
The effect of thermal anisotropies during crystallization in phase-change
recording media
M. R. Belmont, M. M. Aziz, and C. D. Wright 
 
Citation: J. Appl. Phys. 104, 044901 (2008); doi: 10.1063/1.2968447 
View online: http://dx.doi.org/10.1063/1.2968447 
View Table of Contents: http://jap.aip.org/resource/1/JAPIAU/v104/i4 
Published by the American Institute of Physics. 
 
Related Articles
Recrystallization of an amorphized epitaxial phase-change alloy: A phoenix arising from the ashes 
Appl. Phys. Lett. 101, 061903 (2012) 
Metal-induced solid-phase crystallization of amorphous TiO2 thin films 
Appl. Phys. Lett. 101, 052101 (2012) 
Phase transition behavior in microcantilevers coated with M1-phase VO2 and M2-phase VO2:Cr thin films 
J. Appl. Phys. 111, 104502 (2012) 
Dynamical process of KrF pulsed excimer laser crystallization of ultrathin amorphous silicon films to form Si
nano-dots 
J. Appl. Phys. 111, 094320 (2012) 
Microwave-induced transformation of rice husks to SiC 
J. Appl. Phys. 111, 073523 (2012) 
 
Additional information on J. Appl. Phys.
Journal Homepage: http://jap.aip.org/ 
Journal Information: http://jap.aip.org/about/about_the_journal 
Top downloads: http://jap.aip.org/features/most_downloaded 
Information for Authors: http://jap.aip.org/authors 

Downloaded 15 Aug 2012 to 144.173.204.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/12824795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jap.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L23/430890721/x01/AIP/Bruker-AXS_JAPCovAd_1640x440Banner_Aug1thru8_2012/FastScan-PT-pdf-banner.jpg/7744715775302b784f4d774142526b39?x
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=M. R. Belmont&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=M. M. Aziz&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=C. D. Wright&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jap.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.2968447?ver=pdfcov
http://jap.aip.org/resource/1/JAPIAU/v104/i4?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4742919?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4739934?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4716191?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4716467?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.3702582?ver=pdfcov
http://jap.aip.org/?ver=pdfcov
http://jap.aip.org/about/about_the_journal?ver=pdfcov
http://jap.aip.org/features/most_downloaded?ver=pdfcov
http://jap.aip.org/authors?ver=pdfcov


The effect of thermal anisotropies during crystallization in phase-change
recording media

M. R. Belmont, M. M. Aziz,a� and C. D. Wright
School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison Building,
North Park Road, Exeter EX4 4QF, United Kingdom
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The problem discussed is the significance of anisotropies in the thermal parameters of different
phases of phase-change materials as used for data storage purposes during recording. The particular
phase change in interest is from the amorphous-to-crystalline state. Applying the method of
correlation moment analysis produced upper estimators for the time dependence of the width of the
crystalline mark and the time at which phase change ceases based on the heat flow process alone.
These upper estimators are closed-form analytical expressions that can be used to estimate the
recording resolution for any general spatial profile of initial temperature in the medium. This
analysis showed that, up to a first order, the specific heat anisotropies have considerably less
influence on the heat flow than the thermal conductivity differences. In general, for the material
parameters used in phase-change data storage applications, the theory showed that the anisotropy in
thermal parameters can be neglected. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2968447�

I. INTRODUCTION

A key property of data storage media is the minimum
size scale over which information-bearing structures can be
produced and read. In certain classes of materials these struc-
tures are based on the different properties of crystalline and
amorphous phases.1,2 Consequently the pattern of these
structures and hence the storage density are controlled by the
spatial profile of the temperature and its time evolution used
to induce the phase transition. The determination of this tem-
perature profile is hampered by a combination of �i� the in-
herently anisotropic characteristics of materials with two
such phases present and �ii� the nonlinear nature of the ther-
mal processes and the kinetics of the phase transition.3,4

The nonlinearity has a further effect in that unlike linear
problems, where only parametric variations occur, in nonlin-
ear processes the actual character of the solutions for tem-
perature and thus phase composition will vary with the initial
conditions. Thus, recording resolution will vary with both �i�
the spatial data pattern desired to be written and hence the
impressed temperature profile and �ii� the initial concentra-
tion profiles of the two phases. A major consequence of this
is that numerical explorations can become very intensive as
it is not possible to explore parametric effects of the material
properties without exhaustive evaluations over large classes
of initial conditions. An analytic approach that provides even
indirect information on the role of the anisotropies in mate-
rial parameters and recording resolution is clearly of value.

The main goal here is not to secure precise values for
resolution limits in individual cases, which is more the prov-
ince of highly specific numerical solutions, but to identify
the manner and degree in which the differences in properties
between phases affect the phase-change process itself and as
a consequence their role in determining the achievable re-
cording resolution in general. A key practical outcome of the

present work is an assessment of the errors involved in the
commonly used assumption of isotropic linear heat flow and
the way these errors depend on the various anisotropies. The
class of mark patterns to be explored here is deterministic
dealing with individual marks and is aimed at yielding infor-
mation about factors affecting the limits of resolution.

The form of the kinetic equation that is used in this work
makes a direct solution approach unrealistic. As a result, the
analysis presented here involves exploring the heat flow
equation in the presence of the phase change but without the
detail of the kinetic mechanism. Using the correlation mo-
ment technique,5 an approximation for the time dependence
of a measure of the width of the crystalline region will be
produced. The results of this analysis make it possible to
determine which are the dominant anisotropy parameters and
how they affect the width measure. In addition, it allows
estimation of the time at which thermal spreading stops and
hence the expected final crystalline mark widths. However,
this analysis is based on the heat diffusion process alone and
hence provides upper estimates for the spreading time and
length scales in this problem. The detailed kinetics are in-
cluded in another report6 by examining the role of the initial
peak temperature, and hence energy density in the medium,
and considering the relative contributions to the crystalliza-
tion rate made by the thermal diffusive flow and the phase-
change reaction rate.

The fundamental equations of the heat diffusion process
and reaction rate are presented in Sec. II of this paper, and
nondimensionalized to simplify the analysis and to identify
the nonlinear contributions to the problem. Section III de-
scribes briefly the correlation moment technique and relevant
moments to obtain upper estimates for the time dependent
width measures of the crystalline mark. Moreover, this sec-
tion also uses correlation moment properties to arrive at up-
per estimates for the time when phase change ceases and the
expected final mark widths.a�Electronic mail: m.m.aziz@ex.ac.uk.

JOURNAL OF APPLIED PHYSICS 104, 044901 �2008�

0021-8979/2008/104�4�/044901/7/$23.00 © 2008 American Institute of Physics104, 044901-1

Downloaded 15 Aug 2012 to 144.173.204.17. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.2968447
http://dx.doi.org/10.1063/1.2968447
http://dx.doi.org/10.1063/1.2968447


It is important to note that this work focuses on the ef-
fects of thermal anisotropies and kinetics on the intrinsic
material properties and length scales, and no attempt is made
to include the influences of thermal and heat sinking layers
on these properties and length scales. These effects are dis-
cussed in more detail elsewhere.7–9 Moreover, the treatment
of kinetics here does not account for incubation times for the
onset of crystallization and hence applies more to melt
quenched or primed10 amorphous phase-change media.

II. FUNDAMENTAL EQUATIONS

A. The reaction rate equation

The reaction rate for volume fraction conversion from
amorphous-to-crystalline phases will be described by the
Arrhenius relationship11

���x,t�
�t

= �1 − ��x,t��Ac exp� − Ec

kT�x,t�� , �1�

where the pre-exponential frequency term Ac and activation
energy for crystallization Ec are temperature independent, k
is Boltzmann’s constant, and T is absolute temperature. The
fraction ��x , t� is the microscale volume fraction of the crys-
talline phase. To minimize the complexity of the analysis, it
is assumed here that the reverse reaction rate from crystalline
to amorphous is negligible.

B. Heat balance equation

The microscale, one-dimensional heat balance equation
is

�o
�C���x,t��T�x,t�

�t
+ �o

�L���x,t��
�t

=
�

�x
�K���x,t��

�T�x,t�
�x

� , �2�

where C���x , t�� and K���x , t�� are the microscale, time de-
pendent values of the specific heats and thermal conductivi-
ties for the two phases and L���x , t�� is the latent heat for the
phase transition. The change in volume associated with the
phase transition is normally small12,13 �	6% for Ge2Sb2Te5�
and considered here as negligible to reduce the mathematical
complexity of the analysis. Hence the average density be-
tween the amorphous and crystalline phases �o is used in Eq.
�2�. Given a standard multisite model nucleation process,14 it
is possible to invoke local average properties where

C���x,t�� = Cc
��x,t�� + Ca
1 − ��x,t�� ,

K���x,t�� = Kc
��x,t�� + Ka
1 − ��x,t�� ,

and

L���x,t�� = Lc
��x,t�� ,

in which the isotropic specific heats Cc and Ca and the iso-
tropic thermal conductivities Kc and Ka of the crystalline and
amorphous phases, respectively, are considered to be tem-
perature independent. A similar assumption is made about
the isotropic latent heat of crystallization Lc. 
��x , t�� is the

macroscale average of the microscale crystalline volume
fraction ��x , t�. This description of the microscale averaged
thermal properties is legitimate providing that ����x , t� /�x�
� ��T�x , t� /�x�, i.e., the length scales of the macroscopic
quantities such as the temperature are substantially larger
than those of the local nucleites, which is usually the case in
data storage applications.

In terms of the averaged quantities, Eq. �2� after manipu-
lation becomes

�T�x,t�
�t

+
�Cc − Ca�

Ca

�
��x,t��T�x,t�
�t

+
Lc

Ca

�
��x,t��
�t

=
Ka

�oCa

�2T�x,t�
�x2 +

�Kc − Ka�
�oCa

�

�x
�
��x,t��

�T�x,t�
�x

� . �3�

For compactness the 
 � symbols will be dropped, and hence-
forth it is to be understood that the notation refers to macro-
scopic average values.

C. The heat source

Equation �3� does not contain explicit heat source terms,
and thus the heat energy for initiating the phase transition
enters via the initial conditions. This choice is made for tech-
nical reasons associated with correlation moment analysis
that will be used subsequently. Physically the present situa-
tion corresponds to a fast heating source with a delta func-
tion temporal profile having zero rise, fall times, and dura-
tion. This means that the amorphous-to-crystalline phase
transition will take place during cooling rather than heating.
Such an approach is of interest commercially as a route to
substantial increases in writing/erasing speeds15 and is ana-
lyzed further in the second stage of the analysis.6

D. Nondimensionalizing the heat balance and kinetic
equations

The independent variables x and t together with the de-
pendent variable T�x , t� can be rescaled to produce a normal-
ized equation system whose coefficients allow assessment of
the relative significance of the respective terms. The scaling
relationships used are x=xo�, t= to�, and T�x , t�−To

=To��� ,��, where xo and to are the size scales of the vari-
ables in the problem and To is the ambient temperature. The
volume fraction of the crystalline material � does not require
rescaling.

Substituting the rescaled variables and setting
Kato / �xo

2Ca�o�=1 results in a nondimensionalized form of the
heat balance equation where the linear terms have coeffi-
cients of unity and the nonlinear terms are scaled by �1

= �Cc−Ca� /Ca, �2=Lc / �CaTo�, and �3= �Kc−Ka� /Ka, respec-
tively, i.e., Eq. �3� becomes

����,��
��

+ �1
����,�����,��

��
+ ��1 + �2�

����,��
��

=
�2���,��

��2 + �3
�

��
����,��

����,��
��

� . �4�

Substituting the scaling relationships into the kinetics,
Eq. �1� results in the nondimensionalized form
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����,��
��

= �1 − ���,���	 exp − 


���,�� + 1
� , �5�

where 	= toAc and 
=Ec / �kTo�.
The nondimensionalized heat balance in Eq. �4� contains

both isotropic linear terms and anisotropic nonlinear contri-
butions. The degree of nonlinearity is determined by the
magnitudes of the factors �1→�3, which measure the extent
of the departure from isotropic behavior. In this sense the
heat flow is a perturbed linear system. In contrast the typi-
cally large values of the factor 
=Ec / �kTo� �due to the large
activation energy of materials used in data storage� in the
kinetic equation mean that under conditions where heat flow
is still very close to linear the kinetics can be strongly non-
linear.

Examining �2, the coefficient of the latent heat term
shows that it defines the ratio of the latent heat Lc to the
stored heat CaTo. Using the appropriate parameter values
found in literature for the materials of interest as listed in
Table I, the latent heat term coefficient �2	0.05. Thus if it is
useful to do so the latent heat term can be neglected, which is
typically the assumption made in the literature. However as
is shown in Eq. �4�, the latent heat coefficient �2 can be
conveniently grouped with the specific heat coefficient �1,
and hence there is no advantage in dropping the latent heat
contribution.

III. CORRELATION MOMENT ANALYSIS

This part of the analysis develops an estimate for the
time dependence of the measure of the crystalline phase
width during cooling from the initial condition but without
detailed kinetics using the correlation moment technique.5

The power of the method is that it generates these measures
directly from the defining equations without the need to ex-
plicitly solve them, and since, as in the present case, these
defining equations are often analytically intractable nonlinear
partial differential equations, this is a valuable attribute.

The autocorrelation function R��� can be used as a de-
scriptor for the spatial characteristics of quantities such as
the profiles of the temperature T and the fraction of the crys-
talline phase � in data recording studies. Four reasons why
R��� is attractive are as follows: �i� a given autocorrelation
function can characterize a broad class of spatial data pat-
terns with the resolution being associated with the various
moments of R���, �ii� the width of the main lobe of R��� can
be a sensitive measure of spatial resolution, and �iii� is
equally well defined for deterministic and stochastic situa-
tions. This third reason is particularly useful in the present
case that focuses on local mark properties. These have rela-
tively symmetrical pulselike spatial profiles, and the method
exploits the well-known characteristics of the autocorrelation
for such functions.23 Finally, �iv� correlation functions are
integral measures taken over the whole domain; conse-
quently it is possible to assess the relative contribution of
various terms even when they are locally very stiff �during
the fast kinetics regime the phase-change region is very simi-
lar to an internal boundary layer�. This is particularly useful
because in typical data storage materials the factor 

=Ec / �kTo� in the exponent of the rate equation can be sub-
stantial, leading to very large partial and temporal ��x , t�
derivatives over localized regions. The physical interpreta-
tion of this is the well-known phenomenon in data storage
work—that annealing can take place rapidly over narrow
regions.24 Such behavior is reminiscent of free boundary lay-
ers in fluid mechanics or flamelet structures in combustion
analysis and makes it very difficult to invoke global state-
ments about the relative significance of terms in, for ex-
ample, Eq. �4�. However because correlation moments are
integral metrics evaluated over the whole domain, thus
avoiding such local problems allows sensible assessments to
be made from the respective scale of terms. For deterministic
functions, correlation moments measure the distribution of
some quantity in an analogous sense to the moment of inertia
of a mass distribution. As with all such metrics this will be a
function of the spatial distribution of the quantity of interest.

The key quantity of interest in the correlation moment
analysis, for the case under investigation, is the time depen-
dent second moment � f1,f1,2�t� of the spatial autocorrelation
function Rf1,f1

�� , t� of the quantity f1�x , t�, where

� f1,f1,2�t� = �
−



�2Rf1,f1
��,t�d� . �6�

Similarly, moments can be defined for cross correlation func-
tions. For two functions f1�x , t� and f2�x , t�, which are both

TABLE I. List of thermal, kinetic, and structural parameters for Ge2Sb2Te5

available from literature and used throughout this work. �o is the average
density of the material, Tm and Tc are the melting and crystallization tem-
perature of the material, Lc is the latent heat of crystallization, C and K are
the specific heat and thermal conductivity of the material, respectively �sub-
script a, amorphous phase and subscript c, crystalline phase�, and � is the
thermal diffusivity of the amorphous phase. Ec is the activation energy for
crystallization, and Ac is the frequency term.

Symbol Value Units

�o 5995a kg /m3

Tm �5 K/min� 894b K
Tc �80 K/min� 446b K
Lc 3.9b,c kJ/kg
Ca 218d J / �kg K�
Cc 563e J / �kg K�
Ka �300 K� 0.23f,g W / �m K�
Kc �464 K� 0.3g,h W / �m K�
�=Ka / �roCa� 176�10−9 m2 /s
Ec 2.24i,j,k eV
Ac 1.5�1022 j s−1

aReference 12.
bReference 16.
cReference 17.
dDulong–Petit value for the molar heat capacity at constant pressure; i.e.,
C=3 Nk for nine atoms of Ge2Sb2Te5 also appeared in Refs. 1 and 2.
eReference 18.
fReference 19.
gReference 20.
hReference 21. This value is lower than the published value in Ref. 19 at
room temperature �0.53 W /m K� and reflects the thermal conductivity
value at elevated temperatures and near the transition point �metastable
state�, which is more relevant to this work.
iReference 3.
jReference 4.
kReference 22.
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�L2R, it is readily shown that the rth moment � f1,f2,r�t� is
given by5

� f1,f2,r�t� = �
−

 �
−



�� − ��rf1��,t�f2��,t�d�d� . �7�

Appropriately normalizing � f1,f1,2�t� produces a measure of
the mean square width �w

2 �t� of Rf1,f1
�� , t�. The simplest nor-

malizing quantity, which is appropriate for the length scales
of the order of individual marks in this work,5 is � f1,f1,0�t�;
and thus

�w
2 �t� = �� f1,f1,2�t�

� f1,f1,0�t�� . �8�

This is especially useful where the quantities of interest are
conserved for then � f1,f1,0�t� is time independent.

The definition of correlation used in correlation moment
analysis5 means that the quantities of interest such as ��x , t�
and T�x , t� must �L2R; hence they must have the property

�
−

 ���x,t��2

�T�x,t��2
dx � M , �9�

where M is a bounded positive real number. For positive
quantities such as ��x , t� and T�x , t�, this results in the addi-
tional requirement that

�
−

 ��x,t�
T�x,t�

dx � M , �10�

i.e., ��x , t� and T�x , t� are both �LR.
While this behavior is typically true for ��x , t� it is not

the case for T�x , t� because lim�x�→ T�x , t�→To, where To is
the ambient temperature. However the choice of �= �T
−To� /To was deliberately made to ensure that the normalized
temperature has the required characteristics that
lim���→ T�� ,��→0. Thus the variables in Eq. �4� have all
the attributes needed to legitimize the use of correlation mo-
ment analysis.

The first step is to transform Eq. �4� into an ordinary
differential equation in terms of ��,�,2��� with � as the inde-
pendent time variable. This entails the use of a premultiplier
of the form ���+� ,��+���−� ,��, where � is the spatial
correlation lag variable. By using this premultiplier together
with various properties of correlation moments5 it can be
shown that Eq. �4� transforms to

d��,�,r���
d�

+ �1d��+�,�,r���
d�

+
d��−�,�,r���

d�

− 4���,�,r−2��� + O���� + ��1 + �2�d��,�,r���
d�

+
d��,�,r���

d�
− 4��,�,r−2��� + O����

= 4��,�,r−2��� + �34��,����/���,r−1��� , �11�

where O��� denotes terms with coefficients that are order 1
or higher in �1, �2, or �3. Terms with coefficients of order
greater than 1 will be ignored in this first order analysis.

A. Time dependence of the width of the crystalline
fraction

The correlation moment that defines the width of the
crystalline phase at a given time is ��,�,2���. As previously
indicated the form of the kinetics equation makes this inac-
cessible directly; however, it is possible to obtain an upper
estimate for ��,�,2��� from the heat flow correlation moment
equation alone, without explicit inclusion of Eq. �5� as dis-
cussed next.

After application of the initial temperature profile, the
region over which the phase transition occurs is initially very
narrow. Then the crystalline fraction ��� ,�� is approximately
a unity amplitude Heaviside pulse function. Consequently
��� ,�� is initially a unity amplitude window function for
��� ,�� that follows the diffusive thermal spreading �when
this behavior ceases to be the case it will be shown that the
spreading of the crystalline region will be over on practical
time scales�. One effect of this is that the sequence of spatial
correlation functions R�,��� ,��, R��,��� ,��, R�,��� ,��, and
R��,��� ,�� exhibits similar general forms and has reducing
relative width. Given that the r=2 correlation moments for
this class of function are positive, then the r=2 correlation
moments and the magnitudes of the associated temporal de-
rivatives of R���� ,��, R�,��� ,��, and R��,��� ,�� will be
somewhat less than that of R�,��� ,��.

This result means that d��,�,r��� /d� can be used as an
upper estimator for all members of the sequence of positive
growth rates d���,�,r��� /d�, d��,�,r��� /d�, and of particular
relevance d��,�,r��� /d�. Similarly ��,�,r��� is an upper esti-
mator for ���,�,r��� and ��,�,r��� with ��,��/��,r���. Equally,
the function serves the same role for ��,��/��,r���.

Using these upper estimator quantities in Eq. �11� and
omitting second order terms in � produces the following re-
lationship for ��,�,2��� and hence the upper bound to
��,�,2��� as denoted by ��,�,2

upper���:

d��,�,2
upper���
d�

�1 + 2�1 + �2� � 4��,�,0����1 + 2�1 + �2 + �3� ,

�12�

where use has been made of the correlation moment
property5 ��,��/��,1���=��,�,0���.

Now Eq. �7� readily shows that ��,�,0���
=�−

 ��� ,��2d�, which is a conserved quantity and hence
��,�,0���=��,�,0�0�. Using the above results, Eq. �12� inte-
grates to

��,�,2
upper��� = 4����,�,0�0� + ��,�,2

upper�0� , �13�

where

� =
1 + 2�1 + �2 + �3

1 + 2�1 + �2
. �14�

Recalling from Eq. �8� that the correlation width measure for
a quantity f is defined as �w

2 ���= �� f ,f ,2��� /� f ,f ,0���� means
that an estimate is needed for ��,�,0

upper�0�. The choice for this
depends on the initial condition applying to ��� ,0�. In the
case considered here where the starting phase is amorphous,
i.e., ��� ,0�=0, the sensible value for ��,�,0

upper�0� is ��,�,0�0�,
which reflects the fact that the kinetics are typically fast, and
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so ��,�,0
upper�0� equilibrates with or follows the thermal initial

condition ��� ,0�. Hence when ��� ,0�=0, then dividing
Eq. �13� by ��,�,0�0� gives

��,�
upper��� = �4�� + ��,��0�2, �15�

where ��,�
upper��� is the normalized upper correlation length of

the crystalline fraction and ��,���� is the normalized corre-
lation length of the initial temperature profile. The actual
correlation lengths �as opposed to the normalized form�, de-
noted by d�,�

upper�t� and d�,��t�, are now obtained by substitut-
ing the scaling relationships from Sec. II D,

d�,�
upper�t� = �4��t + dT,T�0�2, �16�

where �=Ka / ��oCa� is the thermal diffusivity of the mate-
rial.

Examining Eq. �16� that describes the upper bound esti-
mator d�,�

upper�t� shows that up to a first order, the anisotropy in
thermal parameters is associated with the thermal diffusivity
of the medium through the ratio �= �1+2�1+�2+�3� / �1
+2�1+�2� irrespective of the shape of the initial temperature
profile. Simplifying this ratio by neglecting the latent heat
coefficient �2 due to its small value compared to the other
coefficients yields

� � 1 +
�3

1 + 2�1
. �17�

It is possible to apply sensitivity analysis on Eq. �17� to
determine the significance of the anisotropies in thermal con-
ductivity and specific heat on the overall thermal anisotropy
of the system. Perturbing any of the coefficients � by �� in
Eq. �17� produces ���+���, which upon expansion to first
order yields

��� + ��� � ���� +
d�

d�
�� . �18�

The second term on the right-hand side represents the change
in � due to variations in the coefficient �. Normalizing the
differential values of � and � of the second term by their
unperturbed values provides the sensitivity of � due to
changes in any of the coefficients �, denoted by S�

�, as

S�
� =

��

��

�

�
, �19�

where a zero sensitivity would indicate that changes in �
have no effect on �. Starting with the specific heat coeffi-
cient, �1, it can be shown that the sensitivity to this aniso-
tropy term using Eq. �19� changes as S�1

� =0→− 1
6 for all the

permissible values of �1 and �2 as they change from 0→1.
On the other hand, the sensitivity of � to changes in the
thermal conductivity coefficient, �3, according to Eq. �19�
has the values S�3

� =0→ 1
2 as �1 and �2 change from 0→1.

Thus the sensitivity due to anisotropy in thermal conductiv-
ity S�e

� is larger than the anisotropy in specific heat, which
means that changes in the thermal conductivity term �3 have
the dominant effect on � and hence on the thermal diffusion
process and length in the medium.

To proceed in the evaluation of the change in crystalli-
zation correlation length with time in Eq. �15� or �16�, an

initial temperature profile is needed. A typical thermal profile
written using a laser or a probe will have a monotonically
decreasing symmetric form that can be represented by a
Gaussian function, and hence this will be employed for the
initial temperature profile ��� ,0� with a length scale mea-
sure xo. This function has a width parameter � that describes
the width of this distribution at e−1/2 or 0.6 of its peak value.
This function is written in normalized form as

���,0� = �pe�−xo
2/2�2��2

, �20�

where �p= �Tp−To� /To, with Tp being the peak temperature.
The peak temperature represents the magnitude of the energy
density supplied by heat sources such as lasers or probes.
Substituting Eq. �20� into Eq. �7� allows the evaluation of
��,�,0�0� and ��,�,0�0�, which upon substitution into Eq. �8�
yields the correlation width for the initial Gaussian tempera-
ture profile

��,��0�2 =
2�2

xo
2 or dT,T�0�2 = 2�2. �21�

The evolution of d�,�
upper�t� with time can now be obtained by

substituting Eq. �21� into Eq. �16�. This is shown in Fig. 1 for
an initial temperature pulse width �=100 nm. The aniso-
tropy coefficients and the thermal diffusivity are computed
from the values in Table I. From the figure it can be seen that
for the Ge2Sb2Te5 parameters used in this work, the thermal
anisotropies lead to a slight increase in d�,�

upper�t� with time
compared with the isotropic case. Even with the large aniso-
tropy in thermal conductivity �when using Kc

=0.53 W /m K� this increase in d�,�
upper�t� is still modest. This

has significant practical importance as the majority of mod-
eling and simulation work on data storage applications em-
ploys the rather ad hoc assumption of isotropic thermal pa-
rameters. The above results indicate that such
approximations have a wider validity than might have been
expected. In particular they allow an isotropic kinetic
analysis,6 which brings in the dependence on parameters
such as the annealing activation energy.
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FIG. 1. Time evolution of the upper limit of the length of the crystallized
region with and without the thermal anisotropies calculated using Eq. �16�
and the material parameters for Ge2Sb2Te5 listed in Table I.
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B. Upper estimate of the time at which phase change
ceases

Reiterating, the upper bound estimator d�,�
upper�t� presented

here derives from the heat flow equation and does not con-
tain detailed information about the kinetics; i.e., Eq. �16�
must be stopped at some time �tc� when the phase-change
process becomes insignificant. This happens when the initial
temperature has fallen below the crystallization temperature
Tc and phase change has ceased.

By exploring the properties of correlation moments it is
possible to obtain an expression linking Tc and the correla-
tion width d�,��tc� to estimate the width of the final crystal-
lized region. The justification for the technique used relies on
two factors, �i� Because the autocorrelation functions are in-
tegral measures their shape is relatively insensitive to the
details of the temperature profile, and �ii� for conserved
quantities, such as ��� ,��, the autocorrelation moment
��,�,0��� can be shown to be time independent5 and scales as
�p�0�2��,��0�2, where �p�0� is the maximum temperature
of the initial temperature profile. The latter property indicates
that the autocorrelation moments for the temperature at times
�=0 and �=�c approximately scale as

�c
2��,���c�2

�p�0�2��,��0�2 � 1, �22�

with �c being the time at which �c occurs. Hence

��,���c� �
�p�0���,��0�

�c
. �23�

Substituting the values dT,T�0�=��2 for an initial Gaussian
profile with width �=100 nm Tc=446 K from Table I and
choosing Tp=850 K �above crystallization temperature Tc

and below the melting temperature Tm and suitable for high
crystallization rates6� yield d�,��tc�=533 nm. Moreover,
combining Eq. �23� with Eq. �15� it is possible to obtain an
expression for the time �c where phase change ceases as

�c =
��,�

2 �0�
4�

��p

�c
�2

− 1� . �24�

For the material values listed in Table I and the same peak
temperature, Eq. �24� yields a spreading cease time of tc

=350 ns. The calculated values of d�,��tc� and tc for
Ge2Sb2Te5 are shown in Fig. 1 as the dash-dot lines, and it is
interesting to note that the increase in thermal anisotropy
�due to the increase in Kc� reduces the crystallization spread-
ing time by approximately 70 ns, but at the same time in-
creases the size of the crystalline mark.

With the exception of the anisotropy factor � in the de-
nominator, it can be readily shown that Eq. �24� represents
the time taken for the peak temperature in the initial Gauss-
ian thermal profile to reduce to Tc and is thus a legitimate
upper estimator for when thermal spreading stops to define
the size of the crystalline mark. It can be observed that the
thermal anisotropy term � in the correlation length in Eq.
�16�, after introducing the dimensional parameters in Eq.
�24�, is associated with the thermal diffusivity of the mate-
rial. This suggests that the simpler isotropic heat diffusion
equation can be used in thermal analysis, and that the effects

of thermal anisotropies can be included by multiplying the
thermal diffusivity by the anisotropy term �. This proposal is
in need of further investigation.

IV. CONCLUSIONS

An analytical theory was presented in this work to iden-
tify the significance of thermal anisotropies on the
amorphous-to-crystalline phase transition process. Correla-
tion moment analysis produced a closed-form, time depen-
dent upper estimator for the correlation length of the crystal-
line mark during cooling. This correlation length was
mathematically in the form of a diffusion length with the
anisotropy term ��1 multiplied by the thermal diffusivity
of the phase-change medium. This result could imply that the
simpler isotropic thermal analysis can be extended to include
anisotropic effects by multiplying the thermal diffusivity by
the anisotropy factor. From published values of the thermal
parameters of the phase-change material Ge2Sb2Te5, it was
found that the contribution of the thermal anisotropy to the
heat diffusion process, and hence correlation length, is neg-
ligible. This outcome justifies ignoring anisotropies in analy-
sis of thermal writing and reading in phase-change media, an
assumption that is widely used. Sensitivity analysis on the
anisotropy term � revealed that anisotropy in the thermal
conductivity of the amorphous and crystalline phases has the
significant effect on the heat diffusion process in the mate-
rial, compared to the anisotropy in specific heat.

The correlation moment analysis was based on the heat
diffusion process alone, and as a result produced analytical
upper estimators of general nature for the correlation length
and the time of when thermal, and hence phase-change
spreading stops. The effect of the phase-change kinetics and
the implications of using a delta function initial temperature
profile are treated in detail elsewhere.
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