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ABSTRACT

We investigate a fully three-dimensional and multilayered spherical dynamic interface dynamo using a finite-
element method based on the three-dimensional tetrahedralization of the whole spherical system. The dynamic
interface dynamo model consists of four magnetically coupled zones: an electrically conducting and uniformly
rotating core, a thin differentially rotating tachocline, a turbulent convection envelope, and a nearly insulating
exterior. In the thin tachocline at the base of the convection zone, a differential rotation, similar to that of the ob-
served solar differential rotation, is imposed. In the convection zone, the Malkus-Proctor formulation with a pre-
scribed � -effect is employed while the fully three-dimensional dynamic feedback of Lorentz forces is taken into
account. Our numerical simulations of the dynamic interface dynamo are focused on the Taylor number Ta ¼ 105

with a unity magnetic Prandtl number. It is shown that the dynamic interface dynamo, depending on the size of the
magnetic Reynolds number Rem based on the differential rotation, can be either nonaxisymmetric or axisymmetric.
When Rem is small or moderate, the dynamic dynamo is characterized by quasi-periodic and nonaxisymmetric
azimuthally traveling waves. When Rem is sufficiently large, the dynamo is characterized by a strong toroidal mag-
netic field, axisymmetric or nearly axisymmetric, that selects dipolar symmetry and propagates equatorward. Implica-
tions of our dynamic interface dynamo for the solar dynamo are also discussed.

Subject headingg: Sun: magnetic fields

1. INTRODUCTION

Regular global-scale solar magnetic activities, such as the 11 yr
sunspot cycle, reflect the complex magnetohydrodynamic pro-
cesses occurring in the deep solar interior (Weiss 1994). In par-
ticular, it is widely believed that the solar tachocline, a highly
differentially rotating transition zone between the convection
envelope and radiative core of the Sun, plays a critical role (e.g.,
Parker 1993; Kosovichev 1996). Significant progress has been
made, via both observations and numerical modeling, in the un-
derstanding of the magnetohydrodynamic processes taking place
in the solar interior (e.g., Brandenburg & Subramanian 2005;
Charbonneau 2005; Zhang & Schubert 2006).

Numerical modeling of the solar magnetohydrodynamic pro-
cesses has mainly focused on the five different aspects: (1) fully
three-dimensional spherical shell simulations of convection-
driven dynamos dealing with various aspects of the problem
(e.g., Glatzmaier & Gilman 1982; Brun & Toomre 2002; Miesch
et al. 2008), for example, an attempt to understand turbulent
convection penetration downward into a tachocline of rotational
shear (Browning et al. 2006); (2) high-resolution simulations in
the localized planar domain aimed at understanding the basic hy-
drodynamic and magnetohydrodynamic processes (e.g., Tobias
1997; Cattaneo 1999; Brandenburg 2001; Cline et al. 2003; Liao
& Zhang 2006; Liao et al. 2007); (3) the kinematic mean field
approach in attempting to elucidate themechanism of the solar in-
terface dynamo (e.g., Parker 1993; Charbonneau & MacGregor
1997; Markiel & Thomas 1999; Dikpati & Charbonneau 1999;

Zhang et al. 2003; Bushby 2003); (4) the kinematic mean field
approach using the previous solar cycle’s data in predicting
the future of an upcoming solar cycle (e.g., Dikpati et al. 2006;
Dikpati & Gilman 2006; Cameron & Schüssler 2007); and (5) the
dynamic mean field approach taking into account the feedback
of an axisymmetric Lorentz force (e.g., Covas et al. 2001; Rempel
2006a, 2006b). These studies paint an increasingly clearer pic-
ture of how the solar dynamo may operate. Highly turbulent
convective motions in the convection zone produce an � -effect
generating a weak magnetic field which either diffuses or is
transported into the tachocline at the base of the convection
zone. The highly differentially rotating tachocline, with a reduced
magnetic diffusivity, generates strong toroidal magnetic fields
propagating toward the equator. When the strong azimuthal fields
stored in the tachocline become unstable as a result of magnetic
buoyancy, the toroidal magnetic fields buckle and twist, even-
tually rising and forming �-shaped loops, intersecting the Sun’s
surface to produce the magnetic active regions and sunspots.
This work is the second paper in a series reporting our attempt

to construct a three-dimensional, multilayered, finite-element solar
interface dynamo model. In the first paper (Zhang et al. 2003), we
described the numerical scheme and finite-element formulation
of the three-dimensional kinematic interface dynamo, and we
also computed the kinematic interface dynamo. There exist two
important features in the kinematic interface dynamo discussed
in the first paper (Zhang et al. 2003): (1) neither spatial nor tem-
poral symmetries are imposed in the kinematic dynamo solutions
and (2) both the radiative core and the exterior to the convection
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zone, magnetically coupled to the magnetic field generation
regions, are solved as part of the kinematic dynamo solution.
It was found that the three-dimensional kinematic interface
dynamo is capable of producing an oscillatory dynamo with a
period of about 20 yr, selecting dipolar symmetry, and propa-
gating equatorward, even though the numerical simulation is
fully three-dimensional.

The primary objective of the present work is to extend the pre-
vious kinematic interface dynamo to the dynamic regime by con-
sidering the fully three-dimensional feedback of Lorentz forces
in the convection zone using the Malkus-Proctor formulation
(Malkus & Proctor 1975) in the absence of thermal convection.
In comparison to the kinematic dynamo problem, the dynamic
interface dynamo requires not only an additional equation of mo-
tion, but also additional physical parameters, such as the Taylor
number Ta, pertaining to the dynamic problem in rotating fluid
systems. Furthermore, we have modified our existing numerical
scheme (Zhang et al. 2003) by introducing an element-by-element
(EBE) finite-element method capable of taking full advantage
of modern massively parallel computers, leading to an effec-
tive parallelization achieving nearly linear scalability on parallel
computers. It should also be mentioned that our EBE finite-
element dynamo code has been carefully compared with the well-
known benchmark dynamo using spectral methods, showing
a satisfactory agreement between two fundamentally different
models (Chan et al. 2007). Following the basic interface dynamo
concept of Parker (1993; see also MacGregor & Charbonneau
1997), we shall assume a separation between the � -effect and
shear flow regions: the convectional � -effect is nonzero only in
the convection zone, while the differential rotation occurs only in
the tachocline. This allows the two magnetic induction sources
to be isolated and identified by switching on or off the action of
the tachocline, and hence offers helpful insight into the interface
generationmechanism. But the explicit effect of the thermal con-
vection and heat equation is neglected in this interface dynamo
model. It is also worth mentioning one major difference between
the current 3D interface dynamo and the axisymmetric dynamo
by Rempel (2006b). In the present model, the three-dimensional
flow cells are able to generate the differential rotation via the
Reynolds stresses, while the effects of the latitudinal entropy
gradient are absent.

Our numerical simulations of the dynamic interface dynamo
are focused on the Taylor number Ta ¼ 105 which is chosen
because it is close to the value of the Taylor number in the solar
convection zone if an appropriate turbulent viscosity is employed
and because it is sufficiently large to have substantial rotational
effects on the dynamics of the convection zone. It was shown
(e.g., Brandenburg et al. 1992) that the rotational effects would
generate the Taylor cylindrical contours of the angular velocity
which cannot be altered by the effects of stratification and com-
pressibility. Later studies suggest that thermal effects, for example
via the latitudinal entropy gradient, may play an important role
in changing the profile of the differential rotation from being cy-
lindrical to conical (e.g., Kitchatinov & Rüdiger 1995; Rempel
2006b). However, since our primary aim is at providing an im-
proved understanding of the basic magnetic field generation pro-
cess in the three-dimensional spherical dynamic interface dynamo
using the Malkus-Proctor formulation, the issue of the Taylor
number puzzle is beyond the scope of the present study.

The remainder of the paper is organized as follows. After dis-
cussing the mathematical formulation of the problem for the
dynamic interface dynamo in x 2, x 3 presents the results of our
three-dimensional dynamic dynamo simulations. Section 4 closes
the paper with a summary and some remarks.

2. MATHEMATICAL FORMULATION

Our spherical dynamic interface dynamo consists of four dif-
ferent zones, as illustrated in Figure 1. The inner radiative sphere,
0 < r < ri, with constant magnetic diffusivity ki , is assumed to
rotate uniformly with the angular velocity 6. If we also adopt a
reference frame that rotates with 6, the magnetic field Bi in the
radiative core is governed by the equations

@Bi

@t
þ k i: < : < Bi ¼ 0; ð1Þ

: = Bi ¼ 0: ð2Þ

Note that the magnetic field Bi cannot be generated in this uni-
formly rotating radiative core assumed in the present model al-
though the magnetic field can be diffused into it. In reality, the
radiative core is not static and may be able to sustain dynamo
action (Spruit 2002; Zahn et al. 2007). Above the radiative core
is the tachocline, a stably stratified region of strong differential
rotation, 60�t, where 60 is in the same direction as 6, 60j j is
the amplitude of the differential rotation, and �t is the dimen-
sionless profile. In the tachocline ri < r < rt, the magnetic dif-
fusivity kt is reduced and the differential rotation shears the weak
poloidal magnetic field that is generated in the convection zone
and that penetrates into the tachocline. The result is a strong
magnetic field Bt in the tachocline, with the amplification pro-
cess described by the equations

@Bt

@t
¼ : < U < Btð Þ � kt: < : < Bt; ð3Þ

: = Bt ¼ 0; ð4Þ

Fig. 1.—Geometry of the three-dimensional, four-zone, dynamic-interface
dynamo model: 0 < r � ri, the uniformly rotating, electrically conducting core
with magnetic diffusivity ki; ri � r � rt , the differentially rotating tachocline
with magnetic diffusivity kt ; rt � r � ro, the convection zone with magnetic
diffusivity ko; and r > ro, the exterior with large magnetic diffusivity ke.
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where

U ¼ �t(r; � )60 < r ¼ 60j j�t(� )r sin � sin �
(r � ri)

(rt � ri)

� �
f̂; ð5Þ

where r is the position vector and�t(� ) represents the three-term
expression approximating the observed profile of the solar dif-
ferential rotation (e.g., Schou et al. 1998),

�t(� ) ¼ 1� 0:1264 cos2 �� 0:1591 cos4 �:

In our dynamo model, we do not impose the pole-equator dif-
ferential rotation in the convection zone which is generated dy-
namically through the action of both the Reynolds stresses and
the Lorentz forces. The differential rotation, which is imposed
in the tachocline, vanishes at the interface r ¼ rt so as to spa-
tially separate the two magnetic induction sources (Parker 1993;
MacGregor & Charbonneau 1997). An unsolved problem in the
solar dynamo is concerned with how and why the tachocline is
formed at the base of the convection zone (Zhang & Schubert
2006). In the present model, the shear flow in the thin tachocline
is prescribed, essentially providing the boundary condition re-
quired for the dynamical dynamo problem in the convection
zone. Since we do not really know the formation mechanism of
the tachocline and since the tachocline shear is prescribed in the
first place, we shall neglect the dynamic effects in both the stably
stratified radiative core and tachocline. It is worth noting that,
without � -effects in the convection zone, dynamo action in this
multilayer system cannot be sustained by a purely toroidal axi-
symmetric flow within the tachocline: a key ingredient in the
Parker’s interface dynamo.

We assume a fully turbulent convection zone in the region
rt < r < ro in which both the Coriolis force and the Lorentz force
play a significant role in the dynamic interface dynamo. Similar
to the previous dynamomodels (Covas et al. 2001; Rempel 2006b),
we shall model small-scale turbulence by assuming an eddy mag-
netic diffusivity ko with an assumption that kt/koT1 and an eddy
viscosity �o giving rise to a moderate Taylor number. A weak
meanmagnetic fieldBo is generated by the prescribed� -effect in
the fully turbulent convection zone. The equation of motion gov-
erning the flow velocity u and the generated magnetic field Bo in
the convection zone is

@u

@t
þ u = :uþ 2�k < u ¼

� 1

�
:pþ 1

��
(: < Bo) < Bo þ �o9

2u; ð6Þ

where k is a unit vector parallel to the axis of rotation, along with
the condition of assumed incompressibility given by

: = u ¼ 0: ð7Þ

The dynamo equations in the convection zone are

@Bo

@t
¼ �0: < � r; �; �; Boj j2

� �
Bo

h i
ð8Þ

þ: < u < Boð Þ � ko: < : < Bo;

: = Bo ¼ 0: ð9Þ

In the above equations, �0 is a positive parameter and the three-
dimensional nonlinear function � (r; �; �; Boj j2) is related to the
local � -quenching, which will be discussed further. In the con-

vection zone, the magnetic field Bo, generated by small-scale
turbulence and amplified by the shear flow in the tachocline,
produces the Lorentz force which, along with the Coriolis force,
drives the large-scale flow u, which in turn modifies the dynamo
processes generating Bo. In other words, a fully turbulent back-
ground state is implicitly assumed such that we are only concerned
about the large-scale flow u, pressure p, and magnetic field Bo

generated by the relevant dynamo instabilities (Parker 1993; Covas
et al. 2001). The velocity boundary condition at both the bound-
ing surfaces is assumed to be no-slip.While the no-slip condition
at r ¼ rt is physically appropriate for an interface dynamo, it is
assumed at the outer surface r ¼ ro for numerical convenience.
By choosing the no-slip condition at the base of the convection
zone, we focus on the magnetic coupling between the highly tur-
bulent convection zone generating a weak magnetic field and the
highly differentially rotating tachocline producing strong toroi-
dal magnetic fields, a primary element in the Parker’s interface
dynamo. Since the main dynamo activities take place in the vi-
cinity of the tachocline, we do not expect that the type of velocity
condition at r ¼ ro is of primary importance. By neglecting the
effect of the weak differential rotation in the convection zone,
the dynamo problem in the convection zone is dynamically self-
consistent in the framework of the Malkus-Proctor formulation
which is capable of generating large-scale circulation like the dif-
ferential rotation.
The exterior to the convection zone, ro < r � rm, is assumed

to be nearly electrically insulating with a large magnetic diffu-
sivity ke. The magnetic field Be is governed by

@Be

@t
þ k e: < : < Beð Þ ¼ 0;

: = Be ¼ 0: ð10Þ

For sufficiently large magnetic diffusivity k e such that

k e

ko

31;

the magnetic field Be in the exterior represents an approximate
potential field which is also part of the numerical dynamo solu-
tion. It should be pointed out that, to overcome the conflict be-
tween the local nature of finite-element methods and the global
nature of magnetic field boundary conditions, we have to solve
the exterior zone as an integral part of the whole dynamo system;
a detailed discussion on the numerical treatment of the exterior
can be found in Chan et al. (2001).
We nondimensionalize length by the thickness of the convec-

tion zone d ¼ (ro � rt), magnetic field by ko (��)
1/2/d, and time

by themagnetic diffusion time d 2/ko of the convection zone. The
resulting four sets of dimensionless equations for the four zones
(all variables in the rest of the paper are nondimensional) are

1. The zone 0 < r < ri:

@Bi

@t
þ �i: < : < Bi ¼ 0; ð12Þ

9 � Bi ¼ 0: ð13Þ

2. The zone ri < r < rt:

@Bt

@t
¼ Rem: < �t(r; � )k < r½ � < Btf g � �t: < : < Bt; ð14Þ

: = Bt ¼ 0: ð15Þ
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3. The zone rt < r < ro:

@u

@t
þ u = :uþ PrmTa

1=2k < u ¼

�:pþ (: < Bo) < Bo þ Prm9
2u; ð16Þ

: = u ¼ 0; ð17Þ
@Bo

@t
¼ Re�: < � r; �; �; Boj j2

� �
Bo

h i

þ: < u < Boð Þ �: < : < Bo; ð18Þ
: = Bo ¼ 0: ð19Þ

4. The zone ro < r � rm:

@Be

@t
þ �m: < : < Be ¼ 0; ð20Þ

: = Be ¼ 0: ð21Þ

There are seven nondimensional quantities that characterize the
dynamic interface dynamo: the three magnetic diffusivity ratios
�i, �t, and �m, the magnetic alpha Reynolds number Re� , the
magnetic omega Reynolds number Rem, the magnetic Prandtl
number Prm, and the Taylor number Ta, which are defined by

�i ¼
ki
ko

; �t ¼
kt
ko

; �m ¼ ke
ko

;

Re� ¼ d�0

ko
; Rem ¼ d 2 60j j

ko
;

Prm ¼ �o
ko

; Ta ¼ 2d 2 6j j
�o

� �2

:

All numerical simulations reported in this paper are performed at
a fixedTaylor numberTa ¼ 105 with a unitymagnetic Prandtl num-
ber Prm ¼ 1 and themagnetic diffusivity ratios at �i ¼ �t ¼ 0:1.

The four sets of equations are solved subject to a number of
matching and boundary conditions at the interfaces. At the three
interfaces of the four zones, r ¼ ri, rt, and ro, all components of
the magnetic field and the tangential component of the electrical
field are continuous. These conditions yield

Bi � Btð Þ ¼ 0 at r ¼ ri;

r < �i: < Bi � �t: < Btð Þ ¼ 0 at r ¼ ri;

Bt � Boð Þ ¼ 0 at r ¼ rt;

r < ��t: < Bt � Re��Bo þ: < Boð Þ ¼ 0 at r ¼ rt;

Be � Boð Þ ¼ 0 at r ¼ ro;

r < �m: < Be þ Re��Bo �: < Boð Þ ¼ 0 at r ¼ ro; ð22Þ

where the no-slip velocity boundary condition u ¼ 0 is used to
simplify the above interface conditions. For the boundary condi-
tion at the outer bounding surface of the dynamo solution do-
main (see Fig. 1), r ¼ rm, an approximation must be made. Since
there are no sources at infinity, i.e.,

Be ¼ O r�3
� �

; as r ! 1; ð23Þ

we can approximate the magnetic field boundary condition at
r ¼ rm as

Be ¼ 0; at r ¼ rm; ð24Þ

with (rm/ro)
3 31. Equations (12)Y (21), togetherwith thematch-

ing and boundary conditions (22) and (24), define a nonlinear
dynamic interface dynamo problem. For given parameters of the
dynamo model like Re� and Rem, numerical solutions of the dy-
namic interface dynamo are obtained by performing fully three-
dimensional simulations on massively parallel computers.

3. MULTILAYERED SPHERICAL DYNAMIC
INTERFACE DYNAMOS

3.1. Dynamic Dynamos with 2D � -effects

For understanding how the tachocline affects the style of dy-
namic interface dynamos, we start our dynamo simulations by
switching off the interface effect, i.e., settingRem � 0 in (14). This
gives rise to a conventional dynamic �2 dynamo providing the
reference state to the dynamic interface dynamo. Without the
presence of the tachocline, the nonlinear dynamic dynamo is solely
driven by a prescribed two-dimensional � -effect in the turbulent
convection zone,

� ¼ sin2 � cos � sin �
(r � rt)

(ro � rt)

� �

;
1

1þ Boj j2
� � ; rt < r � ro: ð25Þ

Fig. 2.—Kinetic energy Ekin (top) and magnetic energy Emag (bottom) as a
function of time for seven solutions of the dynamic interface dynamo obtained
at different values of Rem. The prescribed � is two-dimensional in the convection
zone.
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Here we have assumed that there exists an � -effect throughout
the whole convection zone, but the strength of the � -effect is
suppressed when the kinetic energy of the turbulent flow is com-
parable to the magnetic energy. A similar nonlinear quenching
formula has been widely used, for example, by Choudhuri et al.
(1995) and Küker et al. (2001). A major advantage of using this

simple formulation is that it allows simulations of the essential
large-scale processes without reference to the difficult dynamics
of small-scale interaction between the flow and the Lorentz force.
It should be noted that, in comparison to the kinematic dynamo
problem in which the � -quenching is the only nonlinearity, there
are three additional nonlinear terms in the dynamic interface

Fig. 3.—Contours of the azimuthal field B� at the base of convection zone, viewed at the angle of 30� from the axis of rotation and plotted at six different instants,
t ¼ 108:5, 110.5, 112.0, 114.5, 115.5, and 118.0 ( from top left to bottom right) for Rem ¼ 1 andRe� ¼ 50. Themagnetic field is dominated by the azimuthal wavenumber
m ¼ 3 in the form of progradely traveling dynamo waves.

Fig. 4.—Contours of the azimuthal flow u� at the middle surface of the convection zone, viewed at the angle of 30� from the axis of rotation and plotted at six different
instants, t ¼ 108:5, 110.5, 112.0, 114.5, 115.5, and 118.0 ( from top left to bottom right) for Rem ¼ 1 and Re� ¼ 50. The velocity field is dominated by the azimuthal
wavenumber m ¼ 6 in the form of progradely traveling waves.
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dynamo: the Lorentz force (: < Bo) < Bo, nonlinear advection of
the large-scale flow u = :u, and the feedback modulation : <
(u < Bo ). In consequence, the problem of the dynamic interface
dynamo is not only more complicated but also requires much
more computing resources.

It is of importance to note that, although we impose an axi-
symmetric profile of � in (25), the resulting dynamic interface
dynamo can be either axisymmetric or nonaxisymmetric, de-
pending on which symmetry of the dynamo instability is pre-
ferred at given parameters. Moreover, there exist three possible

Fig. 5.—Contours of the azimuthal flow ur at the middle surface of the convection zone, viewed at the angle of 30� from the axis of rotation and plotted at six different
instants, t ¼ 108:5, 110.5, 112.0, 114.5, 115.5, and 118.0 ( from top left to bottom right) for Rem ¼ 1 and Re� ¼ 50. The velocity field is dominated by the azimuthal
wavenumber m ¼ 6 in the form of progradely traveling waves.

Fig. 6.—Contours of the azimuthal field B� at the base of convection zone, viewed at an angle of 30
�
from the axis of rotation and plotted at six different instants,

t ¼ 86:1, 87.9, 89.1, 90.0, 91.5, and 93.30 ( from top left to bottom right) for Rem ¼ 5 and Re� ¼ 50. The magnetic field is dominated by the azimuthal wavenumber
m ¼ 2 in the form of progradely traveling dynamo waves.
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Fig. 8.—Butterfly-type diagram for the azimuthal flow u� (top left) and the radial magnetic field Br (top right) at the middle surface of the convection zone, and for the
toroidal magnetic field B� (bottom left) at the base of the convection zone and the radial velocity field ur (bottom right) at the middle surface of the convection zone for
Rem ¼ 10. The solid contours denote the positive values of variables like B� > 0, while the dashed contours are for the negative values of variables like B� < 0. The
dynamic interface dynamo is axisymmetric.

Fig. 7.—Contours of the azimuthal flow u� at the middle surface of the convection zone, viewed at an angle of 30� from the axis of rotation and plotted at six different
instants, t ¼ 86:1, 87.9, 89.1, 90.0, 91.5, and 93.30 ( from top left to bottom right) for Rem ¼ 5 and Re� ¼ 50. The velocity field is dominated by the azimuthal wave-
number m ¼ 4 in the form of progradely traveling waves.



equatorial parities in the generated magnetic field: an equato-
rially symmetric dynamo with

(B�;Br;B�)(� ) ¼ (B�;Br;�B�)(�� � );

an equatorially antisymmetric dynamo with

(B�;Br;B�)(� ) ¼ (�B�;�Br;B�)(�� � );

or a dynamic dynamo with mixed equatorial symmetries. Our
nonlinear simulation does not impose any azimuthal or equato-
rial symmetries which are selected only by the physical process
of dynamic interface dynamos.

Without having the shearing effect in the tachocline atRem ¼ 0,
the onset of the dynamic �2 dynamo occurs at about Re� ¼ 25.
It should be mentioned that, apart from an increase in the ampli-
tude of the nonlinear dynamo, there are no substantial differences
in the spatial structure between the Re� ¼ 25 and 50 dynamo
solutions. Since our objective is to understand the basic mecha-
nismof dynamic interface dynamos,we shall fixRe� at Re� ¼ 50,
which suffices to sustain a weak dynamic �2 dynamo, and then
investigate how the effect of the tachocline alters the dynamo
behavior by gradually increasing the magnetic Reynolds number
Rem.

Six different nonlinear solutions of the dynamic interface
dynamos obtained at various values of Rem are presented in

Figure 2, showing the magnetic energy Emag and kinetic energy
Ekin of the dynamos as a function of time, where

Emag ¼
1

2V

Z
V

Bj j2 dV ; Ekin ¼
1

2V

Z
V

uj j2 dV ;

where V denotes the region given by ri � r � ro. Several in-
teresting features emerge from the simulations of the dynamic
interface dynamo. At first glance, it is surprising that the dy-
namic interface dynamos at small values of Rem are more com-
plicated. While the dynamic dynamos with large values of Rem
are simply periodic, the nonlinear solutions for small Rem are
quasi-periodic or nearly irregular. This unusual feature can be
explained by looking at the planform of the generated magnetic
and velocity field, shown on a spherical surface, for Rem ¼ 1 in
Figures 3Y5. It can be seen that the magnetic field generated by
the dynamic interface dynamo at Rem ¼ 1 is nonaxisymmetric,
with a dominant azimuthal wavenumberm ¼ 3, along with other
subdominant wavenumbers, with mixed equatorial symmetries.
As a result of the quadratic Lorentz force, the flow velocity,
which is primarily driven by the magnetic force, is characterized
by the dominant azimuthal wavenumberm ¼ 6. The feature that
the magnetic energy is greater than the kinetic energy is certainly
linked to the � -quenching used in the model and, hence, is of
less physical significance.

This temporally and spatially complicated behavior can be
attributable to the weak effect of the tachocline. For small Rem,
several dynamo modes with different equatorial parities and

Fig. 9.—Butterfly-type diagram for the azimuthal flow u� (top left) and the radial magnetic field Br (top right) at the middle surface of the convection zone, and for the
toroidal magnetic field B� (bottom left) at the base of the convection zone and the radial velocity field ur (bottom right) at the middle surface of the convection zone for
Rem ¼ 100. The dynamic dynamo solution is axisymmetric.
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various azimuthal wavenumbers are excited by dynamo instabil-
ities at Re� ¼ 50. Because of the existence of the large radiative
core with a high electric conductivity, the effective communica-
tion of the generatedmagnetic field between the different regions
of longitudes is blocked, leading to the preference of nonaxisym-
metric dynamic interface dynamos with mixed equatorial sym-
metries. Moreover, the nonlinear interaction of various modes
gives rise to a complex time dependence of the solution. When
Rem increases, it is anticipated that both the scales of the gen-
erated magnetic field and the flow will be enlarged. As shown
in Figures 6 and 7 for the dynamic interface dynamo at Rem ¼ 5,
the dominant wavenumber for the magnetic field decreases
to m ¼ 2 which drives a flow with the azimuthal wavenumber
m ¼ 4.

The possibility of exciting the nonaxisymmetric interface dy-
namo modes is, however, removed when the magnetic Reynolds
number Rem, which measures the amplitude of the differential
rotation in the tachocline, is sufficiently large with Rem � O(10).
In this case, the effective communication of the generated mag-
netic field between the different regions of longitudes is reestab-
lished by the strong differential rotation, leading to a temporally
and spatially simple dynamic interface dynamo. It reenforces the
view that the nearly regular cycle of the solar global magnetic
activities has to be regularized by a relatively simple large-scale
flow, like the differential rotation in the tachocline, that controls
the dynamo behavior.

Figure 8 shows contours of the toroidal magnetic field at the
interface rt, the radial flow, the radial magnetic field, and the to-
roidal flow at the middle of the convection zone, plotted against
time, for Rem ¼ 10, where the solid contours denote the positive
values of variables, while the dashed contours are for the neg-
ative values of variables. Note that the dynamo solution shown
Figure 8 is axisymmetric and therefore independent of the lon-
gitude. A similar profile of the magnetic field and the toroidal
flow for Rem ¼ 100 is displayed in Figure 9, revealing that the
basic properties of the dynamic interface dynamos remain nearly
unchanged. It should be noted that the amplitude of meridional
circulation, which typically has a dominant large cell across the
equator along with two smaller cells in middle and higher lat-
itudes, is usually about 20% that of the differential rotation.With
the stronger effects of the tachocline for Rem � O(10), we found
that (1) the action of the strong tachocline always produces an
oscillatory dynamic dynamo with a period of about two mag-
netic diffusion units; (2) the multilayered dynamic interface dy-
namos also produce a torsional oscillation of the azimuthal flow
propagating toward the equator with a period of about one mag-
netic diffusion unit; (3) the dynamic dynamo is always axisym-
metric, selects dipolar symmetry, and propagates equatorward,
even though the simulation is fully three-dimensional; and (4) the
generatedmagnetic fieldmainly concentrates in the vicinity of the
interface between the tachocline and the convection zone.

3.2. Dynamic Dynamos with 3D � -Effects

The observation of the solar magnetic field suggests that the
solar dynamo may be nonaxisymmetric, characterized by mag-
netic activities in persistent different longitudes, and the total
number of active regions per rotation per hemisphere varied
between zero and seven (e.g., De Toma et al. 2000). It was also
argued that the number of persistent bands of magnetically ac-
tive nests in the observed solar magnetic fields corresponds to
the longitudinal wavenumber m in the magnetic field, which
is m ¼ O(1). The simplest way to generate a nonaxisymmetric
magnetic field is to employ a nonaxisymmetric � -distribution
in the mean field dynamo framework (Rüdiger 1980; Moss &

Brandenburg 1995). For the purpose of understanding the basic
mechanism of nonaxisymmetric dynamic interface dynamos, we
consider the dynamic interface dynamo with a nonaxisymmetric
� -distribution in the form

� ¼ sin2 � cos �(1þ 	 cosM�)

; sin �
(r � rt)

(ro � rt)

� �
1

1þ Boj j2
� � ; rt < r � ro; ð26Þ

where 	 ¼ 0 recovers the axisymmetric case and M is an azi-
muthal wavenumber treated as a parameter. In our numerical
simulations, we take 	 ¼ 0:75 and M ¼ 1, while the value of
Re� is still fixed at 50.
It should be pointed out that, as a result of the prescribed

nonaxisymmetric � -effect, purely axisymmetric dynamic inter-
face dynamos are no longer feasible: all resulting dynamic in-
terface dynamos must be nonaxisymmetric. Five solutions of the
dynamic interface dynamos obtained at various values of Rem
are presented in Figure 10, showing the magnetic energy Emag

and kinetic energy Ekin of the dynamo solutions as a function of
time. Two new types of the interface dynamos are found: azi-
muthally traveling hemispherical dynamos and equatorwardly
propagating nonaxisymmetric dynamos. When the effect of the
differential rotation in the tachocline is not sufficiently strong for

Fig. 10.—Kinetic energy Ekin (top) and magnetic energy Emag (bottom) as a
function of time for five different dynamo solutions with different values of Rem.
The profile of the prescibed � is three-dimensional in the convection zone.
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Rem � O(10), the magnetic field and the corresponding flow are
primarily confined within a hemisphere defined approximately
by the longitudes ��/2 < � < �/2, which are illustrated in
Figures 11 and 12. It shows that the magnetic field generated by
the dynamic interface dynamo is strongly nonaxisymmetric with
a dominant azimuthal wavenumber m ¼ 4. Driven by the qua-
dratic Lorentz force, the flow is characterized by the dominant

azimuthal wavenumber m ¼ 8. A particularly interesting feature
is that the dynamic interface dynamo, due to the moderate effect
of the differential rotation in the tachocline in this case, is in the
form of an azimuthally traveling dynamo wave. However, when
the dynamo wave travels toward the vicinity of the boundary be-
tween the nondynamo hemisphere and the dynamo hemisphere,
it disappears.

Fig. 11.—Contours of the azimuthal fieldB� at the base of the convection zone, viewed from the north pole and plotted at six different instants, t ¼ 270:0, 272.0, 273.6,
276.0, 276.8, and 279.6 ( from top left to bottom right) for Rem ¼ 10 and Re� ¼ 50. The magnetic field is dominated by the azimuthal wavenumber m ¼ 4 and con-
centrates largely in one hemisphere.

Fig. 12.—Contours of the azimuthal flow u� at the middle surface of the convection zone, viewed from the north pole and plotted at six different instants, t ¼ 270:0,
272.0, 273.6, 276.0, 276.8, and 279.6 ( from top left to bottom right) for Rem ¼ 10 andRe� ¼ 50. The velocity field is dominated by the azimuthal wavenumberm ¼ 8 and
concentrates largely in the hemisphere where dynamo action exists.
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Fig. 13.—Butterfly-type diagram for the azimuthal flow u� (top left) and the radial magnetic fieldBr (top right) at the middle surface of the convection zone, and for the
toroidalmagnetic fieldB� (bottom left) at the base of the convection zone and the radial velocity field ur (bottom right) at themiddle surface of the convection zone at a fixed
longitude � ¼ �/2 for Rem ¼ 100. The dynamic interface dynamo is nonaxisymmetric and oscillatory and propagates toward the equator.

Fig. 14.—Contours of the azimuthal flow u� at the middle surface of the convection zone, viewed at an angle of 30� from the axis of rotation and plotted at six different
instants, t ¼ 9:8, 10.0, 10.3, 10.5, 10.7, and 10.9 ( from top left to bottom right) for Rem ¼ 100 and Re� ¼ 50.



The azimuthally traveling wave hemispherical dynamo is
switched to an equatorward propagating dynamo wave when the
effect of the tachocline becomes strong and dominant. For Rem �
O(100), the interface dynamic dynamos are still nonaxisym-
metric, but in the form of equatorwardly propagating dynamo
waves. Figure 13 shows contours of the toroidal magnetic field at
the interface rt and the radial magnetic field and the azimuthal
flow at the middle of the convection zone, plotted against time,
for Rem ¼ 10 in a fixed meridional plane. It is shown that both
the nonaxisymmetric dynamic dynamo wave and the correspond-
ing torsional oscillation propagate toward the equator. The time-
dependent structure of the generated toroidal flow is displayed in
Figure 14: the toroidal flow is strongest at a particular longitude
where there exist strong magnetic activities in that region.

Although the dynamic interface dynamos are always non-
axisymmetric, our results again underscore the importance of the
tachocline that controls the style of a dynamic interface dynamo.
A strong action of the tachocline is required to produce the
oscillatory magnetic field and the torsional oscillating flow that,
even though they are nonaxisymmetric, select dipolar symmetry,
and propagate equatorward.

4. SUMMARY AND REMARKS

As an important step in our effort to construct a three-dimensional
finite-element solar dynamomodel, this study has followed the idea
of Parker’s interface dynamo by separating the� - and!-processes
spatially, an essential ingredient in an interface dynamo. Our dy-
namic interface dynamomodel consists of four regions which are
coupled magnetically through the matching conditions at the in-
terfaces. By gradually increasing the strength of the differential
rotation in the tachocline, we have investigated a nonlinear, time-
dependent, spherical dynamic interface dynamo using a finite-
element method based on the three-dimensional tetrahedralization
of the spherical system. However, we did not perform fully non-
linear MHD simulations. In the convection zone, although the fully
three-dimensional feedback of the Lorentz force has been taken
into account, the Malkus-Proctor formulation with a prescribed
� -effect is employed without explicitly including the effect of
thermal convection. Moreover, the dynamic feedback on the pre-
scribed shear flow in the tachocline is totally neglected.

This paper represents the first study on the three-dimensional,
multilayered dynamic interface dynamo taking the fully three-

dimensional feedback of the Lorentz force in the convection zone,
in an attempt to understand the basic mechanism of the interface
dynamo rather than simulating realistic solar magnetic fields. We
find that, when Rem is sufficiently large, the action of the shear
confined within the tachocline always produces oscillatory dy-
namos with a period of about two magnetic diffusion units, which
is about 20 yr if the magnetic diffusivity in the convection zone is
taken as 108 m2 s�1. The corresponding torsional oscillation of
the flow has a period of about one magnetic diffusion unit, which
corresponds to about 10 yr. All our nonlinear dynamic simula-
tions for Rem � O(100) suggest that, whether the � -effect is two-
or three-dimensional, the dynamic interface dynamo is always
axisymmetric or predominantly axisymmetric, selects dipolar sym-
metry, and propagates equatorward.Without the controlling effect
of strong regular shears in the tachocline, the behavior of dynamic
interface dynamos becomes, both temporally and spatially, much
more complicated. A convection-driven EBE finite-element solar
dynamo is currently under construction which will consider the
thermal effect and the coupling of the Navier-Stokes and dynamo
equations everywhere, including the radiative core and tachocline.
But this will be a very difficult problem because we do not know
how andwhy the tachocline is formed, withoutwhich it is unlikely
that a solar-like dynamo solution will be produced.

The hemispherical dynamo—where one hemispherewithin the
longitudes��/2 < � < �/2 has an active dynamo, while there is
no dynamo action in the other hemisphere�/2 < � < 3�/2—may
be relevant to the dynamo action taking place in the Pegasus
B-type extrasolar giant planets (see, e.g., Seager & Sasselov
1998; Showman & Guillot 2002). This type of extrasolar planet
is characterized by being a short distance from its parent star,
usually less than O(0:1 AU), and, consequently, strong tidal in-
teractions between the planet and parent star quickly bring the
planet into synchronized rotation with the parent star. In this
case, we would expect the large hemispherical difference between
its hotter day side constantly penetrated by strong stellar radiation
and its cold night side.
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