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In this paper we examine the influence of periodic islands within a time periodic chaotic flow on the
evolution of a scalar tracer. The passive scalar tracer is injected into the flow field by means of a
steady source term. We examine the distribution of the tracer once a periodic state is reached, in
which the rate of injected scalar balances advection and diffusion with the molecular diffusion �. We
study the two-dimensional velocity field u�x ,y , t�=2 cos2��t��0,sin x�+2 sin2��t��sin y ,0�. As � is
reduced from an O�1� value the flow alternates through a sequence of states which are either
globally chaotic, or contain islands embedded in a chaotic sea. The evolution of the scalar is
examined numerically using a semi-Lagrangian advection scheme. By time-averaging diagnostics
measured from the scalar field we find that the time-averaged lengths of the scalar contours in the
chaotic region grow like �−1/2 for small �, for all values of �, while the behavior of the
time-averaged maximum scalar value, Cmax, for small � depends strongly on �. In the presence of

islands Cmax��−� for some � between 0 and 1 and with � small, and we demonstrate that there is
a correlation between � and the area of the periodic islands, at least for large �. The limit of small
� is studied by considering a flow field that switches from u= �0,2 sin x� to u= �2 sin y ,0� at
periodic intervals. The small � limit for this flow is examined using the method of matched
asymptotic expansions. Finally the role of islands in the flow is investigated by considering the
time-averaged effective diffusion of the scalar field. This diagnostic can distinguish between regions
where the scalar is well mixed and regions where the scalar builds up. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3159615�

I. INTRODUCTION

When a scalar tracer is injected into a fluid flow, the
advection process can create fine scale structure in the tracer,
which is subsequently destroyed by molecular diffusion. This
advection-diffusion combination tends to homogenize the
scalar and eventually the system evolves into a uniform
steady state if there is no additional source of scalar. How-
ever, if additional scalar is injected into the flow via a steady
source term, then, for a time periodic flow in a periodic do-
main, the system evolves into a periodic state, where scalar
diagnostics oscillate about some time-averaged value.1,2 The
efficiency of statistically stationary, homogeneous, isotropic
flows �which include turbulence� to mix scalars was exam-
ined by Doering and Thiffeault.2 They calculate an upper
bound for the scalar concentration for various source terms;
however, the actual maximum concentrations are sensitive to
the velocity field, and in particular the existence of periodic
islands in the flow. Advection-diffusion problems with a
source term are also important in the study of air pollution;3

thus understanding how much pollutant builds up in stagnant
regions, such as islands, is very important. This study is
therefore motivated by trying to understand better how scalar
builds up in the presence of these islands, including the de-
pendence on the size of the islands.

In the current study we examine the periodic states of
time periodic flows by considering a scalar tracer which is
injected steadily into an unsteady, two-dimensional, periodic
velocity field. We choose the velocity field

u�x,y,t� = 2 cos2��t��0,sin x� + 2 sin2��t��sin y,0� , �1.1�

which, depending on the value of �, is either globally cha-
otic or consists of periodic islands embedded in a chaotic
sea. This flow, which is a modification of the time-periodic
sine flow �TPSF�, is chosen so we can investigate how the
periodic state is dependent on the islands. By varying the
control parameter � we can change the period of the flow
and hence the size of the periodic islands, and for certain
values of � the islands disappear altogether. The evolution of
scalar in this flow in the absence of a source term was stud-
ied by Cerbelli et al.4 and Giona et al.5 It is well known that
periodic islands inhibit mixing by trapping scalar within
them,6,7 but a thorough study investigating the quantity of
scalar that builds up in islands in the presence of a source
term has not been carried out to date. Gleeson7 studied the
evolution of a strip of scalar placed inside a flow field for
two initial conditions, one when the scalar crosses a periodic
island, and one where it does not. The results show that the
scalar initially within the island winds up and homogenizes,
but stays within the island, while the other case shows that
the scalar becomes well mixed in the surrounding chaotic sea
without being transported into the periodic island. In this
example a mixing measure m�t� is defined, which in a “vor-
texlike mixing period” decays as Pe−�, where Pe is the Péclet
number �proportional to the inverse of the molecular diffu-
sion� and � is a real scaling exponent. However, in the cur-
rent study the presence of a steady source means that there
will be a continuous injection of scalar both into the islands
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and the chaotic region. The work of Doering and Thiffeault2

confirmed that there will be an upper bound on the scalar
value in the islands, but we will show a correlation between
the time-averaged maximum scalar value in the islands and
their size, for varying �.

By considering time averages over one period of the
flow field, we produce scalar diagnostics that are steady and
hence are easier to analyze. We shall consider the evolution
of both the time-averaged maximum scalar value Cmax and
the time-averaged contour length, as functions of the mo-
lecular diffusion �. The case of a slowly varying velocity
field �small �� is examined analytically by studying the
TPSF which has a velocity field that instantaneously
switches between u= �0,2 sin x� and u= �2 sin y ,0� periodi-
cally with period 2ts. By the use of matched asymptotic ex-
pansions we analytically determine how Cmax, and subse-
quently Cmax, vary with �.

As well as these diagnostics another useful measure is
the effective diffusion of the scalar field. Transforming the
advection-diffusion equation using a quasi-Lagrangian coor-
dinate system8 based on the area inside scalar concentration
contours9,10 leads to a pure diffusion equation, where the
diffusion coefficient is known as the effective diffusion. The
effective diffusion is a useful diagnostic tool because it re-
quires no prior knowledge of the velocity field, as it depends
solely on the instantaneous distribution of the scalar field.
This makes it a very attractive tool for studying mixing and
transport properties of complicated systems such as the
atmosphere.11,12 Systematic studies of this diagnostic tool
have shown that areas of high effective diffusion correspond
to areas of well mixed scalar and areas of low effective dif-
fusion occur in regions of poorly mixed scalar, such as in
periodic islands.13,14 For this reason we adopt the effective
diffusion in this study to compare the relative sizes of the
well mixed region of the time-averaged effective diffusion
for a flow with periodic islands and one without islands.

The present paper is laid out as follows. In Sec. II we
formulate the problem and discuss the numerical scheme
used to calculate the scalar field. In Sec. III we examine the
kinematic behavior of the flow. A careful study determines
the parameter values for which we have periodic islands em-
bedded in a chaotic flow and for which values we apparently
have a globally chaotic flow. Section IV presents the results
of the numerical simulations of the advection-diffusion equa-
tion including effective diffusion calculations and an analyti-
cal result for the TPSF problem. Our concluding remarks and
some discussion are given in Sec. V.

II. FORMULATION AND NUMERICAL SCHEME

In an incompressible fluid flow, the evolution of a scalar
tracer that has concentration c�x , t� is governed by the
advection-diffusion equation

�c

�t
+ u · �c = � · �� � c� + S , �2.1�

where u is a prescribed incompressible velocity field, ��x , t�
is the molecular scalar diffusion, and S�x , t� is a source term.
The current work uses the two-dimensional flow field given

by Eq. �1.1� where � is a real frequency and x and y are
Cartesian coordinates. For simplicity we also consider the
case when ��x , t� is constant and the source term S�x , t�
=cos x, which is both steady and has zero mean.

This study examines the long time behavior of Eq. �2.1�
where due to the presence of the source, the behavior of the
scalar field eventually becomes periodic in time and, from a
Lagrangian point of view, the source term balances molecu-
lar diffusion over one period.

Although small scales are generated in the scalar field,
the specified velocity field is smooth and large scale. Conse-
quently, the Lagrangian time scale of the scalar in this prob-
lem is much longer than the Eulerian time scale. The prob-
lem therefore lends itself to numerical solution by a semi-
Lagrangian method, e.g., Ref. 15. We use cubic Lagrange
interpolation for the scalar advection, with a Crank–Nicolson
treatment of the diffusion term. This makes the scheme
second-order accurate in time overall and allows much
longer time steps �t to be used, without losing accuracy or
stability, than would be possible with the Eulerian scheme
used by Turner et al.14 Thus, the computation time required
to reach the periodic state is greatly reduced. Nevertheless,
we still find ourselves restricted in our parameter search by
the computational time required to complete the runs. This is
discussed further in Sec. IV.

III. KINEMATIC PROPERTIES OF THE FLOW

Before embarking on a full numerical simulation of Eq.
�2.1�, we consider the kinematic properties of the flow field
�Eq. �1.1�� by examining Poincaré sections of its structure.
To calculate the Poincaré sections, we first write the flow
field as a system of two first order differential equations

dx

dt
= 2 sin2��t�sin y,

dy

dt
= 2 cos2��t�sin x . �3.1�

These equations are then integrated from the set of initial
conditions �x0 ,0� and �x0 ,�� where

x0 = − � + 2��j − 1�/�N − 1�, j = 1,2,3, . . . ,N ,

and for each initial condition the position of the fluid particle
is represented by a dot in real space after each period of the
flow T=� /�. For the resulting Poincaré sections in Fig. 1,
N=30 and for ��0.5 we integrated to t=400T and to t
=200T otherwise.

For large frequencies the direction of the shear flow
changes rapidly and the results show that the Poincaré sec-
tion has a cellular structure with four periodic “islands” cen-
tered at �0, ��� and ��� ,0�. Between these islands is a thin
band of chaos which increases in thickness as � is reduced.
This can be seen when moving from �=3.5 in Fig. 1�f� to
�=2 in Fig. 1�e�. As � is decreased further the size of the
islands is reduced also, because the longer flow period means
that fluid particles are stretched out much further and so any
island regions are eventually stretched out and removed. At
��0.75 the islands disappear completely and we apparently
have a globally chaotic flow. A globally chaotic flow can be
seen in Fig. 1�b� where �=0.5. However, when �=0.3 we
find that the globally chaotic flow changes to one with small
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islands around �0, ��� and ��� ,0�. Further reducing � �not
shown here� shows that �=0.2 is fully chaotic, but �=0.1
again has small islands. This is a resonant effect similar to
that seen in the Mathieu equation.16 Thus, it is not true to say
that the flow has islands for ��0.75; and is globally chaotic
for �	0.75. Instead we have to be careful that our choice of
� generates a window where the flow does not contain is-
lands if we wish to examine a globally chaotic flow. When
we inject scalar into a globally chaotic flow we expect the
scalar field to be well mixed and the maximum value of
scalar Cmax to be less than a flow case where there are islands
present, as scalar builds up in such islands.

We can examine for which values of � we expect to see
the resonant islands around the points ��� ,0� and �0, ���
by studying a local solution about �� ,0�. Thus, inserting x�
=x−� and y�=y into Eq. �3.1� and linearizing leads to

dx�

dt
= 2 sin2��t�y�,

dy�

dt
= − 2 cos2��t�x�. �3.2�

�The other three points lead to either the same system of
equations, or one with the minus sign swapped over.� We

now solve this system by integrating using a fourth order
Runge–Kutta scheme with the initial condition x�=10−3, y�
=10−3. With these initial conditions we check the linear sta-
bility of Eq. �3.2� and we assume that linear stability implies
islands in the Poincaré section and linear instability implies a
globally chaotic flow. The results for the one parameter fam-
ily � are shown in Fig. 2�a�, where the value 1 on the vertical
axis represents chaos and 0 represents periodic orbits or is-
lands. The results show that for ��1.45 there are always
islands about this point, as can be seen in Figs. 1�e� and 1�f�.
However, as � is reduced they disappear and then reappear
at a more and more rapid rate when �	0.2. The rate at
which these islands appear and disappear can be seen in Fig.
2�b�, which plots panel �a� as a function of 1 /�. Here we see
a regular spacing of the windows of � values for which the
islands are present. Note that for ��0.75 the flow can have
islands at points corresponding to �x ,y�� ��� ,0� and
�0, ��� �cf Figs. 1�c� and 1�d��, whereas for �
0.75 they
only appear to occur at these four points. It is feasible that
resonant islands could occur at points other than the four
mentioned above, but our exploration of the �-space consid-
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FIG. 1. Poincaré sections for the velocity field �Eq.
�1.1�� for the cases �a� �=0.3, �b� �=0.5, �c� �=0.8,
�d� �=1, �e� �=2, and �f� �=3.5.
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ered in this paper has not revealed any such points. Thus, we
assume that the four points considered here are the only such
points. Now that we know when and where the periodic is-
lands appear in the flow field we can solve the advection-
diffusion equation �2.1� and examine the evolution of the
scalar field.

IV. NUMERICAL EVOLUTION OF SCALAR FIELD
AND STEADY STATE ANALYSIS

In this section we numerically study the solution of Eq.
�2.1� in the large t limit where the scalar field has become
periodic due to the injection from the steady source. We
demonstrate how the periodic scalar field and the length of
various scalar contours vary over a period of the flow field,
and we also show how Cmax varies with � by time averaging
the maximum value of the scalar field. This section ends with
an analytical approach to solve the case where Eq. �1.1� has
small �. For this study we use the source distribution S�x�
=cos x. Initially we set the scalar concentration c�x ,y , t=0�
=0 and we let the system evolve with time, which gives a
transient regime for early times where the scalar increases
from c=0 up to the steady state. The length of time of this

transient phase depends on both � and �, and increases for
small � and large � �short period flows�. This limits the
parameter range that we can study �mainly small � and mod-
erate � with ��0.8�, but this does not appear to restrict any
results in this paper.

To analyze the scalar field in the periodic state we use
the diagnostics Cmax�t�, which is the maximum value of the
scalar at any given time, and the length of the contour c=C,
which we denote by LC. Typically we consider the contour
C=0, as this contour always lies within the chaotic band
regardless of the value of �, hence these results should be
consistent. However, we do look at other scalar contour
lengths later in this section.

In the periodic regime, the scalar field varies over the
duration of a flow period T=� /� and time averaging these
diagnostics of this regime gives corresponding steady state
quantities such as Cmax or LC. The variation of both Cmax and
L0 for a selection of flow parameters is given in Fig. 3 as a
function of t /T.

Figure 3 graphs both Cmax and L0 for the parameter cases
�� ,��= �0.5,10−1�, �� ,��= �0.5,10−3�, �� ,��= �1,10−1�, and
�� ,��= �1,10−3� in panels �a�, �b�, �c�, and �d�, respectively.
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FIG. 2. Plot of �a� the parameter space
for Eq. �3.2�, where 0 on the vertical
axis denotes periodic orbits and 1 de-
notes chaos. Panel �b� shows panel �a�
plotted against 1 /� to show an equal
spacing of windows.
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FIG. 3. Plot of both Cmax and L0 as a
function of t /T for the cases
�a� �� ,��= �0.5,10−1�, �b� �� ,��
= �0.5,10−3�, �c� �� ,��= �1,10−1�, and
�d� �� ,��= �1,10−3�. The dashed lines
in each figure represent the equivalent
value of Cmax or L0.
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For each panel the respective time-averaged value of the di-
agnostic is given by the horizontal dotted line. We note that
at the beginning and end of each period, the flow stretches
the scalar approximately parallel to the y-axis, which is
aligned with the source term, and for the middle of the flow
period it is being stretched approximately parallel to the
x-axis which shears the scalar field and allows diffusion to
act strongly on the fine scale structure. Figure 3 shows that
for �=1 the mean value of Cmax is larger while the variations
in Cmax are smaller than for �=0.5. This behavior is consis-
tent with the trapping of scalar in the islands in the �=1
case. Figure 3 also shows that the mean value of L0 is
slightly smaller while the variations in L0 are much smaller
for the �=1 case. It is not clear whether this behavior of L0

is related to the existence or nonexistence of islands.
The general behavior of the quantities in Fig. 3 is that

both Cmax and L0 increase to some maximum value before
rapidly decreasing to a minimum value after the flow field
has rotated. Note that the rotation is not instantaneous and
any increase or decrease in diagnostic values is also due to
the smooth rotation of the flow field. However, it appears
that the actual timing of these maximum and minimum val-
ues is strongly linked to the values of � and � chosen. For
example, for �� ,��= �0.5,10−1� in panel �a� the maximum
and minimum values of Cmax occur around t /T=30.5 and
t /T=31, respectively, and for L0 these are at t /T=30.75 and
t /T=31, respectively. However, as � is increased to 1 in
panel �c� the maximum and minimum values of Cmax now
occur at t /T=30.6 and t /T=30.25 and the L0 extremes have
swapped over to t /T=30 and t /T=30.5, respectively. Similar
variations can be seen by considering the �=10−3 cases. The
time lag between the flow field changing and the scalar field
changing is apparent in this figure, and will play a role later
in determining how Cmax and LC behave for varying � and �.

The results in Fig. 3 help us to understand how the scalar
field behaves over the course of a time period of the flow.
However, to gain more insight we consider the real space
images of the scalar field which are plotted in Fig. 4. This
figure shows the four cases considered in Fig. 3 plotted at the
midpoint of the period t /T=n+ 1

2 �left panels� and the end
point t /T=n of the period �right panels�, with red �midgray�
signifying large positive values and dark blue �dark gray�
signifying large negative values of scalar. In each figure the
zero contour L0 is shown as the solid black line. For �
=0.5 there are no islands in the flow field; this gives a scalar
field with long stretched out regions of scalar. This is clearly
seen for the �=10−3 in panels �c� and �d�. We can also clearly
see that the zero contour is much longer in this case than in
the �=10−1 case �panels �a� and �b�� due to its intricate form.
As we increase � to 1 �i.e., shorten the flow period and
introduce islands to the flow field� then we can see that the
scalar field has a form which reflects the presence of the
islands. For �=10−1 �panels �e� and �f�� four regions of scalar
build up and are relatively obvious but they are much clearer
in the �=10−3 result in panels �g� and �h�. The well mixed
region of scalar is larger in the latter case and in this region
the scalar homogenizes producing the green region �light
gray� seen in the panels. In this case one can see that the zero
contour has pinched off into many smaller pieces, which

allows diffusion to act and destroy these fine pieces, as seen
in panels �g� and �h� in conjunction with Fig. 3�d�. Figure
3�d� shows that L0 decays from t /T=400 before growing to a
small peak around t /T=400.5; there is then a rapid decay
before rising sharply to the peak value just before t /T=401.
This is the shear flow breaking off the C=0 contour into
smaller pieces which are then stretched at first to give the
increase in L0. However, they then become “too” stretched
and of a fine scale allowing diffusion to destroy these ele-
ments and giving the rapid drop in L0.

In Fig. 4 it is clear that as � is reduced L0 increases, but
what is not so clear is how does the existence, or lack
thereof, of islands affect the length of these contours and
their dependence on �? This question is addressed in Fig. 5
which plots the time-averaged contour length for C=0, 5,
and 20 for both �=0.2 and 1 as a function of �. For the flow
with no islands ��=0.2� in panel �a� we see that each of the
three contour values has a length which grows almost as
�−1/2, represented by line 4; this is commonly observed in
chaotic flows.17 The C=20 contour line �line 3� grows most
like �−1/2 while the C=0 and 5 contour lines grow at a
slightly slower rate. The L20 result initially grows at a differ-
ent rate to the other two because when the C=20 contour
first exists for �=10−2, this contour is in a region of low
scalar stretching where the larger values of scalar are ob-
served, and it is not until �=0.003, where Cmax has in-
creased, that it is in a region of the flow where the contours
grow more like �−1/2. A similar situation occurs for a flow
with islands ��=1� with the only apparent difference be-
tween this panel and that for �=0.2 is now all three contours
grow as �−1/2 for small �. This shows that in a flow without
islands, the time-averaged contour stretching is reduced in
the middle of the chaotic band seen in Figs. 4�c� and 4�d�.
However, this subtle change in growth rate is not expected to
be important in determining how much scalar builds up in
the islands, as many other factors are significant too.

In Fig. 6 we plot Cmax��� for various values of � on a
log-log scale. In panel �a� we consider small values of �
=0.01, 0.1, 0.2, 0.3, 0.5, and 0.8 and these are labeled 1, 2, 3,
4, 5, and 6, respectively, and in panel �b� we consider larger
values of �=0.5, 0.8, 0.9, 1.0, 1.2, 2.0, and 3.5 which are
labeled 1, 2, 3, 4, 5, 6, and 7, respectively. The intermediate
values of �=0.5 and 0.8 are plotted on both panels to link
the two together and give the reader a sense of the whole
parameter range without a congested figure. For the small
values of � in panel �a� we see a typical behavior emerging.
When � is moderately small and the flow field contains no
islands, such as for lines 3 and 5, we see that Cmax does not
grow as an inverse power of �, and in fact when these two
results are plotted on a log-linear plot in Fig. 7, they give
approximate straight lines which suggests a growth of Cmax

�−ln �. The reason for this growth dependence is not clear,
and it is not true of all globally chaotic flows. We know this
is the case because as we reduce � further to 0.1 and 0.01,
both of which have no resonance islands from Sec. III, we
find that Cmax begins to grow approximately as an inverse
power of �. �This can be seen by considering Fig. 2�b�.� In
fact the �=0.01 result �line 1� can be shown to grow like �−1

plus some smaller correction terms. This analysis is carried

067103-5 The influence of periodic islands in the flow on a scalar tracer Phys. Fluids 21, 067103 �2009�

Downloaded 05 Aug 2009 to 144.173.5.197. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



out in Sec. IV A. For the cases in panel �a� where there are
islands, �=0.3 �line 4� and �=0.8 �line 6�, we see that for
larger � these results grow much like their nonisland coun-
terparts, down to some critical value of � where the effect of

the islands becomes significant, and then they begin to grow
as �−� for some �� �0,1�.

An interesting comparison can be drawn with the work
of Haynes and Vanneste18 who found that the decay rate of

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x
(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 4. �Color online� Plots of the sca-
lar field c�x ,y , t� in the periodically
steady state at the midpoint of a period
�left panels� and the end of a period
�right panels� for ��a� and �b�� �� ,��
= �0.5,10−1�, ��c� and �d�� �� ,��
= �0.5,10−3�, ��e� and �f�� �� ,��
= �1,10−1�, and ��g� and �h�� �� ,��
= �1,10−3�. Red �midgray� corresponds
to large positive values of c and dark
blue �dark gray� corresponds to large
negative c. The black line is the con-
tour c=0.
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passive scalar variance �with no source� has a logarithmic
dependence on � as �→0 in the case when transport is “lo-
cally controlled” that is by the spectrum of Lyapunov expo-
nents. This slow dependence, for random flows without is-
lands, may be connected with the slow, logarithmic growth
in Cmax as �→0 that we observe in flows without islands.19

On the other hand the case of large-scale “globally con-
trolled” modes in Ref. 18 leads to a power law dependence
of the decay rate on �. In this case the large-scale scalar field
can be thought of as giving a source of scalar fluctuations to
smaller scales, and is similar to the way in which islands in
our flows trap and slowly release scalar, giving a power law
behavior for Cmax. Possible connections between the scaling
laws for forced and freely decaying scalars merit further
investigation.

In the corresponding large � figure, Fig. 6�b�, we ob-
serve that as � increases, the value of the critical �, where
the role of the islands becomes significant, moves to larger �

values until by �=1 �line 4�, values of Cmax appear to grow
��−� over the whole range of � considered. The correspond-
ing value of � for this growth itself increases with � until
��3.5 �line 7� where it has the approximate value 1. This is
because the scalar builds up in the islands and gives a scalar
distribution of c�x ,y��1 / �2���cos x−cos y� as noted in Ref.
14. The results for �=2.0 and 3.5 �lines 6 and 7� are not
computed all the way down to �=10−4 as the other results
are because as � becomes larger, the number of flow periods
that have to be completed before a steady state is achieved
increases greatly; however, results down to this value of �
are not required to get a clear picture of how the scalar be-
haves for these values of �. One question still remains: can

we link the value of the exponent � to the size of the periodic
islands?

In Fig. 8 we plot the scaling exponent of Cmax, �, as a
function of the area of the periodic islands in the flow field.
For � values between 1.2 and 3.5, we calculate the area of
the islands by integrating Eq. �3.1� from a regularly spaced
array of positions in the domain x� �0,��, y� �0,�� and
observing whether or not the particle path completes a peri-
odic cycle, i.e., it comes back to its starting position. The
area of the islands is then calculated as the fraction of peri-
odic orbits compared to the chaotic orbits scaled up to the
whole �−� ,��2 domain. The corresponding value of � on the
other hand is calculated by taking the gradient between the
values �=10−3 and 3
10−3 in Fig. 6�b�. Both these calcula-
tions are prone to numerical error; however, test calculations
have shown that the maximum error for both values is
around 3%. Thus, Fig. 8 shows that by investigating this
region of parameter space, we find a correlation between the
size of the islands and the scaling exponent �. It is not clear
if the correlation could be made linear by plotting � against
another measure of the islands such as their circumference
because although the islands are clearly defined in the flow
field, they are surrounded by regions of weak stretching
which could also be significant to the build up of scalar
within the islands. Thus, the calculation of a circumference is
difficult. Also, if we consider Figs. 1�d� and 4�h�, we see that
the region of scalar build up in Fig. 4�h� is larger than the
physical islands in Fig. 1�d�. The scalar field also has fingers
of scalar being stretched out which may be significant in the
calculation of �. If this investigation were continued to
smaller island areas then we may also find another branch of
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solutions appearing in Fig. 8. If this were to happen it would
show that � does not correlate exactly with the area of the
islands, but it could help to understand how � scales.

From Fig. 6�b� we see that Cmax grows like �−� in the
large � limit and moreover that there is a correlation be-
tween � and the size of the flow islands. However, the exact
scaling exponent for small � is less clear, and this limit is
examined further in the next section by considering a simpli-
fied model of the flow field.

A. Understanding the small � limit:
Analysis of the TPSF

To understand the scalar distribution in the small � limit
of the shear flow �Eq. �1.1��, we simplify the problem to one
that can be analyzed more easily. We consider the flow con-
sisting of two shearing motions where we “switch” from one
to the other after a given time ts; this is known in literature as
the TPSF.4,5 Thus, for one period our flow becomes

u = �2 sin x ŷ , 0 
 t � ts,

2 sin y x̂ , ts 
 t � 2ts.
�

This simplified flow takes away the complication of the flow
axis varying continuously between these two shear flows as
in Eq. �1.1�. The analysis in this section shows that the so-
lution for the scalar field in the initial half of the period is

easy to examine analytically, while the second half leads to a
boundary layer type problem for small �. Before carrying out
an analytical study we first examine the numerical results.

Figure 9�a� plots Cmax�t� for the TPSF with ts=2500 for
�=10−1, 10−2, 10−3, and 10−4 labeled 1, 2, 3, and 4, respec-
tively. We observe that over the first half of the period, Cmax

increases to �−1, if ts is large enough to allow this. This
happens because for this time the shear flow acts parallel to
the injection of scalar from the source and scalar builds up
over this half period until it balances diffusion and c�x ,y�
=�−1 cos x. However, for ts
 t
2ts the shear flow acts per-
pendicular to the source, effectively stretching out the scalar
into very fine filaments, which diffusion can then act on and
remove. Thus, at some point Cmax reaches a constant value, a
steady state; however, for smaller values of � the diffusion is
weaker and it takes longer for the tracer to cascade to the
scales at which diffusion balances stretching. Figure 9�b�
again plots Cmax in this TPSF for �=10−3, but with two val-
ues of ts. The outcome is that the steady state for ts
 t

2ts is independent of the form of c at t= ts, hence we can
analyze this part of the period by considering the steady form
of Eq. �2.1� for simplicity.

By examining the real space plot of the scalar field
c�x ,y� in the steady state for ts
 t
2ts in Fig. 10, we can
clearly see that as � is reduced �see panel �b� for �=10−3� the
scalar distribution becomes concentrated around y=0 and
��. This is not as clear for larger values of �, such as �
=10−1 in panel �a�, and so to understand how Cmax varies
with � we investigate the limit of small �.

1. Steady solution for t� ts

For the first half of the flow period, the steady form of
Eq. �2.1� simplifies to

2 sin x
�c

�y
= ��2c + cos x . �4.1�

This equation can easily be solved by seeking a solution for
c�x ,y� in terms of its Fourier components

c = c1,0eix + c1,1ei�x+y� + c1,−1ei�x−y� + c0,1eiy + ¯ + c.c.,

and then equating the coefficients of each component. Doing
this we find that c1,0=1 / �2�� and all other coefficients are
zero. Thus,

c =
eix

2�
+ c.c. =

cos x

�
,

and hence Cmax=�−1 for large times, as observed in Fig. 9�a�.

2. Steady solution for ts< t<2ts

For the second half of the flow period the steady form of
Eq. �2.1� takes the similar form

2 sin y
�c

�x
= ��2c + cos x . �4.2�

In this case, as the flow is independent of x we can assume
that the scalar is harmonic in x with wavenumber 1. Thus, for
small � we are seeking a solution to Eq. �4.1� in the form
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FIG. 8. Plot of the scaling exponent of Cmax, �, as a function of the area of
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c = �c0�y,t� + �c1�y,t� + O��2��eix + c.c., �4.3�

where we denote c̃=c0�y , t�+�c1�y , t�+O��2�. Substituting
this into Eq. �4.1� gives at O�1�,

2ic0 sin y = 1
2 , �4.4�

and at O���,

2ic1 sin y = 	 �2

�y2 − 1
c0. �4.5�

Solving these two algebraic equations for c0 and c1 gives

c = 	−
i

4 sin y
−

� cos2 y

2 sin4 y

eix + c.c.

However, this expression has a singularity as y→0; in fact in
this limit the above expression becomes

c = 	−
i

4y
−

�

2y4
eix + c.c., �4.6�

which contradicts Fig. 9 that shows a finite value of Cmax at
y=0. Thus, using this knowledge and Fig. 10�b�, we know
that there is a layer about y=0 �or similarly y= ��� where
the diffusive effects are more important. The above result
can also be found in Ref. 20; however, the inner solution is
only calculated numerically while below we give the analyti-
cal form of this solution.

Substituting Eq. �4.3� into Eq. �4.2� and expanding about
y=0 leads to the equation

�2c̃

�y2 − 	2iy

�
+ �
c̃ = −

1

2�
.

We solve this problem by calculating the Green’s function
G�y ,s� which satisfies

�2G

�y2 − 	2iy

�
+ �
G = ��y − s� , �4.7�

where ��X� is the Dirac delta function. The Green’s function
must also satisfy the jump conditions

�G�y=s−
y=s+

= 0 and � �G

�y
�

y=s−

y=s+

= 1.

The Green’s function is calculated by transforming the ho-
mogeneous form of Eq. �4.7� to the Airy equation

�2G

�Y2 − YG = 0, �4.8�

by changing variables to Y =Ay, where A3=2i /�, and ne-
glecting the small � term in the brackets. To have exponen-
tial decay for large Y we choose the solution

G�Y,s� = ��s�Ai�Y� .

We convert this expression back into the y-space and we take
A= �2 /��1/3ei�/6 for s
y and A= �2 /��1/3e5i�/6 for y
s. �The
third root gives y purely imaginary and is of no significance
for this problem.� This gives the Green’s function as

G = ���s�Ai�fy� , s 
 y ,

��s�Ai�e2�i/3fy� , y 
 s ,
� �4.9�

where f = �2 /��1/3ei�/6 and ��s� and ��s� are arbitrary func-
tions. Solving for ��s� and ��s� using the jump conditions
gives

G = �− 2�ei�/6f−1Ai�e2�i/3fs�Ai�fy� , s 
 y ,

− 2�ei�/6f−1Ai�fs�Ai�e2�i/3fy� , y 
 s .
� �4.10�

Thus, the general solution for c̃�y� is
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FIG. 9. Plot of Cmax�t� for the TPSF. Panel �a� plots this
quantity for �=10−1, 10−2, 10−3 and 10−4 labeled 1, 2, 3,
and 4, respectively, where ts=2500. Panel �b� shows the
case �=10−3 but with ts=2500 �solid line� and ts
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FIG. 10. �Color online� Plot of the
scalar field for the TPSF for ts
 t

2ts and for �a� �=10−1 and �b� �
=10−3. Red �midgray� corresponds to
large positive values of c and dark
blue �dark gray� corresponds to large
negative c. The black line is the con-
tour c=0.
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c̃�y� = − 

−�

� G�s,y�
2�

ds ,

which when integrated gives

c̃ =
�

�2�2�1/3� ei�/6�1/3

3 
 21/3 Ai�fy� + Ai�fy�

0

y

Ai�e2�i/3fs�ds

+ Ai�e2�i/3fy�

y

�

Ai�fs�ds� . �4.11�

By using the asymptotic expressions from pp. 448 and 449 of
Ref. 21, the leading order term of the large y expansion of
Eq. �4.11� can be shown to be

c̃ � −
i

4y
,

which agrees with Eq. �4.6�. Also, from the numerical simu-
lations in this section we know that the maximum value of c
occurs at y=0, so evaluating Eq. �4.11� at y=0 gives

c = 2c̃ cos x, c̃ =
�Ai�0�

31/222/3�1/3 ,

and

Cmax � 0.811�−1/3. �4.12�

This asymptotic value of Cmax �dashed line� is plotted with
the value obtained from the full numerical simulation �solid
line� in Fig. 11. Note that the agreement is excellent for
small �.

Linking this result back to the �=0.01 result �line 1� of
Fig. 6�a� shows that as �→0 then Cmax= 1

2 ��−1+0.811�−1/3

+o��−1/3��, which when compared to the �=0.01 result
shows reasonable agreement. The agreement would improve
as � is reduced further, but gaining this result numerically is
beyond the parameter range that we can easily compute.

B. Effective diffusion

A useful diagnostic for examining scalar fields is the
effective diffusion of the scalar field.9,10,13,14 This diagnostic
has the useful property that it is large in regions where the
scalar field is well mixed, and low in regions of poorly

mixed scalar,9,13 thus in this section we shall apply it to sca-
lar fields from flows with and without islands to try to un-
derstand how the scalar mixes within these flows.

The time evolution of the scalar in the transformed
isotracer coordinates is determined as a function of area in
two dimensions9 or volume in three dimensions.10 For the
two-dimensional case we define the area of a contour C as
the region bounded by this contour, i.e., everywhere where
c�x , t��C. Thus, we write

A =
 
 H�C − c�x,t��dA , �4.13�

where H�X� is the Heaviside function. Under this change of
coordinates Eq. �2.1� becomes

�C

�t
=

�

�A
	Keff�A,t�

�C

�A

 + �S�A, �4.14�

where the effective diffusion can be written as

Keff =
�A

�C



��C,t�
���c�ds =

����c�2�A

��C/�A�2 . �4.15�

The contour ��C , t� bounds the region A at a time t, and the
weighted contour average of a quantity � is given by

���A =
�

�A



c�C�A,t�
�dA = 	


�

ds

��c�
−1

�

�
ds

��c�
.

In this study we calculate the effective diffusion of a particu-
lar scalar contour C using both forms of Eq. �4.15� and this
then acts as a check on the resolution of our code. For more
information on numerical evaluation by the second method
in Eq. �4.15�, see Refs. 13 and 14.

In this section we consider the time-averaged form of
Keff to give a view of how the scalar is mixed over one
period of the flow. Thus, we define the time-averaged effec-
tive diffusion as

K̂eff = Keff
�C

�A
� �C

�A
. �4.16�

Previous studies have shown that areas of large effective
diffusion correspond to regions of the flow where the scalar
is well mixed.9,13,14 Thus, we consider how the time-
averaged effective diffusion may look for two flow fields,
one without islands ��=0.5� and one with islands ��=1�.
These effective diffusivities K̂eff are plotted for �=0.5 in Fig.
12�a� and �=1 for Fig. 12�b� both for �=10−1, 10−2, 10−3,
and 10−4 labeled 1, 2, 3, and 4, respectively. In Fig. 12 we

plot K̂eff as a function of A, thus A=0 corresponds to
C=−Cmax, A=4�2 corresponds to C=Cmax and A=2�2 at
C=0.

One clear distinction to note from the two panels in Fig.

12 is that K̂eff�A� for �=0.5 has a much wider profile than

for �=1, i.e., that K̂eff�
1
2max�K̂eff� over a much larger range

of area values for �=0.5. For ��10−2, K̂eff is larger for most
values of A for �=0.5, showing that a globally chaotic flow
mixes scalar better than a flow with islands ��=1�. However,
as � is reduced to 10−4 �line 4 in Fig. 12� we see that al-
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10-4 10-3 10-2 10-1

κ

maxC

FIG. 11. Plot of Cmax��� for the TPSF �ts
 t
2ts�, with the simulation
results as the solid line and the asymptotic result �Eq. �4.12�� as the dashed
line.
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though K̂eff has a larger value �suggesting that the scalar is
generally better mixed� over most of the domain for �=0.5,

there is a region around A=2�2 for �=1 where K̂eff is larger,
suggesting that the chaotic band seen in Figs. 4�g� and 4�h�
contains scalar which is better mixed than the scalar seen in
Figs. 4�c� and 4�d�. Another point to note is that for �=0.5,
there is a clear difference between the �=10−3 �line 3� and
the �=10−4 �line 4� results, while for �=1 these two results

are much more similar. This suggests that if K̂eff has a finite
limit as �→0 then the presence of islands may cause this
limit to be obtained for a larger value of �.

Turner et al.14 calculated results for K̂eff for �=10−2,
10−3, and 10−4 using an Eulerian code. The restrictions using
this code mean that steady states were hard to reach as they
require very long time integrations, and in fact the results for
�=10−3 and 10−4 �along with 10−5 and 10−6� in Fig. 13 of
Turner et al.14 are not at a steady state, as speculated in the
previous paper. However, the semi-Lagrangian code in the
current paper allows us to integrate for long time periods, so
we can be sure that the results in Fig. 12�b� really are steady.

Thus, for these steady results we note that K̂eff for 10−3 and
10−4 are fairly similar; however, we would still need to ex-
amine much smaller values of � to fully determine whether

or not there is a finite limit for K̂eff as �→0, and this ques-
tion is left for future research.

V. CONCLUSIONS AND DISCUSSION

In this paper we studied the behavior of a scalar field in
a velocity field with a steady source of scalar. The velocity
field takes the form of a shear flow which changes from
being approximately parallel to the y-axis to being approxi-
mately parallel to the x-axis periodically with period T
=� /�. The parameter � can be varied and the flow field
changes from configurations where the Poincaré section is
globally chaotic to situations where it has islands surrounded
by a chaotic sea. As � is decreased the globally chaotic and
island cases alternate at the rate 1 /� due to a resonance
effect of the flow field. Throughout this work we have con-
centrated on the large time form of the scalar when it is in a
periodic state and we can sensibly define a time average for
the scalar diagnostics over each period of the flow.

The results show that the time-averaged lengths of scalar
contours in the chaotic region approximately increase as
�−1/2 for both flows with islands and without; however, the
time-averaged maximum value of the scalar, Cmax, depends

more strongly on the size of the flow islands with larger
islands giving a larger value of Cmax. The flow field in Eq.
�1.1� is not typical of an atmospheric flow; however, this
result is still of interest to those investigating the build up of
pollutants in the atmosphere or other fluid flows. For large
values of �, the scalar field and flow field have an almost
cellular structure, and Cmax��−1, while as � is decreased
Cmax��−�, where � decreases from 1 and there is a correla-
tion between � and the area of the flow islands. This
algebraic growth, as opposed to the −ln �-type growth seen
in the simulations, also begins to occur for smaller values of
� as � is reduced. At ��0.75 the periodic islands disappear
and at this point Cmax appears to increase like −ln �. Thus,
the presence of the islands in the flow affects the scalar field
by inhibiting mixing and allowing scalar concentrations to
build up.

For small values of � where the flow field exhibits a
resonance effect, Cmax again appears to grow like �−� for an
exponent �� �0,1�, but on careful examination it actually
grows as �−� plus a small correction term. For the case of
very small � we calculate this correction term by considering
the TPSF which acts parallel to the y-axis for a fixed amount
of time before switching to acting parallel to the x-axis. In
this flow field the scalar builds up over the first period of the
flow and then is sheared perpendicular to the source for the
second half of the period. For this flow the scalar rises to the
constant value Cmax=�−1 over the first half period and then
reduces to another constant value for the second half of the
flow. In this half, for small �, the scalar becomes concen-
trated at y=0 in a thin boundary layer, and the solution to
this problem is found using matched asymptotic expansions
to be Cmax�0.811�−1/3. This means that as �→0, Cmax

� 1
2 ��−1+0.811�−1/3�.
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