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Abstract

We describe an asymptotic approach to gated ionic models of single-cell cardiac
excitability. It has a form essentially different from the Tikhonov fast-slow form as-
sumed in standard asymptotic reductions of excitable systems. This is of interest
since the standard approaches have been previously found inadequate to describe
phenomena such as the dissipation of cardiac wave fronts and the shape of action
potential at repolarization. The proposed asymptotic description overcomes these
deficiencies by allowing, among other non-Tikhonov features, that a dynamical vari-
able may change its character from fast to slow within a single solution. The general
asymptotic approach is best demonstrated on an example which should be both sim-
ple and generic. The classical model of Purkinje fibers (Noble, 1962) has the simplest
functional form of all cardiac models but according to the current understanding it
assigns a physiologically incorrect role to the Na current. This leads us to suggest
an “Archetypal Model” with the simplicity of the Noble model but with a structure
more typical to contemporary cardiac models. We demonstrate that the Archety-
pal Model admits a complete asymptotic solution in quadratures. To validate our
asymptotic approach, we proceed to consider an exactly solvable “caricature” of the
Archetypal Model and demonstrate that the asymptotic of its exact solution coin-
cides with the solutions obtained by substituting the “caricature” right-hand sides
into the asymptotic solution of the generic Archetypal Model. This is necessary, be-
cause, unlike in standard asymptotic descriptions, no general results exist which can
guarantee the proximity of the non-Tikhonov asymptotic solutions to the solutions
of the corresponding detailed ionic model.
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1 Introduction

1.1 Physiological and mathematical motivation

Mechanical activity of the heart is controlled by electrical excitation of cardiac cells, char-
acterized by “action potentials” (APs) across their membranes. Abnormalities of cardiac
rhythm are a major public health hazard [46], and great efforts are directed to the math-
ematical modelling of APs. Investigations at various levels of membrane, cellular and
myocardial organisation have lead to the development of a large number of detailed ionic
cardiac models (for reviews, see e.g. [13, 19, 22, 25, 44]) for various types of cardiac cells.
These detailed models are realistic in the sense that they demonstrate good agreement
with experimental data available to their authors at the time of creating the model. There
even exists an optimistic view that with the help of detailed cardiac computational models
“it will soon be possible to do in silico experiments that would be impossible, difficult or
unethical in animals or patients” [13].

In reality however, detailed ionic models of cardiac excitation are immensely compli-
cated. Their analytical solution is impossible while their simulations are expensive espe-
cially in three dimensions. Thus, numerous attempts have been made to construct simpli-
fied mathematical models of cardiac action potentials (APs); for examples, see [2, 5, 15–
17, 20, 24, 33, 42]. Detailed ionic cardiac models were initially constructed as variations of
the spectacularly successful Hodgkin-Huxley model of nerve excitability [21]. In a similar
way the most simplified cardiac models are often based on the elegant FitzHugh-Nagumo
two-variable reduction [18, 30] of the Hodgkin-Huxley model. A typical way to create a
simplified model is either to make an appropriate functional generalization of the FitzHugh-
Nagumo system, or truncate a detailed ionic models. Then the modellers proceed to fit
the parameters of their simplified models to reproduce the AP shape or other selected
properties of the chosen detailed ionic model.

This modelling approach has an obvious flaw, as such simplified models are not reliable
outside the range of phenomena which they have been fitted to reproduce. So it would be
desirable to derive a simplified model from a detailed model, based on a well defined set
of verifiable assumptions. One possible way to do that is via asymptotic methods, which
would utilize small parameters available in the detailed model.

More importantly, reducing the number of equations in the model often delivers only
minor reduction of its computational complexity. Paradoxically, the better a simplified
model is, the better it reproduces another difficult feature of realistic models, their stiff-

ness. That is, detailed ionic models typically have small parameters which considerably
complicate their simulation. However it would be natural to try and eliminate those pa-
rameters by asymptotic methods, and resulting problems without small parameters should
be much easier for computational study.

Yet another paradoxical property of ionic models is that increasing the number of phys-
iological details does not necessarily make the models more reliable, as experimental data
are not always sufficient for unequivocal identification of model parameters. As argued by
Cherry and Fenton [12], detailed ionic models of the same types of cells in the same species,
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but developed by different authors, may disagree significantly. Thus there is a demand in
modelling practice for models that would be realistic physiologically but independent on
experimentally unreliable details, i.e. depend on fewer parameters. Again, one possible
way to create such a model is to simplify a “too detailed” model by eliminating exceeding
details by some sort of asymptotic procedure.

So there is more than one serious reason to look more carefully into the small parameters
in detailed ionic models. The progress in this direction was hampered for some time by
implicit assumption, induced by the success of the FitzHugh-Nagumo system, that the
essential properties of cardiac APs can be captured by dynamical systems of the type

ǫ
dx

dt
= f(x, y),

dy

dt
= g(x, y), x ∈ R

k, y ∈ R
l, ǫ ≪ 1, (1)

in which some of the dynamic variables are fast (x) while others are slow (y) and where
ǫ > 0 is a small parameter. The asymptotic structure of (1) is mathematically very
convenient. Indeed, the presence of the small parameter ǫ at the derivatives allows to
“dissect” equations (1), in the leading order in ǫ, into a slow-time (degenerate) subsystem

0 = f(x, y),
dy

dt
= g(x, y), (2)

and a fast-time subsystem

dx

dT
= f(x, y),

dy

dT
= 0, (3)

with T = ǫ t, which are much easier to study. It is assumed that the fast subsystem (3)
has, for all relevant values of v, no attractors but isolated, asymptotically stable equilib-
ria. There exist a classical theory stating the general conditions which guarantee that, in
the limit of ǫ → 0, any finite segment of the graph of solution of the full equations (1)
approaches uniformly to that of the degenerate subsystem (2) which, in turn, consists of
slow-motion parts and fast-motion parts separated by junction points. The slow-motion
parts are on the l-dimensional “slow manifold” determined by the first k equations in (2)
and the fast-motion parts are arcs of trajectories of (3) within leaves of the “fast foliation”
y = const [29, p.173]. A central result of the theory of slow-fast systems is the Tikhonov
theorem [40].

A paradigm for applying the theory of fast-slow systems to biological excitability has
been laid down by Zeeman [45]. His fundamental idea is a generalization of the FitzHugh-
Nagumo view and states that the resting state is the unique and globally stable equilibrium
of the full system, but in the fast subsystem, it is only one of three equilibria. There is an-
other stable equilibria corresponding to the excited state, and the two stable equilibria are
separated by an unstable equilibrium which thereby represents the threshold of excitation.
The repolarization from the excited state, which is an equilibrium in the fast subsystem
but not in the full system, to the resting state which is the true equilibrium, happens via
the slow system, and its details, i.e. the shape of the action potential, depends on the
structure of the slow manifold.



Asymptotic analysis of cardiac excitation (2007/04/04) 5

Thus, we refer to excitable systems with the asymptotic structure of equations (1) as
FitzHugh-Nagumo type or Tikhonov-Zeeman systems.

Extension of this ideology to spatially-extended excitable systems produces a very at-
tractive and promising asymptotic theory, see e.g. [41] for a review. In this theory, descrip-
tion of excitation waves is decoupled into description of fast motion of their sharp “fronts”
and “backs”, and description of slow parts of APs outside fronts and backs. After appro-
priate rescaling, both the fast and the slow subsystems do not have the small parameter
in them, so their numerical simulation could be implemented efficiently.

However, this attractive theory was never really applied to cardiac ionic models. It ap-
pears that FitzHugh-Nagumo type systems fail, in principle, to reproduce some qualitative

features of ionic models. Here are some examples.

Features of cardiac excitability:

1. Slow repolarization. Cardiac APs tend to have very fast upstrokes and much
slower other phases, including repolarization (“downstroke”). In the asymptotic limit
ǫ → 0, a FitzHugh-Nagumo system of the form (1) with l = 1 will have a fast, i.e.
duration t ∼ ǫ, upstroke of the action potential will have also fast, ∼ ǫ downstroke.
In principle, this can be avoided if the slow manifold, defined by f(x, y) = 0, has a
cusp singularity with respect to foliation y = const, which is theoretically possible
if l ≥ 2 [45]. However, our attempts to identify such a cusp singularity in cardiac
equations have not been successful [11, 38]

2. Slow subthreshold response. An excitable system reacts to a subthreshold stim-
ulus by an immediate return to the resting state. In the asymptotic limit ǫ → 0,
a FitzHugh-Nagumo system of the form (1) will have both subthreshold return and
super-threshold upstroke very fast, t ∼ ǫ. However, subthreshold return in real cells
and realistic models has speed comparable to the slow stages of the AP, i.e. much
slower than the upstroke.

3. Fast accommodation. If the stimulus is applied not instantly but gradually, then
the threshold of excitation may increase, and if the perturbation is too slow, the
system may fail to generate AP altogether (phenomenon known as accommodation).
FitzHugh-Nagumo systems demonstrate accommodation but only if the time scale
of the stimulus is comparable to the duration of the AP. In real cells and realistic
models, accommodation is observed for much faster stimuli, comparable more to the
upstroke duration than to the AP duration.

4. Variable peak voltage. The maximum of the AP in a single cell does not, in the
first approximation, depend on the way the AP has been elicited. Moreover, the
asymptotic theory of [41] predicts that the maximum of the AP in a propagating
wave will be the same as in a single cell. However, in real cells and in realistic models
the maximum of AP does depend on the mode of excitation, and in the propagating
AP it could be significantly different than in a single cell.
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5. Front dissipation. The fast accommodation of realistic models has an interesting
consequence for propagating waves. If excitability ahead of the wave is temporarily
blocked by a transient process, the wave will expire if the block lasts too long. In a
FitzHugh-Nagumo type system, this will happen if the duration of the block equals
the duration of the wave; that is, the wave will cease when its “length”, understood
as the spatial size of the excited zone, has decreased to zero [43]. In contrast, in ionic
models the front looses its sharpness, “dissipates”, much sooner than AP finishes,
and after that fails to propagate even though AP continues in many cells and the
excitability of the tissue ahead of the wave has fully recovered [7, 8, 10].

In this article, we describe a non-Tikhonov asymptotic approach to cardiac excitation.
Its purpose is to overcome the limitations of simplified models of FitzHugh-Nagumo type
discussed above. The approach has already been used in some form in [37] to achieve
numerically accurate prediction of the front propagation velocity (within 16%) and its
profile (within 0.7mV) for a realistic model of human atrial tissue [14]. The asymptotic
reduction was sufficiently simple to allow the derivation of an analytical condition for
propagation block in a re-entrant wave which was in an excellent agreement with results
of direct numerical simulations of the realistic atrial ionic model. This has been achieved
by considering only the “fast subsystem” of the full model.

Here we take a further step and present a complete asymptotic description of a simple
cardiac excitation model, including both fast subsystem and slow subsystem, i.e. describing
the whole AP rather than the upstroke only. A brief sketch of this description has been
outlined in [9]. That sketch has left several questions unanswered, and the purpose of the
present article is to fill in the gaps. The asymptotic reductions we propose are based on
a well-defined and verifiable set of assumptions and in this sense they are “derived” from
a detailed ionic model. We do not include arbitrary fitting parameters which limit the
model to the reproduction of few hand-picked AP properties. All arbitrariness is restricted
to choice of small parameters in the model, which is the key stage in any asymptotic
approach. In our approach, the main small parameter occurs in an essentially different way
from (1). Consequently, the results of the classical theory of slow-fast systems [29] are not
applicable. In other words, there is no existing rigorous theory which can guarantee that
the asymptotic solutions are close to the true solutions of the corresponding detailed ionic
model. To deal with this issue, we formulate a caricature model which exactly duplicates
the asymptotic structure of a detailed ionic model but allows exact analytical solution. We
proceed to apply the asymptotic procedure to this caricature and to compare the exact
and the asymptotic solutions in order to validate our approach.

To demonstrate our approach, we need to chose an appropriate gated ionic model.
Such a selected model must satisfy two criteria. Firstly it should be as simple as possible.
Secondly, it should have the generic structure similar to all or most of contemporary ionic
models. The first requirement is best satisfied by the classical Noble model of excitability
of cardiac Purkinje fibers [31]. This model has spawned generations of models of increasing
accuracy and complexity up to modern models with more than sixty differential equations
per single cell [23]. The Noble model, however, does not satisfy the second requirement.
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Indeed, while that model reproduces the AP of Purkinje fibers in detail, it does not correctly
reflect their physiology. As the model was constructed before sufficient experimental data
on the ionic currents became available [32], the inward sodium current was given the dual
role of generating the upstroke and maintaining the plateau. To avoid this peculiarity and
to ensure that our asymptotic procedure is sufficiently general, we propose an “Archetypal
Model” (AM) which has the generic structure of modern cardiac models but keeps the
functional simplicity of the the Noble model and is identical to it in the asymptotic limit.
The asymptotic procedure is then demonstrated on the example of this Archetypal Model.

The structure of the paper is as follows. We conclude the Introduction with a short
discussion of the procedure of parametric embedding which is an important instrument
in our work. In section 2, we use a set of numerical observations to postulate a system
of axioms for a non-Tikhonov parametric embedding of the Noble model. In section 3,
we describe the AM and discuss its similarities with contemporary ionic models and then
study the asymptotic limits of the AM and obtain analytical solutions in quadratures in
these limits. In section 4, we formulate the exactly solvable “caricature” simplification
of the AM. In section 5, we validate our general asymptotic results by a comparison of
the limits of the exact solution of the caricature model to its solution in the asymptotic
limit. We conclude by outlining the most essential features of our approach and discussing
possibilities for its application.

In all asymptotics, we restrict consideration to the leading order, with the exception of
Appendix A which is about a first-order correction.

Some parts of this work (subsections 1.2, 2.1, 2.3, 3.1, 3.2) appeared in a very brief form
in [9] and are reproduced here in the full form, with additional details, for completeness
and convenience of reference in the rest of the article; other parts (subsections 2.2, 2.4,
sections 4 and 5 and appendices A, B and C ) are entirely new.

1.2 The procedure of parametric embedding

The nonlinear problems of physical, chemical and biological applications do not normally
have parameters which are literally approaching zero within their normal range relevant to
the application. Hence, a typical practical approach to asymptotic reduction is to identify
a “small constant”, say a, in the model and to replace it by a parameter ǫ, so that the
original problem corresponds to ǫ = a, whereas the asymptotic formulae are obtained in
the limit ǫ → 0. A mathematically equivalent modification of this procedure is based on
the following

Definition A parametric embedding with parameter ǫ of a function f(x) is any function
f(x; ǫ) such that f(x, 1) = f(x) for all x ∈ dom(f). A parametric embedding in the context
of ǫ → 0 is called asymptotic embedding. An embedding of a dynamical system corresponds
to an embedding of its generating vector field or map.

Thus, the “small constant” a is replaced by ǫa, and then the original problem corre-
sponds to ǫ = 1 while the asymptotic analysis is performed in the limit ǫ → 0. As long
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as a is a nonzero constant, the limits ǫ → and ǫa → are mathematically equivalent. The
purpose of the above definition is uniformity, especially when the small parameters appear
in more than one place in the equations. From this perspective, the algorithm of obtaining
an approximation using, say, a partial sum of an asymptotic series is: the power series in ǫ
is truncated to a selected number of terms, and then ǫ = 1 substituted in the result. When
applied formally, this may look counter-intuitive, and yet for reasons explained above, this
is precisely equivalent to what is always done when “small quantities up to a certain order”
are taken into account in any asymptotic approach.

So, asymptotic analysis of a mathematical model by necessity implies introduction of
artificial small parameters, which is equivalent to drawing a curve in functional space,
f(x; ǫ), with the only condition that at ǫ = 1 this curve passes through the given point
f(x). There are infinitely many ways to do this, and the question arises, which of these
embeddings is “the correct” or “the better” one. Unless the resulting asymptotic series for
the solutions are converging and the error terms can be estimated, there is no obvious an-
swer to this question within a purely mathematical context. So the choice should be based
on practical considerations. The embedding should be such as to allow efficient asymptotic
analysis. A better embedding should also provide a better quantitative approximation for
a selected class of solutions to the original problem, and/or preserve better their qualitative
features of interest. For a given embedding, these aspects can be verified by comparing
solutions at ǫ = 1 with solutions at smaller ǫ. In terms of the more conventional “small
constant” a approach, the procedure is to verify if a is indeed small enough to be used for
asymptotics and try to reduce it further and see how the solutions behave. Note this can
be done numerically, prior to any analytical work.

In this paper, we are interested in AP solutions. Typically, we will propose an embed-
ding and assess its quality by comparing the numerical AP solutions at ǫ = 1 and ǫ = 10−3.
If the embedding is found reasonable, we proceed to study the limit ǫ → 0 analytically.

2 The Noble model

2.1 Formulation

The original Noble [31] model may be simplified by an adiabatic elimination of the super-
fast m-gate,

dE

dt
= g1(E) m3

∞(E) h + g2(E) n4 + g3(E), (4a)

dh

dt
= fh(E) (h∞(E) − h) , (4b)

dn

dt
= fn(E) (n∞(E) − n) , (4c)
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where

g1(E) = CM
−1gNa (ENa − E) , g2(E) = CM

−1gK (EK − E) ,

g3(E) = CM
−1 [gNa1

(ENa − E) + gK1
(E) (EK − E)] ,

gK1
(E) = 1.2 exp ((−E − 90)/50) + 0.015 exp ((E + 90)/60) ,

y∞(E) = αy(E)/ (αy(E) + βy(E)) , y = h, n, m,

fy(E) = αy(E) + βy(E), y = h, n,

αm(E) =
0.1 (−E − 48)

exp ((−E − 48)/15) − 1
, βm(E) =

0.12 (E + 8)

exp ((E + 8)/5) − 1
,

αh(E) = 0.17 exp ((−E − 90)/20) , βh(E) =
1

exp ((−E − 42)/10) + 1
,

αn(E) =
0.0001 (−E − 50)

exp ((−E − 50)/10) − 1
, βn(E) = 0.002 exp ((−E − 90)/80) ,

(5)

and

CM = 12, gNa = 400, gK = 1.2, gNa1
= 0.14, EK = −110 and ENa = 40. (6)

Here E is the transmembrane voltage with values E ∈ [EK , ENa], and h and n are “gating
variables” with ranges h ∈ [0, 1], n ∈ [0, 1]; more specifically, h is the inactivation gate
of the fast sodium current INa (the first term in the equation for dE/dt) and n is the
activation gate of the slow potassium current IK (the second term in the equation for
dE/dt). Notice that g1(E) ≥ 0 (this represents an “inward current”) and g2 ≤ 0 (this
represents an “outward” current). Our choice for the value of the parameter EK differs
from the original value of EK = −100 used in [31]. This transforms the Noble system [31]
from a self-oscillatory to an excitable one. Another possibility to achieve this effect is to
increase the value of the coefficient at the first exponent in gK1

, as suggested in [26, 31],
which leads to similar results [9]. Equations (4) represent a good simplification of the
Noble model [31] as can be seen by the insignificant difference in the solutions plotted in
figure 1(a).

2.2 Naive embedding

Seeking further simplification, we note that the functions m3
∞(E) and h∞(E) are approx-

imately stepwise as illustrated in figure 2(a). Thus, as suggested in [6, 8], the crudest
approximation of (4) is given by

m3
∞(E) ≈ θ(E − Em), h∞(E) ≈ θ(Eh − E), (7)

where Em, Eh satisfy m3
∞(Em) = 1/2 and h∞(Eh) = 1/2, respectively and θ(·) is the

Heaviside step function. A similar approximation was done in several earlier simplified
models, e.g. [16, 17, 20]. They typically took, for simplicity, that Eh = Em. This however
leads to unsatisfactory description of the front dissipation phenomenon [6].
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Figure 1: (Color online) (a) Action potential solutions of the original Noble model [31], equations (4),
and of its “naive approximation”, equations (4) with (7). (b) Ionic currents INa (solid red lines), Iin,
(dashed blue lines) and Iout (dotted green lines) in the model (4) (thick lines) and in the model (4) with
(7) (thin lines). By the tradition accepted in physiology currents that increase voltage are considered
negative and called “inward” and thus the three currents are defined as INa ≡ gNa m3

∞
h∞

(

E − ENa

)

,

Iin ≡ gNa1

(

E − ENa

)

, Iout ≡
(

gK n4 + gK1

)

(E − EK). Notice that it is INa rather than Iin that is
the main balance to Iout in the full model (4) (thick lines), and there is no such balance for the naively
simplified model (thin lines). These and all other solutions in the paper are calculated with initial conditions
E(0) = −10, h(0) = 1, n(0) = 0 if not indicated otherwise.

The naive approximation (7) turns out to be unsuccessful as shown in figure 1(a). The
AP produced when (7) is used does not have a plateau but returns immediately to the
resting state. The reason for this behaviour is revealed by an analysis of the individual
currents which are illustrated in figure 1(b) both for the detailed system (4) and for the
approximation (7). In the detailed model, the sodium current remains significant during
the plateau phase, successfully counteracting the potassium current for some time. In the
approximated model, this current is virtually absent after the initial upstroke. This is due
to the fact that during the slow decrease of the voltage, both the m and h gates remain
close to their quasi-stationary values m∞, h∞, and their product W (E) ≡ m3

∞h∞ is exactly
zero in the approximated model. In contrast, in the detailed model, this product remains
significant and although it is much smaller than unity, when multiplied by the large factor
gNa, produces a sodium current which is comparable to the potassium and the leakage
currents. The current W (E) is called the “window” sodium current, because it runs in
the region of voltages between Eh and Em where the gates are supposed to be “almost
closed” [3].

2.3 Axiomatic embedding

In this section we consider a more elaborate parametric embedding, the asymptotic limit
of which dissects equations (4) into simpler subsystems. It is based on a number of obser-
vations of the properties of the Noble model, which will be discussed below, and may be
formalized in the following
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Axioms 1–7 The functions gNa, fh(E), h∞(E) and m3
∞(E) are parametrically embedded

in the functions gNa(ǫ), fh(E; ǫ), h∞(E; ǫ) and m3
∞(E; ǫ), ǫ > 0, such that

Axiom I. gNa(ǫ) = ǫ−1gNa,

Axiom II. fh(E; ǫ) = ǫ−1fh(E),

Axiom III. lim
ǫ→0

m3
∞(E; ǫ) = M(E) θ(E − Em),

where the function M(E) is close to m3
∞(E) for E > Em,

Axiom IV. lim
ǫ→0

h∞(E; ǫ) = H(E) θ(Eh − E)

where the function H(E) is close to h∞(E) for E < Eh,

Axiom V. Em > Eh,

Axiom VI. lim
ǫ→0

(

ǫ−1m3
∞(E; ǫ) h∞(E; ǫ)

)

≡ W̃ (E) > 0,

where W̃ (E) is close to the window current W (E) ≡ m3
∞(E)h∞(E),

Axiom VII. lim
ǫ→0

S(E; ǫ) ≡ lim
ǫ→0

(

m3
∞(E; ǫ)

∂

∂E
h∞(E; ǫ)

)

= 0.

Indeed, the permittivity of the Na current gNa = 400 is large compared to those of the
other currents gK = 1.2, max(gK1

) = 1.8 and gNa1
= 0.14 and thus the values of associated

small constants gx/gNa, gx = gK , gK1
, gNa1

are of the order of 10−2. This observation is
formalized in Axiom I by an introduction of a small parameter ǫ which divides gNa. Axiom
II is postulated on the basis of the observation that the function fh(E) is large compared
to fn(E) as illustrated in figure 2(b). These functions are reciprocal to the time-scale
functions of the gates h and n and therefore h is a fast variable while n is slow. The speed
of h is even comparable to E during the upstroke. These observations are justified in
[6, 8], where we argued that although in healthy tissue E can be, or at least seems, faster
than h, there are important applications where the two variables should be considered
of comparable speed. Axioms III (IV) are suggested by the fact that functions m3

∞(E)
(h∞(E)) are close to 1 above (below) some switch voltages Em (Eh), and almost vanish
otherwise as seen in figure 2(a). The two Axioms do not give a precise definition of the
functions H(E) and M(E), they only require that these are reasonably close to h∞(E) and
m3

∞(E) for those values of E where these functions are not small. Here “reasonably close”
means that replacement of h∞(E) with H(E) θ(Eh−E) and m3

∞(E) with M(E) θ(E−Em)
should not change significantly the properties of the solution. A possible choice for Em and
Eh is so that they satisfy m3

∞(Em) = 1/2 and h∞(Eh) = 1/2. Axiom V is clearly satisfied
for equations (4) as shown in figure 2(a). Some simplified models take Em = Eh in similar
situations [16, 17, 20], however we already know that such simplification affects the “front
dissipation” feature of realistic models [6]. Axioms III–V have a corollary that

lim
ǫ→0

(

m3
∞(E; ǫ) h∞(E; ǫ)

)

= 0. (8)
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Figure 2: (Color online) Main functions of E which determine the asymptotic properties of the model
(4).

This indicates that the permittivity of the window current W (E) is small of the order ǫ.
However, as discussed in subsection 2.2, it is a particular property of the Noble model
that the window current is finite since it is multiplied by the large factor gNa which is
of order ǫ−1. To ensure this we postulate Axiom VI. Finally, figure 2(b) demonstrates
the plausibility of Axiom VII where the graph of the function S(E) ≡ S(E; 1) is shown.
f:0020

Thus, according to Axioms I–VII the parametric embedding of the model (4) is

dE

dt
= ǫ−1g1(E) m3

∞(E; ǫ) h + g2(E) n4 + g3(E), (9a)

dh

dt
= ǫ−1fh(E)

(

h∞(E; ǫ) − h
)

, (9b)

dn

dt
= fn(E) (n∞(E) − n) . (9c)

First, we consider this system in the fast time T = t/ǫ. Changing the independent variable
from t to T , taking the limit ǫ → 0 and using Axioms III and IV, we obtain the fast-time
system,1

dE

dT
= g1(E) M(E) θ(E − Em) h,

dh

dT
= fh(E) (H(E) θ(Eh − h) − h) ,

dn

dT
= 0.

(10)

As intended, the right-hand sides of the first two equations are nonzero, thus we have two
fast variables, E and h. The slow manifold is the set of equilibria of this system and it is

1Technically, the dynamic variables E, h and n as functions of T ought to be denoted by different letters
than the same variables as functions of t. We follow the tradition, however, and neglect this subtlety. Later
we comment on some cases to avoid ambiguity caused by this compromise.
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defined by the finite equations

M(E) θ(E − Em) h = 0, (11)

H(E) θ(Eh − E) − h = 0, (12)

since g1(E) > 0, fh(E) > 0 in the physiological range of the voltage, E ∈ [EK , ENa].
Substitution of (12) into (11) with account of Axiom V turns (11) into an identity as
the product of the two Heaviside functions vanishes. Thus, we have a codimension-1 slow
manifold, defined by equation (12). This is a non-Tikhonov feature since in Tikhonov
systems [29] the codimension of the slow manifold is equal to the number of fast variables.
This peculiar feature results from (11) becoming an identity if (12) is satisfied, which, in
turn, is due to a near-perfect switch behaviour of h∞(E) and m3

∞(E), becoming perfect
switches in the limit ǫ → 0. A consequence of this feature is that the equilibria of the fast
system are not isolated. Therefore, Tikhonov’s theorem [40] is not applicable as it requires
asymptotic stability of equilibria of the fast system which does take place here. The
fact that our parametric embedding is a non-Tikhonov one was already obvious from the
dependence of (9) on the small parameter which is not of the form allowed by Tikhonov’s
theorem, namely the large parameter ǫ−1 in the first equation multiplies only one of the
terms in the right-hand side, rather than the whole right-hand side.

Since Tikhonov’s theorem cannot be used to describe the slow motion in the standard
way, we discuss it in more detail, however without attempts of rigorous treatment. We
consider system (9) in the original (slow) time, and restrict our attention to trajectories
near the slow manifold, i.e. ones for which h ≈ h∞(E; 0). By re-arranging equation (9b),
and assuming that when moving along the slow manifold the derivative dh/dt is of order
unity (this assumption is confirmed by the following result), we obtain

h = h∞(E; ǫ) −
ǫ

fh(E)

dh

dt
= h∞(E; ǫ) + O(ǫ). (13)

From here we deduce that h = h∞(E; ǫ) + O(ǫ). Differentiating this with respect to time
and substituting the result back into the right-hand side of (13), we obtain

h = h∞(E; ǫ) −
ǫ

fh(E)

∂h∞

∂E

dE

dt
+ O(ǫ2), (14)

which substituted in equation (9a) yields

dE

dt
= ǫ−1g1(E) m3

∞(E; ǫ) h∞(E; ǫ) −
g1(E)

fh(E)
S(E; ǫ)

dE

dt
+ O(ǫ) + g2(E) n4 + g3(E), (15)

where the function S(E; ǫ) is defined in Axiom VII. Using Axiom VI for the first term and
Axiom VII for the second term and taking the limit ǫ → 0 we obtain the slow-time system,

dE

dt
= g1(E) W̃ (E) + g2(E) n4 + g3(E),

h = H(E) θ(Eh − E),

dn

dt
= fn(E) (n∞(E) − n) .

(16)
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Figure 3: (Color online) Solution (E, h, n) of the parametric embedding (9) with explicit expressions
(17a) and (17b) with p = q = 1, r = 0.5 for ǫ = 1 (thick lines, i.e. equivalent to the authentic model (4))
and ǫ = 10−3 (corresponding thin solid lines) (a) in slow time t ∈ [0, 600], (b) in fast time T ∈ [0, 1].

This is a system of two differential equations for the slow variables E and n plus a finite
equation for h defining the slow manifold. Note that we have two slow variables in agree-
ment with the two dimensions of the slow manifold. Thus, E is both a fast and a slow
variable which is yet another non-Tikhonov feature. f:0030

2.4 Explicit embedding

To show that Axioms I–VII are consistent and usable we need to demonstrate that there
exist embedding functions gNa, fh, h∞ and m3

∞ which satisfy these axioms. The first two
functions are already defined by Axioms I and II. Thus, in this section we suggest an
explicit dependence of m3

∞ and h∞ on ǫ which satisfies Axioms III–VI, namely

m3
∞(E; ǫ) ≡ M(E) (ǫp θ(Eh − E) + ǫr θ(E − Eh) θ(Em − E) + θ(E − Em)) , (17a)

h∞(E; ǫ) ≡ H(E)
(

θ(Eh − E) + ǫ1−r θ(E − Eh) θ(Em − E) + ǫq θ(E − Em)
)

, (17b)

where p ∈ [1, +∞), q ∈ [1, +∞), r ∈ (0, 1) and, of course, we must have M(E) =
m3

∞(E), H(E) = h∞(E) to ensure these functions coincide with m3
∞(E) and h∞(E) at

ǫ = 1. It straightforward to verify, that Axioms III–VI are then satisfied. To verify Axiom
VII is more complicated: obviously, the above derivation of the slow system (16) is not
technically valid for discontinuous h∞ as defined by (17b), and Axiom VII does not make
sense literally. Still, it will be satisfied if we assume that δ(E − Eh)θ(E − Em) = 0,
i.e. infinity times zero at E = Eh equals zero. If p = q = 1, we have the asymptotic
window current exactly equal to the window current of the Noble model, W̃ (E) = W (E);
if p > 1 and q > 1, then the asymptotic window current is a cut-off version of the original,
W̃ (E) = W (E) θ(E − Eh) θ(Em − E). The adequacy of this embedding for p = q = 1,
r = 0.5 is demonstrated in figure 3.

The explicit embedding (17) is rather complicated. Formally, there are infinitely many
embeddings; e.g. equations (17a) and (17b) define a three-parameter family of embeddings,



Asymptotic analysis of cardiac excitation (2007/04/04) 15

Figure 4: (Color online) (a) Solutions (E, h, n) of the Noble model (4) (thick lines) and of the Archetypal
Model (19) (corresponding thin solid lines). (b) Ionic currents INa (solid red lines), Iin, (dashed blue lines)
and Iout (dotted green lines) in the model of Courtemanche et al. [14] (thick lines) and in the Archetypal
Model (19) (thin lines). The INa-curves of the latter two models overlap. The definition of the currents
is given in the caption of figure 1. Note that in both models, Iout during the most of the AP is mainly
balanced by Iin but not INa.

all satisfying the Axioms and all leading to the same fast and slow systems and having
the same asymptotic properties. And it is not possible to infer from the original problem,
which of the embeddings is “correct”. The discontinuity of h∞ and m3

∞ is also a cause for
concern. It is true that their limits in ǫ → 0 have to be discontinuous, or at least non-
analytical, according to Axioms III and IV, but with (17a) and (17b) they are discontinuous
already for any ǫ 6= 1, which is inconvenient even in this heuristic treatment. Moreover,
this is likely to cause serious technical difficulties in any attempt of rigorous treatment of
the problem. This difficulty can be overcome, for instance, by using in (17a) and (17b),
instead of Heaviside functions, functions which are smooth for all ǫ > 0 and only tend to
Heaviside functions in the limit ǫ = 0, e.g.

θ(x; ǫ) = 1/(1 + e−x/ǫ). (18)

Indeed, in that case the peak value of
∣

∣∂h∞(E; ǫ)/∂E
∣

∣ is attained at E = Eh and is
(4ǫ)−1h∞(Eh) in the leading order, whereas the value of m3

∞(Eh; ǫ) is exponentially small
in ǫ, thus their product is uniformly small and Axiom VII is satisfied.

3 The Archetypal Model

3.1 Formulation and parametric embedding

f:0040
The complications arising in the construction of a possible embedding of the Noble

model (4), as discussed in the preceding section, are not essential. In fact, they arise
only due to the fact that insufficient experimental data was available at the time of the
construction of the Noble model and in particular the existence of a Ca current was not yet
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discovered. Thus, the Na current was given a dual role to produce the upstroke and to keep
voltage elevated during the long plateau stage leading to the large Na window illustrated
in figure 1(b). Such a large window current is not present in other cardiac models. This is
demonstrated in figure 4(b) in the case of the currently-accepted detailed ionic model of
human atrial cells of Courtemanche et al. [14]. Bearing in mind the possibility of extending
our present analysis and results to models of other types of cardiac cells, we propose a
modified version of the Noble model (4). It is similar in many aspects to (4) in but has a
more “generic cardiac” structure and admits a straightforward asymptotic embedding:

dE

dt
= g1(E) M(E) θ(E − Em) h + g1(E) W (E) + g2(E) n4 + g3(E)

= g1(E) M(E) θ(E − Em) h + g2(E) n4 + G(E),

dh

dt
= fh(E) (H(E) θ(Eh − E) − h) ,

dn

dt
= fn(E) (n∞(E) − n) ,

(19)

where the functions m∞, h∞, fh, fn, g1, g2, g3 are defined as in equations (4), and M(E) =
m3

∞(E), H(E) = h∞(E), G(E) = g1(E)W (E) + g3(E), W (E) = m3
∞(E)h∞(E). In this

formulation, the perfect-switch behaviour of the Na gates is represented by the Heaviside
functions multiplying M and H . The deviation from the perfect-switch behaviour, due to
the window current component W = m3

∞h∞, is separated from the fast Na dynamics and
appears as an additional “time-independent” current with a role similar to g3(E).

We shall call (19) the “Archetypal Model” (AM). The AP of this model is very similar to
the AP of the Noble model (4) as shown in figure 4(a). Its simplest asymptotic embedding
consistent with Axioms I–VII can be done with ǫ introduced linearly and only in two places,

dE

dt
= ǫ−1g1(E) M(E) θ(E − Em) h + g1(E) W (E) + g2(E) n4 + g3(E),

dh

dt
= ǫ−1fh(E) (H(E) θ(Eh − E) − h) ,

dn

dt
= fn(E) (n∞(E) − n) .

(20)

The quality of this embedding is illustrated in figure 5. The limit of the fast-time system
is

dE

dT
= g1(E) M(E) θ(E − Em) h,

dh

dT
= fh(E) (H(E) θ(Eh − E) − h) ,

dn

dT
= 0,

(21)

and the limit of the slow-time system is

dE

dt
= g1(E) W (E) + g2(E) n4 + g3(E), (22a)
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Figure 5: (Color online) Solution (E, h, n) of the parametric embedding (20) for ǫ = 1 (thick lines, i.e.
equivalent to the Archetypal Model (19)) and ǫ = 10−3 (corresponding thin solid lines) (a) in slow time
t ∈ [0, 600], (b) in fast time T ∈ [0, 1].

h = H(E) θ(Eh − E), (22b)

dn

dt
= fn(E) (n∞(E) − n) . (22c)

These systems coincide with (10) and (16), if W̃ (E) = W (E). Their solutions and phase
portraits are shown in figure 5 and figure 6, respectively.

f:0050
The AM (19) produces an AP similar to the Noble model (4). In fact, the agreement

between the two can be improved further as demonstrated in Appendix A. Moreover, the
AM and the Noble model have the same asymptotic limits. The AM has two advantages.
Firstly, the relevant asymptotic embedding is much simpler: the right-hand sides of (20)
linearly depend on ǫ−1, and it appears only in two places. Secondly and more importantly,
judging from figure 4(b), the asymptotic properties of the fast Na current in modern
detailed models are likely to be similar to those of the AM (19) rather than to those of
the Noble model (4). Therefore, we adopt the AM (19) as the example on which the
non-Tikhonov asymptotic procedure is demonstrated.

3.2 Asymptotic analysis

f:0060

3.2.1 The fast-time subsystem

The fast-time subsystem (21) of the AM governs the evolution of the two fast variables E
and h on a time scale t ∼ ǫ or equivalently T ∼ 1. Its solution does not depend on the
third variable n, which is slow and thus stays close to its initial value n0 on this time scale.

System (21) admits exact analytical solution. If E0 < Em the solution of the initial-
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Figure 6: (Color online) Phase portraits of (a) the fast system (21) and (b) the slow system (22) of the
Archetypal Model. Blue dashed lines represent vertical isoclines dh/dt = 0 in (a) and dn/dt = 0 in (b).
Solid red lines and the cross-hatched region in (a) represent horizontal isoclines dE/dt = 0. Thin dotted
black lines with attched arrows represent trajectories. The thick dotted green line corresponds to the AP
shown in figure 5(a). The letters A-F designate feature points of the solution. Notice that the blue set in
(a) is a subset of the red set, so it is a continuous set of equilibria in the fast subsystem.

value problem with E(0) = E0, h(0) = h0 is

E = E0,

h = H(E0) θ(Eh − E0) + (h0 − H(E0) θ(Eh − E0)) exp (−fh(E0) T ) .
(23)

If E0 > Em the solution of the same initial-value problem is given in quadratures by

h = h0 + J(E0) − J(E), (24a)

T =

E
∫

E0

dη

g1(η) M(η) (h0 + J(E0) − J(η))
, (24b)

where

J(η) =

∫

fh(η)

g1(η) M(η)
dη. (25)

Note that each trajectory of the fast-time subsystem (21) crosses the slow manifold
(22b) only once as shown in figure 6(a). Thus, singularity of the slow manifold with respect
to the trajectories of the fast system, which in Zeeman’s [45] interpretation of Tikhonov
systems determines the threshold of excitation, does not exist in the AM. To shed light on
the threshold properties of our fast-time subsystem, let us consider the maximal overshoot
voltage E∞ ≡ E(+∞) in the system as a function of the initial conditions. Taking into
account that h(+∞) = 0 we can use (24a) to find E∞ as a solution of the finite equation
J (E∞) = J(E0) + h0, provided that E0 > Em and, of course, E∞ = E0, otherwise. Thus,
the function E∞(E0, h0) has a discontinuity along the line {(E0, h0)} = {Em} × (0, 1] as
shown in figure 6(a). This discontinuity is the mathematical equivalent of the physiological
notion of excitability: the upstroke does take place if and only if E0 is above the threshold,
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Em. Note that excitability in Tikhonov-Zeeman systems has this property, too, but is
related to unstable branches of the slow manifold, rather than discontinuities in the fast
flow.

The numerical values of parameters of the Noble model from which our Archetypal
Model descends, are such that fh(E)/g1(E) is a uniformly small function of E in the
physiological range. That is, condition h0 = J(E∞) − J(E0) ∼ 1 requires relatively large
values of the quadrature (25), the integrand of which is generally a relatively small quantity.
This is achievable if the integration interval goes close to the pole of the integrand, i.e.
zero of M(η). In other words, the noted smallness of fh/g1 necessitates that E∞ ≈ ENa

for typical E0 and h0. A more detailed and formal analysis of this aspect is given in
Appendix B.

3.2.2 The slow-time subsystem

The slow-time subsystem (22) of the AM governs the evolution of the two slow variables
E and n on a time scale t ∼ 1 or T ∼ ǫ−1. In fact, equations (22a) and (22c) form a
closed subsystem. Gate h described by (22b) can be evaluated if E(t) is known but does
not affect the dynamics of other variables. The slow-time system has been studied by
Krinsky and Kokoz [27]. The slow-time subsystem (22) is, in turn, a fast-slow system,
this time in the classical Tikhonov sense. This is illustrated by figure 7(a) which compares
the characteristic time-scale functions of the dynamical variables E and n, defined as
τy = |∂ẏ/∂y|−1 for y = E, n. It can be seen that E is a fast variable and n is a slow
variable, which motivates the introduction of a second small parameter ǫ2 > 0 in the
following standard Tikhonov way,

dE

dt
= G(E) + g2(E) n4, (26a)

dn

dt
= ǫ2fn(E) (n∞(E) − n) . (26b)

f:0080
System (26) is a fast-time system. In the limit ǫ2 → 0 the lines n = n(t0) = const form

the leaves of the fast foliation. On every such leaf the solution for the voltage is given by

t − t0 =

E(t)
∫

E(t0)

dη

G(η) + g2(η) n(t0)4
. (27)

The corresponding slow-time system is obtained by the change of variable t2 = ǫ2t and in
the limit ǫ2 → 0 becomes

0 = G(E) + g2(E) n4, (28a)

dn

dt2
= fn(E) (n∞(E) − n) . (28b)
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Figure 7: (Color online) (a) Characteristic time-scale functions τy = |dẏ/dy|−1 for variables y = E, n
of the slow-time system (22) corresponding to the trajectory B-C-D-E-F in figure 5. (b – c) A solution
(E, n) of the parametric embedding (26) for ǫ2 = 1 (thick lines, i.e. equivalent to the system (22)) and
ǫ2 = 10−3 (corresponding thin solid lines) (b) in slow time t ∈ [0, 600], (c) in slow time t ∈ [0, 15] and (d)
in fast time T ∈ [0, 15].

Equation (28a) defines the super-slow manifold,

n = N (E) = (−G(E)/g2(E))1/4 , (29)

and equation (28b) describes the motion along this manifold. As illustrated in figure 6(b)
the super-slow manifold is split into two parts by the condition n4 ≥ 0: the “diastolic”
branch E ∈ (−∞, E1] and the “systolic” branch for E ∈ [E2, E3], where E1 ≈ −95.75,
E2 ≈ −61.81 and E3 ≈ 1.86 are roots of the equation G(E) = 0. The stability of the fast
equilibria is determined by the sign of ∂Ė/∂E which coincides with the sign of N ′(E) =
dN /dE: the stable branches of the super-slow manifold correspond to regions in (n, E)
plane where its graph has a negative slope, i.e. N ′(E) < 0. These are the regions of the
entire diastolic branch and the upper part of the systolic branch, corresponding to E ∈
(E∗, E3], where E∗ ≈ −17.05 is the root of the equation N ′(E∗) = 0. These considerations
determine the excitability properties in terms of the super-slow subsystem (28). As seen in
figure 6(b) the threshold of excitability is E2 since a trajectory starting from E(t0) > E2

will be repelled by the lower systolic branch and attracted by the upper one, thus making
a relatively large excursion. This will be followed by a slow movement along the upper
systolic branch and a jump to the diastolic branch at E∗. On every monotonic branch of
the super-slow manifold the equation (28a) can, in principle, be resolved with respect to E
to give E = N−1(n) and the result can be substituted into (28b) leading to the following
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quadrature solution of equations (28),

t2 − t2,C =

n
∫

nC=0

dν

fn (N−1(ν)) (n∞ (N−1(ν)) − ν)
,

E = N−1 (n(t2)) ,

(30)

where t2,C is the slow time of the beginning of this asymptotic stage. Alternatively, we
may use, as suggested in [31], E rather than n as a coordinate on the super-slow manifold.
To do that we substitute n = N (E) into the second equation

dE

dt2
=

fn(E) (n∞(E) −N (E))

N ′(E)
,

where from solution of the slow-time system in quadratures follows without the need to
invert the function N (E). In particular, the time between the points (E, h) = (E3, 0) and
(E∗, N∗), i.e. the duration of the plateau of an AP starting from n = 0, is

t2(E∗) − t2(E3) =

E∗
∫

E3

N ′(E) dE

fn(E) (n∞(E) −N (E))
, (31)

where N∗ = N (E∗) ≈ 0.6512 for the standard parameter values.
This completes a brief overview of the leading-order asymptotics of the Archetypal

Model. An inventory of resulting formulas describing all the stages of typical solutions
corresponding to various sorts of initial conditions, is given in Appendix C.

4 The caricature model

4.1 Motivation

As pointed out in the Introduction and throughout the article, the asymptotic structure
of the embeddings of both the Noble and the Archetypal Model is non-Tikhonov and the
results of the classical theory of slow-fast systems are not applicable. The fact that we
are able to demonstrate a good numerical agreement in figures 3, 5 and 7 is reassuring
but far from reliable since the numerical solutions are, by their nature, only approximate.
Developing an alternative to the classical slow-fast asymptotic theory is beyond the scope
ot this paper. Instead, in this section we propose and study a simple caricature model of
cardiac excitation. One can think of the caricature model as a detailed ionic model which
allows an exact solution and which has been embedded in a non-Tikhonov system. Once
exact solutions are available, their the proximity to asymptotic solutions can be proved in
this particular case. We have to emphasize that, the caricature is not “derived” from the
Noble or from the Archetypal Model. They are, once again, used only as starting point for
their simple functional forms. The caricature is constructed so that it has an asymptotic



Asymptotic analysis of cardiac excitation (2007/04/04) 22

structure identical to that of the AM of section 3 and differs from it in that the functions in
its the right-hand side are chosen so as to make possible to (a) evaluate the quadratures of
section 3.2 and thus obtain explicit asymptotic solutions and (b) to go a step further and
find an exact analytical solution of the simple model. We then proceed to to demonstrate
that the appropriate limits of the exact analytical solution of this caricature model coincide
with its solution in the asymptotic limits as given by quadratures (23), (24), (27), (30).
Such an effort is still not a proof of our asymptotic analysis in general, but makes a good
justification.

4.2 Formulation

In order to formulate a caricature of the AM (20) we keep the asymptotic structure of the
latter and replace (“approximate”) the functions forming its right-hand side with simpler
ones. We make the following simplifications.

(a) We replace the functions M(E) and H(E) by unity. Thus, the function m3
∞(E) is

replaced by θ(E − Em) and the function h∞(E) by θ(Eh − E). Analogously, we
replace the function n∞(E) by θ(E − En). The values of the constants Em, Eh and
En will be discussed in item (e) below.

(b) We replace the function fh(E) by the constant Fh ≡ 1/2. Analogously, we replace
the function fn(E) by the constant Fn ≡ 1/270.

(c) We replace the function G(E) by the continuous piecewise linear function,

G̃(E) =







k1(E1 − E), E ∈ (−∞, E†),
k2(E − E2), E ∈ [E†, E∗),
k3(E3 − E), E ∈ [E∗, +∞),

(32)

where the constants k1 ≡ 0.075, k2 ≡ 1/25, k3 ≡ 1/10 while the constants E1 ≡
−280/3, E2 ≡ −55 and E3 ≡ 1 are close to the roots of G(E) (which are ≈ −95.75,
−61.81 and 1.86 respectively; we prefer to avoid multi-digit decimal values). The
constants E∗ ≡ −15 and E† ≡ −80 are determined by the intersection points of the
three linear pieces of G̃(E). Note that at E∗ the function G̃(E) reaches its local
maximum and thus E∗ corresponds to the point on the systolic branch of the super-
slow manifold which forms the boundary between its stable and unstable parts.

(d) We replace the function g2(E) by g0
2θ(E − E†), where g0

2 = −9.

(e) Finally, we set Em ≡ E∗, Eh = En ≡ E†. A more accurate approximation would
be to choose these constants as the solutions of the equations m3

∞(Em) = 1/2,
h∞(Eh) = 1/2, and n∞(En) = 1/2, respectively. However, this would lead to a
caricature model, the right-hand side of which would consist of six pieces instead of
only three as with the present choice. Obviously, this is not a principal difficulty but
would be rather technically inconvenient. Moreover, the present choice preserves the
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Figure 8: (Color online) (a – b) The caricature approximations (thin lines) of the right-hand side
functions of the Archetypal Model (19) (thick lines).

relatively good quantitative agreement with the original models without the addi-
tional complications.

A justification for the simplifications of the functions m3
∞(E) and h∞(E) can be found in

figure 2(a) while the rest of the replacements are illustrated in figure 8.
f:0091
On these grounds, we postulate the following caricature of the AM (19),

dE

dt
= ǫ−1GNa (ENa − E) θ(E − E∗) h + g0

2θ(E − E†) n4 + G̃(E), (33a)

dh

dt
= ǫ−1Fh (θ(E† − E) − h) , (33b)

dn

dt
= ǫ2 Fn (θ(E − E†) − n) , (33c)

where we have included the artificial small parameters ǫ and ǫ2 to ensure the correct
asymptotic structure of the system.

4.3 Exact solution

It is possible to obtain an exact analytical solution of the caricature model (33). Indeed,
equations (33b) and (33c) are separable and simple enough to be easily solvable. After their
solutions are substituted in equation (33a) it, too, becomes a readily-solvable first-order
linear ODE. Therefore, assuming the initial conditions,

E(0) = E0 > E∗, h(0) = 1, n(0) = 0, (34)

of a fast-upstroke AP and natural continuity conditions at the ends of the three intervals
separated by E† and E∗ or, equivalently, at the ends of the corresponding time intervals
t ∈ [0, t∗], t ∈ [t∗, t†] and t ∈ [t†,∞), system (33) has the following exact analytical solution,

n(t) =







1 − exp(−ǫ2Fnt), t ∈ [0, t†]

(exp(ǫ2Fnt†) − 1) exp(−ǫ2Fnt), t ∈ [t†,∞]
(35a)
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h(t) =







exp(−Fht/ǫ), t ∈ [0, t†]

1 − (1 + exp(Fht†/ǫ)) exp(−Fht/ǫ), t ∈ [t†,∞]
(35b)

E(t) =



























































































1

E(t) = exp

(

GNa

Fh
exp

(

−
Fht

ǫ

)

− k3t

)

×

[

E0 exp

(

−
GNa

Fh

)

− k3E3 u(−k3, t)

−g0
2

4
∑

l=0

(−1)l

(

4

l

)

u ((4 − l) ǫ2Fn − k3, t)

−
GNaENa

ǫ
u

(

Fh

ǫ
− k3, t

)

]

, t ∈ [0, t∗]

2

E(t) = (E∗ − w(t∗)) exp (k2 (t − t∗)) + w(t), t ∈ [t∗, t†]

3

E(t) = (E† − E1) exp (−k1(t − t†)) + E1, t ∈ [t†,∞]

(35c)

where

u(κ, t) ≡
ǫ

Fh

(

GNa

Fh

)− κǫ
Fh

[

Γ

(

κǫ

Fh
,
GNa

Fh

)

− Γ

(

κǫ

Fh
,
GNa

Fh
exp

(

−
Fht

ǫ

)

)]

, (36a)

w(t) ≡ E2 − g0
2

4
∑

l=0

(−1)l

(

4

l

)

exp (−l ǫ2Fnt)

k2 + l ǫ2Fn
, (36b)

and Γ(a, x) is the upper incomplete gamma function, Γ(a, x) ≡
∫∞

x
za−1e−z dz for Re(a) >

0 and Γ(a + 1, x) = aΓ(a, x) + xa e−x as defined in [1]. The exact analytical solution is
plotted in figure 9 where it is compared with the numerical solutions of the AM (19) and
the internal boundary points E† and E∗ are also indicated. The parameters t∗ and t† can
be found as solutions of

1

E(t∗) = E∗,
2

E(t†) = E†. (37)

Both equations are transcendental and not solvable analytically. It is possible to solve them
by using perturbation expansions about the small parameters ǫ and ǫ2. This, however, will
contribute little beyond its value as a technical exercise and will lead us away from the
main point of this part, which is to validate the asymptotic solutions for E(t), h(t) and
n(t). So here we omit these formulae, assuming that t∗ and t† are known where they are
needed. Numerically, for the standard values of parameters and E0 = −10, we obtain
t∗ ≈ 292.815 and t† ≈ 345.241. f:0092
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Figure 9: (Color online) The numerical solution of the embedding of the Archetypal Model (20) (thick
lines) in comparison with the analytical solution (35) of the caricature model (33) (corresponding thin
lines) (a) in slow time t ∈ [0, 600], for ǫ = 1, ǫ2 = 1, and (b) in fast time T ∈ [0, 1], for ǫ = 10−3, ǫ2 = 10−3.

5 Validation of the general asymptotic analysis

In the following we consider the stages of a normal fast-upstroke AP. For each stage we (a)
evaluate the appropriate quadratures of section 3.2 to obtain explicit asymptotic solutions
for this stage and (b) evaluate the limit of the exact analytical solution (35) as the small
parameters tend to zero as appropriate for the same stage. The asymptotic theory will be
validated if the results from these two steps are identical.

5.1 Fast upstroke, stage A–B

Here and below, letters A–F refer to the labels in figure 5(a). The fast upstroke occurs
during the interval t ∈ [0, tB] ⊂ [0, t∗], where tB → 0 but tB/ǫ → ∞ as ǫ → 0. During
this stage E and the h-gate change together on a time scale ∼ ǫ from the point (E, h) =
(E0, 1) to (EB, 0) while n is a slow variable and remains approximately at its initial value
n ≈ n0 = 0.
(a) Asymptotic solution. Asymptotically, this stage is described by quadratures (24,25).
Substituting there the functions defined in section 4.2, we obtain

h(E) = 1 +
Fh

GNa
ln

(

ENa − E

ENa − E0

)

, (38a)

T (E) = −
1

Fh
ln

(

1 +
Fh

GNa
ln

(

ENa − E

ENa − E0

)

)

. (38b)

Solving (38b) for the voltage E and substituting the result in (38a), we arrive at an explicit
asymptotic solution,

E = ENa − (ENa − E0) exp

(

GNa

Fh

(

e−FhT − 1
)

)

,

h = e−FhT .

(39)
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The maximal overshoot voltage EB is obtained as the fast time T tends to infinity,

EB = E∞ = lim
T→+∞

E(T ) = ENa − (ENa − E0) exp

(

−
GNa

Fh

)

. (40)

Since exp(−GNa/Fh) ≈ 10−29, the maximal overshoot voltage EB is extremely close to
ENa and h(tB) = h(T → ∞) = 0 as expected.
(b) Limit of the exact solution. We change to fast time, T = t/ǫ, and take the limit
of (35b) and (35c) as ǫ tends to zero, for fixed T . Since lim

a→1
Γ(a, x) = exp(−x), it follows

that lim
ǫ→0

u(κ, ǫT ) = 0, for κ ∼ 1 and therefore

lim
ǫ→0

u(−k3, ǫT ) = 0,

lim
ǫ→0

u ((4 − l) ǫ2Fn − k3, ǫT ) = 0.

Further,

u

(

Fh

ǫ
− k3, ǫT

)

≈
ǫ

GNa

[

exp

(

−
GNa

Fh

)

− exp

(

−
GNa

Fh
e−FhT

)]

.

Therefore, taking the limit ǫ → 0 of expression
1

E in (35c) we obtain,2

lim
ǫ→0

E(ǫT ) = ENa − (ENa − E0) exp

(

GNa

Fh

(

e−FhT − 1
)

)

,

lim
ǫ→0

h(ǫT ) = e−FhT .
(41)

Since equations (39) and (41) are identical, the asymptotic theory of the fast upstroke of
the AP is validated.

5.2 Post-overshoot drop of the voltage, stage B–C

This corresponds to the time interval t ∈ [tB, tC ] ⊂ [0, t∗], where tC → +∞ but ǫ2tC → 0
as ǫ2 → 0. We keep tB in some of the formulae rather than replacing it with its limit,
limǫ→0 tB = 0, as a symbolic reminder of the beginning of this asymptotic stage. The
voltage E decreases on a time scale ∼ 1 towards the stable systolic branch, the h-gate
remains at h ≈ 0 and the slow n-gate also remains approximately unchanged at n ≈ n0 = 0.
(a) Asymptotic solution. The asymptotics of this stage are given by quadrature (27)
which, with account of the approximations of section 4.2 and of the fact that asymptotically
n = 0, evaluates to

t − tB =
1

k3
ln

(

E3 − EB

E3 − E

)

. (42)

2Here we stress that E and h are considered as functions of t rather than T .
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Solving for E(t), the explicit asymptotic solution for this stage is,

E(t) = E3 + (EB − E3)e
−k3(t−tB). (43)

(b) Limit of the exact solution. We are still within the interval t ∈ [tB, tC ] ⊂ [0, t∗]

and so use
1

E(t) of (35c). Taking the limit of (35a) and (35b) as ǫ and ǫ2 tend to zero, we
obtain

lim
ǫ2→0

n(t) = 0, (44a)

lim
ǫ→0

h(t) = 0, (44b)

in agreement with the asymptotic analysis.

Now we consider the limit of
1

E(t) given by (35c) for ǫ → 0 and ǫ2 → 0 at a fixed
t ∈ (0, t∗). In the limit ǫ2 → 0 the terms u ((4 − l) ǫ2Fn − k3, t) become independent of

the index l and the sum over l in the expression for
1

E(t) vanishes since the binomial
coefficients cancel each other. For the remaining upper incomplete gamma functions, we
use the recurrence relation,

Γ(a + 1, x) = a Γ(a, x) + xa e−x

and the following asymptotics in the limit a ց 0,

Γ(−a, x) = Ei(1, x) + O(a),

Γ (−a, A exp(−B/a)) = −a−1
(

1 − eB
)

+ O(1),
(45)

for fixed x, A, B > 0 and where Ei(ν, x) =
∫∞

1
z−ν exp(−xz) dz, Re(x) > 0 is the exponen-

tial integral. Hence, as ǫ → 0, we have

u(−k3, t) ≈ k3
−1
(

1 − ek3t
)

, (46)

u

(

Fh

ǫ
− k3, t

)

≈
ǫ

GNa

(

exp

(

−
GNa

Fh

)

− 1

)

. (47)

Substituting these results into the expression for
1

E in (35c) and taking the limits ǫ → 0
and ǫ2 → 0, we get

lim
ǫ2,ǫ→0

1

E(t) = E3 +

(

ENa − (ENa − E0) exp

(

−
GNa

Fh

)

− E3

)

e−k3t, (48)

which with account of (40), coincides with the asymptotic expression (43) where tB is taken
at its limit, tB = 0. Thus the asymptotic procedure is validated in this stage as well.
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5.3 Plateau, stage C–D

This corresponds to the time interval t ∈ [tC , tD] ⊂ [0, t∗]. Again, we keep tC in some
formulae as a symbolic reminder of the beginning of this asymptotic stage, 1 ≪ tC ≪ ǫ2

−1,
and we define tD = t∗ precisely. The voltage E and the n-gate change on a time scale of
the order tD − tC = O(ǫ2

−1) along the upper systolic branch of the super-slow manifold
until E(t∗) = E∗ and n(t∗) ≈ N∗. The h-gate remains close to its quasi-stationary value
at h ≈ 0.
(a) Asymptotic solution. The general asymptotic results describing this stage are given
by (30). Since the functions of the caricature model in the time interval t ∈ [0, t∗] are
G̃(E) = k3(E3 − E), n∞(E) = 1, g2(E) = g0

2, fn(E) = Fn, the quadrature (30) evaluates
to

n = 1 − exp
(

−Fn(t2 − t2,C)
)

, (49a)

E = E3 +
g0
2

k3

(

1 − exp
(

−Fn(t2 − t2,C)
))4

, (49b)

where t2,C = ǫ2tC and lim
ǫ2→0

t2,C = 0.

(b) Limit of the exact solution. The plateau stage occurs during the time interval
t ∈ [0, t∗]. In order to compare the limit of the exact solution (35) to equations (49) we
need to change to the super-slow time, t2 = ǫ2t. Then the solution (35a) for n(t2) does not
contain a small parameter and is readily comparable with the asymptotics,

lim
ǫ2→0

n(t2) = 1 − exp
(

−Fn(t2 − t2,C)
)

, (50)

where we have taken into account that the initial value of n according to (44a) is n(t2,C) = 0.

For the voltage during this stage, we consider
1

E from (35c) with a change to the
super-slow time t2 = ǫ2t,

3

1

E(ǫ2
−1t2) =EBC(ǫ2

−1t2)

+ exp

(

GNa

Fh

exp

(

−
Fht2
ǫ ǫ2

)

−
k3t2
ǫ2

)

g0
2

4
∑

l=0

(−1)l

(

4

l

)

u

(

(4 − l) ǫ2Fn − k3,
t2
ǫ2

)

,

(51)

and look for the limit ǫ → 0, ǫ2 → 0 at a fixed t2. The terms denoted here by EBC(ǫ2
−1t2)

are precisely those discussed in connection with the limit of the exact solution during stage
B–C with the only difference that now we consider them in the super-slow time t2. For a
fixed t2, and small ǫ2, expression (48) evaluates to

lim
ǫ2→0

EBC(ǫ2
−1t2) = E3. (52)

3Here and in similar cases further on, we imply that
1

E and EBC are defined as functions of t, rather
than t2 or any other stage-specific time variable.
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Using expressions (45) derived in the previous stage the remaining u(·, ·)-function in (51)
in the limit ǫ → 0 becomes

lim
ǫ→0

u

(

(4 − l) ǫ2Fn − k3,
t2
ǫ2

)

= −
1 − exp (k3t2) exp (−(4 − l)Fnt2)

(4 − l) ǫ2Fn − k3

. (53)

The exponentially growing term is cancelled by exp(−k3t2/ǫ2) in (51) and therefore sub-
stituting the above expressions in (51) and taking the limit ǫ2 → 0 ultimately gives

lim
ǫ2,ǫ→0

1

E(t2) = E3 +
g0
2

k3

(1 − exp(−Fnt2))
4 , (54)

in full accord with the asymptotic result (49b) for the plateau stage of the AP, if we replace
t2,C with its limit lim

ǫ2→0
t2,C = 0.

Before proceeding to the next stage, we comment on the position of the point D on the
(n, E) plane, which is close to the end of the systolic branch of the super-slow manifold,
the point (N∗, E∗). As stated earlier, we define point D by the exact condition E(t∗) = E∗,
hence the condition n(t∗) ≈ N∗ is only approximate, since the AP trajectory follows the
super-slow manifold only approximately, with precision O(ǫ2). We shall see shortly that
for the next stage it is important that n(t∗) 6= N∗. The sense of this inequality can be
easily seen from (26a): we know that during the C–D stage E(t) decreases, G(E) > 0 and

g2(E) < 0, hence n > (−G(E)/g2(E))1/4 = N (E) during the whole of that stage, which
for t = t∗, E = E∗ gives n > N (E∗) = N∗. More accurately the value of n(t∗) can be
estimated using perturbation theory in ǫ2 around the super-slow manifold n = N (E); this
would be a further distraction from our main goal, and we omit these formulae, like in the
problem of determining t∗ and t†.

5.4 Repolarization, stage D–E

During this stage the voltage E jumps on a time scale ∼ 1 from the systolic to the diastolic
branch of the super-slow manifold. The h-gate changes swiftly on a time scale ∼ ǫ from
its lower quasi-stationary value close to zero to its upper quasi-stationary value close to
unity due to the discontinuity in the right-hand side of equation (33b). The slow n-gate
remains approximately unchanged at n ≈ N∗. The associated time interval is t ∈ [tD, tE] =
[t∗, t†] ∪ [t†, tE ] where tD = t∗ is the beginning of this stage, t† is the time of the inflexion
point defined by E(t†) = E† and tE is the time of the end of the stage constrained by
1 ≪ tE − t† ≪ ǫ2

−1.
(a) Asymptotic solution. The asymptotics at this stage are given by quadrature (27).
During this stage of the AP, the form of the caricature equations changes as the solution
E(t) moves through the point E†.

In the time interval t ∈ [t∗, t†] the relevant functions of the caricature model are G̃(E) =
k2(E − E2) and g2(E) = g0

2 and therefore quadrature (27) evaluates to

E =

(

E2 −
g0
2n(t∗)

4

k2

)

+

(

E∗ −

(

E2 −
g0
2n(t∗)

4

k2

)

)

exp (k2(t − t∗)) , (55a)
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n = n(t∗) = 1 − exp
(

−Fn(t2,∗ − t2,C)
)

= const, (55b)

with initial conditions n(t∗) and E(t∗) ≡ E∗. The function E(t) given by expression
(55a) monotonically decreases since n(t∗) > N∗ = (k2(E∗ −E2)/g

0
2)

1/4. In the second time
interval, t ≥ t†, the relevant functions of the caricature model are G̃(E) = k1(E1 −E) and
g2(E) = 0, and quadrature (27) gives

E(t) = (E† − E1) exp (−k1(t − t†)) + E1,

n(t) = n(t∗) = const,
(56)

with initial conditions n(t∗) and E(t†) = E†.
Finally, we note that the dynamics of h gate during this stage have a peculiarity due to

the discontinuity of the right-hand side of (33b). The finite constraint h = θ(E†−E) which
according to (22b) is supposed to be approximately observed outside the AP upstroke,
cannot be observed when E crosses the level E†, as this would mean a discontinuity in
h(t). In fact, the jump of h(t) from 1 to 0 happens gradually, of course. We can see from
(33b) that this jump takes time ∼ ǫ. This violation of (22b) does not, however, in any
way affect the dynamics of E and n, as Eh = E† < Em = E∗ and therefore the factor
h θ(E − E∗) in (33a) remains identically zero throughout this stage.
(b) Limit of the exact solution. In order to compare the asymptotic and the exact
solutions in a given AP stage we need to align them in time. The beginning of the present
stage is tD = t∗ = t2,∗/ǫ2, so we set

t = ǫ2
−1t2,∗ + t̃ (57)

and then consider the limit ǫ, ǫ2 → 0 at a fixed t̃. As discussed earlier, we assume here
that the limit of t2,∗ is known (and finite). With this the exact solution in the interval
t ∈ [t∗, t†] becomes

n(ǫ2
−1t2,∗ + t̃) = 1 − exp(−Fnt2,∗ − ǫ2Fnt̃), (58a)

2

E(ǫ2
−1t2,∗ + t̃) =

(

E∗ − w(ǫ2
−1t2,∗)

)

exp
(

k2 t̃
)

+ w(ǫ2
−1t2,∗ + t̃). (58b)

We have immediately that in the limit ǫ2 → 0, expression (58a) coincides with (55b), since
lim t2,C = 0. Then, we have from (36b)

lim
ǫ2→0

w

(

t2,∗

ǫ2
+ t̃

)

= E2 −
g0
2

k2

4
∑

l=0

(−1)l

(

4

l

)

e−lFnt2,∗ = E2 −
g0
2

k2

(

1 − exp(−Fnt2,∗)
)

. (59)

According to (35a), n(t∗) = 1− exp(−Fnǫ2t∗) = 1− exp(−Fnt2,∗). Hence we have that the
limit of (58b) coincides with (55a) since t̃ = t − t∗. Analogously, substituting (57) in the
exact solution (35) for the interval t > t† and taking the limit ǫ2 → 0 we reproduce the
asymptotic solution (56) identically.

Finally, the limit of the exact solution (35b) for the h-gate as ǫ → 0 results in h = 0
for t ∈ [t∗, t†] and h = 1 for t ∈ [t†, tE ], in accordance with the asymptotic theory.
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5.5 Recovery, stage E–F

The voltage E and the n-gate move on a time scale ∼ ǫ2
−1 close to the diastolic branch

of the super-slow manifold. This continues forever as the system approaches it stable
equilibrium. The associated time interval is t ∈ [tE , +∞) with tE as defined above. Since
tE ∼ ǫ2

−1, we define t2,E = ǫ2tE which has a finite limit, coinciding with that of ǫ2t† and
ǫ2t∗.
(a) Asymptotic solution. The asymptotic solution in the the recovery stage is given by
quadrature (30). With the approximations of section 4.2, the functions of the caricature
model in (30) are n∞(E) = 0, fn(E) = Fn and N−1(n) = E1 and so the asymptotic
solution is

n = n(tE) exp
(

−Fn(t2 − t2,E)
)

, (60a)

E = E1, (60b)

h = 1. (60c)

(b) Limit of the exact solution. At a fixed super-slow time t2 = ǫ2t, the limit ǫ2, ǫ → 0
of the exact solution (35) is

lim
ǫ2→0

n(t2/ǫ2) =
(

exp(Fnt2,†) − 1
)

exp(−Fnt2), (61a)

lim
ǫ2→0

3

E(t2/ǫ2) = lim
ǫ2→0

(E† − E1) exp
(

−k1(t2 − t2,†)/ǫ2

)

+ E1 = E1, (61b)

lim
ǫ2,ǫ→0

h(t2/ǫ2) = lim
ǫ2,ǫ→0

(1 − (1 + exp(Fht2,†/(ǫǫ2))) exp(−Fht2/(ǫǫ2))E1) = 1. (61c)

Finally, we notice that according to (61a), n(t†) = 1 − exp(−Fnt2,†). Using this fact
equation (61a) can be shown to be identical to equation (60a), so there is full agreement
between (60) and (61).

We have demonstrated that at every stage of the AP the explicit asymptotic solution
coincides with the appropriate limit of the exact analytical solution of the caricature model
(33). We conclude that the asymptotic theory is validated.

6 Discussion

6.1 Summary of results

We have started from the classical Noble model [31] of cardiac Purkinje fibres, arguing
that it is the simplest ionic model based on cardiac electrophysiology. Using numerical
observations, we have postulated a system of axioms which allowed us to propose a reason-
able parametric embedding (9) of the Noble model. We have also noted that some of the
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features of the Noble model are rather peculiar in comparison with other cardiac models.
This have lead us to propose the Archetypal Model (19) with the “generic” structure of
modern cardiac models, which allows a simple parametric embedding (20) and which, in
addition, is still a very accurate approximation of the Noble model and whose asymptotic
limit coincides with that of the Noble model. Finally, we have obtained analytical solu-
tions in quadratures, given by formulae (23), (24), (27) and (30), corresponding to the
asymptotic limits in the embedded small parameters in the Archetypal Model.

In that sense, we have achieved a fully analytical description of an action potential in
a detailed ionic model of cardiac excitability.

The accurate reproduction of the properties of the authentic ionic model necessitated
a number of mathematical features of the parametric embedding used which made the
standard singular perturbation approaches based on Tikhonov theorem inapplicable:

• a large factor in front of only some terms in the right-hand side of the same equation;

• non-analytical, perhaps even discontinuous, asymptotic limit of some right-hand
sides, even though the original system is analytical,

• non-isolated equilibria in the fast subsystem;

• dynamic variables which change their character from fast to slow within one solution
(remember in Tikhonov’s theory, the roles of “fast” and “slow” variables are fixed);

• the slow set may not even be a manifold, but may consist of pieces of different
dimensionality (see Appendix B).

All these features are related to each other and originate from the biophysics of excitable
membranes, namely the fact that ionic gates work as nearly-perfect switches. Note that in
some previous two-component simplified cardiac models, e.g. [33, 42? ], there are segments
where null-clines of both variables are very close to each other. Perhaps, in an appropriate
asymptotic embedding, these segments would be near continua of non-isolated equilibria
in the fast subsystem, which is one of the key features mentioned above and which might
be related to the success of those models.

The asymptotic analysis we have done reproduces, in the limit ǫ → 0, all five qual-
itative phenomenological features of cardiac excitability, listed in section 1.1, which are
inconsistent with FitzHugh-Nagumo type systems. Namely,

1. Slow repolarization. The only fast part of a typical AP is the upstroke A-B, which
goes from the upper edge of the red cross-hatched rectangle on figure 6(a) towards
dashed blue line along the vertical axis. The other parts B-C-D-E-F all go along
the dashed blue line there, which is a set of the equilibria of the fast subsystem. In
other words, all stages B-C-D-E-F are described in the slow subsystem (26). As seen
in figure 6(b), this includes relatively fast parts B-C and D-E as well as relatively
slow ones C-D and E-F, but these have different speeds due to the secondary small
parameter ǫ2. From the viewpoint of the main small parameter ǫ they are all slow,
i.e. much slower than the upstroke.
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2. Slow subthreshold response. This corresponds to a trajectory starting from an
initial voltage E0 < Em. For E0 above (below) the line h = H(E), this corresponds to
the leftward (rightward) going trajectory in the red cross-hatched region of figure 6(a).
That is, the only fast process, if any, following a subthreshold initial perturbation, is
the relaxation of the h gate. The fast dynamics of E are not engaged as INa channels
remained closed. Thus, any dynamics of E after such initial perturbation occur only
on the slow time scale.

3. Fast accommodation. In voltage-clamped conditions, i.e. when E(t) is prescribed,
the fast subsystem (21) gives that h(t) tends towards H(E) θ(Eh − E), i.e. towards
the blue dashed line on figure 6(a), and of course for E staying above Em long
enough, we have eventually h = 0. In other words, if E raises too slowly, the h
gates have sufficient time to close, which prevents excitation. For this to happen, the
(prescribed) dynamics of E should be slow compared to h dynamics, which are fast
in terms of the ǫ-embedding.

4. Variable peak voltage. The peak voltage is the voltage at point B. From figure 6(a)
it appears that this voltage is always very close to ENa as long as point A is above the
line E = Em. However, according to the analysis of section 3.2.1, the peak voltage
E∞ is determined via equation h0 = J(E∞)−J(E0), that is it does depend on initial
condition. This paradox is explained in the end of section 3.2.1 and in Appendix B as
a consequence of presence, in the Noble model and its descendant Archetypal Model,
of a yet another small parameter σ which is a factor of fh/g1. Namely, ENa − E∞

happens to be exponentially small in σ. A conclusion follows from there that if the
parameters in the Archetypal Model are changed in such a way that fh/g1 is not so
small — e.g. by decreasing the value of GNa, the peak voltage will demonstrate a
noticeable dependence on h0 and E0. This in fact happens in other cardiac models
that are not so stiff as Noble model, i.e. in Courtemanche et al. [14] model of human
atrium: as we have shown in [11], the phase portrait of its fast subsystem is very
similar to figure 6(a), but less stiff and the peak voltage does indeed vary widely in
the whole of (Em, ENa) range.

5. Front dissipation. This feature requires the analysis of the spatially distributed
version of the models and is therefore beyond the scope of this paper. However, the
phenomenon of front dissipation has been a specific target of a number of our previous
papers [6, 8, 11, 37]. In [6, 8] we considered a piecewise linear “caricature” version of
the fast subsystem which allowed an explanation of front dissipation via establishing
existence of a lower limit for the propagation speed, as opposed to FitzHugh-Nagumo
type system which do not have such limit. In [11, 37] we demonstrated that the
spatially extended version of fast system in [14], which as noted above is essentially
identical to that of the AM, demonstrated the lower limit of the conduction velocity
similar to that in the piecewiselinear caricature. Moreover, we have demonstrated
that the understanding of conduction blocks based on this lower limit has a predictive
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ability for wavebreaks in complicated spatiotemporal regimes in the Courtemanche
et al. model.

As no rigorous theory of slow-fast systems of non-Tikhonov type exists at present,
we have formulated a “caricature”-style simplification of the AM, which is a less accurate
approximation of the Noble model but has the same asymptotic structure as AM and admits
exact solution. Using this exact solution we have been able to prove the asymptotic results
in the particular case.

6.2 Further directions

We believe that the described procedure is generic and can be applied to typical detailed
cardiac models including the complicated contemporary models. For instance, part of the
same procedure has already been successfully applied to the human atrial tissue model
of Courtemanche et al. [14] for which an analytical condition for propagation block in a
re-entrant wave has been derived and a satisfactory quantitative agreement with results
of direct numerical simulations have been demonstrated [6, 8, 37]. It is of even greater
interest to investigate break-up and self-termination of AP fronts in models of ventricular
myocytes such as [4, 23, 28, 39] since cases of ventricular fibrillation have more serious
health consequences than those of atrial fibrillation. Another direction in which the pro-
posed asymptotic description might be useful is the derivation of action potential restitution
curves and conduction velocity dispersion curves for realistic cardiac models. These two
curves are the most popular and widely available experimental characteristics of cardiac
tissue upon which various interpretations of cardiac dynamics are based [36].

Finally, a simplified model, like the Archetypal Model or its caricature suggested here,
can be a useful tool for large-scale numerics. Confidence in such a tool will increase if the
simplified model has been derived by a controlled asymptotic procedure from a detailed
model and preserves its predictive power. Such a model can also be useful for theoretical
studies. For example, the difference between “slow over-threshold response” and “normal
fast upstroke”, discussed in Appendix C only appears in the asymptotic limit ǫ → 0 and
cannot be mathematically identified in the model at ǫ = 1, even if the exact analytical
solution like (35) is available. This difference may be important physiologically. E.g. it
creates a possibility for “slow” and “fast” propagating waves in the system, a feature that
has been observed in other models and in electro-physiological experiments as “Na” and
“Ca” excitation waves [34, 35]. We believe that asymptotic analysis is the most adequate
tool for mathematical description of this sort of “qualitative” phenomena, and cannot be
replaced with numerical or even exact analytical solutions.
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Figure 10: (Color online) (a) The function Q(E) defined by (62) in comparisson with m3
∞

(E) and
h∞(E). (b) Solutions (E, h, n) of the Noble model (4) (thick lines) and of the more accurate version of
the Archetypal Model (66) (corresponding thin solid lines).

Appendices

A A more accurate archetypal model

As one can see from figure 4(a), the AP of the AM (19) is a bit longer, and its repolarization
is a bit slower than that of the Noble model (4). Although this difference may seem
relatively minor, it is in fact surprisingly large, considering that the small parameter ǫ
used to derive equations (19) from equations (4) is related to small quantities in (4) of the
order of 10−2. Thus, we would expect an accuracy of the order of 1% in all results, which
is clearly not the case in figure 4(a). The reason for this is that the asymptotic structure
of Noble model (4) is even more complicated than that summarized in the Axioms I–VII.
Here we argue that the observed discrepancy is mainly due to a deficiency of Axiom VII.
However, we believe that the complication in question is idiosyncratic for Noble model and
is not actually observed in later more realistic models. Still, in order to demonstrate the
validity of our approach, we show here how the AM can be improved by an appropriate
correction.

f:0070
Figure 2(b) shows that the function S(E) is relatively small. However, it appears in

(15) multiplied by the large factor g1(E)/fh(E) and thus the values of the product

Q(E) ≡ g1(E) S(E)/fh(E), (62)

are in fact of the order unity over a significant range of voltages as shown in figure 10(a).
It is then clear that neglecting this essentially non-zero term in equation (15) leads to
the low accuracy of the AM (19). At first glance, this means that in the Noble model
(4), during the repolarization phase of the AP, gate h is, in fact, not fast compared to
other two variables. This would mean that reduction to a two-variable model in that
region is not possible. However, as we have discussed in Introduction after the definition
of embedding, a replacement of 1 with a small parameter can, in fact, be a reasonable
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embedding, and its quality can be assessed by a comparison of the numerical solutions of
the original and the embedded problem. Such comparison is provided in figure 3 and shows
that the embedding (19) is indeed reasonable although of a not very high accuracy. Thus
we suppose that a higher accuracy can be achieved by taking a first-order approximation of
the term Q in the parameter ǫ, rather than zero-order as in the other terms. Let us denote
the small parameter associated with the function Q(E) by µ, µ > 0. Then the error term
after the first-order approximation in µ will be O(µ2). The error term after the zero-order
approximation in ǫ will be, of course O(ǫ). If we want these two kinds of error terms to be
of the same order, we must therefore consider µ = ǫ1/2. These arguments are formalized
by the following improved version of Axiom VII,

Axiom VIIa. S(E; ǫ) = ǫ1/2S̃(E) + O(ǫ), where S̃(E) ≈ S(E).

Besides, for technical reasons the following, stronger version of Axiom VI will be more
convenient for us:

Axiom VIa. m3
∞(E; ǫ) h∞(E; ǫ) = ǫW̃ (E) + O(ǫ2), for the same W̃ (E) as in Axiom VI.

Substituting Axioms VIa and VIIa into (15), we get

dE

dt
= g1W̃ (E) − ǫ1/2 g1(E)

fh(E)
S̃(E)

dE

dt
+ O(ǫ). (63)

From here we deduce that dE/dt = g1W̃ + O(ǫ1/2). Substituting this into the right-hand
side of (63) we obtain

dE

dt
= g1W̃ (E) − ǫ1/2 g1(E)

fh(E)
S̃(E)g1W̃ + O(ǫ). (64)

Thus, after discarding O(ǫ) and putting ǫ = 1, we arrive at the following variant of (16),

dE

dt
=
(

g1(E) W̃ (E) + g2(E) n4 + g3(E)
) (

1 − Q̃(E)
)

, (65a)

h = H(E) θ(Eh − E), (65b)

dn

dt
= fn(E) (n∞(E) − n) , (65c)

where the first and third equations are satisfied with accuracy O(ǫ) and the second equation
is satisfied only with accuracy O(ǫ1/2). Here Q̃(E) = S̃(E) g1(E)/fh(E) which according
to Axiom VIIa should be close to Q(E).

We see that in terms of the slow subsystem, the modification simply amounts to mul-
tiplying the right-hand side of equation (65a) by a known function of E. By analogy, it is
straightforward to propose an improved version of the AM (19),

dE

dt
=
(

g1(E) M(E) θ(E − Em) h + g1(E) W (E) + g2(E) n4 + g3(E)
)

(1 − Q(E)) ,

dh

dt
= fh(E) (H(E) θ(Eh − E) − h) ,

dn

dt
= fn(E) (n∞(E) − n) .

(66)
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This improved AM gives solutions very close to those of the Noble system (4), as illustrated
in figure 10(b).

Notice that the asymptotic structure of the improved AM (66) is exactly the same as
that of (19). Indeed, the difference amounts to redefining the functions g1(E), g2(E), g3(E)
via a factor 1−Q, thus the asymptotic theory discussed in section 3.2 is equally applicable
to both systems.

B The high-excitability embedding

For the numerical values of the parameters corresponding to healthy tissue, the voltage
upstroke at the beginning of the AP is, in fact, a much faster variable than the h-gate.
Indeed, the voltage speed constant gNa/CM = 331

3
is large compared to the typical values

of the h-gate speed function, max
[Em,ENa]

fh(E) ≈ 1. This speed difference is unaccounted for

by Axioms I–VII(a) where these two quantities have the same asymptotic order. How-
ever, some features of a typical AP solution depend on the ratio of these quantities in an
exponential way.

To take this feature into account, here we construct an improved embedding which
takes the E-vs.-h speed difference into account. We use an additional embedding with one
more artificial small parameter σ > 0. Formally, we replace Axiom I with a new Axiom,

Axiom Ia. gNa(ǫ, σ) = σ−1ǫ−1gNa.

This, of course, does not affect the slow-time subsystem (16). The fast-time subsystem
(10) now depends on the new parameter σ and becomes

dE

dT
= σ−1g1(E) M(E) θ(E − Em) h,

dh

dT
= fh(E) (H(E) θ(Eh − E) − h) ,

(67)

where the trivial equation for n is omitted as the n-gate neither changes nor matters on
time scales of interest here. The equations (67) appear to be a standard fast-slow Tikhonov
system. However, this is deceptive since the specific properties of the right-hand sides lead
to a number of nonstandard features. Let us consider the limit σ → 0 in this system. In
the super-fast time s = T/σ, the h-gate is a first integral, dh/ds = 0, and E satisfies the
super-fast equation,

dE

ds
= g1(E) M(E) θ(E − Em) h, (68)

depending on h as a parameter. The equilibria of this system for which the the right-hand
side vanishes, form an unusual set consisting of the lines h = 0 and E = ENa and the semi-
stripe {(E, h)} = (−∞, Em) × [0, 1]. Hence, the slow set is not a manifold, but consists
of pieces of different dimensionalities. This feature is even “more non-Tikhonov” than the
many non-standard properties observed in the main embedding. One consequence is that
the slow-time subsystem of (67) changes form as the trajectory passes through the various
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pieces of the slow set. This dependence is substantial: even the dimensionality of the slow
system changes. For instance, for a typical AP solution in the beginning of the plateau,
the trajectory crosses the E = ENa piece, which can be parameterized by h. Then we have
a one-dimensional slow subsystem of (68) (which is in the “fast time” T ) in the form of an
equation for h,

dh

dT
= −fh(ENa) h. (69)

Then, during the later part of the plateau, which proceeds along the one-dimensional piece
h = 0, the slow subsystem becomes “zero-dimensional” in the sense that all right-hand
sides vanish and all trajectories are fixed points. This corresponds to the fact that the
movement along this piece occurs slowly in terms of the parameter ǫ, i.e. is infinitely slow
not only in terms of time s but in terms of time T too. Finally, during the repolarization
phase of the AP when the voltage E drops below Em, the slow subsystem is on the two-
dimensional piece but is in fact foliated to one-dimensional pieces, as the right-hand side
of the equation for E vanishes and the voltage E is a first integral,

dE

dT
= 0,

dh

dT
= fh(E) (H(E) θ(Eh − E) − h) .

(70)

Since the equations of this “high-excitability” embedding are at most one-dimensional
systems, obviously all of them can be solved in quadratures. This embedding is rather
instructive since it demonstrates that a non-Tikhonov embedding might lead to rather
untypical consequences. It might also be useful for a number of applications, especially
when healthy, well-excitable tissues are concerned. However, the most important applica-
tions are those related to the failure of excitation, or of excitation propagation in the case
of spatially-extended systems. These processes are observed, however, exactly when the
excitability, represented here by formal parameter σ−1, is not so high.

C Asymptotic synthesis

We assume, for simplicity, that the initial values of the gating variables are given by h0 = 1,
n0 = 0. Then, depending on the initial trans-membrane voltage E0, there exist three types
of solutions of (19) as visualized by the phase portraits in figure 6 and described below:

C.1 Sub-threshold response

If the initial value of E is less that the threshold value of the super-slow subsystem (28)
i.e. E0 < E2, the voltage decays towards its global equilibrium E1:
Relaxation of the h-gate. The h-gate relaxes on a time scale ∼ ǫ towards its quasi-stationary

value h ≈ H(E) θ(Eh − E) according to (23). The variables E and n remain close to
their original values of E ≈ E0, n ≈ n0 = 0.
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Relaxation of the voltage E. The voltage decays on a time scale ∼ 1 towards its equilibrium
value E1 according to (27) (with n = 0). The h-gate remains close to its quasi-stationary
value except, possibly, swiftly moving on a time scale ∼ ǫ along its discontinuity as E
passes through Eh. The slow n-gate remains approximately at n ≈ n0 = 0.

C.2 Slow over-threshold response

If the initial value of the voltage is bigger than the threshold value of the super-slow
subsystem (28) but smaller than Em i.e. E2 < E0 < Em then the slow subsystem alone is
sufficient to describe the AP evolution and the fast Na current is not involved. The voltage
makes a relatively small excursion towards the upper systolic branch of the super-slow
manifold and approaches it from below:
Relaxation of the h-gate. The h-gate relaxes on a time scale ∼ ǫ in the same way as in the

case of sub-threshold response, except this time the quasi-stationary value of h is zero
since E2 > Eh.

Rise of the voltage E. The voltage increases on time scale ∼ 1 towards E3 i.e. towards the
upper part of the systolic branch of the super-slow manifold according to (27) (with
n = 0). The slow n-gate remains approximately unchanged at n ≈ n0 = 0.

Plateau. The variables E and n move on a time scale ∼ ǫ2
−1 along the upper systolic

branch of the super-slow manifold n = N (E), according to (28) until they reach the
point (E∗, N∗). The h-gate remains close to its quasi-stationary value of h ≈ 0.

Repolarization. The voltage E jumps on a time scale ∼ 1 according to (27), towards
the diastolic branch of the super-slow manifold. The h-gate remains close to its quasi-
stationary value except, possibly, for a swift movement along the discontinuity of H(E)θ(Eh−
E) at E = Eh on a time scale ∼ ǫ. The slow n-gate remains approximately at n ≈ N∗.

Recovery. The variables E and n move on a time scale ∼ ǫ2
−1 along the diastolic branch

of the super-slow manifold n = N (E), according to (28). This continues forever, with
(E, n) asymptotically approaching the true equilibrium of the system (E1, 0). Gate h
stays close to its quasi-stationary value h ≈ 0.

C.3 Normal fast-upstroke action potential

If the initial value of the voltage exceeds the threshold of the primary fast-time system (21)
i.e. E0 > Em the fast Na current is activated and a normal fast-upstroke AP, is initiated:
Fast upstroke. The variables h and E change together on a time scale ∼ ǫ according to

(24) from the point (E, h) = (E0, 1) asymptotically (in T → ∞) approaching the point
(E, h) = (E∞(E0, 1), 0). The slow n-gate remains approximately unchanged at n ≈
n0 = 0.

Post-overshoot drop of the voltage E. The voltage E descends, inasmuch as E∞(E0, 1) >
E3, on a time scale ∼ 1 towards its higher equilibrium value E3 according to (27) (with
n = 0). Variable h remains close to its quasi-stationary value of h ≈ 0. The slow n-gate
remains approximately unchanged at n ≈ n0 = 0.
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Plateau, repolarization and recovery stages follow which are similar to the corresponding
stages in the case of slow over-threshold response.
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