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Abstract—Autoregression (AR) is a tool commonly used to un-
derstand and predict time series data. Traditionally the excitation
noise is modelled as a Gaussian. However, real-world data may
not be Gaussian in nature, and it is known that Gaussian models
are adversely affected by the presence of outliers. We introduce
a Bayesian AR model in which the excitation noise is assumed
to be Student-t distributed. Variational Bayesian approximations
to the posterior distributions of the model parameters are used
to overcome the intractable integrations inherent in the Bayesian
model. Independent Automatic Relevance Determination (ARD)
priors over each of the AR coefficients are used to estimate the
model order.

Using synthetic data we show that the Student-t model per-
forms well against both Gaussian and leptokurtic data, in terms
of parameter estimation (including the model order), and is much
more robust to outliers than either Gaussian or finite mixtures
of Gaussians models.

We apply the model to strongly leptokurtic EEG signals and
show that the Student-t model makes more accurate one-step-
ahead predictions than the Gaussian model and provides more
consistent estimates of the AR coefficients over simultaneously
recorded EEG channels.

Index Terms—Autoregressive processes, variational methods,
Bayes procedures, Student-t distribution, robustness.

I. INTRODUCTION

Autoregression is a tool commonly used to understand and
predict time series data where observations taken closely in
time are statistically dependent on one another. Each obser-
vation in the series is modelled as a linear combination of
the previous p observations to which an element of excita-
tion noise from a random innovations process is added. An
autoregression model of order p is defined as

xn =

p∑
i=1

θixn−i + εn (1)

where xn is the nth observation in the ordered time series
data vector x (of length N ), the θi are the autoregressive
coefficients and εn is the excitation noise associated with this
observation. Using (1) recursively to write xn in terms of the
innovations process shows that an AR model may also be
viewed as a finite impulse response filter of the innovations.

Traditionally the excitation noise is presumed to be Gaus-
sian distributed, which, due to the linearity of the AR model,
means that the observations are also Gaussian distributed.
However, in many real datasets observations are distributed
with tails that decay more slowly than Gaussian. The presence
of these observations distant from the mean adversely affects

the robustness of the AR model with Gaussian excitations.
Roberts and Penny [1] mitigated this problem by modelling
the excitation noise with a finite mixture of Gaussians (referred
to in this paper as the Gaussian Mixture Model (GMM)),
thereby allowing leptokurtic distributions to be modelled.
While this leads to improved performance, the tails still decay
exponentially, like exp(−ε2n), and the variance is always finite.
Here we allow for very slow decay of the tails, and possibly
infinite variances, by modelling the excitation process using
an infinite mixture of Gaussians.

We introduce an autoregression model where the excitation
noise is modelled by a Student-t distribution. With S() de-
noting the Student-t distribution, the likelihood of the noise is
defined as

p(ε | 0, λ, d) = S(ε | 0, λ, d) (2)

=
Γ((d+ 1)/2)

Γ(d/2)

(
λ

πd

)1/2(
1 +

λ

d
ε2
)−(d+1)/2

(3)

where λ is known as the precision and d the degrees of
freedom. As d becomes large the Student-t tends to a single
Gaussian distribution. As d decreases the tails decay more
slowly: when d ≤ 2 the variance is infinite, and when
d = 1 the Student-t distribution is equivalent to the Cauchy
distribution with tails that decay like ε−2.

Denoting the Gaussian density with mean µ and variance
σ2 by N (x |µ, σ2) and the Gamma density by G, defined as
G(τ | a, b) = 1

Γ(a)b
aτa−1 exp(−bτ), the Student-t distribution

can also be seen as an infinite mixture of Gaussians with
common mean and variances scaled by the Gamma density:

S(ε | 0, λ, d) =

∫ ∞
0

N (ε | 0, (λz)−1)G(z | d/2, d/2) dz. (4)

Lange et al. [2] show the utility of using the Student-
t distribution for robust statistical inference in a number of
models, including linear and non-linear regression, and they
show how the parametrisation of this distribution allows them
to control the degree of downweighting of outliers to achieve
more robust models. More recently Tipping and Lawrence
have employed the Student-t distribution for robust Bayesian
interpolation [3]; like them we use a variational approach for
inference.

In order to construct a model for a particular set of data, we
need to infer values for the parameters (θ = (θ1, ..., θp)

T, λ and
d) given the observations. Rather that just determining point
values for them, we adopt a Bayesian approach so that we also
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obtain a measure of confidence in the inference and average
over posterior distributions to reduce parameter uncertainty
when making predictions.

Finding exact expressions for the estimated posterior distri-
butions leads to intractable integrals. For Gaussian excitation
sequences this problem has been tackled by Markov chain
Monte Carlo sampling from the posterior distribution [4], [5],
[6]. To avoid the computational expense of MCMC methods,
here we use the variational Bayesian technique for finding
approximations to the posterior distribution [7], [8], [9], [10].
This method minimises the Kullback-Leibler divergence be-
tween the approximate and actual posterior distributions to
determine the optimal hyperparameter values for the approxi-
mations; for tutorials see [11], and [12, chapter 10].

Determining the model order p of an AR process from
data can be problematic. One approach, adopted by Troughton
and Godsill [13], is to integrate over all model orders which,
however, requires a reversible jump MCMC sampler to accom-
plish the integration. Here we employ an automatic relevance
determination (ARD) prior [14] over the auto-regressive coef-
ficients θi, which has the effect of ‘switching off’ or setting
to zero those coefficients for which there is no evidence in
the data. In the image processing community ARD, Student-
t noise and variational learning have been used for image
deconvolution [15], [16]. We also draw attention to the work
of Le et al. [17] who examine robust model selection for
AR models by explicitly modelling the additive process that
generates the outliers. They use a Bayesian approach, but with
a ’robust likelihood’, accomplishing inference with Laplace
approximations for the integrals. In contrast, here we assume
that the leptokurtic nature of the observations arises from the
excitation sequence which permits us to model a range of
observed distributions from Gaussian to very heavy-tailed.

We demonstrate with synthetic data that this method is able
effectively to estimate values for both the hyperparameters of
the posterior distributions and the order of the model and
apply it to real EEG signals to demonstrate that it provides
a better model than the standard autoregression with Gaussian
excitation noise.

II. BAYESIAN AUTOREGRESSION

For a data set of observations written as a vector x =
(x1, . . . , xn), an alternative way of expressing the autoregres-
sion (AR) model shown in (1) is (following Ó Ruanaidh and
Fitzgerald [18])

x = Lθ + ε (5)

where L is the N by p matrix whose nth row contains the lags
for element xn, i.e. (xn−1, ..., xn−p). Combining this with the
excitation noise distribution (2) allows the likelihood of the
data to be written as

p(x |θ, λ, d) = S(x |Lθ, λ, d). (6)

Using (4) this may be written as:

p(x |θ, λ, z) = N (x |Lθ, (λ diag(z))−1) (7)
p(zn | d) = G(zn | d/2, d/2) (8)

where the zn are latent variables modifying the precision of
the Gaussian mixture for each observation and diag(z) is the
diagonal matrix with the zn arranged along the diagonal.

The variational Bayesian methodology which we employ
below allows the model order p to be estimated. This is,
however, computationally expensive because in essence a so-
lution has to be located for each feasible model order. Instead
we seek a sparse solution in which only AR coefficients θi
for which there is support in the data are non-zero. This is
accomplished by placing an ARD prior [14] over each of the
θi:

p(θ) =

p∏
i=1

N (θi | 0, δi) = N (θ |0,diag(δ)). (9)

The precisions δi thus control the magnitude of the AR
coefficients, so that if δi is large θi is effectively ‘switched
off’. Rather than learn point estimates for the δi in a type-II
maximum likelihood scheme (e.g. [19]), we place a common
Gamma prior over the precisions:

p(δi) = G(δi | aδ, bδ). (10)

With this choice the effective prior on θi is seen to be a scale
mixture of Gaussian; in particular when aδ = bδ the effective
prior is a Student-t density (cf. (4)). Tipping [19] presents a
nice graphical illustration that the joint distribution p(θ1, θ2)
of two Student-t densities concentrates probability mass close
to zero values of θ1 and θ2 rather than in regions where both
θ1 and θ2 are non-zero, thus encouraging sparse solutions.

We specify a Gamma prior for the precision λ:

p(λ) = G(λ | aλ, bλ). (11)

Finally, specification of the model is completed by assigning
a Gamma prior with hyperparameters ad and bd to the degrees
of freedom d:

p(d) = G(d | ad, bd). (12)

Figure 1 summarises the Bayesian AR model and the
interdependencies between the model parameters. The joint
probability of the data, latent variables, z, and parameters
Ω = {θ, λ, d, δ} may be factorised as

p(x, z,Ω) = p(x, z,θ, λ, d, δ) (13)
= p(x |θ, λ, z) p(θ | δ) p(λ) p(z | d) p(d) p(δ).

(14)

The structure of this model does not permit exact expressions
for the posterior p(Ω |x) to be found. Rather than resort to
MCMC methods, which can be computationally expensive, we
approximate the posterior using the variational Bayes method,
which we now briefly describe.

III. VARIATIONAL BAYES

A number of techniques are available for determining the
posterior distribution in Bayesian inference. The chief obstacle
is the integration required to find the normalising factor
p(x) =

∫
p(x |Ω) p(Ω) dΩ which appears in the denominator

of Bayes’ rule. Variational Bayes [7], [8], [9], [10], [11],
however, approximates the posterior density p(Ω |x) by a
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Figure 1: Graphical model showing model parameters and their
interdependencies.

factorisation over groups of parameters Ωi which are assumed
to be independent when conditioned on x; thus:

q(Ω |x) =

G∏
i=1

qi(Ωi |x) (15)

The latent variables zn are treated as additional parameters,
which are random variables, so for notational simplicity we
absorb them into Ω = {θ, z, λ, d, δ} and approximate the
posterior as:

q(Ω |x) = q(θ, λ, z, d, δ |x) (16)
= q(θ |x) q(λ |x) q(z |x) q(d |x) q(δ |x)

= q(θ |x) q(λ |x)

[
N∏
n=1

q(zn |x)

]
q(d |x) q(δ |x).

(17)

The log marginal probability of x may be written as

log(p(x)) =

negative variational free energy︷ ︸︸ ︷∫
q(Ω |x) log

(
p(x,Ω)

q(Ω |x)

)
dΩ

+

KL divergence︷ ︸︸ ︷∫
q(Ω |x) log

(
q(Ω |x)

p(x |Ω)

)
dΩ (18)

= F(q) +KL(q(Ω |x) ‖ p(Ω |x)). (19)

As indicated, the log marginal probability may be recognised
as the sum of the Kullback-Leibler (KL) divergence between
the approximate posterior and the true posterior, and the
negative variational free energy. Since the KL divergence is
non-negative (and zero if and only if q(Ω |x) equals p(Ω |x))
the negative free energy is a lower bound on the log marginal
probability and maximising F(q) by adjusting the approximate
posterior q(Ω |x) necessarily minimises KL(q ‖ p) so that q
better approximates the posterior.

Attias [10] (see also [20], [21]) exploits the factorisation
of the posterior (15) to find a general expression for the
maximiser of the negative free energy in a mean-field sense.
We seek to maximise the negative variational free energy,

F(q(Ω |x)), with respect to all the qi(Ωi |x). For readability
Qi represents qi(Ωi |x):

F(q) =

∫
Q log(

p(x,Ω)

Q
) dΩ (20)

=

∫ ( G∏
i=1

Qi

)
log(p(x,Ω)) dΩ1, . . . , dΩG

−
∫ ( G∏

i=1

Qi

)(
G∑
i=1

log(Qi)

)
dΩ1, . . . , dΩG (21)

Considering the integral with respect to Ωj and keeping the
remaining Qi 6=j fixed, the negative free energy can be written
as

F(q) =

∫
Qj

(a)︷ ︸︸ ︷∫ log(p(x,Ω))
∏
i 6=j

QidΩi6=j

 dΩj

−
∫
Qj log(Qj) dΩj + const (22)

where terms that do not depend upon Qj have been absorbed
into the constant. The section of this expression marked (a) is
the expectation of log(p(x,Ω)) with respect to each of the Qj ,
where i 6= j. We denote this Ei 6=j [log(p(x,Ω))], and it may
be recognised as the negative KL divergence between Qj and
Ei 6=j [log(p(x,Ω))]; hence the maximum value is zero, which
is obtained when

log(Qj) = Ei 6=j [log(p(x,Ω))]. (23)

If conjugate priors are chosen for each group, the approximate
posterior turns out to have the same functional form as the
prior [10], [22] and the variational approximations may thus be
found by evaluating (23) for each group in turn. Of course, the
hyperparameters of the posterior distribution for one group will
generally depend upon the hyperparameters for other groups;
consequently the parameters for each group are evaluated
cyclically until convergence. Ghahramani and Beal [22] show
that this scheme converges to a local maximum of F , thus
minimising KL(q ‖ p).

IV. VARIATIONAL BAYESIAN AUTOREGRESSION

Here we use the factorised variational Bayes method to
obtain approximate posterior distributions for the factorisation
(17) using the joint probability (14). We consider each group
in turn.

A. AR coefficients, θ

The approximate posterior for the AR coefficient that max-
imises F(q) is maximised when

log(q(θ |x))

= E/θ[log(p(x |θ, λ, z) p(θ | δ) p(λ) p(z | d) p(d) p(δ))]
(24)

where E/a[b] is the expectation of b taken with respect to the
approximate posteriors of all variables except a. Expanding
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this and moving all terms not dependent on θ into a single
constant term we get

log(q(θ |x)) = E/θ[log(p(x |θ, λ, z) + log(p(θ | δ)] + const
(25)

= E/θ[log(N (x |Lθ, (λ diag(z))−1)

+ log(N (θ |0,diag(δ)−1)] + const. (26)

Again, expanding this and moving all terms not dependent on
θ into the constant term:

log(q(θ |x)) = E/θ[−λ
2

(x− Lθ)T diag(z)(x− Lθ)

− 1

2
θT diag(δ)θ] + const (27)

= −1

2
Eλ[λ](x− Lθ)T diag(Ez[z])(x− Lθ)

− 1

2
θT diag(Eδ[δ])θ + const. (28)

Since (28) is quadratic in θ, it can be seen that q(θ |x) is a
Gaussian and we have

q(θ |x) = N (θ |µθ,Σθ) (29)

where

Σ−1
θ = Eλ[λ]LT diag(Ez[z])L + diag(Eδ[δ]) (30)
µθ = ΣθEλ[λ]LT diag(Ez[z])x. (31)

B. Excitation noise precision, λ

Applying the same procedure for λ we obtain a Gamma
distribution for the posterior noise precision:

q(λ |x) = G(λ |αλ, βλ) (32)

where

αλ = aλ +
N

2
(33)

βλ = bλ +
1

2
xT diag(Ez[z]) (x− 2LEθ[θ])

+
1

2

N∑
n=1

Ezn [zn]Eθ[(Lnθ)T(Lnθ)]. (34)

C. Latent variables, z

Locating a joint distribution for z is not analytically
tractable, so we examine the zn individually, obtaining:

log(q(zn |x)) =
1

2
log(zn)

− 1

2
Eλ[λ]Eθ[(xn − Lnθ)Tzn(xn − Lnθ)]

+ Ed[log(G(z | d/2, d/2))] (35)

=

(
Ed[d] + 1

2
− 1

)
log(zn)

−
(

1

2
Eλ[λ]Eθ[(xn − Lnθ)T(xn − Lnθ)]

+
Ed[d]

2

)
zn (36)

where Ln is the nth row of L. On inspection we see that
q(zn |x) is a Gamma distribution:

q(zn |x) = G(zn |αzn , βzn) (37)

where

αz =
Ed[d] + 1

2
(38)

βzn =
Ed[d]

2
+

1

2
Eλ[λ]Eθ[(xn − Lnθ)T(xn − Lnθ)].

(39)

As the expected value of d becomes large, so that the Student-
t distribution describing the excitation noise approaches a
Gaussian, the posterior expected value of zn (i.e. αzn/βzn )
tends to 1 and likelihood of x tends towards the Gaussian
N (x |Lθ, λ−1).

D. Degrees of freedom, d

For q(d |x) (again dropping the constant term) we obtain:

log(q(d |x)) = −N log(Γ(
d

2
)) +N

d

2
log(

d

2
)

+
d

2

N∑
n=1

(Ezn [log(zn)]− Ezn [zn])

+ (ad − 1) log(d)− bdd (40)

which does not correspond to any standard distribution. But
using Stirling’s approximation for log(Γ(d/2)), shown in the
square brackets below, we get:

log(q(d |x)) = −N
[
−(
d

2
− 1

2
) log(

d

2
) +

d

2

]
+N

d

2
log(

d

2
)

+
1

2

N∑
n=1

(Ezn [log(zn)]− Ezn [zn])

+ (ad − 1) log(d)− bdd (41)

= (ad +
N

2
− 1) log(d)

−

(
bd −

N

2
− 1

2

N∑
n=1

(Ezn [log(zn)]− Ezn [zn])

)
d

(42)

which may be recognised as the log of a Gamma distribution.
Therefore

q(d |x) = G(d |αd, βd) (43)

where

αd = ad +
N

2
(44)

βd = bd −
1

2

(
N +

N∑
n=1

(Ezn [log(zn)]− Ezn [zn])

)
.

(45)

E. ARD precisions, δ

Finally, the posterior distributions for the ARD precisions
are found as:

q(δi |x) = G(δi |αδ, βδi) (46)
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where

αδ = aδ + 1 (47)

βδi = bδ +
1

2
Eθ[θ2

i ]. (48)

F. Summary

Summarising the results from (24)-(45) and writing expec-
tations Ea[f(a)] as 〈f(a)〉 for readability:

q(θ |x) = N (θ |µθ,Σθ) (49)

Σθ = (〈λ〉LT diag(〈z〉)L + diag(〈δ〉))−1 (50)
µθ = Σθ〈λ〉LT diag(〈z〉)x (51)

q(λ |x) = G(λ |αλ, βλ) (52)

αλ = aλ +
N

2
(53)

βλ = bλ +
1

2
xT diag(〈z〉) (x− 2L〈θ〉)

+
1

2

N∑
n=1

〈zn〉〈(Lnθ)T(Lnθ)〉 (54)

q(zn |x) = G(zn |αz, βzn) (55)

αz =
〈d〉+ 1

2
(56)

βzn =
〈d〉
2

+
1

2
〈λ〉〈(xn − Lnθ)T(xn − Lnθ)〉 (57)

q(d |x) = G(d |αd, βd) (58)

αd = ad +
N

2
(59)

βd = bd −
1

2

(
N +

N∑
n=1

[〈log(zn)〉 − 〈zn〉]

)
(60)

q(δi |x) = G(δi |αδ, βδi) (61)
αδ = aδ + 1 (62)

βδi = bδ +
1

2
〈θ2
i 〉 (63)

As noted previously, each approximate posterior distribution
is dependent on the expected values of one or more of the
others, so closed-form algebraic solution cannot be obtained.
However, we can arrive at a set of solutions by initialising
the required expectations (perhaps based on the priors) and
then iteratively updating the estimate for each hyperparameter
based on the current estimates of the values on which it
depends, until convergence. The required current estimates are
obtained using the standard expressions

〈θ〉 = µθ (64)
〈λ〉 = αλ/βλ (65)
〈zn〉 = αz/βzn (66)

〈log(zn)〉 = ψ(αz)− log(βzn) (67)
〈d〉 = αd/βd (68)
〈δi〉 = αδ/βδi (69)

where ψ(·) is the digamma function, together with the follow-
ing expansions:

〈(Lnθ)T(Lnθ)〉 = Tr(Ln〈θθT〉LT
n) + (Ln〈θ〉)T(Ln〈θ〉) (70)

〈(xn−Lnθ)T(xn−Lnθ)〉 = x2
n−2xnLn〈θ〉+〈(Lnθ)T(Lnθ)〉

(71)
where Tr(·) denotes the trace operator.

The equivalent variational posteriors calculated for a Gaus-
sian AR model are as follows:

q(θ |x) = N (θ |µθ,Σθ) (72)

Σθ = (〈λ〉LTL + diag(〈δ〉))−1 (73)
µθ = Σθ〈λ〉LTx (74)

q(λ |x) = G(λ |αλ, βλ) (75)

αλ = aλ +
N

2
(76)

βλ = bλ +
1

2
(xT (x− 2L〈θ〉) + 〈(Lθ)T(Lθ)〉) (77)

q(δi |x) = G(δi |αδ, βδi) (78)
αδ = aδ + 1 (79)

βδi = bδ +
1

2
〈θ2
i 〉 (80)

In the Student-t AR case as d → ∞ and the excitation
sequence becomes effectively Gaussian it can be seen that we
recover from (49) to (63) the expressions (72) to (80).

V. ILLUSTRATION: SYNTHETIC DATA

We demonstrate three different aspects of the efficacy of this
Student-t AR model. Firstly, in section V-B, we show that it is
able to make good estimates of the parameters of data which
have been synthesised to fit the model. Secondly, in section
V-C, we show that it is able to determine the correct model
order. Lastly, where the excitation noise is Gaussian in nature,
we show, in section V-D, that it is more robust to the addition
of outliers than both the standard Gaussian AR model and the
AR model with GMM excitation noise.

A. Synthesising data

We generate synthetic data with randomly chosen AR
coefficients. With specified values for N , p, d, λ, we choose
θ to describe a stationary AR process as follows. If p is even,
p/2 complex conjugate pairs ηi, η̄i lying within the unit circle
in the complex plane are drawn randomly (uniformly with
respect to area); if p is odd, a single ηp is drawn on the real
axis and bp/2c conjugate pairs are drawn for the remainder.
The ηi and η̄i are used as the roots of the auxiliary polynomial
and θ is the vector whose elements are its coefficients.

The data sequence is initialised by generating random values
for the first p elements of x. Every xn, for n from p + 1
to 2N , is calculated from (1), where a random sample of
excitation noise, εn, is selected from the Student-t distribution.
Expression (4) indicates the way to sample from a Student-
t distribution: first a value for zn is randomly drawn from
G(zn | d/2, d/2), then this result is used in the random draw
from the N (εn | 0, (λzn)−1) distribution to generate one εn
value. Finally, the first N elements of x are deleted to ensure
that the whole sample conforms to the autoregression model.

Since we wish the model to be able to fit as wide a range of
problems as possible, uninformative priors were selected. Each
of λ, d and δi have Gamma priors, G(λ | aλ, bλ), G(d | ad, bd)
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(a) Gaussian excitations. Degrees of freedom: d = 100; 〈d〉 = 2.31, variance 7.13 × 10−3. Precision: λ = 1; 〈λ〉 = 1.76,
variance 4.14× 10−4.
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(b) Student-t excitations. Degrees of freedom: d = 0.5; 〈d〉 = 0.25, variance 8.45 × 10−5. Precision: λ = 1; 〈λ〉 = 2.18,
variance 6.31× 10−3.

Figure 2: Gaussian and Student-t examples. Left: Comparison of the estimated posterior parameter distributions with those used
to generate the observations. Centre: Estimated AR coefficients and those used to generate the observations. Right: Expected
values of one-step-ahead predictions compared with the observations. N = 1500 and actual p = 10. Estimated values and
variances are shown to 2 decimal places.

and G(δ | aδ, bδ) respectively, where we choose aλ = bλ =
ad = bd = aδ = bδ = 10−3.

B. Parameter estimation

Figure 2 shows, for a dataset with N = 1500 and Gaussian
excitation noise, a comparison of the expected values of the
variational posterior parameter distributions with the actual
values used to generate the samples for the dataset. The bottom
row of figure 2 shows results for observations generated
with a highly non-Gaussian d = 0.5 excitation sequence. In
both cases is it is clear that the model accurately learns the
coefficients and makes accurate predictions despite the vastly
different natures of the excitation sequences. The actual θ
vectors used to generate the data were of length 10 (i.e. actual
p = 10) but the model was trained with p = 20 to demonstrate
the effect of ARD. This is clearly seen in the centre graphs
where the θi values where i > p have been “switched off”.
The results in both examples are similar in that the variational
posterior noise distribution is more compact than the actual, a
tendency reported by a number of authors (for example [23],
[24], [25]), the estimated θ values are similar to the actuals,
with a tendency to be underestimated, and the reconstructions
of the data are good.

The over-compactness of the noise distribution and the
underestimation of the θ values warrants further investigation.
To this end the model was trained against datasets which were
created for every combination of λ and d between 0.01 to 10
in steps of 0.01, with N = 1500, p = 10 and a different,
randomly-generated θ. The results (in figure 3) show that
for λ there is an approximately linear relationship between
predicted and actual, with the predicted value consistently
over-estimated (and hence the variance is underestimated),
while for d the results are non-linear and consistently under-
estimated. It is this combination of underestimated variance
and degrees of freedom that lead to the more compact dis-
tribution compared with the actual. The predicted and actual
θ values are highly correlated, but the plot appears twisted
clockwise with respect to the diagonal, indicating that the
magnitudes of the coefficients are slightly underestimated,
particularly for the smaller coefficients.

With a relatively small N it is highly unlikely that the
sample will be truly representative of the distribution from
which it is taken. This is particularly true of the Student-t
distribution when the degrees of freedom are such that the
variance is infinite (i.e. d ≤ 2). This does not mean that the
model is less able to represent the data, but it does mean that
the estimated parameter values are less likely to reflect the
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Figure 4: The model was trained against datasets generated
for all λ and d values in the integer range 1 to 10 and every
p from 1 to 15; 1500 datasets in all. Grey lines show which
elements of θ were switched on in each test. Heavy black lines
show the actual p value for each test.

actuals.

C. Model selection

The model selection effects of ARD have been hinted at in
the examples shown in section V-B. We demonstrate this now
in more detail by training the model against synthetic datasets
of 1500 observations each for every combination of p from 1
to 15, and every λ and d in the integer range 1 to 10. The
prior for θ is N (θ |0,diag(δ)−1); if the estimated value of
one of the θi is more than one standard deviation away from
zero, i.e. θ2

i > 1/δi, then we deem it to be “switched on”.
Figure 4 shows, in grey, which θi are switched on in each of
the 1500 test runs. The solid black lines indicate the actual
model order in each case.

While the lower model orders are well estimated, the higher
ones appear to be consistently underestimated. However, this
is a consequence of the way in which the AR coefficients
are generated: the scheme described in section V-A tends
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Figure 5: Plot of θ for 100 synthetic datasets with p = 10.
Estimated values where i > p are constrained, by ARD, to be
close to zero. Actual values where i is close to p tend to be
small, so may be considered to be switched off.

to produce θi which decay in magnitude with increasing i.
This is illustrated in figure 5, which compares the actual
and estimated θ values for all the synthetic datasets where
p = 10. The ARD mechanism is clearly suppressing θi when
i > p, but, in addition, there is often insufficient support in
the observations for the small θi (with 8 / i / 10) so that
they appear to be erroneously ‘switched off’ and the model
order underestimated.

D. Robustness to outliers

A useful characteristic of the Student-t distribution is its
ability to handle outlying observations in a principled way.
Here we illustrate the resilience to outliers of the Student-t



8

AR model, a resilience which is not shared by the (Bayesian)
Gaussian AR model, which is closely related to the traditional
AR model whose parameters are estimated by least-squares
fitting.

Using a similar method as described previously, a synthetic
dataset of 500 observations was generated with Gaussian
excitation noise (λ = 10) and p = 10. Student-t, Gaussian
and GMM AR models (the latter as per [1], with a mixture
of 5 Gaussians) were each trained against it, and, as figure
6a shows, all three models accurately make one-step-ahead
reconstructions of the data.

Three outliers were then added to the dataset, each as posi-
tive values (i.e. in the same direction), with values of 10 times
the maximum size of the remaining observations. The Student-
t, Gaussian and GMM AR models were each trained against
this amended set; one-step-ahead predictions are compared
with actual values in figure 6b. It is not surprising that the p
values immediately following each outlier are poorly predicted
by the models, so these are omitted from the plots in figure
6b. By comparing these with the corresponding graphs in
figure 6a it is clear that the Gaussian and GMM models have
been significantly affected by the presence of the outliers,
while the Student-t model is robust to them. It is noticeable
that the Gaussian and GMM AR predictions are worse than
before (the points are spread away from the diagonal), the
estimated mean has moved away from the actual and the noise
variance has been underestimated (the plot appears twisted
clockwise with respect to the diagonal). For the Student-t
model the predictions do not appear to have deteriorated and
the estimated mean has moved only slightly away from the
true mean.

Outliers are observations which lie further from the true
mean than would be likely given the true distribution. The
Gaussian AR model is forced to accomodate them within the
single Gaussian distribution it fits to the excitation noise. This
causes the mean of the estimated distribution to move away
from the actual and/or the variance to be overestimated; both
of these effects are demonstrated here. In contrast, while all
of the distributions in the Student-t mixture of Gaussians have
the same mean, their range of variances allows the overall
distribution to accomodate the outliers.

VI. RESULTS: REAL DATA

EEG signals are often thought of as an example of data
whose noise is heavier-tailed than Gaussian. Here we examine
an EEG signal comprising 1150 observations. If we regard the
data as having been generated by an underlying autoregressive
model with Gaussian distributed excitation noise, then we
expect the observations themselves also to be Gaussian dis-
tributed. Figure 7 shows the Normal probability plot (the sam-
ple quantiles of the observations versus theoretical quantiles
from a normal distribution) for the selected data. The variation
from the straight line shows that these data are significantly
non-Gaussian in nature.

Both the Student-t and Gaussian AR models were evaluated
against this selected sensor sample of 1150 observations.
Where the degrees of freedom for a Student-t distribution is

less than or equal to 2 the variance is, effectively, infinite,
which makes direct comparison of the confidence it has
in its predictions with the Gaussian AR model impossible.
Instead, for each observation, Monte Carlo sampling of 1000
predictions was used to generate an 80% credibility interval.
This was repeated for the Gaussian AR results to enable
direct comparison. Figure 8 shows a subset of results for 50
observations. For each observation the Student-t confidence
interval is noticeably tighter and the actual observed value falls
within it. In fact for all 1150 observations the actual values
lie within the 80% credibility intervals of the Student-t AR
model. This is not the case for the Gaussian AR model.

The Student-t model estimates the AR coefficients with low
variance and a model order of approximately 12. We also find
that it identifies rather similar values for all 58 EEG channels
that comprise a single observation set for a subject, whereas
the Gaussian model does not; this is demonstrated in figure
9. An important consequence of this is that power spectral
densities calculated from the AR coefficients estimated with
Student-t excitations are considerably more consistent across
a subject than estimates using Gaussian excitations.

VII. CONCLUSIONS

The standard AR model is based upon an assumption of
Gaussian excitation noise. We have shown that a Bayesian
model based on a Student-t assumption is more robust to
outliers and is able to model data whose excitation noise
is Gaussian distributed or heavier-tailed than the Gaussian
distribution. The new model is shown to be a generalisation
of the Gaussian model.

The Student-t model leads to intractable integrals in the
calculation of the posterior densities for the model parameters.
We have shown that the factorised variational Bayes technique
provides good approximations and is computationally efficient,
but it tends to underestimate the excitation noise variance,
the degrees of freedom and the magnitudes of the model
coefficients.

The Student-t model incorporates ARD priors over the
AR coefficients and this has been shown to result in sparse
solutions that accurately predict the model order.

For real EEG data that is heavier-tailed than Gaussian, we
have shown that the Student-t model makes more accurate
one-step-ahead predictions, with smaller variances, than the
Gaussian model. The connection between the AR coefficients
and the power spectrum of the observations has long been
recognised [26] and exploited for the estimation of power
spectra, but the variability of these estimates has been pointed
out [27]. The consistency of the coefficients estimated by this
Student-t AR model across EEG channels lead to much more
consistent estimates of the power spectra.
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Figure 6: One-step-ahead predictions plotted against actual values for (a) Gaussian data and (b) the same with the addition of 3
outliers. The black dotted diagonals indicate prediction = actual. The actual mean is marked with a black cross; the estimated
mean with a black circle. The Student-t AR model (left) is largely unaffected by the outliers; the predictions are still very
good and the estimated mean is very close to the actual. The Gaussian (centre) and GMM AR (right) models are noticeably
less accurate than before and are overestimating the excitation variance (the plot appears twisted clockwise with respect to the
diagonal). The estimated mean has moved away from the actual.
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