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Abstract— We describe a Bayesian framework for active
learning for non-separable data, which incorporates a query
density to explicitly model how new data is to be sampled. The
model makes no assumption of independence between queried
data-points; rather it updates model parameters on the basis of
both observations and how those observations were sampled. A
‘hypothetical’ look-ahead is employed to evaluate expected cost
in the next time-step. We show the efficacy of this algorithm
on the probabilistic high-low game which is a non-separable
generalisation of the separable high-low game introduced by
Seung et al.

Our results indicate that the active Bayes algorithm performs
significantly better than passive learning even when the overlap
region is wide, covering over 30% of the feature space.

I. INTRODUCTION

A central problem of machine learning is the classification
of a datum into one of a number of classes. In batch learning
a classifier is trained using a training set of examples for
which the correct class is also known. The training set is
treated as a batch and it is assumed that the order in which
these examples is taken is immaterial. In active learning,
rather than being presented with the data all in one go, the
learner is able to select its own training data to learn from. As
it can be costly to obtain the class labels, the aim is to learn
using as little data as possible. Algorithms and heuristics to
select informative data are therefore of interest and a number
of approaches have been developed [1], [2], [3], [4], [5],
[6], [7]. However, in the main these have assumed that the
data are separable. In this paper we develop a framework for
active learning with a Bayesian classifier which acknowl-
edges that most real data are not separable. In addition
we explicitly model the selection of each successive datum,
recognising that the data cannot be treated as independently
and identically distributed. This finds a natural expression in
a Bayesian setting, permitting the use of Bayesian classifiers
which reduce model uncertainty by averaging. We illustrate
this framework for active learning with a version of the high-
low game, introduced by Seung et al. [1], in which the classes
are not separable.

In section II we describe active learning in more detail
and give a brief background of previous work and set the
context for the Bayesian paradigm. In section III we describe
our Bayesian framework for active learning. Section IV
illustrates our implementation of this model for two versions
of the probabilistic high-low game. Section V shows our
results and demonstrates that the active Bayes algorithm
performs significantly better than batch learning even when
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the non-separable overlap region is quite large (over 30%
of the feature space). Next we draw conclusions, and finally
in the appendix we give an example where a broad query
density is better than either sampling at a point or across the
whole region.

II. BACKGROUND

We focus our attention on binary classification although
the framework presented here is straightforwardly extended
to other supervised learning problems. In batch learning the
learner is supplied with a dataset D comprising N features
xn ∈ X , n = 1, . . . , N and the corresponding class C0

or C1 to which each feature vector belongs. For simplicity
we label the classes 0 and 1 so that the label yn ∈ {0, 1}.
The aim is then to assign a new feature x to C0 or C1.
In a probabilistic setting this is achieved by estimating the
predictive probability, p(y |x,D), that the class is 1. The
predictive probability is found by constructing a model,
parametrised by θ ∈ Θ, which describes the likelihood of
observing the data, p(D | θ). In the Bayesian paradigm the
likelihood is combined with priors on θ to obtain a posterior
density:

p(θ | D) =
p(D | θ)p(θ)

p(D)
. (1)

Class predictions which average over the uncertainty in the
parameters can then be found as:

p(y |x,D) =
∫
p(y |x, θ)p(θ | D) dθ. (2)

In active learning the data are observed sequentially and the
learner selects — or queries an oracle for — each new datum
observed. To clarify the procedure assume that n− 1 feature
vectors and labels have been observed, denoted by Dn−1.
We divide the observation of a new feature-label pair into
two phases, although in practice they are often simultaneous.
First, the learner obtains a feature xn from a particular region
of X determined by the learner and supplied by the sample
oracle. As we describe below, it is helpful to describe this
as a sampling process rather than merely selection. In pool
based learning the sample oracle supplies xn from a (finite)
pool of data, while in selective learning the sample oracle
provides a sample from an infinite pool. Secondly, the label
oracle provides the label yn of the queried datum xn.

Under this general paradigm there are three main ap-
proaches to selecting the data to be queried.

The first approach is uncertainty based sampling which
evaluates the confidence of the classifier on unseen instances
and queries the data about which it is most uncertain [2].
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Although this idea should favour data close to the estimated
decision boundary which are expected to be informative, it
also tends to be noise seeking, and may select outliers about
which the classifier is uncertain but do not inform overall
classification [3].

Secondly, there are version space and query by committee
(QBC) approaches which depend upon the notion of a version
space [1], [8]. Loosely, version space is the set of classifiers
or parametrisations of a classifier family that are consistent
with the data thus far observed. New data reduce the volume
of version space, because they exclude parametrisations
which fail to separate the data. A principle for determining
which datum to query next is to choose the xn which
would lead to the greatest expected reduction in version
space volume. Since calculating the expected reduction in
volume is prohibitively costly because all possible classifiers
in version space must be evaluated on each candidate query
datum, Seung et al. [1] suggest drawing a sample ‘committee’
of classifiers from version space and choosing the xn for
which there is maximum disagreement about predicted label
amongst the committee; somewhat surprisingly committees
of two are quite effective. Seung et al. demonstrate a strong
theoretical framework for the separable case, showing that
the QBC generalisation error decreases exponentially with
the number of data-points queried, as compared to batch
learning where the generalisation error decreases with the
relatively slow inverse power law.

QBC approaches have been applied to Support Vector Ma-
chines (SVMs) with significant success in practical problems
[4]. The SVM approach, independently proposed by [5], [6]
and [4], who dubbed their version SIMPLE, works well in
practice and is considered by Baram et al. [7] to be one of
the two best performing active learning algorithms. An SVM
works by mapping data into a high-dimensional space, where
the two classes are more likely to be separable by a (linear)
hyperplane. SIMPLE works by querying the data-point closest
to the current decision hyperplane.

The QBC approach is limited by the assumption that the
data are separable, which allows portions of version space
to be completely eliminated. This restriction is overcome to
some extent with SVMs by mapping data into a high dimen-
sional space where it is more likely to be linearly separable.
However, QBC and uncertainty based sampling both suffer
from the limitation that they optimise on parameter space
without directly considering classification cost.

Finally, the third approach called SELF-CONF is to opti-
mise the choice of query in order to maximise its expected
utility at the next time step. This was considered by [7] to
be one of the two top performing active learning algorithms,
along with SIMPLE described above. Roy and McCallum [3]
describe a scheme which seeks to directly minimise classi-
fication cost in the next time-step by estimating these costs
on the basis of its current parameter estimate. They hint that
this is ‘optimal’ for active learning, but the main focus is on
finding practical sampling techniques which can be applied
to applications such as text classification. However, they use

naı̈ve Bayes classifiers and make the assumption that the
data selected are independently and identically distributed.
This violated independence assumption tends to produce
overly sharp posterior distributions, which they overcome by
bagging and averaging over the posteriors [3].

Application of these approaches to the classification of
non-separable data is not immediate. Uncertainty based
sampling and QBC approaches work directly on parameter
space without reference to the specific cost function being
used, which can lead to learning which eliminates areas of
parameter space which do not affect misclassification cost.
Although non-separable data means that regions of version
space cannot be completely eliminated by new observations,
an attractive extension of the idea is to identify version
space with the space of model parameters, elements of which
are reweighted according to their posterior probability (1).
A difficulty which must be tackled however is that the
sampled data cannot be considered to be independently and
identically distributed (i.i.d.), because successive data are
actively selected on the basis of previous observations. This
means that, unlike batch learning, the likelihood cannot be
factorised as follows:

p(x1, y1, ..., xn, yn | θ) =
n∏
i=1

p(xi, yi | θ). (3)

In the following section we therefore describe a framework
for active learning which incorporates a query density to
explicitly model the selection procedure and, like SELF-
CONF, employs a ‘look-ahead’ to minimise the expected
misclassification cost in the next step.

III. A FRAMEWORK FOR BAYESIAN ACTIVE LEARNING

We assume that prior beliefs about the classifier’s param-
eters are initially encapsulated in the prior distribution p(θ)
and, after n data Dn have been observed, knowledge about
the parameters is summarised in the posterior p(θ | Dn),
which in turn serves as the prior for the (n+ 1)-th step.

Rather than selecting a particular datum to query, we
model the query as a draw of a sample from the distribution:

Q(x;φ) =
q(x;φ)p(x)∫
q(x;φ)p(x) dx

(4)

where p(x) is the (unknown) density of features and q(x;φ)
is a query density (q(x;φ) ≥ 0 for all x ∈ X and∫
q(x;φ) dx = 1) which determines which region of X is

drawn from. The query density is chosen by the learner
and depends upon parameters φ. To make the nth query the
sample oracle accepts a parametrisation φn and returns an
xn sampled according to (4). Choosing q to be constant over
X is equivalent to online learning with examples presented
at random, while the algorithm’s ‘attention’ can be narrowly
focused on a particular region by choosing q to be narrow,
the limiting case being a delta function so that a particular
x is selected without reference to the underlying distribution
p(x).

Information about θ is gained from the sample xn, but the
primary source of information about class membership is the



Algorithm 1 Bayesian active learning
Require: p(θ) Prior on parameters

1: for n = 1, . . . , N
2: φn = argminφ ESTIMATED-RISK(φ)
3: Φn = {φn, φn−1, . . . , φ1}
4: xn ∼ Q(x;φn) Sample oracle: equation (4)
5: yn ∼ p(y |xn) Label oracle
6: Dn = Dn−1 ∪ {xn, yn}
7: p(θ | Dn,Φn) ∝ p(yn, xn | θ, φn)p(θ | Dn−1,Φn−1)
8: end for

class yn of xn, which is returned by the label oracle as a
sample from p(y |xn). We emphasise that when the problem
is not separable repeated interrogation of the label oracle for
a single x may yield samples from C0 and C1.

Algorithm 1 summarises the Bayesian active learning
procedure for a single time-step. Prior beliefs about the
model parameters are encapsulated in the prior p(θ). In pool
learning p(θ) might include information from an unlabeled
pool of features. Then at each stage of learning parameters
φn of the query function are determined as those that
minimise the expected misclassification cost or risk at the
next step; we describe how this is achieved in section III-B.
After xn and yn have been sampled, the model parameters
can be updated using Bayes’ rule, which we discuss next.

A. Parameter update

Having obtained a new feature vector xn from the feature
oracle the probability density for the parameters can be
updated using Bayes’ rule. The new feature is sampled
according to (4), but since p(x) itself is unknown, the
distribution Q(x;φ) is modeled by

Q(x | θ, φ) =
q(x;φ)p(x | θ)∫
q(x;φ)p(x | θ) dx

(5)

where p(x | θ) is the learner’s model for p(x) and Q(x | θ, φ)
is thus the learner’s model of the sample oracle. This models
the distribution from which the observation xn is drawn, and
is used in the Bayesian update of the parameters:

p(θ |xn,Dn−1,Φn) ∝ Q(xn | θ, φn)p(θ | Dn−1,Φn−1) (6)

where the constant of proportionality is found by integrating
the r.h.s. over θ. Note that this posterior density depends
upon the queries made through the sequence of query density
parameters Φn = {φn, φn−1, . . . , φ1}; we regard these as
parameters whose values can be optimised, rather than as
random variables like θ.

Additional information is supplied by the label oracle
which provides a sample from p(y |xn). This in turn is used
to update the posterior as:

p(θ | Dn,Φn) ∝ p(yn |xn, θ)p(θ |xn,Dn−1,Φn) (7)

where again the constant of proportionality may be found by
integration. Clearly (5), (6) and (7) may be combined as:

p(θ | Dn,Φn) ∝ p(yn |xn, θ)Q(xn | θ, φn)p(θ | Dn−1,Φn−1)
(8)

in which p(θ | Dn−1,Φn−1) serves as a prior for the nth
observation, and the likelihood of observing {xn, yn} is
assessed by p(yn |xn, θ)Q(xn |φn, θ) which emphasises the
dependence of the likelihood on the query sequence.

Note that the whole of parameter space Θ may be regarded
as a version space equipped with p(θ | Dn,Φn) that measures
the probability that θ are the correct parameters for the data
under this model. Unlike QBC [1] in which, for separable
data, the volume of version space is reduced as data are
observed, here

∫
p(θ | Dn,Φn) dθ = 1 but probability mass

is redistributed to concentrate on more probable parameter
values. We give numerical illustrations of this for the prob-
abilistic high-low game in section IV. If the learner’s model
includes the data generation process (a ‘closed’ situation
in the terminology of [9]), then in the large n limit we
may expect probability mass to be concentrated around the
‘correct’ parameters, provided that the query sequence Φn is
not malicious.

After n learning steps, the probability of a feature x
belonging to class C1 is estimated by averaging the predictive
likelihood p(y |x, θ) weighted by the learned posterior:

p(y |x,Dn,Φn) =
∫
p(y |x, θ)p(θ | Dn,Φn) dθ. (9)

Note that we assume here that x is drawn from the data
distribution p(x), not queried using q(·).

B. Estimated risk

Suppose that n− 1 features and labels have been queried.
To query the nth feature and class the learner must decide
on parameters φn of the query density. In order to do this
we ‘look-ahead’ one step and estimate the expected misclas-
sification cost or risk if {xn, yn} were selected with φn and
choose φn to minimise this estimated risk. To emphasise that
the feature and its class have not yet been selected we denote
hypothetical samples by x′n and y′n, and the data including
them by D′n = Dn−1 ∪ {x′n, y′n}.

In order to evaluate the risk we assume that losses incurred
are known. For simplicity we further assume that the cost of
a correct classification is zero, while the cost of incorrectly
classifying to the y = 1 class or the y = 0 class are λ01

and λ10 respectively. If having observed data D′n, the learner
predicts the probability of x belonging to C1 according to
(9) as p(y |x,D′n,Φn), then the assignment that minimises
the expected misclassification cost [10] is:

A(x | D′n) =

{
1 if p(y |x,D′n,Φn) ≥ λ01/(λ01 + λ10)
0 otherwise.

(10)



The estimated expected misclassification cost or risk for a
feature x is therefore:

R(x | D′n,Φn) = δ0,A(x)p(y = 1 |x,D′n,Φn)λ10

+ δ1,A(x)p(y = 0 |x,D′n,Φn)λ01 (11)

where δ is the Kronecker delta and we have suppressed the
explicit dependence of A(x) on D′n. Since R(x | D′n,Φn)
depends on the particular x′n and y′n returned by the oracles,
the estimated cost should be averaged over the query density:

R(x |Φn) =
∫∫

R(x | D′n,Φn)p(y′n |x′n)Q(x′n |φn) dx′ndy
′
n.

(12)

The average misclassification cost anticipated when mak-
ing a query with query parameters φn is therefore:

R(Φn) =
∫
R(x |Φn)p(x) dx (13)

=
∫∫∫

R(x | D′n,Φn)p(y′n |x′n)Q(x′n |φn)p(x) dx′ndy
′
ndx

(14)

We emphasise that R(Φn) depends upon only φn at the nth
step because Φn−1 is fixed.

Since p(x) and p(y |x) are unknown we estimate R(Φn)
using models based on Dn−1:

R̃(Φn) =
∫∫∫

R(x | D′n,Φn)p(y′n, x
′
n | Dn−1,Φn)

p(x | Dn−1) dx′ndy
′
ndx (15)

where

p(y′n, x
′
n | Dn−1,Φn) =

∫
p(y′n, x

′
n | θ, φn)

p(θ | Dn−1,Φn−1) dθ. (16)

The joint density breaks into

p(y′n, x
′
n | θ, φn) = p(y′n |x′n, θ)Q(x′n | θ, φn) (17)

and

p(x | Dn−1,Φn−1) =
∫
p(x | θ)p(θ | Dn−1,Φn−1) dθ. (18)

In pool based learning, where the unlabeled features are
available at the outset, an estimate for p(x | Dn−1) to be used
in (15) may be made before query based learning begins.

The parameters of the query function φn are then chosen
to minimise the estimated expected risk:

φn = argmin
φn

R̃(Φn) (19)

as indicated on line 2 of Algorithm 1.
Implementation of this active learning scheme requires

successive calculations of the parameter posterior and the
expected risk. Although the expression (8) for the posterior
is a straightforward application of Bayes’ rule, the presence
of the query function renders finding conjugate families
unlikely in all but very special circumstances and Monte

Carlo sampling or approximate methods are likely to be
required in general.

We now demonstrate the framework on the toy problem
of the probabilistic high-low game where parameter space is
two dimensional.

IV. PROBABILISTIC HIGH-LOW GAME

Seung et al. [1] demonstrate their version-space model
on the toy problem of the high-low game. This is a one
dimensional problem containing two uniform classes which
meet at some unknown threshold, γ. Here x ∈ [0, 1) is in
class 1 if x ≥ γ and class 0 otherwise. This version of the
high-low game is completely separable and the target given
by the label oracle is always correct, allowing hypotheses to
be kept or ruled out completely on the basis of each new
query point.

We consider a straightforward non-separable extension
of this model, which we call the probabilistic high-low
game. This is similar to the original high-low game with
the extension of allowing some overlap between the classes.

Class C0 is uniform on [0, α) and class C1 is uniform on
[β, 1). For simplicity we assume that the relative frequency of
the two classes, w0 and w1 are known and P (C0) = w0 and
P (C1) = w1. This model has only two unknown parameters,
α and β, and for particular α, β we have:

p(x |α, β) =
w0

α
I[0,α)(x) +

w1

1− β
I[β,1)(x). (20)

This defines p(x | θ) in (5) with the parameters θ = {α, β}.
In order to ensure that the two classes at least meet we
add the condition that β < α. When α = β there is
no overlap between the classes and this simplifies to the
separable high-low game, with α = β = γ. Given this model
p(y = 1 |x, α, β) is also known. An observation may lie in
one of three regions: When x < β it is definitely in class 0,
when x ≥ α it definitely lies in class 1. The third region is
the overlap region where:

p(y = 1) =
αw1

αw1 + (1− β)w0
for β < α (21)

which depends on the relative frequency of the two classes,
w0 and w1.

We define the query density q(x;φ) to be uniform between
q− and q+, and zero elsewhere. Q(x | θ, φ) will therefore
sample data from p(x | θ), but only in the interval [q−, q+).

The algorithm is initialised by a prior p(θ) = p(α, β). We
take this to be uniform on the region β ≤ α:

p(α, β) =

{
2 if β ≤ α
0 otherwise

(22)

Having formed the basis of the model by defining
p(x |α, β) and p(y = 1 |x, α, β) and having defined a prior
p(α, β), we now reach the major part of the algorithm in
which the learner must decide on a suitable φ, that is the
query interval. Having made n − 1 observations, we look
ahead to estimate the expected cost of making the nth
observation and choose the interval that has the minimum



expected risk (line 2 of Algorithm 1). This is achieved by
sampling a hypothetical observation (x′, y′) from Q(x′;φn),
and finding the average expected cost (15) associated with
each q() parametrised by φn ≡ (q−, q+).

The first step is to sample a hypothetical, α′, β′ from the
‘prior’ p(α, β | Dn−1,Φn−1). Given these we define a model
of the sample oracle, Q(x′ |α′, β′,Φ), which allows us to
draw a hypothetical x′ from the approximation of p(x) by
p(x |α′, β′). Similarly, we find a corresponding hypothetical
target y′ from p(y′ |x′, α′, β′), our model of the label oracle.

Having drawn x′ and y′ we now perform a Bayesian
update, for which we will find the corresponding expected
cost, and as in (8) we have:

p(α, β |x′, y′, φ) ∝ p(y′ |x′, α, β)Q(x′ |α′, β′, φn)p(α, β)
(23)

For this hypothetical posterior we now aim to find the
corresponding ‘optimal classifier’. Following the general case
we aim to find the decision boundary and corresponding de-
cision function which minimises the expected cost for a given
λ01 and λ10. We approximate the model-averaged Bayesian
classifier (9) to find p(y = 1 |x = η) =

∫∫
p(y = 1 |x =

η, α, β)p(α, β | y′, x′)dαdβ by a Monte Carlo sample; in the
work reported here we use 40 samples of each of (α, β), x′

and y′. To minimise the expected misclassification cost, as
described in equations (10) and (11), we find the boundary
between the decision regions η such that:

p(y = 1 |x = η)

≈
∫∫

p(y = 1 |x = η, α, β)p(α, β | y′, x′)dαdβ = λ,

(24)

where λ = λ01/(λ01 + λ10). The corresponding action
function A(x) is given by:

A(x) =

{
1 if x ≥ η
0 otherwise.

(25)

which classifies y = 1 for all x ≥ η and 0 otherwise. This
is the optimum classification for p(α, β |x′, y′, φn). Finally
the average cost R̃(Φn) is found by averaging R̃(x | D′n,Φn)
with respect to p(x |α, β, x′, y′, φn).

V. RESULTS FOR THE HIGH-LOW GAME

First we give an example illustrating a single time-step. In
this example, starting with a uniform prior (22) one data point
x1 = 0.5 has been queried, and was labeled by the oracle
as being in class 1. Figure 1 (top) shows p(α, β | D1,Φ1),
the learner’s current beliefs about α, β, having made this
observation. As β is the lower boundary for class 1, then
β ≤ x1 = 0.5 and as the figure shows the posterior is zero
for all β > x1.

Given these current beliefs the algorithm now performs
a look-ahead to evaluate the expected cost. This is done
by sampling hypothetical ‘true’ values α′, β′, from figure 1
(top) and hypothetical observations x′, y′ in order to evaluate
the expected risk R̃(q−, q+) associated with each choice

α

β
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Fig. 1. Top: Posterior density p(α, β |x1 = 0.5, y1 = 1) after a single
observation x1 = 0.5, indicated by the red cross-hair. Bottom: Expected
cost R̃(Φ1) as a function of q− and q+, using p(α, β |x1 = 0.5, y1 = 1)
as the prior. The black circle indicates the minimum.

of sample region [q−, q+). These are shown in figure 1
(bottom). As is clear from the figure, the [q−, q+) for which
the expected cost is minimised lies on the main diagonal,
where q− = q+ at 0.3.

For the probabilistic high-low game, in every example we
encountered, the minimum expected cost was found to occur
when q− = q+, implying that the learner should query at a
single point rather than probabilistically from a region. In the
following we therefore assume that q− = q+ which allows a
very significant narrowing of the space to be searched to find
the optimum query. This does however raise the question of
whether there are examples of binary classification problems
where it is advantageous to select from a region, rather than
simply query data at a single point. To answer this question
affirmatively we describe in the Appendix a simple example
where querying over a region gives some advantage over
selection at a point.

To evaluate the performance of the algorithm we measure
the ‘actual cost’ namely the average misclassification cost
that would be incurred by a Bayesian classifier encountering
examples from p(x). That is, the cost is

Ractual =
∫
R(x | Dn,Φn)p(x) dx (26)

using (11) together with (10) and (9).
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Fig. 2. Left: the xn queried at each time-step in a single run of the narrow
overlap problem. The overlap interval is from β = 0.1875 to α = 0.2375
and is indicated by the vertical lines. The symbol colours indicate the class
label returned by the oracle: red for class 1, blue for class 0. Right: the
actual cost Ractual at each time-step (26). The blue line shows the minimum
cost for this problem.
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Fig. 3. The first 6 posterior densities associated with the run shown in
figure 2. The location of the previous query is shown by the blue and red
lines where the class label returned is class 0 and class 1 respectively.

We ran the algorithm on two versions of the probabilistic
high-low game, with the two classes spanning the finite
region [0, 1]. In one version the overlap region was narrow,
α = 0.2375 and β = 0.1875, while in the other the overlap
region is much wider, α = 0.6875 and β = 0.375. In both
cases we choose w0 = w1 = 0.5 and λ01 = λ10 = 1.
In the overlap region the probability of choosing C1, given
by equation (21), is 0.23 and 0.52 in the narrow and wide
overlap cases respectively.

Figure 2 (left) shows the xn selected in a single run, for the
narrow overlap case. Blue and red circles indicate data from
class 0 and class 1 respectively, and the vertical lines indicate
the true class boundaries α = 0.2375 and β = 0.1875. Figure
2 (right) shows the actual cost associated with this particular
run. After 8 data points have been observed, the actual cost
has almost reached the minimum for these parameters. Note
that after ≈ 18 queries the algorithm tends to query points
very close the edges of the overlap region.

Figure 3 shows the sequence of posterior distributions for
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Fig. 4. As figure 2, but for the wide overlap α = 0.6875 and β = 0.375.

α, β for the first 6 time-steps. Lines indicate the location
of the queries, blue and red indicating class 0 and 1 labels
respectively. The algorithm has rapidly narrowed down the
probable values of α and β. However, unlike the original
separable high-low game in which regions of version space
could be completely excluded, in this non-separable problem
parameters in the overlap region can only be reweighted as
new observations concentrate probability mass.

Figure 4 shows a single run with a wider overlap region
(α = 0.6875, β = 0.375). This is a more difficult problem,
and it takes 20 data points for the algorithm to closely
approach the minimum actual cost. Again the algorithm
rapidly hones in on queries near to the class boundaries.

Figure 5 shows the median cost versus number of queries
averaged over 100 runs, for the narrow (top) and wide (bot-
tom) problems. Also shown is the median cost for random
selection of queries from p(x) and it is clear that the active
algorithm is learning faster than the random sampler.

Note that in both graphs there is an early spike in the
actual cost for the active learner. In the wide overlap case,
the actual cost after a single observation is greater than the
cost using only the uninformative prior. This is because the
initial query is always within the overlap region at x = 0.5
and the label information, which is inherently misleading
here, is over-fitted by the model. Reference to figures 2, 4
and 6 shows that the spike after a few queries is associated
with the learner overshooting the overlap region boundaries.
However, once the learner has gained information to model
where the overlap region lies this is more than compensated
for.

Figure 6 shows a scatter plot of the choice of x in each
time step over multiple runs in a similar manner to figures
2 and 4. It is interesting to note that over time the algorithm
appears to favour points just outside the overlap region, and
avoids queries near to the middle of the overlap region. This
is particularly noticeable in the wide-overlap problem where
after about 15 queries, the algorithm appears to be ‘testing’
the boundary. Notice also that in the narrow-overlap problem
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Fig. 5. Median cost after n observations, for random sampling (black),
averaged over 200 runs and for active sampling (blue) averaged over 100
runs. The red line is the minimum cost for the problem. Dotted error lines
show the 25th and 75th percentiles. Top and bottom panels show results
for narrow and wide overlap problems respectively.

the algorithm makes most of its queries between x = 0.1
and x = 0.3. In other words it fairly rapidly homes in on the
vicinity of the overlap region.

Since in the probabilistic high-low game we have only
considered point queries (q− = q+) it is straightforward to
plot the estimated cost R̃(q−, q+) for each query as shown for
the first 10 queries in Figure 7 for the wide-overlap problem.
As can be seen in the first time-step the learner correctly
predicts that it should query x = 0.5. At subsequent time-
steps the graph of R̃(q−, q+) is not very smooth owing to
the relatively few Monte Carlo samples used to approximate
the integrals. Nonetheless the location of the minimum is
quite well defined and after a few time-steps it is clearly
more costly to sample in the centre of the overlap region
than close to the edges.

VI. CONCLUSION

We have presented a framework for probabilistic active
learning of non-separable data which is based upon the
principle of reducing the estimated misclassification cost of
each datum queried. The Bayesian formulation permits aver-
aging over model parameters to reduce parameter uncertainty
in predictions. This approach explicitly acknowledges the
non-i.i.d. nature of the data in active learning and has the
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Fig. 6. Query points over multiple runs, for the narrow overlap problem
(top) and the wide overlap (bottom). As with figures 2 and 4, the class label
returned by the oracle is represented by red circles for class 1 and blue
circles for class 0.
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Fig. 7. Predicted cost for 10 time-steps of a single run, with time increasing
from left to right. Vertical axes describe the location of the query q− =
q+ ∈ [0, 1] and estimated cost R̃(q−, q+) is plotted horizontally. Black
horizontal lines indicate the overlap region.

facility to select from arbitrary query density which models
the query process. To our knowledge this is the first time
active selection from a sampling distribution, rather than
specifically at a point has been considered.

The three Gaussians problem, described in the Appendix,
shows that, at least in some situations, the optimal way
of selecting is not necessarily to select at a single point



or randomly across the whole region, but to select from
a distribution. We note that the cost benefit of selecting
from an interval is not very large in the three Gaussians
problem, which was constructed to test this, and in the high-
low game it appears that selecting at a point is optimal
anyway. However this may not be the case in all problems
and there may be problems where sampling from a specific
region offers a considerable advantage. It will be important
to characterise those problems in which sampling broadly is
better than sampling from a point.

The integrations required to implement this framework do
however come with considerable computational costs and
is not yet feasible in real world settings. Current work is
exploring approximations which will allow this approach to
be generally applicable.

APPENDIX

AN EXAMPLE WHERE SAMPLING BROADLY IS OPTIMAL

Because in the probabilistic high-low game simulations,
the minimum estimated risk always appeared at q− = q+
(see Figure 1), which corresponds to selecting x at a point,
the natural question arises: is sampling at a single point
rather than from a broad query function always optimal?
Here we present an example in which the optimal query
function is not infinitely narrow but has some finite width.
The problem, which we call the ‘three Gaussians’ problem,
is illustrated in Figure 8. It is a binary classification problem,
with equal prior probabilities, p(C0) = p(C1) = 1/2,
and p(x |C1) = (N (x | 3, 1) + N (x | 7, 1))/2 (red lines in
Figure 8). The other class conditional density (green) is also
Gaussian: p(x |C0) = N (x |µ, 1), where µ is the single
unknown parameter to be learnt in the problem.

We choose the prior p(µ) = N (µ | 5, 2) as indicated
by the blue curve. The query density is also chosen to be
Gaussian, centred on x = 5 and with width σq: q(x) =
N (x | 5, σ2

q ). If p(µ |x, y) is the posterior density of µ
having observed a single (x, y) pair, then Figure 9 (top)
shows the expected posterior density p(µ |Φ = σq) =∫
p(µ |x′, y′)p(y′ |x′, µ)Q(x′ |σq) dx′dy′ which is the pos-

terior having queried an (x′, y′) pair averaged over q(x′ |σq).
We evaluate the look-ahead risk as the entropy of this
posterior, so that minimum entropy corresponds to the most
compact distribution in parameter space, the probabilistic
variant of minimising version space volume. The bottom
panel of Figure 9 shows the entropy of these posterior
distributions as a function of σq . As we can see in this case
the minimum cost is given by sampling with σq ≈ 1.2.
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