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A theoretical approach to predicting the spatial extent of the amorphous to crystalline transition
region during the probe recording process on phase-change storage media is presented. The extent
of this transition region determines the ultimate achievable linear density for data storage using
phase-change materials. The approach has parallels with the slope theory used to find magnetic
transition lengths in magnetic recording, and shows that the amorphous to crystalline transition
length can be minimized by reducing the thickness of the phase-change layer, by minimizing lateral
heat flow, and by maximizing the ratio of the activation energy for crystallization to the transition
temperatureEc/Tt. © 2005 American Institute of Physics. fDOI: 10.1063/1.1904156g

I. INTRODUCTION

In striving towards the achievement of higher areal stor-
age densities, storage technologies that involve microscopic
probes are emerging. These probes are used to induce semi-
permanent, nanoscale changes in storage media to record the
binary data. One approach involved using highly conductive
tips, either in contactsusing modified atomic force micro-
scope tipsd1–3 or in close proximitysusing scanning tunneling
microscope tipsd1,4,5 to a phase-change medium to deliver a
current that, through Joule heating, induces stable amorphous
or crystalline phase transformations to record information.
Using these techniques, it was shown that it is possible to
record stable crystalline marks in an amorphous material
with diameters less than 50 nm.3,5 The amorphous regions
are characterized by low electrical conductivity, while the
crystalline or semimetal regions are characterized by high
electrical conductivity. Hence Ohm’s law can be relied upon
in detecting this difference in conductivity as changes in the
sense current of the scanning tip when a constant potential is
applied between the tip and the recording layer.

Figure 1 shows a typical characteristic curve illustrating
the change in conductivity of an amorphous phase-change
film with temperature,6 where the arrows indicate the heating
and cooling cycles. This figure shows that conductivity of the
amorphous material increases gradually with temperature,
and switches irreversibly to a high conducting crystalline
state beyond a characteristic temperatureTt, which will be
referred to here as the transition temperature. Cooling to
room temperature followed by heating beyond this transition
temperature, the material will maintain its high conducting
crystalline state with conductivity that is almost four orders
of magnitude greater than that of the amorphous phase. This
memory feature and the large difference in the electrical con-
ductivity of the two states make phase-change media attrac-
tive for scanning probe and solid-state storage devices. Heat-
ing to temperatures below the transition temperature

followed by cooling will cause the material to revert back to
the original low-conductivity amorphous state.

The recording process in electrical probe storage is com-
plex and involves transient electrical and thermal processes
to induce the phase transformation. The kinetics of the crys-
tallization and amorphization processes of the phase-change
layer also play an important role in determining the stability
and size of the recorded marks. Recently, a finite element
computational model was used to successfully simulate the
record, readout, and erase processes in a phase-change struc-
ture in physical contact with a microscopic conductive tip.7,8

This dynamic electrothermal numerical model was used to
optimize the thermal and electrical properties of the structure
to achieve the required temperature distributions in the re-
cording layer. Through inclusion of classical models for
crystallization, moreover, this model was able to predict the
shape and size of the recorded marks throughout the depth of
the phase-change layer. These were later used to predict the
readout signals. With the wealth of information they provide
and their detail, it is, however, difficult with numerical mod-
els to examine quickly and simply the relationships and de-
pendencies between the different parameters of the storage
system as a whole, and to study their influence on recording
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FIG. 1. Four-point-probe measurement of conductivity vs temperature of an
80-nm Ge2Sb2Te5 film heated at a rate of 1.6 K/minssee Ref. 6d. The dashed
line is for heating up to 270 °C at 1.2 K/min and cooling to room tempera-
ture. The transition temperatureTt at 1.6 K/min is estimated to be 430 K
from the maximum of the slope of conductivity vs temperature.
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performance. Analytical models, although approximate, are
more attractive in this sense and offer expressions that can
display these dependencies clearly and explicitly.

The aim of this work therefore is to provide a theoretical
treatment of the process of recording a crystalline mark in an
amorphous material, using an electrically conductive tip in
contact with a phase-change material, that combines the elec-
trothermal and kinetic processes involved using an analytical
slope-theory technique. This will be used to predict the ex-
tent of the amorphous to crystalline transition along the re-
cording layer. The spatial extent of this transformation
boundary limits how closely marks can be written next to
each other, and hence determines the possible linear density
of the storage system.

Slope theory has its origins in magnetic recording9,10 as
a way of modeling the complex magnetic recording process,
including the influences of the head-to-medium geometry
and interface parameters and the bulk properties of the stor-
age medium, in a self-consistent approach. This theory has
been proven successful in underlining the factors that limit
the spacing between magnetic bits and has been used by
many researches to provide directions on how to increase the
storage densities in hard disk drives and other magnetic stor-
age systems.11

The premise of the slope theory lies in the determination
of the spatial gradient of the transition region between adja-
cent “bits” samorphous and crystalline regions in phase-
change storage media; positively and negatively magnetized
regions in magnetic storage mediad in the storage layer. The
gradient is obtained by the solution of the slope equation
which, for the case of electrical writing into phase-change
media, can be written as

]sp

]x
=

]sp

]T

]T

]x
, s1d

where sp is the conductivity profile along thex direction,
and T is the temperature in the phase-change layer. By as-
suming that the transition follows a particular functional
form with slope determined by a parameter, referred to as the
transition length parameter, the slope equation is solved at
one specific spatial location only for this parameter. The spa-
tial gradient of the temperature]T/]x in s1d is determined by
the electrical and thermal processes involved during the writ-
ing process, and takes into account the geometry, dimen-
sions, and thermal and electrical properties of the system.
The term]sp/]T, on the other hand, describes the tempera-
ture dependence of electrical conductivity and is determined
by the material properties and the kinetics of the crystalliza-
tion process. It also describes the relationship between the
fraction of crystalline material and the change in electrical
conductivity of the phase-change layer. Hence it represents
the “hysteresis” characteristics of the phase-change material,
as illustrated by the conductivity versus temperature curve
shown in Fig. 1.

The specific location at which the slope equation is
solved, referred to in this is work as the transition point, is
chosen to be the location of the transition temperature iso-
therm beyond which irreversible transformations in the ma-
terial take place. This temperature was chosen since it can be

determined accurately and reliably from measurements; it
represents the location of the peak heat flow in differential
thermal analysis12 or differential scanning calorimetry13,14

experiments. It can also be determined as the point of opti-
mum slope in resistivity versus temperature measurement
curves.6,15,16Moreover, this transition temperature is strongly
correlated with the kinetics of the crystallization process that
may be described by the Johnson–Mehl–Avrami–Kolmogrov
sJMAKd equation.12,13,17

The remaining sections of this paper are dedicated to
deriving each term of the slope equation ins1d to arrive at an
analytical expression for the length of the amorphous to crys-
talline transition region in phase-change media. Section II
introduces the assumed functional form of the amorphous to
crystalline transition. This is then used in Sec. III in an elec-
trothermal model involving Joule heating to determine the
temperature distribution and gradient in the phase-change
layer. Section IV uses the JMAK theory to derive expres-
sions for crystallization rates to be used in the slope theory,
and Bruggeman’s effective-medium approach to relate the
fraction of the transformed crystalline material to the con-
ductivity change in the phase-change layer. These are then
combined in the slope equation to arrive at an expression for
the amorphous to crystalline transition length in Sec. V
where the requirements for small transition lengths, and
hence high linear storage densities, are outlined.

To simplify the analyses, it is assumed in the following
that the recording layer is thin and hence the temperature and
electrical conductivity have no gradients in the vertical di-
rection.

II. TRANSITION PROFILE

A prerequisite for the application of the slope theory is
the use of an analytical form for the transition region. In this
work, the amorphous to crystalline transition will be as-
sumed to be described by the exponential functionsshown in
Fig. 2d:

sp = st expf− sx − xod/ag, x ù xo, s2ad

FIG. 2. The assumed exponential conductivity profile in the phase-change
layer scontinous-lined and its slopesdashed lined. Also shown is how the
transition length parametera is related to the extent of the amorphous to
crystalline transition region.
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sp = sc − ssc − stdexpF stsx − xod
assc − std

G, x , xo, s2bd

wherest is the conductivity of the phase-change material at
the transition temperature, which occurs at locationxo, sc is
the conductivity of the crystalline phase, anda is a parameter
that is related to the spatial extent of the amorphous to crys-
talline transition and will be referred to here as the transition
length parameter. In Eq.s2d, it is implicit that the conductiv-
ity of the amorphous phase is negligible compared to that of
the crystalline phase.

The slope of the conductivity profile at the transition
position sx=xod is

U ]sp

]x
U

x=xo

=
− st

a
. s3d

It can be seen froms3d that the length parametera deter-
mines the slope and hence the extent,asc/st, of the transi-
tion region at the transition temperature, as illustrated in Fig.
2.

The choice of the exponential function to describe the
spatial distribution of the amorphous to crystalline transition
in s2d reflects the large difference in electrical conductivity
between the two phases, and the inherent asymmetry of this
distribution around the transition temperature. This function
also offers the advantage of yielding closed-form solutions to
the heat conduction equation, thus maintaining the theory
presented here analytical. It is important to note that the
choice of the transition distribution does not alter the depen-
dence of the transition length on the fundamental parameters
of the system. This was found in magnetic recording where
the use of different mathematical functions to represent the
symmetrical magnetic transitionsincluding the arctangent,
tanh, and error functionsd in the magnetic medium affected
only slightly the magnitude of the transition lengthswithin
20%d for the different transition functions,18 but not the de-
pendence on the material properties and head-to-medium in-
terface parameters.

III. TEMPERATURE GRADIENT

It can be shown that the steady-state, thickness-averaged
temperature of a thin film of phase-change material in a
multilayer structure is given by19

]2T

]x2 − GsT − Tod =
− P

kp
, s4d

whereTo is the ambient temperaturesequal to 293 K hered,
and P is the power per unit volume generated in the phase-
change layer due to Joule heating and is defined byP
=spuEu2 whereE is the vector electric field developed in the
phase-change layer. The coefficientG includes the thermal
properties and thicknesses of the storage medium structure
and has units of m−2. Considering as an example the three-
layer geometry shown in Fig. 3, the coefficientG is19

G =
1

kpdp
FHt +

Hb

1 + Hbsdu/kudG , s5d

wherekp andku are the thermal conductivities of the phase-
change layer and underlayer, respectively,dp anddu are the
thicknesses of the phase-change layer and underlayer, re-
spectively,Hb is the thermal-conduction coefficient at the
bottom of the underlayer, andHt is the thermal-conduction
coefficient at the top of the phase-change layer. These
thermal-conduction coefficients allow the study of the effects
of different thermal boundary conditionssinsulated whenH
→0 and supercooled whenH→`d and different substrate
materials on the temperature distribution in the recording
layer.

It is assumed here that the thermal conductivity of the
phase-change layer is independent of temperature. This as-
sumption helps us ensure that the solutions are analytical, but
is in any case not unreasonable from a physical standpoint.
Published experimental measurements of the thermal con-
ductivity of Ge2Sb2Te5 showed only a relatively small in-
crease in thermal conductivity from low temperatures up to
room temperatureswith values 0.24 and 0.53 W/m K at room
temperature for the amorphous and crystalline phases, re-
spectivelyd and indicated phonon-dominated thermal
conduction.20 Above room temperature it might be expected
that the electronic contribution could lead to significant fur-
ther increases in thermal conductivity. However, the elec-
tronic contribution in Ge2Sb2Te5 forms a relatively small
part of the overall thermal conductivity, as can be estimated
via the Weidemann–Franz relationship21 using an activation-
type temperature dependence of electrical conductivity.22,23

Indeed, thermal-conductivity measurements of other amor-
phous chalcogenides showed little more than a few tens of
percent increase in thermal conductivity for temperatures
ranging from ambient right up to the crystallization
temperature.24,25 The assumption of a constant thermal con-
ductivity over the temperature ranges of interest in this work
is not therefore overly restrictive, and a value of 0.4 W/m K
at the transition temperatureslying between the amorphous
and crystalline valuesd is used.

From the symmetry shown in Fig. 3 about the center of
the coordinate system, the tip is modeled as a semi-infinite,

FIG. 3. Geometry of the tip/electrode and material structure used to develop
the electrothermal model of the recording system. Symmetry is assumed
about the center of the coordinate system which is located at the middle of
the tip.
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infinitely conducting rectangular block having a contact
lengthL with the phase-change layer, and is biased at posi-
tive voltage +V. The underlayer represents the bottom elec-
trode and is modeled as an infinitely conducting sheet sepa-
rated from the tip by constant gapu that is equal to the
thickness of the phase-change layersi.e., u=dpd and held at
ground potential. Considering, for simplicity, only vertical
current flow through the phase-change layer, a first-order
Padé approximation of they component of the electric field
was found to be19

Eysx,yd = 5Eo − L/2 ø x ø L/2

Eo
d

d + 2usuxu − L/2d
uxu . L/2,

s6d

whereEo=V/u, d=pys2u−yd, andy is the distance from the
tip to the evaluation point in the phase-change layer withy
,u. This Ey field represents the source of Joule heating in
the phase-change layer.

Having provided the thermal and electrical models of the
system, the next step is to determine the required conditions
for writing a crystalline mark in an amorphous material. This
involves determining the voltage that is required to heat the
phase-change layer to the transition temperature and cause
irreversible transformation in the material; this will be re-
ferred to as the threshold voltage for conduction.2,3 WhenG
is large and the electrical conductivity in the phase-change
layer changes negligibly prior to the creation of an amor-
phous to crystalline transition, it can be shown thats4d may
be approximated well by

T − To <
− P

kpG
. s7d

Large values ofG correspond to the situation where most of
the heat generated in the phase-change layer is dissipated
vertically through the layer structure, such that the tempera-
ture distribution in this layer is determined mainly by the
square of the magnitude of the electric-field profile of the
tip/electrode arrangement. SettingT=Tt in s7d and solving
for the voltage in the region −L /2øxøL /2 where the tem-
perature is maximum yield the threshold voltage as

Vt = uÎkpGsTt − Tod
st

, s8d

wherest is the electrical conductivity at the transition loca-
tion. The location of the transition temperature isotherm at a
given voltage may also be determined under these conditions
by substituting the electric field in the regionuxu.L /2 de-
fined in s6d into s7d and solving forx at T=Tt. For different
ratios of the threshold voltageF=V/Vt, whereV is the ap-
plied voltage, the location of the transition temperature is

xo =
L

2
+

d

2u
sF − 1d, F ù 1, s9d

which indicates that at the threshold voltage whereV=Vt the
transition temperature isotherm is approximately in the close
vicinity of the tip corners. The position of the transition tem-
perature isotherm ins9d is used next to determine the tem-

perature gradient in the phase-change layer at the transition
temperature.

When an amorphous to crystalline transition has been
created, the temperature distribution in the phase-change
layer, in the regionuxu.L /2, is determined by evaluating the
power density using the electrical conductivity profile de-
fined in s2ad and the electric field froms6d. Substituting this
into the heat conduction equation ins4d and solving subject
to the boundary conditions thatT=Tt at x=xo, andT=To as
x→` yield the temperature in the phase-change layer as

T − To = e−ÎGsx−xodfsTt − Tod − Ssxodg + Ssxd, x . L/2.

s10d

The particular solutionSsxd, written in terms of the exponen-
tial integralEi, is given by

Ssxd =
Pod

2esxo−L/2d/a

8kpu
2ÎG

Haead/2ueÎGsx−L/2d

3EiS− afd + 2usx − L/2dg
2u

D + be−bd/2ue−ÎGsx−L/2d

3EiSbfd + 2usx − L/2dg
2u

DJ , s11d

with a=ÎG+1/a, b=ÎG−1/a, andPo=spEo
2.

Differentiating s10d with respect tox and evaluating at
x=xo defined in s9d yield the temperature gradient at the
transition position:

U ]T

]x
U

x=xo

= − ÎGsTt − Tod +
dFGsTt − Tod

2u

3H1 +
adF

2u
eadF/2u EiS− adF

2u
DJ . s12d

For values ofadF/2u.5, the term in curly brackets on the
right-hand side ofs12d can be simplified using the approxi-
mation 1+heh Eis−hd<1/s2+hd, whenh.5 yielding,

U ]T

]x
U

x=xo

= − ÎGsTt − Tod5 1 + a
4u

dF

1 + aS 4u

dF
+ ÎGD6 .

This can be further simplified by noting that 4ua/dF,1
leading to the form:

U ]T

]x
U

x=xo

< − ÎGsTt − TodH 1

1 + aÎG
J . s13d

Equations13d represents the value of the temperature gradi-
ent at the transition temperature isotherm for applied volt-
ages that are equal to or greater than the threshold value. The
absence of voltage terms ins13d indicates that, for this par-
ticular structure, the temperature gradient at the transition
position has little sensitivity to applied voltages that are
greater than the threshold value.

103537-4 M. M. Aziz and C. D. Wright J. Appl. Phys. 97, 103537 ~2005!

Downloaded 19 Dec 2008 to 144.173.6.22. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



IV. CRYSTALLIZATION KINETICS AND ELECTRICAL
CONDUCTIVITY

From the slope equation ins1d, the extent of the amor-
phous to crystalline boundary requires description of the
change in the electrical conductivity with temperature. Ex-
perimentally, this is represented by conductivity versus tem-
perature measurements such as that shown in Fig. 1. The
change in conductivity is associated with the change in crys-
tallization fraction during the transformation process. To in-
clude the dependence of electrical conductivity on the crys-
tallization fraction explicitly, the change in conductivity with
temperature can be expressed in the form:

]sp

]T
=

]sp

]x

]x

]T
, s14d

where sp is the conductivity of the amorphous/crystalline
mixture, andx is the volume fraction of crystalline material
in this mixture. Each of these gradients will next be deter-
mined at the transition temperature.

A. Crystallization kinetics

The crystallization kinetics of amorphous alloys can be
described using the Johnson–Mehl–Avrami–Kolmogorov
sJMAKd model where the crystallization fraction as a func-
tion of time is given by26

xstd = 1 − expf− sKtdng, s15d

wheren is the Avrami exponent,t is the time, andK is the
reaction-rate constant which can be described using the
Arrhenius temperature dependence:

K = Ko expS− Ec

RT
D , s16d

whereEc is the activation energy,Ko is a frequency factor
swhich is assumed to be temperature and time independentd,
T is the absolute temperature, andR is the Boltzmann con-
stant.

To include nonisothermal heating effects during crystal-
lization in the JMAK equation, it would be more convenient
to determine the change of crystallization fraction with tem-
perature from the relation:

]x

]t
=

]x

]T

]T

]t
, s17d

where ]x /]t is the crystallization rate and]T/]t=f is the
heating rate.

The crystallization rate]x /]t can be determined from
the JMAK equation but depends on the functional form of
temperature rise with time in the phase-change material. In
this work the temperature is assumed, as a first-order ap-
proximation, to increase linearly at a constant heating ratef.

T = To + ft, s18d

whereTo is the initial temperature and is taken here to be
equal to the ambient temperature. Simplified analytical mod-
els and more detailed numerical simulations of laser heating
in phase-change optical storage disks have indicated that the
temperature rise in the phase-change layer involves transient

and steady-state stages with a nonconstant heating rate.27,28

However, at small times after applying the heating source
and near the transition or crystallization temperature where
interest is focused here, the temperature evolution is almost
linear with a constant heating rate27 and can thus be de-
scribed bys18d in this region. Moreover, using this linear
approximation allows comparison with ramped electrical
conductivity versus temperature measurements that are typi-
cally used to study and characterize phase-change recording
media.

Differentiating the JMAK equation ins15d with respect
to time realizing thatK is also a function of time yields the
crystallization rate:

]x

]t
= nKntn−1F1 +SfEc

RT2DtGs1 − xd. s19d

Expressing the timet in terms of the crystallization fraction
using s15d produces

]x

]t
= Ans1 − xdSK +

fEc

RT2 f− lns1 − xdg1/nD , s20d

whereA=f−lns1−xdgsn−1d/n.
The two limiting cases of small and high heating rates

will be analyzed next since an analytical expression for the
crystallization rate at the transition temperature cannot be
derived directly froms20d. The small heat rate limit corre-
sponds to ramped annealing measurements that are used to
characterize phase-change mediasfor example, resistance
measurements,6,29 and differential scanning calorimetry14d,
while the high heating rate regime simulates the situation of
laser recording in optical storage.

1. Small heating rates

For small heating rates and taking that13 Ec/RT2,1, the
second term ins20d may be neglected and the rate of change
of the crystalline fraction becomes

]x

]t
= AnKs1 − xd. s21d

This reduced form of crystallization rate has the same form
as a first-order reaction described by Kissinger.12 This con-
nection between the modified form of the JMAK and the
Kissinger equations implies that, under the small heating rate
restriction, the JMAK equation may be used to model
nonisothermal reactions.13,17 It also explains why the use of
the Kissinger method for determining the kinetic parameters
of crystallization in phase-change media is appropriate in
thermal annealing experiments adopted by many
workers.6,15,16,29

The transition temperature is identified as the tempera-
ture of maximum crystallization rate12 at which ]2x /]t2=0.
Thus, differentiatings21d with respect to time and assuming
that A does not change significantly near the maximum,13

leads to the following condition at the transition temperature:
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fEc

RTt
2 = AtnKt, s22d

where the subscriptt denotes the values at the transition
temperature withKt=Koe

−Ec/RTt.
The fraction of crystalline material at the transition tem-

perature, under the small heating rate restriction, may now be
found from integration of Eq.s21d and application of condi-
tion s22d fthe original JMAK equation cannot be used in this
case since the above analysis are based on the modified form
of the crystallization rate ins21dg. Equation s21d may be
integrated exactly and the solution involves the exponential
integral. To avoid this, the approximation of Kissinger for a
first-order reaction12 can be used and the fraction of crystal-
lized material becomes

− lns1 − xd =
AnRT2

fEc
Ko expS− Ec

RT
DS1 −

2RT

Ec
D . s23d

Substituting s22d into s23d at the transition temperature
yields

− lns1 − xtd = 1 −
2RTt

Ec
< 1, s24d

and the crystallization fraction at the transition temperature
xt is approximately equal to

xt < 1 − 1/e= 0.6321̄ . s25d

Equations24d also implies thatAt<1.
The crystallization rate at the transition temperature can

now be determined by substituting the conditions22d and the
crystalline fraction ins25d into s21d,

U ]x

]t
U

Tt

=
fEc

eRTt
2 . s26d

The change in the crystalline fraction with temperature, at
the transition temperature, simply follows for the linear tem-
perature rise and small heating rate as

U ]x

]T
U

Tt

=
Ec

eRTt
2 . s27d

The influence of the heating rate on the crystallization frac-
tion enters implicitly ins27d through the transition tempera-
ture Tt, and this dependence is clarified in the Appendix.

2. High heating rates

This limit approximates, for electrical probe recording,
the case of an applied voltage step with a very short rise
time. It can also represent the case of isothermal heating
experiments on phase-change media. In this case, the second
term in s20d dominates and the crystallization rate becomes

]x

]t
=

− fnEc

RT2 s1 − xdlns1 − xd. s28d

At the maximum crystallization rate, the following condition
must be satisfied:

− lns1 − xtd = 1 −
2RTt

nEc
< 1. s29d

This indicates that the fraction of the crystalline material at
the transition temperature at very high heating rates is also
approximately equal to 0.63, as ins25d. Substituting this con-
dition in s28d yields the crystallization rate at the transition
temperature as

U ]x

]t
U

Tt

=
fnEc

eRTt
2 . s30d

The gradient of the fraction of the crystalline material trans-
formed with temperature is therefore, usings18d, given by

U ]x

]T
U

Tt

=
nEc

eRTt
2 , s31d

which has the same functional form and dependence as Eq.
s27d for small heating rates, except that the gradient of the
transformation with temperature at high heating rates is in-
creased by a factor ofn. Equations31d can be used to rep-
resent an upper limit for this gradient and, as will be shown
later, a lower limit for the transition length.

B. Electrical conductivity of phase-change material

The fraction of the crystalline material transformed as a
function of temperature]x /dT was determined in the pre-
ceding section. The change in the crystalline fraction with
temperature is also accompanied by a change in the electrical
conductivity of the material. It is the change of conductivity
of the phase-change material with temperature]sp/]T that is
required to be found to solve the slope equation ins1d for the
transition length.]sp/]T can be determined usings14d
where the term]sp/]x links the change in conductivity with
crystalline fraction and will be determined next.

According to Bruggeman’s symmetrical effective-
medium theory,30 the conductivitysp of a mixture of two
types of spherical inclusions, in this work crystalline material
with fraction x and an amorphous material with fractions1
−xd, is given by

x
sc − sp

sc + sm− 1dsp
+ s1 − xd

sa − sp

sa + sm− 1dsp
= 0, s32d

wheresc andsa are the electrical conductivities of the crys-
talline and amorphous phases, respectively, andm=1, 2, or 3
representing the dimensionality of the system. This theory
predicts a critical volume fraction or percolation threshold,
xc, for the formation of filaments or conducting pathways of
the crystalline material for a three-dimensional system at
xc=1/3.Numerical computations have shown, however, that
in a mixture of conducting and nonconducting materials,
only about 0.15–0.17 fraction of the conducting material is
needed to create continuous conducting pathways.30

Amongst the many reasons for this discrepancy, is the one
based on the fact that spherical inclusions provide the least
surface area and must obviously occupy a more appreciable
fraction of the total volume before guaranteeing enough con-
tact for the existence of conducting filaments. Thus, non-
spherical inclusionssfor example, ellipsoidsd were suggested
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to provide contact more easily than spheres with the same
volume and thus achieving lower percolation thresholds.30,31

By including the effects of coupling between the conducting
inclusions in the form of clusters or chains in Eq.s32d, it was
shown that it is possible to obtain a percolation threshold of
0.156 that is close to the expected value from numerical
calculations.32 Generally in these theories, changing the per-
colation threshold involves changing the coefficient ofsp in
the denominator ofs32d.

Based on these theories and observation made by other
workers, the effective-medium theory approach was general-
ized for any percolation threshold and extended to model
different material behaviors in a phenomenological approach
by McLachlanet al.33 This involved rewriting Bruggeman’s
formula for a mixture of two inclusions in the form:

x
sc

1/r − sp
1/r

sc
1/r + Dsp

1/r + s1 − xd
sa

1/s − sp
1/s

sa
1/s + Dsp

1/s = 0, s33d

where r and s are exponents that control the extent of the
change in conductivity with crystallization fraction, andD
=s1−xcd /xc. Whenr =s=1 andxc=1/3,Bruggeman’s equa-
tion for a three-dimensional system is obtained. The form of
Eq. s33d is very useful to investigate the effect of different
values of the percolation threshold on the transition length,
and also to model cases where the observed electrical con-
ductivity “leads” the fraction of the crystallized material in
conductivity measurements during amorphous to crystalline
transformation34 in a unified manner.

When the electrical conductivity of the crystalline mate-
rial is much larger than that of the amorphous materialsi.e.,
sc.sad, Eq. s33d can be solved for the conductivity of the
mixture and reduces to

sp = scSx − xc

1 − xc
Dr

, xc ø x ø 1. s34d

Differentiating s34d with respect tox and evaluating at the
transition temperature yields the change in electrical conduc-
tivity with crystalline fraction as

U ]sp

]x
U

T=Tt

=
rst

xt − xc
, s35d

wherest is the conductivity of the phase-change layer at the
transition temperature and can be determined froms34d
when the fraction of the crystalline material at this tempera-
ture is known.

The change in conductivity with temperature including
the dependence on crystallization fraction can now be de-
rived, for the small heating rate case, by substitutings27d and
s35d into s14d to yield

U ]sp

]T
U

T=Tt

=
str

sxt − xcd
Ec

eRTt
2 . s36d

The high heating rate case is given simply by multiplying the
right-hand side of Eq.s36d by n.

V. TRANSITION LENGTH

The extent of the amorphous to crystalline transition
along the phase-change layer can now be estimated using the
slope-theory approach. This is achieved by substituting into
s1d the spatial slope of the electrical conductivity froms3d,
the spatial gradient of the temperature ins13d, and the
change of electrical conductivity with temperature described
in s36d, all evaluated at the transition temperature. Solving
for the transition length parametera yields

a =
1/ÎG

S rsTt − Tod
xt − xc

DS Ec

eRTt
2D − 1

. s37d

Equations37d outlines the requirements for short transition
lengths and therefore the shortest possible distance between
two adjacent bits. The first requirement is a small thermal
characteristic length 1/ÎG; this allows the temperature dis-
tribution in the phase-change layer to follow the electric field
and increases the temperature gradient at the transition tem-
perature isotherm. This happens when the heat generated in
the phase-change layer dissipates vertically through the sand-
wiching layers rather than laterally along the phase-change
layer itself. A small thermal characteristic length also de-
mands a thin recording layer as indicated in Eq.s5d. The
other requirement for small transition lengths is to maximize
the ratio of activation energy to transition temperatureEc/Tt.
This increases the crystallization rate leading to a sharper
slope of the conductivity versus temperature characteristic at
the transition temperature. Increasing the heating rate also
reduces the transition length by multiplying the ratio of ac-
tivation energy to transition temperature by the Avrami ex-
ponentn.

Figure 4 illustrates the calculated transition length using
s37d for the structure shown in Fig. 3, as a function of the
dimensionless quantityEcsTt−Tod /RTt

2 for different thick-
nesses of the phase-change layer. This figure illustrates the
above requirements for small transition lengths. Also high-
lighted in this figure are the transition lengths for three dif-
ferent values of the ratioEc/Tt corresponding to three phase-

FIG. 4. Transition length as a function of the dimensionless ratioEcsTt

−Tod /RTt
2 for different phase-change layer thicknesses. The parameters for

the calculations aredu=20 nm,L=20 nm,u=dp, y=dp/2, kp=0.4 W/m K,
ku=50 W/m K, Ht=0 W/m2 K, Hb=23108 W/m2 K, xc=0.15, andr =1.
The indicated numbers refer to the following phase-change materials:s1d
Ge2Sb2Te5, s2d AglnSbTe, ands3d Ge4Sb1Te5.
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change materials typically used in data storage applications:
s1d Ge2Sb2Te5 with Ec=2.24±0.11 eV sRef. 6d and Tt

=428 K;14 s2d AglnSbTe with Ec=3.03±0.17 eVsRef. 16d
and Tt=453 K;14 and s3d Ge4Sb1Te5 with Ec

=3.48±0.12 eV sRef. 15d and Tt=463 K.14 The values
quoted for the transition temperatures were obtained from
differential scanning calorimetry14 at a heating rate of 5
K/min. It can be seen from the figure that the material with
the highestEc/Tt ratio, Ge4Sb1Te5, is predicted by the slope-
theory approach to produce the smallest transition length.

Figure 5 illustrates the effect of different thermal bound-
ary conditions, included in the thermal length 1/ÎG, on the
transition length. A high thermal-conductivity substrate pro-
vides a heat sink for the heat flux generated in the phase-
change layer and makes the temperature distribution follow
closely the tip electric fieldsshort thermal lengthd. This in-
creases the temperature gradient at the transition location,
thus reducing the transition length. A thermally insulated
substrate, on the other hand, forces the temperature distribu-
tion in the phase-change layer to spread laterally, thus reduc-
ing the temperature gradient at the transition location and
increasing the transition length.

For a 20-nm-thick phase-change layer, for example, a
transition length parameter ofa=0.48 nm is predicted for
Ge2Sb2Te5 using the structure shown in Fig. 3. This corre-
sponds to a transition regionasc/st around 4.8 nmssc/st

<10 from Ref. 6d. Applying a series of “on” and “off” volt-
ages to the phase-change layersrepresenting the binary states
1 and 0d when the tip is moving in continuous contact with
the material produces a sequence of amorphous to crystalline
transitions. A reasonable estimate for the maximum achiev-
able linear density in this case might be obtained by assum-
ing that transition centers are separated by 2asc/st, thus
avoiding excessive overlap between neighboring transitions.
This would yield a linear storage density of around 2600
3103 phase transitions per inch of the medium.

VI. SUMMARY

A theoretical approach to predicting the linear density in
contact electrical probe recording on phase-change media

has been developed. This approach, inspired by the slope
theory used in magnetic recording, combined the electrother-
mal factors and the material properties in a self-consistent
approach to predict the extent of an amorphous to crystalline
transition. This theory showed that smaller transition lengths
can be obtained when heat produced in the phase-change
layer due to Joule heating is made to flow vertically through
the adjacent layers such as to reduce the thermal wavelength
in the phase-change layer. Moreover, a material with higher
activation energy to transition temperature ratio and high
heating rates is needed to reduce the transition length.

APPENDIX
At small heating rates, the condition ins22d at the peak

crystallization rate can be rewritten as

f

Tt
2 = G expS− Ec

RTt
D , sA1d

whereG=AtRnKo/Ec is a constant. Taking the natural loga-
rithm of the above yields the Kissinger formula12 describing
a straight-line relationship between the heating rate and re-
ciprocal of the transition temperature whose slope isEc/R:

lnS f

Tt
2D = ln G − S Ec

RTt
D . sA2d

Solving sA2d for the transition temperature yields

Tt =
Ec

2RWszd
, sA3d

whereWszd is the LambertW function andz is defined by

z=
1

2
ÎnAtEcKo

fR
. sA4d

The explicit dependence of the transition temperature on
heating rate is clearly shown insA3d and sA4d.

Determination of the LambertW function in sA3d re-
quires the evaluation of an infinite series. Fortunately sincez
in sA4d is normally large, an asymptotic expansion of theW
function accurate forzù3 exists; the first three terms of this
expansion provide sufficient accuracy and are given by

Wszd > lnszd − lnflnszdg +
lnflnszdg

lnszd
, zù 3. sA5d

Figure 6 compares the measured transition temperatures
for an 80-nm Ge2Sb2Te5 film using nonisothermal four-
point-probe resistance measurements,6 with the calculated
values usingsA3d at different heating rates. The transition
temperatures in these experiments were determined from the
minimum in the resistivity versus temperature curves. The
thermodynamic and kinetic parameters used in calculating
the transition temperatures were obtained, for the same ma-
terial, from isothermal measurements35 and are provided in
the figure caption. The good agreement between the mea-
sured and calculated values illustrates the potential of using
the JMAK equation, subject to the small heating rate restric-
tion, to describing nonisothermal reactions. At high heating
rates, the theoretical transition temperature values in Fig. 6
begin to deviate from the measured ones, as expected.

FIG. 5. Calculated transition lengths for different thermal boundary condi-
tions between the underlayer and substrate, simulating different substrate
materials. For underlayer/dielectricHb=23108 W/m2 K, for underlayer/
thermal conductorHb→`, and for underlayer/thermal insulatorHb→0.
Also shown are the calculated thermal characteristic lengths 1/ÎG for each
boundary. The calculation parameters are the same as in Fig. 4 and using
dp=40 nm.
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In the high heating rate regimesor equivalently isother-
mal annealingd the conditionKtt<1 is arrived at by compar-
ing s29d with the JMAK equation ins15d at the transition
temperature. Substituting forKt from s16d, an expression for
the transition temperature can be derived exactly and is given
by

Tt =
Ec

R lnsKotd
, sA6d

showing the explicit dependence of the transition tempera-
ture on heating timet in this case.
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was also assumed thatAt=1.
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