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Abstract  
 

This paper investigates return and volatility spillover effects between the FTSE 100, 

FTSE 250 and FTSE Small Cap equity indices using the multivariate GARCH 

framework. We find that return and volatility transmission mechanisms between large 

and small stocks in the UK are asymmetric. In particular, there are significant 

spillover effects in both returns and volatility from the portfolios of larger stocks to 

the portfolios of smaller stocks. For volatility, there is also evidence of limited 

feedback from the portfolios of smaller stocks to the portfolios of larger stocks, 

although sub-period analysis suggests that this is to some extent period-specific. 

Simulation evidence shows that non-synchronous trading potentially explains some, 

but not all, of the spillover effects in returns, and that it explains none of the spillover 

effects in volatility. These results are consistent with a market in which information is 

first incorporated into the prices of large stocks before being impounded into the 

prices of small stocks.   
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1. Introduction 
 

Transmission mechanisms between the returns and volatilities of different stocks are 

important for a number of reasons. Firstly, transmission mechanisms tell us something 

about market efficiency. In an efficient market, and in the absence of time-varying 

risk premia, it should not be possible to forecast the returns of one stock using the 

lagged returns of another stock. The finding that there are spillover effects in returns 

implies the existence of an exploitable trading strategy and, if trading strategy profits 

exceed transaction costs, potentially represents evidence against market efficiency. 

Secondly, transmission mechanisms may be useful for portfolio management, where 

knowledge of return spillover effects may be useful for asset allocation or stock 

selection. Thirdly, information about volatility spillover effects may be useful for 

applications in finance that rely on estimates of conditional volatility, such as option 

pricing, portfolio optimization, value at risk and hedging.      

 

Many previous studies have documented that the returns of large and small stocks in 

the US stock market are cross-correlated.
1
 Moreover, a number of these studies show 

that these cross-correlations are asymmetric: the returns of small stock portfolios tend 

to be correlated with the lagged returns of large stock portfolios, while the returns of 

large stock portfolios tend to be uncorrelated with the lagged returns of small stock 

portfolios. Lo and MacKinlay (1990a, 1990b) rule out non-synchronous trading as an 

explanation since implausible levels of non-synchronous trading are required to 

generate the size of the cross-correlations that exist in practice. A number of other 

explanations have therefore been proposed. Mech (1993) suggests that asymmetry in 

the cross-correlation between returns on large and small stocks is due to transaction 

costs, and shows that the speed of price adjustment is associated with the standard 

deviation of returns and the bid-ask spread. Chan (1993) suggests that differences in 

signal quality between large and small stocks induce asymmetry in their cross-

correlations. In particular, if the signal quality of large stocks is assumed to be better 

than that of small stocks, the covariance of the current returns of small stocks with the 

lagged returns of large stocks is larger than the covariance of the current returns of 

                                            
1
 See, for example, Lo and MacKinlay (1990a, 1990b), Boudoukh, Richardson and 

Whitelaw (1994), Mech (1993), Badrinath, Kale and Noe (1995), McQueen, Pinegar 

and Thorley (1996) and Campbell, Lo and MacKinlay (1997, pages 74-78). 



 3

large stocks with the lagged returns of small stocks. Some studies (for example, 

Grinblatt, Titman, and Wermers, 1995; Keim and Madhavan, 1995) argue that 

asymmetric spillover effects in the returns of large and small stocks are related to 

asymmetric trading patterns and the behavior of institutional investors.  

 

Conrad, Gultekin and Kaul (1991) show that the same asymmetry that exists in the 

transmission of short horizon returns between large and small stocks in the US also 

exists in the transmission of volatility. They find that volatility shocks to large stocks 

are important for the future volatility of small stocks, but that volatility shocks to 

smaller stocks have little or no impact on the future volatility of large stocks. As with 

the results for return spillovers, simulation evidence suggests that the observed 

spillover effects in volatility are not caused by non-synchronous trading. Conrad 

Gultekin and Kaul (1991) note that since stock price volatility is directly related to the 

rate of flow of information to the market (see Ross, 1989), the asymmetry in volatility 

spillovers between large and small stocks is consistent with a market in which the 

prices of large stocks respond to new information immediately, but the prices of small 

stocks respond with a lag. This explanation is supported by McQueen, Pinegar and 

Thorley (1996), who show that small stocks display a delayed reaction compared to 

large stocks when news reaches the market. Using longer horizon returns, Hasan and 

Francis (1998) also find that there are volatility spillovers between small and large 

stocks in the US, but in contrast with Conrad Gultekin and Kaul (1991), they find that 

these spillovers are approximately symmetric, acting both from large stocks to small 

stocks, and from small stocks to large stocks.  

 

This paper investigates the return and volatility transmission mechanisms between 

large and small stocks in the UK stock market using daily data on the FTSE 100, 

FTSE 250 and FTSE Small Cap equity indices. We investigate these transmission 

mechanisms using the constant correlation multivariate GARCH model of Bollerslev 

(1990). We model the spillover effects by introducing into the mean and variance 

equation for each index, the lagged shocks to the returns and volatilities of the other 

two indices. To ensure that our results are robust, we include dummy variables to 

capture outliers, calendar effects and the asymmetric response of volatility to good 

and bad news. To further test the robustness of our results, we conduct the analysis 

using both the full sample and two sub-samples. Our results show that there are strong 
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return and volatility transmission mechanisms between small and large stocks in the 

UK stock market. Furthermore, consistent with the results of other studies for the US, 

we find that these return spillover effects are asymmetric. In particular, there are very 

significant return spillovers from the portfolios of large stocks to the portfolios of 

small stocks. For volatility, there are again positive spillovers from the portfolios of 

large stocks to the portfolios of small stocks, although there is also evidence of 

feedback from the portfolios of smaller stocks to the portfolios of larger stocks, and in 

one case, this feedback effect is negative. However, for the sub-samples, the pattern 

of volatility spillovers is very similar to that for return spillovers, with only limited 

positive feedback from small stock portfolios to large stock portfolios. 

 

In order to analyse the effect of non-synchronous trading on our results, we undertake 

a Monte Carlo simulation experiment in which data are simulated for portfolios of 

small, medium and large stocks. The individual stocks in the three portfolios are 

characterised by varying probabilities of non-trading, which are estimated using the 

empirical non-trading frequencies for the three FTSE indices. The simulation results 

suggest that non-synchronous trading leads to spillover effects in returns, although the 

simulated spillover effects are not as large as those that are observed empirically. 

Similarly, the simulation evidence suggests that non-synchronous trading cannot 

explain the observed pattern of spillover effects in volatility. We therefore conclude 

that our empirical results are consistent with a market in which information is first 

incorporated into the prices of large stocks before being impounded into the prices of 

small stocks. 

 

The remainder of the paper is organized as follows. The following section describes 

the data that we use in the study. Section 3 gives details of the empirical 

methodology. Section 4 reports the results. Section 5 presents the results of the Monte 

Carlo simulation. Section 6 offers a summary and conclusion.  

 

2. Data Description 

 

The empirical analysis uses continuously compounded daily stock returns for the 

FTSE 100, FTSE 250 and FTSE Small Cap indices from 1 January 1986 to 31 

December 2002, obtained from Datastream (a total of 4,435 observations). The FTSE 
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100, FTSE 250 and FTSE Small Cap indices are market-weighted indices that account 

for approximately 85 percent, 12 percent and 3 percent of the FTSE All Share index, 

respectively, at the end of 2002. We use short horizon returns because we want to 

analyse spillover effects in both the mean and volatility of the three series, but time 

series variation in conditional volatility tends to be much weaker for longer horizon 

returns. For the sub-period analysis, we split the full sample into two equal sub-

periods. The first sub-sample is from 1 January 1986 to 30 June 1994, while the 

second sub-sample is from 1 July 1994 to 31 December 2002. 

 

Table 1 reports summary statistics for the three return series for the full sample. Panel 

A reports the mean, standard error, skewness and excess kurtosis coefficients and the 

Jarque-Bera statistic to test the null hypothesis that returns are normally distributed. 

All three series are negatively skewed and highly leptokurtic, and the Jarque-Bera 

statistic rejects the null hypothesis of normality very strongly.  Panel B of Table 1 

reports the first four autocorrelation coefficients for returns and squared returns for 

each index, together with Ljung-Box portmanteau statistics. For all three indices, 

returns are serially correlated, although the magnitude of the serial correlation 

decreases with capitalisation. Squared returns are highly serially correlated for all 

three series, indicating the presence of volatility clustering. In contrast with the 

pattern of serial correlation in returns, the magnitude of the serial correlation in 

squared returns increases with capitalisation, implying that ARCH effects are stronger 

for large stocks than for small stocks.  

 

[Table 1] 

 

3. Methodology 

 

3.1 Modelling the Returns and Volatilities of the Indices 

 

As a benchmark, we first model the dynamic properties of the returns and volatilities 

of the FTSE 100, FTSE 250 and FTSE Small Cap return series without spillover 

effects. We use the following multivariate AR-GJR-GARCH-M model for the three 

indices 3,2,1, =ji  
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where tiR ,  is the return of portfolio i in period t, ( )ttt HN ,01 ∼−ψε , 1−tψ  is the set of 

all information available at time 1−t  and ][ ,tijt hH =  is the conditional covariance 

matrix. 1, −tiI  is a dummy variable that is equal to one if the lagged shock to returns, 

1, −tiε  is negative, and zero otherwise. tOCT87  is a dummy variable that is equal to 

one for observations between 19/10/87 and 4/11/87 and zero otherwise. tASIA97  is a 

dummy variables that is equal to one for observations between 23/10/97 and 28/10/97 

and zero otherwise. tJAN  is a dummy variable that is equal to one for the first week 

in January and zero otherwise. tMON  is a dummy variable that is equal to one for 

Mondays and zero otherwise. 

 

The AR(4) specification for the mean equation (1) was chosen on the basis of the 

Schwartz Bayesian Criterion (SBC) from a general ARMA(p,q) specification, 

although the model selected by the Akaike Information Crierion (AIC) led to broadly 

similar empirical results. We have specified a GARCH-in-mean term, with the 

conditional variance of each index included as an explanatory variable in the 

respective mean equation. This is to exploit as much information in estimating 

expected returns, rather than to impose a particular asset pricing restriction, and is 

common in the literature.
2
  

 

                                            
2
 See, for example, Hamao, Masulis and Ng (1990), Conrad, Gultekin and Kaul 

(1991), Ng, Chang and Chou (1991) and Theodossiou and Lee (1993). 
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The model for the conditional covariance matrix, given by (2) and (3), is based on the 

constant correlation (CCOR) specification of the multivariate GARCH model of 

Bollerslev (1990). The model specifies the conditional variance of each index as a 

univariate GARCH model, with the conditional covariance of any two series i and j  

determined by the conditional variances, tiih ,  and tjjh , , and the constant correlation 

coefficient, ijρ . While there are several multivariate GARCH models to choose from, 

the CCOR model has the advantage of being parsimonious and hence greatly reduces 

the computational effort required to estimate the model, generally leading to more 

reliable parameter estimates.
3
 This is particularly important in the present case owing 

to the large number of parameters to be estimated. The GARCH(1,1) specification for 

the conditional variance in equation (2) was chosen for the sake of parsimony. 

 

In order to ensure the robustness of our results, we modify the CCOR model in 

several ways. Firstly, it is well documented that volatility responds asymmetrically to 

good and bad news and, moreover, that volatility spillovers can be significantly 

understated if this asymmetric effect is ignored.
4
 To capture the asymmetric effect of 

news on volatility, we use the GJR specification of the multivariate GARCH model 

and include a dummy variable for negative return shocks (see Glosten, Jagannathan 

and Runkle, 1993). Secondly, to allow for outliers in the data, we include dummy 

variables in both the return and volatility equations for periods of extreme market 

movements. The large negative returns in international equity markets during the 

week following the stock market crash of 19 October 1987 are well documented. So 

too is the increase in the conditional volatility of returns.
5
 Following Aggarwal, Inclan 

and Leal (1999), we include in the full sample and the first sub-sample, a dummy 

variable for the two weeks following the stock market crash of 1987. We also allow 

for the 1997 Asian financial crisis by including in the full sample and the second sub-

sample, a dummy variable for the week that marked the start of the crisis (see Wang, 

Rui, and Firth, 2002). Lastly, we also include dummy variables in both the mean 

equation and the variance equation for the well-known January and Monday effects. 

Many studies have shown that returns are systematically higher during the first week 

                                            
3
 See Engle and Kroner (1995), Kroner and Ng (1998). 
4
 See Glosten, Jagannathan and Runkle (1993), Engle and Ng (1993), Bae and Karolyi 

(1994), Wang, Rui and Firth (2002) and Hung, Lee and So (2003). 



 8

of January than in other months of the year, and lower on Mondays than on other days 

of the week.
6
 A number of studies, including Conrad, Gultekin and Kaul (1991), have 

also found that there are similar calendar effects in the volatility of returns.  

 

3.2 Modelling Spillover Effects Between the Indices 

 

To analyse the return and volatility spillovers between the FTSE 100, FTSE 250 and 

FTSE Small Cap indices, we modify the AR-GJR-GARCH-M model given by (1)-(3) 

to include in the mean and variance equations for each index, the lagged shocks to the 

means and volatilities of the other two indices. Specifically, to capture spillover 

effects in the mean equation for index i, we include the first lag of the returns of each 

of the indices ji ≠ . To capture spillover effects in the volatility equation for index i, 

we include the first lag of the squared return shocks of each of the indices ji ≠ . The 

model including spillovers for indices 3,2,1, =ji  is therefore given by 
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The parameter jiw , measures the partial impact on the returns of index i of past return 

shocks of the two remaining indices, while the parameter jiz ,  measures the partial 

impact on the volatility of index i of past volatility shocks to the two remaining 

indices. We estimate the multivariate GARCH model, both with and without spillover 

                                                                                                                             
5
 See Roll (1988), Schwert (1990), Aggarwal, Inclan and Leal (1999). 
6
 For evidence of the January effect, see, for example, Tinic and West (1984), 

Lakonishok and Smidt (1988) and Draper and Paudyal (1997). 
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effects, by quasi-maximum likelihood with a normal conditional distribution (see 

Bollerslev and Woolridge, 1992). We use the BFGS algorithm with a convergence 

criterion of 0.00001 applied to the function value. Robust errors are computed that are 

valid under non-normality (see White, 1982). 

 

4. Empirical Results  

 

4.1 Multivariate AR(4)-GJR GARCH(1,1)-M Results 

 

Table 2 reports the estimated parameters of the multivariate AR(4)-GJR-

GARCH(1,1)-M model for each the three indices, given by equations (1), (2) and (3), 

together with Ljung-Box test statistics for the standardized residuals (LB(4)) and the 

squared standardized residuals (LB
2
(4)). For all three indices, the sum of the 

estimated GARCH parameters, 2,1, ii ββ + , suggests that volatility is stationary but 

highly persistent. In particular, the half-life of volatility for the FTSE 100, FTSE 250 

and FTSE Small Cap indices is 20.88 days, 9.74 days and 17.15 days, respectively.
7
 

The GARCH-in-mean coefficient, iγ , is significantly positive for all three indices, 

implying that higher volatility is associated with higher expected returns, which is 

consistent with risk aversion. The coefficient of the asymmetry term, iλ , is 

significantly positive for the FTSE 100 index, implying that bad news has a larger 

impact on the volatility of the FTSE 100 index than good news does. The asymmetry 

term is also positive for the FTSE 250 and FTSE Small Cap indices, but not 

statistically significant. As expected, the estimated correlation coefficients, ijρ , 

among the three indices are positive and highly significant. 

 

There is strong evidence of the effect of the October 1987 crash on the returns and 

conditional variances of the three indices. In particular, returns are very significantly 

negative during the crash, and for the FTSE 250 and FTSE Small Cap indices, 

volatility is significantly higher. The Asian crisis had a significant negative impact on 

returns all three indices, and a marginally significant positive impact on volatility. The 

                                            
7
 The half-life is computed as )2/ln(/)2/1ln( 2,1, iiiih λββ ++=  under the 

assumption that the return distribution is symmetric. 
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January effect is insignificant for returns, but has a positive impact on volatility, 

which is significant for the FTSE 250 index, and marginally significant for the FTSE 

100 and FTSE Small Cap indices. The Monday effect is significantly negative for 

FTSE 100 and FTSE 250 returns, and marginally significantly negative for FTSE 

Small Cap returns. For volatility, the Monday dummy is significantly negative for the 

FTSE 250 index, and negative with marginal significance for the FTSE 100 index.  

 

The LB
2
(4) statistics suggest that the multivariate GARCH(1,1) specification 

successfully captures the serial correlation in squared returns for each of the three 

indices. The LB(4) statistics show that there is significant serial correlation in the 

residuals for the three indices. However, it will be seen below that this serial 

correlation is significantly reduced once we include return and volatility spillovers 

into the model. Alternative ARMA specifications of the mean equation (particularly 

those selected by the AIC, which generally include longer lags of both the AR and 

MA components) failed to eliminate this serial correlation. 

 

[Table 2] 

 

Table 3 reports the estimated parameters of the multivariate AR(4)-GJR 

GARCH(1,1)-M model with spillover effects for each the three indices, given by 

equations (4), (5) and (6). Comparing Table 2 and Table 3, it can be seen that the 

introduction of the spillover effects into the model generally has only a small effect on 

the estimated parameter values for the mean and variance equations of the three 

indices. Moreover, the introduction of spillover effects significantly reduces the serial 

correlation in the residuals. The LB(4) statistic is now insignificant for the FTSE 

Small Cap Index, and considerably reduced for the FTSE 100 and FTSE 250 indices. 

Again, alternative ARMA specifications of the mean equation failed to completely 

eliminate the remaining serial correlation. However, the choice of model for the mean 

return for these series does not significantly affect the results on mean and volatility 

spillovers that are reported below, and alters none of the qualitative conclusions.
 8
 

 

                                            
8
 Results obtained using alternative specifications of the mean equation are available 

from the authors. 
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Table 3 shows that there are very significant return and volatility spillovers between 

the FTSE 100, FTSE 250 and FTSE Small Cap indices. Moreover, these spillover 

effects are highly asymmetric. In particular, there are significant positive spillover 

effects in returns from the FTSE 100 index to the FTSE 250 and FTSE Small Cap 

indices. There is also a marginally significant positive spillover from the FTSE 250 

index to the FTSE Small Cap index. In contrast, there are no statistically significant 

spillover effects from the portfolios of smaller stocks to the portfolios of larger stocks. 

Consistent with the findings of previous studies for the US cited above, we therefore 

find that there are very significant asymmetric spillover effects from the returns of 

large stocks to the returns of small stocks. 

 

For conditional volatility, the spillover effects are more complex. We again find that 

there are significant spillover effects from the FTSE 100 index to both the FTSE 250 

index and the FTSE Small Cap index and from the FTSE 250 index to the FTSE 

Small Cap index. These findings are consistent with those of Conrad, Gultekin and 

Kaul (1991) for the US. However, we also find that there is evidence of feedback in 

volatility from smaller stocks to larger stocks, with a significant negative spillover 

between the FTSE 250 index and the FTSE 100 index, implying that an increase in 

the volatility of the FTSE 250 index is associated with a subsequent decrease in the 

volatility of the FTSE 100 index. There is also a positive spillover in volatility from 

the FTSE Small Cap index to the FTSE 100 index, and a marginally significant 

positive spillover from the FTSE Small Cap index to the FTSE 250 index. In order to 

shed more light on the observed spillover patterns, we conduct the same analysis 

using each of the two sub-samples.   

 

[Table 3] 

 

4.2 Sub-Period Analysis 

 

Table 4 presents the results for the first sub-sample, while Table 5 presents the results 

for the second sub-sample. The pattern of return spillovers for both sub-samples are 

very similar to those reported for the full sample. We again find that the spillover 

effects in returns are highly asymmetric in both sub-samples. There are highly 

significant positive spillover effects in returns from the FTSE 100 index to both the 
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FTSE 250 and FTSE Small Cap indices. The evidence of asymmetry is even more 

pronounced for the second sub-sample, with an additional significant positive return 

spillover from the FTSE 250 index to the FTSE Small Cap index. There are 

marginally significant negative spillovers from the FTSE Small Cap index to the 

FTSE 250 index in the second sub-sample, and from the FTSE 250 index to the FTSE 

100 index in the first sub-sample. 

 

For conditional volatility, the positive spillover effects from the FTSE 100 index to 

the FTSE 250 index and the FTSE Small Cap index that are present in the full sample 

are also present in the two sub-samples. The positive spillover from the FTSE 250 

index to the FTSE Small Cap index that is present in the full sample is significant for 

the second sub-sample, but not for the first sub-sample.  The positive spillover effect 

from the FTSE Small Cap index to the FTSE 100 index that is present in the full 

sample, is marginally significant in the first sub-sample, but absent in the second sub-

sample. However, in the second sub-sample, there is a significantly positive spillover 

from the FTSE Small Cap index to the FTSE 250 index that is only marginally 

significant in both the full sample and the first sub-sample. The significant negative 

spillover from the FTSE 250 index to the FTSE 100 index that is present in the full 

sample is insignificant in both sub-samples.  

 

The results of this section therefore suggest that the spillover effects in returns and 

volatility from larger stock portfolios to smaller stock portfolios are robust with 

respect to the time-period considered. The spillovers in both returns and volatility 

tend to be stronger in the second sub-sample than the first sub-sample. However, there 

remain some marginally significant feedback effects in volatility from the portfolios 

of smaller stocks to the portfolios of larger stocks, but these vary somewhat with the 

time-period considered. The negative spillover from the FTSE 250 index to the FTSE 

100 index is not present in either of the two sub-samples, casting doubt on its 

robustness and suggesting that it could be, to some extent, spurious.   

 

[Tables 4 and 5] 
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5. The Effect of Non-synchronous Trading on Return and Volatility Spillovers  

 

Many previous studies (for example, Lo and Mackinlay, 1990a, 1990b) report 

evidence that non-synchronous trading can potentially induce an asymmetry in the 

transmission mechanisms of returns between large and small stocks. To investigate 

the potential effects of non-synchronous trading on our results, we employ the 

simulation experiments used in Conrad, Gultekin and Kaul (1991) and Kadlec and 

Patterson (1999). These simulation experiments are based on the non-synchronous 

trading model first developed by Scholes and Williams (1977) and later generalised 

by Lo and MacKinlay (1990a). Suppose that the unobservable ‘latent’ continuously 

compounded returns tiR ,  of N  securities are generated by the following single-factor 

model. 

 

  NiMR titiiti ,...,1     ,  ,, =++= εβα             (7) 

 

where ),0(~ ,tMt hNM  is a zero-mean conditionally heteroscedastic common factor 

and ),0(~, εε hNti  is a zero-mean idiosyncratic noise term that is temporally and 

cross-sectionally independent at all leads and lags. When tM  is the return on the 

market portfolio, equation (7) represents the market model of Sharpe (1964). We 

assume that the conditional volatility of tM  is generated by the following asymmetric 

GARCH(1,1) model. 

 

2

1,13

2

121,10,   −−−− +++= tMtttMtM IaMahaah ε           (8) 

 

In order to calibrate this model, we estimate it for the FTSE All Share index for the 

full sample period. This yields parameter estimates 6

0 10*73.2ˆ −=a , 8941.0ˆ
1 =a , 

0461.0ˆ
2 =a  and 0668.0ˆ

3 =a . Using these parameter estimates, and setting the initial 

conditional variance, tMh  , , to the estimated unconditional variance of the FTSE All 

Share index, we use equation (8) to generate the conditionally heteroscedastic factor 

return, tM .  We then use equation (7) to generate the individual stock returns, itR . 

For all stocks, iβ  is set equal to unity, and iα  is set equal to zero. Following Kadlec 
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and Patterson (1999), in order to estimate the variance of ti ,ε , we first randomly select 

100 stocks from the FTSE All Share index at the end of 2002. We regress the daily 

returns of each of these individual stocks on a constant and the daily return on the 

FTSE All share index. We then calculate the average variance of the residuals 

obtained from these regressions and use this as an estimate of εh .  

 

We now introduce non-synchronous trading into the simulation model. If security i 

trades in period t+1 but did not trade in period t, its observed return, 
o

tiR 1, + , at 1+t  is 

simply the sum of its latent returns that period and its latent returns for all past 

consecutive periods in which it did not trade. Hence, the observed return, 
o

tiR , , is 

given by the following stochastic process. 

 

  NiRkXR
k

ktiti

o

ti ,...,1     ,)(  
0

,,, ==∑
∞

=

−            (9) 

 

where the random weight )(, kX ti  is an indicator variable that takes the value 1 when 

security i trades at time t but has not traded in any of the k previous periods, and takes 

the value 0 otherwise.  

 

To simulate the observed return, 
o

tiR , , we first simulate 4435 daily latent returns, tiR , , 

for 10 large, 10 medium and 10 small stocks. We generate the non-trading history for 

each individual stock from a Bernoulli process, using the empirical non-trading 

frequencies of the FTSE 100, the FTSE 250 and the FTSE Small Cap indices. These 

empirical non-trading frequencies are 0.0008, 0.0334 and 0.0840, respectively.
9
 Once 

the latent returns and the non-trading history of large, medium and small stocks are 

generated, an observed return for each individual stock is computed using equation 

(9). The daily returns for individual small, medium and large stocks are then 

aggregated into small, medium, and large portfolios respectively. As a benchmark, we 

also simulate the return and volatility transmissions under the assumption of no non-

                                            
9
 These non-trading frequencies are computed from the daily data for the individual 

stocks that comprise each of the FTSE 100, FTSE 250 and FTSE Small Cap indices 

between 1 January 1986 and 31 December 2002. 
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synchronous trading. In this case, we simply repeat the simulation described above, 

but with the three non-trading probabilities set to zero. The simulations are 

undertaken using 1000 replications. 

 

To examine the return transmission mechanisms across the three portfolios, we 

estimate the following regression for each index 3,2,1=i .   

   

        ,1,33,1,22,1,11,0,, ti

o

ti

o

ti

o

tii

o

ti uRRRR ++++= −−− γγγγ ,         (10)   

 

where 0,iγ  is a constant, and 1,iγ , 2,iγ  and 3,iγ  are the coefficients of the lagged 

returns of portfolios of the large, medium and small stock portfolios respectively. The 

volatility transmission mechanisms across all three portfolios are investigated by 

estimating the following regression.  

 

  tititiitititiiti vuIuuuu ,

2

1,1,4,

2

1,33,

2

1,22,

2

1,11,0,

2

,  ˆˆ ˆ ˆ  ˆ +++++= −−−−− ωωωωω    (11)   

       

where 0,iω  is a constant, and 1,iω , 2,iω  and 3,iω  are the coefficients of the lagged 

squared return shocks of portfolios of the large, medium and small stock portfolios 

respectively. These equations are analogous to the multivariate asymmetric GARCH 

model with spillover effects that is used in the empirical analysis in the previous 

section.  

 

Table 6 reports the results for the return transmissions. Panel A shows evidence of 

asymmetric return spillovers from larger stock portfolios to smaller stock portfolios 

when non-synchronous trading is allowed for in the simulation process, although there 

is one case that indicates a return spillover from a smaller stock portfolio to a larger 

stock portfolio. This asymmetry in return spillover effects is consistent with the 

empirical results reported in the previous section. However, the estimated cross-

autoregressive parameters in the simulation are considerably lower than those 

observed in the empirical analysis. When we assume no non-synchronous trading in 

the simulation process, these spillover effects disappear almost completely. These 

results therefore suggest that non-synchronous trading may explain a proportion of the 

asymmetric spillover effects between the FTSE 100, FTSE 250 and FTSE Small Cap 

indices, but is not able to account for all of it. This is consistent with the findings of 
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Lo and MacKinlay (1990a and 1990b), who find that non-synchronous trading, while 

generating significant return spillovers between large and small stocks, is insufficient 

to explain the magnitude of lagged cross-correlations in stock returns observed in the 

US. 

 

[Table 6] 

 

Table 7 suggests that non-synchronous trading is also unlikely to fully explain the 

observed spillover effects in volatility between the FTSE 100, FTSE 250 and FTSE 

Small Cap indices. When there is no non-synchronous trading, there is a symmetric 

pattern of volatility spillovers between the large, medium and small portfolios (which 

arises from the single facture nature of the simulation model). In contrast with the 

simulation evidence for return spillovers, the introduction of non-synchronous trading 

has no distinguishable effect on the pattern of spillovers in volatility. Furthermore, the 

estimated lagged cross-correlations in squared residuals observed in the simulation 

with non-synchronous trading are not significantly different from those observed in 

the simulation with no non-synchronous trading. Thus, it is unlikely that non-

synchronous trading would be able to account for the asymmetric pattern of volatility 

spillovers that is observed in practice. 

 

[Table 7] 

 

 

6. Conclusion  

 

In this paper, we investigate return and volatility spillover effects between large and 

small stocks in the UK stock market using the multivariate AR-GJR GARCH-M 

model. We find that the returns and volatilities of large stocks are important in 

predicting the future dynamics of smaller stocks, but that the returns and volatilities of 

smaller stocks have much less impact on the future dynamics of large stocks. Our 

empirical results suggest that information flow has an influence on the pattern of the 

transmission mechanisms between large and small stocks. Market-wide information is 

first incorporated into the prices of large stocks before being impounded into the 

prices of small stocks. In other words, the prices of small stocks respond with a delay 
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to the arrival of market-wide information. Simulation evidence suggests that non-

synchronous trading can account for some of the spillover effects in returns, but not 

all of it. Similarly, the simulation evidence suggests that non-synchronous trading is 

unlikely to account for the spillover effects in volatility. The results are consistent 

with previous studies that find a similar pattern of return and volatility spillovers for 

the US, and are potentially useful for a range of applications in finance that rely on 

forecasts of returns and volatilities. 
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Table 1  Descriptive Statistics and Autocorrelations 

 

Panel A: Descriptive Statistics 

 
Index Mean St Dev Skewness Kurtosis JB Statistic 

      

FTSE 100 0.0002 0.0106 -0.85 11.17 22436** 

FTSE 250 0.0003 0.0078 -1.93 26.79 131241** 

FTSE SC 0.0002 0.0064 -3.25 42.11 325235** 

 

 

 

Panel B: Autocorrelations 

 

 tR  2

tR  

 FTSE 100 FTSE 250 FTSE SC FTSE 100 FTSE 250 FTSE SC 

       

1ρ  0.05** 0.22** 0.30** 0.51** 0.35** 0.29** 

2ρ  -0.04** 0.12** 0.20** 0.29** 0.21** 0.16** 

3ρ  -0.04** 0.08** 0.18** 0.18** 0.14** 0.12** 

4ρ  0.04** 0.14** 0.20** 0.18** 0.34** 0.25** 

LB(4) 30.18** 391.87** 913.32** 1,791.39** 1,335.64** 834.71** 
 

Notes: Panel A reports the mean, standard deviation and skewness and excess kurtosis coefficients, and 

the Jarque-Bera test statistic for normality. Panel B reports the first four autocorrelations for the returns 

and squared returns of each index and fourth-order Ljung-Box statistics. ‘*’ and ‘**’ denote statistical 

significance at the 5% level and the 1% level respectively. 
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Table 2  The Multivariate AR(4)-GJR GARCH(1,1)-M Model 
 

 FTSE 100 FTSE 250 FTSE Small Cap 

 Coeff t-stat Coeff t-stat Coeff t-stat 

αi,0 -0.0005 -1.15 -0.0002 -0.72 -0.0002 -1.75 

αi,1 -0.0750 -6.22** 0.1304 11.56** 0.3437 22.04** 

αi,2 -0.0061 -0.53 0.0763 6.76** 0.8640 4.94** 

αi,3 -0.0321 -2.86** 0.0188 1.75 0.0664 4.65** 

αi,4 0.0030 0.27 0.0474 4.84** 0.0725 5.93** 

γi 0.1317 2.46* 0.1225 2.57* 0.1169 3.51** 

ci,1 -0.0513 -3.72** -0.0424 -4.77** -0.0290 -4.20** 

c i,2 -0.0277 -5.01** -0.0214 -2.99** -0.0153 -2.45* 

c i,3 -0.0012 -0.80 0.0012 1.47 0.0009 1.42 

c i,4 -0.0007 -2.87** -0.0008 -4.66** -0.0003 -1.90 

       

βi,0x10
2
 0.0004 3.75** 0.0004 5.16** 0.0001 2.31* 

βi,1 0.8935 57.47** 0.7973 25.58** 0.7353 19.75** 

βi,2 0.0523 5.23** 0.1219 4.85** 0.1862 5.19** 

λi 0.0431 4.13** 0.0242 1.26 0.0778 1.49 

d i,1x10
2
 0.0155 1.59 0.0134 1.99* 0.0129 2.01* 

d i,2x10
2
 0.0081 1.63 0.0088 1.70 0.0065 1.68 

d i,3x10
2
 0.0013 1.75 0.0006 2.63** 0.0004 1.69 

d i,4x10
2
 -0.0008 -1.61 -0.0005 -2.34* 0.0001 0.66 

       

ρFTSE100,FTSE250 0.7981 131.89**     

ρFTSE100,FTSESC 0.6770 76.45**     

ρFTSE250,FTSESC 0.8444 124.61**     

       

LB(4) 76.7422 [0.00] 62.3303 [0.00] 18.0303 [0.00] 

LB
2
(4) 1.5436 [0.82] 2.5457 [0.64] 0.9340 [0.92] 

 
Notes: The table reports the estimation for the multivariate AR(4)-GJR GARCH(1,1)-M model given 

by 

titititititiii

n

ntiniiti MONcJANcASIAcOCTchRR ,4,3,2,1,,

4

1

,,0,, 9787  εγαα +++++++= ∑
=

−

 

titititititiitiitiiiitii MONdJANdASIAdOCTdIhh 4,3,2,1,

2

1,1,

2

1,2,1,1,0,, 9787  +++++++= −−−− ελεβββ  

( )   ,,, tjjtiiijtij hhh ρ=  

t-statistics are in parenthesis. ‘*’ and ‘**’ denote statistical significance at the 5% level and the 1% 

level respectively. LB(4) and LB
2
(4) are the fourth-order Ljung-Box statistics for standardized 

residuals and squared standardized residuals, respectively. The p-values of these statistics are reported 

in parentheses.  
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Table 3  The Multivariate AR(4)-GJR GARCH(1,1)-M Model with Spillovers 
 

 FTSE 100 FTSE 250 FTSE Small Cap 

 Coeff t-stat Coeff t-stat Coeff t-stat 

αi,0 -0.0008 -1.80 -0.0004 -1.78 -0.0003 -2.52* 

αi,1 0.0421 1.46 0.1340 4.51** 0.2191 7.41** 

αi,2 -0.0132 -0.94 0.0700 5.68** 0.1070 5.92** 

αi,3 -0.0289 -2.07* 0.0285 2.52* 0.0853 7.03** 

αi,4 0.0018 0.15 0.0504 5.41** 0.0831 7.22** 

γi 0.1670 3.50** 0.1641 4.08** 0.1371 4.35** 

ci,1 -0.0485 -3.48** -0.0450 -4.43** -0.0294 -3.85** 

c i,2 -0.0251 -5.40** -0.0197 -3.08** -0.0138 -2.50* 

c i,3 -0.0010 -0.60 0.0012 1.46 0.0011 1.85 

c i,4 -0.0005 -1.60 -0.0007 -3.14** -0.0002 -1.27 

w i,FTSE100 - - 0.0876 5.20** 0.0830 7.81** 

w i,FTSE250 -0.0412 -0.79 - - 0.0340 1.60 

w i,FTSESC 0.0060 0.10 -0.0417 -1.17 - - 

       

βi,0x10
2
 0.0000 3.93** 0.0000 5.25** 0.0000 1.50 

βi,1 0.8886 50.94** 0.7360 21.40** 0.7012 30.20** 

βi,2 0.0827 6.27** 0.1055 4.58** 0.1565 5.75** 

λi 0.0334 2.93** -0.0073 -0.36 0.0754 1.26 

d i,1x10
2
 0.0002 1.63 0.0001 1.71 0.0001 1.73 

d i,2x10
2
 0.0001 2.37* 0.0001 2.03* 0.0001 1.92 

d i,3x10
2
 0.0000 1.44 0.0000 2.29* 0.0000 1.84 

d i,4x10
2
 -0.0000 -2.21* -0.0000 -2.45* 0.0000 0.54 

z i,FTSE100 - - 0.0318 4.72** 0.0103 2.59** 

z i,FTSE250 -0.0388 -4.85** - - 0.0247 2.18* 

z i,FTSESC 0.0140 2.26* 0.0646 1.65 - - 

       

ρFTSE100,FTSE250 0.8004 135.04**     

ρFTSE100,FTSESC 0.6783 74.70**     

ρFTSE250,FTSESC 0.8462 137.22**     

       

LB(4) 10.5768 [0.03] 15.2614 [0.00] 6.4418 [0.17] 

LB
2
(4) 1.9586 [0.74] 1.2802 [0.87] 1.1745 [0.88] 

 

Notes: The table reports the estimation for the multivariate AR(4)-GJR GARCH(1,1)-M model with 

spillover effects, given by 
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( )   ,,, tjjtiiijtij hhh ρ=  

t-statistics are in parenthesis. ‘*’ and ‘**’ denote statistical significance at the 5% level and the 1% 

level respectively. LB(4) and LB
2
(4) are the fourth-order Ljung-Box statistics for standardized 

residuals and squared standardized residuals, respectively. The p-values of these statistics are reported 

in parentheses. 
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Table 4   The Multivariate AR(4)-GJR GARCH(1,1)-M Model with Spillovers 

over the period: 1
st
 Jan 1986 to 30

th
 Jun 1994 

 
 FTSE 100 FTSE 250 FTSE Small Cap 

 Coeff t-stat Coeff t-stat Coeff t-stat 

αi,0 -0.0018 -1.24 -0.0012 -1.52 -0.0008 -1.50 

αi,1 0.1268 3.18** 0.0149 0.23 0.1918 2.26* 

αi,2 0.0085 0.45 0.0540 2.42* 0.0886 2.40* 

αi,3 -0.0252 -1.97* 0.0258 2.36* 0.0804 5.28** 

αi,4 0.0108 0.58 0.0530 2.72** 0.0840 3.91** 

γi 0.3049 0.16 0.2866 1.94 0.2507 1.57 

ci,1 -0.0498 -2.40* -0.0471 -2.87** -0.0331 -2.59** 

c i,3 -0.0014 -0.89 0.0002 0.17 0.0003 0.26 

c i,4 -0.0014 -4.94** -0.0013 -5.85** -0.0005 -2.39* 

w i,FTSE100 - - 0.1816 5.53** 0.1552 6.79** 

w i,FTSE250 -0.1230 -1.52 - - -0.0251 -0.60 

w i,FTSESC 0.0234 0.19 -0.0192 -0.17 - - 

       

βi,0x10
2
 0.0000 4.11** 0.0000 4.37** 0.0000 2.14* 

βi,1 0.7894 25.62** 0.6556 13.97** 0.6367 17.68** 

βi,2 0.1031 5.18** 0.0890 2.10* 0.2034 2.28* 

λi -0.0162 -0.72 -0.0421 -1.07 0.0997 1.54 

d i,1x10
2
 0.0004 2.09* 0.0002 2.16* 0.0002 1.85 

d i,3x10
2
 0.0000 0.93 0.0000 1.55 0.0000 0.85 

d i,4x10
2
 -0.0000 -0.40 -0.0000 -1.17 0.0000 1.55 

z i,FTSE100 - - 0.0615 3.94** 0.0250 2.77** 

z i,FTSE250 -0.0149 -0.78 - - -0.0022 -0.08 

z i,FTSESC 0.0275 1.65 0.1506 1.80 - - 

       

ρFTSE100,FTSE250 0.8707 244.95**     

ρFTSE100,FTSESC 0.7269 167.48**     

ρFTSE250,FTSESC 0.8738 208.99**     

       

LB(4) 5.4242 [0.25] 9.7169 [0.05] 11.0123 [0.03] 

LB
2
(4) 2.0624 [0.72] 1.2824 [0.86] 0.7516 [0.94] 

 

Notes: The table reports the estimation for the multivariate AR(4)-GJR GARCH(1,1)-M model with 

spillover effects, given by 
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t-statistics are in parenthesis. ‘*’ and ‘**’ denote statistical significance at the 5% level and the 1% 

level respectively. LB(4) and LB
2
(4) are the fourth-order Ljung-Box statistics for standardized 

residuals and squared standardized residuals, respectively. The p-values of these statistics are reported 

in parentheses. 
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Table 5   The Multivariate AR(4)-GJR GARCH(1,1)-M Model with Spillovers 

over the period: 1
st
 Jul 1994 to 31

st
 Dec 2002 

 
 FTSE 100 FTSE 250 FTSE Small Cap 

 Coeff t-stat Coeff t-stat Coeff t-stat 

αi,0 -0.0004 -0.79 -0.0002 -0.72 -0.0002 -2.04* 

αi,1 0.0433 2.75** 0.1725 5.83** 0.2430 8.60** 

αi,2 -0.0378 -3.56** 0.0823 8.34** 0.1103 10.46** 

αi,3 -0.0403 -2.86** 0.0251 2.15* 0.0920 6.65** 

αi,4 -0.0042 -0.47 0.0446 4.64** 0.0754 5.87** 

γi 0.1070 1.94 0.1223 2.30* 0.1235 3.53** 

c i,2 -0.0236 -6.07** -0.0186 -3.10** -0.0135 -2.25* 

c i,3 -0.0013 -0.71 0.0011 1.85 0.0012 2.18* 

c i,4 0.0005 1.71 -0.0002 -1.87 -0.0001 -1.35 

w i,FTSE100 - - 0.0721 9.94** 0.0633 11.53** 

w i,FTSE250 -0.0408 -0.86 - - 0.0432 2.25* 

w i,FTSESC -0.0930 -1.60 -0.0765 -1.92 - - 

       

βi,0x10
2
 0.0000 3.69** 0.0000 4.82** 0.0000 2.11* 

βi,1 0.9002 29.79** 0.7455 22.77** 0.7180 31.24** 

βi,2 0.0455 2.82** 0.0875 3.94** 0.1448 8.57** 

λi 0.0550 3.05** 0.0117 0.53 0.0839 3.28** 

d i,2x10
2
 0.0000 1.04 0.0000 3.48** 0.0000 2.78** 

d i,3x10
2
 0.0000 1.20 0.0000 0.99 0.0000 1.36 

d i,4x10
2
 -0.0000 -3.19** -0.0000 -2.87** -0.0000 -0.88 

z i,FTSE100 - - 0.0228 3.75** 0.0053 2.52* 

z i,FTSE250 0.0071 0.27 - - 0.0237 2.61** 

z i,FTSESC 0.0072 0.22 0.0664 2.45* - - 

       

ρFTSE100,FTSE250 0.7284 77.94**     

ρFTSE100,FTSESC 0.6350 60.47**     

ρFTSE250,FTSESC 0.8116 115.22**     

       

LB(4) 6.2476 [0.18] 11.8394 [0.02] 4.0297 [0.40] 

LB
2
(4) 3.2103 [0.52] 0.5085 [0.97] 3.0852 [0.54] 

 

Notes: The table reports the estimation for the multivariate AR(4)-GJR GARCH(1,1)-M model with 

spillover effects, given by 
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1,,4,3,2,
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1,2,1,1,0,, 97  
ijj
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( )   ,,, tjjtiiijtij hhh ρ=  

t-statistics are in parenthesis. ‘*’ and ‘**’ denote statistical significance at the 5% level and the 1% 

level respectively. LB(4) and LB
2
(4) are the fourth-order Ljung-Box statistics for standardized 

residuals and squared standardized residuals, respectively. The p-values of these statistics are reported 

in parentheses. 
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Table 6  Simulation Results for Non-Synchronous trading: Returns 

 

Panel A: Non-synchronous Trading 

 

 o

tR ,1  
o

tR ,2  
o

tR ,3  

 

o

tR 1,1 −  
0.0010 

(0.81) 

0.0158 

(14.49)** 

0.0270 

(19.80)** 
o

tR 1,2 −  
-0.0014 
(-1.02) 

0.0063 
(5.30)** 

0.0399 
(26.18)** 

o

tR 1,3 −  
-0.0011 

(-1.43) 

0.0033 

(4.64)** 

-0.0010 

(-1.12) 
 

 

Panel B: Synchronous Trading 

 

 o

tR ,1  
o

tR ,2  
o

tR ,3  

 

o

tR 1,1 −  
-0.0001 

(-0.12) 

0.0007 

(0.64) 

0.0010 

(0.73) 
o

tR 1,2 −  
0.0001 

(0.08) 

-0.0005 

(-0.41) 

-0.0013 

(-0.86) 
o

tR 1,3 −  
0.0003 

(0.47) 

0.0001 

(0.18) 

-0.0005 

(-0.51) 

 
Notes: o

t

o

t

o

t RandRR ,3,2,1   ,  are the simulated observed returns of large, medium and small stock 

portfolios respectively. The table reports the average coefficients in the regression 

      ,1,33,1,22,1,11,0,, ti

o

ti

o

ti

o

tii

o

ti uRRRR ++++= −−− γγγγ  for each index 3,2,1=i . For the non-synchronous trading 

case, the non-trading probabilities are set to the empirical non-trading frequencies of 0.0008, 0.0334 

and 0.0840. For the synchronous trading case, the non-trading probabilities are set equal to zero. The 

simulation is based on 1000 replications. t-statistics are reported in parentheses. ‘*’and ‘**’ denote 

statistical significance at the 5% level and the 1% level respectively. 
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Table 7 Simulation Results for Non-Synchronous Trading: Volatility 

 

Panel A: Non-synchronous Trading 

 

 2

,1
ˆ
tu  

2

,2
ˆ

tu  
2

,3
ˆ

tu  

 
2

1,1
ˆ

−tu  
0.0517 

(31.31)** 

0.0513 

(34.88)** 

0.0480 

(25.96)** 
2

1,2
ˆ

−tu  
0.0765 

(42.67)** 

0.0692 

(40.94)** 

0.0699 

(34.44)** 
2

1,3
ˆ

−tu  
0.0137 
(15.52)** 

0.0127 
(15.68)** 

0.0054 
(5.41)** 

 

 

Panel B: Synchronous Trading 

 

 2

,1
ˆ
tu  

2

,2
ˆ

tu  
2

,3
ˆ

tu  

 
2

1,1
ˆ

−tu  
0.0470 

(31.81)** 

0.0472 

(32.99)** 

0.0466 

(25.82)** 
2

1,2
ˆ

−tu  
0.0757 
(42.06)** 

0.0761 
(43.41)** 

0.0749 
(34.05)** 

2

1,3
ˆ

−tu  
0.0124 

(15.79)** 

0.0121 

(16.20)** 

0.0121 

(11.55)** 
 

Notes: 2

,3

2

,2

2

,1
ˆ  ˆ,ˆ

ttt uanduu  are the simulated squared residuals of large, medium and small stock 

portfolios respectively. The table reports the average coefficients in the regression 

titititititiiti vuIuuuu ,

2

1,14,

2

1,33,

2

1,22,

2

1,11,0,

2

,  ˆˆ ˆ ˆ  ˆ +++++= −−−−− ωωωωω  for each index 3,2,1=i . For the non-

synchronous trading case, the non-trading probabilities are set to the empirical non-trading frequencies 

of 0.0008, 0.0334 and 0.0840. For the synchronous trading case, the non-trading probabilities are set 

equal to zero. The simulation is based on 1000 replications. t-statistics are reported in parentheses. 

‘*’and ‘**’ denote statistical significance at the 5% level and the 1% level respectively. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


