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Blind Soure Separation for Non-stationary MixingRICHARD EVERSON AND STEPHEN ROBERTSR.M.Everson�exeter.a.uk, sjrob�robots.ox.a.ukDepartment of Computer Siene,University of Exeter, Exeter, UKandDepartment of Engineering Siene,University of Oxford, Oxford. UKReeived ??; Revised ??Editors: ??Abstrat. Blind soure separation attempts to reover independent soures whih have been linearlymixed to produe observations. We onsider blind soure separation with non-stationary mixing, butstationary soures. The linear mixing of the independent soures soures is modelled as evolving aordingto a Markov proess, and a method for traking the mixing and simultaneously inferring the soures ispresented. Observational noise is inluded in the model. The tehnique may be used for online �lteringor retrospetive smoothing. The traking of mixtures of temporally orrelated is examined and samplingfrom within a sliding window is shown to be e�etive for destroying temporal orrelations. The methodis illustrated with numerial examples.Keywords: Blind soure separation, independent omponent analysis, non-stationary, partile �lters1. IntrodutionOver the last deade in partiular there has beenmuh interest in methods of blind soure separa-tion (BSS) and deonvolution (see [11℄ for a re-view). One may think of the blind soure sep-aration as the problem of identifying speakers(soures) in a room given only reordings froma number of mirophones, eah of whih reord-s a linear mixture of the soures, whose statisti-al harateristis are unknown. The asting ofthis problem (whih is often referred to as Inde-pendent Component Analysis { ICA) in a neuro-mimeti framework [3℄ has done muh to to sim-plify and popularise the tehnique. More reent-

ly still the ICA solution has been shown to bethe maximum-likelihood point of a latent-variablemodel [13, 4, 14℄Here we onsider the blind soure separationproblem when the mixing of the soures is non-stationary. Pursuing the speakers in a room anal-ogy, we address the problem of identifying thespeakers when they (or equivalently, the miro-phones) are moving. The problem is ast in termsof a hidden state (the mixing proportions of thesoures) whih we trak using dynami methodssimilar to the Kalman �lter.We �rst briey review lassial ICA and de-sribe a soure model whih permits the separa-tion of light-tailed (leptokurti) soures as wellas heavy tailed soures, whih the standard I-CA model impliitly assumes. ICA with non-
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2 ??stationary mixing is desribed in terms of a hid-den state model and methods for estimating thesoures and the mixing are desribed. Finally weaddress the non-stationary mixing problem whenthe soures are independent, but possess temporalorrelations.2. Stationary ICAClassial ICA assumes that there are M indepen-dent soures whose probability density funtionsare pm(sm). Observations, xt 2 RN , are produedby the instantaneous linear mixing of the souresby A: xt = Ast (1)The mixing matrix, A, must have at least as manyrows as olumns (N � M), so that the dimen-sion of eah observation is at least as great as thenumber of soures. The aim of ICA methods isto reover the latent soures ŝt by �nding W , the(pseudo-) inverse of A:ŝt =Wxt =WAst (2)The assumption that the soures are indepen-dent means that the joint probability density fun-ion (pdf) of the soures fatorises into the prod-ut of marginal densities:p(st) = MYm=1 p(smt ) (3)Using this fatorisation, the (pseudo) likelihood ofthe observation xt is [4, 13, 14℄:log l = � log j detAj � MXm=1 log pm(ŝmt ) (4)The normalised log likelihood of a set of observa-tions t = 1; :::T is thereforelogL = � log j detAj � 1T TXt=1 MXm=1 log pm(ŝmt )(5)The optimum A may then be found by maximi-sation of logL with respet to A, assuming somespei� form for p(ŝmt ). Suessive gradient asentson log l leads to the Bell & Sejnowksi stohasti

learning rule for ICA [3℄, while bath learning isahieved by maximising logL. Learning rates maybe onsiderably enhaned by modifying the learn-ing rule to make it ovariant [1, 13℄.Sine the likelihood is unhanged if A is pre-multiplied by a diagonal matrix D or a salingmatrix P; the original sale of the soures annotbe reovered. The separating matrix W is there-fore only the inverse of A up to a diagonal salingand permutation, that is:WA = PD (6)In order to maximise the likelihood some as-sumptions about the form of the soure pdfs p(smt )must be made, even though they are a priori un-known. A ommon hoie is p(smt ) / 1= osh(smt ),whih leads to a tanh nonlinearity in the learn-ing rule. Althuogh the soure model is apparently�xed, saling of the mixing matrix tunes the mod-el to partiular soures [6℄, and with a tanh non-linearity platykurti (heavy tailed) soures an beseparated, although not leptokurti ones. Cardoso[5℄ has eluidated the onditions under whih thetrue mixing matrix is a stable �xed point of thelearning rule.2.1. Generalised ExponentialsBy adopting a more exible model for the souredensities one might be able to separate a widerrange of soure densities. Attias [2℄ has used mix-tures of Gaussians to model the soures, whihpermits multi-modal soures and Lee et al. [12℄swith between sub- and super-Gaussian souremodels.In order to be able to separate light-tailedsoures we have used the generalised exponentialdensity:p(sm j�m) = z exp� ����sm � �mwm ����rm (7)where the normalising onstant isz = rm2wm�(1=rm) (8)and the density depends upon parameters �m =f�m; wm; rmg. The loation of the distribution isset by �m, its width by wm and the weight of itstails is determined by rm: Clearly p is Gaussian



?? 3when rm = 2; Laplaian when rm = 1; and theuniform distribution is approximated in the limitrm !1:Rather than learn f�m; wm; rmg along with theelements of the separating matrix W; whih mag-ni�es the size of the searh spae, they may bealulated from the sequenes fsmt g (t = 1; :::T )at any, and perhaps every, stage of learning. Theloation parameter is well estimated by the sam-ple mean and the maximum likelihood estimatefor rm and wm may be obtained by solving a one-dimensional equation [6℄.We have used the generalised exponentials ina quasi-Newton (BFGS [15℄) ICA algorithm. Ateah stage of the optimisation the parametersf�m; wm; rmg desribing the distribution of themth separated variable were found, permitting thealulation of logL and its gradient. This algo-rithm is able to separate a mixture of a Laplaiansoure, a Gaussian soure and a uniformly dis-tributed soure. Algorithms using a stati tanhnonlinearity are unable to separate this mixture.Further details are given in [6℄.3. Non-stationary Blind Soure Separa-tionFigure 1 shows the graphial model desribingthe onditional independene relations of the non-stationary BSS model. In ommon with statiblind soure separation, we adopt a generativemodel in whih M independent soures are lin-early mixed at eah instant. Unlike stati BSS,however, the mixing matrix At is allowed to varywith time. We also assume that the observationxt is ontaminated by normally distributed noisewt � N (0; R): Thusxt = Atst +wt (9)The dynamis of At are modelled by a �rst or-der Markov proess, in whih the elements of Atdi�use from one observation time to the next. Ifwe let at = ve(At) be the N �M -dimensionalvetor obtained by staking the olumns of At,then at evolves aording toat+1 = Fat + vt (10)where vt is zero-mean Gaussian noise with ovari-ane Q, and F is the state transition matrix; in
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tFig. 1. Graphial model desribing non-stationary BSSthe absene of a priori information we take F tobe the identity matrix. The state equation (10)and the statistis of vt together de�ne the densityp(at+1jat).A full spei�ation of the state must inludethe parameter set � = f�mg, m = 1:::M , whihdesribes the independent soure densities:p(s j�) = MYm=1 p(sm j�m) (11)We model the soure densities with generalised ex-ponentials, as desribed in x2.1. Sine the souresthemselves are onsidered to be stationary, the pa-rameters � are taken to be stati, but they mustbe learned as data are observed.The problem is now to trak At and to learn� as new observations xt beome available. If Xtdenotes the olletion of observations fx1; :::;xtg,then the goal of �ltering methods is to dedue theprobability density funtion of the state p(at jXt).This pdf may be found reursively in two stages:predition and orretion. If p(at�1 jXt�1) isknown, the state equation (10) and the Markovproperty that at depends only on at+1 permitspredition of the state at time t:p(at jXt�1) = Z p(at jat�1)p(at�1 jXt�1) dat�1(12)The preditive density p(at jXt�1) may be re-garded as an estimate of at prior to the obser-vation of xt. As the datum xt is observed, the



4 ??predition may be orreted via Bayes' rulep(at jXt) = Z�1p(xt jat)p(at jXt�1) (13)where the likelihood of the observation given themixing matrix, p(xt jat); is de�ned by the obser-vation equation (9). The normalisation onstantZ is known as the innovations probability:Z = p(xt jXt�1) (14)= Z p(xt jat)p(at jXt�1) datThe predition (12) and orretion/update (13)pair of equations may be used to step through thedata online, alternately prediting the subsequentstate and then orreting the estimate when a newdatum arrives.3.1. PreditionSine the state equation is linear and Gaussian thestate transition density isp(at jat�1) = G(at � Fat�1; Q) (15)where G(�;�) denotes the Gaussian density fun-tion with mean zero and ovariane matrix �.We represent the prior density p(at�1 jXt�1) asa Gaussian:p(at�1 jXt�1) = G(at�1 � �t�1;�t�1) (16)Predition is then straight-forward:p(at jXt�1) =G(at � F�t�1; Q+ F�t�1F T ) (17)3.2. CorretionOn the observation of a new datum xt the predi-tion (17) an be orreted. Sine the observationalnoise is assumed to be Gaussian its density isp(wt) = G(wt; R) (18)The pdf of observations p(xt jAt) is given byp(xt jAt) = Z p(xt jAt;�; st)p(st j�) dst (19)

and sine the soures are assumed stationaryp(xt jAt) = Z p(xt jAt; s)p(s j�) ds= Z G(xt �Ats; R) MYm=1 pm(sm) ds (20)We emphasise that it is in equation (20) that theindependene of the soures is modelled by writingthe joint soure density in fatored form.Laplae's approximation an be used to approx-imate the onvolution (20) for any �xed At whenthe observational noise is small; otherwise the in-tegral an be evaluated by Monte Carlo integra-tion. The orreted pdf p(at jXt) of equation (13)is then found by drawing samples, AtjXt from theGaussian of equation (17) and evaluating equation(20) for eah sample.The mean and ovariane of the orretedp(at jXt) are found from the samples and the den-sity approximated one again by a Gaussian beforethe next predition is made.Rather than representing the state densities asGaussians at eah stage more exibility may beobtained with partile �lter tehniques [9, 10℄. Inthese methods the state density is represented bya olletion of \partiles," eah with a probabil-ity mass. Eah partile's probability is modi�edusing the state and observation equations, afterwhih a new independent sample is obtained usingsampling importane resampling before proedingto the next predition/observation step. Thoughomputationally more expensive than the Gaus-sian representation, these methods permit arbi-trary observational noise distributions to be mod-elled and more ompliated, possibly multi-modal,state densities. The appliation of partile �ltermethods to non-stationary ICA is desribed else-where [7℄.3.3. Soure ReoveryRather than making stritly Bayesian estimatesof the model parameters �m = frm; wm; �mg,the maximum a posteriori (MAP) estimate of Atis used to estimate st, after whih maximum-likelihood estimates of the parameters are foundfrom sequenes fsm� gt�=1. Finding maximum-likelihood parameters is readily and robustly a-omplished [6℄. Eah st is found by maximising
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Fig. 2. Traking a mixture of a Laplaian and Gaussiansoures.log p(st jxt; At), whih is equivalent to minimising(xt �A�t st)TR�1(xt �A�t st) + MXm=1 ���� smtwm ����rm(21)where A�t is the MAP estimate for At. Theminimisation an be arried out with a pseudo-Newton method, for example. If the noise varianeis small, st � Aytxt, where Ayt = (ATt At)�1ATt isthe pseudo-inverse of At.4. IllustrationHere we illustrate the method with two examples.In the �rst example a Laplaian soure (p(s) /e�jsj) and a soure with uniform density are mixedwith a mixing matrix whose omponents vary si-nusoidally with time:At = � os!t sin!t� sin!t os!t� (22)Note, however, that the osillation frequeny dou-bles during the seond half of the simulation mak-ing it more diÆult to trak. Figure 2 shows thetrue mixing matrix and the traking of it by non-stationary ICA.
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Fig. 3. Online estimates of the generalised exponentialparameters rm during the traking shown in �gure 2.Like BSS for stationary mixing, this methodannot distinguish between a olumn of At anda saling of the olumn. In �gure 2 the algorithmhas \lathed on" to the negative of the �rst ol-umn of At, whih is shown dashed. We resolvethe saling ambiguity between the variane of thesoures and the sale of the olumns of At by in-sisting that the variane of eah soure is unity;i.e., we ignore the estimated value of wm (equation7), instead setting wm = 1 for all m and allowingall the sale information to reside in the olumnsof At.To provide an initial estimate of the mixing ma-trix and soure parameters stati ICA was run onthe �rst 100 samples. At times t > 100 the gener-alised exponential parameters were re-estimatedevery 10 observations. Figure 3 shows that theestimated soure parameters onverge to lose totheir orret values of 1 for the Laplaian soureand \large" for the uniform soure.Estimates of the traking error are provided bythe ovariane, �t, of the state density (equation16). In this ase the true At lies within one stan-dard deviation of the estimated At almost all thetime. We remark that it appears to be more dif-�ult to trak the olumns assoiated with light-tailed soures than heavy-tailed soures. We note,furthermore, that the Gaussian ase appears to bemost diÆult. In �gure 2, A11 and A21 mix the
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Fig. 4. Traking through a singularity. The mixing ma-trix is singular at t = 1000.Laplaian soure, and the uniform soure is mixedby A12 and A22 whih are traked less well, espe-ially during the seond half of the simulation. Wesuspet that the diÆulty in traking olumns as-soiated with nearly Gaussian soures is due tothe ambiguity between a Gaussian soure and theobservational noise whih is assumed to be Gaus-sian.It is easy to envisage situations in whih themixing matrix might briey beome singular. Forexample, if the mirophones are positioned so thateah reeives the same proportions of eah speak-er the olumns of At are linearly dependent andAt is singular. In this situation At annot be in-verted and soure estimates (equation 21) are verypoor. To ope with this we monitor the onditionnumber of At; when it is large, implying that At islose to singular, the soure estimates are disard-ed for the purposes of inferring the soure modelparameters, frm; wm; �mg.In �gure 4 we show non-stationary BSS appliedto Laplaian and uniform soures mixed with thematries At = � os 2!t sin!t� sin 2!t os!t� (23)
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Fig. 5. Top: Condition number of the MAP estimate ofAt. At t = 1000 the true mixing matrix is singular. Matri-es with ondition numbers greater than 10 were not usedfor estimating the soure parameters. Bottom: Innova-tions probability p(xt jXt�1).where ! is hosen so that A1000 is singular. Clear-ly the mixing matrix is traked through the singu-larity, although not so losely as when At is wellonditioned. Figure 5 shows the ondition num-ber of the MAP At. The normalising onstantZ = p(xt jXt�1) in the predition equation (17)is known as the innovations probability and mea-sures the degree to whih a new datum �ts thedynami model learned by the traker. Disretehanges of state are signalled by low innovationsprobability. Figure 5 also shows the innovationsprobability for the mixing shown in �gure 4: thepresene of the singularity is learly reeted.Note also that the simulation shown in Figure 4was deliberately initialised fairly lose to, but notexatly at the true A1. The \lathing on" of thetraker to the orret mixing matrix in the �rst100 observations is evident in the �gure.
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Fig. 6. Top: Retrospetive traking with forward-bakard reursions. Bottom: Online �ltering of the samedata. Dashed lines show the negative of the mixing matrixelements.5. SmoothingThe �ltering methods presented estimate the mix-ing matrix as p(At jXt). They are therefore strit-ly ausal and an be used for online traking. Ifthe data are analysed retrospetively future obser-vations (x� , � > t) may be used to re�ne the esti-mate of At. The Markov struture of the genera-tive model permits the pdf p(at jXT ) to be foundfrom a forward pass through the data, followed bya bakward sweep in whih the inuene of futureobservations on at is evaluated. See, for example,[8℄ for a detailed exposition of forward-bakwardreursions.

In the forward pass the joint probabilityp(at;x1; :::xt) = �t= Z �t�1p(at jat�1) p(xt jat) dat�1 (24)is reursively evaluated. In the bakward sweepthe ondtional probabilityp(xt+1; :::;xT jat) = �t= Z �t+1 p(at+1 jat)p(xt+1 jat+1) dat+1 (25)if found. Finally the two are ombined to produea smoothed non-ausal estimate of the mixing ma-trix: p(at jx1; :::;xT ) / �t�t (26)If �t and �t are eah approximated by Gaussiansit is nesessary to save only the means and ovari-ane matriesFigure 6 illustrates traking by both smooth-ing and ausal �ltering. As before the elementsof the mixing matrix vary sinusoidally with timeexept for disontinous jumps at t = 600 and1200. Both the �ltering and forward-bakwardreursions trak the mixing matrix; however thesmoothed estimate is less noisy and more au-rate, partiularly at the disontinuities. Note alsothat the following the disontinuity at t = 1200the negative of the �rst olumm of At is traked.6. Temporal CorrelationsThe graphial model in Figure 1 assumes that su-essive samples from eah soure are independent,so that the soures are stohasti. When temporalorrelations in the soures are present the modelmust be modi�ed to inlude the onditional de-pendene of smt on smt�1. In this ase the hiddenstate is now omprised of at and the states of thesoures st, and preditions and orretions for thefull state should be made. Sine the soures areindependent, preditions for the eah soure andat may be made independently and the system isa fatorial hidden Markov model [8℄.A number of soure preditors have been imple-mented, inluding the Kalman �lter, AR modelsand Gaussian mixture models. However, the fun-damental indeterminay of the soure sales ren-



8 ??ders the ombined traker unstable. The instabil-ity arises beause the hange in observation fromxt+1 to xt annot be unambiguously assigned toeither a hange in the mixing matrix or a hangein the soures. Small errors in the predition ofthe soures indue errors in the mixing matrix es-timates, whih in turn lead to errors in subsequentsoure preditions; these errors are then inorpo-rated into the preditive model for the soures andfurther (worse) errors in the predition are made.This problem is not present in the stohasti asebeause the soure model is muh more tightlyonstrained.Under the assumption that the soures evolveon a rapid timesale ompared with the mixingmatrix, the e�et of temporal orrelations in thesoures may be removed by averaging over a slid-ing window. That is, the likelihood p(xt jAt) usedin the orretion step (equation 13) is replaed by( LY�=�Lp(xt+� jAt+� )) 12L+1 (27)The length of the window 2L+ 1 is hosen to beof a typial timesale of the soures. Trakingusing the averaged likelihood is omputational-ly expensive beause at eah t the p(xt+� jAt+� )must be evaluated for eah � in the sliding win-dow. An alternative method of destroying thesoure temporal orrelations is to replae the like-lihood p(xt jAt) with p(xt+� jAt+� ) with � ho-sen at random from within the sliding window(�L � � � L). This is no more expensive thanusing p(xt jAt) and e�etively destroys the soureorrelations.Figure 7 illustrates the traking of a mixing ma-trix with temporally orrelated soures. The win-dow length was L = 50. Traking is not as au-rate as in the stohasti ase, however the mixingmatrix is followed and the soures are reoveredwell.7. ConlusionWe have presented a method for blind soureseparation when the mixing proportions are non-stationary. The method is stritly ausal and anbe used for online traking (or \�ltering"). If da-ta are analysed retrospetively forward-bakward
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