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Autocorrelation Analysis of Particle Magnetization
in Erased Particulate Media

M. M. Aziz, B. K. Middleton, and J. J. Miles

Abstract—General analytical expressions for the magnetization
power spectral densities of particulate media are derived by using
the three-dimensional autocorrelation function. Expressions in-
clude the effects of ac demagnetized media and any dc components
resulting from the presence of particle chains. The replay flux
power spectral density is then obtained, assuming a linear replay
transducer.

Index Terms—Autocorrelation, magnetization spectrum, noise,
particle chaining, particulate media.

I. INTRODUCTION

I N ORDER to predict accurately the measured output spec-
trum from a magnetic tape, it is important to model closely

the state of the particles inside the medium. Expressions for
the replay flux spectrum have been produced in the literature
by summing the replay flux powers of the individual particles,
each with their own random attributes, inside the volume of the
medium [1], [2], [3]. As a result, the derived expressions in-
cluded the contributions of the random aspects of the medium
in addition to the well-known head-to-medium replay losses.
Work has also been carried out to isolate the terms that are in-
trinsic to the medium from the general replay flux spectrum [4].
The common facet in these theories was that the particles were
assumed independent and to have negligible cross sections in
order to simplify the modeling process.

The main emphasis in this paper is on the particle mag-
netizations in the medium and their statistical behavior. The
statistical behavior of the particles is described analytically
using the three-dimensional (3-D) spatial autocorrelation
function from which the power spectral density can be obtained
using the Fourier transformation. For uncorrelated particles, a
plausible distribution for particle sizes will be adopted that will
produce analytical expressions for the medium spectrum at all
wavelengths of interest. Particle chaining will also modeled
analytically using the autocorrelation method and the effects
of correlations between particles on the medium spectrum
will be illustrated. Each vector component of the particle
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magnetization power spectral density is then used as the input
to the replay head, assumed to act as a linear filter, to predict
the output replay flux spectrum.

The analyses will concentrate mainly on a single line of par-
ticles taken in the direction of tape motion. Making this line
long enough allows the principle of ergodicity to be utilized to
make the ensemble averages over all the lines of particles in the
volume of the medium to be represented by the spatial average
of this single line.

In Section II of this paper, the basic fundamentals regarding
the definitions of the spatial autocorrelation function and the
statistical moments will be presented. This is followed by the
derivation of the autocorrelation function and, therefore, the
power spectral density of the particle magnetizations in an array
of randomly oriented and independent particles. The effects
of particle orientation and length distributions on the medium
power spectral density will then be demonstrated analytically.
Chaining will be modeled in the following section to explain
correlations between particles and the overall power spectral
density of the particulate medium is then derived.

In the following derivations, a number of simplifying assump-
tions are to be made; namely that particles are allowed orien-
tations only in the and directions. All the variables in the
system including particle lengths, widths, thicknesses and orien-
tations are taken to be independent and therefore uncorrelated.
Individual particles and chains are also assumed uncorrelated.
The only exception will be in the modeling of particle chaining
where the magnetization orientations of adjacent particles in a
single chain will be correlated.

II. DEFINITIONS

In the case of a real power signal,, the spatial 3-D autocor-
relation function can be written as

where , and are the displacements in the, and di-
rections. If is bounded in the and dimensions and if we are
only interested in the wavelength response in the-direction,
then the autocorrelation function becomes

(1)
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Since the autocorrelation function is even, the power spectral
density in the direction is given by the Fourier cosine trans-
form of the autocorrelation function [5],

(2)

where is the wavenumber andis the wavelength.
The discrete and continuous versions of the average of a func-

tion of a random variable are defined respectively as [5]

(3)

where is the probability density function of the random
variable .

The two random variablesand are said to be uncorrelated
if

and if either variable has a zero mean then the average of their
products is zero.

These definitions form the basis of all the derivations carried
out in this paper.

III. U NCORRELATEDPARTICLES

Particles are assumed to have a volume with length ,
width and thickness as shown in Fig. 1. Their orientations
vary in the - plane through an angle in the range to

.
Considering a line of particles of lengthin the -direction

containing randomly oriented particles as shown in Fig. 2,
then the magnetization along this line can be written as the con-
volution of an array of unit delta functions, defining the random
positions of the particles in thedirection, with the magnetiza-
tion of a single particle,

where defining the magnetization orientation inside
each particle and is a random variable defining the positions
of individual particles with the origin at the left-hand corner of
each particle.

Integration yields

Rewriting

(4)

where is a volume window function of unit magnitude
defining the boundaries of each individual particle with orienta-
tion . is the vector magnetization of individual particles
with longitudinal and vertical components
and respectively where is the saturation
magnetization of each particle and is the
orientation of the magnetization inside each particle.

Fig. 1. Geometry and orientation of a single particle.

Fig. 2. Line of uncorrelated particles.

Using the definition of (1), the particle magnetization auto-
correlation function for this line of particles is given by

(5)

where is the volume of the line of particles. Substitution of
(4) into (5) yields the magnetization autocorrelation function as

(6)

Assuming that the particles are uncorrelated and considering
the case of an ac erased medium where the net magnetization is
zero i.e., , the cross terms in (6) average to zero and the
autocorrelation function becomes

where it can be seen that the random variablehas been
dropped without loss of generality as the particles only correlate
with themselves. Interchanging the order of the summation and
integration and noting that leads to
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The volume integration is simply given by the area of the shaded
region shown in Fig. 3 multiplied by the particle thickness which
for a given particle orientation gives

(7)

The power spectral density of the line of particles is simply
the Fourier cosine transform of (7) as defined by (2). Before
evaluating the power spectral density, the particle correlation
length, , for a given particle orientation must first be deter-
mined.

This is given by the horizontal dashed line shown in Fig. 4
whose length was found to be

(8)

Substituting (7) into (2) and integrating along the limits defined
by (8) yields the uncorrelated particle magnetization power
spectral density for as

Noting that

where the curly overbar indicates spatial averaging along a
single line of particles, then the summation in the power spec-
tral density can be written as an average over all the particles
in the line

Assuming ergodicity (i.e., the long spatial average over the
particles in a single line is equal to the average of the same line
taken over all possible and equally probable, lines of particles in

Fig. 3. Calculation of the autocorrelation function of uncorrelated particles.

(a)

(b)

Fig. 4. Determination of the correlation length.

the volume of the medium under consideration) and noting that
gives

(9a)
and similarly for

(9b)
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where is the average volume of an individual particle and
is the volume packing fraction of the lines of particles.

The total power of the particle magnetizations, , is given
by the integral of the particle magnetization power spectral den-
sity over the whole range of wavelengths of interest. It is also
given by the value of the autocorrelation function with zero dis-
placement in the -direction ( ) [5]. According to (7), this
is given by

(10)

A. Particle Orientation

It will be assumed that is independent of the other
random variables in the system. For a uniform distribution
of particle orientations, it can be shown that for small values
of where , (9b) can be written to a
very good approximation as

Writing this in terms of the particle density, , where

(11)

B. Particle Size Distribution

In this section, the variations in particle lengths and widths
will be assumed to follow the scaled Gamma distribution which
for the random variable,, is written as (see the Appendix)

(12)

which has mean , standard deviation , and whose th mo-
ment, evaluated using (3), was found to be

(13)

where is the Gamma function. Fig. 5 shows the length dis-
tribution of 221 particles obtained from a metal powder sample
[6] and compares it with the scaled Gamma distribution of (12)
using the measured average particle length and standard devia-
tion. The good agreement between the measured and the calcu-
lated distributions justify the utilization of the Gamma distribu-
tion to model the variations in particle sizes.

In the following particle lengths, widths and thicknesses are
taken to be uncorrelated. For particles with small orientations
around the horizontal position, the power spectral density is
written from (11) as

(14)

Fig. 5. Experimental and theoretical particle length distributions with mean
118 nm, standard deviation 29 nm and axial ratio 7.4 [6].

where is the average particle width andis the average par-
ticle thickness.

The scaled Gamma distribution will be assumed to apply for
particle lengths as well as cross sections. For variations in par-
ticle lengths, the average in (14) was evaluated using (3) giving

(15)

where is the mean particle length and is the standard de-
viation of the particle length distribution. Substituting (15) into
(14) yields the particle magnetization power spectral density as

(16)

The longitudinal magnetization component of (16) is plotted
in Fig. 6 with emphasis on the particle length distribution ef-
fect (wavelength dependent term): this includes an increase of
the long wavelength components, a faster rolloff at short wave-
lengths and the disappearance of the null at wavelengths less
than or equal to the average particle length, with the increase in
particle length variation.

In the case where , it can be shown that (16) reduces
to

This is the solid line in Fig. 6. From (16), it can also be seen
that the magnetization spectrum is directly proportional to the
average particle width and thickness.
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Fig. 6. Effect of particle length distribution on the medium power spectrum.

IV. PARTICLE CHAINING

Consider a chain of length consisting of longitudinally
oriented and touching particles as shown in two dimensions in
Fig. 7.

Working out the spatial 3-D autocorrelation function of the
particle magnetizations in a single chain using the shift-mul-
tiply-integrate steps as illustrated in the figure yields

(17)

where subscripts and indicate a particle and its nearest
neighbor respectively andis a random variable, equal to 0 or
1, that allows for the variation of cross-sectional areas of adja-
cent particles. The first summation accounts for the individual
particles in a single chain while the second summation is for the
correlation between the adjacent particles in the chain.

Writing the summations as spatial averages in (17)

With equal probability of being 1 or 0 (i.e.,
), the average of the random variable,, is given by

and since on average and the autocor-
relation function of a single chain becomes

Considering now the line of particles of lengthbut with
independent chains, the autocorrelation function becomes

(18)

Since the chains are uncorrelated, the correlation length will
effectively be the length of a single chain, i.e.,

where is the average particle length in a single chain. Taking
the Fourier cosine transform of (18) along the chain length,
and assuming ergodicity, gives the magnetization power spectral
density of the chains in the line of particles as

Letting the total number of particles in the line be, such
that, , the power spectral density becomes

Adding the contribution of the remaining ( ) uncorre-
lated particles in this line of particles and writing in terms of the
particle density yields

If we write , i.e., the probability of
finding a chain in particles, then

(19)

where .
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Fig. 7. A chain of particles.

It can be seen from (19) that in the case where the
magnetization power spectral density reduces to the case of un-
correlated particles. Furthermore, when , i.e., no chains,
then the power spectral density is, again, that of an assembly of
uncorrelated particles as given by (14).

A. Magnetization Orientation Cross Correlation

In (19) . On the other hand, the cross-correlation term
in (19) can be written as

Evaluating the average by counting all the probabilities of the
magnetization orientations gives

where is the joint probability density of two adjacent particle
magnetization spins. By symmetry

Using Bayes’ rule [5], the joint probabilities can be written in
terms of conditional probabilities as

where is the probability of being 1 given that is 1
and is the probability of being 1 given that is .

Since 1 and can occur with equal probability

and

and so the cross-correlation term becomes

Writing

probability of a transition
between two adjacent particles

then

(20)

and substituting into (19) and simplifying yields the magnetiza-
tion power spectral density

(21)

B. Chain Length Distribution

If the chain lengths in (21) were allowed to take discrete
values between 1 and a maximum of, inclusive, with a uni-
form density function , then the averages in (21) can be
worked out analytically using (3).

Using the identities [10]

and:

and their appropriate derivatives with respect to, the averages
in (21) were found to be

(22a)
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(22b)

(22c)

(22d)

(22e)

Substituting the averages from (15) and (22) into (21), the ef-
fects of (chains percentage), (chain length) and (cor-
relation strength) on the magnetization spectrum can now be
investigated.

In Fig. 8, the particle magnetization power spectral density is
plotted for different values of for an average particle length
of 118 nm and standard deviation 29 nm. From the figure, it can
be seen that increasing the percentage of chains in the medium
enhances the magnetization spectrum at long wavelengths and
causes an attenuation of the spectrum at shorter wavelengths.

Increasing the chain length, on the other hand, leads to an en-
hancement of the spectrum that is more confined to long wave-
lengths with less attenuation at short wavelengths for the same
particle length and standard deviation as demonstrated in Fig. 9.

Reducing the correlation between the adjacent particle mag-
netization spins (increasing ) in each chain reduces the dc
content of the magnetization spectrum as shown in Fig. 10.
Since the particles in each chain are contiguous, reducing the
magnetization spin correlations also causes discontinuities in
the magnetization of each chain and, hence, ripples in the cal-
culated spectrum.

V. REPLAY FLUX POWER SPECTRAL DENSITY

If the replay process is assumed linear then the replay flux
power spectral density for a single line of particles is the product

Fig. 8. Effect of increasing the precentage of chains (F ) in the medium on the
magnetization power spectral density.

Fig. 9. Effect of the maximum chain length (C ) on the particle magnetization
power spectral density.

Fig. 10. Effect of reducing the particle correlations (increasingP —the
probability of switching the magnetization between two adjacent particles) on
the magnetization spectrum.
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of the particle magnetization power spectral density and the
squared magnitude of the replay head transfer function [5]

where is the Fourier transform of the head field function
or sensitivity function and contains the contributions of the lon-
gitudinal and vertical components. Adding the longitudinal and
vertical components of medium magnetization and head spectra

Since the two-dimensional head field components are a Hilbert
transform pair [3], the replay flux power spectral density be-
comes

(23)

where is the longitudinal field transform and can be
written in terms of the surface field transform (or gap loss
function), , times the exponential spacing loss factor as
[7]

Substituting into (23) yields the replay flux spectrum as

(24)
Including all the lines of particles across the track, and

through the thickness of the medium,(assuming that these di-
mensions are large compared to the particle cross section) yields

where is the replay head-to-medium separation. Assuming
that the track width is much larger than the average particle
thickness and integrating through the depth yields

If (magnetization orientation inside each particle) is allowed
to vary uniformly about the horizontal position, then it can be
shown that

and the flux power spectral density reduces to [3]

(25)

The replay voltage for an inductive head is simply the time
derivative of the replay flux. The voltage power spectral density,

, can then be obtained from (25) by multiplying by the
square of the head-to-medium velocity and the wavenumber,
i.e.,

(26)

VI. DISCUSSION

The autocorrelation method was used to model the statistical
behavior of an ac erased or a virgin particulate medium con-
taining individual, uncorrelated, particles and chains of parti-
cles with controlled interactions. Using this method allowed the
derivation of a general expression of the magnetization power
spectral density of a particulate medium taking into account the
particle size, orientation, and correlation between adjacent par-
ticles independently of the replay transducer. This expression,
equation (21), can also be used to represent the “background
noise” present in tape systems due to the particulate nature of
the recording medium.

By modeling the variance of particle sizes with the Gamma
distribution, it was possible to obtain an analytical expression
for the magnetization power spectral density of uncorrelated
particles for all wavelengths of interest as indicated in Fig. 6.
It is interesting to note that the derived expression and the cal-
culated spectra produced using this plausible distribution of par-
ticle sizes are in a similar form to those found in [4] (from simple
modeling of particle chaining) and [8] (by assuming correlations
between particle lengths and widths).

Equation (21) for the magnetization power spectral density of
the medium is controlled by three factors; namely(the per-
centage of chains), (the maximum chain length) and (the
probability of switching between two adjacent particles). By set-
ting in (21), for example, the spectrum reduces to that
of individual and uncorrelated particles. With , (21) pro-
duce the magnetization spectrum of a medium containing indi-
vidual and chains of strongly coupled, contiguous, particles with
uniform magnetization. Reducing the coupling between the par-
ticles is achieved with values of which produces mag-
netization spectrum with ripples. Experimental measurements
on an advanced helical scan tape system using high coercivity
metal particle tapes have been carried out and fittings to the de-
rived spectra have been produced. Good agreement with mea-
surements was obtained and the experimental measurements
and fittings will be reported in future publications.

VII. CONCLUSION

General expressions for the magnetization power spectral
densities that model the state of the particles in tape media and
predict the observed spectra were presented. In addition to pre-
dicting the behavior of an assembly of uncorrelated particles,
the effect of correlations between particles was also modeled
analytically. Correlations between particle magnetizations were
found to contribute an enhancement of the magnitude of the
medium spectrum at long wavelengths.
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APPENDIX

The Gamma distribution for the random variablewith pa-
rameters and is given by [9]

with mean , standard deviation and where

Solving the mean and standard deviation above forand
yields

and

Substituting back yields the scaled Gamma distribution

with mean and standard deviation.
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