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Abstract

Robust attracting heteroclinic cycles have been found in many models of dynamics
with symmetries. In all previous examples, robust heteroclinic cycles appear between
a number of symmetry broken equilibria. In this paper we examine the first example
where there are robust attracting heteroclinic cycles that include the origin, ie a point
with maximal symmetry. The example we study is for vector fields on R

3 with (Z2)
3

symmetry. We list all possible generic (codimension one) local and global bifurcations
by which this cycle can appear as an attractor; these include a resonance bifurcation
from a limit cycle, direct bifurcation from a stable origin and direct bifurcation from
other and more familiar robust heteroclinic cycles.

AMS classification scheme numbers: 34C37, 37C80.

1 Introduction

Consider an ordinary differential equation (ODE) on R
n that is symmetric under the action

of a finite group G acting on R
n. In addition to symmetric versions of the usual attractors

that arise in generic systems, symmetries can force the appearence of robust asymptotically
stable heteroclinic cycles or networks between saddle equilibria. These attractors consist of a
network of saddle equilibria connected via trajectories that are robust because they lie within
invariant subspaces forced by the symmetries. We refer to [Guckenheimer & Holmes, 1988,
Krupa, 1997, Ashwin & Field, 1999, Ashwin & Montaldi, 2002] for background and some ex-
amples, and [Krupa & Melbourne, 1995, Krupa & Melbourne, 2004] for characterization of
examples of robust homoclinic cycles in low dimensions.

In Guckenheimer & Holmes [1988], Armbruster et al. [1988], Field & Swift [1991] and Mel-
bourne et al. [1989], robust heteroclinic cycles arise at generic local bifurcation of the origin.
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In such cases centre manifold and normal form reduction reduces to an ODE that is a low or-
der polynomial equation on a subspace on which G acts irreducibly [Golubitsky et al., 1988].
In such cases all eigenvalues of the linearization of origin on the center manifold are equal,
the origin cannot be saddle and hence cannot be included in any robust heteroclinic cycle
contained within the centre manifold.

However, robust heteroclinic cycles can be created by global bifurcations and in such
cases there is no reason for them to be contained in any centre manifold; the origin may be
an equilibrium on the cycle. This paper shows there are robust heteroclinic attractors to
the origin for smooth ODEs on R

3 with symmetry G = (Z2)
3. Note that these cycles do

not fit into the class of ’simple’ robust heteroclinic cycles studied by Krupa and Melbourne
[1995,2004]; they do however form a subspace of those studied by Kirk & Silber [1994] who
examined competing cycles on R

4 with (Z2)
4 symmetry, though restricted to those with

non-zero axes equilibria.
More precisely, consider smooth ODEs XG on R

3 that respect the group of symmetries
G = (Z2)

3 generated by the reflections κi, i = 1, 2, 3 acting by

κ1(x, y, z) = (−x, y, z)
κ2(x, y, z) = (x,−y, z)
κ3(x, y, z) = (x, y,−z).

Observe that the positive octant

O = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0}

is invariant and we restrict most of our computations to this; note that GO = R
3. For

an equilibrium P we define the stable, unstable and center manifolds (W s(P ), W u(P ) and
W c(P ) respectively) as usual (see e.g. [Perko, 2001]). Our main result is the following:

Theorem 1 There is a non-empty open set U ⊂ XG such that each f ∈ U has a robust
attracting heteroclinic cycle in O between the origin P0 and equilibria P1 and P2 with one-
dimensional connections:

(W u(Pk) ∩ O) ⊂ W s(Pk+1) (1)

for k = 0, 1, 2 modulo 3.

We postpone the proof of Theorem 1 to Section 2 as the proof involves several steps.
These steps include considering an explicit example with a robust cycle; we show that this
is attracting and that it is robust to an open set of perturbations in XG. Our other result is
a characterization of possible bifurcation of such cycles.

Theorem 2 Consider U as in Theorem 1 and suppose that fs is a smooth family in XG

(s ∈ R) such that f ∈ U for s > 0 and f 6∈ U for s < 0. Then at least one of the cases listed
in Table 1 occurs for f0. Generically precisely one of these conditions occurs. Moreover, in
the generic cases 1a-c then dim(W c(Pk)) = 1.
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Case Event
1a dim(W c(P0)) ≥ 1
1b dim(W c(P1)) ≥ 1
1c dim(W c(P2)) ≥ 1
2a W u(P0) ∩ W s(P1) = ∅
2b W u(P1) ∩ W s(P2) = ∅
2c W u(P2) ∩ W s(P0) = ∅.
3 The cycle satifies a resonance condition (see Lemma 3).

Table 1: The cases leading to loss of the robust attracting heteroclinic cycle in Theorem 2.

Section 3 analyses these generic bifurcations that create or destroy the robust attracting
cycle. Among the possibilities listed in Theorem 2 we find a number of generic bifurcation
scenarios giving for example:

1a Bifurcation to an attracting heteroclinic cycle topologically equivalent to that of Guck-
enheimer and Holmes [1988], or bifurcation to a stable origin.

2c Bifurcation to a non-robust heteroclinic cycle.

3 Bifurcation to an attracting limit cycle.

Section 4 finishes with a discussion of sufficient and necessary conditions for the ap-
pearence of similar robust cycles to the origin. We also discuss how such cycles should
manifest themselves in the dynamics of physical systems.

2 Robustness of heteroclinic attractors to the origin

Any vector field in XG with this symmetry will leave the subspaces

Σk = fix(〈κk〉) = {(x1, x2, x3) : xk = 0}

invariant, for k = 1, 2, 3. Moreover, one can write any f ∈ XG as

ẋ = xf1(x
2, y2, z2)

ẏ = yf2(x
2, y2, z2)

ż = zf3(x
2, y2, z2)

(2)

for fi ∈ C∞(R3, R). A particular case is the fifth order polynomial ODE

ẋ = x(α0 + α1x
2 + α2y

2 + α3z
2

+α12x
2y2 + α13x

2z2 + α23y
2z2 + α11x

4 + α22y
4 + α33z

4)
ẏ = y(β0 + β1x

2 + β2y
2 + β3z

2

+β12x
2y2 + β13x

2z2 + β23y
2z2 + β11x

4 + β22y
4 + β33z

4)
ż = z(γ0 + γ1x

2 + γ2y
2 + γ3z

2

+γ12x
2y2 + γ13x

2z2 + γ23y
2z2 + γ11x

4 + γ22y
4 + γ33z

4)

(3)
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Fixed point x y z

P0 e0 = 4 −c0 = −4 −d0 = −1
P1 −d1 = −8 e1 = 4 −c1 = −3
P2 −c2 = −8 −d2 = −24 e2 = 3

Table 2: Notation used for the eigenvalues of the model system (3) and their values for the
parameter values in (4); these correspond to eigenvectors with a non-zero component in the
direction given.

where αi, βi and γi are fixed parameters. We consider the dynamics of model (3) with
parameters

α0 = 4, α1 = −1, α2 = −3,
β0 = −4, β1 = 2, β2 = 5, β3 = 1, β13 = −2, β22 = −1, β33 = −9,
γ0 = −1, γ1 = −0.5, γ2 = 1, γ3 = −0.01, γ23 = −0.2, γ33 = −0.01.

(4)

and all others set to zero. Figure 1 shows the cycle computed numerically, whereas Figure 2
shows the cycle schematically related to the locations of the Pi and Qi at these parameter
values and introduces some notation used later on.

Theorem 3 The system (3,4) has a heteroclinic cycle P0 → P1 → P2 → P0 in O with P0

the origin. This cycle is an asymptotically stable attractor within O.

Proof One can compute that the only equilibria in O are

P0 = (0, 0, 0), P1 = (2, 0, 0), P2 = (0, 2, 0),
Q0 = (0, 1, 0), Q1 = (0, 1.01997, 0.428283),

R0 = (0.525517, 1.11413, 0.627359)

(to 6 significant figures). There are other equilibria in R
3 on group orbit of these equilibria

under the action of G and this gives a total of 19 equilibria for this system. One can verify by
direct computation that all of the equilibria labelled Pi have eigenvalues as listed in Table 2;
they clearly each have a two dimensional stable manifold and a one dimensional unstable
manifold. We can compute that (W u(P0) ∩ O) ⊂ W s(P1) because the system on y = z = 0
reduces to

ẋ = x(4 − x2)

and this is positive for all 0 < x < 2 giving the connecting orbit. We give proof that there
are the other connections (1) in the Lemmas 1 and 2. We show that the cycle is an attractor
in Lemma 3. QED

Lemma 1 For the system (3,4) there is a connection (W u(P1) ∩ O) ⊂ W s(P2).
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(a)

(b)

Figure 1: The attracting robust heteroclinic cycle for the ODE (3) at parameter values (4).
(a) shows the cycle in (x, y, z) space while (b) shows the timeseries of a trajectory attracted
to the cycle; observe that the origin forms part of the cycle. There are 8 possible cycles
related by the symmetry group G = (Z2)

3.
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Figure 2: Schematic diagram showing the structure of the attracting robust heteroclinic
cycle illustrated in Figure 1. The surfaces of section and the equilibria are labelled as in the
text and the eigenvalues are labelled as in Table 2. The directions of the eigenvectors are
as they would be locally for the cycle in Figure 1; the following section examines possible
bifurcations when some of these directions are reversed, i.e. the eigenvalue passes through
zero.
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Figure 3: Schematic diagram showing the boundaries Wi of W and Vi of V used in the proof
of Lemma 1 and 2 . The robust cycle is contained in the union of W, V and the x-axis.

Proof Since the unstable direction for P1 is within the plane z = 0 we reduce to

ẋ = x(4 − x2 − 3y2)
ẏ = y(−4 + 2x2 + 5y2 − y4).

Consider

L(x, y) =
x2

x2 + y2

and note that L(x, 0) = 1, L(0, y) = 0 and L(x, y) > 0 in the interior of O. We claim that
L̇ < 0 in some absorbing set W that connects P1 and P2 consisting of the compact region
bounded by ∂W = W1 ∩ W2 ∩ W3 ∩ W4 where

Wk = {(x, y, 0) ∈ O : 2 − εk = r =
√

x2 + y2} for k = 1, 2

and W3 and W4 are segments for the x- and y-axes respectively. We choose εk so that ṙ > 0
on W1, ṙ < 0 on W2, L̇ < 0 in W and P1 and P2 are contained in W. Note that W3 and W4

are subsets of invariant lines. Computing

ṙ =
x2

√

x2 + y2
(4 − x2 − 3y2) +

y2

√

x2 + y2
(−4 + 2x2 + 5y2 − y4).

For a point (x, y) ∈ Wk this gives

ṙ = x2

2−εk

(4 − x2 − 3(2 − εk)
2 + 3x2)+

(2−εk)2−x2

2−εk

(−4 + 2x2 + 5(2 − εk)
2 − 5x2 − ((2 − εk)

2 − x2)2)

Concerning the Lyapunov function L one can compute that

L̇ =
2xy2

(x2 + y2)2
ẋ −

2yx2

(x2 + y2)2
ẏ =

2x2y2

(x2 + y2)2
(8 − 3x2 − 8y2 + y4).
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By examining the maximum and minimum of ṙ and L̇ on W ⊂ O using Maple, we can
determine that (to 3 significant figures)

• If 0.0689 < ε1 < 1 then ṙ > 0 on W1

• If 0.452 < ε2 then ṙ < 0 on W2.

• If 0 < ε1 < 0.122 and 0 < ε2 < 0.613 then L̇ > 0 in W \ {W3, W4}.

Hence if we choose for example ε1 = 0.1 and ε2 = 0.5 in the interior of these regions, we have
established there is an absorbing region W, that contains P0 and P1 but no other fixed points,
for which all interior points limit to the y-axis, and in particular (W u(P1) ∩ O) ⊂ W s(P2).
QED

Lemma 2 For the system (3,4) there is a connection (W u(P2) ∩ O) ⊂ W s(P0).

Proof Choose M(y, z) = arctan( z2

y2
−1

) with 0 ≤ M ≤ π and we will show that there is an

absorbing region V on which Ṁ > 0, similar to the proof of Lemma 1. We define V consisting
of the compact region bounded by ∂V = V1 ∩ V2 ∩ V3 ∩ V4 where

V1 = {(0, y, z) ∈ O : ε1 = z4 + (y − 1)2 − 0.4y − 1},
V2 = {(0, y, z) ∈ O : ε2 = z4 + (y − 1)2 − 1.5y − 1},

and V3 and V4 are segments in the y and z axes respectively. We claim there is an ε1 and ε2

such that Ṁ > 0 in V and V is absorbing. To see this, we compute that

Ṁ =
z2

y4 − 2y2 + 1 + z4
(4y2 − 8y4 − 1.62y2z2 + 2y6 + 17.98y2z4 − 0.4y4z2 + 2 + z2 + z4)

and by examining maxima and minima of the appropriate functions using Maple, we see
that:

• If −1.35 ≤ ε1 ≤ −0.79 then all trajectories through V1 enter V.

• If ε2 ≥ 3.02 then all trajectories through V2 enter V.

• If −1.02 < ε1 then Ṁ > 0 on V \ {V3, V4}.

Hence if we choose, for example, ε1 = −1 and ε2 = 3.5 then the equilibrium Q1 is not in V.
This means that all trajectories in the interior of V limit to V4 and hence to P0; in particular
(W u(P2) ∩ O) ⊂ W s(P0). QED
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2.1 Stability of the robust cycle to the origin

It remains to show that the robust heteroclinic cycle is an attractor. Referring to Figure 2
and Table 2, we approximate the return map local to the cycle by examining the flow near the
hyperbolic equilibria; as is typical the attractiveness or otherwise of the cycle is determined
purely by the a quantity derivable from the eigenvalues of the linearizations at the equilibria.
For a cycle of the form (1) we define

λ =
c2(d0e1 + c0c1)

e0e1e2
(5)

where the eigenvalues of the equilibria are labelled as in Table 2.

Lemma 3 The cycle (1) is attracting if λ > 1 and repelling if λ < 1.

Proof We place surfaces of section Πin
i and Πout

i at a distance ε from each Pi and take
linearising coordinates near each of the Pi. Figure 2 shows the cycle with the equilibria Pi

and their eigendirections labelled as in the Table. The first return map F to the section Πin
0

is given by
F = G2 ◦ F2 ◦ G1 ◦ F1 ◦ G0 ◦ F0 where F : Πin

0 → Πin
0 .

where as before we consider only trajectories in O and the maps

Πin
i

Fi→ Πout
i

Gi→ Πin
i+1.

for i modulo 3. Leading order terms for these maps are given in Appendix A giving the
return map F (x, y) = (x′, y′) where

x′ = Ax
c2(d0e1+c1c0)

e0e1e2 y
c2c1
e2e1 ,

y′ = B + Cx
d2(d0e1+c1c0)

e2e1e0 y
c1d2
e1e2 +

Dx
d2(d0e1+c1c0)+e2d1c0

e2e1e0 y
c1d2+d1e2

e1e2 +

Ex
(d2+e2)(d0e1+c1c0)

e2e1e0 y
c1(d2+e2)

e1e2 .

(6)

For one dimensional unstable manifolds, generically the ci, di and ei are all positive and the
A, B, C, D, E are non-zero. Near x = 0 the dominant terms are

x′ = Ax
c2(d0e1+c1c0)

e0e1e2 y
c2c1
e2e1 ,

y′ = B
(7)

for A and B positive constants. The cycle is stable precisely when x → 0 and this is requires
λ > 1 where λ is as in (5). Similarly, if λ < 1 then typical initial conditions near x = 0 will
iterate away from it implying instability. QED

When λ = 1 the stability is determined by higher order terms and we say the cycle has
a resonance; typically this gives rise to bifurcation of a periodic orbit from the cycle (see for
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example [Chow et al., 1990]). One can verify from Table 2 for the system (3,4) as illustrated
in Figure 1 that λ = 8

3
, and so the cycle is an attractor in this case.

Note also that for the model (3) one can write λ in terms of the system parameters,
assuming that the Pi exist and are as example above. In this case we have

λ =
−(α0 + y2

eα2)(x
2
e)(−γ0β1 + β0γ1)

(α0)(β0 + x2
eβ1)(γ0 + y2

eγ2)
(8)

where ye is the most positive solution of β0 + β2y
2
e + β22y

4
e = 0 and xe is the most positive

solution of α0 + α1x
2
e + α11x

4
e = 0. We now gather together the results giving the proof of

the main theorem:
Proof of Theorem 1 Consider the set U1 ⊂ XG of f such that

(i) There is a hyperbolic equilibrium P1 = (x0, 0, 0), x0 > 0, with a one-dimensional
unstable manifold in the direction (0,±1, 0).

(ii) There is a hyperbolic equilibrium P2 = (0, x1, 0), x1 > 0, with a one-dimensional
unstable manifold in the direction (0, 0,±1).

(iii) P0 = (0, 0, 0) is hyperbolic with a one-dimensional unstable manifold in the direction
(±1, 0, 0). We denote the eigenvalues of Pk as in Figure 2 and Table 2.

Within U1 there is an open set U2 such that for the flow within O

W u(P0) ⊂ W s(P1), W u(P1) ⊂ W s(P2) and W u(P2) ⊂ W s(P0),

and all these connections are transverse [Field, 1996] within some invariant subspace. Each
of these connections is from a hyperbolic saddle with one dimensional unstable manifold and
each connection is from saddle to sink within an invariant subspace and so the connections are
robust to any smooth perturbations of the vector field that preserve the invariant subspaces.
Within U2 there is an open set U3 on which the quantity λ > 1 and hence the cycle will be
an (asymptotically stable) attractor. Finally, Theorem 3 demonstrates explicitly using the
system (3,4) that U3 is non-empty. QED

In the light of the proof above, the proof of Theorem 2 is relatively clear:
Proof of Theorem 2 Referring to the proof of Theorem 1 we note that if fγ ∈ U2 \U3 then
we have case 3, if fγ ∈ U1 \ U2 then we have case 2 and if fγ 6∈ U1 then at least one of the
equilibria must be at a bifurcation point (case 1). QED

3 Generic bifurcations of the robust cycle to the origin

In this section we consider the generic codimension one bifurcations from U as in Theorem 2
in more detail and how the cause creation/destruction of the robust heteroclinic cycle to the
origin. As in the statement of the Theorem, there are three main cases:
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• Case 1a,1b,1c: Local bifurcations of one of the equilibria Pi.

• Case 2a,2b,2c: Global bifurcations that create or destroy connections.

• Case 3: Global resonance bifurcation of the cycle.

We consider each of these cases in turn, with some numerical examples from the explicit
model system (3).

3.1 Case 1a: Local bifurcation at P0

There are three generic bifurcations of the saddle P0 associated with a change of sign of the
eigenvalues in each of the directions x, y, z; these are all pitchfork bifurcations and we treat
each of these in turn.

3.1.1 Bifurcation of P0 in x-direction: stabilization of origin

On changing the sign of α0 (the positive eigenvalue) one can cause the origin P0 to undergo a
bifurcation in the x direction. Only if this bifurcation is subcritical can we have a transition
from a stable origin for α0 < 0 to an attracting heteroclinic cycle including the origin for
α0 > 0. For e0 = α0 → 0 note that by (5) we have λ → ∞, implying that the cycle will be
stable after bifurcation and moreover it will be very strongly attracting in that only a few
circuits of the cycle are likely to be seen numerically for small positive α0.

In order to obtain such a subcritical bifurcation while still retaining an equilibria at P1

we require additionally that α11 < 0, and hence that α1 > 0. As an example, consider (3,4),
except for α1 = 1 and α11 = −0.25; we can then obtain such a bifurcation as α0 passes
through zero.

3.1.2 Bifurcation of P0 in y-direction: creation of robust cycle to equilibria on

y-axis

If P0 loses stability supercritically in the y direction to a new equilibrium P ′

0 on the y axis,
then this gives rise to a robust heteroclinic cycle involving P ′

0 and P2 only. This bifurcation
can occur as β0 passes through zero.

Note that we need to introduce an extra seventh order coefficient β222 of y7 in ẏ as we
require seven equilibria simultaneously on the y-axis for this generic scenario (see Figure 5).
Hence we choose the parameters as in (3,4) except for

α0 = 2, β0 = 0.01, β2 = −2.1, β22 = 5, β222 = −2,
γ0 = −2.5, γ2 = γ23 = 3.

(9)

Figure 4 illustrated this cycle between the two equilibria P ′

0, P1. This cycle is topologically
equivalent to the robust cycle observed in 1:2 resonance for bifurcations with symmetry
O(2); see for example Krupa [1997], or for an example in a partial differential equation
[Kevrekidis et al., 1990].
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Figure 4: This shows a trajectory converging to a robust heteroclinic cycle between two
equilibria in the y axis, not including the origin in the system (3). This cycle appears at a
supercritical pitchfork bifurcation at the origin from the cycle shown in Figure 1.

z

0P P’0 Q 0 P 2

y

Figure 5: Schematic illustration of the equilibria needed for the existence of the robust cycle
between P ′

0 and P2 as seen in Figure 4.
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3.1.3 Bifurcation of P0 in z-direction; creation of Guckenheimer-Holmes cycle

The final bifurcation at P0 that we consider occurs when it loses stability in the z direction,
i.e. when γ0 passes through zero. Only if this bifurcation is supercritical then we can
bifurcate directly from a cycle equivalent to that in Figure 1 to a robust attracting cycle of
the type observed by Guckenheimer and Holmes [1988]. Varying only γ0, we can obtain such
a bifurcation, however for (4) we also have a resonance bifurcation at the same point (see
section 3.5); By setting for example γ1 = −0.6 we can avoid this degeneracy.

Setting γ0 = 0.01 there is a heteroclinic cycle as shown in Figure 6(a), which now also has
equilibria at (0, 0, 0.3). It is interesting to note that at the bifurcation point, γ0 = 0, there
is still a heteroclinic cycle even though one of the equilibria is now non-hyperbolic. We show
the time series converging to this cycle in Figure 6(b), and one can observe that on approach
to the origin, the rate of approach is slow, consistent with an expected sub-exponential rate
of convergence to the nonhyperbolic origin.

For this bifurcation we note that there can be a transfer of stability from the original
cycle to the stability of the new cycle; we have already mentioned that at bifurcation the
equilibrium P0 is nonhyperbolic and has eigenvalue d0 = γ0 = 0; nonetheless λ may be
computed from (5). This coincides with the stability quotient for the Guckenheimer-Holmes
cycle. The cycle is stable if ρ > 1 where

ρ =
c0c1c2

e0e1e2

assuming the new equilibrium on the z-axis is close to the origin. Figure 7 shows λ and
ρ plotted against γ0 for (4) except for γ1 = −0.6 and γ3 = −0.1; observe the continuous
(but not differentiable) change of the stability quotient from one cycle to the other, passing
through γ0 = 0. Figure 8 shows this more clearly, while also showing a number of bifurcations
in the system.

3.2 Case 1b: Local bifurcations at P1

We now examine bifurcations of P1 leading to destruction of the cycle. Bifurcation in the x

direction will occur generically as a saddle node and this can result for example in bifurcation
to an attracting equilibrium further out on the x-axis with hysteresis. The other bifurcations
are of more interest and will be pitchfork bifurcations generically.

3.2.1 Bifurcation of P1 in y-direction; stabilization of P1

If P1 bifurcates in the y direction, this bifurction must be supercritical and bifurcation will
lead to stabilization of P1. This bifurcation can go straight to an attracting heteroclinic
cycle as e1 → 0 means that λ → ∞.

3.2.2 Bifurcation of P1 in z-direction; essential asymptotic stability

A bifurcation of P1 in the z direction is a transverse bifurcation of the cycle [Chossat et al., 1997]
that leads to P1 having a two dimensional unstable manifold. Nonetheless the stability cal-
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Figure 6: (a) shows a cycle of Guckenheimer-Holmes type bifurcated from the cycle shown in
Figure 1, where the parameter values are as in equation (4) except for γ3 = −0.1, γ1 = −0.6
and γ0 = 0.01. Meanwhile (b) shows the time series plot for the same parameters but with
γ0 = 0 where we are at the bifurcation point to this cycle.
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Figure 7: The values of the stability quotients λ and ρ on changing the parameter γ0 where
additionally γ1 = −0.6 and γ3 = −0.1. This allows us to observe a bifurcation to the
Guckenheimer-Holmes cycle in Figure 6 for γ0 > 0.
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Figure 8: Bifurcation diagrams produced in AUTO showing branches of equilibria for (4)
on varying γ0, showing the z values of the branches. Robust heteroclinic cycles are found
in the region enclosed by the points A and B; negative values of γ0 give our original cycle,
and the Guckenheimer-Holmes style cycle appears for positive values up to B at γ0 = 2
where the only attractor becomes a sink at (2, 0, z). In practice we see a limit cycle in (y,z)
when approaching A from about γ0 < −2.06. Note that a bifurcation of case 3 occurs as in
Figure 13 upon decreasing γ0 below the point A at γ0 = −2.16. Note that the resonance at
γ0 = 0 cooincides with the bifurcation point.
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culation in Section 2.1 is still valid and predicts that the original cycle can still be stable
(see below), even though in this case c1 is negative.

As an example, consider (3,4) changing the parameters β0 = −5, γ0 = −1.5 γ3 = 0.5
and varying γ1. When it is increased through 0.375, the eigenvalue c1 passes through zero.
However, the cycle still retains some stability: in the terminology of Melbourne [1991] the
change in sign of c1 causes the cycle to go from being asymptotically stable to being essentially
asymptotically stable. This means that, local to the connection from P0 to P1, the basin of the
cycle is still open but does not have full measure in some neighbourhoods of the connection.

3.3 Case 1c: Local bifurcations at P2

A bifurcation of P2 in the x direction cause a resonance bifurcation before the eigenvalue
becomes zero (note that c2 = 0 means that λ = 0) and hence this will not occur as a generic
instability from the robust attracting cycle.

3.3.1 Bifurcation of P2 in y-direction; limit cycle in (x, y) plane

The only generic bifurcation of P2 in the y-direction will be a saddle-node bifurcation with
another equilibrium in the y axis. If there are no other equilibria in this axis, this can lead
to bifurcation to a limit cycle of large period in the (x, y)-plane as we now demonstrate.

For example, consider (3,4) and vary β0 to give bifurcation as P2 and Q0 meet in the
y-axis. At β0 = −6.25, the heteroclinic cycle disappears and is replaced by a limit cycle
contained wholly in the (x, y) plane. (Note also that the point Q1 has also vanished; this
bifurcates at β0 ≈ −4.07 but there are additional points Q2 are now present in the (x, y)
plane which appear at β0 ≈ −5.38). All these bifurcations can be observed in the diagram
in Figure 11.

Figure 9 shows the limit cycle at a point just after the bifurcation at γ0 = −6.25.
Meanwhile Figure 10 schematically shows the saddle-node bifurcation local to P2; for (a)
and (b) there is a cycle with a connection entering in the (x, y) plane and leaving along
the unstable manifold of P2. For (c) the connection is broken and the simplest consistent
dynamics will give that the unstable manifold of P1 converges to a limit cycle in the x, y

plane.

3.3.2 Bifurcation of P2 in the z-direction; stabilization of P2

The final local bifurcation we discuss is when e2 goes to zero; this is generically a pitchfork
bifurcation and must be subcritical to give bifurcation directly from the cycle. Such a
bifurcation will lead to the stable cycle being replaced by a stable equilibrium at P2. In
Figure 8 this can be observed for (3,4) when γ0 passes below -4.
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Figure 9: The limit cycle produced in the (x, y) plane after bifurcation from the cycle in
Figure 1 caused by a saddle-node bifurcation of the equilibria P2 and Q0. In this example
β0 = −6.3.
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Figure 10: Schematic diagram showing the bifurcation to a limit cycle in the (x, y) plane
caused by a saddle-node bifurcation of P2 and Q0. This can occur with a stable heteroclinic
cycle between the Pi in (a) being replaced by a global limit cycle, a part of which is shown
in (c).

3.4 Case 2: Bifurcations of the connecting orbits

Another possible type of generic (codimension one) bifurcation in which the cycle can lose
stability is a bifurcation that destroys a connecting orbit. We have there are two generic
bifurcations that lead to destruction of the cycle; either

(a) there is a saddle-node bifurcation on a connection that destroys the connection, or

(b) the connection becomes heteroclinic to another equilibrium not involved in the cycle.

These two possibilities are shown schematically in Figure 12 on varying a bifurcation param-
eter α through a bifurcation point at 0. In principle either of these bifurcations can occur
on any of the connections.

Figure 13 shows an observed bifurcation of the connection between P2 and P0 of type
(b) above on setting (4) and γ0 = −2.064318. For γ0 more negative than approximately this
value the unstable manifold of P2 approaches a limit cycle in the (y, z) plane surrounding Q1

the spiral source in the (y, z) plane; for γ0 more positive it forms a connection (shown by the
dashed line) that means the cycle is present. At the bifurcation point there is a structurally
unstable connection from P2 to Q0. A similar phase portrait can be obtained varying only
β0, though only by passing through a more complex limit cycle, as explained in Figure 11.
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Figure 11: Bifurcation diagram showing branches of equilibria for (4) on varying β0, showing
y values of the branches. Note that bold lines indicate branches of stable equilibria, and
thin lines those of unstable equilibria. There is a robust cycle of the form in Figure 1 for
−6.25 < β0 . 0. At the lower boundary (labelled A in the diagram) we have a bifurcation
to a limit cycle in the (x, y) plane as outlined in 3.3.1. The upper boundary B corresponds
to a resonance bifurcation at β0 = 0. For β0 positive there is a limit cycle close to the cycle.
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Figure 12: Schematic diagram showing two possible generic bifurcations that destroy a robust
connecting orbit between hyperbolic equilibria P and Q on varying an arbitrary parameter
α. In case (a) there is a saddle node at α = 0; in case (b) the connecting orbit becomes
heteroclinic to another saddle at α = 0. In both cases the connection from P to Q is
destroyed for α > 0.
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Figure 13: A bifurcation from a stable cycle of the type in Figure 1 to an attractor in the
(y, z) plane, induced by the destruction of the connection between P2 and P0. The connection
in the (y, z) plane is shown with γ0 = −2.064318 approximately, varying in the 9th decimal
place to show the two types of behaviour. The dashed line shows the heteroclinic connection,
while the solid line shows the trajectory when γ0 is decreased slightly.
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3.5 Case 3: Resonance bifurcations of the cycle

As discussed in Section 2.1 the heteroclinic cycle Figure 1 can lose attraction at a resonance
bifurcation at λ = 1 in (7). This can give rise to a branch of periodic solutions that bifurcate
at resonance either sub- or super-critically. For instance, one can observe bifurcation to the
limit cycle shown in Figure 14 with parameters as in (4) except for α0 = 6.6. In this case
the stability coefficient is λ = 0.62846 < 1 indicating instability of the cycle.

More generally, one can verify that on varying only α0 we have

λ =
(12 − α0)4x

2
e

3α0(2x2
e − 4)

(10)

where x2
e = α0 and so there is a unique α0 giving resonance λ = 1.

4 Discussion

In summary we have demonstrated the existence of an open set of smooth vector fields on
R

3 under the action of G = (Z2)
3 possessing attracting robust attracting heteroclinic cycles

including the origin and we have classified the possible instabilities of these cycles. The
polynomial example (3) shows this cycle for an open set of parameter values and allows
analysis of examples of the possible bifurcations. Note that the example is a fifth order
polynomial vector field, and such phenomena cannot be seen in a lower order polynomial
simply through consideration of the number of equilibria needed. Although this system
shows these cycles for an open set of parameter values, our experiments using random choice
of parameters has shown that such cycles are very difficult to find.

Our examination of generic codimension one bifurcations has found cases of direct bifu-
cation to attractors that are topologically equivalent other well-known examples of robust
heteroclinic cycles in R

3, namely the cycle of Guckenheimer and Holmes and a cycle that
appears in O(2) mode interaction. We have also found direct bifurcation from an attracting
heteroclinic cycle to stability of each of the equilibria in the cycle and to attracting limit
cycles that follow closely connections in the cycle.

Of particular interest is the scenario where a subcritical pitchfork bifurcation of the origin
in the x-direction gives rise to a robust heteroclinic to the origin as being the only attractor
after bifurcation. This can be interpreted as a primary instability of a solution with maximal
symmetry bifurcating to an attractor that it intermittent to the origin. It would be of great
interest to find a physical system in which such a generic scenario can be identified.

These cycles can also appear in system of predator-prey type using a well-known equiv-
alence (see e.g. [Krupa, 1997]). We set X = x2, Y = y2 and Z = y2 and if we consider a
flow that preserves extinction of any of these species, this will lead us to considering ODEs
of the form (11)

Ẋ = Xf1(X, Y, Z)

Ẏ = Xf2(X, Y, Z)

Ż = Xf3(X, Y, Z)

(11)
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(a)

(b)

Figure 14: A trajectory attracted to the limit cycle bifurcating from the heteroclinic cycle
in Figure 1 at a resonance at α0 = 6; here we have α0 = 6.6. We start close to the original
heteroclinic cycle and converge to a limit cycle which continues to shadow the heteroclinic
cycle. (a) shows the cycle in (x, y, z) space and (b) shows the timeseries of the trajectory
shown in (a).

23



which can be seen to be equivalent to (2); in particular the robust cycle to the origin from
Theorem 1 can also appear for an open set of such systems. This will occur for certain
situations when X acts as a prey, Z a predator and Y a species that may switch its strategy
depending on population size. The presence of the attracting cycle predicts the eventual
extinction of two or three of the species depending on which species first goes under the
threshold of one organism.

4.1 Other situations giving robust cycles to the origin

The dynamics we have discussed provides a model to understand bursting maximal symmetry
states; which has been observed previously for example by Moehlis and Knobloch [2000] in
systems with broken D4 symmetry. In their models the bursting occurs only in the presence
of symmetry breaking terms; our model does not need this. However, in the presence of
low noise or symmetry breaking, a neighbourhood of our heteroclinic cycle will still remain
attracting and so the intermittency will be observable.

We believe that this is in some sense the simplest symmetry and phase space in which a
robust attracting heteroclinic to the origin can appear. The group G = Z2 is not sufficient
as is any group acting orthogonally on R

2; to obtain a robust cycle one needs at least two
invariant subspaces with dimension strictly greater than zero and strictly less than that of
phase space. For G = (Z2)

2 on R
3 one can obtain robust heteroclinic cycles (see for example

Figure 4). However, this gives two equilibria of maximal symmetry included in the cycle
and so manifest itself as a robust cycle to distinct maximal symmetry solutions. Hence it is
difficult to imagine a group with lower order giving such cycles.

We strongly suspect that similar robust cycles will be found for example systems with
O(2) symmetry; several authors have noted stable heteroclinic cycles in these systems for
R

4, see for example Porter and Knobloch [2001] and Armbruster et al. [1988]. Bifurcations
from an O(2) and the Guckenheimer-Holmes cycles have also been examined by Sandstede
and Scheel [1995].
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A Calculation of the heteroclinic cycle stability

In this appendix we detail the derivation of the approximate return map (7). We choose
linearising coordinates within neighbourhoods of the Pi for and express our return map in
terms of these. We parametrize the surfaces of section shown in Figure 2 by

Πin
0 = (x, y, ε) Πout

0 = (ε, y, z)
Πin

1 = (ε, y, z) Πout
1 = (x, ε, z)

Πin
2 = (ε, y, z) Πout

2 = (x, y, ε)

and note that the Fi are given by the flows of the ODEs

F0







ẋ = e0x

ẏ = −c0y

ż = −d0z

F1







ẋ = −d1x

ẏ = e1y

ż = −c1z

F2







ẋ = −c2x

ẏ = −d2y

ż = e2z.

Solving these we obtain

F0(x, y, ε) = (ε, yx
c0
e0 ε

−c0
e0 , εx

d0
e0 ε

−d0
e0 ),

also

F1(ε, y, z) = (ε
1−

d1
e1 y

d1
e1 , ε, zε

−c1
e1 y

c1
e1 ),

and

F2(ε, y, z) = (ε
1−

c2
e2 y

c2
e2 , yε

−d2
e2 z

d2
e2 , ε).

The connecting maps Gi have generic non-degenerate linear parts that respect the action of
the group G = (Z2)

3 and so the linearized maps are

G0(ε, y, z) = (ε, a0y, a1z),
G1(x, ε, z) = (ε, a2 + a3x + a4z, a5z),
G2(x, y, ε) = (a6x, a7 + a8x + a9y, ε)

where the ai are all real numbers that may be assumed to be non-zero. Putting these together
and starting at (x, y, ε) we get

G0 ◦ F0 = (ε, a0yx
c0
e0 ε

−c0
e0 , a1x

d0
e0 ε

1−
d0
e0 )
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and then

F1 ◦ G0 ◦ F0 = (Ax
d1c0
e1e0 y

d1
e1 , ε, Bx

d0e1+c1c0
e1e0 y

c1
e1 ),

G1 ◦ F1 ◦ G0 ◦ F0 = (ε, C + Dx
d1c0
e1e0 y

d1
e1 + Ex

d0e1+c1c0
e1e0 y

c1
e1 , Fx

d0e1+c1c0
e1e0 y

c1
e1 ),

then

F2 ◦ G1 ◦ F1 ◦ G0 ◦ F0 = (Gx
c2(d0e1+c1c0)

e2e1e0 y
c2c1
e2e1 ,

Hx
d2(d0e1+c1c0)

e2e1e0 y
c1d2
e1e2

+Ix
d2(d0e1+c1c0)+e2d1c0

e2e1e0 y
c1d2+d1e2

e1e2

+Jx
d2(d0e1+c1c0)+e2(d0e1+c1c0)

e2e1e0 y
c1d2+c1e2

e1e2 , ε)

and finally

F = G2 ◦ F2 ◦ G1 ◦ F1 ◦ G0 ◦ F0 = (Kx
c2(d0e1+c1c0)

e2e1e0 y
c2c1
e2e1 ,

L + Mx
d2(d0e1+c1c0)

e2e1e0 y
c1d2
e1e2

+Nx
d2(d0e1+c1c0)+e2d1c0

e2e1e0 y
c1d2+d1e2

e1e2

+Px
d2(d0e1+c1c0)+e2(d0e1+c1c0)

e2e1e0 y
c1d2+c1e2

e1e2 , ε)

(12)

where at each stage the parameters A, B etc only depend on ε, the ai and the eigenvalues
ci, di and ei. One can then identify the leading order terms in (12) depending on the signs
of the eigenvalues.
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