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Abstract. Blind source separation attempts to recover independent sources which have been linearly
mixed to produce observations. We consider blind source separation with non-stationary mixing, but
stationary sources. The linear mixing of the independent sources sources is modelled as evolving according
to a Markov process, and a method for tracking the mixing and simultaneously inferring the sources is
presented. Observational noise is included in the model. The technique may be used for online filtering
or retrospective smoothing. The tracking of mixtures of temporally correlated is examined and sampling
from within a sliding window is shown to be effective for destroying temporal correlations. The method
is illustrated with numerical examples.
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1. Introduction ly still the ICA solution has been shown to be
the maximum-likelihood point of a latent-variable

model [13, 4, 14]
Here we consider the blind source separation

Over the last decade in particular there has been problem when the mixing of the sources is non-
much interest in methods of blind source separa- stationary. Pursuing the speakers in a room anal-
tion (BSS) and deconvolution (see [11] for a re- ogy, we address the problem of identifying the
view). One may think of the blind source sep- speakers when they (or equivalently, the micro-
aration as the problem of identifying speakers phones) are moving. The problem is cast in terms
(sources) in a room given only recordings from of a hidden state (the mixing proportions of the
a number of microphones, each of which record- sources) which we track using dynamic methods
s a linear mixture of the sources, whose statisti- similar to the Kalman filter.

cal characteristics are unknown. The casting of We first briefly review classical ICA and de-
this problem (which is often referred to as Inde- scribe a source model which permits the separa-
pendent Component Analysis — ICA) in a neuro- tion of light-tailed (leptokurtic) sources as well
mimetic framework [3] has done much to to sim- as heavy tailed sources, which the standard I-

plify and popularise the technique. More recent- CA model implicitly assumes. ICA with non-
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stationary mixing is described in terms of a hid-
den state model and methods for estimating the
sources and the mixing are described. Finally we
address the non-stationary mixing problem when
the sources are independent, but possess temporal
correlations.

2. Stationary ICA

Classical ICA assumes that there are M indepen-
dent sources whose probability density functions
are pp, (s™). Observations, x; € RV, are produced

by the instantaneous linear mixing of the sources
by A:

Xt = ASt (1)

The mixing matrix, A, must have at least as many
rows as columns (N > M), so that the dimen-
sion of each observation is at least as great as the
number of sources. The aim of ICA methods is
to recover the latent sources §; by finding W, the
(pseudo-) inverse of A:

ét = WXt = WASt (2)

The assumption that the sources are indepen-
dent means that the joint probability density fun-
cion (pdf) of the sources factorises into the prod-
uct of marginal densities:

M

p(s)) = [ p(s) (3)

m=1

Using this factorisation, the (pseudo) likelihood of
the observation x, is [4, 13, 14]:

M
logl = —log | det A| — Z logpm (5") (4)
m=1

The normalised log likelihood of a set of observa-
tions t = 1,...T is therefore

T M
1
log £ = —log|det A| — T Z Z log pm (81")
t=1 m=1
(5)

The optimum A may then be found by maximi-
sation of log £ with respect to A, assuming some
specific form for p(8)"*). Sucessive gradient ascents
on logl leads to the Bell & Sejnowksi stochastic

learning rule for ICA [3], while batch learning is
achieved by maximising log £. Learning rates may
be considerably enhanced by modifying the learn-
ing rule to make it covariant [1, 13].

Since the likelihood is unchanged if A is pre-
multiplied by a diagonal matrix D or a scaling
matrix P, the original scale of the sources cannot
be recovered. The separating matrix W is there-
fore only the inverse of A up to a diagonal scaling
and permutation, that is:

WA= PD (6)

In order to maximise the likelihood some as-
sumptions about the form of the source pdfs p(s}"*)
must be made, even though they are a priori un-
known. A common choice is p(s}*) o< 1/ cosh(s}?),
which leads to a tanh nonlinearity in the learn-
ing rule. Althuogh the source model is apparently
fixed, scaling of the mixing matrix tunes the mod-
el to particular sources [6], and with a tanh non-
linearity platykurtic (heavy tailed) sources can be
separated, although not leptokurtic ones. Cardoso
[5] has elucidated the conditions under which the
true mixing matrix is a stable fixed point of the
learning rule.

2.1. Generalised Exponentials

By adopting a more flexible model for the source
densities one might be able to separate a wider
range of source densities. Attias [2] has used mix-
tures of Gaussians to model the sources, which
permits multi-modal sources and Lee et al. [12]
switch between sub- and super-Gaussian source
models.

In order to be able to separate light-tailed
sources we have used the generalised exponential
density:

m Tm

— Um

(7)

p(s™|0m) = zexp — ‘S
Wm

where the normalising constant is

T'm
2= —— 8

2w (1)) )
and the density depends upon parameters @,, =
{tbm, Wi, ™m }. The location of the distribution is
set by pm, its width by w,, and the weight of its
tails is determined by r,,. Clearly p is Gaussian



when r,, = 2, Laplacian when r,, = 1, and the
uniform distribution is approximated in the limit
T — 0O.

Rather than learn {ti,,, wm, rm } along with the
elements of the separating matrix W, which mag-
nifies the size of the search space, they may be
calculated from the sequences {s{*} (¢t = 1,..T)
at any, and perhaps every, stage of learning. The
location parameter is well estimated by the sam-
ple mean and the maximum likelihood estimate
for r,,, and w,,, may be obtained by solving a one-
dimensional equation [6].

We have used the generalised exponentials in
a quasi-Newton (BFGS [15]) ICA algorithm. At
each stage of the optimisation the parameters
{fm, W, rm} describing the distribution of the
mth separated variable were found, permitting the
calculation of log £ and its gradient. This algo-
rithm is able to separate a mixture of a Laplacian
source, a Gaussian source and a uniformly dis-
tributed source. Algorithms using a static tanh
nonlinearity are unable to separate this mixture.
Further details are given in [6].

3. Non-stationary Blind Source Separa-
tion

Figure 1 shows the graphical model describing
the conditional independence relations of the non-
stationary BSS model. In common with static
blind source separation, we adopt a generative
model in which M independent sources are lin-
early mixed at each instant. Unlike static BSS,
however, the mixing matrix A; is allowed to vary
with time. We also assume that the observation
X; is contaminated by normally distributed noise
w; ~ N(0, R). Thus

Xt = AtSt + Wy (9)

The dynamics of A; are modelled by a first or-
der Markov process, in which the elements of A;
diffuse from one observation time to the next. If
we let a; = vec(4;) be the N x M-dimensional
vector obtained by stacking the columns of A;,
then a; evolves according to

ai1 = Fat + vy (10)

where v; is zero-mean Gaussian noise with covari-
ance (), and F' is the state transition matrix; in
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Fig. 1. Graphical model describing non-stationary BSS

the absence of a priori information we take F' to
be the identity matrix. The state equation (10)
and the statistics of v; together define the density
plat1]ar).

A full specification of the state must include
the parameter set 8 = {0,,}, m = 1...M, which
describes the independent source densities:

M
p(s10) = T] p(s™6m) (11)

We model the source densities with generalised ex-
ponentials, as described in §2.1. Since the sources
themselves are considered to be stationary, the pa-
rameters @ are taken to be static, but they must
be learned as data are observed.

The problem is now to track A; and to learn
0 as new observations x; become available. If X;
denotes the collection of observations {x1,...,x¢},
then the goal of filtering methods is to deduce the
probability density function of the state p(a;|X).
This pdf may be found recursively in two stages:
prediction and correction. If p(a;_1|X;—1) is
known, the state equation (10) and the Markov
property that a; depends only on a;y; permits
prediction of the state at time ¢:

plag| Xi—1) = /P(at|at—1)p(at—1 | X¢—1)dag_q
(12)
The predictive density p(a;|X;—1) may be re-

garded as an estimate of a; prior to the obser-
vation of x;. As the datum x; is observed, the



prediction may be corrected via Bayes’ rule
p(ai|Xy) = Z 'p(xi]as)p(as| X 1) (13)

where the likelihood of the observation given the
mixing matrix, p(x;|at), is defined by the obser-
vation equation (9). The normalisation constant
Z is known as the innovations probability:

Z = p(x¢| Xi-1) (14)

= /p(xt|at)p(at|Xt71)dat

The prediction (12) and correction/update (13)
pair of equations may be used to step through the
data online, alternately predicting the subsequent
state and then correcting the estimate when a new
datum arrives.

3.1.  Prediction

Since the state equation is linear and Gaussian the
state transition density is

platlai1) = G(ay — Fay_1,Q)  (15)

where G(-,¥) denotes the Gaussian density func-
tion with mean zero and covariance matrix X.

We represent the prior density p(a;—1|X:—1) as
a Gaussian:

p(at—l |Xt—1) = g(at—l — Mg, Et—1) (16)

Prediction is then straight-forward:

P(at |Xt—1) =
Gla; — Fu, 1,Q+ Fx; (FT) (17)

3.2.  Correction
On the observation of a new datum x; the predic-

tion (17) can be corrected. Since the observational
noise is assumed to be Gaussian its density is

p(wi) = G(wy, R) (18)

The pdf of observations p(x;|A;) is given by

p(x: | Ar) = / p(xt| A1, 8,50)p(s/|8) ds,  (19)

and since the sources are assumed stationary

p(xe|Ar) = / p(xe| Ae, $)p(s0) ds

M
~ [0t~ . B) [] pmis™as 20)

We emphasise that it is in equation (20) that the
independence of the sources is modelled by writing
the joint source density in factored form.

Laplace’s approximation can be used to approx-
imate the convolution (20) for any fixed 4; when
the observational noise is small; otherwise the in-
tegral can be evaluated by Monte Carlo integra-
tion. The corrected pdf p(a;| X;) of equation (13)
is then found by drawing samples, A;|X; from the
Gaussian of equation (17) and evaluating equation
(20) for each sample.

The mean and covariance of the corrected
p(a;| X;) are found from the samples and the den-
sity approximated once again by a Gaussian before
the next prediction is made.

Rather than representing the state densities as
Gaussians at each stage more flexibility may be
obtained with particle filter techniques [9, 10]. In
these methods the state density is represented by
a collection of “particles,” each with a probabil-
ity mass. Each particle’s probability is modified
using the state and observation equations, after
which a new independent sample is obtained using
sampling importance resampling before proceding
to the next prediction/observation step. Though
computationally more expensive than the Gaus-
sian representation, these methods permit arbi-
trary observational noise distributions to be mod-
elled and more complicated, possibly multi-modal,
state densities. The application of particle filter
methods to non-stationary ICA is described else-
where [7].

3.3.  Source Recovery

Rather than making strictly Bayesian estimates
of the model parameters 8™ = {r,,wm,Vm},
the maximum a posteriori (MAP) estimate of A;
is used to estimate s;, after which maximum-
likelihood estimates of the parameters are found
from sequences {s”™}!_,. Finding maximum-
likelihood parameters is readily and robustly ac-
complished [6]. Each s; is found by maximising
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Fig. 2. Tracking a mixture of a Laplacian and Gaussian
sources.

log p(s¢|x¢, At), which is equivalent to minimising

Tm

m
i
Wi,

M

(xe — Afs)) "R (xp — Afse) + )
m=1

(21)

where A} is the MAP estimate for A;. The
minimisation can be carried out with a pseudo-
Newton method, for example. If the noise variance
is small, s; ~ Afx,, where Al = (AT 4,)~"AT is
the pseudo-inverse of A;.

4. TIllustration

Here we illustrate the method with two examples.

In the first example a Laplacian source (p(s) o
e~ 1*l) and a source with uniform density are mixed
with a mixing matrix whose components vary si-
nusoidally with time:

A, = { (22)

coswt sinwt
—sinwt coswt

Note, however, that the oscillation frequency dou-
bles during the second half of the simulation mak-
ing it more difficult to track. Figure 2 shows the
true mixing matrix and the tracking of it by non-
stationary ICA.
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Fig. 3. Online estimates of the generalised exponential
parameters r,, during the tracking shown in figure 2.

Like BSS for stationary mixing, this method
cannot, distinguish between a column of A; and
a scaling of the column. In figure 2 the algorithm
has “latched on” to the negative of the first col-
umn of A;, which is shown dashed. We resolve
the scaling ambiguity between the variance of the
sources and the scale of the columns of A; by in-
sisting that the variance of each source is unity;
i.e., we ignore the estimated value of w,, (equation
7), instead setting w,, = 1 for all m and allowing
all the scale information to reside in the columns
of At.

To provide an initial estimate of the mixing ma-
trix and source parameters static ICA was run on
the first 100 samples. At times ¢ > 100 the gener-
alised exponential parameters were re-estimated
every 10 observations. Figure 3 shows that the
estimated source parameters converge to close to
their correct values of 1 for the Laplacian source
and “large” for the uniform source.

Estimates of the tracking error are provided by
the covariance, ¥, of the state density (equation
16). In this case the true A; lies within one stan-
dard deviation of the estimated A; almost all the
time. We remark that it appears to be more dif-
ficult to track the columns associated with light-
tailed sources than heavy-tailed sources. We note,
furthermore, that the Gaussian case appears to be
most difficult. In figure 2, A;; and As; mix the
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Fig. 4. Tracking through a singularity. The mixing ma-
trix is singular at ¢ = 1000.

Laplacian source, and the uniform source is mixed
by A2 and Ass which are tracked less well, espe-
cially during the second half of the simulation. We
suspect that the difficulty in tracking columns as-
sociated with nearly Gaussian sources is due to
the ambiguity between a Gaussian source and the
observational noise which is assumed to be Gaus-
sian.

It is easy to envisage situations in which the
mixing matrix might briefly become singular. For
example, if the microphones are positioned so that
each receives the same proportions of each speak-
er the columns of A; are linearly dependent and
Ay is singular. In this situation A; cannot be in-
verted and source estimates (equation 21) are very
poor. To cope with this we monitor the condition
number of A;; when it is large, implying that A, is
close to singular, the source estimates are discard-
ed for the purposes of inferring the source model
parameters, {7, , W, fhm }-

In figure 4 we show non-stationary BSS applied
to Laplacian and uniform sources mixed with the
matrices

(23)

A, = | cos 2wt sinwt
b7 | —sin2wt coswt
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Fig. 5. Top: Condition number of the MAP estimate of
A¢. At t = 1000 the true mixing matrix is singular. Matri-
ces with condition numbers greater than 10 were not used
for estimating the source parameters. Bottom: Innova-
tions probability p(x:|X¢—1).

where w is chosen so that A1ggp is singular. Clear-
ly the mixing matrix is tracked through the singu-
larity, although not so closely as when A; is well
conditioned. Figure 5 shows the condition num-
ber of the MAP A;. The normalising constant
7Z = p(x¢|X¢—1) in the prediction equation (17)
is known as the innovations probability and mea-
sures the degree to which a new datum fits the
dynamic model learned by the tracker. Discrete
changes of state are signalled by low innovations
probability. Figure 5 also shows the innovations
probability for the mixing shown in figure 4: the
presence of the singularity is clearly reflected.

Note also that the simulation shown in Figure 4
was deliberately initialised fairly close to, but not
exactly at the true A;. The “latching on” of the
tracker to the correct mixing matrix in the first
100 observations is evident in the figure.
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Fig. 6. Top: Retrospective tracking with forward-
backard recursions. Bottom: Online filtering of the same
data. Dashed lines show the negative of the mixing matrix
elements.

5. Smoothing

The filtering methods presented estimate the mix-
ing matrix as p(A; | X¢). They are therefore strict-
ly causal and can be used for online tracking. If
the data are analysed retrospectively future obser-
vations (x,, 7 > t) may be used to refine the esti-
mate of A;. The Markov structure of the genera-
tive model permits the pdf p(a:| X7) to be found
from a forward pass through the data, followed by
a backward sweep in which the influence of future
observations on a; is evaluated. See, for example,
[8] for a detailed exposition of forward-backward
recursions.

7?7 7

In the forward pass the joint probability

p(ataxla"'xt) = (¢
=/at—lp(at|at—1)P(Xt|at)dat—1 (24)

is recursively evaluated. In the backward sweep
the condtional probability

P(Xit1, - X7 |AL) = By
=/Bt+1p(at+1|at)P(Xt+1|at+1)dat+1 (25)

if found. Finally the two are combined to produce
a smoothed non-causal estimate of the mixing ma-
trix:

plag| X1, ..., X7) X afs (26)

If a; and f; are each approximated by Gaussians
it is nescessary to save only the means and covari-
ance matrices

Figure 6 illustrates tracking by both smooth-
ing and causal filtering. As before the elements
of the mixing matrix vary sinusoidally with time
except for discontinous jumps at ¢ = 600 and
1200. Both the filtering and forward-backward
recursions track the mixing matrix; however the
smoothed estimate is less noisy and more accu-
rate, particularly at the discontinuities. Note also
that the following the discontinuity at ¢ = 1200
the negative of the first columm of A4; is tracked.

6. Temporal Correlations

The graphical model in Figure 1 assumes that suc-
cessive samples from each source are independent,
so that the sources are stochastic. When temporal
correlations in the sources are present the model
must be modified to include the conditional de-
pendence of s;* on s;*,. In this case the hidden
state is now comprised of a; and the states of the
sources s;, and predictions and corrections for the
full state should be made. Since the sources are
independent, predictions for the each source and
a; may be made independently and the system is
a factorial hidden Markov model [8].

A number of source predictors have been imple-
mented, including the Kalman filter, AR models
and Gaussian mixture models. However, the fun-
damental indeterminacy of the source scales ren-



ders the combined tracker unstable. The instabil-
ity arises because the change in observation from
Xt4+1 to x¢ cannot be unambiguously assigned to
either a change in the mixing matrix or a change
in the sources. Small errors in the prediction of
the sources induce errors in the mixing matrix es-
timates, which in turn lead to errors in subsequent
source predictions; these errors are then incorpo-
rated into the predictive model for the sources and
further (worse) errors in the prediction are made.
This problem is not present in the stochastic case
because the source model is much more tightly
constrained.

Under the assumption that the sources evolve
on a rapid timescale compared with the mixing
matrix, the effect of temporal correlations in the
sources may be removed by averaging over a slid-
ing window. That is, the likelihood p(x;|A) used
in the correction step (equation 13) is replaced by

1

L 3L+1
{ 1T P(Xt+r|At+T)} (27)

T=—1L

The length of the window 2L + 1 is chosen to be
of a typical timescale of the sources. Tracking
using the averaged likelihood is computational-
ly expensive because at each ¢ the p(xiyr|At+r)
must be evaluated for each 7 in the sliding win-
dow. An alternative method of destroying the
source temporal correlations is to replace the like-
lihood p(xt|At) with p(Xt+7—|At+7—) with 7 cho-
sen at random from within the sliding window
(=L < 7 < L). This is no more expensive than
using p(x¢| A¢) and effectively destroys the source
correlations.

Figure 7 illustrates the tracking of a mixing ma-
trix with temporally correlated sources. The win-
dow length was L = 50. Tracking is not as accu-
rate as in the stochastic case, however the mixing
matrix is followed and the sources are recovered
well.

7. Conclusion

We have presented a method for blind source
separation when the mixing proportions are non-
stationary. The method is strictly causal and can
be used for online tracking (or “filtering”). If da-
ta are analysed retrospectively forward-backward
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Fig. 7. Tracking temporally correlated sources. Top: El-
ements of the mixing matrix during tracking. Dashed lines
show the true mixing matrix elements. Bottom: Recov-
ered sources and the true sources (dashed) for times 1000
- 1500.

recursions may be used for smoothing rather than
filtering. The mixing of temporally correlated
sources may be tracked by averaging or sampling
from within a sliding window.

In common with most tracking methods, the
state noise covariance () and the observational
noise covariance R are parameters which must be
set. Although we have not addressed the issue
here, it is straight-forward, though laborious, to
obtain maximum-likelihood estimates for them us-
ing the EM method [8]. It would also be possible
to estimate the state mixing matrix F' in the same
manner.



Although we have modelled the source densities
here with generalised exponentials, which permits
the separation of a wide range of sources, it is pos-
sible to both generalise or restrict the source mod-
el. More complicated (possibly multi-modal) den-
sities may be represented by a mixture of Gaus-
sians. On the other hand, if all the sources are
restricted to be Gaussian the method becomes a
tracking factor analyser. In the zero noise lim-
it the method performs non-stationary principal
component analysis.
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