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Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators
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We study properties of the dynamics underlying slow cluster oscillations in two systems of five globally
coupled oscillators. These slow oscillations are due to the appearance of structurally stable heteroclinic con-
nections between cluster states in the noise-free dynamics. In the presence of low levels of noise they give rise
to long periods of residence near cluster states interspersed with sudden transitions between them. Moreover,
these transitions may occur between cluster states of the same symmetry, or between cluster states with
conjugate symmetries given by some rearrangement of the oscillators. We consider the system of coupled
phase oscillators studied by Hanslal. [Phys. Rev. E48, 3470(1993] in which one can observe slow,
noise-driven oscillations that occur between two families of two cluster periodic states; in the noise-free case
there is a robust attracting heteroclinic cycle connecting these families. The two families consist of symmetric
images of two inequivalent periodic orbits that have the same symmetryNE8&r oscillators, one of the
periodic orbits has one unstable direction and the other has two unstable directions. Examining the behavior on
the unstable manifold for the two unstable directions, we observe that the dimensionality of the manifold can
give rise to switching between conjugate symmetry orbits. By applying small perturbations to the system we
can easily steer it between a number of different marginally stable attractors. Finally, we show that similar
behavior occurs in a system of phase-energy oscillators that are a natural extension of the phase model to two
dimensional oscillators. We suggest that switching between conjugate symmetries is a very efficient method of
encoding information into a globally coupled system of oscillators and may therefore be a good and simple
model for the neural encoding of information.
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I. INTRODUCTION effort has gone into modeling the action potential of spiking

Much attention has been paid to the dynamics of system@€urons through various excitatory and inhibitory coupling
of coupled nonlinear oscillators, with motivation from many regimes. In the weak coupling limit, phase models can be
disciplines including neural network computift] and the- ~ obtained(see, for example, Ref15]). The possibility of ro-
oretical neurosciencef2—4]. Among the class of possible bust heteroclinic cycles in such models was argued in Ref.
coupled systems, globally coupled systems are particularlfl6] and confirmed by Hansadt al. [9,17] for an explicit
useful in gaining an understanding of dynamical effects suclsystem derived from Hodgkin-Huxley neurons with global
as clustering, even though realistic models are usually not oiveak coupling, where it was termed a “slow oscillation,” and
this form. Globally coupled systems show a variety of effectssimilar heteroclinic oscillations have been suggested by oth-
that are expected in highly connected systémgh as the ers as a mechanism for storage and retrieval of memory, for
glomeruli in the antennal lobes of inse¢H, or see Ref[6] example, in the olfactory systef@,18§].
for a general discussion of coupled systen@f particular In this paper we return to the Hansel phase oscillator
interest arecluster stateswhere the oscillators split into @ model in Sec. Il and examine its dynamical behavior Xor
number of groups each of which is synchronized within itself=5 iy detail. Section Il focuses on analyzing the robust at-
but so that oscillators in different groups are not synchroyacting heteroclinic behavior between periodic cluster states
nized. _ o , of the form (a,a,a,b,b) (we describe the symmetries as

Previous investigations into cluster states of _g|°ba”y52><53). In particular we examine the geometry of the un-
c?uple(tj sysiﬁms 'n(t:)l.l]fde et>_<plor|rf1g Ithet eﬁe;:t of var)(/jlnt% COUstable manifolds and show in Sec. III that perturbations and
pling strengths on bifurcation of cluster stafg§ an € hoise can induce switching between conjugate symmetries.

effect of differing network topologie§8]. This has given a L9 S .
good understanding of cluster dynamics, especially(&or We suggest that the switching behavior is of considerable

tracting equilibrium or periodic states. However, even if interest as a very simple model with a higth_ controllable
such periodic cluster states are not attractors, they may and fast switching between a large number of simultaneously
pear within attractors for globally coupled systems due to théPut marginally stable attractors. In particular, we show that
effects of “slow switching’[9—1]]. This is a phenomenon ONe can move between any of the ten different conjugate
characterized by the appearance of robust attracting heter¥€rsions ofS, X S; using at most two switches.
clinic cycles within the dynamics. Similar switching behav- ~ To demonstrate that the dynamics we consider is not de-
ior is found in systems coupled by delayed pulge with ~ pendent on the reduction to a phase oscillator, we include
the difference that they can give rise to “unstable attractorshere an investigation into a phase-energy model of Ashwin
[12]. and Dangelmayf19] that is a natural generalization from
Many mathematical models are available to describe thenodels of weakly dissipative Hamiltonian oscillators. By in-
collective behavior of individual neurorfd3,14 and much troducing a separate amplitude variable to mean field
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coupled phase oscillators, a phase-energy model with analorotivated by a phase reduction of weakly coupled neural

gous coupling to that in Ref9] gives rise to the same be- oscillators. Thew;(t) are derivatives of uncorrelated white

havior. We verify in Sec. IV that the switching effect also noise processes with unit variance per unit time and, «,

occurs in the latter system; we also discuss possible implicaandr are real constants.

tions of this behavior. The system(1) clearly hasSy symmetry; it has an addi-
tional symmetry typical for weakly coupled oscillators,

namely phase-translation symmetry,
Dynamical clustering: A symmetry viewpoint

We can view the dynamics of the globally coupled sys- 6 +p,
tems in terms of their symmetries, and use notation as in Ref.
[16]. An all-to-all or globally coupled system ™ identical  for anyp e T, and so the system has symmeS8yx T. The
oscillators has symmetry groups correspondingStp the  phase-translation symmetry arises as a result of an averaging
group of all permutations dfl objects. This corresponds to reduction and results in a major simplification in that peri-
the system being equivalent under interchange of identicaddic orbits of the systems can be reduced to relative equilib-
oscillators. Of course, it is not necessarily the case that thea of the action ofT; it was exploited in Ref[16] to show
output from each oscillator will be identical. A8 system of  that certain cluster states are generically present Nor
coupled nonlinear equations can support a wide range of dysoupled oscillators.
namical behaviors depending on initial conditi@g., Ref. The model1) has been studied by several authors includ-
[20]) and we are most interested in understanding the syming Kori and Kuramoto[10]. It provides an interesting ex-
metries and dynamical structure of attractors for the systenample of a system of phase oscillators with an attracting
i.e., the asymptotic dynamics of the systems for “typical’robust heteroclinic cycléa slow switching stajebetween
initial conditions. Sy X Sn-k cluster states foN oscillators. As discussed in Ref.

Of particular interest in a globally coupled system is the[10] one can find attracting states that consist of heteroclinic
appearance of partial synchronization or clustering. For @ycles between a pair of two cluster states with division of
clustered state the output of the system of oscillators splitshe oscillators into groups of sizeN and(1—p)N (these are
into several subgroups with asymptotically similar dynamicspetween identical states if=3). As in Ref.[9] we will con-

[8,2. For example, a system &f coupled oscillators, syn-  sider an order parameter that gives a measure of the total
chronized into to two clusters of sizea andN-m the sym-  gherence of the network

metry group of the dynamics iS,,X Sy_,» The transition
from a higher order synchronized state to a lower order

o N
(spontaneous symmetry breakjng a common feature of 21 S b
coupled and symmetric systems. X= N k:1e :
Il. HANSEL. MATO. AND MEUNIER PHASE The heteroclinic cycle manifests itself as a slow periodic
OSCILLATOR MODEL oscillation of y, where the period of oscillation is roughly

proportional to the reciprocal of the log aof Observe that

Hanselet al. [9] introduced a model for phase oscillators X=1 corresponds to synchronous oscillation, but for any

with the following governing equations, fdl oscillators other state &<y <1.

with phases, e T whereT is the “one-torus” parametrized For the system wittN=>5 oscillators the solutions with
by [0, 2m) anldi -1 N S, X S; clustering havéC;=10 conjugate symmetries of the

same type. This corresponds to permuting the entries in each
of the symmetries. For example, if there is a periodic cluster

N state of the form(a,a,a,b,b) then there will also be states
a —wt 12 a(6, - 6) + (D). (1) (a,b,b,a_,a), (a,a,b,b,a), etc., corresponding to conjugate
Niz1 symmetries.

. . . . Heteroclinic network for N=5 oscillators
The coupling function is chosen to include more than one

harmonic, For parameterso=1, r=0.25, «=1.25, =107, andN
=5 in system(1) we obtain the slow switching observed by
Ref. [9] as in Fig. 1(using a Runge-Kutta integrator with
g(@p) =—sin(¢+ a) +r sin 2¢, (2) stepsize 0.1 The dynamics appear to be attracted to a robust
heteroclinic cycle for all but a zero measure set of initial
conditions. There is a heteroclinic cycle between two fami-
where we note that the presence of both phase shifted arigs of equilibria with symmetns, X S;. Schematically, this
second harmonic terms represents a nonlinear mixture afycle is shown in Fig. 2. The asymptotic dynamics of this
stimulation and inhibition. In Refl9] this choice ofg(¢) is  system, as noted by Reff9,1Q involves a division of the
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FIG. 1. (a—«c) Time series
0.8 plots of a slow switching state of
= five globally coupled phase oscil-
0.7 lators. The presence of a small
amount of noise means that it con-
1

tinues to cycle between two un-
! l ! stable periodic cluster states. Sub-
500 1000 1500 plot (a) shows the order parameter
(@) t Y, (b) shows sifié,— 6,), while (c)

1 ' ' T I . shows two phase differences plot-
ted against each other. Observe
b N that (b) shows that the synchroni-
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zation of #; and 6, near the peri-
odic clusters is lost near=500.
This is not evident in plo(a) of
the order parameter. Note that in
this and subsequent figures the
units are dimensionless.

sin( 6, - 0,)

oscillators into two clusters of sizeN and (1-pN); in the  this by numerical simulations of a number of trajectories
case ofN=5 this means that we can have clusters of the fornstarting nearaaabb within the subspacdx,y,z,w,w) of

S, X §3 0r §; X §4. Only the former are involved in the global points with symmetnS,, as shown in Fig. 3. This leads to

attractor, and in the absence of noise, the system performsossibility of noise-induced switching to slow oscillation to

ever more occasional transitions between just two periodigiifferent but conjugate symmetries; we investigate this in the
cluster states witls, X S; symmetry; we denote these states next section.
aaabbandcccdd

One of the main contributions of this paper is to note that
the geometry of the connections betwgen the invariant subl—”. SWITCHING BETWEEN CONJUGATE ATTRACTORS
spaces is much more complex than Fig. 2 would suggest.

This is becausaaabbhas two unstable directions andcdd 5 idering the behavior of trai . .
has one unstable direction; hence the unstable maniédid y considering the behavior of trajectories starting at one

ter including points related by tHe symmetry for aaabbis of the periodic orbits and exploi?in'g symmetrieslone can map
two dimensional and incorporates an infinite number of traOut the structure of the heteroclinic network. This amounts to
jectories. Of these trajectories, almost all of them convergén examination of trajectories such as those shown in Fig. 3.
to CCCdd but afinite number Of them Converge e|sewhereA schematic of the behavior on the unstable manifold of
name|y in this case teddcg ddccg anddcdcg we Verify aaabbis shown in Fig. 4; this shows that there are connec-
tions fromaaabbto cddcg dcdcg andddccceven though
almost all trajectories pass tccdd We also illustrate that
the periodic orbitsabbag babag andbbaaaare present in
the closure of the unstable manifold even though they are not
the asymptotic limit of any point in the unstable manifold.

o-2aabb ceedd) ¢ +s, The unstable manifold of the orbitxcdd etc., are one di-

mensionalaccounting for thél' orbit) and only connections

u to the orbitscccbbwith precisely the same symmetry.

Figure 5 shows the possible connections between periodic
orbitsaaabband conjugate copies thereof. The ten conjugate
FIG. 2. Schematic showing the heteroclinic connections be-orbitS can be attained by choice of unstable manifold at the

tween the two saddle periodic orbigmabband cccddwithin the ~ conjugate version of the periodic ortziaabhb _ _
invariant subspac&, X S;. The periodic orbitaaabbhas two un- For the noise-free case we conjecture that typical trajec-
stable directions and corresponds to a breaking of the cluster dPries will generically avoid the one-dimensional subset of
three oscillators. The orbitccddhas one unstable direction corre- connections in the unstable manifolds of t@abh This is
sponding to breaking the two cluster. Not shown are the invarianpecause in the absence of noise we have not observed
subspaces with symmet; X S, X S, within S,; there are connec- Switching between conjugate symmetries along trajectories
tions fromaaabbto conjugate symmetry cluster states within thesethat approach the heteroclinic network. Instead, we see a
invariant subspaces. number of transitions always between the same symmetry
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FIG. 3. Alarge number of tra-
jectories are started on the two di-
mensional unstable manifold of
the periodic orbitaaabb in the
lower right of the figure. Forty
different initial conditions are
started within 10° of the orbit
and the phase differences between
oscillators are shown. Observe
that almost all trajectories lie
within the stable manifold of
cccdd however, there are excep-
tional trajectories (lying within
subspaces with symmeti§; X S,

X S,) that converge toddccg
dcdcg andcddcc These give rise
to switches between conjugate
symmetries.

a ddccc

periodic orbits and after a while a numerically induced sta- In the presence of isotropic noise as in Fig. 1 one can
bility sets in, owing to the fact that rounding maps the tra-readily identify the presence of occasional switches in sym-
jectory into one of the invariant subspadgsse also, for ex- metry and numerical evidence indicates that as the ngise
ample, Ref[9]). However, we have no argument that rules — 0 the probability of transitions between different symme-
out dynamics-induced switching between conjugate attractry types goes to zero with amplitudg>0. We can explain

tors in the noise-free system. this in terms of picturing the heteroclinic network in the
presence of noise as an attractor that is roughly speaking an
babaa Xyxzz 7 neighborhood of the noise-free network. This means that
e within O(#) of the “exceptional” connections, for example,
ccedd _~Geded o ccedd nearabbaaon the unstable manifold cdaabh there is a

high chance that trajectories will be taken into a neighbor-

7 XXyzz
S hood of the subspaceyyzwcontainingabbaa In this way, a

/

abbaa cdda J/ bbaaa trajectory in the presence of noise can “tunnel” its way
around the network shown in Fig. 5.
CCC
ccedd aaa ccedd
\cddcc
bbaaa ddeqe A\ abbaa
A
' ' yxxzz
ccedd dedec ccedd
babaa

FIG. 4. Schematic diagram showing the geometry of the un-
stable manifold of the periodic orbétaabbmodulo the group orbit
by T. Note that almost all trajectories froaaabbare asymptotic to
cccdd However, the exceptional trajectories that are in e
X S, X 'S, symmetry subspaceg/xzz xxyzz andyxxzzconverge to FIG. 5. This diagram shows the structure of connections be-
different equilibria. Trajectories froraaabbto cccddthat pass for  tween conjugate symmetries of the fopXx S;. The arrows indi-
example neaddcccwill also pass neabbaaaand so the periodic cate the transitions that are possible by choosing a heteroclinic tra-
orbits bbaag babag andabbaaare also contained within the clo- jectory in the network. Observe that starting at any state, for
sure of the unstable manifold efaabh The accessible conjugate exampleaaabh three of the nine conjugate states are accessible
periodic orbits tocccddare shown as black dots. after one step; the remaining six are accessible after two steps.
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.l FIG. 6. An illustration of
! — perturbation-induced control of
the transitions betweers, X S;
periodic orbits, by impulsively ap-
plying perturbations of order 18
in the directions of chosen sym-
metry subspaces, at the times indi-
cated by the arrows above the
graph. This suggests théh) the
network is highly efficient at en-
coding a state as a particular con-
jugate symmetry,(b) the chosen
switching between symmetries is
- obtained on a fast time scale by
small perturbations of the system
and(c) the network is only sensi-
tive to perturbations at certain
— points in time, namely those
0 00 200 300 200 300 where it is near a periodic orbit

t conjugate to one of typaaabh
aaabb —— cddcc—— apban  ——>  ccedd B —— aaabb —>  cddce

i sin6,-6,
q... sin(93—94)
i|---- sin(6.-0))

17

sin(0.-9.)

To illustrate the controllable characteristics of this net- IV. SWITCHING BETWEEN CONJUGATE SYMMETRIES
work, we show in Fig. 6 an example, in the absence of noise, IN A PHASE-ENERGY MODEL
of how one can traverse the network using only very small

perturbat!ons. Starting on the pe_riodic ort_n'iabpwg apply extension of Refs[9] and [10] while yielding additional
perturbations of order I8 at the time locations indicated by complexity in that the oscillators are two dimensional. These

the arrows above the plot. The perturbations are chosen to ase-enerav equatiotimtroduced by Ref[22]) are posed
within the unstable manifolds of each of the periodic orbitsﬁ the spacgg” Xan ar?d have the fo);m (22 P

For example, if we perturb

We consider a simple phase-energy model that is a natural

(a,a,a,b,b) — (a+x,a,a,b,b) 6 = o(q), 5
for x very small we find that the system proceeds to the ) € N
periodic orbit(c,d,d,c,c). Figure 6 shows a series of tran- a;=— Blay) + NE a(6 - 6),
sitions i=1

where the phase of the oscillators represented by the an-
gular variabled (modulo 27) and the energy relative to the
In principle one can explore any path on the directed graphlincoupled systere=0) is represented by; € R. Note that

aaabb— cddco— abbaa— cccdd— aaabb— cddcc: - .

Fig. 5 using this method. B>0 is necessary for the termBfa) in Eqg. (3) to stabilize
1
- 0 2(IJO 460 B(IJO 8(I)0 1 OIOO 12I00
1 T T T T
£ }k/\ﬁ\ FIG. 7. Time series plot of the
1 . . . sines of the differences between

1° 200 400 600 800 1000 1200 the phases for a system of five
N\/ ' ' ' coupled phase-energy oscillators
[~ 7\1:_0.4, )\2:0, ﬁ:]., €:1, o

sin(ei—ej)
o

=4.391, r=0.25.
_1 1 i 1
o] 200 400 800 800
1 \/ T T T T
£
w
-1 0 200 400 600 800 1000

time
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1 T T T T T T
3 0 -
1 1 L
1o 200 400 600 800 1000 1200
T T T T T T
3 0 .
- 1 I
0 200 400 600 800 1000 1200
1 ) .
' ' ' ' ' ' FIG. 8. Time series plot of the
3 ok i sines of the amplitudes for a sys-
tem of five coupled phase-energy
o 2(I)0 400 G(IJO 800 1o|oo 1200 oscillators - A;=-0.4, X,20, j
q : : : : : : =1, e=1, 6=4.391, r=0.25.
3 of .
-1 1 1 ) |
1o 200 400 600 800 1000 1200
T T T T T T
3 0 .
-1 1 L
0 200 400 600 800 1000 1200
time

the oscillations. The model can be motivated by noting thatit The dynamics of the clusters of heteroclinic cycles were
gives the most significant terms for weakly dissipativefound using the Leader algorithm as in RE23]. Figure 9

coupled Hamiltonian oscillators. We set
(4)

w(a) =1 +Na+Na?.

By choosing the functiog(¢) in Eq.(3) above to be Eq2),

shows the behavior of clusters in the presence of small am-
plitude noise. After transients, the dynamics settle to a cycle
moving between the stabi8,2) cluster stategrepresented in
Fig. 9 by the periods where two clusters are presaiith

two distinct trajectories between them. The first trajectory

the interactions present in coupled neural systems corresporahibits only a single increase in the number of clusters be-

to those in the Hansalt al. model. On simulating the model

fore returning to a two cluster state, the second a longer

(2)«4) we obtain very similar time series as those for thetrajectory where the clusters break until four clusters are de-
phase oscillator; examples are plotted in Figs. 7 and 8. Itected(only two of the oscillators are now synchronized

Fig. 7 periods of synchronization between oscillators 1 and 2 Finally, Fig. 10 shows a longer time series from the
are clearly apparent, however do not persist throughout theoupled phase-energy oscillatg®—(4) with the addition of
integration. Again, slow oscillations between clustered perinoise of order 10. One can observe a number of noise-

odic states of symmetr$, X S; are apparent.

5

induced switches between slow oscillations with conjugate

45

4l

3.5

Y

25

o

Number of Clusters

1.5

1}

05

FIG. 9. Time series plot of the
number of clusters (tolerance
107%) for a system of five coupled
phase-energy oscillators as in
Figs. 7 and 8 in the presence of
noise with amplitude 10° Ob-
serve that the repeated clustering
and cluster breaking follows two
distinct cycles between states
where two clusters are present.
The switching between conjugate
symmetries is only possible via
small perturbations if they are ap-
plied just before the cluster of two
splits into four clusters.

L 1 L
(o] 500 1000 1500 2000

time
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i
I

sin((-)i—ej)
o

1 15 2

FIG. 10. Time series of five
coupled oscillators, noise ampli-
L‘ tude 107. Observe that several
w switches occur during the time se-
- ries, as demonstrated by phases

0 0.5 1 15 2 during which oscillators are ap-
proximately synchronized into the
cluster states. The slow oscilla-
tions between cluster states occur
on an average of period 300 while
the switching between conjugate
0 0.5 1 15 2 symmetries occurs after an aver-
1 : age time of order 10

si n(ei_ej)
o
——

si n(ei_ej)
o

sin(ei—ej)
o

-1 L

time x 10

symmetries; most noticably at timés 1.05x 10* and att ~ where one passes near solutions of tgpabh
=1.95x 10*. Thus we find equivalent dynamical behavior to  There are a large number of conjugate cluster stihés
the simpler phase oscillators mod&) in a model with two-  will grow exponentially with number of oscillatorsand

dimensional oscillators. these are arranged in a network with short diameter; one can
go between any two of the ten conjug&@gx S; symmetric
V. DISCUSSION: ENCODING USING CONJUGATE states using at most two switches. Moreover, we observe that
SYMMETRIES a switch between slow oscillations with conjugate symme-

) o tries is easy to arrange simply by providing a small pertur-
We have examined the heteroclinic attractor of R81.  pation to one of the oscillators.

for five globally coupled phase oscillators. This consists of A of these properties are highly desirable for encoding
slow oscillations between periodic states with symmetryof memory states, and it is a matter for future research to
S;XS;. In the presence of small perturbations, we havescale these results up to higher dimensional system@4in
shown examples where switching within the network occursyye jllustrate how one can use the heteroclinic network dis-
The dynamics of this network suggests that this is a googyssed in this paper as a unit for memory and timing within
mechanism for modeling the reversible encoding of a highy computational network. We end by emphasizing that the
number of “memory states” within a highly coupled network. orger parametey cannot be used to illustrate the effects of

In particular: _ . ~ switching between conjugate symmetries simply because it is
(i) The attractor is robust to noise and perturbationsjnyariant under the symmetry group.

these just affect the rate of slow oscillations.

(ii) Itis easy to robustly direct the network into any of
a number of conjugate states.

(iii) There is a natural “clocking rate” associated with  We gratefully acknowledge discussions with Marc Timme
network, determined by the level of noise forcing. Switchingand Gerhard Dangelmayr concerning this research. The re-
between conjugate attractors is only possible at distinct timesearch of J.B. was supported by EPSRC.
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