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Bicluster ing Models for
Structu red M icro array Data

Heather  L .  Turner ,  Trevor  C.  Ba i ley ,  Woj tek  J .  Krzanowsk i ,  and Chery l  A.  Hemingway

Abstract-Microarrays have become a standard tool for investigating gene function and more complex microarray experiments are
increasingly being conducted. For example, an experiment may involve samples from several groups or may investigate changes in
gene expression over time for several subjects, leading to large three-way data sets. In response to this increase in data complexity,
we propose some extensions to the plaid model, a biclustering method developed for the analysis of gene expression data. This
model-based method lends itself to the incorporation of any additional structure such as external grouping or repeated measures. We
describe how the extended models mav be fitted and illustrate their use on real data.

Index Terms-Biclustering, two-way clustering, overlapping clustering, partial supervision, repeated measures, three-way data.

interesting pattems are left unclustered. A11 these scenarios
have their equivalent in terms of samples, for example, a
cluster of samples may only be distinguished by a cluster of
genes.

Several clustering methods have been developed in
recent years that cater to one or more of these scenarios.
These include gene-shaving [B], context-specific Bayesian
clustering [2], EMMIX-GENE 1741, interrelated two-way
clustering [25], simultaneous clustering [17], coupled two-
way clustering [7], rich probabilistic models 1221, double
conjugated clusterirg [4], SAMBA 1241, order preserving
submatrix clustering [3], biclustering 16l,1231, and the piaid
model [12]. The plaid model is one method that accom-
modates all the scenarios described earlier and is particu-
Iarly attractive as it uses continuous gene expression levels
and estimates the "l;tsual" expression level for each gene (in
the context of the data set), so that biclusters of an unusual
expression pattern can be discovered. Furthermore, as a
model-based clustering method, the plaid model can be
naturaliy extended to appropriately analyze structured
microarray experiments which are the focus of interest in
this paper.

First, we consider microarray experiments for which an a
priori group structure is available for the genes or samples.
In this case, we partially supervise the plaid model
algorithm to favor biclusters that correspond to the external
grouping, so that biclusters can be interpreted as features
relating to one or more a priori groups. We compare the
results of a partially supervised analysis to the results of an
unsupervised analysis for an experiment investigating
forms of tuberculosis.
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1 lrurnoDucroN
rfaHEnE has been considerable recent interest in the
I analysis of microarray data. A typical microarray

experiment will investigate thousands of genes, recording
their expression level over tens of samples. Genes with
simiiar expression patterns over the samples are said to be
coexpressed, which may indicate a common function.
Likewise, samples with simiiar expression profiles may
have attributes in common, for example they may be
samples from patients with the same disease. With the aim
of identifying such groups and samples, clustering has a
natural role in the exploratory analysis of microarray data.

A number of scenarios that occur in microarray experi-
ments are not catered for by all clustering techniques and
this should be taken into account when selecting a method
for analysis. First, a gene may be involved in more than one
bioiogical process and may exhibit an expression profile
that is a result of the regulatory effect of each process" If
there are other genes that are involved in some subset of
these processes, the structure should be represented by
overlapping clusters. Second, a group of genes may be
coexpressed under limited conditions. In this case, the
structure should be represented by u two-way cluster or
bicluster, a group of genes and an associated group of
samples over which the genes are coexpressed. Finally,
genes may not be related to the subject of the investigation
and exhibit near-constant expression profiles. Rather than
filter out these "uninteresting" genes on the basis of some
ad hoc criteria, gene selection should be an integral part of
the clustering process, so that genes that do not exhibit
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iilustrate the extension for repeated measures on a set of
genes over a set of samples with data from an experiment
investigating genetic susceptibility to tubercuiosis.

The use of partial supervision and the extension to three-
way data reiate to other methods for microafiay analysis
that use these techniques, in particular, algorithms that
identify interesting biclusters on the basis of predefined
gene groups [16], [10], [21] and gene clustering of three-way
data [18]. We compare our approach to these methods in the
discussion (Section 5).

As a basis for our development of plaid model
clustering, we use the algorithm introduced by Turner
et ai. [26], which was shown to have advantages over the
original algorithm proposed by Lazzeroni and Owen [12].
ln the next section, we review the plaid modei and the
algorithm introduced by Turner et al. [26]. In doing so, we
propose some additional variations of the algorithm which
can enhance the interpretability of results.

2 Tne Puto Mooel
The plaid model consists of a series of additive layers
intended to capture the underlying structure in a set of gene
expression data that can be represented in the form of a
matrix, with expression levels Y1 for the ith gene in the
7 t h  s a m p l e , ' i  :  1 , . . . ,  n ; j  :  1 , . . . , p .  T h e  m o d e l  i n c l u d e s  a
background layer containing all the genes and sampies, to
account for global effects in the data. Any subsequent layers
represent additional effects corresponding to biclusters of
the genes and samples that exhibit a strong pattern not
expiained by the background layer.

Irr the plaid model Yi rs modeled by

K

Yt:  O, io *  Y.P,oo,^Orin I  e i ,
k : I  

K

: ( lto * rtn + gto)- f(p* * au, i gin)pinrcltr * €ti.

where k is a layer index ,,*r*, at zerofor the background
layer running to K, the number of biciusters; Oun is the
model for iayer k; pin is a binarv cluster membership
parameter defined for k ) 1 and equal to one if the ith gene
is in the kth bicluster, zero otherwise, rcr* similarly indicates
cluster membership for the jth sample, and et,i is the
residual error. Here, the layer model O;r1" is defined as the
sum of the mean effect pt"p, the gene effe cts aip, and the
sample effects Cir. Thus, the full model is similar to the
model used in two-way analysis of variance, except that the
two-way interaction between genes and samples is replaced
by cluster effects, cluster by gene effects and cluster by
sample effects. ln this way, the plaid model seeks to
decompose the gene by sample interaction effect into
additive layers that are more useful for interpretation.

As set out in the introduction, we prefer to use the
algorithm proposed by Turner et al. [26] which uses binary
least squares to fit the cluster membership parameters,
unlike the original algorithm [12] which indirectly opti-
mizes these parameters by relaxing the binary constraints at
certain stages of the fitting process. Turner et al. 126l
demonstrated that using the binary least squares method

reduces the level of false structure incorporated in the ptaid
model biclusters. Their algorithm, which we shall call
Algorithm 1, fits the background layer first of ail, then
searches for one bicluster at a time as outlined in Fig. 1.
Bicluster-specific layers are added to the plaid modei until a
prespecified number is reached or no more significant
layers can be found, as determined by a permutation test. In
considering a single layer, we shall drop the layer index k
for simplictty, as in Fig. 1.

To initialize the algorithm, starting vaiues for the cluster
membership parameters are derived from one-way k-means
clusters. A k-means algorithm with k = 2 is used to cluster
the genes and the samples independently, then the cluster
with fewer members from each result is taken to form the
starting bicluster.

The algorithm finds a bicluster of genes and samples for
which the layer model fits better than the null model. Any
genes and samples which do not fit the layer sufficiently
well are usually pruned out of the bicluster by adjusting the
cluster membership parameters as follows:
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\ 0 otherwise.
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otherwise.
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17l
Li. , i  :

where r1,r2 e (0, 1) specify for genes and samples, respec-
tively, the minimum proportional reduction in residual sum
of squares required for cluster membership. Thus, r-1 and 12
may be viewed as the minimum desired R2 for the genes
and samples.

The genes are pruned first and then the samples. If all the
genes or all the samples are pruned out, the algorithm is
terminated. The values of 1 and 12 dre usually chosen in the
range [0.5, 0.7] to ensure the layer model is an important
component of the corresponding expression levels, but also
to allow for overlapping biclusters and random error.

Turner et al. only prune the genes and samples once
(Step 8, Fig. 1). However, the pruning criteria wiil oniy be
met for genes and samples simultaneously if this pruning
step is repeated until a stable bicluster is obtained. Since we
prefer smaller, tighter ciusters and the additional computa-
tion required is light, we consider it worthwhile to prune
until convergence.

After a bicluster has been added to the model, the layer
effects for all layers in the current model are usually
reestimated in the light of this additional structure. This is
particuiarly important for the background layer as this
represents the base expression level for all genes and
samples and a good estimate will make it easier to identify a
further bicluster, if it exists, in the next round of iterations.
The back fitting is carried out sequentially, fitting each layer
to the residuals from the model excluding that layer. The
complete process may be repeated to irnprove the fit of the
model, but the number of rounds of back fitting is usually
kept low to achieve a sensible trade-off between the
accuracy of layer effects and computational burden,
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Compute Zi,i: matnx of residuals from model so far

Compute starting values p! and rc! using one-way k*means clusters

S e t  s :  1

Update layer effects using Z*: submatrix of 2r, indicated b." pi-t and Aj-1

ttt : Zl
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\O otherwise.
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l0 otherwise.

Update chister membership parameters
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L 0 orhcnn'ise.

r ,  _ 11 I , tz , i  -  p i - ' fu '  + of  -  o)12 <Y,n z?i
' " r  -  

\O otherwise.

Repeat steps 4 and 5 for s :2. . .  ̂ 9 iterations

Conpute ;t's+t', 6f*t and Bf-l as in step 4

Pr:une bicluster to remorre ill-fitting genes and samples; update iayer effects again

Calculate }ayer sum of squares

, s s : I ( p * a r +  B , ) p n k i
i , J

Permute Zii and. follow'steps 2 to g; repeat T times

Accept bicluster if LSS is greater than LSS for al1 permuted runs, otirerrn'ise stop
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Fig. 1. Outline of Algorithm 1: the plaid model algorithm used by Turner et al. 1261. The layer index k is dropped for simplicity.

In Sections 3 and 4, we shall introduce extensions of the levels, as it would be irl a bicluster with a low number of
above plaid model that cater to microalray experiments th21 samples. The gene Pruning is adjusted as follows:

are more structured than the basic gene by sample matrix
considered so far. Before moving on to these extensions, we
propose two variations of Algorithm 1, r,r'hich together tend po :

to produce more concise and interpretable results.
the fjrst variation is a modii ication of the pruning

method. It is reasonable to suppose that genes are more where the total degrees of freedom, d/rd, is ()], p,) (L ,r,r)
likely to fit the profile of a bicluster with a low number of and the residual degrees of freedom, d/,", is

samples than the profile of a bicluster rvith a higher number
of samples. To take this into account, the sums of squares
used in the pruning step can be adjusted for the associated
degrees of freedom. This will introduce a bias against genes Note these are not the degrees of freedom for the sum of
for which the number of parameters in the layer model is squares in the pruning criieria, but the degrees of freedom
high relative to the number of corresponding expression for the equivalent sum of squares relatinq to the whole

d f , * - ( f p , + t ' , - r )
\ - 7 - /

d
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biciuster, which leads to the same logical comparison and
simpiifies implementation. ft &nd 12 dtr- nour interpreted as
the minimurn adjusted R) desired for the genes and samples.
if the residual degrees of freedom is zero, the bicluster
cannot be pruned and we suggest that the bicluster should
be reiecteci in this case.

Sample pruning can be adjusted in the same way to deal
appropriately with biclusters with a 1ow number of genes.
When using this variation of the pruning method, the layer
effects should be updated after pruning either genes or
samples, so that the degrees of freedom in the pruning step
reflect the degrees of freedom in estimating the layer effects.

The second variation concerns the interpretability of
biciusters. Under the plaid model, it is possible that a
bicluster may contain genes with a similar pattern of chnnge
in expression level (i.e., simiiar sample effects), but
completely different expression profiles Ln terms of up
and down-regulation (allowed for by gene effects). For
example, up-regulated genes may appear in a generally
down-regulated bicluster. This is undesirable since one
would expect biclustered genes to share the same broad
features and for these features to dominate any gene or
sample-specific parameters.

The Plaid@ software [15], based on the original plaid
modei algorithm proposed by Lazzeroni and Owen [12] has
"unisign" options to favor consistent clusters. In particular,
the "unisignrow" option prefers genes for which LL + di is
the same sign as p" and the "unisigncol" option prefers
samples for which lr -f Ai is the same sign as pr. These
options are described as a preference that, even if met, can
be violated by back fitting or bicluster pruning. Therefore,
we presume that some weighting is applied during the
stages of the fitting process in which the binary consfraints
on the ciuster membership parameters are relaxed, which
wouid not transfer to the binary least squares algorithm
used here.

For the binary least squares algorithm, we prefer to
address the problem of inconsistent biclusters by the use of
search models, simplified models that represent the features
of a bicluster that are considered to be most important. We
propose that the search model is used within the layer
iterations (Steps 4 and 5 of Fig. 1), then the full plaid model
is fitted before pruning the bicluster and back fitting. It is
not appropriate to use a simplified model throughout the
algorithm as we expect to see gene and sample effects in
practice and do not wish to treat these effects in the same
way as Pure error.

For example, to search for biclusters that may be
described as simply up-regulated or down-regulated, the
suitable search model would be Zi1 : ptKtlr * et.By using
the mean effect to search for genes and samples to add to
the bicluster, the expression levels corresponding to the
bicluster will generally be closer to the cluster mean than to
the nuil model. For this reason, when gene and sample
effects are added at the end, it is unlikely that the fitted
values will be inconsistent with the global cluster effect.
Although this is not guaranteed, we have always found the
biclusters to remain consistent throughout pruning and
back fitting, when using a mean effect search model on

two-wav data (we discuss the application to three-wav data
in Section {).

Using this kind of search modei can lead to rnstabitity in
the first couple of layer iterations, due to the usual
imbalance in the dimensions of the data (the number of
genes being much greater than the number of samples). We
have found this can be avoided by updating the cluster
membership parameters in series, that is, using the updated
p1 to update the rc1.

3 Gnoupro Darn
We now turn to the first extension of the plaid model
analysis. There is often more informatio., u,ruiluble on the
genes and sampies in a microarray experiment than simply
the gene expression data. For example, the samples may
belong to certain treatment groups, or a functional
classification of the genes may be known. Biclusters may
be expected to correspond to these groups, in which case it
may be useful to emplov this information in the clustering
process.

The plaid modei can be fully supervised by clustering
complete a priori groups instead of individual genes or
samples. However, we would like to allow for misclassifi-
cation, experimental error, and the presence of biciusters in
the data that are unrelated to the externai grouping.
Therefore, we do not consider a fully supervised approach
to be appropriate. Partial supervision is preferable and can
be implemented by using a supervised model to start the
search for a layer, reverting to the unsupervised model after
a set number of iterations.

if searching on the basis of the full plaid model, the
supervised layer model wouid be

Zg(.tth(i : ,srh(p -t agfr) + 1n(t)) * e,q(i)n1)

in which zo is equai to one if gene group g is in the layer,
zero otherwrse a6 is equal to one if sample group h is in the
Iayer, zero otherwise; and individual genes and samples are
now indexed by 9(i), the ith gene in group g and h(7) the
7th sample in group h, respectively.

The group-level cluster membership parameters are
updated using binary least squares, as follows:

, ( 1 if fnln;,n,n1r;7zn14n{.t - 'n(tt -t as1r1 + \ntil l' <
,n: 

\ L,,,11,n,r1t Zl6n,i,,
l. 0 otherwise.

" ( 1 if Dn(t,s,g(ty/n14n(t - ,g0" t aq(,) + 0ntil ]t <
( 'h:  

i  th( i l ,s ,g( i )Zl i4ntn,
t 0 olherwise.

Starting values for the group-level cluster membership
parameters can either be found by " averagrfrg" or "conver-
sion." The first method averages the expression levels
within each group so that the groups can be treated as if
they were individual genes or samples in an unsupervised
analysis.

In the conversion method, starting values are found on a
gene and sample level, then converted to group-levei
starting values by taking the majority vote within each

3 ' 1 9

J



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL, 2,  NO. 4,  OCTOBER-DECEMBER 2OO5

group. If the proportion of genes or samples selected in this
way exceeds 0.5, then the complementary set of genes or
samples is taken to be consistent with the notion that a
bicluster represents arr unusual pattern in the context of the
data. If the converted group-level starting values for genes
or samples are all zero, then the preconversion starting
values are used.

We have described partial supervision for the general
case of two-way supervision, but, of course, the model may
be supervised in one dimension only if required. Since the
superrrised model effectively treat groups as individuals,
there can be no overlap in group membership. FIowever, an
overlapping group structure can stili be represented by
considering the overlap as a separate group. Genes or
samples for r.t'hich the classification is unknown can be
considered as groups of size one.

We illuslrate the effect of partial supervision on data
taken from a study on a range of human diseases. The
subset of arrays that we consider are the first batch of arrays
in the experiment, one array for each of 79 patients with
some form of tuberculosis (TB). The patients may be
classified into three disease groups: pulmonary TB (seven
patients), pulmonary TB with compiications (five patients),
and TB meningitis (seven patients). Blood samples were
taken from each patient at presentation and the total RNA
extracted, amplified, and hybridized against a common
reference (Stratagene@).

For the pulmonary TB patients, blood samples were
taken premedication; however, this was not possible for the
TB meningitis patients as this disease is far more serious.
Therefore, the arrays may also be grouped as before or after
medication.

Plate effects were removed from the background-
corrected signai intensities using the robust median correc-
tion available in the LIMMA R package [19]. The log-ratio
(base 2) of the sample intensity to reference intensity was
then calculated. Print-tip (spatial) effects were removed
from these log-ratios using an intensity-dependent loess
normalization [28]. Then, finally, a robust scaie correction
was appiied to log-ratios on each anay, so that the arravs
were comparable [28].

The genes were then filtered to remove those genes with
more than 20 percent of the expression levels missing in any
one class. This left 28,339 genes in the data set. The
remaining missing values were interpolated r,r'ith the row
mean plus the column mean minus the globai mean.

To begin r,r'ith, we analyzed the data using an unsuper-
vised plaid model algorithm (Algorithffi 2, Fig. 2), trn-
plementing some of the modifications described in previous
sections. In particular, Algorithm 2 is an example of using a
mean effect search model.

The results from the unsupervised piaid model are
sumrnarized Table 1. For each layer in the model, Table 1
shows the number of genes and samples in the layer, the
degrees of freedom associated with the layer effects, the
sum of squares, and the mean square. The mean of the fitted
layer, pr, is also girren for the bicluster lavers. Since a mean
effect search model was used, the iayer means summarize
the main feature of the biclusters. So, the first larrer
represents a bicluster of 397 genes up-regulated over seven

of the samples (layer mean 0.76) and the second layer
represents a bicluster of 203 genes down-regulated over 6 of
the sampies (layer mean -0.54). Also shown in Table 1 is the
model adjusted -R2 value of 0.891, showing that the fitted
plaid model explains a high proportion of the data variance.

The layer sum of squares gives an indication of the
importance of each cluster since it measures the variation
uniquely characterized by the layer model. Since the layers
are found sequentially, the layers would ideally be found in
order of sum of squares, so that the most important effects
are added to the model first. This is the case here, as Table 1
shows the layer sum of squares for the first cluster is 1,923
and the layer sum of squares for the second cluster is 408.
The first cluster also has a higher mean square than the
second cluster (4.77 compared to 1,96), showing that the
larger sum of squares corresponding to the first cluster is
not simpiy due to a greater number of genes and samples.

Fig. 3 shows the gene and sample-centered expression
levels for the biclustered genes across all samples. The first
bicluster contains four of the seven samples from pulmon-
ary TB patients and three of the five samples from
pulmonary TB patients with complications. The second
bicluster contains a subset of the samples in the first
bicluster, with one fewer sample from the pulmonary TB
with complications group. Therefore, neither bicluster
corresponds well to the known grouping of the patients,
even if the pulmonary TB groups are considered as a whole.

In Fig. 3, the expression levels outside of the biclusters
appear similar in magnitude to the expression levels inside
the biclusters. This is a consequence of using the gene and
sample-centered expression levels: Since the data contains
biclusters, the gene and sample means are not the best
estimators of the " typrcal" expression level for each gene
and sample. in the plaid model, the background iayer
models the tllrical expression level in the context of the
experiment and the biclusters represent departures from
this. If the residuals from the background layer had been
used in Fig. 3, most of the data vaiues outside of the
biclusters would be close to zero, emphasising the abnorm-
ality of the biciuster. However, the background layer is
clearly model-dependent; therefore, we have used gene and
sample-centered expression levels to allow comparison
r.trith later results.

We analyzed the TB variants data set again using a
partially supervised version of Algorithm 2. The samples
were labeled as pulmonary TB (P), pulmonary TB with
compiications (P+), or TB meningitis (M) and a group-level
cluster membership parameter was used instead of a
sample cluster membership parameter in the first five
iterations of each layer. After these five iterations, the
unsupervised model was used as in Algorithm 2. The
algorithm was not alior.t'ed to terminate until at least one
unsupervised iteration had been conducted, so that con-
vergence was reached on the basis of individual samples
Starting values were obtained by the conversion methoci
described earlier.

Table 2 summarizes the results from the partiall;v
supervised analvsis. This plaid model has three biciusters
a dor.t'n-regulated biciuster with E72 €tenes and 10 samples
a dor,r'n-regulated bicluster wiih 200 .qenes and six samples

I
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Compute Zii: matrix of residuals

Cluster genes and samples r-rsing 5
the smailer cluster in each case

S e t  s :  I

Update layer mean

from model so far

k-means iterations with k : 2 a n d l e t and indicateR,l

-1  ,7
ozJ; s^,jY,t,, ii-t

5. Update cluster membership

\- 7'2
L-j "i.l

< \)n z?,

Repeat steps 4 and 5 for s : 2,.. . until convergence at iteration s

Compute ps+t, df'*t and pf+1 as Algorithm t. step 4

Prune genes with 11 -_ 0.7, adjusting for degrees of freedom: update layer eff'ects

Prune sampies rvith 12 - 0.7, adjusting for degrees of freedom: update laver effects

Repeat steps B and 9 until convergence

Calculate layer sum of squares as Aigorithm 1, step 9

Pernrute Zii ancl follow steps 2 to 11; repeat 3 times

Accept bicluster if LSS is greater than LSS for all permuted runs, otherwise stop

Refit all lavers in the model twi.ce: search for next layer

param

f t: l o

f r: \ o

^  c - l  r

n i  - )

> 1 4

l 1

z

and an up-regulated bicluster with 694 genes ind six occurring mainly in the TB meningitis samples. With the
samples' The gene artd sample-centered expression levels ernphasis on similadty within tie TB memngrtis samples, a
for the biclustered samples are shown in Fig. 4. larger group of genes is discovered: 8zz ge es in the first

The first biclwter from the partially supervised analysis biJuster of the partially supervised plaid model ccimpared
contains genes that have a similar profile over all the 1s 397 genes i,.' the first biclwter of the unsupervised plaid
samPles to the genes in the first bicluster {rom the model. The two biclusters have 220 genes m common; these
unsupervised analysis. However, since the partially super_ are identified as group A in Fig. 4.
vised analysis favors biclusters corresponding to complete The second b-i.t*t", fro# the partially supervised
groups, the profile is interPreted as a down-regulation analysis, which contains four of the seven samDles from

Fig. 2. Outline of Algorithm 2. the unsupervised plaid model algorithm used to analyze the TB variants data.

TABLE 1
Results from the Unsupervised Analysis of the TB Variants Data
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/  \ l r . l

.  < -  l  ^;; -t)

s ; s 1 2
i. l"L J

T ^ - .^ -
L d j v r Genes S r , l n l o c D I SS N,IS NIean
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Fig. 3. Gene and sample-centered expression levels for genes biclustered in the unsupervised analysis of ihe IB variants data where P denotes
pulmonary TB, P+ denotes pulmonary TB with complications, and M denotes TB meningitis.

t
o_

0.5
0.0
-0.5

pulmonary TB patients and two of the five samples from
pulmonary TB patients with complications, is virtually
identicai to the second bicluster from the unsupervised
anaiysis. In fact, ail 200 genes in the partially supervised
bicluster, identified as group B in Fig. 4, are also in the
unsupervised bicluster, meaning that these two biclusters
differ by only three genes. This shows that the partial
supervision does not prevent the discovery of biclusters
that do not closeiy correspond to the a priori structure and
indeed the performance of the algorithm is equivalent to the
unsupervised anaiysis in this case.

The third bicluster in the partially supervised model
represents a feature of the data that was not discovered
in the unsupervised anaiysis. It identifies a group of
genes that are dolt'n-regulated in five out of the seven TB
meningitis samples and one sampie from the pulmonary
TB with complications group. In this case, the search for a
bicluster has cleariy been assisted by the use of grouping

information. The third bicluster may be considered as
important as the second bicluster in this analysis since it
has a comparable mean square (7.87 compared to 2.06).
Therefore, the additional information revealed by the use
of partial supervision is nontrivial.

The adjusted R2 of the partially supervised model is
0.894 (Table 2), orLly slightly higher than the adjusted R2 of
the unsupervised model which was 0.891. F{owever,
changes in the bicluster structure are unlikely to make a
large difference to the model adjusted pz when the
background layer already accounts for so much of the
variation: The background-only model has an R2 of 0.889.

The advantage of the partially supervised model can be
seen in the improved correspondence betr,veen the biclus-
ters and the sample groups. This correspondence can be
quantified by calculating the average purity and efficiency
of the biclusters [7], where purity and efficiency are defined
as follor,r's:

TABLE 2
Results from the Partially Supervised Analysis of TB Variants Data

Layer Genes Samples Df SS MS Mean

0
1
L

28339
872
200
694

19 28357
10 881
6 205
6 699

572730.94
4572.97
423.05

1309.71

20.2
5 . 1 9
2.06
1 . 8 7

n l a
-0.66
-0 .55

0.52
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Fig. 4. Gene and sample-centered expression levels for genes biclustered in the partially supervised analysis of the TB variants data where P
denotes pulmonary TB, P+ denotes pulmonary TB with complications, and M denotes TB meningitis.
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i, tn" bicluster for which the measure is being
obtained and g is the dominant group in that cluster. For the
unsupervised model, the average purity and efficiency are
0.667 and 0.571, respectively, while the equivalent values
for the partially supervised modei are 0.833 and 0.714,
showing a marked improvement.

4 RepelreD MEASURES DATA

A natural extension of the typical genes by sample
microarray experiment is to measure expression levels over
time for each gene in each sample. This poses a problem for
analysis as most existing clustering methods require a two-
way data structure. Cieariy, a data set with repeated
measures can be arranged in a two-way format, as a genes
by sample matrix. However, biclustering the data in this
format would not be appropriate as the resultant biclusters
could contain anays from noncontiguous time points or
affays from different sampies at different time points,
which may be difficult to interpret.

An alternative way of obtaining a two-way data
structure is to collapse the data set by averaging over the
samples. However, this is only reasonable if the sampies
belong to a single group or if the relationship between

multiple sample groups can be summarized by a singie
contrast of interest, such as the difference in gene expres-
sion level between the first two sample groups and the last
three sample groups. Otherwise, averaging over the
samples results in a loss of information. In this case, the
data might be analyzed one group, or one time point at a
time. Segregating the analysis in this way makes it difficult
to get the full picture and, again, important features may be
missed.

The plaid model in the form described so far also
requires data to be in a two-way format. However, the plaid
model can be extended to handle repeated measures on
genes and samples. The concept of a bicluster still appiies in
the sense that a bicluster is a subset of genes with a simiiar
expression over a subset of sampies, but now it is not
individual expression levels that are clustered but complete
expression profiies over time. Lr terms of the modei, all that
is required is the addition of parameters in each layer to
account for changes in expression level over time. The
simplest way to achieve this is to add time main effects to
the modei for each layer.

In detail, the expression level, Yjr, ' i  : 1,. . . ,n; i :

1 , . . . ,  p , t  :  1 , .  . . ,q  o f  the  z th  gene in  the  7 th  sampie  a t  t ime
t is estirnated by the following general linear model:

K

Yir: Fo* an* 0 io*rto+t piklrk(p,k+ a;t * gtn-trt*) * eu -

( 1 )

-
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This model is also an extension of the generalized
INDCLUS model [5], which may be expressed as

K

Y.,, :t, + I p.irnit (rtn) * ett.
K : l

As in Algorithm 1 (Fig. 1), the layer effects in the repeated
measures plaid model may be estimated by ordinary least
squares and the membership parameters in the model by
binary least squares. \z\4ren considering a single layer, we
shall again omit the iayer index for simplicity.

The k-means method for obtaining starting values for the
cluster membership parameters needs to be adapted for
three-way data. We propose two approaches along the lines
of those suggested for the supervised two-way model. The
equivalent conversion method is to find starting values at
each time point and establish a final set of starting values by
majority vote. The equivalent averaging method is to
average over time points and proceed as for two-way data.

In repeated measures data, the focus is on changes in
expression level orzer time. Therefore, a sensible search
model to use for the analysis of repeated measures over
genes and samples n'ould be

Z,jr: p;ni}t -t 4) I eii l

as opposeC to the mean only model recommended for the
analysis of two-way data. For repeated measures data, the
gene and sample effects in the full iayer model are expected
to be small enough not to change the overall profile in terms
of up and down-regulation.

The permutation test (Steps L0 and 11, Fig. 1) also needs
to be adapted for repeated measures data. It is no longer
suitable to permute the data over all dimensions simulta-
neously since the data is ordered in one dimension. Rather,
the data should be permuted within each time point, to give
a random profile over time for each gene and sample pair.
The candidate bicluster is then compared to one that may be
found in a set of random expression profiles over time.

We shali iliustrate the potential of the repeated measures
plaid model usurg data from an ongoing experiment into
human genetic susceptibility to tubercuiosis (TB). The
available data consists of 64 arrays, comprising eight
experimental runs of eight time points. Five of the runs
use blood samples infected with BCG-lux, a iuciferase
transformed version of the TB baciilus that is used for
vaccination, which can stimulate an immune response but
does not cause TB. Three of these BCG-lux positive runs use
blood sampies taken from individuals classified as resistant
to TB and the remaining two use blood samples taken from
individuals classified as susceptible. The other three runs in
the data set are BCG-lux negative controls for two of the
three resistant individuals and one of the fwo susceptibie
individuais. Control runs were not carried out for the
remaining individuals due to financial constraints.

On each array, the amplified RNA was compared to a
standard reference. Replicated baseline arrays were avail-
able for each time series, so that the expression levels couid
be made relative to their preinfection values. All the arrays
\ rere normalized folior.r'ing the procedure, discussed in
Section 3, that u'as used for the arravs in the TB variants

data set. Genes with more than 20 percent of data missing
across alI 64 arrays were removed frorn the data set. This
left 30,897 genes and the remaining missing values were
interpolated as before.

The classification of individuals was made on the basis of
a BCG-lux growth assay [11], which assesses the ability of
an individual to restrict growth of BCG-Iux vra a iight ratio.
One of the individuals classified as resistant by the growth
assay was previously thought to be susceptible on the basis
of reaction to a tubercuiin skin test. Although the growth
assay takes precedence, due to this contradictory resuit and
due to the variability inherent in bioassays, we chose not to
supervise our analysis on the basis of the classification of
individuals. As the classification of individuals and the
experimental treatment were considered to be equally
important, it was not appropriate to supervise the anaiysis
by treatment alone and, therefore, an unsupervised analysis
was used. Fig. 5 outlines the method used (Algorithm 3),
which takes the same approach as the unsupervised
analysis of the TB variants data, adapted for the repeated
measures model using a search model with mean and time
effects only.

The results of the analysis of the TB susceptibility data
are given in Table 3. Bicluster layers are now summarized
by the truncated mean profile over time, to capture the
main features of the biclustered time series. A fuller picture
is given in Fig. 6, which shows the expression levels over
time for the biclustered genes and samples after the fitted
background layer has been subtracted.

There are three biclusters in the fitted piaid model. The
first bicluster contarns 7,244 genes and a BCG-Iux positive
run from the susceptible individual for which no control
run was conducted. The genes in this bicluster are down-
regulated over the first three time points (2 to 8 hours) and
possibly down-reguiated at 48 hours. The second bicluster
contains I,764 genes and both BCG-lux positive and
BCG-lux negative runs from the other susceptible indivi-
dual. In this bicluster, genes are down-regulated over the
three time points from 4 to 12 hours. A similar pattern is
seen in the third bicluster, which contains the same runs
and a different set of 21 genes, except that the down-
regulation from 4 to 12 hours is not as great.

Nearly 50 percent of the genes in the first bicluster are
also in the second bicluster. So, it is possible that an early
down-regulation in these genes is characteristic of suscep-
tible individuals, but there is some variability between
individuals as to when this down-regulation occurs. The
plaid model has not identified a similar pattern for these
genes in the resistant individual for which the classification
from the BCG-lux growth assay contradicted prior belief,
nor is such a pattern evident in the data. Therefore, the gene
expression data appears to be consistent with the results
from the growth assay.

The relationship between the first two biclusters caused
some diff iculty in the analysis. In particular, if the
averaging method was used to find starting vaiues, then
depending on the seed used to initiate the k-means
clustering, the analysis would usualiy identify a bicluster
of genes that are down-regulated from 2 to I hours in the
BCG-lux positirie run for the first susceptible indirridual anC
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Simiiariy prune samples with 12 : 0.7, then update layer effects

Repeat steps 8 and 9 until convergence

Calculate layer sum of squares as in Algorithm 1, step g

Permute 2ii and. follow steps 2 to 11; repeat 3 times

Accept bicluster if LSS is greater than LSS for all permuted runs, otherr,vise stop

Refit all layers in the modei twice; search for next layer14.

Fig. 5. Outline of Algorithm 3: the plaid model algorithm used to analyze the TB susceptibility data. The layer index ft has been dropped for simplicity.

TABLE 3
Results from the Analysis of the TB Susceptibil i ty Data
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Fig. 6'  Biclustered profi les from the analysis of the TB susceptibi l i ty data after the

down-regulated from 4to r2hours in both BCG-luxpositive
and BCG-Iux negative runs for the second susceptible
indi'idual. However, the layer moder would not fit very
well since the main effects model (1) assumes that the time
effects are the same across all the biclustered genes and
runs, which does not allow for a time shift between
individuals. Therefore, most of the genes wouid be pmned
out and the analysis would not go on to identify the two
profiles separately. The only way this could be achieved
lvas to use the conversion method to single out the first
susceptible individual as in the anarysis presented here. A
side effect of choosing this method is that the laver sum of
squares for the first bicluster is much iower than the lalzer
sum of squares for the second bicluster (24,869 compared to
47,975)- A more satisfactorv approach might be to include

fitted background layer has been subtracted.

gene by time interaction effects in the model so that a time
shift between individuals could be arlowed within a layer.

one reason why the first susceptible individual may be
singled out by the conversion method is that there are more
features of the data associated with this individual than just
down-regulation over the first three time points for a subset
of the genes. This is shown by the first bicluster in Fig. 6,
which includes at least two different types of gene. Al1 the
genes are down-regulated over the first three time points,
but, for some genes, this is the main feature, with a smaller
down-regulation at 48 hours, r.r'hile, for other genes, the
initial down-regulation is margi'al compared to an up-
regulation from 72 to 24 hours. These two trrpes of profiles
are shown more clear ly in Fig.  7,  which dispiays t l ie lower
3 percent and upper 3 percent of genes in the first biciuster
as ordered by gene effect. These two featules correr the
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Susceptible .1 
; BCG-/ux positive

Time (hours)

Fig. 7. Gene, sample, and time-centered expression levels for genes in
the lower 3 percent or the upper 3 percent of the first bicluster from the
analysis of the TB susceptibility data as ordered by fitted gene effect.

majority of time points between them, but are opposite in
sign, which might explain how the first susceptible
individual could be singled out by the conversion method,
yet if selected by the averaging method is always selected
with both samples from the second susceptible individual
as the initial down-regulation is the dominating feature.

The presence of two types of profiles in the first bicluster
also shows that the use of a search model has not been
completely effective. Ideally, we would like to obtain
biclusters of genes that are consistent in sign across all
time points, not just those relevant to the main feature of the
bicluster (such as the first three time points in the first
bicluster here). Inconsistency does not appear to be a
problem in the second and third biclusters, which suggests
that the inconsistency in the first bicluster is due to the
search model accommodating two features of the data
which ought to be modeled separately because they do not
relate to the same set of genes. This situation might be
avoided jf the bicluster was pruned on the basis of the
search model. Ciearly, the same level of fit couid not be
expected as for the model with gene and sample effects, but
using saf \ : 12 :0.5 would suggest the majority of the
variation is explained by the mean profile over time.
Alternatively, two stages of pruning might be considered:
first at a low value of 1 and T2 to ensure consistency in sign,
then at a higher value of rl and 12 after gene and sample
effects have been added to ensure that the final model fits
weil. In either case, gene and sample effects should still be
inciuded in the final layer model to avoid adding noise to
the data when residuals are taken to find the next layer.

The proportion of variance explained by the plaid model
in this analysis is only 0.352 (Table 3), which is far less than
in the analysis of two-way data (e.g., RZai:0.891 for the
unsupervised model, Table 1). This suggeits that the main
effects model used here may be oversimplistic. When
analyzing two-way data with a mean-only iearch model,
biclusters represent blocks of up-regulation and down-
regulation in the gene expression matrix for which a two-
way main effects model is more than adequate. When
analyzing three-way data, on the other hand, biclustered
profiles may be characterized by periods of down-regula-
tion, periods of up-regulation, and periods of expression at
the genes' usual level. These changes can be roughly
approximated by time main effects, but clearly this

approximation is insufficient. In addition, a fixed gene or
sample effect may be insufficient to describe the gene or
sample-specific up-reguiation and down-regulation in an
expression profile. For example, if a bicluster is character-
rzed by a period of up-regulation and a period of down-
regulation, a gene or sample which is up-regulated more
than the bicluster average in the first period is not
necessarily down-regulated to a lesser degree in the second
period. Thus, a more flexible layer model may be necessarv
to effectively bicluster three-way data.

Drscusstorrr
We have shown that the previously proposed plaid model
can be naturally extended to incorporate external grouping
information or to bicluster profiles of repeated measures.
Since the parameter updates are simple to compute, the
plaid model therefore provides a flexible framework for
biclustering large, structured microarray data sets, as
exemplified in this paper.

The analysis of the TB variants data showed that using
sample grouping to partially supervise the plaid modei
algorithm can help discover biclusters that closely corre-
spond to the known structure of the data. Related research
suggests that gene supervision could also be effective.
Owen et al. 116] use a group of genes known to have a
closely related function to search for a bicluster ("cas-
sefte") of genes with similar expression patterns. Starting
with the input set of genes, their "gene recommender"
algorithm identifies a subset of the samples over which the
query genes are coexpressed, then searches for genes with
simiiar expression profiles over these samples. This is
similar to using a single gene group to specify the starting
values for a single layer of the plaid model. Ihmel et al.
[10] take a similar approach to Owen et al, but go further
in the application of their "signature algorithm," using a
diverse collection of input gene sets defined by common
selluence, common function or one-way clusters. This
leads to a large number of retrieved biclusters ("transcrip-
tion modules") from which those passing an evaluation of
reliabilify are selected. This approach is closer to partially
supervising the plaid model by an external grouping
defined over all the genes.

The algorithms of Owen et al. and Ihmel et al. are only
supervised by gene groups. The GeneXPress tool of Segal
et al. [21] is a related method that also takes sample groups
into account. Starting with a diverse collection of input gene
sets in the manner of Ihmel et al., the GeneXPress tooi
identifies the samples for each gene set in which a
significant fraction of the gene set are coordinately
expressed. Gene sets with similar expression signatures
are merged and inconsistent genes are pruned out. Finally,
the sample groups are identified in which the merged gene
sets are significantly up-regulated or down-reguiated to
produce the final bicluster ("module"). Due to the mannef
in which genes are selected for the bicluster and the fact that
sample groups are treated as fixed, this method is more
strongly supervised than the two-way partially supewised
approach proposed in this paper.

Although partial supervision can incorporate external
grouping on the genes or samples, there may be further
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types of auxiliary data that couid be relevant to the
characterization of biclusters such as the survival rate of
patients. such information is not so easy to incorporate into
the plaid model. It may be possible to add certain
parameters or covariates into the layer model or, similar
to supervised gene shaving [8], optimize the layer model
and a model of a secondary response simultaneously.
However, the algorithm wouid need to be tailored to the
particular application and a more general approach such as
the rich probabilistic models used by segal et al.lz2lmay be
more appropriate.

Although several model-based clustering methods have
been developed for the analysis of time-course gene
expression data [1l,I2AL llg], [27), [9], little work has been
conducted in the area of clustering three-way data with one
dimension over time. Recently, ein and self [1g] proposed a
model for such data, though they only illustrate their
method for the special case of two-way gene expression
data over time. For three-way data, they propose a linear
mixed effects model with a fixed cluster effect curve and
random gene and sample effect curves modeled using a
spline basis. Their approach is designed for one-way
clustering of the genes. As far as we are aware, biciustering
times series over genes and sampies has not been attempted
before. The analysis of the TB susceptibility data suggested
that more compiex models than the majn effects model (1)
may be necessary to biciuster such data effectively and the
model proposed by Qin and self suggests an alternative.
The use of a spline basis would be far more computationally
intensive, however, and such an approach may only be
feasible for a few hundred genes, rather than the ihousands
analyzed here.

Along with the two extensions of praid model analysis
discussed above, we have also suggested some variations of
the algorithm proposed by Turner et al. t26l that may
enhance its performance. These include modifications to
bicluster pruning and the concept of search models to
produce biciusters that have expression profiles of consis-
tent sign. \Mhile search models appear to work satisfactorily
for two-way data, they were not completely effective in the
analysis of the three-way TB susceptibility data. This issue
might be addressed by requiring a stronger level of fit to the
search model, as suggested in Section 4.

The algorithms presented in this paper were implemen-
ted in R [19] and the code is provided as supplementary
material online.
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