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We study properties of the dynamics underlying slow cluster oscillations in two systems of five globally
coupled oscillators. These slow oscillations are due to the appearance of structurally stable heteroclinic con-
nections between cluster states in the noise-free dynamics. In the presence of low levels of noise they give rise
to long periods of residence near cluster states interspersed with sudden transitions between them. Moreover,
these transitions may occur between cluster states of the same symmetry, or between cluster states with
conjugate symmetries given by some rearrangement of the oscillators. We consider the system of coupled
phase oscillators studied by Hanselet al. [Phys. Rev. E48, 3470 (1993)] in which one can observe slow,
noise-driven oscillations that occur between two families of two cluster periodic states; in the noise-free case
there is a robust attracting heteroclinic cycle connecting these families. The two families consist of symmetric
images of two inequivalent periodic orbits that have the same symmetry. ForN=5 oscillators, one of the
periodic orbits has one unstable direction and the other has two unstable directions. Examining the behavior on
the unstable manifold for the two unstable directions, we observe that the dimensionality of the manifold can
give rise to switching between conjugate symmetry orbits. By applying small perturbations to the system we
can easily steer it between a number of different marginally stable attractors. Finally, we show that similar
behavior occurs in a system of phase-energy oscillators that are a natural extension of the phase model to two
dimensional oscillators. We suggest that switching between conjugate symmetries is a very efficient method of
encoding information into a globally coupled system of oscillators and may therefore be a good and simple
model for the neural encoding of information.
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I. INTRODUCTION

Much attention has been paid to the dynamics of systems
of coupled nonlinear oscillators, with motivation from many
disciplines including neural network computing[1] and the-
oretical neurosciences[2–4]. Among the class of possible
coupled systems, globally coupled systems are particularly
useful in gaining an understanding of dynamical effects such
as clustering, even though realistic models are usually not of
this form. Globally coupled systems show a variety of effects
that are expected in highly connected systems(such as the
glomeruli in the antennal lobes of insects[5], or see Ref.[6]
for a general discussion of coupled systems). Of particular
interest arecluster stateswhere the oscillators split into a
number of groups each of which is synchronized within itself
but so that oscillators in different groups are not synchro-
nized.

Previous investigations into cluster states of globally
coupled systems include exploring the effect of varying cou-
pling strengths on bifurcation of cluster states[7] and the
effect of differing network topologies[8]. This has given a
good understanding of cluster dynamics, especially for(at-
tracting) equilibrium or periodic states. However, even if
such periodic cluster states are not attractors, they may ap-
pear within attractors for globally coupled systems due to the
effects of “slow switching”[9–11]. This is a phenomenon
characterized by the appearance of robust attracting hetero-
clinic cycles within the dynamics. Similar switching behav-
ior is found in systems coupled by delayed pulses[11] with
the difference that they can give rise to “unstable attractors”
[12].

Many mathematical models are available to describe the
collective behavior of individual neurons[13,14] and much

effort has gone into modeling the action potential of spiking
neurons through various excitatory and inhibitory coupling
regimes. In the weak coupling limit, phase models can be
obtained(see, for example, Ref.[15]). The possibility of ro-
bust heteroclinic cycles in such models was argued in Ref.
[16] and confirmed by Hanselet al. [9,17] for an explicit
system derived from Hodgkin-Huxley neurons with global
weak coupling, where it was termed a “slow oscillation,” and
similar heteroclinic oscillations have been suggested by oth-
ers as a mechanism for storage and retrieval of memory, for
example, in the olfactory system[2,18].

In this paper we return to the Hansel phase oscillator
model in Sec. II and examine its dynamical behavior forN
=5 in detail. Section II focuses on analyzing the robust at-
tracting heteroclinic behavior between periodic cluster states
of the form sa,a,a,b,bd (we describe the symmetries as
S23S3). In particular we examine the geometry of the un-
stable manifolds and show in Sec. III that perturbations and
noise can induce switching between conjugate symmetries.
We suggest that the switching behavior is of considerable
interest as a very simple model with a highly controllable
and fast switching between a large number of simultaneously
(but marginally) stable attractors. In particular, we show that
one can move between any of the ten different conjugate
versions ofS23S3 using at most two switches.

To demonstrate that the dynamics we consider is not de-
pendent on the reduction to a phase oscillator, we include
here an investigation into a phase-energy model of Ashwin
and Dangelmayr[19] that is a natural generalization from
models of weakly dissipative Hamiltonian oscillators. By in-
troducing a separate amplitude variable to mean field
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coupled phase oscillators, a phase-energy model with analo-
gous coupling to that in Ref.[9] gives rise to the same be-
havior. We verify in Sec. IV that the switching effect also
occurs in the latter system; we also discuss possible implica-
tions of this behavior.

Dynamical clustering: A symmetry viewpoint

We can view the dynamics of the globally coupled sys-
tems in terms of their symmetries, and use notation as in Ref.
[16]. An all-to-all or globally coupled system ofN identical
oscillators has symmetry groups corresponding toSN, the
group of all permutations ofN objects. This corresponds to
the system being equivalent under interchange of identical
oscillators. Of course, it is not necessarily the case that the
output from each oscillator will be identical. AnSN system of
coupled nonlinear equations can support a wide range of dy-
namical behaviors depending on initial condition(e.g., Ref.
[20]) and we are most interested in understanding the sym-
metries and dynamical structure of attractors for the system,
i.e., the asymptotic dynamics of the systems for “typical”
initial conditions.

Of particular interest in a globally coupled system is the
appearance of partial synchronization or clustering. For a
clustered state the output of the system of oscillators splits
into several subgroups with asymptotically similar dynamics
[8,21]. For example, a system ofN coupled oscillators, syn-
chronized into to two clusters of sizem andN−m the sym-
metry group of the dynamics isSm3SN−m. The transition
from a higher order synchronized state to a lower order
(spontaneous symmetry breaking) is a common feature of
coupled and symmetric systems.

II. HANSEL, MATO, AND MEUNIER PHASE
OSCILLATOR MODEL

Hanselet al. [9] introduced a model for phase oscillators
with the following governing equations, forN oscillators
with phasesui PT whereT is the “one-torus” parametrized
by f0,2pd and i =1, ... ,N.

u̇i = v +
1

N
o
j=1

N

gsui − u jd + hwistd. s1d

The coupling function is chosen to include more than one
harmonic,

gsfd = − sinsf + ad + r sin 2f, s2d

where we note that the presence of both phase shifted and
second harmonic terms represents a nonlinear mixture of
stimulation and inhibition. In Ref.[9] this choice ofgsfd is

motivated by a phase reduction of weakly coupled neural
oscillators. Thewistd are derivatives of uncorrelated white
noise processes with unit variance per unit time andv, h, a,
and r are real constants.

The system(1) clearly hasSN symmetry; it has an addi-
tional symmetry typical for weakly coupled oscillators,
namely phase-translation symmetry,

ui ° ui + r,

for any rPT, and so the system has symmetrySN3T. The
phase-translation symmetry arises as a result of an averaging
reduction and results in a major simplification in that peri-
odic orbits of the systems can be reduced to relative equilib-
ria of the action ofT; it was exploited in Ref.[16] to show
that certain cluster states are generically present forN
coupled oscillators.

The model(1) has been studied by several authors includ-
ing Kori and Kuramoto[10]. It provides an interesting ex-
ample of a system of phase oscillators with an attracting
robust heteroclinic cycle(a slow switching state) between
Sk3SN−k cluster states forN oscillators. As discussed in Ref.
[10] one can find attracting states that consist of heteroclinic
cycles between a pair of two cluster states with division of
the oscillators into groups of sizepN ands1−pdN (these are
between identical states ifp= 1

2). As in Ref.[9] we will con-
sider an order parameter that gives a measure of the total
coherence of the network

x =
1

N
Uo

k=1

N

eiukU .

The heteroclinic cycle manifests itself as a slow periodic
oscillation of x, where the period of oscillation is roughly
proportional to the reciprocal of the log ofh. Observe that
x=1 corresponds to synchronous oscillation, but for any
other state 0øx,1.

For the system withN=5 oscillators the solutions with
S23S3 clustering have5C3=10 conjugate symmetries of the
same type. This corresponds to permuting the entries in each
of the symmetries. For example, if there is a periodic cluster
state of the formsa,a,a,b,bd then there will also be states
sa,b,b,a,ad, sa,a,b,b,ad, etc., corresponding to conjugate
symmetries.

Heteroclinic network for N=5 oscillators

For parametersv=1, r =0.25, a=1.25, h=10−5, and N
=5 in system(1) we obtain the slow switching observed by
Ref. [9] as in Fig. 1(using a Runge-Kutta integrator with
stepsize 0.1). The dynamics appear to be attracted to a robust
heteroclinic cycle for all but a zero measure set of initial
conditions. There is a heteroclinic cycle between two fami-
lies of equilibria with symmetryS23S3. Schematically, this
cycle is shown in Fig. 2. The asymptotic dynamics of this
system, as noted by Refs.[9,10] involves a division of the
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oscillators into two clusters of sizepN and s1−pNd; in the
case ofN=5 this means that we can have clusters of the form
S23S3 or S13S4. Only the former are involved in the global
attractor, and in the absence of noise, the system performs
ever more occasional transitions between just two periodic
cluster states withS23S3 symmetry; we denote these states
aaabbandcccdd.

One of the main contributions of this paper is to note that
the geometry of the connections between the invariant sub-
spaces is much more complex than Fig. 2 would suggest.
This is becauseaaabbhas two unstable directions andcccdd
has one unstable direction; hence the unstable manifold(af-
ter including points related by theT symmetry) for aaabbis
two dimensional and incorporates an infinite number of tra-
jectories. Of these trajectories, almost all of them converge
to cccdd, but a finite number of them converge elsewhere
namely in this case tocddcc, ddccc, anddcdcc; we verify

this by numerical simulations of a number of trajectories
starting nearaaabb within the subspacesx,y,z,w,wd of
points with symmetryS2, as shown in Fig. 3. This leads to
possibility of noise-induced switching to slow oscillation to
different but conjugate symmetries; we investigate this in the
next section.

III. SWITCHING BETWEEN CONJUGATE ATTRACTORS

By considering the behavior of trajectories starting at one
of the periodic orbits and exploiting symmetries one can map
out the structure of the heteroclinic network. This amounts to
an examination of trajectories such as those shown in Fig. 3.
A schematic of the behavior on the unstable manifold of
aaabb is shown in Fig. 4; this shows that there are connec-
tions from aaabb to cddcc, dcdcc, andddccceven though
almost all trajectories pass tocccdd. We also illustrate that
the periodic orbitsabbaa, babaa, andbbaaaare present in
the closure of the unstable manifold even though they are not
the asymptotic limit of any point in the unstable manifold.
The unstable manifold of the orbitscccdd, etc., are one di-
mensional(accounting for theT orbit) and only connections
to the orbitscccbbwith precisely the same symmetry.

Figure 5 shows the possible connections between periodic
orbitsaaabband conjugate copies thereof. The ten conjugate
orbits can be attained by choice of unstable manifold at the
conjugate version of the periodic orbitaaabb.

For the noise-free case we conjecture that typical trajec-
tories will generically avoid the one-dimensional subset of
connections in the unstable manifolds of theaaabb. This is
because in the absence of noise we have not observed
switching between conjugate symmetries along trajectories
that approach the heteroclinic network. Instead, we see a
number of transitions always between the same symmetry

FIG. 1. (a)–(c) Time series
plots of a slow switching state of
five globally coupled phase oscil-
lators. The presence of a small
amount of noise means that it con-
tinues to cycle between two un-
stable periodic cluster states. Sub-
plot (a) shows the order parameter
x, (b) shows sinsu2−u1d, while (c)
shows two phase differences plot-
ted against each other. Observe
that (b) shows that the synchroni-
zation of u1 and u2 near the peri-
odic clusters is lost neart=500.
This is not evident in plot(a) of
the order parameter. Note that in
this and subsequent figures the
units are dimensionless.

FIG. 2. Schematic showing the heteroclinic connections be-
tween the two saddle periodic orbitsaaabband cccddwithin the
invariant subspaceS23S3. The periodic orbitaaabbhas two un-
stable directions and corresponds to a breaking of the cluster of
three oscillators. The orbitcccddhas one unstable direction corre-
sponding to breaking the two cluster. Not shown are the invariant
subspaces with symmetryS13S23S2 within S2; there are connec-
tions fromaaabbto conjugate symmetry cluster states within these
invariant subspaces.
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periodic orbits and after a while a numerically induced sta-
bility sets in, owing to the fact that rounding maps the tra-
jectory into one of the invariant subspaces(see also, for ex-
ample, Ref.[9]). However, we have no argument that rules
out dynamics-induced switching between conjugate attrac-
tors in the noise-free system.

In the presence of isotropic noise as in Fig. 1 one can
readily identify the presence of occasional switches in sym-
metry and numerical evidence indicates that as the noiseh
→0 the probability of transitions between different symme-
try types goes to zero with amplitudeh.0. We can explain
this in terms of picturing the heteroclinic network in the
presence of noise as an attractor that is roughly speaking an
h neighborhood of the noise-free network. This means that
within Oshd of the “exceptional” connections, for example,
near abbaa on the unstable manifold ofaaabb, there is a
high chance that trajectories will be taken into a neighbor-
hood of the subspacexyyzwcontainingabbaa. In this way, a
trajectory in the presence of noise can “tunnel” its way
around the network shown in Fig. 5.

FIG. 3. A large number of tra-
jectories are started on the two di-
mensional unstable manifold of
the periodic orbitaaabb in the
lower right of the figure. Forty
different initial conditions are
started within 10−3 of the orbit
and the phase differences between
oscillators are shown. Observe
that almost all trajectories lie
within the stable manifold of
cccdd; however, there are excep-
tional trajectories (lying within
subspaces with symmetryS13S2

3S2) that converge toddccc,
dcdcc, andcddcc. These give rise
to switches between conjugate
symmetries.

FIG. 4. Schematic diagram showing the geometry of the un-
stable manifold of the periodic orbitaaabbmodulo the group orbit
by T. Note that almost all trajectories fromaaabbare asymptotic to
cccdd. However, the exceptional trajectories that are in theS1

3S23S2 symmetry subspacesxyxzz, xxyzz, andyxxzzconverge to
different equilibria. Trajectories fromaaabbto cccddthat pass for
example nearddcccwill also pass nearbbaaaand so the periodic
orbits bbaaa, babaa, andabbaaare also contained within the clo-
sure of the unstable manifold ofaaabb. The accessible conjugate
periodic orbits tocccddare shown as black dots.

FIG. 5. This diagram shows the structure of connections be-
tween conjugate symmetries of the formS23S3. The arrows indi-
cate the transitions that are possible by choosing a heteroclinic tra-
jectory in the network. Observe that starting at any state, for
exampleaaabb, three of the nine conjugate states are accessible
after one step; the remaining six are accessible after two steps.
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To illustrate the controllable characteristics of this net-
work, we show in Fig. 6 an example, in the absence of noise,
of how one can traverse the network using only very small
perturbations. Starting on the periodic orbitaaabbwe apply
perturbations of order 10−5 at the time locations indicated by
the arrows above the plot. The perturbations are chosen to be
within the unstable manifolds of each of the periodic orbits.
For example, if we perturb

sa,a,a,b,bd ° sa + x,a,a,b,bd

for x very small we find that the system proceeds to the
periodic orbitsc,d,d,c,cd. Figure 6 shows a series of tran-
sitions

aaabb° cddcc° abbaa° cccdd° aaabb° cddcc¯ .

In principle one can explore any path on the directed graph
Fig. 5 using this method.

IV. SWITCHING BETWEEN CONJUGATE SYMMETRIES
IN A PHASE-ENERGY MODEL

We consider a simple phase-energy model that is a natural
extension of Refs.[9] and [10] while yielding additional
complexity in that the oscillators are two dimensional. These
phase-energy equations(introduced by Ref.[22]) are posed
on the spaceTn3Rn and have the form

u̇i = vsaid,
s3d

ai
˙ = − bsaid +

e

N
o
i=1

N

gsui − u jd,

where the phase of the oscillatori is represented by the an-
gular variableu (modulo 2p) and the energy relative to the
uncoupled systemse=0d is represented byai PR. Note that
b.0 is necessary for the term −bsad in Eq. (3) to stabilize

FIG. 6. An illustration of
perturbation-induced control of
the transitions betweenS23S3

periodic orbits, by impulsively ap-
plying perturbations of order 10−5

in the directions of chosen sym-
metry subspaces, at the times indi-
cated by the arrows above the
graph. This suggests that(a) the
network is highly efficient at en-
coding a state as a particular con-
jugate symmetry,(b) the chosen
switching between symmetries is
obtained on a fast time scale by
small perturbations of the system
and (c) the network is only sensi-
tive to perturbations at certain
points in time, namely those
where it is near a periodic orbit
conjugate to one of typeaaabb.

FIG. 7. Time series plot of the
sines of the differences between
the phases for a system of five
coupled phase-energy oscillators
l1=−0.4, l2=0, b=1, e=1, d
=4.391, r =0.25.
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the oscillations. The model can be motivated by noting that it
gives the most significant terms for weakly dissipative
coupled Hamiltonian oscillators. We set

vsad = 1 +l1a + l2a2. s4d

By choosing the functiongsfd in Eq. (3) above to be Eq.(2),
the interactions present in coupled neural systems correspond
to those in the Hanselet al. model. On simulating the model
(2)–(4) we obtain very similar time series as those for the
phase oscillator; examples are plotted in Figs. 7 and 8. In
Fig. 7 periods of synchronization between oscillators 1 and 2
are clearly apparent, however do not persist throughout the
integration. Again, slow oscillations between clustered peri-
odic states of symmetryS23S3 are apparent.

The dynamics of the clusters of heteroclinic cycles were
found using the Leader algorithm as in Ref.[23]. Figure 9
shows the behavior of clusters in the presence of small am-
plitude noise. After transients, the dynamics settle to a cycle
moving between the stable(3,2) cluster states(represented in
Fig. 9 by the periods where two clusters are present) with
two distinct trajectories between them. The first trajectory
exhibits only a single increase in the number of clusters be-
fore returning to a two cluster state, the second a longer
trajectory where the clusters break until four clusters are de-
tected(only two of the oscillators are now synchronized).

Finally, Fig. 10 shows a longer time series from the
coupled phase-energy oscillators(2)–(4) with the addition of
noise of order 10−7. One can observe a number of noise-
induced switches between slow oscillations with conjugate

FIG. 8. Time series plot of the
sines of the amplitudes for a sys-
tem of five coupled phase-energy
oscillators l1=−0.4, l2=0, b
=1, e=1, d=4.391, r =0.25.

FIG. 9. Time series plot of the
number of clusters (tolerance
10−4) for a system of five coupled
phase-energy oscillators as in
Figs. 7 and 8 in the presence of
noise with amplitude 10−10. Ob-
serve that the repeated clustering
and cluster breaking follows two
distinct cycles between states
where two clusters are present.
The switching between conjugate
symmetries is only possible via
small perturbations if they are ap-
plied just before the cluster of two
splits into four clusters.
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symmetries; most noticably at timest=1.053104 and at t
=1.953104. Thus we find equivalent dynamical behavior to
the simpler phase oscillators model(1) in a model with two-
dimensional oscillators.

V. DISCUSSION: ENCODING USING CONJUGATE
SYMMETRIES

We have examined the heteroclinic attractor of Ref.[9]
for five globally coupled phase oscillators. This consists of
slow oscillations between periodic states with symmetry
S23S3. In the presence of small perturbations, we have
shown examples where switching within the network occurs.

The dynamics of this network suggests that this is a good
mechanism for modeling the reversible encoding of a high
number of “memory states” within a highly coupled network.
In particular:

(i) The attractor is robust to noise and perturbations;
these just affect the rate of slow oscillations.

(ii ) It is easy to robustly direct the network into any of
a number of conjugate states.

(iii ) There is a natural “clocking rate” associated with
network, determined by the level of noise forcing. Switching
between conjugate attractors is only possible at distinct times

where one passes near solutions of typeaaabb.
There are a large number of conjugate cluster states(this

will grow exponentially with number of oscillators) and
these are arranged in a network with short diameter; one can
go between any two of the ten conjugateS23S3 symmetric
states using at most two switches. Moreover, we observe that
a switch between slow oscillations with conjugate symme-
tries is easy to arrange simply by providing a small pertur-
bation to one of the oscillators.

All of these properties are highly desirable for encoding
of memory states, and it is a matter for future research to
scale these results up to higher dimensional systems; in[24]
we illustrate how one can use the heteroclinic network dis-
cussed in this paper as a unit for memory and timing within
a computational network. We end by emphasizing that the
order parameterx cannot be used to illustrate the effects of
switching between conjugate symmetries simply because it is
invariant under the symmetry group.
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