+ c.c.

)
+ Pe−1∆0σ0. (5.6)
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Figure 8. Effective scalar diffusivity κ(r) plotted against r for Pe = 104, 105, 106, 107 and ∞ (solid
curves, reading downward). Parameter values are tcorr = 50 and ε = 10−4. The dotted curves show
κ(r) in the absence of vortex motion, α(r) ≡ 0, for the same values of Pe.

If q(t)q∗(τ) is averaged over realizations (using (5.1)) and β = r−1∂rσ0 substituted, we
obtain the diffusion equation

∂tσ0 = r−1∂r(rκ(r)∂rσ0) (5.7)

with the space-dependent diffusivity given by

κ(r) = ε2n2φ2r−2

∫ ∞
0

c(s)einα(r)s ds+ c.c.+ Pe−1, (5.8)

for large t, so that the lower limit in (5.6) is irrelevant. Note that in ensemble-
averaging (5.6) we identified σ0 with the ensemble-averaged mean scalar field: while
this assumption is reasonable, a rigorous justification is delicate (see discussion in
Bazzani et al. 1994) and we do not take up this issue here. Note also that it is
legitimate to neglect Pe in obtaining (5.5) (while keeping it in (5.6)) provided the
shear–diffuse time scale (2.22) is longer than the correlation time.

For the Gaussian correlation function (5.1),

κ(r) =
√

2π
ε2n2φ2tcorr

r2
e−n

2α2t2corr/2 + Pe−1. (5.9)

The effective diffusivity κ(r) depends on the correlation time tcorr and the flow,
through the angular velocity α(r). For small correlation times with αtcorr � 1, κ has
no dependence on the flow field at all. For large tcorr and Pe the influence of the flow
is very important, and in regions where αtcorr � 1, κ is vanishingly small: here the fast
angular motion of particles compared with the time scale tcorr leads to an averaging
of the external strain, and hence a reduction in its effect.

To illustrate this, we take tcorr = 50, ε = 10−4 and in figure 8 plot log10 κ against
r for Pe = 104, 105, 106, 107 and ∞, reading downwards (solid curves). As Pe is
increased, the diffusion near the centre of the vortex is suppressed. To illustrate the
role of the underlying vortex, the dotted lines show the effective diffusivity κ for
the same values of Pe in the case of no vortex motion, i.e. only the random strain
field acting and α(r) = 0 in (5.9). Note that for an exponential correlation function
c(t) = e−|t|/tcorr the effective diffusivity is

κ =
2ε2n2φ2tcorr

r2(1 + n2α2t2corr)
+ Pe−1, (5.10)

and is similar to that found in (4.9) for the step-function input.
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5.3. Comparison of vorticity and passive scalar

For vorticity it is not possible to solve (5.2b) and so we cannot compute explicitly
the effect of eddy diffusion. To see how vorticity behaves, the governing systems (5.2)
and (5.4) were solved numerically using boundary conditions and methods similar to
those described above in § 2.3. To realize the random input q(t) numerically we follow
a much simplified version of the procedure of Kraichnan (1970) and Drummond,
Duane & Horgan (1984), and set

q(t) = M−1/2

M∑
m=1

exp (iζmt+ iφm), (5.11)

where the coefficients ζm are chosen randomly from a Gaussian distribution with
variance 1/t2corr and mean zero, and φm are uniformly distributed in the interval
(0, 2π). Such a q(t) is a smooth function which varies on the time scale tcorr; in fact
one can check that 〈|q′(t)|2〉 = t−2

corr. We take M = 1000 and in order to test and to
compare results, we use the same realization of the random function q(t) for all the
runs below.

In the absence of viscosity and scalar diffusion, once the statistics of q(t) and the
structure of the initial vortex are specified by (5.1) and (2.8), the only parameters
remaining are the strength ε and correlation time tcorr of the external strain. We
require ε to be small for our perturbative approach to be valid, and also to avoid
numerical instability; we fix ε = 10−4 in the runs below. In terms of our original
discussion of the random straining arising from many other vortices, the appropriate
correlation time is tcorr = O(1/ε) = O(104); however then it would be impossible to
follow the fields numerically for more than a few correlation times. We are therefore
constrained to take a rather smaller value for tcorr, and fix tcorr = 50 below, which is
of similar magnitude to the turnover time scale of the vortex. For numerical reasons
it is also necessary to introduce molecular diffusion of scalar or vorticity, in order to
damp down the small scales that are generated over the long runs below (unlike in
the relatively short runs of §§ 3, 4). We take Re and Pe in the range 104–107 in the
simulations, which last between 104 and 105 time units.

In figure 9(a), Re = Pe = 104: the upper solid curve shows the mean enstrophy
Emean
ω , and the lower solid curve the scalar variance Emean

σ , as functions of time.
The dashed curve shows the quasi-linear result for the scalar variance, obtained
by integrating equation (5.7) numerically. These curves have been separated by
subtracting constants from the data, otherwise they would intersect the vertical axis
at the same point, and overlap. This figure shows that the quasi-linear theory (dashed)
gives good agreement with the scalar variance (lower solid); the behaviour of the
vorticity (upper solid) is very similar.

This run is relatively diffusive, and a major fraction of the enstrophy and scalar
variance is destroyed. Also, purely diffusive spreading of the Gaussian vortex profile
is a significant effect as the run goes up to t = 2 × 104 = 2Tmean (recall equation
(2.21)). The shear–diffuse time scale (2.22) here is only moderate at Tazi ' 430 and this
appears to be the reason why vorticity and scalar behave so similarly: the rebound
of enstrophy from azimuthal to mean part is arrested because of the diffusive decay
(and rearrangement) of the azimuthal field. Note also from figure 8 that at this low
value of Pe the effective scalar diffusivity (upper solid curve) differs little from the
effective diffusivity in the absence of any vortex motion (upper dotted curve), which
is another reason why one might not expect scalar and vorticity to behave differently
at such low Re and Pe.
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Figure 9. Mean enstrophy Emean
ω (upper solid), total enstrophy Emean

ω + ε2eazi
ω (upper dotted), mean

scalar variance Emean
σ (lower solid), total scalar variance Emean

σ +ε2eazi
σ (lower dotted), and quasi-linear

results for Emean
σ (dashed), multiplied by 100, are plotted against t/1000 for (a) Re = Pe = 104,

(b) Re = Pe = 105, (c) Re = Pe = 106 and (d ) Re = Pe = 107. Constants are subtracted to separate
the curves in each figure.

Differences between vorticity and scalar only begin to emerge as molecular diffusion
is reduced further. This may be seen in figure 9(b) which shows a run with Re =
Pe = 105 for 0 6 t 6 105. Up to time t = 2× 104 the level of mean enstrophy (upper
solid) decays at a slower rate than the mean scalar variance (lower solid). At later
times the enstrophy begins to dissipate more rapidly: this is to be expected since we
recall that the stream function ψ0 for the vorticity problem is coupled to the vorticity
distribution, and as it spreads out, the flow will become weaker and, based on the
behaviour of the scalar, we may expect the effective diffusivity to become stronger
(see (5.9)). Even with this effect, though, the net loss of enstrophy by the end of the
run is marginally less than that of the scalar variance.

The difference between scalar and vorticity is most marked in the shorter runs
shown in figure 9(c) with Re = Pe = 106 and figure 9(d ) with Re = Pe = 107.
Again the upper solid curve shows Emean

ω , the lower solid curve Emean
σ , and the dashed

curve the quasi-linear result. Also plotted are the total enstrophy Emean
ω + ε2eazi

ω (upper
dotted curve) and total scalar variance Emean

σ + ε2eazi
σ (lower dotted curve); these

decay smoothly, confirming that the fluctuations in the mean (solid curves) arise from
transfers between mean and azimuthal components.

As Re = Pe is increased, the decay of both enstrophy and scalar variance slows
down markedly: note the change in vertical scales between figure 9(a–d). While the
scalar and quasi-linear results remain in good agreement, the decay of enstrophy
becomes significantly slower. Figure 9(d ) represents our closest approach to truly
inviscid or non-diffusive behaviour. In this figure the quasi-linear results (dashed)
with Pe = 107 are indistinguishable from those for Pe = ∞ (not shown) and are
in good agreement with the scalar results (lower solid curve). Thus the behaviour
of the mean scalar variance Emean

σ (lower solid curve) appears to have achieved the
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Figure 10. (a) ω0, (b) ω1, (c) σ0 and (d ) σ1 are plotted against r for Re = Pe = 106 and t = 104.
Real parts are shown solid, imaginary parts dotted.

non-diffusive limit. While we have no inviscid theory against which to check the
behaviour of enstrophy at Re = 107, by comparison with the scalar (and figure 9c),
we are confident that relatively slow decay of enstrophy shown in figure 9(d ) is a
feature of the inviscid dynamics. As well as slower decay, the enstrophy shows more
variation on short time scales than the scalar variance, a behaviour in agreement with
the discussion in § 4.1, the mechanism depicted in figure 5, and the results of Ohkitani
(1991).

Note that were there truly zero diffusion in figure 9(d ) (and we were not using a
perturbation expansion) the dotted lines would be flat, representing constant total
enstrophy; the decay in the mean would then simply represent a transfer from
the mean to the azimuthal component and subsequent, indefinite, fine-scaling by
differential rotation.

At the largest values of Re and Pe our runs are far too short to show the long-time
behaviour, and in fact the spreading of the vorticity or scalar field is really occurring
only at the edge of the vortex. This is in agreement with figure 8, which shows that
at this value of Pe the effective diffusivity (fourth solid curve, reading downwards) is
extremely small except near the vortex edge at r >∼ 2. Figures 10(a) and 10(b) show

the mean and azimuthal vorticity respectively for Re = 106 and t = 104; figures 10(c)
and 10(d) show the same for the scalar. The generation of fine structure in both fields
is more marked for the scalar than for the vorticity.

6. Discussion
We have studied the response of a Gaussian vortex to weak, externally imposed

strain flows of various forms. Our main result is the presence of a ‘rebound’ phe-
nomenon, whereby vorticity is transferred from the azimuthal component back to
the mean, axisymmetric component, during the process of spiral wind-up. The vortex
is much more robust than an analogous passive scalar distribution: because of the
rebound mechanism, lower levels of enstrophy than scalar variance are transferred
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into azimuthal components and so then lost to fine scales, and dissipation by the
shear–diffuse mechanism for finite Re or Pe. This was seen for all the strain flows
studied, at sufficiently large Reynolds number, and some theoretical support was
obtained using Lundgren’s long-time asymptotic solution for spiral wind-up.

It appears that not only are there wide classes of vortices that are linearly and
nonlinearly stable (e.g. Gent & McWilliams 1986; Dritschel 1988), but that the internal
dynamics of a vortex can to some extent resist the effect of strain in entraining
irrotational fluid within the vortex, and so resist the spreading and weakening of
the vortex. This behaviour is reminiscent of Kida’s (1981) vortex patch solution:
in this exact solution, the vortex remains elliptical, behaving reversibly and showing
perfectly elastic behaviour. There is no mixing of the vortex with the surrounding fluid.
Although the smooth Gaussian vortex shows damped, rather than elastic, behaviour
and tends to relax to a steady state through the generation of fine structure in the
vortex, nevertheless the core of the vortex shows striking integrity. Disturbances tend
to be suppressed, especially near the centre, and also to propagate outwards towards
the periphery of the vortex (Montgomery & Kallenbach 1997).

The main restriction in the present paper is that we consider only weak external
strain, using small values of the parameter ε. This perturbative approach allows us to
separate the transfers of enstrophy in a clean way, and in §§ 3, 4 to run simulations
at sufficiently high Reynolds number that they are essentially inviscid, despite the
generation of fine structure. Nevertheless the small values of ε are rather restrictive
when a continuous random strain field is applied, and do not allow us to follow
the decay of a vortex at high Re for long times. We are now studying the evolution
of vortices in stronger external strain fields, using a fully two-dimensional code:
preliminary results confirm the rebound phenomenon discussed in this paper.

One process that can become important for larger values of ε is ‘vortex stripping’
(see Legras & Dritschel 1993), in which a vortex loses vorticity from its periphery and
is left with a sharp edge. This process can readily occur during close vortex encounters
in two-dimensional turbulence, and such sharp-edged vortices appear then to be able
to resist the relaxation to axisymmetry that appears to occur for the Gaussian vortex
(Dritschel 1998). It would be of interest to extend the present study (and BG98) to
vortices with sharp edges. The question then is whether the rebound phenomenon
occurs in this case, and whether the persistent non-axisymmetrization observed is
present in linear theory, or is an intrinsically nonlinear effect.

We should also note that the spreading of the passive scalar under random strain
computed in (5.9) is very small for large tcorr, and so too presumably is the spreading
of a Gaussian vortex. In particular for a very dilute two-dimensional turbulence of
similar-sized vortices, with ε � 1 and tcorr = O(ε−1), the corresponding scalar dif-
fusivity decreases with ε faster than any power law. This suggests that the diffusive
spreading of vortices is a slow effect compared with vortex collisions, which presum-
ably scale as some power law in ε, even if three rather than two vortices are involved
in typical collisions (e.g. Dritschel 1995). This conclusion is however again based on
a Gaussian vortex, and should be re-examined for vortices with sharper edges, more
characteristic of two-dimensional turbulence.
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