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A theoretical approach to predicting the spatial extent of the amorphous to crystalline transition
region during the probe recording process on phase-change storage media is presented. The extent
of this transition region determines the ultimate achievable linear density for data storage using
phase-change materials. The approach has parallels with the slope theory used to find magnetic
transition lengths in magnetic recording, and shows that the amorphous to crystalline transition
length can be minimized by reducing the thickness of the phase-change layer, by minimizing lateral
heat flow, and by maximizing the ratio of the activation energy for crystallization to the transition
temperatureE./T,. © 2005 American Institute of PhysidDOI: 10.1063/1.1904156

I. INTRODUCTION followed by cooling will cause the material to revert back to
the original low-conductivity amorphous state.

In striving towards the achievement of higher areal stor-  The recording process in electrical probe storage is com-
age densities, storage technologies that involve microscopislex and involves transient electrical and thermal processes
probes are emerging. These probes are used to induce sens-induce the phase transformation. The kinetics of the crys-
permanent, nanoscale changes in storage media to record ttadlization and amorphization processes of the phase-change
binary data. One approach involved using highly conductivdayer also play an important role in determining the stability
tips, either in contactusing modified atomic force micro- and size of the recorded marks. Recently, a finite element
scope tips- > or in close proximity(using scanning tunneling computational model was used to successfully simulate the
microscope tipg**° to a phase-change medium to deliver arecord, readout, and erase processes in a phase-change struc-
current that, through Joule heating, induces stable amorphotigre in physical contact with a microscopic conductivetip.
or crystalline phase transformations to record informationThis dynamic electrothermal numerical model was used to
Using these techniques, it was shown that it is possible t@ptimize the thermal and electrical properties of the structure
record stable crystalline marks in an amorphous materigio achieve the required temperature distributions in the re-
with diameters less than 50 n?fﬁ.The amorphous regions cording Iayer. Through inclusion of classical models for
are characterized by low electrical conductivity, while thecrystallization, moreover, this model was able to predict the
crystalline or semimetal regions are characterized by higighape and size of the recorded marks throughout the depth of
electrical conductivity. Hence Ohm’s law can be relied uponthe phase-change layer. These were later used to predict the
in detecting this difference in conductivity as changes in the€adout signals. With the wealth of information they provide
sense current of the scanning tip when a constant potential &1d their detail, it is, however, difficult with numerical mod-
applied between the tip and the recording layer. els to examine quickly and simply the relationships and de-

Figure 1 shows a typical characteristic curve i||ustratingpendencies between the different parameters of the storage
the change in conductivity of an amorphous phase-chang%yStem as a whole, and to study their influence on recording
film with temperaturé,where the arrows indicate the heating
and cooling cycles. This figure shows that conductivity of the 10!
amorphous material increases gradually with temperature,
and switches irreversibly to a high conducting crystalline
state beyond a characteristic temperattrewhich will be
referred to here as the transition temperature. Cooling to
room temperature followed by heating beyond this transition
temperature, the material will maintain its high conducting
crystalline state with conductivity that is almost four orders
of magnitude greater than that of the amorphous phase. This 107 . . Loy . .
memory feature and the large difference in the electrical con- 250 300 350 400 450 500 550 600
ductivity of the two states make phase-change media attrac- Temperature (K)
tive for scanning probe and solid-state storage devices. HeattG. 1. Four-point-probe measurement of conductivity vs temperature of an

ing to temperatures below the transition temperatureéd0-nm GegSh,Tes film heated at a rate of 1.6 K/miisee Ref. & The dashed
line is for heating up to 270 °C at 1.2 K/min and cooling to room tempera-
ture. The transition temperatufig at 1.6 K/min is estimated to be 430 K
dElectronic mail: m.m.aziz@ex.ac.uk from the maximum of the slope of conductivity vs temperature.
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performance. Analytical models, although approximate, are

more attractive in this sense and offer expressions that can 10 do,dx==c,la
display these dependencies clearly and explicitly. 08} !
The aim of this work therefore is to provide a theoretical . 0" ‘|
treatment of the process of recording a crystalline mark in an 2 0T |
amorphous material, using an electrically conductive tip in ° oal
contact with a phase-change material, that combines the elec-
trothermal and kinetic processes involved using an analytical 02F |
slope-theory technique. This will be used to predict the ex- 0 ], )
tent of the amorphous to crystalline transition along the re- 0 05 1.0 L5 20 25 30
cording layer. The spatial extent of this transformation x/x,

boundary limits how closely marks can be written next to - g fial conductivity profile in the ph o
. . : . 2. € assumed exponential conductivity profile In the phase-change
each other, and hence determines the possible linear densr er (continous-ling and its slope(dashed ling Also shown is how the
of the storage system. transition length parameter is related to the extent of the amorphous to
Slope theory has its origins in magnetic recorditftas  crystalline transition region.
a way of modeling the complex magnetic recording process,

including the influences of the head-to-medium geometry ined | d reliably f o
and interface parameters and the bulk properties of the stop_etermme accuratgy and refiably: from mea_sure_ments,_ I
presents the location of the peak heat flow in differential

age medium, in a self-consistent approach. This theory harﬁ I sl uiff o i lori @14
been proven successful in underlining the factors that limit ermal analysis or di erentia scanning calorime .
periments. It can also be determined as the point of opti-

the spacing between magnetic bits and has been used | : istivit i t t
many researches to provide directions on how to increase t um %ope IN TESIStivity VErsus temperature measuremen

15,16 - o :
storage densities in hard disk drives and other magnetic stofHrves- I\./Ioreove'r, th.'s transition temperqture is strongly
age system%l. correlated with the kinetics of the crystallization process that

The premise of the slope theory lies in the determinatio"2Y be described by the Johnson—-Mehl-Avrami—Kolmogrov

. 2,13,17
of the spatial gradient of the transition region between adjag‘]M?L() equat_|o_nl. . ¢ thi dedi d
cent “bits” (amorphous and crystalline regions in phase- € remaining sections of this paper are dedicated to

change storage media; positively and negatively magnetize(ae”;"r?g TaCh term of fthe ﬁlore eqhuapohr(lr) to arrrl]ve atan
regions in magnetic storage media the storage layer. The analytical expression for the length of the amorphous to crys-

gradient is obtained by the solution of the slope equatior{a”'ne transition region in phfa\se—change media. Section Il
introduces the assumed functional form of the amorphous to

which, for the case of electrical writing into phase-change ) " . . .
: : crystalline transition. This is then used in Sec. Il in an elec-
media, can be written as : ; ; .
trothermal model involving Joule heating to determine the
doy _ dopdT temperature distribution and gradient in the phase-change
= -, (1) i i
Ix T ox layer. Section IV uses the JMAK theory to derive expres-

) o ] o sions for crystallization rates to be used in the slope theory,
where o, is the conductivity profile along th& direction,  ang Bruggeman's effective-medium approach to relate the
andT is the temperature in the phase-change layer. By asgaction of the transformed crystalline material to the con-
suming that the transition follows a particular functional gyctivity change in the phase-change layer. These are then
form with slope determined by a parameter, referred to as thgompined in the slope equation to arrive at an expression for
transition length parameter, the slope equation is solved ghe amorphous to crystalline transition length in Sec. V
one specific spatial location only for this parameter. The spaghere the requirements for small transition lengths, and
tial gradient of the temperatuad /9x in (1) is determined by  pence high linear storage densities, are outlined.
the electrical and thermal processes involved during the writ- 14 simplify the analyses, it is assumed in the following

ing process, and takes into account the geometry, dimeRnat the recording layer is thin and hence the temperature and

sions, and thermal and electrical properties of the systeMpjectrical conductivity have no gradients in the vertical di-
The termdo,/ JT, on the other hand, describes the temperaygction.

ture dependence of electrical conductivity and is determined

by the material properties and the kinetics of the crystalliza-

tion process. It also describes the relationship between the

fraction of crystalline material and the change in electrical

conductivity of the phase-change layer. Hence it represent$, TRANSITION PROFILE

the “hysteresis” characteristics of the phase-change material,

as illustrated by the conductivity versus temperature curve A prerequisite for the application of the slope theory is

shown in Fig. 1. the use of an analytical form for the transition region. In this
The specific location at which the slope equation iswork, the amorphous to crystalline transition will be as-

solved, referred to in this is work as the transition pOint, iSSumed to be described by the exponentia| functhn in
chosen to be the location of the transition temperature isofig. 2):

therm beyond which irreversible transformations in the ma-
terial take place. This temperature was chosen since it can be o, = oyexgd— (X—xp)/al, x=Xx,, (29
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- L2
op= 0.~ (0~ op)ex M], X < Xo, (2b) >
a(o.— oy
Tip

whereoy is the conductivity of the phase-change material at
the transition temperature, which occurs at locatigno, is 0 .
the conductivity of the crystalline phase, aamis a parameter

that is related to the spatial extent of the amorphous to crys-

Phase-change layer

Crystalline Amorphous 5p

-

talline transition and will be referred to here as the transition i Underlayer s
length parameter. In Eq2), it is implicit that the conductiv-
ity of the amorphous phase is negligible compared to that of Substrate

the crystalline phase.
The slope of the conductivity profile at the transition

position (X=x,) IS FIG. 3. Geometry of the tip/electrode and material structure used to develop
the electrothermal model of the recording system. Symmetry is assumed
about the center of the coordinate system which is located at the middle of

(9_0-9 = — Ot (3) the tip.
IX |yen, @
1 H,
It can be seen front3) that the length parameter deter- G= o ¢t 1+H 87k | (5)
mines the slope and hence the extext,/ o, of the transi- PP o/
t2|on region at the transition temperature, as illustrated in F'g\'Nherekp andk, are the thermal conductivities of the phase-

. . . . change layer and underlayer, respectivélyand é, are the

et e aton o e st i EKTESSe of Ine rase-change aver and Undeiayer, e

inp(2) reflects the large differeﬁce in elec%lrical conductivit spectively, Hy is the thermal-conduction coefficient at the

g . Y hottom of the underlayer, anid; is the thermal-conduction

between the two phases, and the inherent asymmetry of this__ .. .
S . . . coefficient at the top of the phase-change layer. These
distribution around the transition temperature. This function . -
L : thermal-conduction coefficients allow the study of the effects
also offers the advantage of yielding closed-form solutions to_, . e
. . . of different thermal boundary conditiorigsulated wherH
the heat conduction equation, thus maintaining the theory .
resented here analvtical. It is important to note that theﬂo and supercooled wheH — ) and different substrate
pres ..yt' al. LIS Imp materials on the temperature distribution in the recording
choice of the transition distribution does not alter the depen;,

" layer.
dence of the transition length on the fundamental parameters It is assumed here that the thermal conductivity of the

of the system. This was found in magnetic recording where hase-change layer is independent of temperature. This as-

the use (.)f different '?‘athemf"‘_“c?" fun(_:tlons to represent thgumption helps us ensure that the solutions are analytical, but
symmetrical magnetic transitiofincluding the arctangent, . . : :
is in any case not unreasonable from a physical standpoint.

tanh, and error functionsan the magnetic medium affected Publi :

. : ” e ublished experimental measurements of the thermal con-
only slightly the magnitude of the transition lengghithin ductivity of GeSh,Te. showed only a relatively small in-
20%) for the different transition function®® but not the de- y h % | e‘f’d vity f yl y
pendence on the material properties and head-to-medium ir(;l:_rease In thermay conductivity from low temperatures up to
terface parameters oom temperaturéwith values 0.24 and 0.53 W_/m K at room

' temperature for the amorphous and crystalline phases, re-
spectively and indicated phonon-dominated thermal
conductior’® Above room temperature it might be expected

IIl. TEMPERATURE GRADIENT that the electronic contribution could lead to significant fur-
) ther increases in thermal conductivity. However, the elec-
It can be shown that the steady-state, thickness-averaggfhnic contribution in GeSh,Te; forms a relatively small
temperature of a thin film of phase-change material in g5t of the overall thermal conductivity, as can be estimated
multilayer structure is given By via the Weidemann—Franz relationsHipising an activation-
type temperature dependence of electrical conductity.
Indeed, thermal-conductivity measurements of other amor-
: (4) : .
o phous chalcogenides showed little more than a few tens of
percent increase in thermal conductivity for temperatures
whereT, is the ambient temperatufequal to 293 K herg  ranging from ambient right up to the crystallization
and P is the power per unit volume generated in the phasetemperaturéf"sthe assumption of a constant thermal con-
change layer due to Joule heating and is definedPby ductivity over the temperature ranges of interest in this work
=0p|E|? whereE is the vector electric field developed in the is not therefore overly restrictive, and a value of 0.4 W/m K
phase-change layer. The coefficightincludes the thermal at the transition temperatuféying between the amorphous
properties and thicknesses of the storage medium structuend crystalline valugss used.
and has units of nf. Considering as an example the three- From the symmetry shown in Fig. 3 about the center of
layer geometry shown in Fig. 3, the coefficigatis® the coordinate system, the tip is modeled as a semi-infinite,

&ZT —
2 GT-To=

)

x~
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infinitely conducting rectangular block having a contactperature gradient in the phase-change layer at the transition
lengthL with the phase-change layer, and is biased at positemperature.

tive voltage V. The underlayer represents the bottom elec- When an amorphous to crystalline transition has been
trode and is modeled as an infinitely conducting sheet separeated, the temperature distribution in the phase-change
rated from the tip by constant gap that is equal to the layer, in the regionx|>L/2, is determined by evaluating the
thickness of the phase-change layiee., u=3,) and held at power density using the electrical conductivity profile de-
ground potential. Considering, for simplicity, only vertical fined in(2a and the electric field fron(6). Substituting this
current flow through the phase-change layer, a first-ordeinto the heat conduction equation (#4) and solving subject
Padé approximation of thg component of the electric field to the boundary conditions th@=T, at x=x,, andT=T, as

was found to b& x— o yield the temperature in the phase-change layer as
E, -LR2sxs<L/2 T-T,= & GO (T, - To) = S(%)] +S(x), x> L/2.
= d
Boy=e 4 ip, (®) (10

°d+2u(]x| - L/2)
The particular solutior®(x), written in terms of the exponen-

whereE,=V/u, d==wy(2u-y), andy is the distance from the tial integralEi, is given by

tip to the evaluation point in the phase-change layer with

<u. This E, field represents the source of Joule heating in P (2eXoL/2)/a _
the phase-change layer. SX) = === ae"¥e L2

Having provided the thermal and electrical models of the 8koUu™NG
system, the next step is to determine the required conditions (= a[d+2u(x-L/2)] N
for writing a crystalline mark in an amorphous material. This xE 2u +pe e’
involves determining the voltage that is required to heat the
phase-change layer to the transition temperature and cause ><Ei<’8[d+ 2u(x - L/Z)])} (11)
irreversible transformation in the material; this will be re- 2u '

ferred to as the threshold voltage for conducfidiWhenG - _

is large and the electrical conductivity in the phase-changavith a=\G+1/a, B=G-1/a, and PO:apEﬁ.

layer changes negligibly prior to the creation of an amor-  Differentiating (10) with respect tox and evaluating at
phous to crystalline transition, it can be shown tttmay  x=x, defined in(9) yield the temperature gradient at the

be approximated well by transition position:
-P T — dFG(T; - T,)
T-To=~ —. (7) al =—\VG(T,-T,) + ———%
° kG ax VBT~ To) 2u

X=X0

Large values of5 correspond to the situation where most of adF - adF

the heat generated in the phase-change layer is dissipated X 1+Eead”2u Ei(T) : (12)
vertically through the layer structure, such that the tempera-

ture distribution in this layer is determined mainly by the For values ofadF/2u>5, the term in curly brackets on the

square of the magnitude of the electric-field profile of theright-hand side of12) can be simplified using the approxi-
tip/electrode arrangement. Settifg=T; in (7) and solving tion 1-ne” Ei(—m) ~1/(2+ h ~5 vieldi
for the voltage in the regionl-/2<x=<L/2 where the tem- mation 1+ Ei(=7) (2+7), when 7 yielding,

perature is maximum yield the threshold voltage as

kKG(T.-T aT = dF
Vi=u kG- To) °), (8) x| =TVC(M =Ty ——
Ot Xl xex, e
o 1+a< +\G)

dF

where oy is the electrical conductivity at the transition loca-

tion. The location of the transition temperature isotherm at arpis can be further simplified by noting thaud/dF<1
given voltage may also be determined under these conditioqgading to the form:

by substituting the electric field in the regidxi>L/2 de-

fined in (6) into (7) and solving forx at T=T,. For different oT — 1

ratios of the threshold voltagé=V/V,, whereV is the ap- ol = VG(T = To) Tralol (13
plied voltage, the location of the transition temperature is o v

d Equation(13) represents the value of the temperature gradi-
Xo=2 Z_U(F -1, F=1, (9 ent at the transition temperature isotherm for applied volt-
ages that are equal to or greater than the threshold value. The
which indicates that at the threshold voltage whére/, the  absence of voltage terms (43) indicates that, for this par-
transition temperature isotherm is approximately in the closéicular structure, the temperature gradient at the transition
vicinity of the tip corners. The position of the transition tem- position has little sensitivity to applied voltages that are
perature isotherm if9) is used next to determine the tem- greater than the threshold value.
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IV. CRYSTALLIZATION KINETICS AND ELECTRICAL and steady-state stages with a nonconstant heating’rdte.

CONDUCTIVITY However, at small times after applying the heating source
and near the transition or crystallization temperature where
phous to crystalline boundary requires description of thdnterest is focused here, the temperature evolution is almost

change in the electrical conductivity with temperature. Ex-inéar with a constant heating réteand can thus be de-
perimentally, this is represented by conductivity versus temSCribed by(18) in this region. Moreover, using this linear

perature measurements such as that shown in Fig. 1. THPProximation allows comparison with ramped electrical
change in conductivity is associated with the change in cryséonductivity versus temperature measurements that are typi-

tallization fraction during the transformation process. To in-Cally used to study and characterize phase-change recording

clude the dependence of electrical conductivity on the crysmedia- o o _
Differentiating the JMAK equation ir§15) with respect

tallization fraction explicitly, the change in conductivity with ) o ) X ) .
temperature can be expressed in the form: to t|me.rea'llzmg thaK is also a function of time yields the
crystallization rate:

From the slope equation ifl), the extent of the amor-

P e o

X X _ nen-1 C
— =nK" 1+l —=t{(1-yx). 19
p { (RT2>}( X) (19)

where oy, is the conductivity of the amorphous/crystalline
mixture, andy is the volume fraction of crystalline material
in this mixture. Each of these gradients will next be deter-
mined at the transition temperature.

Expressing the time in terms of the crystallization fraction
using (15) produces

A. Crystallization kinetics 9X _ An(1 ‘X)<K + ¢E°[_ In(1 _X)]1/n> , (20)

it RT?

The crystallization kinetics of amorphous alloys can be
described using the Johnson—Mehl-Avrami-Kolmogorovyhere A=[~In(1 - )],
tion of time is given b will be analyzed next since an analytical expression for the

X =1 -exg- (K", (15)  crystallization rate at the transition temperature cannot be

) ) ) _ _ derived directly from(20). The small heat rate limit corre-

wheren is the Avrami exponent, is the time, anK is the  gponds to ramped annealing measurements that are used to
reaction-rate constant which can be described using thgngracterize phase-change mediar example, resistance

Arrhenius temperature dependence: measurements? and differential scanning calorimetfy,
-E, while the high heating rate regime simulates the situation of
K=K, ex , (16)  |aser recording in optical storage.

whereE, is the activation energy, is a frequency factor
(which is assumed to be temperature and time indepehden
T is the absolute temperature, aRds the Boltzmann con-
stant. For small heating rates and taking tH‘&C/RT2< 1, the

To include nonisothermal heating effects during crystal-second term ir{20) may be neglected and the rate of change
lization in the JMAK equation, it would be more convenient of the crystalline fraction becomes
to determine the change of crystallization fraction with tem-

tl. Small heating rates

perature from the relation: ax
—=AnK(1-x). (21)
ox _ oxoT an it
gt T at’

This reduced form of crystallization rate has the same form
where dy/at is the crystallization rate andT/dt=¢ is the  as a first-order reaction described by KissintfeFhis con-
heating rate. nection between the modified form of the JMAK and the

The crystallization rately/dt can be determined from Kissinger equations implies that, under the small heating rate
the JMAK equation but depends on the functional form ofrestriction, the JMAK equation may be used to model
temperature rise with time in the phase-change material. Inonisothermal reaction’$:*’ It also explains why the use of
this work the temperature is assumed, as a first-order apghe Kissinger method for determining the kinetic parameters
proximation, to increase linearly at a constant heating ¢ate of crystallization in phase-change media is appropriate in

T=T + thermal annealing experiments adopted by many

—lo ¢t! (18)

workers®15:16:29
where T, is the initial temperature and is taken here to be  The transition temperature is identified as the tempera-
equal to the ambient temperature. Simplified analytical modture of maximum crystallization rateat which #xlat?=0.
els and more detailed numerical simulations of laser heatinghus, differentiating21) with respect to time and assuming
in phase-change optical storage disks have indicated that thieat A does not change significantly near the maxiniim,
temperature rise in the phase-change layer involves transielgads to the following condition at the transition temperature:
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E 2RT,
¢ ¢ = ANK,, (22) -Inl-y)=1-—"=1. (29)
RT; nE
where the subscript denotes the values at the transition This indicates that the fraction of the crystalline material at
temperature withK, =K e &/R™, the transition temperature at very high heating rates is also

The fraction of crystalline material at the transition tem- ap_pro>_<imately _equal t0 0.63, 33@5)- Substituting this con-
perature, under the small heating rate restriction, may now beition in (28) yields the crystallization rate at the transition
found from integration of Eq(21) and application of condi- temperature as
tion (22) [the original JMAK equation cannot be used in this

, . . x| _ ¢nk
case since the above analysis are based on the modified form i T‘lf
of the crystallization rate in21)]. Equation(21) may be T €

integrated exactly and the solution involves the exponentiatne gradient of the fraction of the crystalline material trans-

integral. To avoid this, the approximation of Kissinger for a g med with temperature is therefore, usifig), given by
first-order reactioff can be used and the fraction of crystal-

(30)

lized material becomes x| _ nE
JT|; eRE’ 3D
n( )_AnRﬁK Xp(—EC>(l 2RT> 23 T
= PE; 0® RT E./ which has the same functional form and dependence as Eq.

- . iy (27) for small heating rates, except that the gradient of the
Substituting (22) into (23) at the transition temperature . nstormation with temperature at high heating rates is in-

yields creased by a factor af. Equation(31) can be used to rep-
2RT, resent an upper limit for this gradient and, as will be shown
—-In(l-x)=1- ~1, (24 ater, a lower limit for the transition length.

C

and the crystallization fraction at the transition temperatureB. Electrical conductivity of phase-change material

Xt Is approximately equal to The fraction of the crystalline material transformed as a

xt~1-1k=0.6321--. (25)  function of temperaturely/dT was determined in the pre-
) o ceding section. The change in the crystalline fraction with
Equation(24) also implies thaiy~1. temperature is also accompanied by a change in the electrical

The crystallization rate at the transition temperature canonqyctivity of the material. It is the change of conductivity
now be determined by substituting the conditi@2) and the ¢ the phase-change material with temperaturg/ JT that is

crystalline fraction in(25) into (21), required to be found to solve the slope equatiofiirfor the
ax SE, transition length.do,/dT can be determined usingl4)
| === (26)  where the termia,/ Jy links the change in conductivity with
dt|r eRT

crystalline fraction and will be determined next.

The change in the crystalline fraction with temperature, at _According to Bruggeman's symmetrical effective-
the transition temperature, simply follows for the linear tem-medium theory’ the conductivityo, of a mixture of two

perature rise and small heating rate as types of spherical inclusions, in this work crystalline material
with fraction y and an amorphous material with fracti¢h
2 = E ) 27) -X), is given by
aT |+ eR'Ii2 _ _
t 0c~0p Oa~ 0p _
. . o X +(1-x) =0, (32
The influence of the heating rate on the crystallization frac- o+ (m-1oay, gt (M= 1o,

tion enters implicitly in(27) through the transition tempera-

! . L ; whereo,. ando, are the electrical conductivities of the crys-
ture T,, and this dependence is clarified in the Appendix. ¢ é y

talline and amorphous phases, respectively,rard, 2, or 3
representing the dimensionality of the system. This theory
predicts a critical volume fraction or percolation threshold,
2. High heating rates X for the formation of filaments or conducting pathways of
. . i . the crystalline material for a three-dimensional system at
This limit approximates, for electrical probe recording, | 1,3 Numerical computations have shown, however, that
the case of an applied voltage step with a very short ris@," 5 ivryre of conducting and nonconducting materials,
time. _It can also represent the case of |s_othermal heatlngnly about 0.15-0.17 fraction of the conducting material is
experiments on phase-change media. In this case, the secORfajeq to create continuous conducting pathwys.

term in (20) dominates and the crystallization rate becomesAmongst the many reasons for this discrepancy, is the one
dx - ¢nk; based on the fact that spherical inclusions provide the least
st R (1 =X - x). (28)  surface area and must obviously occupy a more appreciable

fraction of the total volume before guaranteeing enough con-
At the maximum crystallization rate, the following condition tact for the existence of conducting filaments. Thus, non-
must be satisfied: spherical inclusiongfor example, ellipsoidswere suggested
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to provide contact more easily than spheres with the same 10¢ T T - ]
volume and thus achieving lower percolation threshdids. F — 5, =20nm [{
By including the effects of coupling b he conducti = 4= 40nm

y including the effects of coupling between the conducting — - & Zsom |

inclusions in the form of clusters or chains in £§2), it was
shown that it is possible to obtain a percolation threshold of
0.156 that is close to the expected value from numerical
calculations® Generally in these theories, changing the per-
colation threshold involves changing the coefficieniogfin

the denominator 0f32).

Based on these theories and observation made by other
workers, the effective-medium theory approach was general-
ized for any percolation threshold and extended to model
different material behaviors in a phenomenological approac
by McLachlanet al>*

Transition length, a (nm)

E(T,-T) /Rth

. . , tllIG. 4. Transition length as a function of the dimensionless rBtid,
This involved rewriting Bruggeman'’s -To)/RT? for different phase-change layer thicknesses. The parameters for

formula for a mixture of two inclusions in the form: the calculations aré,=20 nm,L=20 nm,u=4,, y=38,/2, k,=0.4 W/mK,
k,=50 W/m K, H;=0 W/m?K, Hp,=2X 108 W/m?K, x.=0.15, andr=1.
Ur _ Ak s _ 1Is The indicated numbers refer to the following phase-change matefials:
X g 0, (33)  GeSbTe;, (2) AginSbTe, and3) Ge;Sh Tes,

+(1- 2
1-x 0_;/3

¢ P =
0'(]:'” +D O_élr +D 0_'1)/5

V. TRANSITION LENGTH
wherer ands are exponents that control the extent of the
change in conductivity with crystallization fraction, am The extent of the amorphous to crystalline transition
=(1-xc)/ xc. Whenr=s=1 andy.=1/3,Bruggeman’s equa- along the phase-change layer can now be estimated using the
tion for a three-dimensional system is obtained. The form ok|ope-theory approach. This is achieved by substituting into
Eq. (33) is very useful to investigate the effect of different (1) the spatial slope of the electrical conductivity fra),
values of the percolation threshold on the transition lengththe spatial gradient of the temperature (©3), and the
and also to model cases where the observed electrical coghange of electrical conductivity with temperature described
ductivity “leads” the fraction of the crystallized material in jn (36), all evaluated at the transition temperature. Solving
conductivity measurements during amorphous to crystallingor the transition length parametaryields
transformatioft in a unified manner.

—
When the electrical conductivity of the crystalline mate- a= 1ING (37)

rial is much larger than that of the amorphous matsiiel, rTi—-To) [ Ec

o> 03), EQ. (33) can be solved for the conductivity of the Xi—Xe /\eRE -

mixture and reduces to
Equation(37) outlines the requirements for short transition
X- Xc)r =1 24 lengths and therefore the shortest possible distance between
1-x.)  *° X= 4 (34) two adjacent bits. Thg_first requirement is a small thermal
characteristic length M/G; this allows the temperature dis-

Differentiating (34) with respect toy and evaluating at the tribution in the phase-change layer to follow the electric field
transition temperature yields the change in electrical conduc@nd increases the temperature gradient at the transition tem-

0p= 0'C<

tivity with crystalline fraction as perature isotherm. This happens when the heat generated in
the phase-change layer dissipates vertically through the sand-
day ro, wiching layers rather than laterally along the phase-change
= : (35 Jayer itself. A small thermal characteristic length also de-
ax Xt~ X Y g
T=T, t c

mands a thin recording layer as indicated in Eg). The
other requirement for small transition lengths is to maximize
%he ratio of activation energy to transition temperatbg£T,.
This increases the crystallization rate leading to a sharper
'slope of the conductivity versus temperature characteristic at
the transition temperature. Increasing the heating rate also
reduces the transition length by multiplying the ratio of ac-
Sivation energy to transition temperature by the Avrami ex-
ponentn.
Figure 4 illustrates the calculated transition length using
(37) for the structure shown in Fig. 3, as a function of the

whereoy is the conductivity of the phase-change layer at th
transition temperature and can be determined fr(84)
when the fraction of the crystalline material at this tempera
ture is known.

The change in conductivity with temperature including
the dependence on crystallization fraction can now be d
rived, for the small heating rate case, by substitut@ig) and
(35) into (14) to yield

dop|  __of B (36)  dimensionless quantitfE,(T,~T,)/RT; for different thick-
T |t=r, (xi= X eRT nesses of the phase-change layer. This figure illustrates the

above requirements for small transition lengths. Also high-
The high heating rate case is given simply by multiplying thelighted in this figure are the transition lengths for three dif-
right-hand side of Eq(36) by n. ferent values of the rati&./ T, corresponding to three phase-
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10' T T T has been developed. This approach, inspired by the slope
. Underlayer/thermal insulator (1NG=13um)] theory used in magnetic recording, combined the electrother-
10’ E mal factors and the material properties in a self-consistent
i approach to predict the extent of an amorphous to crystalline
transition. This theory showed that smaller transition lengths
can be obtained when heat produced in the phase-change
layer due to Joule heating is made to flow vertically through
the adjacent layers such as to reduce the thermal wavelength
in the phase-change layer. Moreover, a material with higher
activation energy to transition temperature ratio and high
heating rates is needed to reduce the transition length.

—
-
-—
— = o
_— e e o o

Transition length, a (nm)

-—
[ —

—
-1 1 — 1

10 20 30 40 50
E(T -T)/RT
< t ) ¢

FIG. 5. Calculated transition lengths for different thermal boundary condi-APPENDIX

tions between the underlayer and substrate, simulating different substrate ~ At small heating rates, the condition {82) at the peak
materials. For underlayer/dielectrid,=2x 10° W/m?K, for underlayer/ At :

thermal conductoH,—, and for underlayer/thermal insulatét,— 0. crystallization rate can be rewritten as

Also shown are the calculated thermal characteristic length&€¥or each b - E;
boundary. The calculation parameters are the same as in Fig. 4 and using 5 = Fexp —/, (A1)
8,40 nm. : RT;

) ) ) .. where'=ARNK,/E; is a constant. Taking the natural loga-
change materials typically used in data storage applicationgji,m of the above yields the Kissinger formtalescribing

@) GeziPZTeS with Ec=2.240.11eV (Ref. 6 and Tv ;5 gyrajight-line relationship between the heating rate and re-
=428 K™ (2) AgJ?SbTe with E;=3.03+0.17 eV(Ref. 16 inrocal of the transition temperature whose SIOpEER:
and T,=453 K; and (3) GeSbhTe; with E;
=3.48+0.12 eV (Ref. 15 and T,=463 K1* The values ln(i) ST (5) (A2)
quoted for the transition temperatures were obtained from th RT,/
differential scanning calorimefri"/ at a heating rate of 5
K/min. It can be seen from the figure that the material wit
the highesE,/T, ratio, GgSh,Tes, is predicted by the slope- E.
theory approach to produce the smallest transition length. T= 2RW?2)’
Figure 5 illustrates the effect of different thermal bound- _ ) ) )
ary conditions, included in the thermal lengtn/@, on the ~ WhereW(2) is the LambertW function andz is defined by

transition length. A high thermal-conductivity substrate pro- 1 ,nAtEcKo
R

hSolving (A2) for the transition temperature yields

(A3)

vides a heat sink for the heat flux generated in the phase- z= > (A4)
change layer and makes the temperature distribution follow

closely the tip electric fieldshort thermal length This in-  The explicit dependence of the transition temperature on
creases the temperature gradient at the transition locatioheating rate is clearly shown i#3) and (A4).

thus reducing the transition length. A thermally insulated  Determination of the LambertV function in (A3) re-
substrate, on the other hand, forces the temperature distribguires the evaluation of an infinite series. Fortunately smce
tion in the phase-change layer to spread laterally, thus reduda (A4) is normally large, an asymptotic expansion of e

ing the temperature gradient at the transition location andunction accurate for=3 exists; the first three terms of this

increasing the transition length. expansion provide sufficient accuracy and are given by
For a 20-nm-thick phase-change layer, for example, a In[In(2)]
transition length parameter @&f=0.48 nm is predicted for W2 =In(2) - In[In(z2)]+ ————=, z=3. (A5)
Ge,Sh,Te; using the structure shown in Fig. 3. This corre- In(z)
sponds to a transition regicaw./o; around 4.8 nm(o./ oy Figure 6 compares the measured transition temperatures

~10 from Ref. 6. Applying a series of “on” and “off” volt-  fo; an 80-nm GeShy,Te, film using nonisothermal four-
ages to the phase-change lagreppresenting the binary states point-probe resistance measureméntsith the calculated
1 and 0 when the tip is moving in continuous contact with yajyes using(A3) at different heating rates. The transition
the material produces a sequence of amorphous to crystallifgmperatures in these experiments were determined from the
transitions. A reasonable estimate for the maximum achieVminimum in the resistivity versus temperature curves. The
able linear density in this case might be obtained by assumnermodynamic and kinetic parameters used in calculating
ing that transition centers are separated 2oy, thus  he transition temperatures were obtained, for the same ma-
avoiding excessive overlap between neighboring transitionsteriaL from isothermal measuremehtand are provided in
This would yield a linear storage density of around 2600¢he figure caption. The good agreement between the mea-
X 10° phase transitions per inch of the medium. sured and calculated values illustrates the potential of using
the JMAK equation, subject to the small heating rate restric-
VI. SUMMARY tion, to describing nonisothermal reactions. At high heating
A theoretical approach to predicting the linear density inrates, the theoretical transition temperature values in Fig. 6
contact electrical probe recording on phase-change mediaegin to deviate from the measured ones, as expected.
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