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t. Blind sour
e separation attempts to re
over independent sour
es whi
h have been linearlymixed to produ
e observations. We 
onsider blind sour
e separation with non-stationary mixing, butstationary sour
es. The linear mixing of the independent sour
es sour
es is modelled as evolving a

ordingto a Markov pro
ess, and a method for tra
king the mixing and simultaneously inferring the sour
es ispresented. Observational noise is in
luded in the model. The te
hnique may be used for online �lteringor retrospe
tive smoothing. The tra
king of mixtures of temporally 
orrelated is examined and samplingfrom within a sliding window is shown to be e�e
tive for destroying temporal 
orrelations. The methodis illustrated with numeri
al examples.Keywords: Blind sour
e separation, independent 
omponent analysis, non-stationary, parti
le �lters1. Introdu
tionOver the last de
ade in parti
ular there has beenmu
h interest in methods of blind sour
e separa-tion (BSS) and de
onvolution (see [11℄ for a re-view). One may think of the blind sour
e sep-aration as the problem of identifying speakers(sour
es) in a room given only re
ordings froma number of mi
rophones, ea
h of whi
h re
ord-s a linear mixture of the sour
es, whose statisti-
al 
hara
teristi
s are unknown. The 
asting ofthis problem (whi
h is often referred to as Inde-pendent Component Analysis { ICA) in a neuro-mimeti
 framework [3℄ has done mu
h to to sim-plify and popularise the te
hnique. More re
ent-

ly still the ICA solution has been shown to bethe maximum-likelihood point of a latent-variablemodel [13, 4, 14℄Here we 
onsider the blind sour
e separationproblem when the mixing of the sour
es is non-stationary. Pursuing the speakers in a room anal-ogy, we address the problem of identifying thespeakers when they (or equivalently, the mi
ro-phones) are moving. The problem is 
ast in termsof a hidden state (the mixing proportions of thesour
es) whi
h we tra
k using dynami
 methodssimilar to the Kalman �lter.We �rst brie
y review 
lassi
al ICA and de-s
ribe a sour
e model whi
h permits the separa-tion of light-tailed (leptokurti
) sour
es as wellas heavy tailed sour
es, whi
h the standard I-CA model impli
itly assumes. ICA with non-
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2 ??stationary mixing is des
ribed in terms of a hid-den state model and methods for estimating thesour
es and the mixing are des
ribed. Finally weaddress the non-stationary mixing problem whenthe sour
es are independent, but possess temporal
orrelations.2. Stationary ICAClassi
al ICA assumes that there are M indepen-dent sour
es whose probability density fun
tionsare pm(sm). Observations, xt 2 RN , are produ
edby the instantaneous linear mixing of the sour
esby A: xt = Ast (1)The mixing matrix, A, must have at least as manyrows as 
olumns (N � M), so that the dimen-sion of ea
h observation is at least as great as thenumber of sour
es. The aim of ICA methods isto re
over the latent sour
es ŝt by �nding W , the(pseudo-) inverse of A:ŝt =Wxt =WAst (2)The assumption that the sour
es are indepen-dent means that the joint probability density fun-
ion (pdf) of the sour
es fa
torises into the prod-u
t of marginal densities:p(st) = MYm=1 p(smt ) (3)Using this fa
torisation, the (pseudo) likelihood ofthe observation xt is [4, 13, 14℄:log l = � log j detAj � MXm=1 log pm(ŝmt ) (4)The normalised log likelihood of a set of observa-tions t = 1; :::T is thereforelogL = � log j detAj � 1T TXt=1 MXm=1 log pm(ŝmt )(5)The optimum A may then be found by maximi-sation of logL with respe
t to A, assuming somespe
i�
 form for p(ŝmt ). Su
essive gradient as
entson log l leads to the Bell & Sejnowksi sto
hasti


learning rule for ICA [3℄, while bat
h learning isa
hieved by maximising logL. Learning rates maybe 
onsiderably enhan
ed by modifying the learn-ing rule to make it 
ovariant [1, 13℄.Sin
e the likelihood is un
hanged if A is pre-multiplied by a diagonal matrix D or a s
alingmatrix P; the original s
ale of the sour
es 
annotbe re
overed. The separating matrix W is there-fore only the inverse of A up to a diagonal s
alingand permutation, that is:WA = PD (6)In order to maximise the likelihood some as-sumptions about the form of the sour
e pdfs p(smt )must be made, even though they are a priori un-known. A 
ommon 
hoi
e is p(smt ) / 1= 
osh(smt ),whi
h leads to a tanh nonlinearity in the learn-ing rule. Althuogh the sour
e model is apparently�xed, s
aling of the mixing matrix tunes the mod-el to parti
ular sour
es [6℄, and with a tanh non-linearity platykurti
 (heavy tailed) sour
es 
an beseparated, although not leptokurti
 ones. Cardoso[5℄ has elu
idated the 
onditions under whi
h thetrue mixing matrix is a stable �xed point of thelearning rule.2.1. Generalised ExponentialsBy adopting a more 
exible model for the sour
edensities one might be able to separate a widerrange of sour
e densities. Attias [2℄ has used mix-tures of Gaussians to model the sour
es, whi
hpermits multi-modal sour
es and Lee et al. [12℄swit
h between sub- and super-Gaussian sour
emodels.In order to be able to separate light-tailedsour
es we have used the generalised exponentialdensity:p(sm j�m) = z exp� ����sm � �mwm ����rm (7)where the normalising 
onstant isz = rm2wm�(1=rm) (8)and the density depends upon parameters �m =f�m; wm; rmg. The lo
ation of the distribution isset by �m, its width by wm and the weight of itstails is determined by rm: Clearly p is Gaussian



?? 3when rm = 2; Lapla
ian when rm = 1; and theuniform distribution is approximated in the limitrm !1:Rather than learn f�m; wm; rmg along with theelements of the separating matrix W; whi
h mag-ni�es the size of the sear
h spa
e, they may be
al
ulated from the sequen
es fsmt g (t = 1; :::T )at any, and perhaps every, stage of learning. Thelo
ation parameter is well estimated by the sam-ple mean and the maximum likelihood estimatefor rm and wm may be obtained by solving a one-dimensional equation [6℄.We have used the generalised exponentials ina quasi-Newton (BFGS [15℄) ICA algorithm. Atea
h stage of the optimisation the parametersf�m; wm; rmg des
ribing the distribution of themth separated variable were found, permitting the
al
ulation of logL and its gradient. This algo-rithm is able to separate a mixture of a Lapla
iansour
e, a Gaussian sour
e and a uniformly dis-tributed sour
e. Algorithms using a stati
 tanhnonlinearity are unable to separate this mixture.Further details are given in [6℄.3. Non-stationary Blind Sour
e Separa-tionFigure 1 shows the graphi
al model des
ribingthe 
onditional independen
e relations of the non-stationary BSS model. In 
ommon with stati
blind sour
e separation, we adopt a generativemodel in whi
h M independent sour
es are lin-early mixed at ea
h instant. Unlike stati
 BSS,however, the mixing matrix At is allowed to varywith time. We also assume that the observationxt is 
ontaminated by normally distributed noisewt � N (0; R): Thusxt = Atst +wt (9)The dynami
s of At are modelled by a �rst or-der Markov pro
ess, in whi
h the elements of Atdi�use from one observation time to the next. Ifwe let at = ve
(At) be the N �M -dimensionalve
tor obtained by sta
king the 
olumns of At,then at evolves a

ording toat+1 = Fat + vt (10)where vt is zero-mean Gaussian noise with 
ovari-an
e Q, and F is the state transition matrix; in
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al model des
ribing non-stationary BSSthe absen
e of a priori information we take F tobe the identity matrix. The state equation (10)and the statisti
s of vt together de�ne the densityp(at+1jat).A full spe
i�
ation of the state must in
ludethe parameter set � = f�mg, m = 1:::M , whi
hdes
ribes the independent sour
e densities:p(s j�) = MYm=1 p(sm j�m) (11)We model the sour
e densities with generalised ex-ponentials, as des
ribed in x2.1. Sin
e the sour
esthemselves are 
onsidered to be stationary, the pa-rameters � are taken to be stati
, but they mustbe learned as data are observed.The problem is now to tra
k At and to learn� as new observations xt be
ome available. If Xtdenotes the 
olle
tion of observations fx1; :::;xtg,then the goal of �ltering methods is to dedu
e theprobability density fun
tion of the state p(at jXt).This pdf may be found re
ursively in two stages:predi
tion and 
orre
tion. If p(at�1 jXt�1) isknown, the state equation (10) and the Markovproperty that at depends only on at+1 permitspredi
tion of the state at time t:p(at jXt�1) = Z p(at jat�1)p(at�1 jXt�1) dat�1(12)The predi
tive density p(at jXt�1) may be re-garded as an estimate of at prior to the obser-vation of xt. As the datum xt is observed, the



4 ??predi
tion may be 
orre
ted via Bayes' rulep(at jXt) = Z�1p(xt jat)p(at jXt�1) (13)where the likelihood of the observation given themixing matrix, p(xt jat); is de�ned by the obser-vation equation (9). The normalisation 
onstantZ is known as the innovations probability:Z = p(xt jXt�1) (14)= Z p(xt jat)p(at jXt�1) datThe predi
tion (12) and 
orre
tion/update (13)pair of equations may be used to step through thedata online, alternately predi
ting the subsequentstate and then 
orre
ting the estimate when a newdatum arrives.3.1. Predi
tionSin
e the state equation is linear and Gaussian thestate transition density isp(at jat�1) = G(at � Fat�1; Q) (15)where G(�;�) denotes the Gaussian density fun
-tion with mean zero and 
ovarian
e matrix �.We represent the prior density p(at�1 jXt�1) asa Gaussian:p(at�1 jXt�1) = G(at�1 � �t�1;�t�1) (16)Predi
tion is then straight-forward:p(at jXt�1) =G(at � F�t�1; Q+ F�t�1F T ) (17)3.2. Corre
tionOn the observation of a new datum xt the predi
-tion (17) 
an be 
orre
ted. Sin
e the observationalnoise is assumed to be Gaussian its density isp(wt) = G(wt; R) (18)The pdf of observations p(xt jAt) is given byp(xt jAt) = Z p(xt jAt;�; st)p(st j�) dst (19)

and sin
e the sour
es are assumed stationaryp(xt jAt) = Z p(xt jAt; s)p(s j�) ds= Z G(xt �Ats; R) MYm=1 pm(sm) ds (20)We emphasise that it is in equation (20) that theindependen
e of the sour
es is modelled by writingthe joint sour
e density in fa
tored form.Lapla
e's approximation 
an be used to approx-imate the 
onvolution (20) for any �xed At whenthe observational noise is small; otherwise the in-tegral 
an be evaluated by Monte Carlo integra-tion. The 
orre
ted pdf p(at jXt) of equation (13)is then found by drawing samples, AtjXt from theGaussian of equation (17) and evaluating equation(20) for ea
h sample.The mean and 
ovarian
e of the 
orre
tedp(at jXt) are found from the samples and the den-sity approximated on
e again by a Gaussian beforethe next predi
tion is made.Rather than representing the state densities asGaussians at ea
h stage more 
exibility may beobtained with parti
le �lter te
hniques [9, 10℄. Inthese methods the state density is represented bya 
olle
tion of \parti
les," ea
h with a probabil-ity mass. Ea
h parti
le's probability is modi�edusing the state and observation equations, afterwhi
h a new independent sample is obtained usingsampling importan
e resampling before pro
edingto the next predi
tion/observation step. Though
omputationally more expensive than the Gaus-sian representation, these methods permit arbi-trary observational noise distributions to be mod-elled and more 
ompli
ated, possibly multi-modal,state densities. The appli
ation of parti
le �ltermethods to non-stationary ICA is des
ribed else-where [7℄.3.3. Sour
e Re
overyRather than making stri
tly Bayesian estimatesof the model parameters �m = frm; wm; �mg,the maximum a posteriori (MAP) estimate of Atis used to estimate st, after whi
h maximum-likelihood estimates of the parameters are foundfrom sequen
es fsm� gt�=1. Finding maximum-likelihood parameters is readily and robustly a
-
omplished [6℄. Ea
h st is found by maximising
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Fig. 2. Tra
king a mixture of a Lapla
ian and Gaussiansour
es.log p(st jxt; At), whi
h is equivalent to minimising(xt �A�t st)TR�1(xt �A�t st) + MXm=1 ���� smtwm ����rm(21)where A�t is the MAP estimate for At. Theminimisation 
an be 
arried out with a pseudo-Newton method, for example. If the noise varian
eis small, st � Aytxt, where Ayt = (ATt At)�1ATt isthe pseudo-inverse of At.4. IllustrationHere we illustrate the method with two examples.In the �rst example a Lapla
ian sour
e (p(s) /e�jsj) and a sour
e with uniform density are mixedwith a mixing matrix whose 
omponents vary si-nusoidally with time:At = � 
os!t sin!t� sin!t 
os!t� (22)Note, however, that the os
illation frequen
y dou-bles during the se
ond half of the simulation mak-ing it more diÆ
ult to tra
k. Figure 2 shows thetrue mixing matrix and the tra
king of it by non-stationary ICA.
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Fig. 3. Online estimates of the generalised exponentialparameters rm during the tra
king shown in �gure 2.Like BSS for stationary mixing, this method
annot distinguish between a 
olumn of At anda s
aling of the 
olumn. In �gure 2 the algorithmhas \lat
hed on" to the negative of the �rst 
ol-umn of At, whi
h is shown dashed. We resolvethe s
aling ambiguity between the varian
e of thesour
es and the s
ale of the 
olumns of At by in-sisting that the varian
e of ea
h sour
e is unity;i.e., we ignore the estimated value of wm (equation7), instead setting wm = 1 for all m and allowingall the s
ale information to reside in the 
olumnsof At.To provide an initial estimate of the mixing ma-trix and sour
e parameters stati
 ICA was run onthe �rst 100 samples. At times t > 100 the gener-alised exponential parameters were re-estimatedevery 10 observations. Figure 3 shows that theestimated sour
e parameters 
onverge to 
lose totheir 
orre
t values of 1 for the Lapla
ian sour
eand \large" for the uniform sour
e.Estimates of the tra
king error are provided bythe 
ovarian
e, �t, of the state density (equation16). In this 
ase the true At lies within one stan-dard deviation of the estimated At almost all thetime. We remark that it appears to be more dif-�
ult to tra
k the 
olumns asso
iated with light-tailed sour
es than heavy-tailed sour
es. We note,furthermore, that the Gaussian 
ase appears to bemost diÆ
ult. In �gure 2, A11 and A21 mix the



6 ??
0 200 400 600 800 1000 1200 1400 1600 1800 2000

−2

0

2

A
1
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

A
2
1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

A
1
2

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−2

0

2

A
2
2

Fig. 4. Tra
king through a singularity. The mixing ma-trix is singular at t = 1000.Lapla
ian sour
e, and the uniform sour
e is mixedby A12 and A22 whi
h are tra
ked less well, espe-
ially during the se
ond half of the simulation. Wesuspe
t that the diÆ
ulty in tra
king 
olumns as-so
iated with nearly Gaussian sour
es is due tothe ambiguity between a Gaussian sour
e and theobservational noise whi
h is assumed to be Gaus-sian.It is easy to envisage situations in whi
h themixing matrix might brie
y be
ome singular. Forexample, if the mi
rophones are positioned so thatea
h re
eives the same proportions of ea
h speak-er the 
olumns of At are linearly dependent andAt is singular. In this situation At 
annot be in-verted and sour
e estimates (equation 21) are verypoor. To 
ope with this we monitor the 
onditionnumber of At; when it is large, implying that At is
lose to singular, the sour
e estimates are dis
ard-ed for the purposes of inferring the sour
e modelparameters, frm; wm; �mg.In �gure 4 we show non-stationary BSS appliedto Lapla
ian and uniform sour
es mixed with thematri
es At = � 
os 2!t sin!t� sin 2!t 
os!t� (23)
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Fig. 5. Top: Condition number of the MAP estimate ofAt. At t = 1000 the true mixing matrix is singular. Matri-
es with 
ondition numbers greater than 10 were not usedfor estimating the sour
e parameters. Bottom: Innova-tions probability p(xt jXt�1).where ! is 
hosen so that A1000 is singular. Clear-ly the mixing matrix is tra
ked through the singu-larity, although not so 
losely as when At is well
onditioned. Figure 5 shows the 
ondition num-ber of the MAP At. The normalising 
onstantZ = p(xt jXt�1) in the predi
tion equation (17)is known as the innovations probability and mea-sures the degree to whi
h a new datum �ts thedynami
 model learned by the tra
ker. Dis
rete
hanges of state are signalled by low innovationsprobability. Figure 5 also shows the innovationsprobability for the mixing shown in �gure 4: thepresen
e of the singularity is 
learly re
e
ted.Note also that the simulation shown in Figure 4was deliberately initialised fairly 
lose to, but notexa
tly at the true A1. The \lat
hing on" of thetra
ker to the 
orre
t mixing matrix in the �rst100 observations is evident in the �gure.
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Fig. 6. Top: Retrospe
tive tra
king with forward-ba
kard re
ursions. Bottom: Online �ltering of the samedata. Dashed lines show the negative of the mixing matrixelements.5. SmoothingThe �ltering methods presented estimate the mix-ing matrix as p(At jXt). They are therefore stri
t-ly 
ausal and 
an be used for online tra
king. Ifthe data are analysed retrospe
tively future obser-vations (x� , � > t) may be used to re�ne the esti-mate of At. The Markov stru
ture of the genera-tive model permits the pdf p(at jXT ) to be foundfrom a forward pass through the data, followed bya ba
kward sweep in whi
h the in
uen
e of futureobservations on at is evaluated. See, for example,[8℄ for a detailed exposition of forward-ba
kwardre
ursions.

In the forward pass the joint probabilityp(at;x1; :::xt) = �t= Z �t�1p(at jat�1) p(xt jat) dat�1 (24)is re
ursively evaluated. In the ba
kward sweepthe 
ondtional probabilityp(xt+1; :::;xT jat) = �t= Z �t+1 p(at+1 jat)p(xt+1 jat+1) dat+1 (25)if found. Finally the two are 
ombined to produ
ea smoothed non-
ausal estimate of the mixing ma-trix: p(at jx1; :::;xT ) / �t�t (26)If �t and �t are ea
h approximated by Gaussiansit is nes
essary to save only the means and 
ovari-an
e matri
esFigure 6 illustrates tra
king by both smooth-ing and 
ausal �ltering. As before the elementsof the mixing matrix vary sinusoidally with timeex
ept for dis
ontinous jumps at t = 600 and1200. Both the �ltering and forward-ba
kwardre
ursions tra
k the mixing matrix; however thesmoothed estimate is less noisy and more a

u-rate, parti
ularly at the dis
ontinuities. Note alsothat the following the dis
ontinuity at t = 1200the negative of the �rst 
olumm of At is tra
ked.6. Temporal CorrelationsThe graphi
al model in Figure 1 assumes that su
-
essive samples from ea
h sour
e are independent,so that the sour
es are sto
hasti
. When temporal
orrelations in the sour
es are present the modelmust be modi�ed to in
lude the 
onditional de-penden
e of smt on smt�1. In this 
ase the hiddenstate is now 
omprised of at and the states of thesour
es st, and predi
tions and 
orre
tions for thefull state should be made. Sin
e the sour
es areindependent, predi
tions for the ea
h sour
e andat may be made independently and the system isa fa
torial hidden Markov model [8℄.A number of sour
e predi
tors have been imple-mented, in
luding the Kalman �lter, AR modelsand Gaussian mixture models. However, the fun-damental indetermina
y of the sour
e s
ales ren-



8 ??ders the 
ombined tra
ker unstable. The instabil-ity arises be
ause the 
hange in observation fromxt+1 to xt 
annot be unambiguously assigned toeither a 
hange in the mixing matrix or a 
hangein the sour
es. Small errors in the predi
tion ofthe sour
es indu
e errors in the mixing matrix es-timates, whi
h in turn lead to errors in subsequentsour
e predi
tions; these errors are then in
orpo-rated into the predi
tive model for the sour
es andfurther (worse) errors in the predi
tion are made.This problem is not present in the sto
hasti
 
asebe
ause the sour
e model is mu
h more tightly
onstrained.Under the assumption that the sour
es evolveon a rapid times
ale 
ompared with the mixingmatrix, the e�e
t of temporal 
orrelations in thesour
es may be removed by averaging over a slid-ing window. That is, the likelihood p(xt jAt) usedin the 
orre
tion step (equation 13) is repla
ed by( LY�=�Lp(xt+� jAt+� )) 12L+1 (27)The length of the window 2L+ 1 is 
hosen to beof a typi
al times
ale of the sour
es. Tra
kingusing the averaged likelihood is 
omputational-ly expensive be
ause at ea
h t the p(xt+� jAt+� )must be evaluated for ea
h � in the sliding win-dow. An alternative method of destroying thesour
e temporal 
orrelations is to repla
e the like-lihood p(xt jAt) with p(xt+� jAt+� ) with � 
ho-sen at random from within the sliding window(�L � � � L). This is no more expensive thanusing p(xt jAt) and e�e
tively destroys the sour
e
orrelations.Figure 7 illustrates the tra
king of a mixing ma-trix with temporally 
orrelated sour
es. The win-dow length was L = 50. Tra
king is not as a

u-rate as in the sto
hasti
 
ase, however the mixingmatrix is followed and the sour
es are re
overedwell.7. Con
lusionWe have presented a method for blind sour
eseparation when the mixing proportions are non-stationary. The method is stri
tly 
ausal and 
anbe used for online tra
king (or \�ltering"). If da-ta are analysed retrospe
tively forward-ba
kward
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Fig. 7. Tra
king temporally 
orrelated sour
es. Top: El-ements of the mixing matrix during tra
king. Dashed linesshow the true mixing matrix elements. Bottom: Re
ov-ered sour
es and the true sour
es (dashed) for times 1000- 1500.re
ursions may be used for smoothing rather than�ltering. The mixing of temporally 
orrelatedsour
es may be tra
ked by averaging or samplingfrom within a sliding window.In 
ommon with most tra
king methods, thestate noise 
ovarian
e Q and the observationalnoise 
ovarian
e R are parameters whi
h must beset. Although we have not addressed the issuehere, it is straight-forward, though laborious, toobtain maximum-likelihood estimates for them us-ing the EM method [8℄. It would also be possibleto estimate the state mixing matrix F in the samemanner.



?? 9Although we have modelled the sour
e densitieshere with generalised exponentials, whi
h permitsthe separation of a wide range of sour
es, it is pos-sible to both generalise or restri
t the sour
e mod-el. More 
ompli
ated (possibly multi-modal) den-sities may be represented by a mixture of Gaus-sians. On the other hand, if all the sour
es arerestri
ted to be Gaussian the method be
omes atra
king fa
tor analyser. In the zero noise lim-it the method performs non-stationary prin
ipal
omponent analysis.A
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