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Learning of Spatio–Temporal Codes
in a Coupled Oscillator System

Gábor Orosz, Peter Ashwin, and Stuart Townley

Abstract—In this paper, we consider a learning strategy that
allows one to transmit information between two coupled phase
oscillator systems (called teaching and learning systems) via fre-
quency adaptation. The dynamics of these systems can be modeled
with reference to a number of partially synchronized cluster
states and transitions between them. Forcing the teaching system
by steady but spatially nonhomogeneous inputs produces cyclic
sequences of transitions between the cluster states, that is, infor-
mation about inputs is encoded via a “winnerless competition”
process into spatio–temporal codes. The large variety of codes
can be learned by the learning system that adapts its frequencies
to those of the teaching system. We visualize the dynamics using
“weighted order parameters (WOPs)” that are analogous to “local
field potentials” in neural systems. Since spatio–temporal coding
is a mechanism that appears in olfactory systems, the developed
learning rules may help to extract information from these neural
ensembles.

Index Terms—Adaptive learning, coupled oscillator system, het-
eroclinic network, spatio–temporal code, winnerless competition.

I. INTRODUCTION AND MOTIVATION

N EURONS communicate with electrical and chemical
signals with finite signal transmission times. These

transmission delays may impede full synchronization but
allow polysynchronization [10] leading to partially synchro-
nized cluster states. In a variety of neural systems, an important
mechanism at play is the use of spatio–temporal codes involving
partially synchronized cluster states to represent information
[28], [29]. In particular, there is biological evidence that such
spatio–temporal codes may be an important part of the en-
coding of spatially nonhomogenous inputs in olfactory systems
such as the insect antennal lobe and mammalian olfactory bulb
[22], [23], [27]. (By spatio–temporal code, we rather mean
identity-temporal code since information depends on which
neurons are acting rather than where they lie in physical space.)

A plausible nonlinear dynamical mechanism that robustly
produces a spatio–temporal code is a process of winnerless
competition between unstable cluster states [1], [3]. This paper
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takes these ideas further; we study how a variety of different
inputs can be converted into different spatio–temporal codes.
Furthermore, we derive a non-Hebbian learning rule that al-
lows one to transmit information between two systems (that
are capable of winnerless competition) via synchronization
and frequency adaptation. Our motivation for the proposed
algorithm is to be able to extract information from a bio-
logical neural network (teaching system) by connecting it to
an artificial neural network (learning system) that is able to
learn spatio–temporal codes. The adaptive learning algorithm
proposed in this paper is similar to the algorithm developed in
[32] and it guarantees global convergence. This is in contrast
to earlier biologically motivated examples where only local
convergence was achieved; see, e.g., [30].

The winnerless competition dynamics of the neural network
we consider is governed by a robust attracting heteroclinic
network that is subject to spatially nonhomogeneous time-in-
dependent inputs (that detune the natural frequencies of
oscillators) and background noise (that is uncorrelated in
space and time). The heteroclinic network consists of partially
synchronized cluster states of saddle type (the nodes) that
are connected by their unstable manifolds (the edges). The
graph structure of the heteroclinic network—designed by the
dynamics—is implicit in the neural network itself but is much
more complex [2]. Consequently, the time evolution consists of
a sequence of quasi-steady residences near partially synchro-
nized cluster states interspersed with fast transitions, called
switches, between different cluster states. A spatio–temporal
code is then a cyclic sequence of switches between cluster
states, i.e., a cyclic path along the graph of the heteroclinic net-
work. In this sense, the heteroclinic network acts as a skeleton
for sequential switching dynamics. (From now on we use
sequential switching as a synonym for winnerless competition.)

Since the studied dynamics is not reducible to any low-dimen-
sional subspace there exist a large variety of cyclic sequences for
even a small numbers of neurons. Applying different spatially
nonhomogeneous time-independent inputs one may observe a
large variety of different spatio–temporal codes (while the char-
acteristic switching time depends on the magnitude of inputs).
We will show that the spatio–temporal coding can be reduced
to a combinatorial problem. Similar results may be obtained by
reducing neural models to discrete dynamics [12], [31]. The ob-
tained coding scenario is robust against small changes in initial
conditions and against noise while it is sensitive to changes in
input configurations. The dynamics is also robust against small
changes in parameters, i.e., structurally stable.

When leaving the parameter domain of sequential switching,
the heteroclinic structure may be “destroyed” leading to chaos
[2]. Such edge-of-criticality behavior is claimed to be typical
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in neural systems [6], [7], [14], [20]. We remark that, beside
heteroclinic structures, there are other proposed nonlinear dy-
namical mechanisms that can cause transitions between cluster
states and so result in spatio–temporal codes. “Chaotic itin-
erancy” occurs when destabilized attractors (called “attractor
ruins”) are interconnected by unstable manifolds [5], [13],
[33]. Such attractor ruins are closely related to Milnor attrac-
tors [33], while interconnected Milnor attractors may become
heteroclinic cycles when the noninvertibility of the underlying
dynamical system is removed [15]. “Spatio–temporal chaos”
may also lead to the appearance of (even more complicated)
spatio–temporal patterns in simple coupled oscillator models
[21] and in hierarchical brain models [18], [19]. Note that
chaotic itinerancy and spatio–temporal chaos are sensitive to
initial conditions and noise in contrast to sequential switching.

In this paper, we introduce a weighted order parameter
(WOP) to represent the state of the system. This is a scalar
observable that distinguishes between different cluster states,
meaning that the spatio–temporal code can be represented as
a single time series. The WOP mimics the local field potential
(LFP) for neural ensembles.

To transmit information about the code from one system
to another, an appropriate learning rule has to be derived. We
consider an idealized teaching system that has its frequen-
cies detuned by the input and produces the corresponding
spatio–temporal code. The derived learning rule forces the
learning system to synchronize with the teaching one and
adapt its frequencies to those of the teaching system. When
the learning phase is completed, the learning system con-
tinues to shadow the teaching system. In this way, the learning
system encodes information about the spatio–temporal code,
i.e., about the input provided to the teaching system. This
synchronize-and-adapt learning scenario is required since the
spatio–temporal codes cannot be represented by simple point
attractors in state space. Note that during the learning procedure
only the intrinsic frequencies of oscillators are changed in the
learning system while the couplings between those oscillators
are left intact. In other words, a non-Hebbian learning algorithm
is proposed in this paper.

The paper is organized as follows. In Section II, we introduce
the coupled oscillator system consisting of two copies of the
system discussed in [2] with coupling from the teaching to the
learning system and adaptation of the frequencies in the learning
system. The robust dynamics of the teaching system is described
in Section III. The dynamics of the adaptive learning is dis-
cussed in Section IV. Here we give a proof of stability of the
synchronized-adapted state, and then by numerical simulation,
we demonstrate that learning can be done effectively even over
periods shorter than one period of the spatio–temporal code.
Learning is illustrated using a WOP. Finally, in Section V, we
outline some of the consequences and outstanding problems of
this approach.

II. MODELING

We consider two coupled phase oscillator systems of the type
studied in [2], each containing oscillators: a teaching system
with phases and a learning system with

Fig. 1. Sketch of the teaching and learning systems in (1) when each system
contains� � � oscillators. Couplings inside a system are represented by solid
arrows while couplings between systems are represented by dashed arrows.

phases that are coupled to each other. For
each we have

(teach)

(learn)

(adapt) (1)

where the dot denotes differentiation with respect to time and
. The frequencies of the teaching system

are time independent while the frequencies of the learning
system will adaptively evolve in time. The quantities

stand for uncorrelated white noise such that the as-
sociated random walk has unit growth of variance per unit time.
The noise is scaled by the noise strength . In (1), the first
equations describe the time evolution of phases in the teaching
system while the last equations describe the time evolution
of phases and adaptation of frequencies in the learning system.

A sketch of the teaching and learning systems is depicted
in Fig. 1 in case of where solid arrows represent the
coupling between oscillators inside a system while dashed ar-
rows represent the adaptive couplings and between oscil-
lators of two different systems. Note that repre-
sents the forcing of the th oscillator by the th oscillator in
the teaching system while means the same in the
learning system. Furthermore, represents the forcing
of the th oscillator in the learning system by the th oscillator
in the teaching system and governs the adaptation of
the frequency of the th oscillator in the learning system. We
will specify the adaptive couplings and in Section IV.

In this paper, we consider the coupling function

(2)

and use the parameters

(3)

The -periodic coupling function can be obtained as a
Fourier series by performing a phase reduction of a realistic
neural model, e.g., Hodgkin–Huxley model with electrotonic or
synaptic coupling [8], [34]. In (2), we consider a truncation of
the coupling function up to second order that permits clustering
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up to three clusters. Indeed, to study clustering that involves
higher number of clusters, more harmonics need to be included
[16], [17]. The parameters , , , and are originated from
neural parameters. In particular, transmission delays between
neurons alter the phase shifts and [11]. It will be shown
below that the heteroclinic network is hyperbolic and so the
switching dynamics is robust to small changes in parameters
(structurally stable). So one may vary the parameters around the
values given in (3) and obtain the same qualitative dynamics.
The finite parameter domain corresponding to switching dy-
namics changes as is increased. However, such a domain can
be found, so there exists structurally stable switching dynamics
for large , as will be demonstrated in Section IV-B.

III. SWITCHING DYNAMICS BETWEEN CLUSTER STATES

In this section, we summarize the sequential switching
dynamics through an isolated system when its frequencies are
modulated by spatially nonhomogeneous constant inputs. That
is, we consider the first equations in (1)

(4)

Note that the right-hand side only depends on phase differences,
so it is sufficient to examine these to determine the behavior of
the system.

We assume that the natural frequencies are close to the
average frequency

(5)

In particular, we consider that the frequencies are evenly dis-
tributed

(6)

where and the set is a permutation of
. The second term in (6) can be interpreted either

as a detuning to the average frequency or as a constant ex-
ternal input added to a system of identical oscillators. For any
input configuration each oscillator receives a dif-
ferent constant stimulus of the order of the input magnitude

. We will use the abbreviation: oscillator receives
stimulus meaning that oscillator receives stimulus

. Note that there exist different input configu-
rations. These configurations are special in the sense that the
stimuli are equidistant while the qualitative dynamics do not
change for near-equidistant stimuli as will be demonstrated in
Section IV-B.

For oscillators, considering and in
(4) and (6), there exists a partially synchronized cluster state

(7)

with constant frequency and phases , , and . Since de-
scribes the phases of oscillators, (7) describes a periodic orbit in
the state space of those oscillators. Along this periodic orbit, the

TABLE I
LIST OF CLUSTER STATES FOR � � � OSCILLATORS. (EACH BLOCK MAY

BE GENERATED FROM ANOTHER BY CYCLIC PERMUTATION

OF THE COMPONENTS)

oscillators are frequency synchronized with frequency and the
clustering is due to the phases , , and . In this paper, we will
use the abbreviated names cluster/oscillators, cluster/oscil-
lators, and oscillator. One may substitute the cluster state (7)
into (4) and the obtained algebraic equations determine the fre-
quency and the phase differences and that are
unique for parameters (3); see (25) in part A of the Appendix.
Furthermore, there are additional cluster states with different
cluster configurations obtained by permuting the components
of . (There are cluster states.)
Table I lists all (30) states for oscillators so that the term

is not spelled out (and this convention is adopted
in the remainder of this paper).

One may linearize (4) about the cluster state (7) (or about
any of its symmetrical copies) and calculate the corresponding
eigenvalues and the eigenvectors ; see
(26)–(31) in part A of the Appendix. For parameters (3), there
are eigenvalues on both sides of the imaginary axis such that

(8)

that is, the above cluster states are saddle type and the most at-
tracting eigenvalue is stronger that the repelling one. [Notice
that and are real while and can be real or a com-
plex conjugate pair; see (26) and (27).] Since and

, the cluster states are stable in the subspace spanned
by and where both the and the clusters remain synchro-
nized. Since the eigenvalue , the eigenvector shows
that the cluster is “stable,” that is, perturbations desynchro-
nizing the cluster decay in time. The different vectors ap-
pearing in show that there are different perturbations de-
pending on which oscillator has its phase advanced with re-
spect to the other oscillators. Since the eigenvalue , the
eigenvector shows that the cluster is “unstable,” that is, per-
turbations desynchronizing the cluster grow in time and lead
the system away from the cluster state in state space. The vec-
tors appearing in correspond to the different perturbations
that can be applied to the cluster.
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Fig. 2. Two six-cycles (spatio–temporal codes) in case of � � � oscillators
for input configuration �� � � � � � � � � � � ��� �� �� �� ��. At each switch, the
phase of the � oscillator receiving the larger stimulus changes to �, the phase
of the other � oscillator changes to �, and the phases of the � and � oscilla-
tors change to � and �, respectively. Thus, the underlined oscillators (receiving
stimuli ��� ��) swap their phases � and �, while the overlined oscillators (re-
ceiving stimuli ��� �� ��) cyclically permute their phases �, �, and �.

Fig. 3. One of the 20 six-cycles (spatio–temporal codes) in case of � � 	
oscillators for the input configuration �� � � � � � � � � � � � � � � � � � �
��� �� �� �� �� 
� �� �� 	�. At each switch, the phase of the � oscillator receiving
the largest stimulus changes to �, the phase of the other � oscillators changes
to �, and the phases of the � and � oscillators change to � and �, respectively.
Thus, the underlined oscillators (receiving stimuli ��� �� �� �� �� 
�) swap their
phases � and �, while the overlined oscillators (receiving stimuli ��� �� 	�)
cyclically permute their phases �, �, and �.

Following the unstable directions in for each cluster state
(by numerical simulation) shows that the cluster states are con-
nected by their unstable manifolds to form an attracting hetero-
clinic network. This network governs the switching dynamics
between cluster states, and it can be represented by a graph
where nodes represent cluster states and directed edges repre-
sent switches. Each node has incoming edges (corresponding
to the different vectors in ) and outgoing edges (corre-
sponding to the different vectors in ). The state reached after
a switch is determined by which oscillator has its phase ad-
vanced with respect to the other oscillators in the current state.
The phase of this oscillator changes to , the phase of the other

oscillators changes to , and the phases of the and oscil-
lators change to and , respectively; see switches in Figs. 2
and 3. More details about the simplest nontrivial case of
oscillators can be found in [2].

Note that one may find parameter domains where

(9)

[cf., (8)]. In this case, the appearing switching dynamics remains
qualitatively similar except that the roles of and groups are
swapped. Also note that having one of the eigenvalue configu-
rations (8) or (9) is necessary but not sufficient for the existence
of the attracting heteroclinic network that also requires the ap-
propriate connections by the unstable manifolds.

Considering (4) and (6) for and with eigenvalues
(8), the time interval between switches increases exponentially

with exponent , where , that
is, oscillations slow down. For and , each switch
is randomly chosen by the noise, thus a random walk along the
heteroclinic network is observed. In this case, there exists a char-
acteristic switching period . For and

, the input configuration determines in each
state which oscillator’s phase is advanced the most, i.e., de-
termines the switch. Consequently, each node has only one out-
going edge. The heteroclinic network reduces to cyclic paths
of six switches (six-cycles) that are approached after a finite
number of transient switches. These cyclic paths correspond to
stable limit cycles in state space. Which six-cycle is approached,
and via which transient path, depends on the initial condition
(the transients are not discussed in detail in this paper). The char-
acteristic switching period is now . Finally, for

, the input dominates the dynamics, i.e., six-cycles
persist, as will be demonstrated in Section IV-B.

We remark that along the cyclic paths each switch has
a slightly different switching period. One may incorporate
these time differences into the spatio–temporal code to give a
one-to-one correspondence between the inputs and the codes
[35]. In this paper, we consider relatively small signal-to-noise
ratio so these small differences in switching period are not
easily decodable. On the other hand, the coding scenario ex-
plained below is very robust against noise.

A. Six-Cycles as Spatio–Temporal Codes:
Combinatorics of Encoding

The information about the input configuration is
encoded into the appearing six-cycles which are the spatio–tem-
poral codes. Here we describe this coding scenario combinato-
rially. First, we discuss the simplest nontrivial case of
oscillators. Fig. 2 shows the two six-cycles (spatio–temporal
codes) for input configuration . Notice that the un-
derlined oscillators (receiving stimuli ) swap their phases
and at each switch (a period two oscillation), and the overlined
oscillators (receiving stimuli ) cyclically permute their
phases , , and (a period three oscillation). Combining these
period two and period three oscillations gives a cycle with min-
imal period six. (There are two different six-cycles since there
are two different period three oscillations with cyclically per-
muted phases.)

In fact, the same spatio–temporal codes are obtained for all
input configurations with permutations within the pair of small
stimuli and within the triplet of large stimuli .
(There are such cases.) The first row of the code
table in Table II represents all these cases such that
and represent the pair and the triplet, respectively.
Permutations which mix elements of the pair and the triplet
results in different spatio–temporal codes. Thus, the 120 input
configurations are divided into groups that
are distinguished by which three oscillators receive the large
stimuli . Each group results in a different pair of
spatio–temporal codes as shown in Table II.

In this way, all 20 possible six-cycles appear as spatio–tem-
poral codes. Note that the total number of six-cycles can be cal-
culated with the help of an adjacency matrix . The elements
of are if and only if there is a directed edge from
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TABLE II
CODE TABLE FOR � � � OSCILLATORS. FOR ANY INPUT CONFIGURATION

GROUP, THE PAIR ��� �� REPRESENTS ANY OF THE TWO PERMUTATIONS

OF ��� �� WHILE THE TRIPLET ������� REPRESENTS ANY OF THE SIX

PERMUTATIONS OF ��� �� ��. THE SIX-CYCLES (a)–(f) ARE

REPRESENTED AS TIME SERIES IN FIG. 4

node to and , otherwise. The number of cyclic
paths of length is given by ; see [9]. The denominator

is needed since counts each cycle times (starting from
different nodes of the cycle). Since for
(there are no two-, three-, and four-cycles) the six-cycles are
nonrepetitive.

The above coding strategy persists for larger numbers of
oscillators with essentially the same combinatorial rules. In the
general case, there are input configurations

TABLE III
THE NUMBER OF SPATIALLY NONHOMOGENEOUS TIME-INDEPENDENT INPUTS

AND SPATIO–TEMPORAL CODES FOR � � �� 	 � OSCILLATORS. NOTE THAT

THE LAST ROW CAN ALSO BE CALCULATED AS THE PRODUCT

OF THE TWO ROWS ABOVE IT

which are classified into groups distinguished by which
three oscillators receive the largest stimuli (now
representing all six permutations of ).
Indeed, each group contains input configurations.
Furthermore, for a particular input configuration group, one
may find six-cycles (spatio–temporal codes) since there
are period two oscillations (oscillators swap their
phases and at each switch) and there are two period three
oscillations (oscillators cyclically permute their phases , ,
and ). Indeed, the total number of six-cycles can
be calculated by multiplying the number of input configura-
tion groups with number of six-cycles for a particular input
configuration. Table III summarizes these results and gives the
corresponding numbers for oscillators.

Fig. 3 displays one of the 20 six-cycles in case of
oscillators for the input configuration (or
rather for the input configuration group
where represents the permutations of

while the triplet represents the
permutations of ). Notice that at each switch the under-
lined oscillators swap their phases and while the overlined
oscillators cyclically permute their phases , , and . The
other 19 spatio–temporal codes appearing for the same input
configuration group may be obtained by permuting the un-
derlined oscillators and noncyclically permuting the overlined
oscillators for each node.

B. Representing Spatio–Temporal Codes:
Weighted Order Parameter

As the dynamics of (4) is high dimensional and somewhat
difficult to visualize, we introduce a WOP that takes an arbi-
trarily weighted combination of phases from the oscillators.
Using weights with , the WOP is defined
as

(10)

Note that and attains its maximum when the
oscillators are in full synchrony, that is

(11)
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for all . However, does not necessarily correspond
to evenly spaced phases.

The conventional choice for the weights is for all
but the resulting order parameter does not distinguish between
the different symmetric copies of cluster states. For this paper,
we set

(12)

where the sequence is a permutation of
. The WOP is as a scalar output signal

that averages the multiple signals of individual oscillators in a
nontrivial way. The nonuniform weight distribution gives a dif-
ferent scalar output for each different cluster state. So a suffi-
ciently long period of the WOP contains all necessary informa-
tion about a spatio–temporal code.

In real neural ensembles, each neuron produces an extracel-
lular electric field [26]. When a probe is inserted into a neural
ensemble, the measured voltage represent a weighted average
of extracellular potentials of individual neurons. The neurons
that are closer to the probe in physical space contribute more to
the signal than the ones that are further away. The low-pass fil-
tered voltage signal is called the local field potential (LFP) [24],
[25]. Using this analogy, we say that the WOP mimics an LFP
for neural ensembles. However, the weight distribution (12) of
the WOP is an assumption; it is not determined from the weight
distribution of an LFP.

Fig. 4 displays the WOP (10) with weights (12) and exponents
for the first six six-cycles in

Table II. The WOP is plotted on the left and the identified cluster
states are showed on the right. The input magnitude
and noise strength are considered. Note that the
initial conditions are chosen close to one of the cluster states
of the corresponding six-cycle to eliminate transient switches.
Comparing panels (a) to (b), (c) to (d), and (e) to (f) they only
differ in initial conditions while comparing other panels [e.g.,
(a) to (c)] the input configurations differ as well; see Table II.
Notice that the time series of the WOP are different in each case,
that is, this quantity reflects the variety of different spatio–tem-
poral codes. In the next section, we describe a strategy for how
such codes may be learned via synchronization and frequency
adaptation.

IV. ADAPTIVE LEARNING

In this section, we propose a learning rule that allows one
to transmit spatio–temporal codes between the teaching and
learning systems. We consider the adaptive couplings in (1) of
the form

(13)

where indicates the strength of the synchronization cou-
pling and indicates the strength of the adaptation cou-
pling between the teaching and learning systems. As we will
see below, as long as is sufficiently large to ensure synchro-
nization of the two systems, the adaptation process allows the

Fig. 4. Time series corresponding to the six-cycles (a)–(f) in Table II. On the
left, the WOP � is shown as a function of time � where the weights are defined
by (12) with exponents �� � � � � � � � � � � ��� �� �� �� ��. On the right, the
identified cluster states � are displayed. The input magnitude � � �� and
noise strength � � 	� �� are considered while the input configurations are
in the first column of Table II.

learning system to learn the spatio–temporal code in a charac-
teristic time scale of .

By synchronization, we mean that the phases of teaching
system and the phases of the learning system ap-
proach each other as time increases. By adaptation, we mean
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that the frequencies of the learning system approach the
constant frequencies of the teaching system (6) as time
increases. To this end, we define the error variables

(14)

and show that the state

(15)

is asymptotically stable for sufficiently strong synchronization
coupling (regardless the strength of the adaptation coupling

). This means that

(16)

for an open set of initial conditions. That is, by definition (14),
the phases synchronize and the frequencies adapt so that

(17)

Note that according to (1) and (13) only the teaching phases
enter the learning system but not the teaching frequencies. So
we assume that we know the teaching phases but have no infor-
mation about the teaching frequencies; then using the learning
system, we are able to extract the teaching frequencies as limit
values of the learning frequencies.

A. Lyapunov Function Analysis

Here we construct a Lyapunov function to prove the asymp-
totic stability of the synchronized-adapted state, i.e., to show
that synchronization and adaptation happen for any nonspecific
initial condition (global convergence). For more details on Lya-
punov functions, see [4]. For the following analysis, we set the
noise to zero in (1), i.e., . Now taking the difference of the
first two sets of equations, subtracting from the third
set of equations and using the learning rule (13) and definition
(14), we obtain

(18)

We define a Lyapunov function

(19)

where

(20)

The derivative of (19) along trajectories of the system (18) gives

(21)

The function (19) is positive definite for and
and we will show that the derivative (21) is negative

definite when is large enough. In fact, is chosen in (18)
so that , and consequently, the
terms are canceled in the derivative (21).

Lemma 1: If

and (22)

then

(23)

The proof of this lemma is presented in
part B of the Appendix and it allows us to state the
following theorem.

Theorem 1: If (22) holds, then solution (15) is asymptotically
stable, that is, (16) and (17) hold for an open set of initial con-
ditions.

Proof: Lemma 1 implies that the derivative of the Lya-
punov function (21) is negative semidefinite

(24)

where . However, implies and the
dynamics of the system, i.e., the first row of (18), shows that
in this case, . Consequently, the largest invariant set
inside is the origin .
According to the Krasovskii–LaSalle invariance principle [4],
one can conclude that the origin is asymptotically stable.

Theorem 1 states that if the synchronization coupling is
strong enough ( is large enough) then the phases of the
learning system and those of the teaching system synchronize
to each other and the frequencies of the learning system adapt
to those of the teaching system. Note that Theorem 1 provides
us with a sufficient condition for , that is, one may experi-
ence synchronization and adaptation for smaller values of .
Formula (21) shows that the synchronization is followed by
adaptation for any value of .

B. Numerical Simulations

We provide numerical evidence to illustrate the above an-
alytical results. In Figs. 5–8, we illustrate the ability of the
learning system to robustly and repeatably learn a wide range
of spatio–temporal codes. In each figure, we plot the WOP
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Fig. 5. Illustrations showing the process of adaptive learning of a spatio–tem-
poral code for� � � oscillators in each system. During the gray shaded region,
the adaptive couplings are turned on: � � ��� and � � ����; during the re-
mainder of the period, these are set to zero. (a) WOP � as a function of time
� where the weights are defined by (12) with exponents �� � � � � � � � � � �
��� �� �� 	� ��. (b) Identified cluster states �, for both the teaching system (solid
line) and the learning system (dotted line). Observe also that the learning system
continues to shadow the teaching system even after the adaptive couplings are
turned off. (c) Time evolution of frequencies of the learning system 	 are dis-
played. Observe that the ordering of the frequencies is interchanged during the
learning process. The input configuration �
 � 
 � 
 � 
 � 
 � � �	� �� �� �� ��,
the input magnitude � � 	� , and noise strength � � �� 	� are consid-
ered.

given in (10) and the identified states as a function of time ,
for both the teaching system (solid line) and the learning system
(dotted line). If the two systems are synchronized, then the solid
and dotted lines stay close. We also display the frequencies of

Fig. 6. Illustration as in Fig. 5 except there are two learning phases and the
teaching systems is changed between the two phases. At time � � ���, the
input configuration �
 � 
 � 
 � 
 � 
 � is suddenly changed from �	� �� �� �� ��
to ��� 	� �� �� ��. Both spatio–temporal codes are rapidly learned. The input mag-
nitude � � 	� and noise strength � � �� 	� are considered.

the learning system as a function of time . The frequencies
of the learning system are considered to be adapted when they
stay close to the time-independent frequencies of the teaching
system (6). During the gray shaded region, the adaptive
couplings (13) are nonzero: and . During
the white regions, these couplings are turned off: and

.
Fig. 5 illustrates the adaptive learning of a spatio–temporal

code for oscillators. General initial conditions are con-
sidered in the phases of the teaching system, in the phases of the
learning system, and in the frequencies of the learning system
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Fig. 7. Illustration as in Fig. 5 where each subsystem contains � � �
oscillators. The weights used in the order parameter � are defined by (12) with
exponents �� � � � � � � � � � � � � � � � � � � ��� �� �� �� 	� 
� 
� �� �� �.
The input configuration is �� � � � � � � � � � � � � � � � � � �
��� �� �� �� �� �� 	� 
� ��, the input magnitude is � � � , and the noise
strength is � � � � � .

as well. Regarding the frequencies of the teaching system
(6), we consider the input configuration

and the input magnitude while the noise
strength is set to . Consequently, one of the two
six-cycles in Fig. 2 (also shown in the first row of Table II) is ex-
pected to appear. In fact, after some transient steps, the teaching
system approaches the six-cycle in Fig. 2(a).

In the time interval , the adaptive couplings are
turned off. Fig. 5(a) and (b) shows that the teaching system

Fig. 8. Illustration as in Fig. 7(a) where each subsystem contains � � ��
oscillators. The weights used in the order parameter � are defined by (12) with
exponents � � � � � and � � � � � � �, � � �� � � � � � . The input
configuration is given by � � �, � � �� � � � � � , the input magnitude is � �
� , and the noise strength is � � �� � . The phase shifts 	 � �
� and
� � ��
�� are changed compared to (3) to obtain sequential switching.

(solid line) quickly approaches a transient switching path that
terminates at the cyclic path discussed above. The learning
system (dotted line), however, exhibits very different dynamics
due to the initial frequencies being far from as displayed
in Fig. 5(c). In the time interval , the teaching
and learning systems are coupled and their phases rapidly
synchronize to each other as shown in Fig. 5(a) and (b). During
the synchronization process, the frequencies of the learning
system rapidly approach a neighborhood of . However, it
takes a longer time until they adapt to the detuning pattern of
the teaching system (i.e., to the input configuration) as shown
by the inset in Fig. 5(c). Observe that the ordering of the fre-
quencies is interchanged during the learning phase. Notice that
the system adapts in spite of the relatively small signal-to-noise
ratio . In the time interval , the adaptive
couplings are turned off again. Fig. 5(a) and (b) shows that the
trajectory of the learning system shadows the trajectory of the
teaching system even though the two system are uncoupled.
The small deviations between the trajectories are due to small
deviations between the learned frequencies and the prescribed
equidistant teaching frequencies in Fig. 5(c). The characteristic
time of synchronization and adaptation is shorter than the time
period associated with the six-cycle.

In [30] and [32], it was demonstrated that by adapting the
coupling constants in a simple network of oscillators, it is able
to learn a periodic signal (that corresponds to a periodic orbit of
the adapted system). One of the interesting features of system
(1) is that many different periodic signals can be transmitted
from the teaching system to the learning system for a wide range
of periods. In fact, any of the six-cycles listed in Table II can be
learned. By changing the input configuration, one can force both
systems to “switch” from one six-cycle to another as demon-
strated in Fig. 6.

In the time interval , the adaptive couplings
are turned on and the input configuration

is applied. The teaching system approaches the
six-cycle shown on the left in the first row of Table II. The
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initial phases of the teaching system are set close to state
to avoid transient switches but the phases and frequencies
of the learning system are nonspecific. The phases of the
two systems rapidly synchronize as shown by the solid and
dotted lines in Fig. 6(a) and (b), and after synchronization,
the learning frequencies adapt to the teaching ones as plotted
in Fig. 6(c). In the time interval , the adaptive
couplings are turned off and learning trajectory shadows the
teaching one. In the time interval , the input
configuration is changed to
and the teaching system “switches” to the six-cycle shown
on the right in the sixth row of Table II. Again, a rapid
synchronization of the phases is followed by adaptation of
the frequencies. In the following time interval
(when the adaptive couplings are turned off again), shadowing
happens. Note that the cluster states and appear in both
spatio–temporal codes and that is why no transient switches
happen when the system “switches” from one code to the
other. In Fig. 6, the input magnitude and the noise
strength are used (such that the signal-to-noise
ratio is still ). Observe that the larger input results
in faster switching comparing to Fig. 5.

As it was described in Section III, the switching dynamics
remain very similar when the number of oscillators is in-
creased. However, the number of different input configurations
and the number of different spatio–temporal codes increase;
see Table III. Indeed, spatio–temporal codes can be learned
for larger numbers of oscillators as demonstrated in Fig. 7
for where the adaptive couplings are turned on
until . Here we consider the input configuration

, the
input magnitude , the noise strength ,
and general initial conditions. The six-cycle displayed in Fig. 3
is approached after a couple of transient switches. The dy-
namics are clearly comparable to the case of smaller oscillators
although there are many more cluster states.

Finally, to move toward more realistic situations, we show
that sequential switching exists and can be learned for much
larger number of oscillators. Fig. 8 shows learning for
oscillators for the input configuration , ,
input magnitude , and noise strength .
The parameters and are tuned compared
to (3) to find one of the eigenvalue configurations (8) or (9).
The latter case, shown in Fig. 8, appears more robustly but the
dynamics is structurally stable in both cases. Here the number
of spatio–temporal codes is very large ; see Table III. As

is increased, the parameter domain associated with
the sequential switching becomes smaller. In this paper, we only
studied cluster states consisting of three clusters that contain

, , and 1 oscillators, respectively. One may find other (even
larger) parameter domains with sequential switching between
different cluster configurations.

These numerical results demonstrate that the constructed
learning rules for frequency adaptation allow us to transmit
information about the spatio–temporal codes from the teaching
system to the learning system in a robust way. Note that one
may alter the coupling strengths in the teaching or/and the
learning systems to make the two systems nonidentical. Nu-

merical simulations show that learning is still possible if such
alterations are smaller than the input magnitude.

V. CONCLUSION AND DISCUSSION

We studied a coupled oscillator system that can exhibit
winnerless competition/sequential switching between cluster
states and where information about spatially nonhomogeneous
time-independent inputs is encoded into spatio–temporal codes.
These codes are cyclic sequences of switches between cluster
states. We found that one can robustly and repeatably transmit
information between such coupled oscillator systems via syn-
chronization and adaptation of frequencies provided that the
synchronization coupling is sufficiently strong and independent
of the strength of adaptation coupling. Note that this high
degree of “trainability” was achieved without modulating the
couplings inside the learning system, i.e., via a non-Hebbian
learning procedure.

In olfactory neurosystems (one or two synapses away from
the receptors) odor information is encoded into spatio–temporal
codes [22], [23]. In these systems (e.g., antennal lobes of in-
sects or olfactory bulbs of mammals), both neural identity and
timing are used for coding, allowing the system to differentiate
between a great number of different chemical mixtures. Our
work shows dynamics that can robustly give an immense variety
of spatio–temporal codes and gives a learning rule to transmit
information about the codes effectively and rapidly. This may
lay the mathematical foundation of new approaches for reading
out information from these neural ensembles by using artificial
neural networks that are able to learn spatio–temporal codes.
We remark that the learning rule also allows transmission of in-
formation about transient switching sequences that may also be
significant in olfactory systems [27].

In the future, we wish to extend our research in two directions.
On the one hand, neural systems are usually not all-to-all cou-
pled and the coupling characteristics are usually not the same for
each connection. We would like to find spatio–temporal codes
in oscillator systems where some connections are missing and
the existing couplings are not identical. On the other hand, the
current learning algorithm would require voltage recording of
each neuron of the biological system, which is not biologically
feasible. The algorithm also requires an artificial network that is
a very close replica of the biological network, which is difficult
to engineer. We would like to be able to transmit information be-
tween two nonidentical systems using lower dimensional cou-
pling (e.g., a scalar variable). It seems plausible to use a WOP
for this purpose since all information about a spatio–temporal
code is contained within a sufficiently long period of this quan-
tity. The corresponding learning rule may be applicable to “read
out” encoded states from biological systems through a local field
potential.

APPENDIX

A. Determining Cluster States and Their Stability

Substituting the cluster state (7) (or any of its symmetrical
copies) into (4) when , and defining the phase differences
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and , one may obtain

(25)

which determine , , and .
Linearizing (4) about the cluster state (7) (or about any of its

symmetrical copies) results in the eigenvalues

(26)

where

(27)

The eigenvalues and have multiplicity .
For the cluster state (7), the corresponding -di-

mensional eigenvectors are

... (28)

...

...

...

...

...

...

(29)

...

...

...

...

...

...

(30)

...

...

...

...

(31)

where , the scalars , , and are arbi-
trary while one in the set of scalars is zero
and the others are arbitrary and the same holds for the set
of scalars . The complicated expressions of

contain at , , , , , and .
For symmetric copies of (7), the eigenvectors can be determined
by permuting components of (29)–(31) appropriately. Note that

in and, consequently, in are not
necessarily positive.

B. Proof of Lemma 1

Proof: Since is assumed, to prove that (23) holds,
one needs to prove that

(32)

Using (2), one can obtain that

(33)

where

(34)

and notice that

where (35)
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Let us define the new variables

(36)

Note that , that is, and are not independent
variables. Furthermore, and

, while .
Substituting (33) and (34) into (32) and using (36), one can ob-
tain

(37)

where we used (35) to derive the last inequality. By using the
inequalities and ,
one may prove that the last line of (37) is nonnegative if

.
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