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Abstract

We present a model for the spatio-temporal behaviour of films exposed to radia-
tive heating, where the film can change reversibly between amorphous (glassy) and
crystalline states. Such phase change materials are used extensively in read-write
optical disk technology.

In cases where the heat absorption of the crystal phase is less than that in the
amorphous state we find that there is a bi-stability of the phases. We investigate
the spatial behaviours that are a consequence of this property and use a phase field
model for the spatio-temporal dynamics in which the phase variable is coupled to a
suitable temperature field. It is shown that travelling wave solutions of the system
are possible and, depending on the precise system parameters, these waves can take
a range of forms and velocities. Some examples of possible dynamical behaviours
are discussed and we show, in particular, that the waves may collide and annihilate.
The longitudinal and transverse stability of the travelling waves are examined using
an Evans function method which suggests that the fronts are stable structures.
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1 Introduction

Phase field models are known to be an effective method for simulating the
solidification of alloys [8,13,15,33,34]. The phase field itself is, in general, a
function of both space and time, and quantifies the crystalline fraction present
within a sample. Of the other physical processes present it is thought that the
variation in temperature is the most important and coupled systems can be de-
rived that relate the evolution of phase field to the temperature distribution.
Such equations have been successfully used to study dendritic growth ana-
lytically and numerically during both isotropic and anisotropic solidification.
More recently, phase field methods have been extended to describe the for-
mation of grain boundaries during solidification [16,18] – then the crystalline
orientation in the solid phase must also be taken into account. Another area
where phase field methods are known to be helpful is in reproducing physi-
cal results concerning systems with memory [11,24]. In this class of problem
processes are typically characterised by some slow time relaxation and, as a
result, the whole system becomes non-local in time.

Most mathematical studies of phase change processes in material used for opti-
cal data storage are currently based on the Johnson-Mehl-Avrami-Kolmogorov
(JMAK) approach [14] in which it is supposed that crystallisation occurs uni-
formly in the whole sample of phase-change material. It is also assumed that
this process is uniform in time, so stationary nucleation and growth rates can
be used for modelling the crystallisation. However, recent experimental ev-
idence suggests that both these simplifications are somewhat unrealistic for
not only does the nucleation takes place mainly on the boundary between the
phase-change material and the surrounding substrates [21,25], but there are
typically non-negligible incubation times preceding the onset of crystallisation
[32]. In recognition of these difficulties we have proposed a model based on the
so-called ‘master equation’ approach [5,29]. In this framework the processes
of crystallisation and/or melting are described by the time evolution of the
density of crystal clusters. Even though this model has reproduced experi-
mental results it has not yet explicitly incorporated any spatial distribution
of the clusters. In this respect, a phase field method should be a suitable can-
didate for introducing spatial structure in an analysis of crystallisation within
phase-change materials.

In this paper we concentrate on the use of a phase field approach in modelling
fronts that can arise during the crystallisation of a phase-change alloy such as
Ge2Sb2Te5 (GST), which is used as an active material for mass data storage
and, in particular, for optical disk memory technology [17,31]. If this material
is illuminated with a laser to its melting temperature and then cooled rapidly,
the crystallisation process is quenched before nucleation and growth can oc-
cur; this results in the sample being transformed to an amorphous phase.
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Conversely, if the sample is heated to a temperature lower than the melting
point (but before the nucleation cluster size gets too large) one can induce
rapid growth of crystals in the sample. Since the material properties of the
solid and amorphous phases are markedly different, the state of the system can
be determined simply by illuminating it with a low power laser and measuring
the reflected light, or by finding some other physical characteristic such as its
conductivity.

Depending on the wavelength of the illuminating laser and the exact structure
of the sample and its surroundings, the rate of absorption of heat from the
laser varies with phase. In this work we consider some fundamental phenom-
ena induced by this effect that might appear experimentally and should be
controlled in the use of phase change materials for optical recording. To be
specific, we incorporate illumination and phase-dependent absorption in the
equation for the temperature variation, and this influences the phase change
processes as described by the field equation. As it will be shown, depending
on the values of parameters, the system will admit the crystallisation/melting
fronts, which will have sharp interfaces and propagate with a constant velocity.
Physically these fronts correspond to the situation when one phase completely
invades the space occupied by another phase. Unlike many hydrodynamic sys-
tems, in the present situation the velocity of those fronts cannot be taken
arbitrarily, but rather it is determined by the problem parameters.

An important question is the stability of these crystallisation/melting fronts.
To study the linearized stability problem we use the so-called Evans function
method. In this approach one introduces the Evans function as a complex
analytic function associated with the linearization around the travelling wave,
and its zeros correspond to the eigenvalues of the linearized stability problem.
It was originally introduced by Evans [9], and later generalized by Alexander et
al. [1]. The first numerical calculation of the Evans function was also performed
by Evans [9], and subsequently followed by Swinton and Elgin [30] and Pego
et al. [23]. There are two main problems associated with the calculation of the
Evans function. The first one is that when the eigenvectors corresponding to,
say, eigenvalues with negative real part, are integrated from some large L∞

to zero, one cannot numerically maintain their linear independence. Attempts
to resolve this problem by using orthogonalization will lead to the loss of
analyticity, as well as to the need to solve nonlinear equations. The second
problem is that starting eigenvectors will not in general be analytic for all
values of the spectral parameter. Both these problems can be circumvented
by using exterior algebra and the compound matrix method introduced by Ng
and Reid [20] for hydrodynamic stability problems. When using the compound
matrix method, the solutions do not lie in a linear space, but rather on a
Grassmanian manifold, and the numerical integration scheme should be chosen
is such a way that it preserves this manifold. Allen and Bridges [2] have shown
that the class of Gauss-Legendre Runge-Kutta (GL-RK) methods preserve the
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Fig. 1. Schematic diagram showing the modelling of the melting dynamics of a
sample under uniform irradiation but phase-dependent absorption. The phase φ

varies between −1 (melt) and 1 (solid) respectively.

Grassmanian G2(C
4) to machine accuracy. This result motivates the particular

choice of the numerical integrator in this paper.

The outline of the paper is as follows. In the next section the details of the
model are introduced, and its elementary properties in terms of steady states
and their stability are discussed in Section 3. In Section 4 numerical sim-
ulations are used to find crystallisation/melting fronts and investigate the
dependence of their velocity on the problem parameters. Both the one- and
two-dimensional stability of the frontal solutions are examined in Section 5 us-
ing the above-mentioned Evans function approach. The paper concludes with
a summary of our principal findings together with a brief consideration of their
implications.

2 The mathematical model

To begin, we consider a one-dimensional sample of homogeneous material oc-
cupying some region Ω, and introduce the phase field φ(x, t); the convention
adopted is that φ ∈ [−1, 1] with the lower limit φ = −1 corresponding to
pure melt while φ = 1 represents solid. Figure 1 sketches the set-up we en-
visage; a sample of phase-change material is subjected to uniform radiative
heating which can lead to the formation of a travelling solidification or melt-
ing front. Physically our domain corresponds to a one-dimensional slice of
a two-dimensional crystal with the dynamics uniform in the perpendicular
direction.
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The dynamics of phase change processes is based on the phase field equation
used by Karma and Rappel [13] in their study of crystal growth:

∂tφ = −∂φf(φ) − uλ̂∂φg(φ) + p2∇2φ. (1)

The solidification dynamics is governed by the functions f and g given by

f(φ) = −φ
2

2
+
φ4

4
and g(φ) = φ− 2φ3

3
+
φ5

5
,

the interface thickness p is a small parameter and λ̂ is a measure of the strength
of coupling between the phase field φ and a dimensionless temperature field
u. More specifically, u ≡ (T − TM)/(L/cP ) where T is the temperature of the
sample which melts when T = TM, L is the latent heat of melting and cp is
the specific heat at constant pressure. We remark that the time variable has
been scaled so as to incorporate the characteristic time τ of attachment of
atoms at the interface. Equation (1) can be thought of as a phenomenological
balance driving the evolution of the system toward equilibrium states as given
by the minima of free energy. To see this we notice that if one introduces a
Helmholtz free energy

F =
∫

Ω

dx

[
p2

2
|∇φ|2 + E(φ, u)

]
, (2)

with an energy density E(φ, u) = f(φ) + λ̂ug(φ), then equation (1) can be
recovered simply by setting [13]

φt = −δF
δφ

,

which indicates that temporal dynamics of the phase field is indeed trying to
minimise the free energy F .

To complete the description of the system the phase field equation is aug-
mented by one for the temperature evolution. In our case this has the form

∂tT = [a1 + a−1 + (a1 − a−1)φ]
I

2
+ b(Ta − T ) + d∇2T + δ∂tφ/2, (3)

where a±1 are the radiative absorption coefficients for the solid and molten
phases, b is a thermal emission coefficient, Ta is the ambient temperature
(Ta � TM), d denotes a thermal diffusivity, δ = L/cp and I is the rate of
incident heating. The last term in (3) corresponds to the latent heat production
at the interface [13] and, under the assumption that the energy throughput of
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the system is large compared to the latent heat and changes in specific heat,
it can be safely omitted to give

∂tT = [a1 + a−1 + (a1 − a−1)φ]
I

2
+ b(Ta − T ) + d∇2T. (4)

Equations (1) and (4) together with appropriate boundary conditions form a
closed system for the phase change processes that occur in a sample of material
when uniformly irradiated by a laser.

3 Steady states

We begin our analysis by studying spatially uniform steady states of the sys-
tem (1,4). These are given as solution pairs (φ, T ) of the nonlinear problem

φ(1 − φ2) − λ̃(T − TM)(1 − φ2)2 = 0,

1
2
[a1 + a−1 + (a1 − a−1)φ] I + b(Ta − T ) = 0,

(5)

where λ̃ ≡ cpλ̂/L. The second of these equations is linear and so it is simple
to relate the equilibrium phase to the temperature as

T = Ta + [a1 + a−1 + (a1 − a−1)φ]
I

2b
. (6)

System (5) admits equilibria

(φ, T ) = (−1, T−1) and (φ, T ) = (1, T1) , (7)

where

T±1 = Ta +
a±1I

b
.

From the physical point of view these equilibria correspond to the situations
when the system consists totally of either melt or of solid.

Experimentally the relation between absorption coefficients of the molten and
solid phases can be altered by changing the stoichiometry of the materials
involved or by changing the multi-layer structure of the optical disc [37]. In

7



particular, ii is possible to achieve the situation in which the heat absorption
coefficient of the melt exceeds that of a solid:

a−1 > a1. (8)

In this case there is a bi-stability between the solid/melt states. For the remain-
der of the paper we assume the relation (8) between absorption coefficients of
melt/solid phases holds. From this relation one can find that for certain range
of intensities I it is possible to satisfy the inequality

a−1I

b
> TM − Ta >

a1I

b
, (9)

or in other words, T1 < TM < T−1 which implies a physically realistic situation
when the equilibrium temperature of melt exceeds the melting temperature
TM, while the equilibrium temperature of the solid state is lower than TM.
Notice also that the particular form of equation (1) means that the stability
of the steady states (±1, T±1) does not depend on the actual relation between
absorption coefficients nor on the intensity I of external irradiation.

Assuming φ 6= ±1 one can reduce (5a) to a cubic equation for the equilibrium
phase:

φ− λ̃(A+Bφ)(1 − φ2) = 0, (10)

where

A =
T1 + T−1

2
− TM and B =

T1 − T−1

2
. (11)

It follows that B < 0 and |A| ≤ |B| and if we introduce the quantities

α =
A2λ̃− 3B(1 − Bλ̃)

9B2λ̃
β =

2A2λ̃− 9B − 18B2λ̃

27B3λ̃
, (12)

then equation (10) has three real roots φ1 − φ3 given by

φ1 = − A

3B
+

2

3B

√√√√A2λ̃− 3B(1 − Bλ̃)

λ̃
sinψ,

φ2,3 = − A

3B
∓ 2

3B

√√√√A2λ̃− 3B(1 −Bλ̃)

λ̃
sin

(
π

3
± ψ

)
,

(13)
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where the angle ψ satisfies 2α3/2 sin(3ψ) = β and |ψ| ≤ π/6. Depending on
the precise relation between A, B and λ̃ there can be one or more roots with
φ ∈ [−1, 1], which, from the physical point of view, are the ones of interest.

The additional steady states which do not correspond to either pure melt
or pure solid are referred to as “mushy layers” and these have been used
to model a porous region made up of crystals surrounded by residual melt
[28,35,36]. A mushy layer separates the region occupied by the completely
solidified material from that occupied by the melt phase. Mushy layers may
form as a result of the morphological instability of a solidification front [19]
and occur frequently during the solidification of binary and ternary alloys [3].
The presence of a mushy layer during solidification can greatly influence the
transport of heat, mass and solute, and therefore the final solidified product.
Within mushy layers a local thermodynamic equilibrium prevails, and this can
be maintained experimentally on a time scale of a few seconds for metallic
mushy layers [10]. For our system we can interpret the steady states with the
solid fraction σ (defined as (1 + φ)/2) not equal to 0 or 1, as the states of
mushy layer, where the transition from melt to solid takes place.

To examine the stability of the steady states (φ̂, T̂ ) we linearise system (1,4)
around (φ̂, T̂ ) and look for solutions in the form

(
φ(x, t), T (x, t)

)
=

(
φ̂, T̂

)
+

(
C1, C2

)
exp(ikx + µt)

with C1,2 constants. This leads to the dispersion relation

µ2 + µ
[
b+ (d+ p2)k2 − 1 + 3φ̂2 − 4λ̃φ̂(T̂ − TM)

(
1 − φ̂2

)]

+1
2
λ̃

(
1 − φ̂2

)2
(a1 − a−1)I + p2k2(b + dk2)−

(b+ dk2)
[
1 − 3φ̂2 + 4λ̃φ̂(T̂ − TM)

(
1 − φ̂2

)]
= 0

(14)

from which it follows readily that already linearly stable steady states are
further stabilised by diffusion. However, this does not exclude the possibility
of existence of linearly unstable equilibria, which would correspond to the
mushy states.

4 Travelling wave solutions

To examine the properties of crystallisation fronts it is convenient to look for
solutions of (1,4) in the form of travelling waves

φ = ψ(z), T = S(z), z ≡ x− ct.
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Fig. 2. Shape of crystallisation fronts in the system (1,4) with the parameters
a1 = 4, a−1 = 6, I = 1.2, b = 1, λ = 1, p = 0.316, d = 1, Ta = 2.9 and TM = 9.8
at t = 0 (dotted), t = 0.5 (dashed) and t = 10 (solid). a) Sinusoidal initial condition
Eq. (16). b) Initial condition given by Eq. (17).

The substitution of these expressions into the governing system yields the
fourth-order problem

p2ψ′′ + cψ′ +
[
ψ − λ̃(S − TM)(1 − ψ2)

]
(1 − ψ2) = 0,

dS ′′ + cS ′ + [a1 + a−1 + (a1 − a−1)ψ] I
2

+ b(Ta − S) = 0,

(15)

where the prime denotes a derivative with respect to z. Two equilibria exist:
these are (ψ, S) = (±1, T±1) and a travelling wave represents a heteroclinic
connection between them. The linearization of the system (15) near either of
the equilibria leads to a spectrum

spec(A) =

{
− c

2p2
± 1

2p2

√
c2 + 8p2,− c

2d
± 1

2d

√
c2 + 4bd

}

and it follows that the dimensions of the stable and unstable manifolds of the
equilibria are dimW u(1, T1) = dimW s(−1, T−1) = 2. Hence, generically these
two manifolds do not intersect in a four-dimensional ambient space, and the
heteroclinic connections exist only for isolated values of velocity c, which is
determined by the model parameters.

In order to obtain insight into the possible existence of various travelling waves
for different values of parameters, we solved the system (1,4) numerically using
the Fortran NAG routine D03PCF. Since we are looking for travelling waves,
the numerical domain of integration was taken to be large compared to the
front width and typically the system was solved for x ∈ [−L, L] with L ≈ 100.
For simplicity Neumann conditions were imposed at the ends of the domain
but the results shown are not sensitive to the exact forms of any physically
sensible boundary conditions.
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Fig. 3. Variation in the velocity c of front solutions of system (1,4) with parameters
chosen as a1 = 4, a−1 = 6, b = 1, λ = 1, p = 0.316, d = 1 and Ta = 2.9. a) Chang-
ing melting temperature TM with fixed light intensity I = 1.2. b) Changing light
intensity I with fixed melting temperature TM = 9.8.

As a first example we present in Fig. 2a) the results of simulations when initial
condition was taken to be a simple periodic function of the form

φ(x, 0) = sin(x/10), T (x, 0) =
T1 + T−1

2
+
T−1 − T1

2
sin(x/10). (16)

What one observes is an initial steepening of the sine profile, which eventually
develops into shock-like structures. Neighbouring fronts then start propagating
in opposite directions which results in annihilation and consequent disappear-
ance of any wave structure. In this case the system settles on a uniform steady
state corresponding to solid everywhere.

To illustrate the evolution of (1,4) from a profile which approaches the steady
states (1, T1) and (−1, T−1) as x → −∞ and x → ∞, we next consider the
initial condition

φ(x, 0) = − tanh(x/10), T (x, 0) =
T1 + T−1

2
+
T−1 − T1

2
tanh(x/10). (17)

In the simulations whose results are shown in Fig. 2b) we broke the symmetry
between the two steady states by choosing the melting temperature TM to
be closer to the equilibrium temperature T−1 of the molten phase than its
value T1 for the solid. As before, the solution initially steepens and quickly
reaches the state characterised by a sharp interface separating the phases. This
solution then propagates without change of shape. In this case the solutions are
the crystallisation fronts (also called solidification fronts), i.e. the crystallised
phase invades the space of the molten phase.

With the same values of parameters but now with the melting temperature
chosen to be closer to that of the solid phase, then the same initial conditions
will result in melting fronts; that are fronts that propagate in the opposite
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direction. Figure 3 shows the effects on the front velocity of varying the melting
temperature and light intensity. (Negative values of velocity correspond to the
fronts propagating in the negative x-direction.) Figure 3b, which relates to
a fixed TM = 9.8 and varying laser intensity I, suggests that the velocity
decreases almost linearly with increasing I until some maximum intensity
is reached; the existence of such a greatest I is evident from the form of
conditions (9). For fixed values of parameters there comes a point when one
of these inequalities must be violated. Another interesting symmetry which
directly follows from the equations (1,4) is that changing x → −x, and also
changing the sign of velocity c→ −c leaves this system invariant. This means
that whenever system (1,4) admits crystallisation fronts going to the right, it
also admits crystallisation fronts propagating to the left.

5 The stability of travelling waves

After the existence of travelling front solutions has been established for some
parameter values, the next important question to be answered is that of their
stability. Unfortunately, this question is not clear-cut for there exist several
possible definitions of travelling wave stability, each reflecting some particular
characteristic of the problem. Among the most often studied is the issue of
linear stability which reflects the absence of any eigenvalues with positive
real part in the spectrum of the linearization near the travelling wave. A
more advanced approach is that of nonlinear, or Lyapunov, stability, which
means that in a properly defined functional space there exists a class of initial
conditions which tend to the travelling wave solution as time goes to infinity. A
modern review of stability of travelling waves with an emphasis on dynamical
systems approaches can be found in Sandstede [27].

In this work we concentrate on linear stability methods and consider two types
of perturbations: longitudinal and transverse. The former represent physically
small changes in the shape of fronts which travel in the same direction as the
fronts themselves. The transverse perturbations correspond to a perturbation
whose direction of propagation is different from (and possibly orthogonal to)
the basic direction of front motion. As the method of choice for the analysis of
linear stability we use the Evans function approach mentioned in the introduc-
tion. This is a dynamical systems formulation of the stability problem which
makes use of a complex valued function, called the Evans function, whose zeros
correspond to the isolated eigenvalues of the linearization operator. The Evans
function method has been successfully used to study linear longitudinal and
transverse stability of solitary waves in various hydrodynamical contexts [6,7]
and in systems describing the dynamics of chemical reactions [4] or combustion
waves [12].
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5.1 Longitudinal stability

We start by considering the one-dimensional linear stability of the travelling
waves found earlier. Let solution of the system (1,4) be

(
φ(x, t), T (x, t)

)
=

(
ψ(z), S(z)

)
+ Re

{
exp(µt)

(
φ̃(z), T̃ (z)

)}
, (18)

where ψ(z) and S(z) are the travelling waves from the previous section. Sub-
stituting this into (1,4) and linearising gives, after dropping the tildes,

p2φ′′ + cφ′ +
[
1 − µ− 3ψ2(z)

]
φ+ P (z)φ− λ̃T

[
1 − ψ2(z)

]2
= 0,

dT ′′ + cT ′ = (b + µ)T − 1

2
(a1 − a−1)Iφ,

(19)

where the auxiliary function P (z) is defined by

P (z) = 4λ̃ψ(z)(S(z) − TM)
[
1 − ψ2(z)

]
.

The travelling wave (ψ(z), S(z)) is linearly unstable if one can find a bounded
solution of the system (19) with associated growth rate µ having positive real
part. In order to tackle this problem we rewrite the system (19) as a first-order
system

vz = A(z, µ)v, (20)

where v = (φ, φz, T, Tz)
T and A(z;µ) is given by

A(z;µ) =




0 1 0 0

a21 −c/p2 a23 0

0 0 0 1

(a−1 − a1)I/2d 0 (b + µ)/d −c/d




(21)

where a21 ≡ [µ+ 3ψ2(z) − 1 − P (z)] /p2 and a23 ≡ λ̃(1 − ψ2(z))2/p2. In the
limit z → ±∞ this matrix reduces to a constant form A∞(µ) ≡ limz→±∞ A(z, µ)
with eigenvalues

spec(A∞) =



±

√
µ+ 2

p
,±

√
d(b+ µ)

d



 . (22)
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This spectrum implies there is a two-dimensional subspace of solutions U+(z, µ)
of the equation (20) that decay exponentially as z → +∞ and another
two-dimensional subspace of solutions U−(z, µ) that decay exponentially as
z → −∞. If these two subspaces have a non-trivial intersection for some value
of µ, then this is an eigenvalue of the problem (20).

One can define the Evans function as [1]

E(µ) = exp


−

z∫

0

τ(x, µ)dx


 U−(z, µ) ∧ U+(z, µ), (23)

where ∧ is the wedge product, and

τ(z, µ) = Tr [A(z, µ)] . (24)

Zeros of the Evans function correspond to the intersection of the above-
mentioned subspaces, and the requisite µ are then the eigenvalues of the
linearised stability problem (19). In calculating the Evans function we fol-
low the numerical approach developed by Bridges, Derks and Gottwald [7] in
the context of the fifth-order KdV equation. To be more specific, we use the
compound matrices to describe the dynamics of the subspaces U− and U+,
as well as the Hodge star operator to match these solutions at z = 0. Also,
since our problem possesses a 2-2 splitting of eigenvalues at infinity, we have
used the implicit midpoint rule to perform the time integration as for such
splitting it preserves the Grassmanian manifold to machine accuracy [2].

For the purposes of numerical calculations one notices that U+(z;µ) and
U−(z;µ) can be thought of as paths in a wedge space

∧2(C4) of two-forms
on a complex four-dimensional space, which can be identified with C6. Their
dynamics can hence be determined by integrating the system

d

dz
U = A(2)(z, µ)U, U ∈

2∧
(C4), (25)

where the induced matrix A(2) :
∧2(C4) → ∧2(C4) is defined on a decompos-

able 2-form x = x1 ∧ x2 as A(2)x := Ax1 ∧ x2 + x1 ∧ Ax2, see [2].

One can introduce the limiting matrix A(2)
∞

(µ) defined by

A(2)
∞

(µ) = lim
z→±∞

A(2)(z, µ) (26)

and then for Re(µ) > 0 the matrix A(2)
∞

(µ) has an eigenvalue σ+(µ), which is
the sum of two eigenvalues of A(µ) having negative real part. This eigenvalue
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σ+(µ) is simple, is an analytic function of µ and corresponds to an exponen-
tially decaying behaviour at z → +∞, [2]. Similarly there exists an eigenvalue
σ−(µ), which corresponds to an exponentially decaying behaviour at z → −∞,
and which is the sum of the two eigenvalues of A(µ) with non-negative real
part. If ζ±(µ) are the eigenvectors associated with σ±(µ) so

A(2)
∞

(µ)ζ±(µ) = σ±(µ)ζ±(µ),

then the solutions U of the system (25) have the property limz→±∞ U(z;µ) =
ζ±(µ).

In parallel to system (25) one can also consider the adjoint problem

d

dz
V = −

[
A(2)(z, µ)

]T
V, V ∈

2∧
(C4) (27)

and identify the most unstable solution V− at z = −∞ of this equation
with the most unstable solution U− of the linearised system (25) at z =
−∞. The asymptotic behaviours of such solutions is governed by the relation
limz→−∞ exp

(
σ+(µ)z

)
V−(z, µ) = η−(µ), where η−(µ) is the eigenvector of

the matrix −A(2)
T

associated with the eigenvalue −σ+, see [2,7].

In order to simplify the numerical implementation, the inner product on∧2(C4) can be identified with the inner product 〈·, ·〉6 on C6, and then the
Evans function may be written as [7]

E(µ) = 〈V−(0, µ),U+(0, µ)〉6. (28)

This function is approximated by integrating the equation

d

dz
Ũ+ = [A(2)(z, µ) − σ+(µ)Id]Ũ

+, Ũ+|z=L∞ = ζ+(µ), (29)

with an implicit midpoint rule from z = L∞ (L∞ � 1) to z = 0. (Note that the
scaling Ũ+(z, µ) = exp(−σ+(µ)z)U+(z, µ) removes the exponential growth.)
For z < 0 we integrate the adjoint equation

d

dz
Ṽ− = [−A(2)(z, µ)

T
+ σ+(µ)Id]Ṽ

−, Ṽ−|z=−L∞ = η−(µ), (30)

from z = −L∞ to z = 0 with the corresponding Ṽ−(z, µ) = exp(σ+(µ)z)V−(z, µ).
The eigenvectors of the limiting matrix A(2)

∞
are normalised as 〈η−(µ), ζ+(µ)〉 =

15



0 200 400 600 800 10000

0.2

0.4

0.6

0.8

1

Ε(µ)

µ

0 0.002 0.004

0.0001

0.0004

0.0007

a)

0 0.2 0.4 0.6 0.8 1

-0.2

-0.1

0

0.1

0.2

0.3

[Ε(µ)]

[Ε(µ)]

Re

Im

0 0.001

-0.02

0

0.02

b)

Fig. 4. (a). Evans function E(µ) evaluated along the real µ axis. (b). The real versus
imaginary parts of the Evans function E(µ) for µ varying parallel to the imaginary
axis with the small offset ε = 10−8. (The insert shows the local behaviour near the
origin.)

1. At z = 0, the Evans function now admits an equivalent form

E(µ) = 〈V−(0, µ),U+(0, µ)〉6 = 〈Ṽ−(0, µ), Ũ+(0, µ)〉6. (31)

Results of the Evans calculations are presented in Fig. 4 for the travelling
fronts found in the previous section. All the parameters are as before except
for the melting temperature which is chosen to be TM = 9.8. In this case
the system (1,4) possesses a solution in the form of a crystallisation front
moving to the right with a constant velocity, which can be found numerically
as c ≈ 0.23418.

First, we perform calculations along the real µ axis. In this case, the Evans
function itself is also real and, as Figure 4a shows, it asymptotically approaches
a constant value of E(µ) = 1 as µ→ ∞ (this value is determined by the above-
mentioned normalisation of eigenvectors of A(2)

∞
(µ)). Numerical results show

that starting with the value E(0) = 0, the Evans function then monotonically
increases and never crosses zero again. This suggests that most likely the
linearised stability problem (19) does not have any real positive eigenvalues.

To conclude the linear stability analysis one has to investigate the possibility
of complex eigenvalues having positive real part. In this case we evaluate the
Evans function on varying the spectral parameter µ parallel to imaginary axis
with a (small) offset µ = ε + iµ̃ to avoid the pole of the Evans function
at µ = 0. Typically, µ̃ was varied from 0 to 108. By Cauchy’s theorem, the
winding number of a closed curve in the µ plane gives the number of unstable
eigenvalues. Figure 4b shows the results of the calculation in this case. The
close-up near zero indicates that the winding number is zero, and therefore we
conclude the travelling front solutions connecting the melt and solid equilibria
are linearly stable. Even though we have studied numerically only a finite
region of the complex plane, having eigenvalues beyond the half-circle of the
radius 108 would correspond to the physically unrealistic growth rates of the
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Fig. 5. Schematic diagram showing the melting dynamics in 2D under uniform
irradiation but phase-dependent absorption. We examine the stability of the plane
travelling wavefront to perturbations in the y direction.

perturbation, and this suggests that most probably the stability picture is now
complete.

We have also performed numerical simulations of the full system (1,3) which
includes the latent heat production. These simulations show that the system
is robust with respect to the increase in the latent heat and retains the same
features as in the case σ = 0, namely, that initial profiles rapidly develop into
sharp-interface fronts which then propagate with constant velocity.

5.2 Transverse stability

In the previous subsection we showed that the crystallisation fronts connect-
ing the steady states of (1,4) corresponding to the fully molten and fully crys-
tallised states are linearly stable. From the physical point of view, it is also
of interest to investigate the stability of the fronts with respect to transverse
perturbations, i.e. perturbations in the direction orthogonal to that of front
propagation. Figure 5 illustrates the two-dimensional set-up we consider. To
model this case we replace Laplacian operators in the equations (1,4) by their
two-dimensional counterparts: ∇2 → ∂xx + ∂yy.

Now one can seek solutions of the system (1,4) in the form

(
φ(x, y, t), T (x, y, t)

)
=

(
ψ(z), S(z)

)
+ Re

{
exp(iky + µt)

(
φ̃(z), T̃ (z)

)}
,

where z ≡ x−ct is the travelling wave argument, k is the transverse wavenum-
ber, µ is the instability growth rate and ψ(z) and S(z) represent the one-
dimensionally stable front analysed in the previous sections. Substituting the
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Fig. 6. Stability of crystallisation fronts with transverse wavenumbers k = 0.1 (dot-
ted), k = 0.5 (dashed) and k = 1 (solid). (a). Evans function E(µ) along real µ

axis. (b). The real versus imaginary parts of the Evans function E(µ) for µ varying
parallel to the imaginary axis with the small offset.

above expressions into (1,4) and linearising, one obtains (after dropping the
tildes)

p2φ′′ + cφ′ +
[
1 − µ− 3ψ2(z) − k2p2

]
φ+ P (z)φ− λ̃T

[
1 − ψ2(z)

]2
= 0,

dT ′′ + cT ′ = (b + µ+ k2d)T − (a1 − a−1)

2
Iφ.

(32)

The one-dimensional travelling fronts are linearly transversely unstable if one
can find bounded solutions of the system (32) with Re(µ) > 0 for some trans-
verse wavenumber k. In order to analyse this problem we again use Evans
functions. It is easy to see that the reformulation of (32) as a first-order sys-
tem would coincide with (20) but for the two entries a21 and a43 in the matrix
A which transform into a21 → a21 + k2 and a43 → a43 + k2. The inclusion
of these extra terms proportional to k2 does not affect the spectrum of A∞

so the same construction of the Evans function as before is sufficient, save
for the fact that now it also depends on the transverse wavenumber k as an
extra parameter, i.e. we have E(µ, k). In order to investigate the possibility of
transverse instability, we increase k starting from 0, and for each fixed k the
Evans function E(µ, k) is evaluated in the complex µ-plane. If for some value
of µ it crosses zero, then this value is the eigenvalue of the linearised stability
problem corresponding to a transverse wavenumber k.

Figure 6 shows the plots of the Evans function as a function of a spectral
parameter µ when integrated along the real µ axis and also along the line par-
allel to the imaginary axis in order to investigate the possibility of complex
eigenvalues with positive real part. The value of the transverse wavenumber k
was varied to study both the long- and the short-wavelength transverse insta-
bility. Figure 6a illustrates the Evans function evaluated along the real axis
of spectral parameter µ. The qualitative behaviour is the same as in the one-

18



dimensional case: the Evans function increases monotonically and approaches
its value of unity as µ→ ∞. At the same time, it is noteworthy that the value
of E(0) increases with k 6= 0, emphasising the fact that the one-dimensional
front does not solve the full problem with the transverse direction included.
This fact can also be heuristically understood by inspecting the linearized
stability problem (32) and observing that in this system as compared with
(19), the eigenvalues µ have been substituted by µ + k2p2 in the first equa-
tion and µ + dk2 in the second equation. From here one can expect that if
the eigenvalues µ are in the left half-plane in the longitudinal case, in the
case of transverse perturbations they will have even more negative real part if
k > 0. The plot of the Evans function in the complex domain of the spectral
parameter is shown in Fig. 6b and it confirms the absence of eigenvalues in
the complex right half-plane. This implies that the crystallisation fronts are
persistent against perturbations aligned away from the basic direction of their
propagation.

6 Conclusions

In this paper we have used a phase field model to investigate the effect of phase-
dependent heat absorption on a dynamics in a phase change sample irradiated
by a laser. This model shows that the phase-dependent heat absorption is
sufficient to permit bi-stability of a single component solid/melt system.

We have shown that the bi-stability of the steady states can manifest on a
spatial level as existence of travelling front solutions - melting or crystallisa-
tion fronts. A travelling wave reduction of the full system has provided a basis
for a dynamical system formulation of the linearised stability problem, and we
have used Evans function methods to study the stability of fronts with respect
to both longitudinal and transverse perturbations. These results suggest that
the fronts are stable in both cases. Physically this suggests that crystallisation
(melting) fronts can propagate in a phase change sample, and the stability cal-
culations imply that they should be experimentally observable. On the other
hand, the stability of these fronts indicates that even though the model at
hand can be used for studying the processes of crystallisation and melting, it
cannot be applied for the analysis of interface instability and dendritic growth.
The reason for this is that in the evolution equation for the temperature the
term describing latent heat production at the interface has been neglected in
comparison with other contributions. However, given different material prop-
erties, the inclusion of latent heat in the thermal equation may well induce
front instabilities.

It is worth noting that our model considers only a simple radiative thermal
heating effect such as is used in data storage applications. The heating is
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governed by an absorption rate which is different for the solid and molten
phases; the variation of this with wavelength and intensity of illuminating
light may make possible the control of crystallisation fronts and therefore
prove to be very useful in practice.

An interesting and important application of this work would be in the context
of so-called explosive crystallisation within phase change materials. Some re-
cent studies of this phenomenon, both theoretical and experimental in nature,
have revealed the existence of unexpectedly high velocities of the fronts sepa-
rating amorphous and crystalline regions [22,26]. The models adopted to date
have neglected the difference in response of different phases to external heat
sources but have concentrated instead on heat loss to surrounding substrates
as well as latent heat release at the interface. An extension of the current phase
field model could incorporate the latent heat release at the interface between
amorphous and crystalline zones and thereby lead to a better understanding
of explosive crystallisation.
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