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Abstract— We introduce novel methods of visualising and
ordering multi- and many-objective populations. We compare
individuals by the probability that one will beat another in a
tournament on a randomly selected objective. This defines a
weighted directed graph representing the population.

We introduce a novel graphical representation of the many
objective population based on Pareto shells. We examine
leagues, Pareto shells, preference ordering, average rank, out-
flow, the stationary distribution and the power index for order-
ing the population finding that the average rank is equivalent
to outflow and that these together with the power index are
generally superior.

Finally, we show how to seriate objectives to enhance the
interpretability of heatmap visualisations.

I. INTRODUCTION

Evolutionary techniques have proven successful in solving
multi-objective optimisation problems by locating approxi-
mations to the Pareto front. Significant effort is currently
directed towards the move from multi-objective optimisation
problems, problems with as many as 4 or 5 conflicting
objectives, to many-objective optimisation, problems with 6
or more objectives. However, with a Pareto front of perhaps
many solutions on hand, it is useful to be able to distinguish
between solutions, to be able to visualise them and to order
them to aid in selection of one or two. A common way of
deciding on a solution is to present the decision maker with
a graphical visualisation of the Pareto set, so that they can
select one of the solutions.

When dealing with a bi-objective problem, it is a simple
matter to plot the solutions on two-dimensional axes. If
there is a knee in the Pareto front, a point beyond which
favouring either objective will cause significant degradation
in the other, then that is often the region of the set from which
the solution is chosen. However, straightforward visualisation
of solutions by plotting the objectives and identification of
a knee region is more difficult with three objectives and out
of the question with four or more.

In this paper we present a novel, easily comprehensible
method of visualising the relations between many-objective
solutions and apply ordering techniques to indicate which
solutions may be preferred. The methods we present are also
applicable to the visualisation and ordering of general many-
objective datasets which are important in two additional
areas: (a) selection of individuals for mutation and crossover
in evolutionary algorithms, [1], [2] and (b), the focus of this
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paper, analysing the performance of, for example, hospitals,
schools or universities which are placed into league tables
according to their performance on a number of key perfor-
mance indicators (KPIs). Here we illustrate the visualisation
and ordering techniques on the 2009 Times Good University
Guide data, (GUG09) which scores the performance of UK
universities in 2008 [3].

The remainder of this paper is organised as follows. The
rest of this section presents some background material about
dominance and Pareto optimality, before some common tech-
niques for visualisation are discussed in section II. Section
III presents a more detailed description of some ordering
techniques, whilst Section IV demonstrates an improvement
to a popular visualisation technique. Section V concludes.

A. Many-objective Populations and Dominance

Multi- and many-objective optimisation often employs the
dominance relation to differentiate between putative solu-
tions. Dominance allows us to quantify whether or not an
individual, represented as a vector x of M objectives is better
or worse than another than x′. x is said to dominate x′ if it
is no worse than x′ on any objective, and better on at least
one. More formally, if the objectives are to be minimised:

x ≺ x′ ⇐⇒ ∀i(xi ≤ x′i) ∧ ∃i(xi < x′i). (1)

A pair of individuals where neither dominates the other are
said to be mutually non-dominating with respect to each
other, and an individual which is not dominated by any other
individual in the population is non-dominated.

B. Many-objective League Table Data

Throughout this paper, we illustrate the problem of vi-
sualising and ordering a many-objective data set: the Good
University Guide (GUG09) [3], which summarises the per-
formance of 113 UK universities in 2008. Universities are
assessed according to the following 8 criteria: student satis-
faction, based on their score in the National Student Survey
(NSS); research quality; student–staff ratio; services and
facilities spend; entry standards; completion; good honours;
and graduate prospects.

The focus of the GUG is to construct a league table
ranking the universities. This is achieved by normalising each
KPI to have mean zero and unit variance, from which a score
is arrived at by forming a weighted sum of the standardised
KPIs. Universities are then ordered according to their score.

Here we regard this as a many-objective optimisation
problem, where a university’s aim is to achieve a good score
on each of the criteria and we examine a number of ordering
techniques which avoid the well-known problems of how to
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combine KPIs measured in different units and choose a priori
weightings.

II. VISUALISATION

Visualisation of a many-objective population can be done
in two ways; the population can be reduced to a dimension-
ality such that a multi-objective visualisation technique (such
as a scatter plot in 2 or 3 dimensions) can be used, or the
entire space can be visualised directly using a technique such
as a heatmap.

A. Visualisation by Dimension Reduction

A common approach to dimension reduction is to reduce
an M -dimensional space by finding its principal components.
Principal component analysis (PCA) finds a new lower-
dimensional set of coordinates (the principal components)
so that projection onto the principal components captures
the maximum variance among all linear projections. The
principal components are easily found as the eigenvectors
of the covariance matrix of the population.

PCA is a linear method and two nonlinear techniques
which have been used to find a low dimensional representa-
tion of data are the Generative Topographical Mapping [4]
and Self Organising Maps (SOMs) [5]; see [6] for more on
their use in multi-objective visualisation.

Closely related to the Generative Topographic Mapping
and SOMs is Valdés and Barton’s use of a neural network to
map the high-dimensional data to two or three dimensions
while minimising a similarity metric, such as the Sammon
error which attempts to preserve distances between data
in the orginal and low-dimensional spaces [7]. Valdés and
Barton then view the low-dimensional representation using
virtual reality, which can be tailored to meet the needs of a
decision maker.

However, the difficulty with all of these dimension reduc-
tion techniques is that the projection to lower dimensions
inevitably destroys the dominance relationships between in-
dividuals. In fact it is easy to construct examples where
the projection into even one fewer dimensions is bound to
alter the dominance relationships between projected points,
because if dimension reduction made no difference, one of
the objectives would be superfluous.

B. Many-objective Visualisation

A straightforward way of visualising many-objectives is to
draw a parallel coordinate plot [8] in which each individual
is represented as a line of objective values. Whilst being
scalable to any number of objectives, the resulting plots can
be cluttered as each individual overlays another.

Pryke et al. [9] propose the use of a heatmap for visualis-
ing many-objective Pareto sets. In a heatmap plot numerical
values corresponding to each objective and solution are
shown by their ‘heat’ or colour. In order for the colours in
the heat map to be meaningful, the values displayed in it
must be on the same scale. Nazemi et al. [10] achieve this
by linearly scaling all objectives to the range (0, 1).

Advantages of employing a heatmap for visualising a
Pareto set include its scalability—heatmaps scale easily to
any number of objectives—and heatmaps allow visualisation
of both objective and decision space simultaneously. They
are also straightforward to produce, the only computational
work being the normalisation.

The main disadvantage can be their clarity. A heatmap for
a Pareto front, in which the solutions are arbitrarily ordered,
will likely appear to be a random collection of colours from
which it can be difficult to extract any meaning. In section
IV we show how solutions may be ordered to place similar
ones together, thus enhancing their interpretability.

III. VISUALISING AND ORDERING MANY-OBJECTIVE
POPULATIONS

In order to visualise and order a multi-objective population
X it can be helpful to regard individuals xi ∈ X in
the population as nodes of a graph, with edges describing
dominance relations between individuals. For example, xi ≺
xj might imply the presence of a directed edge from xi to
xj . In general, the graph G = (X,E,W) is defined by the
set of nodes X , the set of directed edges eij ∈ E and a set
of non-negative weights corresponding to the edges, which
we write as an adjacency matrix W; Wij > 0 iff there exists
an edge eij from xi to xj .

Suppose that of M objectives the individual xi is better
that in individual xj for d of them, then we weight the
edges between them as Wij = d/M and Wji = 1 − d/M .
This may be interpreted in terms of a tournament between
the individuals, in which an objective is selected at random
and the dominating individual on that objective wins; the
weights are the probabilities that each individual will win
such a tournament. Clearly if xi ≺ xj then xi will win
every tournament with probability 1. This generalises the idea
of the favour relation proposed by Drechsler et al. [11] in
which the winning individual in a tournament between two
individuals is the one which is better on more objectives.
We define Wii = 0 for all i, so that Wij + Wji = 1 for
all i 6= j. Moon and Pullman [12] call matrices with this
property generalised tournament matrices (GTMs). Figure 1
shows the adjacency matrix of the GUG09 data.

A. Leagues

Moon and Pullman show that a GTM may be partitioned
into leagues [12]; any player in one league will certainly beat
(or dominate) any player in an inferior league. A GTM may
be permuted into a normal form so that blocks comprising
all ones lie in the top right hand corner. They define a
decomposable matrix W as one that can be permuted by
a permutation Q so that

QTWQ =

[
A C
0 B

]
(2)
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Fig. 1: The adjacency matrix W of the GUG09 data. Universities
are in alphabetical order and the colour of Wij indicates the pro-
portion of objectives for which university i is better than university
j.

where A and B are square matrices. Then W is a GTM if
there exists a permutation Q such that

QTWQ =


W1 1 . . . 1

0 W2

...
...

. . . 1
0 . . . 0 Wl

 (3)

where each Wi is a separate league, and every player in
Wi will beat every player in Wj for j > i. As Moon
and Pullman show, a GTM may be put into normal form
by permuting the rows and columns so that the row sums∑

j Wij are in decreasing order, after which the blocks can
be read off. The GUG09 data comprises a single league; that
is, no university (or group of universities) dominates every
other university.

Partitioning the population into leagues does, however, not
provide a total ordering of individuals. A player in one league
can be said to be better than one in a lower league, but it
does not differentiate between members of the same league.

B. Pareto Shells

A finer gradation of individuals within a league is provided
by sorting individuals into Pareto shells of mutually non-
dominating individuals, using the non-dominated sorting
procedure that is used in some evolutionary optimisation
algorithms [13].

The aim of performing a many-objective optimisation is
to locate an estimate of the Pareto front, the set of globally
optimal trade-offs for the given problem. Each individual in
the Pareto front is not dominated, so that members of the
Pareto front are mutually non-dominating with respect to
each other. More formally, the Pareto front is defined as:

P0 = {x ∈ X | ¬∃y (y ∈ X ∧ y ≺ x)} . (4)

Here we call P0 the zeroth Pareto shell. The first Pareto shell
is then defined as the set of individuals that are not dominated

when members of P0 are removed from the population.
Successive shells are defined in the same manner until the
entire population has been exhausted; the jth Pareto shell is:

Pj =
{
x ∈ X ′j | ¬∃y (y ∈ X ′ ∧ y ≺ x)

}
(5)

where X ′j = X \
⋃k−1

k=0 Pk.
In contrast to leagues, in which any individual in a superior

league will always beat (dominate) any player in an inferior
league, all that can be said about shells is that for each
individual, x in an inferior shell Pj there is, in the next
superior shell, an individual x′ ∈ Pj−1 such that x′ ≺ x.

Pareto shells refine the ordering given by leagues and,
because a single shell cannot include individuals from more
than one league, each league may be partitioned into shells.

Figure 2 illustrates a new method of displaying the dom-
inance relations in a population. We arrange nodes (individ-
uals) in columns according to their Pareto shell and draw
directed edges eij to indicate that xi ≺ xj for individuals in
successive shells, xi ∈ Pk and xj ∈ Pk+1. For clarity we
show only the dominance relationships between successive
shells. Nonetheless, this diagrammatic representation con-
veys information about powerful individuals within shells.
Thus in P0, Oxford dominates every university in P1; while
in shell P1, King’s and in P3, Leeds and Heriot-Watt are
powerful individuals, responsible for defining the next most
inferior shell.

The Pareto shells furnish a method for imputing missing
objectives in a population. In the GUG09 data, a number of
universities did not return one of the 8 KPIs, the National
Student Survey score. If xim, mth objective of individual
xi is missing and suppose that the objectives are to be
minimised, then we impute the missing value according to
the following procedure:

1) Assign a very poor value to the missing value:
xim := maxi xim.

2) Sort the population into Pareto shells.
3) If xi ∈ Pj , then assign xim := maxxk∈Pj

xkm.
This conservative imputation assigns to the missing value the
worst value for the missing objective among the members
of the best Pareto shell achieved without the benefit of the
imputed value. Thus an individual with missing values cannot
be promoted to a shell higher than justified by the data which
is present.

Pareto shells, although providing finer discrimination than
partitioning into leagues, still provide only a rough banding
of individuals; we therefore consider other ordering methods.

C. Preference Ordering

Preference Ordering [14] introduces the k-preference order
which is based on the idea of finding when an individ-
ual remains non-dominated as objectives are removed. An
individual is considered efficient of order k if it is not
dominated by any other solution considering all the

(
M
k

)
objectives, so that individuals may be ordered according to
smallest order at which they are efficient, a small k inferring
greater fitness. Since members of inferior shells may not
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Fig. 2: The GUG09 data ordered by Pareto shells. Colours denote the power index ranking, which is described in section III-H (numerical
ranks shown in brackets). Directed edges indicate that x ≺ x′ for universities x ∈ Pj and x′ ∈ Pj+1. For clarity, only those dominance
relationships between a shell and the succeeding one are shown. Vertical position within shells is immaterial and is determined by the
graph layout algorithm. The insert shows the GUG09 data adjacency matrix ordered by the average shell, S̄(x); section III-F.



k University ρ Ri k University ρ Ri

4 Warwick 0 0 8 Bristol 5 5
6 St Andrews 1 1 8 Manchester 6 6
6 King’s 3 3 8 Southampton 7 7
7 Durham 2 2 8 Glasgow 8 8
7 York 4 4 8 Loughborough 9 9
7 Exeter 11 11 8 Leicester 10 10
7 Lancaster 13 13 8 Nottingham 12 15
7 Edinburgh 15 12 8 Aberdeen 14 14

8 Strathclyde 16 16

TABLE I: Preference order for universities in P1. Columns headed
k indicate the efficiency of the corresponding university; columns
headed ρ and Ri show the university’s rank according to the power
index (section III-H) and average rank (section III-D) respectively.

be non-dominated with any combination of the objectives
the preference order tends not to discriminate well between
individuals in inferior shells. Di Pierro et al. [14] compensate
for this by considering each shell at a time, so that the
preference order refines the partial order given by shells.
Table I shows the efficiency of universities in P1 (without
regard for universities in other shells). As the table shows,
Warwick is clearly the most efficient university in this group,
however, the preference order does not discriminate well
between less powerful universities.

D. Average Rank

The particular scales of the separate objectives is immate-
rial in determining whether one individual is better or worse
than another, so it is natural to rank individuals based on
each objective. Consider the graph Gm, which describes the
mth objective with an associated adjacency matrix Wm, a
GTM with 0 and 1 entries only. Then the rank Rm

i of an
individual i on objective m is

Rm
i = N − 1−

∑
j

Wm
ij . (6)

High performing individuals are assigned numerically low
ranks, with 0 being the best rank, while the worst individual
has a rank of N − 1 because it is bettered by all others.

Ranks for separate objectives can then be averaged in
order to produce an overall rank for each individual [15].
The average rank of individual i over all objectives is:

Ri =
1

M

M∑
m=1

Rm
i . (7)

An extension to the average rank is to weight the objectives,
however since it is unclear how to choose the weights a
priori, we treat all objectives with equal weight.

Corne and Knowles found that the best performing method
of selecting individuals to be mutated at the next generation
of a many-objective search was a variant of the average rank,
which took into account only those individuals in the current
Pareto set [1].

We note however, that the average rank cannot be used to
order a two-objective non-dominated set because the sum of
the ranks for any individual is N − 1.
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Fig. 3: The GUG09 data adjacency matrix ordered by the outflow
σout or average rank.

E. Outflow

The outflow ranking method [16] orders nodes according
to the outflow at that node. The outflow simply generalises
the out-degree, and is the sum of the weights of leaving a
node; in terms of the adjacency matrix,

σout
i =

∑
j

Wij . (8)

Consequently node xi is ranked at least as high as node xj

iff σout
i ≥ σout

j . As van den Brink and Gilles note, outflow
ranking generalises ranking by out-degree and ranking of
tournaments by the Copeland score [16]. They also pro-
vide five axioms (anonymity, outflow montonicity, positive
responsiveness and strong order preservation) which charac-
terise outflow ranking.

When there are several objectives each with adjacency
matrix Wm, then the outflow rank is equivalent to the
average rank. This is because the overall adjacency matrix is
an average of the Wm:

W =
1

M

M∑
m=1

Wm. (9)

If 1 is the vector of 1s, the vector of outflows may be written:

σout = W1 =
1

M

M∑
m=1

Wm1 = (N − 1)1− 1

M

M∑
m=1

Rm

(10)

where Rm is the vector of ranks for the mth objective
(6). In addition, [1] observe that another ordering technique,
winning score, is also equivalent to these two techniques.

The adjacency matrix for the GUG09 data, ordered by
the average rank, is shown in Figure 3. In general univer-
sities with a average high probability of dominating others
(those rows coloured largely red) have been grouped together
towards to top right hand corner, while those which have
a high average probability of being dominated are grouped
towards the bottom left hand corner. An ideal permutation
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Fig. 4: The GUG09 data adjacency matrix ordered by the stationary
distribution.

would group the red colour in the top right hand corner, with
blue in the bottom left hand corner.

The outflow or average rank has many attractive features:
it is easy to compute, easy to understand, and, as described
previously, is the same measure used by Moon and Pullman
to partition a graph into leagues [12]. Nonetheless it is a local
method that uses only partial information about the graph
(the sum of the weights leaving a node). In addition, as van
den Brink and Gilles [16] mention, ranking by outflow is
equivalent to ranking countries by total exports, rather than,
for example, the trade balances which would be the result of
ranking by the difference between outflow and inflow.

F. Average shell

The preference order ranks individuals by how robust they
are as objectives are removed, but as noted above tends not to
be very discriminative. A related idea is to enquire in which
Pareto shell an individual resides as objectives are removed.
Since with M objectives there are

(
M
k

)
combinations of

k objectives taken from the original M , we average over
these combinations and denote the result by S̄k(x). Note
that S̄M (x) is just the Pareto shell of the individual using
all objectives whereas, providing that objective values are
all distinct, S̄1(x) is the average rank of x. An individual
may then be assessed by the average shell, weighted by the
dimension of the reduced objective space:

S̄(x) =
2

M(M + 1)

M∑
k=1

kS̄k(x) (11)

The insert to figure 2 shows the GUG09 data adjacency
matrix ordered by the S̄(x). Although the ordering groups
generally similar individuals together, the outflow and power
index rankings (which we describe below) appear preferable.

G. Stationary distribution

It is straightforward to define a random walk on the graph
describing the multi-objective population. Consider a random

walker who at each time step jumps from the current node
to one of the node’s neighbours with the probability of a
transition from node i to node j of pij = Wij/

∑
kWik.

The transition probabilities are therefore summarised in the
matrix

P = D−1W (12)

where D is the diagonal matrix of row sums of W which
may be recognised as σout, the vector of outflows (10).
If pt−1 is the (row) vector describing the probability of
finding the walker at each node at time t − 1, then the
probability distribution at t is pt = pt−1P. A graph is
strongly connected when, for every two nodes xi and xj ,
there is a sequence of directed edges connecting xi to
xj . This is true for nondecomposable GTMs in the Moon
and Pullman sense [12] (i.e., GTMs representing a single
league). The Perron-Frobenius theorem [17] implies that the
transition probability matrix of a strongly connected graph
has an eigenvalue 1 and unique left eigenvector π with
πi > 0 for all i which defines the stationary distribution
of a random walk on G; that is: π = Pπ. The stationary
probability of finding a walker at a node has been used in
ranking applications, notably in the PageRank algorithm [18]
in which frequently visited web pages are ranked highly. For
ordering multi-objective populations, directed edges point
away from powerful individuals so that powerful individuals
are expected to be those with a low stationary probability.

The GUG09 data adjacency matrix ordered by the sta-
tionary distribution is shown in figure 4. However, although
the broad ordering is as expected, there are some prominent
anomalies. Oxford is ranked at 0, but King’s is ranked at 1
although it is in P1, because it dominates many universities
in P2 so that a random walker arriving at King’s will easily
be transported away from it. Conversely, Cambridge in P0

is ranked at 32. This is due to it not returning an NSS
score so that the NSS value used is the worst value for P0.
Cambridge is thus on the ‘edge’ of P0 and does not dominate
many others which means that probability mass arriving at
Cambridge is not easily transported away from it, leading to
a relatively high probability in the stationary distribution and
consequent poor rank.

H. Power Index

The long path method can be traced back to Wei [19] and
Kendall [20]; it was called the power index by Berge [21]
and has been used to rank single objective scores (e.g., [22]).
The intuition behind the power index lies with the idea that
the individuals in the population should be ranked not by
the number of individuals that they dominate, but rather by
the quality of those individuals. It is a global method and
is defined in terms of the right eigenvector of W. This is
reached by considering the sequence:

ut = Wut−1 (13)

for t = 1, 2, . . ., starting with u0 = 1. This means that u1

is the vector of average ranks or outflows, σout; u2 is the
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Fig. 5: The GUG09 data adjacency matrix ordered by the power
index.

vector that assigns to xi the scores of all other individuals in
proportion to the weight Wij , that is u2i =

∑
j Wiju

1
j . The

limit of this procedure is

u = lim
t→∞

ut∑
i u

t
i

. (14)

This limit exists when G is strongly connected, and is the
eigenvector of W corresponding to the largest eigenvector;
that is u solves

Wu = λu. (15)

The Perron-Frobenius [17] theorem assures that W has a
unique positive eigenvector. The population is then ordered
by the values of u; if uj is the ith largest element of u then
xj is assigned rank i.

Figure 5 shows the adjacency matrix for the GUG09 data
ordered by power index and nodes in Figure 2 are coloured
according to their power index rank. Although the ordering
given by power index and the average rank or outflow is
broadly similar, figures 3, 5 and 6 show that they are indeed
different because the power index of x accounts for the power
of the universities which, on average, it would beat when
two objectives are selected at random. Note, however, that
neither the outflow nor the power index orders respect the
Pareto shell ordering, in that an x ∈ Pj may be ranked better
than x′ ∈ Pj−1 and vice versa. Clear examples of this shown
in Figure 2 are SOAS in P0 which is ranked at 23 by the
power index, together with Bedfordshire and Abertay, both
in P2, but ranked at 77 and 90 respectively largely, as the
figure shows, because they do not dominate any universities
in P3. We may infer that SOAS, Bedfordshire and Abertay
are situated on the periphery of their shells because they
do not dominate others. Conversely, those universities that
dominate many others are ranked better, for example, Oxford
(0), King’s (9), Bath (13), Sheffield (22) and Leeds (31) all
define the following shell.

Clearly the power index provides a good deal of additional
information on the structure of a multi-objective population
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Fig. 6: Power index score versus outflow score for the GUG09 data.
High values indicate best performance in both cases.

when it is comprised of a single or many Pareto shells. We
note however, that like the average rank, it does not differ-
entiate between members of a two-objective non-dominated
set because in that case Wij = 1/2 ∀i 6= j and the power
index of each member is 1/

√
N .

IV. SERIATION OF HEATMAPS

The left panel of figure 7 shows a heat map visualisation
[9] of the 113 universities and 8 objectives of the GUG09
data. Here the colour scale shows the rank Rm

i of each
university on each objective (cf. eq. (6)), which allows
objectives measured on disparate scales and in disparate units
to be straightforwardly compared. Although the heatmap
conveys a good deal of information about the multi-objective
population it can be unduly confused because the orders in
which individuals are drawn on one axis and the order in
which objectives are drawn on the other axis are arbitrary.
The average rank or power index can usefully be used to
order the individuals and in this section we seriate [23] the
objectives to group similar objectives together.

We quantify the similarity between objectives m and n as

Amn = 1− 1

N2

N∑
i=1

(Rm
i −Rn

i )2 (16)

so that competing objectives which on average rank individ-
uals different have small Amn, whereas objectives that rank
individuals similarly have Amn close to 1. Then if πn is a
permutation of the nth objective, we seek to minimise:

g(π) =
∑
m,n

Amn(πm − πn)2. (17)

In general this is NP-hard because the permutation is discrete.
A way of obtaining an approximation is to relax the permu-
tation πn to a continuous variable zn and instead minimise

h(z) =
∑
m,n

Amn(zm − zn)2 (18)
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Fig. 7: Left: Heatmap representation of the GUG09 data. Objec-
tives correspond to columns and universities, in alphabetical order,
correspond to rows. Right: Heatmap after seriation to place like
individuals and objectives close to each other.

subject to the constraints that (a)
∑

n zn = 0, which takes
care of the problem that adding a constant to all zn does
not change the order; and (b)

∑
n z

2
n = 1, which rules out

the trivial solution that all zn = 0. With a solution to (18)
on hand, the objectives are arranged in increasing order of
the minimising z. The solution to the constrained problem
(18) may be written as the minimisation of zTLz where
L is the graph Laplacian [23] of A which is defined as
L = D − A, with D the diagonal matrix whose diagonal
elements are Dnn =

∑
mAnm. Then the solution to the

constrained minimisation problem is the Fiedler vector of
L, namely the vector associated with the smallest non-zero
eigenvalue of L.

Figure 7 shows the GUG09 data with the objectives
seriated to place similar objectives together. In addition we
swapped the roles of objectives (columns) and individuals
(rows) to seriate the heatmap a second time to place similar
individuals together. The value of g(π) for the unordered
heatmap was 2.65× 109 which dropped to 2.23× 104 after
the dual seriation. The seriated heatmap is more readily
interpreted than the unordered map. By placing similar
objectives together the extent to which objectives compete
or are correlated becomes apparent; in the figure the 2nd
objective (research quality) and the 7th objective (proportion
of ‘good’ honours degrees) are seen to be less well correlated
with other objectives.

V. CONCLUSION

The introduction of the probability of one individual
beating another in a tournament on a randomly selected
objective provides a novel visualisation method, drawing on
tools from graph theory and generalised tournaments, with
which we can view a many-objective population. We have
examined a range of methods for ordering multi-objective
populations. Among these, the average rank (which we

showed to be equivalent to the outflow rank) and the power
index appear to be superior. The novel visualisation of a
many-objective population by Pareto shells is enhanced by
ranking information from the power index and we showed
how to seriate objectives visualisation in a heatmap.

Although we have used these measures for ranking indi-
viduals for visualisation and decision making, we anticipate
that these same ranking methods can be used for selection
in evolutionary optimisation schemes.
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