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Abstract

Discrete barrier options can be valued by quadrature, on a lattice or
by Monte Carlo integration. Prices found by an ordinary lattice method
will have a large discretisation bias. A good Monte Carlo method will
have less bias, but will face difficulties in pricing American style discrete
barrier options. Quadrature methods are relatively slow for American
barrier options.

We provide a rigorous mathematical framework for valuing discrete
barrier options. We show how the Dirichlet lattice of Kuan and Webber
can be extended to remove discretisation bias in the lattice valuation of
discrete barrier options. Unlike a plain lattice method, the lattice can
value American barrier options by backwards or forwards induction and
can price a wide range of complex barrier options, including those with
multiple and non-constant barrier levels.

Numerical results are given. We conclude the lattice is a relatively
simple method of obtaining accurate option values for a wide range of
complex European and American discrete barrier options.

*We wish to thank GianLuca Fusai and other participants in a seminar at the University
of Piemonte Orientale for helpful comments.



1 Introduction

Discretely reset barrier options are widely traded in the markets. Sometimes an-
alytical solutions are available for their continuously reset counterparts (Reiner
and Rubinstein (1991); for double barrier options Kunitomo and Ikeda (1992)
give an analytical formula expressed as the sum of infinite series.) but for dis-
cretely reset options analytical solutions are rarely available.!

Various solution methods have been used for discrete barrier options. These
include lattice methods, finite difference methods, Monte Carlo methods, cor-
rection methods and quadrature methods. The naive use of these numerical
methods can lead to large pricing errors and slow convergence.

Lattice methods are sensitive to the positioning of barrier levels and have
non-uniform convergence. To obtain faster convergence, the position of nodes
in a lattice relative to the barrier can be adjusted (Ritchken (1995), Cheuk and
Vorst (1996), Heynen and Kat (1997), Tian (1999)) but convergence can still be
slow and prices may still exhibit considerable bias. Figlewski and Gao (1999)
and Ahn, Figlewski and Gao (1999) use refined branching near to the barrier.
Their method is able to price significantly more accurately then standard lattices
even when barriers are close to the spot price, but may be awkward to implement
for complex barrier options.

Finite difference methods have been used by Boyle and Tian (1998) and
Zvan et al. (2000). These methods can be considered as a form of quadrature
method, but since they are precise only in the continuous time limit, they are
dominated by quadrature methods when the transition density function of the
underlying state variable is known or can be adequately approximated.

Monte Carlo methods are considered by, for instance, Andersen and Brotherton-
Ratcliffe (1996), Beaglehole et al. (1997) and Baldi et al. (1999). Care needs
to be taken in these cases to correct for simulation bias. Even so, Monte Carlo
methods can be slow, since so-called “long-step” methods - evolving to the final
time in a single time step - cannot be used.

Quadrature methods, such as those of Ait-Sahalia and Lai (1997), (1998),
Sullivan (2000), Andricopoulos et al. (2003), and Fusai and Recchioni (2003),
solve for option prices by expanding out the option value as a series of nested
integrals. Each integral is then computed by numerical integration. Although
reasonably effective for European style options, quadrature methods are slow
when used with American style options.

The analytical correction method of Broadie et al. (1997), (1999), elaborated
by Kou (2001) and Horfelt (2003), relates the values of discrete barrier option
values to the values of the corresponding continuously reset barrier option. An
alternative method is due to Wei (1998). Broadie et al. (1999) describe a trino-
mial lattice for discrete barrier options using the correction and a shift of nodes.
The performance of these methods varies depending upon the position of the
barrier and the frequency of resets.

I Formulae involving multi-dimensional distribution functions usually require numerical so-
lution.



Other methods include the Markov Chain method of Duan et al. (2003).
This combines features of a Monte Carlo method, a quadrature method, and a
lattice method.

In this paper we apply the Dirichlet lattice of Kuan and Webber (2003) to
value discretely reset barrier options. Kuan and Webber describe the use of
the Dirichlet lattice to value continuous barrier options. The Dirichlet lattice
approximates an underlying continuous time process by one taking discrete val-
ues at a discrete set of times. At intermediate times the lattice variable has a
distribution given by a bridge distribution.

The advantage of the Dirichlet lattice is its simplicity, its relative lack of
bias, and its ability to price a very wide range of generalised barrier options. It
is faster than Monte Carlo and less complex than finite difference or quadrature
methods. It does not require special positioning of nodes, and it can value
American barrier options as easily as European options.

The next section describes the construction of the Dirichlet lattice. We
show how a Dirichlet lattice can be used to value single, double, and more
complex discrete barrier options with considerably reduced discretization bias.
Section three presents numerical results. We value discrete knock-in and knock-
out barrier options, using both forward and backwards induction. The method
benchmarks accurately to values found by previous authors, in particular to
Broadie et al. (1999) and to Fusai and Recchioni (2003). We then apply the
lattice to value Bermudan and other complex barrier options. We find that the
discrete lattice achieves great accuracy with a very small number of time steps.
Section four concludes.

2 Discrete Barrier Options and the Dirichlet Lat-
tice

We assume there is a single state variable S = (S;),-, representing an asset
value. We suppose interest rates are constant, value r, and that S follows a
geometric Brownian motion, dS; = rS;dt + 05;dz;, for a standard Brownian
motion z = (z),~, under the martingale measure associated with the accumu-
lator account numeraire. The state space € is equipped with the completed
canonical filtration F = {F;} induced S. We will identify w € Q with paths of
S.

Let 0 =t9 <11 < ... <Tg < T beaset of reset dates and let cy be the value
at time tg of a discrete barrier option with final maturity date T'. At each time
Ty, 9=1,...,Q, a barrier condition is checked. A payoff H at time T" depends
upon a set of barrier condition being satisfied. Without loss of generality we
can assume that Ty < T since if T = T the barrier condition can subsumed
into the payoff function H.

Let B = {Bé}q be a set of barrier levels, where for all ¢ we

=1,..,Q,l=0,...,L,
formally set Bg =0, Bqu = 00, and we require B(lz1 < Bff for 3 < ly. For a fixed

q, {BL} 1—1_ ., are barrier levels active at time T} (BY and BqL * are defined for
=L--bg



convenience). For 1 < P < Q define AY = {(I3,...,lp) |l €{1,..., Ly}, ¢=1,...

and set A to contain just the empty set. A vector § € AP will represent a set
of generalised barrier conditions that have been met by time Tp.

We define a map 6§ = (81,...,0¢) : 2 — AQ. For 1 < ¢ < Q, set §, (w) =l if
Bt < Sy, (w) < BL. Note that here we have chosen to adjoin B! to the open
interval (B!, BL). In general we allow ourselves the freedom to adjoin BY to
the interval (Bé, Bé‘H) instead. In the former case we say Bé is adjoined down
and in the latter it is adjoined up.?

6 encodes information on what barriers have been hit along the path w.
We suppose that the payoff H (6§, St) at time T to a generalised barrier option
depends upon § and on Sy, so that ¢y = e "I Eq [H (§,Sr)] under the spot
measure. H (6, St) takes the form

H(6,5r) = Y H (S1)1f; 3, 1)

Sene

where H° (S7) depends only on St and Iy is the indicator function. There are
potentially Hq:1 oLq different payoff functions depending on which range

(B, Bé] the asset value Sz, lies in at each time Tj.
For a down and in call option L, = 2 for all ¢ and

3 ] 0 ;S\q = 2, for all g,
A (Sr) = { (Sr—X),, otherwise, (2)

and for an up and out put L, =2 for all ¢ and

g e _{ (X —=Sr),, ;S\q:l,forallq, 3)

0, otherwise,

where in this case we adjoin Bé to the interval (B(lpBé‘H) for all [ so that
bq(w) =1if B:™1 < 57, (w) < BL.
For a double knock out put L, = 3 for all ¢ and

(X = 87),, Eq =2, for all ¢,
0, otherwise,

H (Sy) = {
where B; is adjoined down and Bg is adjoined up.

2.1 The Dirichlet Lattice

Discretise time as 0 = tp < ... < ty = T where, for the moment, we assume
the time step At =t;41 —t;, j =0,...,N —11is a constant. Label nodes on
the lattice at time ¢; by the pair (j,), i = —Nj,..., N;, where N; = jK for a

ZIn fact in our context {w | Sg, (w) = BL} is always a sct of measure zero, so that whether

Bé is adjoined up or down is a technical exercise only. In other contexts this may not be the
case.

aP}7



constant integer K. At node (j,7) we suppose that the discrete lattice process
S takes the value Sj; = Sooexp ((r — 202) t; 4+ 02;,;) where S = Sp is the
initial value of the asset, and z;; = ¢Az for an increment Az. Conditional on

§t. = S, set pp = Pr [§t1+1 = Sj1,itk | §tj = Sj,i] for k=-K,...,K. We

J

shall use trinomial branching, setting K =1, Az = v/ kAt and
L k=41,

Setting x = 3 this conditional branching matches the first five moments of In (.S;)
over the interval At.?

On the Dirichlet lattice the lattice process is also defined at intermediate
times t; < ¢t < tj;1. At these times it is distributed according to the bridge

distribution of S. Let F;;ff (u]t)="Pr [:S‘\t <u] §tj =S, §tj+l = j+1,i+k].

Write Ry = In (g—z) and set ¥ = In (Sio) Then

i [ - 1 1
F;;i]f (ult) = Pr|R.<u|Ry = (r — 502> ti+0zj5, R, = (7“ — §ﬂ2> tiy1 + Uzj+1,i+(4)

J

2

= Pr|R;<u-— (r — 102> tj—0zji| Ry, =0, Ry, = (r — %(72) At + okAz%?)

= Priz <

r 1
_ <_ — 50-) t — Zji | th = O,ztj“ = kAZ:|

for a Wiener process z;. This last conditional distribution is well known. Condi-
tional on z;; and z;,,, 2 is normally distributed, with mean (zt]. o zt].) %

. t—t;)(tjan —t
and variance (—L(At“;).

2.2 Constructing a Dirichlet Lattice for a Discrete Barrier
Option

Given a set of barrier dates {Tq}q=1,..., we assume that we can find a set of
times 0 = %9 < ... <ty = T such that no barrier date coincides with a time ¢;
and only one barrier date lies in any one interval [t;,t;41]. For each ¢ there is
a jg such that t; < T, <t;,11. We call the indexes J? = {jg},_, . barrier
indexes. Set Q; = max {q | T, < t} to be the number of barrier conditions that
have been tested by time ¢, where Q; = 0 if T3 > ¢, and set Q; = @Qy,. For

5 € AP we say the barrier condition § is met up to time Tp if the projection of
§ (w) onto A¥ equals 6.

3Later we find it convenient to modify this basic formulation by relaxing the assumptions
of a constant time step and of trinomial branching.

(8)



2.2.1 Option valuation by forward induction

Let fs (S) be the density function of St, fss (S, 3) the joint density function

of S and §, and fs (3 | S ) the density of § conditional on Sp, all conditioned

on Sy. The value ¢ of a discrete barrier option at time tg is

co = e "TEo[H (6,5r)] 9)
= T / S°H(S) fss (5.0) s (10)
0 BeAQ
= T /0 3 HY(S) fs (5 | s) < (S)dsS. (11)
BeAQ

We solve (11) on the lattice.
Write p;; for the probablllty on the lattice of reaching node (j,4) from the

initial node (0,0) and for & € AQi write p‘;-,i for the probability on the lattice
of reaching node (4,4) from the initial node (0,0) conditional on the barrier
condltlon 5 being met. p;; is an approximation on the lattice to fs (S;;) and

p N, 1s an approxnnatlon to the probability fgs <§ | Sy z) fs (Sn,i). Of course
Dii = 2 3ens pjZ Write H]‘S\,,z H3 (Sy,;) for the payoff at node (IV,i),
conditional on § = & € AQ. The forward induction lattice approximation to

(11) is
NN ~ ~
co = e_rT Z Z H]{r,zpljsv,l (12)
=—NngeAQ
As N — oo this discrete approximation converges to its continuous time coun-
terpart.
We evolve forward through the lattice computing p for all 6.4 Write B
for the set of predecessor nodes to node (j,1),

Bj;={be{-N;_1,...,N;_1} | (j — 1,b) branches to (j,7)}. (13)

Then, recursively, ppo = 1 and

Pj+1,i = Z Pj,bPi—b (14)
beEBj11,i

so that p;; can be constructed at every node (j,1).
can also be found from {pj l} n . First sup-

{p J+1,2

i==Nji1,.-,Njt1 oo NG
pose that j is not a barrier index so that a barrier condition is not tested over
this time step. Then for 6 € AQi

p§+1,i: Z p?,bpi—b- (15)
bEBj11,i

4In practice we need only evolve forward for those values of § of interest.



If j is a barrier index, j = jq for some ¢, write F;;ff( 1) for F;;ff (B! | Ty),

setting F"' 71 (¢,0) = 0and F'Y (g, Ly) = 1, and set AF)ETY (q,1) = FPiY (q,0)—

Jitl J,j+1 7,741
F;;ff (¢,1 —1). Then for e AQ
SU{l i z+b
J+{1 3 - Z AFJ J+1 )p] pPi—b (16)
beB; 1.

where 6 U {l} € AQ*! denotes the concatenation of {I} onto 5. At time fg we

have pj) , = 1 for 5 ={} € A°. From this starting point one can now evolve ps

forward through the lattice up to time ¢y, and then use them in (12).
Ordinary knock-in and knock-out discrete barrier options can be valued as

special cases of (12) and (16). For instance an up and out call, where L, = 2

for all ¢, only gets a payoff when 6 =1 =(1,...,1), so

Nn

co=e"" > Hy ki (17)
R

and pjlﬁlz} = ZbeBJH D bAF;;f{ (q, l)pjlb at a barrier index j.

A vanilla up and in call receives a payoff when 5 = 1, but if a payoff is made
it is the same for all § # 1, Hj‘v = HNJ say, so

Ny o
o = et Z Z Hjév,ipljsv,i (18)
i=— Nn 61
= _TT Z N 7 (19)
N 6;&1
Nn
= " Z H%,’L (pn,i —lev,z') ) (20)
i

and pjlﬁlz} = ZbeBJH D bAF; ;f{ (¢, 1) pj, at a barrier index as before.

A double knock in option is treated similarly. We have L, = 2 for all g. Let

APU  — {EeAP|aqust3q23anqu’<q3q7é1}, (21)
APL = {EEAP|Elqustnglanqu’<q3q7é3}7 (22)
and set pY; = 5o a0 Phi PE = Y5e p@in D0y D5 = Pji —PY — Pk, s0 that

pj?i = pjzZ where 2 = (2,...,2). These are the probabilities that at node (4, 1)
the option has knocked in at the upper barrier, the lower barrier, and that it



has not yet knocked in, respectively. Then at a barrier index (16) reduces to

b
Wy = > pics (pﬁfﬁAFj g (q,3)pj0,b), (23)
bEBjt+1,i

P = . s (AFSR (@ )50 k). (24)
bEBj11,i

b
i = > pibAF (0,2)p9, (25)
beBJ+l [3
and
Ny
co=e"T Z (HJ?(MPJ[{IZ + sz\f,ip%,i + H}VZP%Z) (26)
Sy
where H le, I =1,2,3 are the payoffs to the options if it has been knocked in at
the upper boundary, if it has not been knocked in and the payoff if it has been
knocked in at the lower boundary, respectively. For a vanilla double knock in,
Hy ;= HY; and HY,; = 0 for all (N, 7).

2.2.2 Option valuation by backwards induction

Backwards induction needs to be used if a rebate is paid or payable when a
barrier is hit, or if some component of the option can be exercised prior to
maturity. A standard lattice method is unable to price Bermudan ‘in’ type
barrier options, but our lattice formulation is able to do so.

We consider American or Bermudan options which knock-in to other Amer-
ican or Bermudan options. Let §; € A%t be the barrier conditions met up to
time ¢ and write Hy (6, S¢) for the payoff to the option if it is exercisable at
time ¢ < T, conditional on the value of 6;. Write 6; for ¢;;. An exercise strategy
o < T is a stopping time at which exercise takes place. In the American version

of (9),
¢ = max {Et [exp (— /t ’ rsds) H, (85, 55) I{UST}] } (27)

where the maximum is taken over all exercise strategies 0. Over an interval
[t,t + At], conditional upon the option not having been exercised by time ¢, we
have

5‘ = max {Et

(28)
Backwards induction solves (27) by iteration back from time T by discretising

(28). To discretise we suppose that exercise is not possible between times ¢ and
t+ At. Let vt‘ =B {exp ( brat rsds) cfjjﬁ[l{azprm}] be the continuation
value of the option; the option value at time t if it is not exercised before time
t + At but exercised optimally thereafter. Then

&t = max { He (60, 81) o } (29)

i t+At
exp <_ / rsds) H, (603 SU) I{JSH_At} e <_ / r8d8>
. t

LIEWN
CrrAt I{o>t+At}] } .



is an approximation to cf‘. Ef‘ converges to cf‘ as At — 0.
Let H5 H} (S;;) be the payoff to the optlon if exercised at node (7,7) on
the lattlce conditional on § € A@, Set ¢} Ni= = H} ~,; and simultaneously evolve

back ¢} N, for all 5. At time step t; only conditions in the set A® are admissible.
If j is not a barrier index then the continuation value on the lattice is

) —rAt ) < ;
vi;=e " E PrCi i1 itk 5e A, (30)
k=K,...,K

If j = jq is a barrier index then we can give prices to options conditional on the
barrier conditions met up to time t; . Over the step [t;,%;11] the state variable

satisfies the Ith barrier condition with probability AF ; ;i’f (g,1). At time t;

5 —r k su{l ? .
o=e A Y Z AF;;L DA, Teav. @
k=fK,...,K I=1,.

At exercise times t; set

ey —maX{H5 A}, §e A (32)

7,2 J Z’ J 2
otherwise cg fz
For a European down-and-out option, with value cy; = Hy; at time ty,
(31) reduces to

Cj,i — eiTAt Z Pk (1 F;;i’f (q, 1)) Cj+1,i+k' (33)
k=—K,...,.K

since the contribution to ¢;; from node (j + 1,7+ k) is zero if the option has
knocked-out.

For a vanilla European down-and-in call option all knock-in options are the
same. Write cf; for their common value at node (3, ), with value cN = HJI(,Z
at time ty. The option value if not knocked in is e¢y,; = Hy,; = 0. Equatlons
(30), (31) and (32) reduce to

L _ —rAt L . .
Gi = © Z PLCii1 itk J >,
k=—K,...,K

—rAt
{ e Y e ko K PR itk

since c;,; is the value of the knock-in option if it has not knocked in by time ¢;.
If the option knocks-in between times t; and t;4; the knock in value at node
(7 + 1,0+ k) is the vanilla call value ¢, ; ;.

For a double knock in option L, = 3. At node (j,7) let c3 be the value of
the option if it has been knock-in at the upper boundary, 1ts value if it has

_ k k )
e Zk:—K,...,ka ((1 - F;;il (g, 1)) Cit1,itk T+ F;;il (¢,1) C?+1,¢+k) y  JE J@,

(34)

JEJe,

5)



been knocked in at the lower boundary and c?l if it has not yet been knocked
in, with respective payoffs H Jl-,i, 1 =1,2,3. A vanilla double knock would have
Hle =0, for j < N, HJ2\u =0 and H}VZ = ng\u Then

3 —rAt 3 C
Gi = e Z PrCjt1,ithk J > (36)
k=K,...,.K
1 —rAt 1 . .
Gi = e Z PrCjt1,ithk J > (37)
k=—K,..,.K
—rAt 2 .
2. = e e K i PEC 1 i i j¢Je )
e T —rAt 7,5+ ! .
’ T Y ke K i PR 2 23 AT (G ) i T ETT

3 Numerical Results

In this section we value various discrete barrier options on an underlying asset
following a geometric Brownian motion. No rebates are earned or paid.

We first benchmark to down and out barrier options, comparing our results
with those obtained by other methods. We then use the lattice to price American
discrete barrier options, barrier options with non-constant barriers, and complex
barrier options. We find that the Dirichlet lattice prices more accurately that
either a plain lattice method or conditional Monte Carlo.

Lattices for knock out options are truncated at the barrier. All lattices,
Dirichlet and Plain, are in any case truncated at 8 standard deviations either
side of the expected final value of the underlying. The plain lattice method
computes values for knock-in barrier options by barrier parity; it computes
knock-out values and subtracts them from vanilla option values found from the
Black-Scholes formula. Barrier parity does not hold for American barrier options
so we are unable to use the plain method in this case.

In practice AF;;i’f (¢,1) is very close to zero if Sj_; is some distance away

from B.. If in (16) and (31) AF;;i]f (g,1) is set to zero when node (jg,17) is
more than ten layers beneath Bé there is no difference to machine accuracy in
the computed option value, but the computation time is noticeable reduced.
This method, with a cut-off ten layers from the barrier, is used to compute the
results in this section.

The convergence and accuracy of both forward and backwards induction is
improved by using a terminal correction. A terminal correction can be used if
there exists a good approximate analytical solution for the value of the option.
For a discrete barrier option with Ty < T the option is European for times
Ty <t < T and an explicit solution might exist. In our examples this is the
case. One then evolves the lattice only up to the time step jo + 1 immediately
following time Tg. At each node at time ¢j,41 one assigns an option value
equal to the analytical approximation. These values are then evolved back in
the lattice, or used in (12) for time ;1.

The affect of the applying a terminal correction is to substitute a (suffi-
ciently) differentiable payoff function for a non-differentiable one, enabling con-

10



vergence at the theoretically fastest rate (Heston and Zhou (2000)). Note that
separate terminal corrections need to be made to each component option cg,i.

We found significant improvements in convergence thought the use of a ter-
minal correction. Consequently all the results of this section were computed
using a terminal correction (except where otherwise stated). .

For our numerical examples we assume that reset times are equally spaced,
T, = Z%Tv q=1,...,Q, where the barrier condition at time Ty = T is subsumed
into the payoff at time T. We can then define discrete time steps as follows. Let

N =1+ RQ for some integer R > 0. Set At =T /(N —1). Time steps are
to = 0,ty=1T, (39)

t (j—%)At,jzl,...,N—l. (40)

The first step and the last step are of length %At. We use modified branching
at these steps.

If a terminal correction is being used we do not need to define branching over
the last time step. If a terminal correction is not being used at the final step we
refine the branching by defining nodes (N, i) for i = —N,—N + %, oo, N— %, N,

The stock value Sy ; at node (N, i) is Sy ; = So,0 exp <(r —10%) T + iy /{At)

as before. Branching from node (N — 1,¢) is to nodes (N,i + %k‘), k=-1,0,1,
with probabilities py, given by (5).

We can define a trinomial branching at the first step, branching from (0, 0) to
nodes (1,—1), (1,0) and (1, 1) with probabilities p, k = —1,0,1,p_1 =p1 = ﬁ,
Po = 2’;;1. This choice matches the first three moments of z;. To match five
moments, as before, so that the order of convergence is maintained, one would
require heptanomial branching (see Alford and Webber (2000)) at this step.

This can be set up as follows. There are N’ = N — 1 time steps with ¢y = 0,
tnve =T, t; = (j+3)At for j =1,...,N' — 1, where At = T/(N —1) as
before. The first time step is now of length %At. At time t;, 1 < j < N, nodes
are labelled (j,7),i=—j —2,...,7+2, and z;; = iAz = iv/kAt as before. For
j > 1 branching is trinomial. For j = 0 branching is from (0,0) to nodes (1, k)
with probabilities py for £ = —3,...,3. These probabilities can be chosen to
match the first five moments of the Wiener process z over the interval [0, 3At].

Although superficially attractive we found that this refinement did not im-
prove the convergence of the method in this instance. Consequently, all results
quoted in this section use trinomial branching throughout.

3.1 Benchmark Results

Tables 1, 2 and 3 present benchmark results for down and out barrier call options
with T'= 0.2 and T = 2 years to final maturity. There are either 5 or 50 resets
and the barrier level L = B; is 85, 91, or 97. The barrier condition is applied
at the maturity time. Parameter values are So = 100, » = 0.1 and ¢ = 0.3
with the strike X = 100. A terminal correction is imposed at the first time step

11



following the penultimate barrier and trinomial branching is used at the first
time step.

Code was written in VBA 6.0 with no special speed-ups. The platform was
a 1.8 Ghz Pentium 4 PC. The top value in square brackets is the time in seconds
taken by the forwards induction method, the second value is the time taken by
backwards induction.

The benchmark values are taken from Broadie et al. (1997) who implemented
several valuation methods. BGK is the Broadie et al. (1997) analytical correc-
tion value, HK is the Heynen and Kat (1997) method, BGK + HK is a heuristic
compromise given by Broadie et al. between the analytical correction and the
HK method, and BGK lattice is the Broadie et al. (1999) trinomial lattice
quoted in Broadie et al. (1997). Comparisons are also given with a plain lattice
method. The plain lattice performs better when the barrier is less likely to be
hit, that is, when L is further away from Sy or when there are fewer barriers
per unit time, but it is biased, particularly when L = 97.

Forwards induction and backwards induction return identical values. To
value a single option forward induction is slightly slower than backwards induc-
tion; however, the forwards induction method can value many options simulta-
neously.

We see that the Dirichlet lattice is valuing the benchmark instrument to at
least 3 decimal places, and sometimes more. In particular the Dirichlet lattice
confirms the results of the BGK lattice, including the difficult case of L = 97
when the barrier is close to the initial value of the asset. It performs significantly
better than the plain lattice.

Tables 4 and 5 benchmark against double knock out options. All options
mature in 7' = 0.5 years. The lower boundary is at L = B; = 95 and the upper
boundary U = Bg takes the values 110, 125 or 150. There are either 25 or 50
evenly spaced resets up to and including the final maturity date. A terminal
correction is applied. Parameter values are Sy = 100, »r = 0.1, 0 = 0.2 with the
strike X = 100.

Benchmark values are taken from Fusai and Recchioni (2003) who implement
the Markov chain Monte Carlo method of Duan et al. (2003), (DDGS), and two
quadrature methods, one using a trapezium rule (FR-T) and the other Simpson’s
rule (FR-S), amongst others. Results from a plain lattice method are given for
comparison. Similar comments apply here as in the single barrier case.

The Dirichlet lattice confirms the results of Fusai and Recchioni. Although
it is not possible to make direct comparisons of computation times® we believe
our times compare well with theirs. The Dirichlet lattice performs better than
the plain lattice.

3.2 Application to Non-Vanilla Discrete Barrier Options

We apply the partial Dirichlet lattice using backwards induction to price Amer-
ican up-and-in discrete barrier options, barrier options with non-constant barri-

>Fusai and Recchioni implemented their methods in Fortran on a 600 Mhz Pentium II PC.
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ers, and a more complex revivable barrier option. We benchmark the European
style options with a plain Monte Carlo method. The Monte Carlo method uses
exact discretisation and has 100,000 sample paths with time steps at the reset
times. In the section we take Sy = 100, » = 0.1 and o = 0.2. All barriers are
equally spaced with Ty =T

3.2.1 American Options

Table 6 shows convergence of the method for American up-and-in puts with
strike X = 100 and T' = 1 years to maturity, a barrier level U = B(} at either
110 or 130, and either @ = 4, 10 or 50 reset dates up to T' = 1. Since the
plain lattice method cannot be used to value up-and-in American options, and
it is awkward to use Monte Carlo for American options, the table gives no
comparisons. No terminal correction is used in this case. Computation times
are not very sensitive to the number of resets and vary relatively little with the
barrier level, so they are given with the number of time steps, N = 1 + RQ.
Times shown are for U = BZ = 130 with 10 resets.

The lattice appears to have converged to 3 and sometimes 4 significant fig-
ures. It has similar accuracy, in terms of relative error, over the range of barrier
levels and reset frequencies. As expected, the value of the option increases as
the number of reset dates increases, and decreases as U increases.

3.2.2 Non-Constant Barrier Options

We value a pair of down and out call with non-constant barriers. Both options
have T'=1 and ) = 50. The first option has stepped barriers, with B(} =95 for
q=1,...,25 and B(} =90 for ¢ = 26, ...,50. The second option has non-linear
barriers with values B} = 95 exp (0.1t, — 0.22).

Table 7 compares results from the plain Monte Carlo method with the Dirich-
let lattice. The stepped discrete barrier option appears to be valued to 5 signifi-
cant figures, the non-linear discrete barrier option to 3 or 4. The barrier for the
non-linear barrier option rises from 95 up to about 96.2 at time 0.24, close to
the value of Sy, before decreasing, so the lattice is able to price this option less
accurately than the stepped barrier option. The Monte Carlo estimates agree
with the lattice but have considerable standard error. This would decrease were
speed-up to be used, but Monte Carlo is unlikely to give greater accuracy than
the lattice in comparable times.

3.2.3 Complex Barrier Options

Barrier option of any degree of complexity may be valued. Consider a revivable
double knock-out barrier option. This option knocks out if upper or lower
barriers are hit, but if knocked out it can be knocked back again (perhaps with
a different payoff) if a third barrier level is hit. As an example suppose L, = 4
and the option knocks out at levels B} and B but is revived at level B3. At

node (j,4) write ¢, for the option value, with payoff Hn; = (Sn; — X)+, if
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not knocked-out, ¢9; for the value of the option if it has been knocked out but

has not yet been knocked in again, with c%,i = HJ(\)T,Z‘ =0, and ¢

of the revived option with payoff H}i;)i = (SN)i — XR)+. Then

; for the value

C?i = e Z pk0?+1,i+k7 J > Ji,
k=K.,
o _ e Al ke K. K pkc?—i—l,i-',—k?
i = C D kK, K Pk (AF;;i]f (¢:4) i T (1 - AF;;ﬁ (g, 4)) C_?+1,i+k) ;
e A Y ke kot PRC L i
O { e Al Zk:—K,...,ka ((1 - AF;;I’; (q, 2)) C?+1,¢+k + AF;JZIT (¢,2) Cj+1,i+k) )

We price a revivable double knock-out discrete barrier call option with T =
0.5 years and Q = 25. Barriers are B} = 95, B2 = 110 or 125 and B3 at 5,
10, or 15 above B2. We take X = 100 and X® = B3 so that when the option
revives it does so at a strike equal to the revivable barrier level.

Table 8 presents convergence of the Dirichlet lattice for this option using
forward induction. Also shown are the values of the comparable non-revivable
discrete double knock options (taken from table 4), and the values of discrete
up and in calls with barrier at B2 (computed with R = 400). The value of the
discrete down and out option with barrier at By = 95 is 6.63163 (also computed
with R = 400). For each R times vary little across various specifications, so a
single time in seconds, for (337 Bf;’) = (110, 120), is given alongside each R in
square brackets. The Monte Carlo time also varies little and is given for the
same option.

The lattice appears to have converged to 4 or 5 significant figures. The
Monte Carlo estimates are consistent with the lattice but are far less precise.

The revivability feature adds value to the non-revivable double knock out
option, particularly when the revival level is close to the upper barrier, but the
option is still worth significantly less than the discrete down and out. When
Bg is close to Sy the revivable option has values close to the up and in option.
When Bf;’ is further away its values are closer to those of the double knock out.

4 Conclusions

We have presented a framework for valuing complex discrete barrier options and
a lattice valuation method based upon a knowledge of the bridge distribution of
the underlying asset value. We have benchmarked the lattice to vanilla single
and double discrete barrier options and gone on to value American up and
in discrete barrier puts, non-constant discrete barrier options, and revivable
discrete double knock out options.

We find that the method compares favourably to plain lattice methods and
to Monte Carlo.
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Although we have presented results only for the case when the underlying
asset follows a geometric Brownian motion, the method is applicable more gen-
erally to any process for which the conditional bridge distribution is known.
The method is a relatively simple means of obtaining accurate option values for
a wide range of complex European and American discrete barrier options.
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Down and Out, Q =5, T =0.2
L: 85 91 97
BGK: 6.337 6.194 5.028
HK: 6.337 6.205 5.323
BGK + HK: 6.337 6.195 5.141
BGK lattice: 6.337 6.187 5.167
Plain lattice: 6.33688 6.1911 5.1408
[4.5] [4.5] [4.5]
6.33695 6.1878 5.1706
100 [0.14] [0.14] [0.14]
[0.14] [0.13] [0.14]
6.33695 6.1872 5.1685
R | 400 [1.2] [1.2] [1.2]
[1.1] [1.1] [1.1]
6.33695 6.1873 5.1682
700 [2.8] [2.8] [2.8]
[2.6] [2.6] [2.6]
6.33694 6.1874 5.1667
1000 [4.8] [4.8] [4.8]
[4.5] [4.5] [4.5]

Table 1: Benchmark: Down and out option, Q@ = 5, T = 0.2

Down and Out, Q =50, T'= 0.2
L: 85 91 97
BGK: 6.322 5.977 3.836
HK: 6.322 5.977 3.845
BGK + HK: 6.322 5.977 3.837
BGK lattice: 6.322 5.977 3.834
Plain lattice: 6.32221 5.9787 3.8370
[6.1] [6.2] [6.1]
6.32218 5.9786 3.8303
10 [0.23] [0.22] [0.22]
[0.20] [0.20] [0.20]
6.32224 5.9770 3.8335
R | 40 [1.6] [1.6] [1.6]
[1.5] [1.5] [1.5]
6.32225 5.9771 3.8329
70 [3.8] [3.8] [3.8]
[3.4] [3.4] [3.4]
6.32224 5.9772 3.8344
100 [6.6] [6.5] [6.5]
[6.7] [6.0] [6.0]

Table 2: Benchmark: Down and out option, Q = 50, T = 0.2
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Down and Out, Q =50, T = 2
L: 85 91 97
BGK: 20.821 16.446 9.945
HK: 20.822 16.487 10.576
BGK + HK: 20.821 16.450 10.183
BGK lattice: 20.819 16.436 10.254
Plain lattice: 20.8264 16.4238 10.3790
) [6.1] [6.2] [6.1]
20.8264 16.4315 10.2471
10 [0.22] [0.20] [0.22]
[0.22] [0.20] [0.20]
20.8207 16.4346 10.2559
R | 40 [1.6] [1.7] [1.6]
[1.5] [1.5] [1.5]
20.8190 16.4333 10.2447
70 [3.8] [3.8] [3.8]
[3.5] [3.5] [3.5]
20.8197 16.4362 10.2608
100 [6.6] [6.6] [6.5]
[6.3] [6.1] [6.1]

Table 3: Benchmark: Down and out option, Q = 50, T = 2
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Double knock out, Q@ =25, T =0.5

U: 110 125 150
DDGS: 0.1630 3.0058 6.2990
FR-T: 0.1630 3.0060 6.2990
FR-S: 0.1630 3.0061 6.2990
Plain lattice: 0.1635 3.0044 6.2930
' ‘ [11.3] [11.3] [11.4]
0.1630 3.0065 6.2991

60 [1.1] [1.1] [1.1]

[1.0] [1.0] [1.0]
0.1629 3.0062 6.2990

120 [3.0] [3.0] [3.0]

[2.7] [2.7] [2.7]
0.1630 3.0060 6.2990

R | 180 [5.4] [5.5] [5.5]
[5.0] [5.0] [5.0]
0.1630 3.0061 6.2990

240 [8.4] [8.4] [8.5]

[7.6] [67.7] [7.7]
0.1630 3.0061 6.2990

300 [11.7] [11.7] [11.8]
[10.7] [10.7] [10.7]

Table 4: Benchmark: Double knock out option, Q = 25, T = 0.5
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Double knock out, Q = 125, T'= 0.5
U: 110 125 150
DDGS: 0.0756 2.4802 5.7988
FR-T: 0.0757 2.4818 5.7991
FR-S: 0.0757 2.4818 5.7993
Plain lattice: 0.07561 2.4786 5.7979
’ [12.0] [12.0] [12.0]
0.07566 2.4823 5.7997
12 [1.3] [1.4] [1.5]
[1.2] [1.3] [1.4]
0.07570 2.4819 5.7989
24 [3.4] [3.5] [3.8]
[3.1] [3.2] [3.4]
0.07573 2.4820 5.7993
R | 36 [6.0] [6.2] [6.4]
[5.4] [5.6] [5.5]
0.07569 2.4819 5.7991
48 [9.4] [9.4] [9.6]
[8.3] [8.5] [8.7]
0.07569 2.4817 5.7992
60 [12.7] [13.3] [13.2]
[11.5] [11.7] [12.0]

Table 5: Benchmark: Double knock out option, Q = 50, T = 0.5

Up-and-in American puts

Barrier level: 130

Resets: 4 50 4 10 50
?;’% 0.3459 | 05671 | 0.8491 | 0.002884 | 0.005601 | 0.010927

N [51%0;] 0.3448 | 0.5674 | 0.8491 | 0.002879 | 0.005610 | 0.010925
[7230;] 0.3458 | 0.5682 | 0.8490 | 0.002888 | 0.005614 | 0.010920
%22%1 0.3456 | 0.5673 | 0.8491 | 0.002882 | 0.005609 | 0.010922

Table 6: Application: Up-and-in American Puts
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Non-Constant Barriers
Option: Stepped | Non-linear
11.35 8.49
Monte Carlo: (0.05) (0.05)
[34.6] [34.1]
50 11.37362 8.48364
[2.1] [2.1]
11.37313 8.48084
| 100 6.9] 6.8]
11.37316 8.47527
150 [11.4] 11.0]
11.37340 8.47609
200 16.7] 17.5]

Table 7: Application: Non-constant barriers

Revivable double knock-out barrier option

B;: 95
B2, 110 %5
B, 5 | 120 | 1% 30 | 135 | 140
Double knock out: 0.16300 3.00627
Tp and In: 535377 | 1.41862 | 0.82150 | 0.45834 | 0.24708 | 0.12907
Monte Carlo: 2.50 1.56 0.97 3.46 3.26 3.14
[17.7] 0.02) | (0o | (0o | 0.02) | 002) | (0.02)
[ﬂ)} 251674 | 1.58156 | 0.98444 | 3.46407 | 3.25281 | 3.13480
R [fg%] 251680 | 1.58163 | 0.98451 | 3.46461 | 3.25336 | 3.13534
[233%] 951680 | 1.58162 | 0.98450 | 3.46452 | 3.25327 | 3.13525
[;‘2%] 251681 | 1.58164 | 0.98451 | 3.46455 | 3.25330 | 3.13528

Table 8: Application: Revivable double knock-out barrier option
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