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Spiral waves in active media react to small perturbations as particlelike objects. Here we apply

asymptotic theory to the interaction of spiral waves with a localized inhomogeneity, which leads to a novel

prediction: drift of the spiral rotation center along circular orbits around the inhomogeneity. The stationary

orbits have fixed radii and alternating stability, determined by the properties of the bulk medium and the

type of inhomogeneity, while the drift speed along an orbit depends on the strength of the inhomogeneity.

Direct numerical simulations confirm the validity and robustness of the theoretical predictions and show

that these unexpected effects should be observable in experiment.
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The interest in the dynamics of spiral waves as regimes
of self-organization has considerably broadened in the last
decades, as they have been found in ever more physical
systems of diverse types (magnetic films [1], liquid crystals
[2], nonlinear optics [3], new chemical systems [4], and in
population [5], tissue [6], and subcellular [7] biology). In a
perfectly uniform medium the core of a spiral wave may be
anywhere, depending on initial conditions. However, real
systems are always heterogeneous, and therefore spiral
drift due to inhomogeneity is of great practical interest to
applications. Understandably, such drift has been mostly
studied in excitable chemical reactions and the heart,
where drift due to a gradient of medium properties [8,9]
and pinning [10] (anchoring, trapping) to a localized in-
homogeneity [11–13] have been observed in experiments
and simulations. Interaction with localized inhomogeneity
can be considered to be a particular case of the general
phenomenon of vortex pinning to material defects [14].

Here we identify a new type of spiral wave dynamics:
precession around a localized inhomogeneity along a sta-
ble circular orbit. We predict this novel phenomenon theo-
retically, describe its key features, and confirm it by
numerical simulations. We argue that this orbital motion
of spiral waves is robust and prevalent, has nontrivial and
surprising consequences for applications, and should be
directly observable in experiments.

We consider reaction-diffusion equations, which is the
most popular class of models describing spiral waves:

@tu ¼ fðu;pÞ þDr2u; (1)

where u, f 2 R‘, D 2 R‘�‘, p 2 Rm, uð~r; tÞ is the dy-
namic vector field, ~r 2 R2, pð ~rÞ ¼ p0 þ p1ð~rÞ, jp1j � 1,
is the vector of parameters, D is diffusion matrix. For p ¼

p0 ¼ const, system (1) is assumed to have spiral wave
solutions rotating with angular velocity ! (taken here to
be clockwise for !> 0),

u ¼ Uð�; # þ!t��Þ; (2)

where (�, #) are polar coordinates defined with respect to

the center of rotation ~R ¼ ðX; YÞT , and � is the initial
rotation phase.
In the presence of a small perturbation p1ð~rÞ � 0, the

spiral’s center of rotation R ¼ Xþ iY is not constant but
slowly evolves with the equation of motion

dR

dt
¼ !ei�

2�

�
Z tþ�=!

t��=!
e�i!�

Z
R2

Z
½Wð�; �Þ�þhð~r; �Þd2 ~rd�;

(3)

where � ¼ �ð~r� ~RÞ and � ¼ #ð ~r� ~RÞ þ!��� are
polar coordinates in the corotating frame of reference,
and h is the perturbation to the right-hand side of Eq. (1).
Function W is called the response function (RF) and
defines the sensitivity of the spiral wave position with
respect to perturbations in different places. Technically,
W is a projector onto the eigenmode corresponding to
the neutral stability with respect to spatial translations
and is calculated as the eigenfunction LþW ¼ �i!W of
the adjoint linearized operator Lþ ¼ DTr2 þ!@� þ
ð@ufðU;p0ÞÞT , see for details [15–17].
For an inhomogeneity h ¼ @pfðUð�; �Þ;p0Þp1ð~rÞ uni-

form inside a disk of radius Ri, p1ð ~rÞ ¼ �
�R2

i

HðRi � j~rjÞê,
� � 1, where HðÞ is the Heaviside step function and ê 2
Rm, jjêjj ¼ 1, Eq. (3) gives
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dR

dt
¼ ��

R

jRjFðjRjÞ: (4)

Here F is the ‘‘drift force’’, defined as the drift velocity per
unit inhomogeneity strength �. For small Ri, the expres-
sion for F simplifies to

FðdÞ ¼
Z 2�

0
e�i�½Wðd; �Þ�þ@pfðUðd; �Þ;p0Þê d�2� : (5)

We calculated the spiral wave solution U and the re-
sponse function W using the method described in [18,19]
for the Barkley [20] kinetics u ¼ ðu; vÞ, p ¼ ða; b; �Þ, f ¼
ðfu; fvÞT , fu ¼ ��1uð1� uÞðu� ðvþ bÞ=aÞ, fv ¼
u� v, a0 ¼ 0:7, b0 ¼ 0:1, �0 ¼ 0:02, and D ¼ ðDijÞ,
where D11 ¼ 1 and D12 ¼ D21 ¼ D22 ¼ 0. This model
is ‘‘excitable’’, that is, it has a unique spatially uniform
steady state, stable with respect to small perturbations [21].
At the chosen parameter values, the spiral wave solutions
are stable [22]. Figures 1(a) and 1(b) show Wu and Wv

components and their location relative to the spiral.
Figure 1(c) shows graphs of the radial, FrðdÞ ¼ ReðFðdÞÞ
(positive for attraction) and azimuthal, FaðdÞ ¼ ImðFðdÞÞ
components of the drift force, for the localized inhomoge-
neity in parameter b, i.e., ê ¼ ð0; 1; 0ÞT .

The essence of our new finding is that there is the
change of sign of radial force FrðdÞ at d ¼ d1 � 3:95.
This follows from the sign changes of W components as
seen in Fig. 1(b). For positive �, this means attraction to
inhomogeneity at small distances and repulsion at larger
distances. For negative �, however, there will be a repul-
sion from the inhomogeneity at d < d1 and attraction at
d > d1, so that d ¼ d1 is a stable distance. The latter
corresponds to the drift along an orbit of radius d1 with

the speed j�Faðd1Þj. There is a further root of Fr at d ¼
d2 � 8:38; however, the corresponding value of Fa is very
small, �10�9, so no drift is easily observable there.
Figure 2 shows confirmation of the theoretical predic-

tion of the orbital motion by direct numerical simulations
(DNS) [19]. Panel (a) illustrates the relationship between
the DNS spiral wave solution, its tip and its instantaneous
rotation center, and panels (b) and (c) show the center
trajectories predicted by the theory and calculated by
DNS, for Ri ¼ 0:56 and different values of �b ¼
�=ð�R2

i Þ. Trajectories show circular orbits, attracting for
�b < 0 and repelling for �b > 0, with the radius indistin-
guishable from d1.
Panels (b) and (c) illustrate two key features of orbital

drift: the orbiting speed depends on the strength of the
inhomogeneity, while the radius of the orbit does not—it
depends only on the properties of the unperturbed medium.
These features follow from the theory and are confirmed by
DNS: trajectories in panel (c) have the same shape as in
panel (b), only the spirals drift along those trajectories
faster and in the opposite direction.
Figure 3 provides quantitative comparison between the-

ory and DNS. The theoretical value of the angular velocity
of the orbital motion is � ¼ j�b�R

2
i Faðd1Þ=d1j, implying

that � should vary linearly with j�bj with slope
j�R2

i Faðd1Þ=d1j. Linearity of �ð�bÞ is indeed found in
the DNS, remarkably up until j�b=b0j ¼ 0:9. The ratio
�=�b in simulations is slightly smaller than the theoretical
value, due to dicretization and approximations used.
Figure 4 compares theory and DNS for the perturbation

in the parameter � rather than b. There are now three roots
of FrðdÞ, namely, d1 � 1:97, d2 � 3:78, and d3 � 6:45,
two of which are in the experimentally observable range.
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FIG. 1 (color online). (a) Response function for a spiral wave. The spiral is visualized with a gray-scale plot of the u field. The
yellow point indicates the spiral tip and the dashed white line shows its trajectory as the spiral rotates. Superimposed is the response
function in term of the u component jWuj (red) and the v component jWvj (blue). (b) Enhanced visualization of one component of the
response function. ReðWvÞ is plotted with medium gray zero (periphery), light gray positive, and dark gray negative. (c) Drift force.
The radial Fr (solid red) and azimuthal Fa (dashed blue) components of the drift force, as functions of the distance d, calculated by (5).
The vertical dash-dotted lines show zeros of the radial component, corresponding to the radii at which stationary orbital motion of the
spiral wave is possible.
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Roots d1 and d2 have alternative stability: the d1 orbit is
unstable for positive �� and stable for negative ��, and d2
orbit is the other way round. Thus a trajectory starting in
between will enter into an orbital motion in any case: to the
outer orbit for �� < 0 and to the inner orbit for �� > 0; see
Figs. 4(b) and 4(c).

In Fig. 4(a), root d1 is very close to a root of FaðdÞ, and
Faðd1Þ is very small. Thus the inner orbit is attracting for
�� > 0 but the motion along it is very slow [Fig. 4(c)] and
with short observation time, it may look as if the spiral is
attracted to any point at distance d1 from the inhomoge-
neity and stands still there.

To conclude, we have reported a new type of interaction
of spiral waves with localized inhomogeneities: orbital
motion. This new interaction has key features that should
be observable in experiments, namely, the orbiting speed
depends on the strength of the inhomogeneity, while the
stationary orbit radii form a discrete set depending only on
the properties of the unperturbed medium. The phenome-
non is rather generic: we have found it in a number of other
models and for more general shape of inhomogeneity [17].
The possibility of orbital drift, related to a change of sign
of an equivalent of FrðdÞ was discussed at a speculative
level in [23]; how often this phenomenon may occur in
reality is a more complicated question. The equivalent of
response functions calculated in [24] has a structure which
suggests that for large-core spirals there is an infinite set of
orbits. In practice, orbital motion can only be observed for
lower orbits where the orbiting speed is noticeable. The
orbits have alternating stability, depending on the sign of
the inhomogeneity. From this viewpoint, pinning as con-
sidered in [25] in the same model as here, appears as a
degenerate case of orbital motion, with a zero radius.

In certain circumstances, while an orbiting spiral may
have the same macroscopic signature as a meandering one
[26], the microscopic details leading to this motion are
different. Meander, in the proper sense, is due to internal
instabilities of a spiral wave, whereas orbital motion is due
to inhomogeneity. E.g., in orbiting, the ‘‘meandering pat-
tern’’ determined by �=! will change depending on the
inhomogeneity strength.
In heart muscle, pinning of reentrant waves of excitation

has been identified as a mechanism of conversion of ven-
tricular fibrillation into ventricular tachycardia [27] and
shown to interfere with antitachycardia pacing [28].
Orbital motion is fundamentally more general than classi-
cal pinning: in pinning, the spiral is attracted at all dis-
tances to the inhomogeneity of a certain sign, while orbital
motion occurs when repulsion at small distances changes
to attraction at larger distances, and this can happen at
various distances and at either sign of inhomogeneity. The
important practical consequence of the orbital motion is

10-3

10-2

10-3 10-2 10-1

DNS
theory

FIG. 3 (color online). Angular speed� of orbital motion of the
spiral wave as a function of the amplitude of the parametric
inhomogeneity �b: theoretical prediction vs measurements from
direct numerical simulations.
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FIG. 2 (color online). Orbital motion of a spiral. (a) Simulation of a spiral wave in the presence of an inhomogeneity. The spiral starts
near the inhomogeneity (�b ¼ �0:02, green disk), is repelled from it, and launches into a stable circular clockwise orbit [19]. The
u field (red) and v field (blue) of the final spiral are shown. The preceding tip trajectory along the stable orbit is shown by a white line.
The preceding centers of rotation ~R are indicated both for this orbit (yellow) and the preceding evolution away from the inhomogeneity
(blue). (b) Theoretical vector field (black arrows, nonlinearly scaled for visualization) and predicted trajectories (blue open circles) for
the center of a spiral wave near an inhomogeneity (green disk). Actual trajectories for the spiral center from a DNS (red filled circles),
with �b ¼ �0:001. Black dash-dotted circles indicate stationary orbits as predicted by theory. Only every 20th position of the center is
shown on both theoretical and DNS trajectories. (c) Same for �b ¼ 0:003.
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that a spiral may be bound to inhomogeneities of either
sign, even if it is repelled from the inhomogeneity at small
distances.
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FIG. 4 (color online). Orbital motion of the spiral due to perturbation in parameter �. (a) Drift force components as functions of
distance for this inhomogeneity. The notation is the same as in Fig. 1(c). (b),(c) Comparison of theoretical predictions and simulations,
for (b) �� ¼ �0:001 and (c) �� ¼ 0:001. The notation is the same as in Figs. 2(b) and 2(c) . Shown are pieces of trajectories of the
same temporal length t ¼ 0 . . . 500.
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